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ABSTRACT 

An Inverted Pendulum on a Cart is a common system often used as a benchmark problem for 

control systems. The system consists of a cart that can move in one direction on the horizontal 

plane and a pendulum attached to the cart through a hinge point. The pendulum can rotate 360° 

on the plane made up of the vertical direction and the direction the cart can move. The system 

is controlled by applying a force to the cart, to make it move. 

This thesis consists of two goals. The first goal is to build a lab model of the Inverted Pendulum 

on a Cart system. The second goal is to create a controller that can swing the pendulum from a 

pendulum down position to a pendulum up position, and balance it in this position. 

The lab model is built using a track that the cart can move along, a stepper motor for applying 

force to the cart and a microcontroller for controlling the system. The pendulum angle and the 

cart position are measured using incremental encoders.  

A Mathematical model of the system have been derived. This forms the basis for the design of 

the controller and is also used for simulating and testing the system and controller in 

MATLAB/Simulink before it is implemented on the real system. 

The controller consists of three parts. An extended Kalman filter is implemented to estimate 

the non-measurable state. An energy-based controller is used to swing the pendulum from the 

down position to the up position. This controller regulates the energy in the pendulum to be 

close to the energy the pendulum should have when it is balanced in the upright position. When 

the pendulum is close to the upright position the controller will switch to a linear quadratic 

regulator to balance the pendulum. This controller is based on a linearized version of the 

mathematical system model. 

The lab model and the controllers have been successfully built and implemented. 
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1 INTRODUCTION 

The inverted pendulum on a cart (IPC) is a classical control system problem that is widely used 

booth for education and testing of control algorithms. The problem consists of a pendulum 

mounted on a cart. The goal is to balance the pendulum in an upright position using a force 

acting on the cart in the horizontal plane as the control input, as illustrated in Figure 1.1. 

 

 

Figure 1.1 Inverted Pendulum on a Cart. 

The inverted pendulum problem is often seen as an analogy to balancing a stick on your hand, 

or a person standing upright. The problem has many similarities to real world applications such 

as the two wheeled balancing transportation device, commercially known as the Segway[1]. 

From a control system perspective, the IPC system has many interesting properties. Due to the 

rotation of the pendulum, the system is highly nonlinear. The system is underactuated as it only 

has one input, the force acting on the cart in the horizontal direction, and two degrees of 

freedom, the cart position, x, and the pendulum angle, θ. With the pendulum in an upright 

position, the system is unstable and therefore requires active control to maintain this position. 

1.1 Project background 

The idea for this project was given by Per Anton Øverseth Olsen, lecturer at UIT. Olsen has 

planned to make a lab model of the IPC system for use in lab exercises in courses teached at 

UIT. It was therefore decided that this master thesis project would be to build an IPC for 

implementing control algorithms for this thesis, while the model also can be used later, for 

educational purposes. 

This project was found interesting as it covers a large part of the topics in the master’s degree 

program, such as electronics, embedded systems, and control theory. The project is diverse, as 

it contains designing of the pendulum system, selecting suitable components, the practical part 

with designing the model, coding of microcontrollers and control theory.  

 

y 
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1.2 Literature review 

Numerous lab models of the IPC system has been implemented ranging from simple low-cost 

solutions to expensive solutions with high performance. Examples of low-cost solutions are [2], 

where the system is controlled with a microcontroller and the cart input is generated by a stepper 

motor and timing belt, or [3], where parts salvaged from a printer  are used for the cart sliding 

mechanism, a DC-motor powered by a servo-drive amplifier is used for generating the force 

input to the cart, and the system is controlled by a PC with a data acquisition and control board 

where the controller is running in Simulink. On the high-cost end of the specter there are system 

such as the one implemented in [4]. This system has a triple pendulum, where each pendulum 

is attached to the previous one. With the extra pendulums the requirements measurement 

resolution, control input and computing power increases, making the system more expensive. 

Other IPC system used as references in this thesis, such as the ones in [5] and [6], will be closer 

to the low-cost end of the specter, as they have a single pendulum. 

Some of the control problems associated with the IPC system are to balance the pendulum in 

the upright position and to swing it from a downward position to the upright position. For 

balancing the pendulum the solution used in [2] is among the simpler ones. Here a PID1 

controller is used to control the pendulum angle. In this case the cart position cannot be 

controlled. In one of the solutions in [7] an PID controller is also added to control the cart 

position. This makes it possible to balance the pendulum and control the cart position. In [3] a 

LQR2-controller, with an augmented state to generate integral action, is used. The feedback 

gain for the LQR controller is found based on a mathematical model linearized about the upright 

pendulum position. 

There are several possible solutions for swinging up the pendulum. A popular method is the 

energy based controller first described by Åstrøm and Furata [8]. Here the energy in the 

pendulum is controlled and the energy the pendulum will have in the upright position is used 

as a reference. In [9] the method is further developed to also include methods that ensures that 

system limitations such as track length and maximum velocity is not violated. Another option 

is to use a Fuzzy logic controller such as the one used in [5]. This is a rule-based controller 

where the control input is such that the pendulum energy is increased while not violating system 

limitations. In both these cases the controller must switch to a controller for balancing the 

pendulum when it is close to the upright position. 

A third option for the swing up controller is to use a combination of a feedforward and a 

feedback controller such as in [6]. Here a feedback controller is used to make the system follow 

a trajectory calculated by the feedforward controller. The feedback controller is similar to a 

LQR controller, where the feedback gain is recalculated at every timestep, based on a 

linearization around the current state. The reference trajectory for the feedforward controller is 

calculated in advance by an optimization problem that includes the mathematical model and 

system limitations as constraints. 

 

1 PID - Proportional, Integral, Derivative 
2 LQR – Linear Quadratic Regulator 
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1.3 Project description 

This project has the following two goals: 

• Build a model of the Inverted Pendulum on a Cart system that can be used for testing of 

control algorithms.  

• Implement a controller that can swing the pendulum from a pendulum down position to 

a pendulum up position and balance the pendulum in this position. 

The IPC model will serve as a test platform in this project and will after the project end be given 

to UIT, for use in lab exercises.  

Figure 1.2 shows a sketch of the IPC model. A system similar to what is presented in [10] and 

[3] is used. The cart is sliding on a low friction railing, and the force input is applied to the cart 

using an electric motor and a timing belt and pulley system. The pendulum will be mounted out 

from the side of the cart, allowing it to rotate a full 360°. A microcontroller will be used to 

control the motor in real time based on measurements of the cart position, pendulum angle and 

the implemented control algorithm. A mathematical model of the system will be derived. This 

is used both to develop the control algorithm and for testing and tuning the algorithm in 

MATLAB/Simulink. C++ code is generated from the control algorithm implemented in 

Simulink using Embeded Coder. This is an extension to MATLAB/Simulink that can generate 

c or c++ code from MATLAB or Simulink code for use in embedded processors [11]. This 

code is then used on the microcontroller for implementation on the real model. 

 

Figure 1.2 IPC model principal sketch. 
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1.4 Thesis structure 

Chapter 2 describes the building of the IPC-model. This includes descriptions of design and 

component choices and the system control structure, but not the actual control algorithm that 

calculates the control input. This chapter will cover the first goal of the project. For any future 

users it should be sufficient to read this chapter for understanding how to use the model. 

Chapter 3 covers the derivation of the mathematical model of the system. It also includes theory 

about the methods used and results and discussions of tests used to find parameters for the 

mathematical model. The mathematical model is finally verified against the actual system. 

Chapter 4 describes the control algorithm used to calculate the system input. The controller 

consists of the following parts: a Kalman Filter based state estimator, a control algorithm for 

swinging up the pendulum and a Linear Quadratic Regulator used to balance the pendulum in 

the upright position. Each part has its own section, describing the theory of the part, how it is 

implemented, and tests and analysis used for making decisions and tuning. 

Throughout the thesis tests, analysis and discussions will be presented in the chapters and 

subsections, as these are used to design the system and the controller. This means that the results 

in chapter 5 and the discussion in chapter 6 will be for the final implementation and will mainly 

not include any results and analysis used in the previous chapter. 

A final summary is given in chapter 7. 
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2 IPC-MODEL  

This chapter describes the planning, design, and building of the inverted pendulum on a cart 

model. The chapter starts with section 2.1 about the design basis and description of the major 

components used. Here the necessary specifications for the system will be defined based. Then 

the components will be described along with the reasoning for choosing the components. In 

section 2.2 the design of the system is presented. This will show how components are mounted 

together. Section 2.3 describes the electrical system and how the system components are 

connected. Section 2.4 describes the control structure of the system. This describes how the 

system is initialized, started, and stopped, how the motor is controlled and how sensor data is 

read. It does not include the actual control algorithm for calculating the control input, this is 

found in chapter 4. 

2.1 Design basis and components  

The project has a budget limit at 5000 NOK. To reduce costs the cart and most mounting 

brackets are 3D-printed. It has also been emphasized to keep the weight of the cart and the 

pendulum low, as this will decrees the necessary input force, and then also reduce the cost of 

the motor, motor controller and power supply. Components for this project have been supplied 

by Norwegian suppliers or suppliers with quick delivery to Norway and a system for collecting 

Norwegian Vat. This is to reduce the risk of delays from long shipping or Norwegian customs 

declaration. This has had a large impact on the design phase, as many cheap parts has been 

excluded.  

Based on research papers concerning the use of an IPC model , such as [3, 6, 10], it was decided 

to aim for making the system capable of a cart acceleration of 20𝑚/𝑠2 , a maximum cart 

velocity of 2𝑚/𝑠, a track length of80 − 100cm, a cart weight around 0.350kgand a linear 

pendulum with weight 100 − 250g and length 0.40m . These numbers are not absolute 

requirements, but they will be sufficient for most IPC control problems, while also being 

achievable within the budget limits.  

One major design decision was the choice of the motor. As a brushless DC-motor and controller 

was considered too expensive, there were two options left, a brushed DC-motor or a stepper 

motor. Both alternatives are capable of the task, but they have quite different characteristic that 

will affect the rest of the design and the modelling of the control system. 

Brushed DC-motor 

The stator3 of the brushed-DC motor has a set of fixed permanent magnets, creating a magnet 

field. The rotor 4  consists of coils that can carry a current received through brushes and 

commutators. When a current is passing through the coils inside the stator magnet field, they 

will experience a force normal to the current. This will make the rotor rotate. The coil current 

 

3 Stator is the non-rotating outer part of a motor. 
4 Rotor is the rotating part of the motor. 



 Chapter 2 

18 

 

is changed continuously through the brushes and commutator, causing the motor to rotate 

continuously [12, pp. 279-285]. 

The torque output from a DC-motor is given by 

 
𝑇𝑚 =

𝑘𝑡
𝑅
𝑈 −

𝑘𝑡
2

𝑅
𝜔 

(2.1) 

where 𝑘𝑡[𝑁𝑚/𝐴] is the motor torque constant, 𝑅[Ω] is the motor coil resistance, 𝑈[𝑉] is the 

motor input voltage and 𝜔[𝑟𝑎𝑑/𝑠] is the motor angular velocity5[12, p. 284]. The first term 

shows that the output torque is increasing linearly with the voltage input. The second term 

shows that the torque is decreasing linearly with the angular speed. This is caused by back-emf 

generated when a conductor is moved in a magnetic field.  

The force produced by the motor and pulley system can then be found by  

 𝐹𝑚 =
𝑇𝑚
𝑟

 (2.2) 

where r[m] is the pulley radius, acting as the arm length in the torque formula [13]. Further in 

the IPC model the force acting on the cart will depend on force any inertial forces and friction 

forces generated in the system 

This means that when using a DC-motor the force acting on the cart will be a function dependent 

on the motor characteristics, inertia in the system, the friction in the system and the angular 

velocity of the motor. To achieve good performance of the control system, this will have to be 

modelled as there will not be a linear relationship between the input voltage and the force acting 

on the cart. 

Since the system will be controlled by a microcontroller, an amplifier circuit or voltage/current 

control unit will be needed to control the larger voltage and current going to the motor. 

Stepper motor  

Stepper motors are generally built with permanent magnet or soft iron motor and a stator 

consisting of multiple coils. When a set of coils are energized the permanent magnet in the rotor 

will align with the generated magnet field. The rotor will stay in this position until the magnet 

field is changed. The magnet field is altered by changing the energization of the coil sets. If a 

set of coils are continuously energized, the motor stays still. This gives the motor the stepping 

characteristics, where the energization of the coil sets must be continuously altered to get a 

continuous rotation. This means that a controller, usually called a stepper driver, is necessary 

to control the rotation of the stepper motor [12, pp. 287-303].  

The stepping characteristics of a stepper motor and the use of the stepper motor driver means 

that the angle, angular velocity, and angular acceleration of the stepper motor is controlled, and 

not the output torque. This is under the assumption that the motor can produce enough torque 

 

5 This is a simplified equation not including the motor reactance, which usually has a low impact on the 
outcome. 
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to move the load. If not, the motor will stall, and the rotation stops. This means that the chosen 

stepper motor and driver combination must be able to produce enough torque at all possible 

requirements. 

The torque of a stepper motor is at its maximum at zero velocity, called the holding torque. At 

this state there is no change to the energization of the motor coils or any movement of the rotor. 

This means that no back-emf is generated. Because a stepper motor must accelerate, move, and 

decelerate at every step, the stepper motor torque output will drop when the velocity is 

increased, due to the generated back-emf and the forces needed to move the rotor. Typically 

the torque output of a stepper motor will drop at a lower velocity than a comparable DC-motor 

[12, pp. 298-302]. 

2.1.1 Motor and drive system components 

It was decided to use a stepper motor for IPC model. There was no clear advantage of using a 

stepper motor over a brushed DC-motor, so the decision was made mainly on the available parts 

for timing belt, pulley, motor, and controller had a better fit for the desired specification of the 

system. A quite limited choice of long enough timing belts, and the corresponding timing belt 

pulleys did not fit the motors or had a large radius that made the motor torque to small. 

It was considered an advantage that the stepper motor option doesn’t require modeling of the 

motor, inertia, and friction of the cart rail and timing belt system. The necessity of the modelling 

itself is no problem, as this is a normal procedure for control systems. The issue is that it is 

expected that the IPC system will need adjustments. This can affect the modeled parameters. 

Anny disassembly and reassembly could also change the timing belt tension and then also it’s 

friction. With a stepper motor the control input will always produce the same cart movement 

output. This also reduces the effect that a low-quality car rail, with nonlinear friction, will have 

on the system performance. On the backside, additional programming of the microcontroller 

for interface and setup of the stepper motor driver is required.  

Table 2.1 to Table 2.4 shows some of the specifications of the stepper motor, stepper motor 

driver, timing belt and timing belt pulley used. These components were considered sufficient 

for the desired velocity of 2𝑚/𝑠 and 10m/s2 based on the following calculations. The 

expected total weight of the cart and pendulum is 600𝑔. To add forces from friction, inertia 

and dynamic movements in the pendulum, motor and drive system should fulfill the 

acceleration and velocity requirements for a weight of 1.2kg with no friction, inertia, or other 

forces acting on the system. This is a very crude estimation, but it will give a good indication 

if the motor fulfills the requirements. 

Figure 2.1 shows the torque vs speed curve for the motor, and the required torque and speed 

required by the IPC model is marked with a red box. The required torque is calculated to 

 𝑇𝑟𝑒𝑞𝑢𝑖𝑒𝑟𝑒𝑑 = 𝑚 ∗ 𝑎 ∗ 𝑝𝑢𝑙𝑙𝑒𝑦𝑟𝑎𝑑𝑖𝑢𝑠 = 1.2𝑘𝑔 ∗ 20
𝑚

𝑠2
∗ 0.0255𝑚 = 0.612𝑁𝑚 (2.3) 

The velocity in motor steps per second is calculated to  
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 𝑣𝑠𝑡𝑒𝑝 =
𝑣 ∗ 𝑠𝑡𝑒𝑝𝑠𝑝𝑒𝑟𝑟𝑜𝑢𝑛𝑑

𝑝𝑢𝑙𝑙𝑒𝑦𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
= 
2
𝑚
𝑠 ∗ 200𝑠𝑡𝑒𝑝𝑠

0.16𝑚
= 2500

𝑠𝑡𝑒𝑝

𝑠
 (2.4) 

It should be noted that the torque curve for the motor is made for a phase current of 3.0A, while 

the motor will be used with the nominal phase current of 2.7A. This means that the real motor 

output torque will be slightly less, as the motor torque is proportional to the current [14]. Figure 

2.1 shows that the motor can supply the required torque through the whole velocity range with 

around 30% margin. 

Table 2.1 Trinamic QSH-6018-45-28-110 stepper motor specifications [14]. 

Stepper motor: Trinamic QSH-6018-45-28-110 

Rated Voltage 2.1 V 

Max voltage 75 

Nominal phase current  2.8A 

Max phase current 3.0A 

Holding Torque 1.1 Nm 

Rotor Inertia 275 gcm2 

Weight 0.6 kg 

Step Angle  1.8° 

Steps per round 200 

Shaft diameter 8mm 

Nema size 24 

 
 

Table 2.2 Trinamic TMC 5160 BOB stepper motor driver specifications and features[15, 16] 

Stepper driver: Trinamic TMC5160 BOB 

Break out board based on the TMC5160-TA stepper controller 

Supply voltage 9-36V 

Max nominal phase current 2.8A 

Configuration Through SPI communication 

Control  Through SPI communication or step/dir input 

Highest resolution 256 microsteps per full step 

StealthChop2™ for quiet operation and smooth motion 

Resonance Dampening for mid-range resonances 

spreadCycle™ highly dynamic motor control chopper 

dcStep™ load dependent speed control 
 

 



 Chapter 2 

21 

 

Table 2.3 Timing belt specification. 

Timing belt 

length 2.525m 

width 9mm 

pitch 5mm 

 
 

Table 2.4 Timing belt pulley specification. 

Timing belt pulley 

pitch 5mm 

No of teeth 32 

Effective circumference 160mm 

Effective radius 25.5mm 

 
 

 
 

Figure 2.1 QSH6018-45-28-110 torque curve with 30V supply and 3.0A RMS phase current. Blue 
line shows motor torque vs speed curve. Red box shows necessary working characteristics for the 
IPC model. [14] 
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2.1.2 Microcontroller  

The microcontroller used in this project is a Teensy 4.1 development board based on an ARM 

Cortex-M7 processor running at 600MHz. This is a very fast microcontroller that can do 64bit 

double precision math in hardware, making it suitable for the high number of math 

computations that are necessary in control systems. It has 4 hardware implemented quadrature 

decoders that are used for decoding input from encoders. This is considered a big benefit, as 

the encoders otherwise must be decoded via interrupts. With the two encoders used in this 

project, this would generate many interrupts that may slow down other processes in the code 

[17]. 

Further the Teensy fulfils all other requirements[17] such as:  

• Communication to PC via USB and virtual serial comport or through hardware serial 

ports. 

• SPI for communication to stepper motor driver 

• Total of 55 I/O pins with properties such as interrupts, PWM output, pullup/pulldown 

resistors, analog input for some of the pins. 

The microcontroller can be programmed using the Arduino IDE with the Teensyduino ad on. 

This simplifies the code development as it includes many libraries for interfacing the low-

level settings and use of the microcontroller.  

2.1.3 Encoders 

The encoders used for this project is Broadcom AS22-M560-4A12 encoders. These are low 

cost and low size two channel (A and B) encoders. The channels have 2000 pulses per rotation 

and the waveforms have a 90° phase difference [18]. With quadrature decoding this gives 8000 

steps per rotation. For the cart position we then get a resolution of  
 

 𝑐𝑎𝑟𝑡𝑝𝑜𝑠𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑝𝑢𝑙𝑙𝑒𝑦𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

8000
=
160𝑚𝑚

8000
= 0.2𝑚𝑚. (2.5) 

And for the pendulum angle we get a resolution of 

 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑎𝑛𝑔𝑙𝑒𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
2𝜋

8000
= 7.85 ∗ 10−4𝑟𝑎𝑑 = 0.045°. (2.6) 

The resolution of the encoders is considered to be sufficient for the intended use. The chosen 

encoders are the ones found with highest resolution at a price range within the budget. Further 

the encoders have very low weight compared to alternatives, this helps to reduce the weight of 

the cart.  

The encoder channel output is 5V, while the maximum input voltage on the microcontroller is 

3.3V. The encoder output is therefore stepped down to 3.3V using a SN74LVC245A buffer. 
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2.1.4 Cart track 

The chosen cart track is an aluminium profile with V-shaped groves. The cart is connected to 

the track with delrin6 wheels that fit in the V-grove. The wheels are mounted on ball bearings 

to ensure low friction. This solution was chosen as it has low friction between the cart and the 

track, and low price compared to comparable options.  

2.1.5 Cost 

Table 2.1 shows the cost of the components used in the IPC-model. 

Table 2.5 Cost of IPC-model. 

 Component price (NOK) 
stepper motor 754 
stepper motor driver 230 
microcontroller 316 
timing belt and pulley 401 
aluminium profile and wheels 540 
encoders (2 pieces) 705 
miscellaneous electronics and mechanical parts 600 

sum 3546  

2.2 Design 

Figure 2.2 shows a picture of the built inverted pendulum on a cart model. As shown in the 

figure the cart slides on the track. The timing belt connecting the cart to the motor, runs above 

and below the track, and is connected to the cart above the track. The motor is mounted with a 

housing around its timing belt pulley on the right side of the track. On the left side of the track 

the other pulley is mounted to a similar housing and mounted with the encoder for cart position 

measurements. The timing belt pulleys are capsulated with the housing to reduce the risk of 

anything, for example hair, to get caught in the rotating pulleys and to give protection. Both 

housing have flat pads that can be used to fasten the model to a table with a clamp. The length 

between the two housings is 1.05 m. 

 

6 Delrin is a thermoplastic often used in high-load mechanical applications. 
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Figure 2.2 Picture of the built IPC model. 

2.2.1 Cart and pendulum design 

Figure 2.3 shows pictures of the cart, which is 3d-printed printed. Picture b) shows how the cart 

is connected to the cart with two delrin wheels on each side of the track. To fasten the timing 

belt, a pattern matching the timing belt is made on the top of the cart. The belt is secured in this 

track by a plate.  

The pendulum is connected to the cart by a shaft made of an 8mm threaded rod. The pendulum 

is fastened to the shaft with and 3d-printed joint. The joint is screwed on the shaft and secured 

with a nut. The shaft is connected to the cart via two ball bearings. The shaft is secured in the 

ball bearings by a 3d-printed clamp that snaps onto the shaft in the middle of the ball bearings. 

As seen in Figure 2.3 a) the encoder code wheel is fastened to the shaft with a set screw. There 

is no contact between the encoder electronics board and the code wheel. This means that the 

encoder does not create any friction. 

 

a) b) 

encoder 

end switch 
delrin wheel 

clamp 

encoder code 
wheel 

Ball bearing 

 

Figure 2.3 Pictures of the cart. 
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Figure 2.3 b) shows the mounting of the end switch underneath the track. The switch will be 

triggered by the red plate under the wheels. One switch is mounted on each side in position 

such that it will be 4cm between the cart and the track end.  

The cart is designed with a focus on keeping the weight low, to ensure that motor can achieve 

a high acceleration. The total weight without the pendulum is measured to 0.170kg. The low 

weight of the cart means that its strength is reduced, and that the weight of the pendulum also 

must be low. Several pendulums have been tested and it was found that a too heavy pendulum 

made the cart flex and bend, while a too light pendulum will be very affected by the friction in 

the ball bearings. The pendulum that is used is made of a copper pipe. It weighs 0.14kg and has 

a length of 45.9 cm from the centre of the shat to the end of the pendulum. 

2.2.2 Motor and pulley housing design 

Figure 2.4 shows the mounting of the motor to the housing around the timing belt pulley. It is 

made such that the motor is covered as little as possible, to ensure good cooling of the motor. 

The timing belt pulley is fastened to the motor shaft by a set screw. 

 

Wires for end switches 
and encoder 

motor 

 

Figure 2.4 Picture of stepper motor mounting. 

Figure 2.5 shows how the timing belt pulley at the left side of track and the encoder is mounted. 

The timing belt pulley is fastened to a screw going through its centre hole, with ball bearings 

on both sides. The ball bearings are seated in the housing. The housing cover will be pushing 

against the ball bearings, making the whole assembly fixed. The encoder code wheel is mounted 

at the end of the screw. 
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ball bearing 
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Figure 2.5 Picture of mounting of timing belt pulley with encoder at the left end of the track. 

2.2.3 Control box 

Figure 2.6 shows the system control box. This contains the electronic board with the 

microcontroller and the stepper motor driver, start/stop buttons, status LEDs and power supply 

connections. The box is made without a lid because a button on microcontroller in some cases 

must be pushed when code is uploaded. The electronics board will be described in the following 

section. 

 

5VDC 

30-36 
VDC 

Start Stop 

Status LEDs 

 

Figure 2.6 Picture of control box with electronic board, start/stop button, and status LEDs. 



 Chapter 2 

27 

 

2.3 System electronics 

Figure 2.7 shows a block diagram of the electronic components in the system. A circuit board 

has been made for holding the microcontroller, stepper motor driver, the buffer, and connectors 

for all the peripheral components. The circuit board needs a 30-36VDC supply that can deliver 

3A for powering the stepper motor driver and the stepper motor and 5VDC capable of up to 

0.5A to power the rest of the electronics. The 5VDC can be supplied from the USB or from an 

external 5VDC power supply. The microcontroller board generates 3.3VDC. 

 

Figure 2.7 Block diagram electronic components. 

The PC is connected to the microcontroller using USB. This is used to upload code to the 

microcontroller and serial data is sent back to the PC for logging through a virtual COM-port. 

The system can run without the PC connected, if an alternative 5VDC power supply is used. 

The encoders are supplied by 5VDC from the circuit board. The A and B channel signals are 

passed through the buffer to reduce the voltage from 5V to 3.3V. The signals are then passed 

to the microcontroller. 

The end switches and the buttons are connected to the microcontroller as source inputs and the 

status LEDs 7  are connected to the microcontroller as source outputs. The LEDs have 

 

7 LED – light emitting diode 
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330Ωresistors in series, to limit current. The LEDs have a diode voltage of 1.5V and the 

microcontroller output voltage is 3.3V. this gives a maximum current of 

 𝐼 =
𝑈

𝑅
=
3.3𝑉 − 1.5𝑉

330Ω
≈ 5.5𝑚𝐴. (2.7) 

This is well within the microcontroller maximum source/sink current of 10mA. 

There are several connections between the microcontroller and the stepper motor driver: 

• SPI8 serial communication running at 5MHz is used for communication between the 

microcontroller and the stepper motor driver. This is used for controlling the stepper 

motor driver. 

• 15MHz clock signal. This is used by the stepper motor driver to improve the accuracy 

control of stepper motor velocity and acceleration. 

• vcc_io is used for turning on and setting a voltage reference for the input to the stepper 

motor driver. This is set to 3.3V 

• DRV_enn is used to enable the output from the stepper motor driver to the stepper 

motor. The output is active if DRV_enn is low. The DRV_enn pin is therefore connected 

to 3.3V by a pull up resistor and must be driven low by a source output on the 

microcontroller. This means that the motor is normally disabled. 

• The stepper motor driver also has digital step and direction control inputs and a digital 

output diagnosis flag that can be used for generating interrupts on the microcontroller. 

these are not used in this project, but they are connected. 

Figure 2.8 shows a picture of the circuit board. In addition to the above-mentioned connection 

between components, some spare connectors for the following has been added for future use: 

• One extra encoder input. 

• Connector to the microcontrollers SPI communication. 

• Connector to microcontroller pins for GPIO 9  and various serial communication 

protocols. 

• Connector for emergency stop button. A normally closed switch should be used here. 

This will be connected in series to the DRV_enn control from the microcontroller. If it 

is activated, it will disable the stepper motor driver directly. This has not been used in 

this project because the power supply already had an emergency switch. The pins in the 

connector has therefore been shorted. 

The complete electric schematic of the circuit board and connection to all components are added 

in the appendix.  

 

 

8 SPI – serial peripheral interface is a serial communication protocol. 
9 GPIO – general purpose input   
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Figure 2.8 Circuit board for the IPC system. 

2.4 System control structure 

The control system is based on the sequential repetitive illustrated in Figure 2.9. The loop will 

run at a free frequency but blocks in the loop will only update at the frequency indicated in the 

figure.  

The loop starts by updating the control algorithm. This is the controller that calculates the 

control input given to the cart, based on the encoder measurements. This control algorithm will 

be covered in chapter 4. The calculated control input will however be assigned in the next block, 

the update of the system state machine. This block runs at an update frequency of 200Hz. 

The state machine governs the overall function of the system, such as starting and stopping, 

homing/initialization of encoders and motor, and stopping the system if the cart approaches the 

end of the track. The state machine is presented in section 2.4.1. The state machine is updated 

at a free frequency. 

In the final block the states of the pendulum and the cart and the control input is sent to the PC 

through USB serial communication for logging. This is running at a 200Hz update frequency 

synchronized with the update of the control algorithm. 

With regards to the update frequencies it should be noted the update state machine block 

computational cost is low. Its execution time has been measured with the microcontroller on 



 Chapter 2 

30 

 

board clock to be less than 10𝜇𝑠 . This means that its running time should not create any 

significant variation in the update frequency of the update algorithm block. The execution of 

the loop when all three blocks are updated is measured to be less than 100𝜇s. 

 

Figure 2.9 System control loop. 

2.4.1 System state machine 

The system state machine has four states: Standby, Homing, Control and Stop. The state 

transitions are shown in Figure 2.10.  

At start up the state machine enters the Standby state. In this state the motor is disabled, and the 

cart can be moved around by hand. The state machine will transition if the start button is pushed. 

If the homing sequence has not been completed the homing sequence will start. If the homing 

sequence has been completed, the system enters the control state. 

In the Homing state the homing sequence presented in section 2.4.2 is executed. The state 

machine will transition to the Standby state if the stop button is pushed or the homing sequence 

is completed. 

In the Control state the control input calculated in the update control algorithm block is assigned 

to the stepper motor driver. The state machine will transition to the Standby state if the stop 

button is pushed or one of the end switches are activated. The state machine will enter the Stop 

state if the cart distance from the centre of the track is larger than a limit. 
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In the Stop state the motor is stopped with the maximum acceleration setting in the stepper 

motor driver. This will be an acceleration around 26𝑚/𝑠2. The state machine will transition to 

the Standby state if the stop button is pushed or one of the end switches are active or if the 

system has been in the Stop state for more than 1 second. 

 

Figure 2.10 System state machine. 

From the above it is clear that there are two ways of stopping the system if the cart approaches 

the end of the track. There are two reasons for this. Firstly, using both an end switch and a 

position limit gives redundancy. Secondly, it was found that only disabling the motor does not 

reduce the cart velocity quickly. This means that the cart could hit end of the track with a high 

velocity. The cart velocity is reduced quicker by using the maximum acceleration of the stepper 

motor driver. The system is therefore set up with the position limit being 43 cm from the middle 

of the track. This means that it is triggered 4cm before the end switch. If the cart approaches 

the end of the track it will therefore first be decelerated, before the motor is disabled.  

Because of track length necessary to stop the cart at high velocity, the maximum velocity is set 

to 1.8 m/s. This is slightly less that the planned maximum velocity of 2.0 m/s but is still 

considered acceptable. The cart will in some cases still hit the end of the track, but with a 

significantly lower velocity. Ideally the cart should have been stopped before it can hit the end, 

but this would mean a significant reduction of either the maximum velocity or the usable track 

length. It has been tested to run the cart at full speed to the end of the track, and it does not 

damage any parts in the system, but it could create damage if done repetitively. There is also a 

risk of pinching for example a finger between the cart and one of the housings at the end, and 

this must be taken to account when using the model. 
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2.4.2 Homing procedure 

The homing procedure is used to find a reference to the measurements from the incremental 

encoder. A block diagram of the homing procedure is given in Figure 2.11.  

At the start the current pendulum angle is set to 𝜋. At start of the procedure the pendulum should 

be hanging straight down. This means that the pendulum angle will be 0 if the pendulum is 

rotated clockwise to the upright position. 

The cart will then be moved left until the left end switch is triggered. If the left end switch is 

already triggered the cart will first be backed of the switch. The position of the left end switch 

is stored. The cart is then moved right until the right end switch is triggered. The length between 

the switches is calculated and the current position is set to be half of this. The cart is then moved 

to position 0, which will be the middle of the track. 

 

Figure 2.11 Homing procedure block diagram. 
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2.4.3 Encoder interface 

To read the signal from the encoders the Teensy4.x-Quad-Encoder-Library provided by user 

mjs513 on github.com is used [19]. This a library made for the decoding a quadrature such as 

the two-channel encoder output, using the Teensy 4.1 microcontrollers hardware quadrature 

decoder. Using the library, the encoder position can be read as the number of steps moved from 

a reference position. 

The interface is implemented as a c++ class and one object is created for each encoder. The 

cart position and the pendulum angle is found by scaling the number of steps the encoder has 

moved with the resolution per step as found in (2.5) and (2.6). In addition, the class has 

functions for setting the current position and taking the derivative of the measurement. The 

derivation is implemented using finite differences and an average mean filter with a length of 

two. This is equal to what is presented in section 4.1.2. 

2.4.4 Stepper motor driver interface 

The Trinamic TMC5160 stepper motor driver controls a stepper motor by alternating the current 

going through the spools in the stepper motor. The signal is current regulated, meaning that any 

back emf generated by the motor will not affect the torque output, if the back emf voltage is 

close to the supply voltage to the stepper driver. The current going through the motor spools is 

PWM10 with a very high frequency and will be close to a sine wave as the motor is rotated. The 

stepper driver generates 256 micro steps, meaning that one step of the motor is divided into 256 

steps. This means that the motor will rotate smoothly even at very low velocities. The velocity 

of the motor is directly controlled by the alternation of the current in the motor coils. The 

acceleration is controlled by gradually changing the frequency of the spool current. The 

generated current to the motor spools are from now referred to as the chopper signal [16] [14]. 

The TMC5160 is mainly controlled by setting shift registers through SPI communication. In 

addition, toggling the vcc_io pin on the board for a few clock cycles will reset the entire stepper 

motor driver. The DRV_enn activates or deactivates the stepper driver. When disabled, the 

motor can move freely. However, when disabled, the chopper signal setting cannot change. 

This means that if the cart is moving at for example 1m/s, and then disabled through the 

DRV_enn pin, any reactivation of the DRV_enn pin will cause the signal to the motor coils to 

instantly be equal to the chopper signal for a cart velocity of 1 m/s. This means that the 

acceleration theoretically is infinitely, and the motor cannot generate enough force to start. This 

means that after the motor has been disabled, the stepper motor must be reinitialized as 

described in section 2.4.4.2.  

2.4.4.1 SPI communication 

The SPI communication to and from the TMC5160 uses a 40-bit long datagram as shown in 

Table 2.6. When sending data to the TMC5160 the first bit indicates a read (0) or write (1) 

command, the next 7 bits defines the register address to read from/write too and the last 32-bits 

is the data. If a read command is issued dummy data is used. The returned datagram consists of 

8 status bits and 32-bits, that is the current data in the chips shift register. Reading a value from 

 

10 PWM: pulse width modulation 
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a TMC5160 register is therefore a two-step procedure. First a read command is issued to the 

chip. This will load the data in the chosen register to the shift register. At the next datagram 

transaction this data is sent out from the chip. In this second transaction the command and data 

value does not matter. [16] 

Table 2.6 TMC5160 SPI datagram structure. 

SPI Datagram Structure 

Bit no: 39 38 … 32 31 … 0  

To TMC5160: R/WR Register add. data 

From TMC5160: status data 

 
 

2.4.4.2 Stepper driver configuration and initialization  

The initialization of the stepper driver starts with switching of the vcc_io pin for 2𝑚𝑠, before 

switching it back on. This will reset the whole driver, including setting the chopper signal to 

zero. Then all necessary shift registers will be set to the values corresponding to the 

configurations bellow. Finally, the motor is enabled [16].  

The SpreadCycle chopper mode is enabled. In this mode the stepper driver automatically 

optimize the generated of chopper signal to fit the stepper motor [16].  

The phase output current is set to 2.7A while the motor is running and to 1.6A if the motor is 

standing still. This is slightly below the motors nominal phase current of 2.8A. The current was 

reduced because the motor will get hot if it is running at low velocity for longer period. 

Reducing the phase current reduce the heat generation in the motor [14]. 

2.4.4.3 Motor control 

The TMC5160 has some options of how the position, velocity and the acceleration of motor is 

controlled. This is referred to as ramp modes. In this project a linear ramp is used, ehen the 

acceleration, maximum velocity and direction of acceleration is set. The motor will then 

accelerate with the set acceleration, in the chosen direction, until the maximum velocity is 

reached [16]. This is chosen because the acceleration can be controlled directly, meaning that 

there is a linear relation between the control input and the actual acceleration of the cart if the 

velocity is below the chosen maximum. This simplifies the mathematical modelling of the 

system. 

Changing the control input to the system consist of three steps. First the ramp mode register is 

set to choose the direction. Then write the register value for the maximum velocity is set. 

Finally, the acceleration register is set. In the control state the maximum velocity is always the 

maximum velocity for the system, which is 1.8m/s, and only the acceleration changed. In the 

homing procedure, the acceleration is set to the maximum acceleration for the system, which is 

20𝑚/𝑠2, and only the velocity is changed. 

The setting of the maximum velocity register (VMAX) and the acceleration (AMAX) are found 

by a scaling of the velocity and acceleration in microsteps, given by [16] 
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 𝑉𝑀𝐴𝑋 =
𝑣𝑒𝑙𝜇𝑠𝑡𝑒𝑝𝑠 ∗ 𝑓𝑐𝑙𝑘

224
 (2.8) 

and 

 𝐴𝑀𝐴𝑋 =
𝑎𝑐𝑐𝜇𝑠𝑡𝑒𝑝𝑠 ∗ 𝑓𝑐𝑙𝑘

2

241
. (2.9) 

𝑓𝑐𝑙𝑘  is here the frequency of the clock signal to the stepper driver, which is 15𝑀𝐻𝑧 . The 

velocity in microsteps is found by 

 𝑣𝑒𝑙𝜇𝑠𝑡𝑒𝑝𝑠 =
𝑣𝑒𝑙 ∗ 𝑛𝑠𝑡𝑒𝑝𝑠 ∗ 𝑛𝜇𝑠𝑡𝑒𝑝𝑠

𝑝𝑢𝑙𝑙𝑒𝑦𝑐
 (2.10) 

and the acceleration in microsteps is found by 

 𝑎𝑐𝑐𝜇𝑠𝑡𝑒𝑝𝑠 =
𝑎𝑐𝑐 ∗ 𝑛𝑠𝑡𝑒𝑝𝑠 ∗ 𝑛𝜇𝑠𝑡𝑒𝑝𝑠

𝑝𝑢𝑙𝑙𝑒𝑦𝑐
. (2.11) 

𝑛𝑠𝑡𝑒𝑝𝑠 is here the motors number of steps for a full rotation (200), 𝑛𝜇𝑠𝑡𝑒𝑝𝑠 is the number of 

microsteps per motor step, 𝑝𝑢𝑙𝑙𝑒𝑦𝑐 is the circumference of the timing belt pulley (0.16𝑚), 𝑣𝑒𝑙 
is the cart velocity [𝑚/𝑠] and 𝑎𝑐𝑐 is the cart acceleration [𝑚/𝑠2].  

2.4.4.4 Read motor velocity 

Since the motor velocity is controlled directly by the stepper motor the velocity of the cart can 

be found by reading the setting of the generated chopper signal that controls the motor. This 

value is stored in the VACTUAL register in the TMC5160. The register value can be scaled to 

a velocity in microsteps by  

 𝑣𝑒𝑙𝜇𝑠𝑡𝑒𝑝𝑠 =
𝑉𝐴𝐶𝑇𝑈𝐴𝐿 ∗ 𝑓𝑐𝑙𝑘

224
 (2.12) 

and the cart velocity is found by 

 𝑣𝑒𝑙 =
𝑣𝑒𝑙𝜇𝑠𝑡𝑒𝑝𝑠 ∗ 𝑝𝑢𝑙𝑙𝑒𝑦𝑐

𝑛𝑠𝑡𝑒𝑝𝑠 ∗ 𝑛𝜇𝑠𝑡𝑒𝑝𝑠
. (2.13) 
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2.4.5 File structure 

The control system consists of the files described in Table 2.7. 

Table 2.7 Control system file structure. 

File structure 

CartPendulum.ino This is the main Arduino file and contains the code for the control 
loop, state machine, homing procedure, logging, and the control 
algorithm.  

pin_config.h Contains constants for the connections to the microcontroller 

Global_definitions.h Contains global definitions for the system such as for setting the 
maximum acceleration and velocity, and the track length. 

EncoderInterface.cpp 
EncoderInterface.h 

C++ class for interface to the encoders. 

MotorInterface.cpp 
MotorInterface.h 

C++ class for interface to the TMC5160 stepper driver. 

estimation.h 
estimation.cpp 
rtwtypes.h 

Contains c++ code generated in MATLAB/Simulink for the control 
algorithm described in chapter 4. For future use with a different 
control algorithm these can be removed. 
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3 MATHEMATICAL MODEL 

There are two common approaches for modelling of mechanical systems. One method is based 

on using forces in the system, often referred to as Newtonian mechanics. The other is to use 

energy-based methods such as Lagrangian mechanics. From [7] and [20] where an approach 

based on Newtonian mechanics is used, and [6] where an Lagrangian mechanics approach is 

used, it is seen that both approaches will give a similar model, but with some variations due to 

differences in the representation of the system. 

The Newtonian mechanics approach is based on utilizing Newtons three laws, to set up dynamic 

equations for the individual parts in the system, based on the forces acting on the parts. This is 

normally done with reference to a cartesian coordinate system. The individual parts will be 

affected by constraint forces, in this case from the fact that the cart and pendulum is connected 

at the hinge point. Trough manipulation and substitution of the dynamic equations for the 

individual parts, such as done in [20], the constraint forces can be removed and the equation of 

motions for the complete system is obtained.  

With the Lagrangian approach the dynamical equations are derived using energy considerations 

described in general coordinates, that can be chosen freely, but must be independent. As this 

method is energy-based, it does not concern forces in the system. This means that we will not 

have to deal with the constraint forces between the cart and the pendulum. This makes the 

approach less tedious for a system such as the IPC [21, pp 237-257]. 

Based on this, the mathematical model will be derived using Lagrangian mechanics. 

3.1 Lagrangian mechanics  

Lagrangian mechanics is a formulation of classical mechanics and is based on the principle of 

stationary action, also known as the principle of least action [20p 30]. The principle states that 

for a system consisting of point masses, the systems trajectory from time a to time b is such 

that the action function 

 𝑆(𝑞) = ∫ 𝐿(𝑞, �̇�, 𝑡)𝑑𝑡
𝑏

𝑎

 (3.1) 

is stationary, with respect to variations in the path. Here 𝐿 is the Lagrangian function, given by 

the difference between the kinetic energy, 𝑇 and the potential energy 𝑉, 

 𝐿(𝑞, �̇�, 𝑡) = 𝑇(𝑞, �̇�, 𝑡) − 𝑉(𝑞, �̇�, 𝑡) (3.2) 

and 𝑞 =  [𝑞1,… , 𝑞𝑛] are the generalized coordinates and �̇� = [𝑞1̇, … , �̇�𝑛] their time derivatives 

[22, pp23-24].  
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From the calculus of variations, we have that for a stationary value of the action function, the 

Lagrange equations for a generalized system, including any external forces acting on the 

system, can be written as  

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝑞
= 𝑄, (3.3) 

where Q is here any external forces acting on the system [23p. 45]. This means that by 

expressing the kinetic and potential energy in the system in terms of the generalized 

coordinates, the Euler-Lagrange equation can be utilized to derive the systems equations of 

motions.  

3.2 Derivation of equations of motions 

Figure 3.1 shows a sketch describing the system and its variables. The generalized coordinates 

for the system are the carts position on the rail, 𝑥[𝑚], and the pendulum angle, 𝜃[𝑟𝑎𝑑]. The 

cart has mas 𝑀[𝑘𝑔]. The pendulum is a linear rod with mass 𝑚[𝑘𝑔] and with 𝑙[𝑚] as the 

distance from the hinge point to the pendulum centre of gravity. In addition, we have I[𝑘𝑔𝑚2]  
as the moment of inertia for the pendulum around the pendulum centre of gravity, with 2l as 

the pendulum length, this is given as 

 𝐼 =
1

12
𝑚(2𝑙)2 =

1

3
𝑚𝑙2, (3.4) 

for a linear rod [23 p. 64].  

 

Figure 3.1 IPC figure. 

We start by noting that because of the stepping characteristics of a stepper motor, the control 

input for the system will be the cart acceleration. This assumes that the motor always has 

enough torque to achieve the desired input acceleration, independent of any force from the 

swinging pendulum acting on the cart, friction or any other force acting on the system. This is 

a fair assumption given that the chosen motor is strong enough and the acceleration is limited 

to achievable values. Based on this we can state that system of equation for the x coordinate is 

fully given by 
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 �̈� = 𝑢. (3.5) 

This means that only the equations of motions for the θ coordinate needs to derived using the 

Euler-Lagrange equation. 

Since the cart only can move in the x direction, we start by recognizing the kinetic energy for 

the cart as [23p. 41] 

 𝑇𝑐 =
1

2
𝑀�̇�2. (3.6) 

The kinetic energy for the pendulum can be described with two components, the kinetic energy 

from linear motion of the rod as a point mass at the pendulum centre of gravity, and the kinetic 

energy from rotational motion around the hinge point, generated by the moment of inertia 

around the pendulum centre of gravity [23p. 41]. This gives  

 𝑇𝑝 =
1

2
𝑚𝑣𝑝

2 +
1

2
𝐼�̇�2. (3.7) 

Here 𝑣𝑝[𝑚/𝑠] is the is the pendulum centre of gravity velocity, consisting of components in 

both the 𝑥 and 𝑦 direction. By setting the 𝑦 coordinate to zero at the pendulum hinge point and, 

the position of the pendulum centre of gravity (COG) is given by 

 [
𝑥𝑝
𝑦𝑝
] = [

𝑥 + 𝑙𝑠𝑖𝑛(𝜃)

𝑙𝑐𝑜𝑠(𝜃)
]. (3.8) 

Differentiating (3.8) gives the velocity components as 

 [
�̇�𝑝
�̇�𝑝
] = [

�̇� + 𝑙𝑐𝑜𝑠(𝜃)�̇�

−𝑙𝑠𝑖𝑛(𝜃)�̇�
]. (3.9) 

From this we can write 

 
𝑣𝑝
2 = (�̇� + 𝑙𝑐𝑜𝑠(𝜃)�̇�)

2
+ (−𝑙𝑠𝑖𝑛(𝜃)�̇�)

2
 

= �̇�2 + 2𝑙𝑐𝑜𝑠(𝜃)𝜃�̇̇� + 𝑙2 𝑐𝑜𝑠2(𝜃) �̇�2 + 𝑙2 𝑠𝑖𝑛2(𝜃)�̇�2 
= �̇�2 + 2𝑙𝑐𝑜𝑠(𝜃)�̇��̇� + 𝑙2�̇�2 

(3.10) 

This give the kinetic energy for the pendulum as 

 𝑇𝑝 =
1

2
𝑚�̇�2 +𝑚𝑙𝑐𝑜𝑠(𝜃)�̇��̇� +

1

2
𝑚𝑙2�̇�2 +

1

2
𝐼�̇�2. (3.11) 

With the inertia for a pendulum consisting of a linear rod, given by (3.4), we could combine the 

two last terms in (3.11). However we will keep them separate, as this makes it possible to 

modify the final model, in case the pendulum is changed to a pendulum consisting of a linear 

rod and a weight, simply by updating the centre of gravity and recalculate the moment of inertia 

around the COG. 
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We then have the kinetic energy for the whole system as 

 𝑇 = 𝑇𝑐 + 𝑇𝑝 =
1

2
𝑀�̇�2 +

1

2
𝑚�̇�2 +𝑚𝑙𝑐𝑜𝑠(𝜃)𝜃�̇̇� +

1

2
𝑚𝑙2�̇�2 +

1

2
𝐼�̇�2. (3.12) 

The potential energy in the system is given by the gravitational force acting on the system 

components. Because the cart only can move in the x direction, which is perpendicular to the 

gravitational force, the cart cannot have any change in potential energy. The potential energy 

of the cart is therefor set to  

 𝑉𝑐 = 0. (3.13) 

The potential energy is given by the height of the pendulum centre of gravity. We use the hinge 

point as a potential reference and give the pendulum potential energy as 

 𝑉𝑝 = 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃). (3.14) 

This give the total potential energy as 

 𝑉 = 𝑉𝑐 + 𝑉𝑝 = 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃). (3.15) 

From (3.12) and (3.15) we get the Lagrangian as 

 
𝐿 = 𝑇 − 𝑉 

=
1

2
𝑀�̇�2 +

1

2
𝑚�̇�2 +𝑚𝑙𝑐𝑜𝑠(𝜃)�̇��̇� +

1

2
𝑚𝑙2�̇�2 +

1

2
𝐼�̇�2 −𝑚𝑔𝑙𝑐𝑜𝑠(𝜃). 

(3.16) 

We then insert the Lagrangian into the Euler-Lagrange equation and get 

 

𝑄 =
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
 

=
𝑑

𝑑𝑡
(𝑚𝑙𝑐𝑜𝑠(𝜃)�̇� + 𝑚𝑙2�̇� + 𝐼�̇�) − (−𝑚𝑙�̇� 𝑠𝑖𝑛(𝜃) �̇� + 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃)) 

= 𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� − 𝑚𝑙�̇�𝑠𝑖𝑛(𝜃)�̇� + 𝑚𝑙2�̈� + 𝐼�̈� + 𝑚𝑙�̇� 𝑠𝑖𝑛(𝜃) �̇� − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) 
= (𝑚𝑙2 + 𝐼)�̈� + 𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃). 

(3.17) 

3.3 External forces 

External forces acting on the cart will be the input force from the motor and belt system, friction 

forces from the railing, and any force from air resistance/drag. As stated in the start of section 

3.2 the input is controlling the acceleration in the x coordinate directly, as shown in Figure 3.1. 

This can be seen as that the motor will input the necessary force to overcome any other force 

in the system and the force necessary to get the input acceleration. Further we must consider 

that any force acting in the x coordinate, could affect the 𝜃 coordinate. From equation (3.17) 

we see the term 𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� will take care of the coupling between the coordinates, as this 

describes how the 𝜃  coordinate will react to an input affecting the acceleration in the x 
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coordinate. This means that we will only have to consider the external forces acting on the 𝜃 

coordinate.  

The external forces acting on the pendulum are friction in the ball bearings at the hinge point 

between the cart and the pendulum, and air resistance/drag acting on the pendulum. We will 

continue the discussion of these forces in the following sections. For now we will note that they 

act on the 𝜃 coordinate and that they are a function of the pendulum angular velocity, �̇�, but 

will act in the opposite direction, and therefore will be referenced as −𝐹𝑒𝑥𝑡(�̇�). 

By inserting the external forces into (3.17) we get 

 (𝑚𝑙2 + 𝐼)�̈� + 𝑚𝑙𝑐𝑜𝑠(𝜃)�̈� − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) = −𝐹𝑒𝑥𝑡(�̇�). (3.18) 

With some manipulation we get the equation for the angular acceleration of the pendulum 

 �̈� =
𝑚𝑔𝑙𝑠𝑖𝑛(𝜃)

𝑚𝑙2 + 𝐼
−
𝑚𝑙𝑐𝑜𝑠(𝜃)

𝑚𝑙2 + 𝐼
�̈� −

𝐹𝑒𝑥𝑡(�̇�)

𝑚𝑙2 + 𝐼
. (3.19) 

We now have the full mathematical model for the IPC system from the two coupled second 

order differential equations (3.1) and (3.19). By introducing the state vector  

 𝑥 = [

𝑥
�̇�
𝜃
�̇�

] = [

𝑥1
𝑥2
𝑥3
𝑥4

], (3.20) 

we can write the model as a set of the following first order differential equations  

 �̇� = [

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 

𝑥2
𝑢
𝑥4

𝑚𝑔𝑙𝑠𝑖𝑛(𝑥3)

𝑚𝑙2 + 𝐼
−
𝑚𝑙𝑐𝑜𝑠(𝑥3)

𝑚𝑙2 + 𝐼
𝑢 −

𝐹𝑒𝑥𝑡(𝑥4)

𝑚𝑙2 + 𝐼 ]
 
 
 
 

 (3.21) 

When deriving a mathematical model, it is necessary to consider how accurate it needs to be. 

For the IPC this will mainly be how accurate we model the friction forces in the system. Is a 

simple linear model consisting only of a linear damping term good enough, or do we benefit 

from having a more accurate and complex model? 

A very accurate model will often include an increased number of terms and in many cases, 

nonlinear and discontinuous terms. This makes the job of determining parameters more tedious 

and we run the risk of overfitting the model to test data. The behaviour of the physical system 

may vary, for example because of temperature change or wear and tear. This can leave us with 

a model that is less accurate than we expect. A model containing nonlinear and discontinuous 

terms, can create problems when we need the derivative of the model.  

The model we derive here will be used for creating a controller for swinging the pendulum from 

a downward position, to an upright position, and for creating a LQR controller for stopping and 

balancing the pendulum as it is swung up close to the upright position. The model will also be 

used for simulation and tuning of the controllers in MATLAB/Simulink.  
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The LQR controller described in section 4.3.3 is based on a model linearized around the upright 

equilibrium; hence it needs a linear model for deriving the controller. The linear model 

primarily needs to be accurate at low velocities to achieve good balancing, and slightly higher 

velocities for catching the pendulum as it is swung up. 

The swing up controller described in section 4.2 does not utilize knowledge about friction in 

the system for deriving the control law, but it relies heavily of parameter tuning after testing. 

This means that an accurate model for simulation will be beneficial, as parameters can be tuned 

in Simulink before it’s implemented on the real system. The pendulum will be swinging at 

higher velocities. This means that the model used for simulation should be accurate both at high 

and low angular velocities. 

Based on the discussion above and the further discussion and elaboration below, it was decided 

to make two models. One model where the external forces are modelled with a linear damping 

term, to be used for deriving the LQR controller. And one model used for simulation which 

model the external forces with terms for air drag, linear damping, and Coulomb friction. We 

will refer to these models as the linear damping model and the simulation model in the 

following sections. 

We will start with looking at linear damping and presenting the linear damping model, as this 

will show the limitations of this model. Further we will look at including air drag and coulomb 

friction in the simulation model. 

3.3.1 Modelling linear Damping 

In mechanical systems damping is an influence on a system by reducing its oscillation. In our 

case: the pendulum oscillation. This can be modelled as a force proportional to motion, acting 

in the opposite direction. This is analog to what is referred to as the viscous friction model [24]. 

Since we are dealing with the angular rotation of the pendulum, we have the damping force 

 𝐹𝑑(𝑡) = 𝑘𝑑�̇�(𝑡) (3.22) 

Here 𝑘𝑑  is the damping coefficient, with unit [Ns/m]. Figure 3.2 shows a simulation and 

measurement of the real system of free oscillation of the pendulum, starting at three different 

angles. The simulation use the model in (3.21) with 𝐹𝑒𝑥𝑡 = 𝐹𝑑 and 𝑘𝑑 = 0.001.  

The linear model is a good representation of the system, but it can be seen in Figure 3.2 that is 

has some shortcomings. First, we see in plot b) and c) that the model fails to completely stop 

the oscillations. This indicates that there is friction in the system that isn’t velocity dependent 

or is only present at low velocities. Secondly, we see in the middle part of plot a) and first part 

of plot b) that there is too much damping at the medium velocities. Further we see some 

difference in the phase between the real system and the simulation in plot a). We don’t see the 

same difference in plot b) and c). This indicates that the system has some influence that is 

mainly present at higher velocities, indicating a higher order expression.  
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𝑘𝑑 is chosen to make the model fit at low oscillations and angular velocities, as this is most 

relevant for the LQR controller. For reference, the maximum angular velocity of the first swing 

in Figure 3.2 plot b) is 2 rad/s. In section 4.2.1 the swing up controller is tuned to give an angular 

velocity of less than 2 rad/s as the pendulum is coming to the upright position. This means that 

we mainly consider the accuracy in plot b) and c) for the linear damping model, as these cover 

the expected pendulum angular velocities while the LQR controller is active. The figure shows 

that the chosen 𝑘𝑑 is a good compromise between the two. 

 

Figure 3.2 Free oscillation of the pendulum for the real system and model with linear damping. kd = 
0.001. The figure shows three graphs with oscillations starting from different angles. The cart is in a 
fixed position. 

3.3.2 Air drag 

In Fluid Mechanics drag is known as the force produced on a body as it passes through a fluid. 

The drag force can be modelled as proportional to the flow velocity at low Reynolds number 

and proportional to the square of the flow velocity at higher Reynolds number. Reynolds 

number is given found by 
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 𝑅𝑒 =
𝜌𝑑𝑣

𝜇
, (3.23) 

where 𝜌 is the fluid density, 𝜇 is the fluid viscosity, 𝑑 is a characteristic linear dimension and 

v is the flow velocity [25 pp. 21-33]. 

In the case for the IPC we consider all parameters in (3.23), except the velocity, as constants. 

Based on the discussion at the end of section 3.3.1, this indicates that the pendulum is rotating 

at an angular velocity high enough for the drag force to be proportional to the square of the 

velocity. And a term for this should be added to the model. The linear damping term will model 

the drag force in the cases where the velocity is enough for modelling the force proportional to 

the velocity. 

Since the pendulum is rotating the linear velocity will vary through the length of the pendulum, 

but it will be proportional to the angular velocity at all points. This means thar we can model 

the force from the air drag as proportional to the squared angular velocity, giving 

 𝐹𝑑𝑟(𝑡) = 𝑘𝑑𝑟 ∗ �̇�(𝑡)
2 (3.24) 

where 𝑘𝑑𝑟 is a constant with unit [𝑁𝑠2/𝑚2], which will be found by parameterization/fitting to 

test measurement of the real pendulum. 

3.3.3 Coulomb friction 

The coulomb sliding friction force is a force acting on an object that is sliding on a surface. The 

force will act in the opposite direction of the object’s movement parallel to the sliding surface.  

The Coulomb friction is defined as 

 ℱ𝑐 = 𝜇𝑐𝑁 (3.25) 

where 𝜇𝑐is the sliding friction coefficient and 𝑁[𝐹] is the normal force in the contact. The 

Coulomb friction is often modelled as  

 𝐹𝐶(𝑡) = {

ℱ𝑐𝑠𝑖𝑔𝑛(𝑣(𝑡))

𝐹𝑎𝑝𝑝(𝑡)

ℱ𝑐𝑠𝑖𝑔𝑛(𝐹𝑎𝑝𝑝(𝑡))

𝑖𝑓𝑣(𝑡) > 0
𝑖𝑓𝑣(𝑡) = 0𝑎𝑛𝑑𝐹𝑎𝑝𝑝(𝑡) < ℱ𝑐
𝑖𝑓𝑣(𝑡) = 0𝑎𝑛𝑑𝐹𝑎𝑝𝑝(𝑡) > ℱ𝑐

 (3.26) 

where  𝐹𝑎𝑝𝑝(𝑡) is the applied force to the object and 𝑣(𝑡) is the velocity of the object[24]. As 

we will not have knowledge about the applied force, we use the simplification 

 𝐹𝐶(𝑡) = ℱ𝑐𝑠𝑖𝑔𝑛(𝑣(𝑡)) (3.27) 

This model can cause problems in simulations, as the sign function is discontinuous at zero 

velocity. We will therefore replace the sign function with a tanh function to get a continuous 

function around zero velocity. And by replacing the velocity with angular velocity we have the 

Coulomb friction model we will use as 
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 𝐹𝐶(𝑡) = ℱ𝑐𝑡𝑎𝑛ℎ(𝑘𝑡�̇�(𝑡)) (3.28) 

𝑘𝑡 is here a scaling constant to increase the steepness of the tanh function. Figure 3.3 shows the 

difference of modelling the Coulomb friction with a sign function, as in (3.27), and with a tanh 

function, as in (3.28), with differ values for 𝑘𝑡. Initially 𝑘𝑡 = 200 was used, but this resulted in 

poor performance for the extended Kalman filter because of the steeper gradient around 0 

angular velocity. This was improved by reducing 𝑘𝑡 to 100. It wasn’t noticed any change in the 

simulation model because off this change. 

 

Figure 3.3 Coulomb friction models. 

Figure 3.4 shows the result of combining coulomb friction and linear damping around zero 

angular velocity.  

 

 

Figure 3.4 Combining Coulomb friction (tanh) with linear damping around zero angular velocity. The 
damping coefficient, 𝑘𝑑 , is chozen for good visualization and does not correspond with the chosen 
one for the model, as this would give a very flat slope angle. 
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3.3.4 Static friction 

Static friction is a force acting on objects in contact with a surface when the velocity of the 

object is zero. The static friction force is acting in opposite direction as any force acting on the 

object parallel to the sliding surface [24]. Hence the Static friction force can be seen as a force 

that must be overcome before the object starts moving. 

The static friction force has the same problem as the Coulomb friction, as it is discontinuous at 

zero velocity. It was considered to model the static friction with   

 𝐹𝑠(𝑡) =  (ℱ𝑐 − ℱ𝑠)𝑒
(−
|𝑣(𝑡)|
𝑣𝑠

)
𝑡𝑎𝑛ℎ(𝑣(𝑡)), (3.29) 

where 𝐹𝑠(𝑡)[𝑁] is the resulting static friction, ℱ𝑠[N] is the static friction and 𝑣𝑠 is a coefficient 

for setting the decay of the exponential term. The result would be a model that has static friction 

at low velocity, but no static friction at zero velocity. The combination of linear damping, 

Coulomb friction and static friction as modelled by (3.24),(3.28) and (3.29) would lead to a 

common simplification of the Stribeck friction model[24]. 

It was considered to include static friction in the simulation model, however during 

parameterization and testing including static friction in the model didn’t result in any noticeable 

improvement. It was therefore determined to consider the static friction in the system as 

negligible and it is therefore excluded from the model. 

3.4 Parameter estimation 

The parameters used in the system model is found mainly by fitting a simulation of the 

pendulum oscillations to corresponding measured oscillations of the real system. 

The pendulum weight, m, is found by weighing of the pendulum. The distance from the 

pendulum centre of gravity to the hinge point, named l is approximated by disconnecting the 

pendulum and finding the point where it can be balanced horizontally. This gives l as the 

distance between the hinge point and the balance point. As the part mounting the pendulum will 

affect the balance point slightly, it was expected to get some errors with this measurement. The 

length has been adjusted to make the oscillation of the model and the pendulum match at 

oscillations at low magnitude, corresponding to the magnitudes seen in plot b) in Figure 3.2. 

This is based on Christiaan Huygens’s law, that states that for low oscillations the period of a 

friction less pendulum can be found by 

 𝑇0 = 2𝜋√
𝑙

𝑔
, (3.30) 

meaning that only dimensions affecting the period is the gravity and the distance between the 

hinge point and the pendulum centre of gravity [26]. The IPC pendulum is not friction less, but 

we assume it to be close enough for (3.30) to be fairly accurate. 

The parameters for the friction modelling was first found for the linear damping model by 

adjusting 𝑘𝑑 until the model is as described in section 3.3.1.  
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For the Coulomb friction we have that ℱ𝑐 = 𝜇𝑐𝑁. The normal force, 𝑁, will be the force from 

the shaft connected to the pendulum, acting normally on the ball bearings. This force depends 

on the weight of the pendulum and dynamics depending on the cart movement and pendulum 

swing. This means that the normal force will by time varying, but for the sake of simplification 

it is considered constant. 𝑁 and 𝜇𝑐 will not be estimated/calculated. As both are considered 

constant, we will rather estimate a constant value for ℱ𝑐.  

Estimation of ℱ𝑐 is done by fitting the model to measured pendulum oscillations at medium to 

low amplitude, where the air drag was considered neglectable. This was done by using the linear 

damping model as a starting point. The Coulomb friction model in (3.27) was added and ℱ𝑐 
gradually increased and 𝑘𝑑 gradually decreased. The result is shown in Figure 3.5 illustrates 

that the combination of linear damping and coulomb friction model gives a good representation 

at low pendulum amplitudes and angle velocities, corresponding to plot b) and c). The model 

lacks accuracy at the higher angular velocities, corresponding to plot a). 

 

Figure 3.5 Free oscillation of the pendulum for the real system and model with linear damping and 

Coulomb friction. 𝑘𝑑  = 0.0004 and ℱ𝑐 = 0.0005. The figure shows three graphs with oscillations 
starting from different angles.  
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The air drag modelled with (3.24)was then included and 𝑘𝑑𝑟 gradually increased, together with 

some minor adjustments of 𝑘𝑑 and ℱ𝑐. The final resulting oscillation for the simulation model 

is shown in Figure 3.6. The figure shows that the model fits the measured oscillations through 

the whole range of amplitude and angular velocities. 

 

Figure 3.6 Free oscillation of the pendulum for the real system and simulation model. 𝑘𝑑 = 0.0003 

and 𝐹𝑐 = 0.00054 and 𝑑𝑑𝑟 = 0.00007. The figure shows three graphs with oscillations starting from 
different angles. 
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3.5 Final models and parameters 

We will now rewrite the model from (3.21) by inserting the damping term 𝐹𝑑 from (3.22), the 

air drag term 𝐹𝑑𝑟 from (3.24) and the Coulomb friction from (3.28) into the term for the external 

forces. This gives the external forces in the system as 

 
𝐹𝑒𝑥𝑡(𝑥4) = 𝐹𝑑(𝑥4) + 𝐹𝑑𝑟(𝑥4) + 𝐹𝑐(𝑥4) 

= 𝑘𝑑𝑥4 + 𝐹𝑑𝑟𝑥4
2 + ℱ𝑐𝑡𝑎𝑛ℎ(𝑘𝑡𝑥4) 

(3.31) 

And the complete model as 

 

�̇� = [

𝑥
�̇�
𝜃
�̇�

] =  [

�̇�1
�̇�2
�̇�3
�̇�4

] 

=

[
 
 
 
 

𝑥2
𝑢
𝑥4

𝑚𝑔𝑙𝑠𝑖𝑛(𝑥3)

𝑚𝑙2 + 𝐼
−
𝑚𝑙𝑐𝑜𝑠(𝑥3)

𝑚𝑙2 + 𝐼
𝑢 −

𝑘𝑑
𝑚𝑙2 + 𝐼

𝑥4 −
𝑘𝑑𝑟

𝑚𝑙2 + 𝐼
𝑥4
2 −

ℱ𝑐𝑡𝑎𝑛ℎ(𝑘𝑡𝑥4)

𝑚𝑙2 + 𝐼 ]
 
 
 
 

.

⏟                                                
𝑓(𝑥,𝑢)

 

(3.32) 

The system parameters are given in Table 3.1. The right-hand side of (3.32) is denoted f(x, u) 

for later reference. 

Table 3.1 System and model parameters. 

System parameters 

Symbol  Description Value 

𝒎 Pendulum mass 0.14 𝑘𝑔 

𝒍 Length from hinge point to pendulum centre of gravity 0.228 𝑚 

𝑰 Pendulum Inertia around centre of gravity 0.0025 𝑘𝑔 𝑚2 
𝒈 Gravitational acceleration  9.81 𝑚/𝑠2  

𝒖𝑚𝑎𝑥  Max acceleration 20 𝑚/𝑠2 

𝒙𝟏 𝒎𝒂𝒙,𝒙𝟏 𝒎𝒊𝒏 
Max and min allowed cart position with reference to 
track length 

0.43𝑚,−0.43𝑚 

𝒙𝟐 𝒎𝒂𝒙 Maximum cart velocity ±1.8 𝑚/𝑠 

Friction parameters 

  Linear damping 
model 

Simulation model 

𝒌𝒅 Linear damping constant 0.001 𝑁𝑠/𝑚 0.0004 𝑁𝑠/𝑚 

𝒌𝒅𝒓 Air drag constant (quadratic damping) 0 0.00007 𝑁𝑠2/𝑚2 
𝑭𝒄 Coulomb constant force  0 0.00054 𝑁 

𝒌𝒕 Constant in tanh function 0 100 
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3.6 Model verification 

The accuracy of the model has been verified by applying an input to the real system and the 

mathematical model and comparing the cart position and pendulum angle. The applied input 

and results are shown in Figure 3.7, indicating a near perfect match.  

 

Figure 3.7 Verification of simulation model. An equal input is applied both to the real system and the 
mathematical model and the resulting cart position and pendulum angle is compared. 
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4 CONTROL ALGORITHM FOR THE IPC  

We will now look at the control system for the IPC. We will divide the controller in two sub 

controllers, one for swinging the pendulum from a pendulum down position to a upright 

position, and one for balancing the pendulum in the upright position. These controllers will be 

separate, and the system will switch between the controllers depending on the pendulum angle. 

Both controllers are based on feedback loop and will need the full state of the system, 𝑥, for 

calculation of the control input. The system has encoders for measuring the cart position and 

pendulum angle, but the cart velocity and pendulum angle velocity will have to be estimated or 

obtained in other ways. We will therefore start this chapter with looking at state estimation 

before we continue with the swing up control and the linear quadratic regulator used to control 

the pendulum at the upright position. 

The control system described here will run at a 200Hz update frequency. This choice is based 

on the quick response time of the system, for example as seen in Figure 3.6, where one 

oscillation takes around 1 second. We could probably have managed with a lower frequency 

than 200Hz, but this was chosen because it would most likely be fast enough, it was expected 

that we could estimate the missing parameters without much noise, and the microcontroller was 

expected to be quick enough. The later argument has been verified by measuring time for one 

update cycle, and the former argument will be verified in the section for state estimation. 

In this section we will present multiple results from simulation in Simulink. Simulations are 

performed using the simulation model presented in section 3.5. Measurements from the 

encoders have been simulated using a quantizer block on the measured state. The quantizer 

block will discretize the output corresponding to the resolution the encoders give for the 

measurement, as given by (2.5) and (2.6) . 

4.1 State estimation 

We can measure the cart position and the pendulum angle directly using the encoders. For the 

cart velocity we have to options, we can estimate it, or we can use the velocity obtained from 

the stepper motor driver. It was decided to use the velocity from the stepper motor because this 

is based on the same data that the stepper motor uses for ramp generation for the motor current. 

This means that as long as the motor functions normally, this data is accurate and does not have 

any delays. Further the data contains little noise. This means that we can treat this velocity 

obtain from the stepper driver as a direct measurement. We can then write the measurement 

model for the system as 

 𝑦 = 𝐶𝑥 = [
1 0 0 0
0 1 0 0
0 0 1 0

] 𝑥. (4.1) 

Since the cart position and pendulum angle is obtained from encoders the measurements will 

contain quantization noise. This will be described in the following section, before we continue 

with the estimation of the last state, 𝑥4. 
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For the estimation of 𝑥4  we will examine two options. First, we will use numerical 

differentiation to estimate the derivative of 𝑥3 and use this as the estimate of 𝑥4. The second 

option is to do the estimation with an extended Kalman filter.  

4.1.1 Encoder quantization error 

As stated, the cart position and pendulum angle are measured with encoders. Because of the 

resolution of the encoder, the encoder output will contain a quantization noise. This is illustrated 

in Figure 4.1, showing that the quantized measurement has a stepping shape, where the 

quantization step will have a height corresponding to the encoder resolution. In the figure the 

quantized relation is placed bellow the correct relation, but it could also be above, or somewhere 

in the middle. This depends on the encoder position at initialization and is unknown.  

With the measurement resolutions of 0.2mm for the cart position and 7.85 ∗ 10−4𝑟𝑎𝑑 for the 

pendulum angle, the quantization noise is considered to be insignificant for the position and 

angle measurement. However, it will affect the differentiation of angle, to get the angle velocity. 

 

Figure 4.1 Illustration of error in a quantized measurement. 

4.1.2 Numerical differentiation 

The pendulum angular velocity is the derivative of the pendulum angle. A common way to 

approximate the derivative is to use finite differences and since calculations are needed in real 

time, we must use backward difference as only present and previous measurements are 

available. This is equal to what is referred to as frequency measurement in [27]. The 

approximation for the derivative of the pendulum angle is  

 
𝑑𝜃(𝑡)

𝑑𝑡
= 𝑙𝑖𝑚
∆𝑡→0

𝜃(𝑡) − 𝜃(𝑡 − ∆𝑡)

∆𝑡
 ≈

𝜃𝑘 − 𝜃𝑘−1
𝑇𝑠

≈ �̇�𝑘. (4.2) 
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Here 𝑇𝑠 is the sampling interval, which will correspond to the control loop update frequency of 

200Hz, and 𝜃𝑘 denotes the angle at time instance 𝑘 ∗ 𝑇𝑠. This approach can give problems with 

noisy measurements, as this can create big derivatives when the sampling time is short. This 

means that the numerical differentiation acts as a high pass filter and lets noise through. 

Increasing the sampling time or using a low pass filter will reduce this noise, but it will increase 

the phase delay of the estimate and should be used with care.  

The encoders are considered to only contain quantization noise and (4.2) show that this 

quantization noise will be included in the numerical differentiation and the quantisation step 

size is dependent on 𝑇𝑠. To reduce the quantization step, we will use an average mean filter. 

This is chosen as it is analogue to increasing the sample time. We can then calculate the 

quantization step as  

 𝛿�̇� =
𝛿𝜃

𝑇𝑠 ∗ 𝑛
 (4.3) 

where 𝛿𝜃 = 8.85 ∗ 10−4𝑟𝑎𝑑  is the quantisation step for the theta measurement and 𝑛 is the 

filter length. Using a filter with length n=2 will then give a quantization step of 0.0785
𝑟𝑎𝑑

𝑠
≈

4.5°/𝑠.  

The quantization step size is considered to mainly be a problem when the pendulum is balance 

in the upright position. In this case the angular velocity will be close to zero, this means that 

the estimated angular velocity will alternate between 0 and the value of the quantization step 

size. The performance of the numerical differentiation will be further discussed in section 4.1.4 

were it is compared with the estimate from the extended Kalman filter. 

The numerical differentiation and the average mean filter will be implemented in Simulink as 

finite impulse response (FIR) filters. 

4.1.3 Extended Kalman filter 

The Kalman filter (KF) is a discrete time algorithm for estimating the full state of a processes 

based on a partial measurement of the state of a linear process model and the noise present in 

the system and measurements. The noise is considered zero mean gaussian. The Kalman filter 

is named after Rudolf E. Kálmán, one of the primary developers of the filter. The filter is used 

in a wide variety of applications both for estimating missing states and improving noisy 

measurements. Given a linear time invariant process and zero mean gaussian noise the Kalman 

filter is an optimal estimator [28 pp 1-5],[29 p 515].  

The KF is a recursive algorithm using the following steps to estimate the optimal estimate. Prior 

to a new measurement the state is estimated, using the process model, along with an estimate 

of the uncertainty of the estimate. When a new measurement is available, the final estimation 

is given by a weighting between the a priori estimate and the measurements. The weighting, 

referred to as the Kalman gain, is calculated based un the uncertainties of the a priori estimate 

and the uncertainties of the measurement.  

Because the nonlinearities in the IPC model, a linear model cannot describe the system 

satisfactory. Therefore, an extended Kalman filter (EKF) is used. In the EKF a linear model is 
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created by linearization about the current state at each iteration. This enables the Kalman filter 

to be used for nonlinear systems, however it is required that the linear model is a good 

approximation of the system around the point of the current estimate[30 pp 125-128]. This 

mean that the filter is best suited for processes that are slightly nonlinear and differentiable. It 

should be noted that the extended Kalman filter is not an optimal estimator, as it is based on a 

linear approximation. But it will generally perform good on processes that are slightly nonlinear 

around the estimation point.   

The noise in the IPC system is a quantization noise and is technically not a zero mean gaussian 

noise. In the Kalman filter the noise is expected to be zero mean gaussian, but the Kalman filter 

has shown to give good results also for the quantization noise, as produced by encoders [27]. 

The implementations of the extended Kalman filter can have some slight variations depending 

on the use. Here the implementation is done in Simulink using the extended Kalman filter block 

in the control system toolbox. The description of the filter given below is therefore based on the 

MATLAB online documentation. The MATLAB documentation is general, as it can be 

modified in the block settings. The description here will be slightly modified, to describe the 

functionality of the settings used.  

A nonlinear discrete-time system with additive noise can be described by the following 

difference equation for the state and measurement respectively 

 𝑥𝑘+1 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑤𝑘 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 

(4.4) 

(4.5)   

where the subscript k denotes the time instance 𝑡 = 𝑘 ∗ 𝑇𝑠 , 𝑔(𝑥𝑘, 𝑢𝑘)  is a nonlinear state 

transition function evolving the state from timestep 𝑘  to timestep 𝑘 + 1  and ℎ(𝑥𝑘)  is a 

nonlinear measurement function relating the states, 𝑥, to the measurements, 𝑦, at timestep 𝑘. 

𝑤𝑘  is the process noise and 𝑣𝑘  is the measurement noise at timestep 𝑘. Both 𝑤𝑘  and 𝑣𝑘  are 

gaussian with zero mean described as 

 𝑤𝑘~(0, 𝑄) 

𝑣𝑘~(0, 𝑅) 

(4.6) 

(4.7)  

𝑄  is the process noise covariance and 𝑅is the measurement noise covariance. We consider 

both to be time invariant. The Jacobi matrix for the nonlinear state transition function is defined 

as 

 𝐺𝑘 =
𝜕𝑔

𝜕𝑥
|
�̂�𝑘|𝑘,𝑢𝑘

 (4.8) 

and the Jacobi matrix for the measurement function as 

 𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|
�̂�𝑘|𝑘

. (4.9) 
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In the following �̂�  is the state estimate and 𝑃  is the estimation error covariance matrix. 

�̂�𝑘𝑎|𝑘𝑏denotes the estimate at timestep 𝑘𝑎 using the measurements at time steps 0,1, … , 𝑘𝑏.  

At start-up of the algorithm an initial estimate of the state �̂�0|−1 must be given along with the 

associated initial estimation error covariance matrix 𝑃0|−1. The initial estimate is the “best 

guess” of the state at start up and is specified in advance. The algorithm then uses the following 

two steps to estimate the step at each iteration [31]. 

Update Kalman gain, estimate and covariance estimate 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅)
−1

 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘 (𝑦𝑘 − ℎ(�̂�𝑘|𝑘−1)) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 

(4.10) 

(4.11) 

(4.12) 

Predict next estimate and next estimate covariance 

 
�̂�𝑘+1|𝑘 = 𝑔(�̂�𝑘|𝑘, 𝑢𝑘) 

𝑃𝑘+1|𝑘 = 𝐺𝑘𝑃𝑘|𝑘𝐺𝑘
𝑇 + 𝑄 

(4.13) 

(4.14)  

At the update step the Kalman gain 𝐾𝑘 is updated based the estimated state covariance, the 

measurement Jacobian, and the measurement covariance as stated in (4.10). The Kalman gain 

will dictates how much the estimate should rely on the prediction prior to the measurement and 

the measurement, as shown in (4.11) where the estimated state is updated. The error covariance 

is updated by calculating how much the predicted error covariance is propagated through the 

measurement Jacobian, 𝐻𝑘 and the Kalman, 𝐾𝑘 gain used at the state estimation as shown in 

(4.12). 

At the prediction step the prediction of the estimate at the next step is calculated by (4.13)(4.12) 

using the nonlinear state transition equation, the current estimate and the current input. The 

estimate error covariance at next step is calculated based on how the current estimate error 

covariance will propagate in the system through the transition function Jacobian, 𝐺𝑘 , and 

adding the process noise covariance, as shown in (4.14). 

4.1.3.1 Discrete time system model 

As seen above the EKF requires a discrete time system model. The model described in by (3.32) 

is a continuous model and must therefore be discretised. This will be done using the forward 

Euler method [32]. The simulation model including coulomb friction and air drag will be used 

in the Kalman filter. 

It is only necessary to estimate the angular velocity, 𝑥4, as measurements for the other states 

are accurate and has low noise. The mathematical model in (3.32) shows that the pendulum 

angle, 𝑥3, and pendulum angular velocity, 𝑥4, are not affected by the cart position, 𝑥1, and the 
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cart velocity, 𝑥4. This means the model used in the Kalman filter can be reduced to model for 

the states concerning the pendulum angle, 𝑥3 and 𝑥4. This give the state vector used in the 

Kalman filter  

 𝑥𝑃 = [
𝜃
�̇�
] [
𝑥3
𝑥4
]. (4.15) 

And the continuous model for reduced system as  

 𝑥�̇� = 𝑓𝑃(𝑥𝑃, 𝑢) (4.16) 

where 𝑓𝑃(𝑥𝑃, 𝑢) is the two bottom rows of fP(𝑥, u) in (3.32). 

The discrete time model for the reduced system is then  

 𝑥𝑃𝑘+1 = 𝑔 (𝑥𝑃𝑘, 𝑢𝑘) + 𝑤𝑘 (4.17) 

where 

 𝑔 (𝑥𝑃𝑘, 𝑢𝑘) = 𝑥𝑃𝑘 + 𝑇𝑠 ∗ 𝑓𝑃 (𝑥𝑃𝑘, 𝑢𝑘) (4.18) 

is the discretization of fP(xP, u), using the forward Euler method. The measurement function 

will be equal to the measurement model in (4.1), giving 

𝑦𝑘 = ℎ (𝑥𝑃𝑘) + 𝑣𝑘  

with  

 ℎ (𝑥𝑃𝑘) = 𝑥3. (4.19) 

4.1.3.2 Derivation of Jacobi matrices 

The EKF uses the Jacobi matrixes 𝐺𝑘 and 𝐻𝑘. The EKF block in Simulink can compute these 

numerically or functions for computing these can be added. It was decided to include functions 

for calculation of the Jacobi matrixes as this reduces the number of computations needed at 

each update. This means that the Jacobians must be calculated analytically.  

The Jacobi matrix for the measurement function is straight forward to derive and is 

 𝐻𝑘(𝑥𝑃𝑘) =
𝜕ℎ (𝑥𝑃𝑘)

𝜕𝑥𝑃𝑘
= [
1 0
0 0

] (4.20) 

For the Jacobi matrix for the transition function we have 
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Gk(xPk,uk) = 
𝜕𝑔

𝜕xPk
=
𝜕xPk
𝜕xPk

+ 𝑇𝑠 ∗
𝜕fP(xPk, uk)

𝜕xPk
 

with 

 
𝜕𝑥𝑃𝑘
𝜕𝑥𝑃𝑘

= [
1 0
0 1

] (4.21) 

 and  

 

𝜕𝑓𝑃 (𝑥𝑃𝑘, 𝑢𝑘)

𝜕𝑥𝑃𝑘
= 

[

0 1

−
𝑚𝑙(𝑔 𝑐𝑜𝑠(𝑥3𝑘) + 𝑠𝑖𝑛(𝑥3𝑘) 𝑢𝑘)

𝐼 + 𝑚𝑙2
−
𝑘𝑑 − 2𝑘𝑑𝑟𝑥4𝑘 − 𝐹𝐶𝑘𝑡 𝑠𝑒𝑐ℎ

2(𝑘𝑡𝑥4𝑘)

𝐼 + 𝑚𝑙2

] 

(4.22) 

 

4.1.3.3 Tuning covariance matrices  

The covariance matrices Q and R can be seen as tuning variables for the EKF, as the relation 

between them will affect how much of the prediction is based on the measurement and the a 

priori estimate. If both the measurement noise covariance and the process noise covariance is 

known, these should normally be used. In many cases the covariances in the system are 

unknown or are uncertain. In these cases, the Kalman filter must be tuned, to achieve the desired 

response. For the EKF used here, it is desirable to smoothen out the effect that the noise from 

the quantified measurement of the angle will have on the angular velocity, while still keeping 

the estimate responsive to any external noise acting on the pendulum, for example a push.  

As a starting point 𝑅 = 0.002 is chosen, as this in some degree correspond to the quantisation 

steps for the angle measurement. We know that this measurement is accurate and therefore use 

larger values for Q. This result is that the estimate will rely more on the measurement, than the 

predicted estimate. For the Q matrix we will only assign values along the main diagonal.  

In the simulation a wide variety of Q values gave good results, but when the complete control 

system was implemented on the real IPC system, more tuning was needed. Initially the filter 

had a slight bias on the estimated angular velocity. This was removed by increasing the Q 

matrix. Indicating that the real IPC system has greater uncertainties than the simulation model, 

as should be expected. The final tuning of Q was done by looking at the response of the estimate 

when a small push was given to the pendulum while it was balance in the upright position. This 

will be further discussed in the next section and illustrated in Figure 4.3, where the two 

estimation options are compared. The final value of the process noise covariance is 

 𝑄 = [
0.01 0
0 8

] (4.23) 
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The initial value is set to �̂�0|−1 = [𝜋0]
𝑇, corresponding to the pendulum down position. The 

initial estimation error covariance is set to 𝑃0|−1 = 𝑑𝑖𝑎𝑔[11]. 

4.1.4 Comparing numerical differentiation and EKF 

Figure 4.2 shows the real and estimated velocities of a simulated free oscillation of the 

pendulum starting at 0.2 rad, just after it has passed the bottom point of the first swing. The 

angular velocities have been estimated with the EKF and numerical differentiation. The 

differentiation estimate has been filtered through two different average mean filters with length 

𝑛 = 2 and 𝑛 = 6. The figure shows that the Kalman filter nearly matches the real velocity. For 

the estimate using differentiation, it is clear that using a short filter has some noise, and if the 

filter is longer, there is a considerable delay on the estimate.  

 

Figure 4.2 Phase delay in velocity estimation. The figure shows a simulation of real and estimated 
angular velocities of the pendulum during a swing from 0.2 rad, as it is just past the bottom point. The 
angular velocity is estimated with the EKF and differentiation and an average mean filter with two 
different lengths(n). 

Figure 4.3 shows the difference of the angular velocity estimate using EKF and differentiation 

with filter length of 2, when the pendulum is expose to noise, in the form of a push in the 

negative direction. The pendulum is here controlled by the final controller, using the EKF 

estimate. The figure shows that the noise in the EKF estimate is significantly reduced compared 

to the differentiation estimate. The EKF does however not perform as good as the differentiation 

when the pendulum es exposed to a push. This is mainly because the controller responds with 

a strong control input based on the other measurements, leading the EKF predicted estimate 

based on the model to move in the wrong direction. The EKF filters ability to give a good 

estimate after a push will therefore also depend on the controller. 
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Figure 4.3 Velocity estimation after noise push to pendulum). The figure shows the measured angle 
and the estimated angular velocity using EKF and differentiation filtered with average mean filter with 
length n=2, from the real system while the pendulum is balanced in upright position with the complete 
controller. The EKF estimate is used as angular velocity input to the controller. At time=0.5 s the 
pendulum is given a short push in the negative direction. 

Figure 4.2 and Figure 4.3 show that both estimation methods have their advantage, and the 

choice between them should be done by prioritising low noise at normal operation or the ability 

to detect an external disturbance. It is therefore chosen to use EKF because low noise is desired 

when the pendulum is balanced. The system will also measure disturbance directly through the 

pendulum angle.  

4.1.5 Final estimator 

For the final input to the controller it is desirable to have the angle measurement in the range 

[−𝜋, 𝜋]. This ensures that the angle is 0 when the pendulum is in the upright position regardless 

which direction it comes up or if it is rotated several rotations. This is done by the following  

 𝜃−𝜋,𝜋 = ((𝜃 + 𝜋)%2𝜋) − 𝜋. (4.24) 

% is here the floating point modulo operator, implemented with the MATLAB mod() function. 

Figure 4.4 shows a block diagram of the complete state estimation. 

 

Figure 4.4 Block diagram state estimation 
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4.2 Swing up control 

The swing up controller used here is an energy-based controller. This concept was first 

introduced by Åström and Furata [8] and is based on controlling the pendulum energy, instead 

of controlling the system states directly. If an energy corresponding to the pendulum energy in 

the upright position is given to the pendulum, the pendulum will swing to the upright position. 

Hence by adding energy to the pendulum through the cart acceleration input, u, and controlling 

it to be close to the pendulum angle in upright position, the pendulum will swing up and can be 

caught by the LQR controller presented in section 4.3 in the upright position. 

The method presented by Åström and Furata does not take any consideration with regards to 

limitations in the system, such as the track length and maximum cart velocity. Therefore a 

extension to this method, presented by Chatterjee et al. [9] will be used. In this extension the 

problem with limitations in the system is handled with what they refer to as an “energy well”. 

If the cart approaches the end of the track or the velocity is close to its maximum, a penalty will 

be given, to reduce the control input. 

In this section the pendulum is considered as frictionless. This is of course not the case for the 

real pendulum, but it simplifies the explanation of how the swing up controller functions and 

the effects of the friction in the system will be compensated for by tuning. The equations of 

motions for the pendulum in (3.18) can then be restated as 

 𝐼𝐻�̈� + 𝑚𝑙𝑐𝑜𝑠(𝜃)𝑢 − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) = 0 (4.25) 

Note that �̈� is replaced by 𝑢 and 𝑚𝑙2 + 𝐼 is replaced with𝐼𝐻, which is the pendulums moment 

of inertia around the hinge point, given by 

 𝐼𝐻 =
1

3
𝑚(2𝑙)2 =

4

3
𝑚𝑙2 = 𝑚𝑙2 + 𝐼. (4.26) 

The pendulum energy is defined as a sum of the rotational energy and the potential energy. The 

translational movement of the pendulum is not included as it will play a negligible role[9]. By 

defining the potential energy to be 0 at the height of the hinge point, the pendulum energy is 

then given by 

𝐸𝑝𝑒𝑛 =
1

2
𝐼𝐻�̇�

2 +𝑚𝑔𝑙𝑐𝑜𝑠(𝜃). 

The energy of the pendulum in the upright position, with 0 angular velocity, for the system is  

 𝐸𝑢𝑝 = 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃) = 𝑚𝑔𝑙𝑐𝑜𝑠(0) ≈ 0.3131𝐽. (4.27) 

Since the goal of the swing up controller is to get the pendulum to an upright position by 

increasing the pendulum energy, the control input 𝑢 = �̈� must influence the time derivative of 

the pendulum energy. 

 
𝑑𝐸𝑝𝑒𝑛

𝑑𝑡
= 𝐼𝐻�̇��̈� − 𝑚𝑔𝑙�̇� 𝑠𝑖𝑛(𝜃) (4.28) 
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By inserting an expression for 𝐼𝐻�̈� from (4.25) into (4.28) the time derivative is rewritten as 

 

𝑑𝐸𝑝𝑒𝑛

𝑑𝑡
= −𝑚𝑙𝑐𝑜𝑠(𝜃)𝑢�̇� + 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) − 𝑚𝑔𝑙�̇� 𝑠𝑖𝑛(𝜃) 

= −𝑚𝑙𝑐𝑜𝑠(𝜃)�̇�𝑢. 
(4.29) 

This shows that the pendulum energy can be controlled through the control input, 𝑢.Further it 

is seen that the rate of energy change is dependent both on the pendulum angle and angular 

velocity. The control input as largest effect when 𝜃 is 0 or 𝜋, corresponding to the upright and 

down position. The control input has zero effect if 𝜃 =
𝜋

2
, corresponding to the pendulum in the 

horizontal position. It is also clear that the control input has zero effect if �̇� = 0. This is however 

not a problem, because any control input will make the pendulum swing, making �̇� nonzero. 

Equation (3.28) forms the basis for the functionality of the energy-based swing up controller. 

The swing up controller consists of two modes. The first mode is an energy injection mode, 

where the rotational energy is increased up to the value of 𝐸𝑢𝑝. The second mode is an energy 

maintenance mode where the controller seeks to keep the pendulum energy close to 𝐸𝑢𝑝. The 

complete controller is given as the sum of the following four terms [9], which are further 

described in the following, 

 𝑢 = 𝑢𝑐𝑤 + 𝑢𝑣𝑤 + 𝑢𝑠𝑢 + 𝑢𝑒𝑚 (4.30) 

The first term, 𝑢𝑐𝑤, is referred to as the “cart potential well” and is used to keep the cart inside 

the restricted track length. This is done by introducing a repulsive force on the cart as it 

approaches the end of the track, in the form of an acceleration input towards the middle of the 

track. It is desirable that the cart can oscillate with larger amplitudes. Therefore, a logarithmic 

function is used, giving a low penalty input when the cart is in the middle part of the track and 

a rapidly increasing penalty when the cart approaches the track limit. The expression for the 

“cart potential well” is  

 𝑢𝑐𝑤 = 𝑘𝑐𝑤𝑠𝑖𝑔𝑛(𝑥1) 𝑙𝑜𝑔 (1 −
|𝑥1|

𝑥1𝑚𝑎𝑥
). (4.31) 

𝑘𝑐𝑤is a constant used for tuning the penalty input and 𝑥1𝑚𝑎𝑥 > 0 is the maximum distance the 

cart can be from the middle of the track in either direction? The sign function is used to get the 

penalty input acting in the direction towards the middle of the track [9]. 

The second term, 𝑢𝑣𝑤, is referred to as the “velocity potential well” and is used to keep the cart 

velocity below the limitations of the system. This act similar to the “cart potential well”, but 

with regards to velocity. This means that the term will have a low effect while the velocity is 

well inside the limitations of the system, and a rapidly increasing penalty as the velocity 

approaches the maximum velocity for the system. The expression for the “velocity potential 

well” is  

 𝑢𝑣𝑤 = 𝑘𝑣𝑤𝑠𝑖𝑔𝑛(𝑥2) 𝑙𝑜𝑔 (1 −
|𝑥2|

𝑥2𝑚𝑎𝑥
). (4.32) 
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𝑘𝑣𝑤is a constant used for tuning the penalty input and 𝑥2𝑚𝑎𝑥 > 0 is the maximum velocity for 

the system [9].  

The last two terms determine how the energy is added into the pendulum and how 𝐸𝑝𝑒𝑛 is 

maintained around the value of 𝐸𝑢𝑝. Their functions are closely related, so they will first be 

presented, before a description of result of combining them is presented. 

The third term, 𝑢𝑠𝑢, is a term for injecting energy into the pendulum, and is given by 

 𝑢𝑠𝑢 = −𝑘𝑠𝑢𝑠𝑖𝑔𝑛(�̇� 𝑐𝑜𝑠(𝜃)). (4.33) 

The constant 𝑘𝑠𝑢  is here at constant for determining the rate of energy injection into the 

pendulum. If (4.33) was the only term defining the control input u, the time derivative of the 

pendulum energy in (4.29) would always be positive, meaning that the pendulum energy would 

always be increased [9].  

The fourth term, 𝑢𝑒𝑚 is referred to as an energy maintenance mode that is used to maintain 

𝐸𝑝𝑒𝑛 close to 𝐸𝑢𝑝. The term is given by 

 𝑢𝑒𝑚 = 𝑘𝑒𝑚(𝑒
|𝐸𝑝𝑒𝑛−𝜂𝐸𝑢𝑝| − 1) ∗ 𝑠𝑖𝑔𝑛(𝐸𝑝𝑒𝑛 − 𝐸𝑢𝑝) ∗ 𝑠𝑖𝑔𝑛(�̇�𝑐𝑜𝑠𝜃), 𝜂 > 1 (4.34) 

The first sign function defines the input direction depending on if the pendulum energy should 

be increased or decrease. The last sign function decides the direction for the input which would 

give a positive derivative for the pendulum energy, depending on the pendulum angle and 

direction of angular velocity. The magnitude of the 𝑢𝑒𝑚  term is defined by  
𝑘𝑒𝑚(𝑒

|𝐸𝑝𝑒𝑛−𝜂𝐸𝑢𝑝| − 1) . Since the magnitude depends on an exponential of the difference 

between 𝐸𝑝𝑒𝑛 and 𝐸𝑢𝑝, the magnitude of 𝑢𝑒𝑚 will be small in a band around 𝐸𝑝𝑒𝑛 = 𝐸𝑢𝑝. The 

width of this band can be tuned using 𝜂. 𝑘𝑒𝑚 is a tuning variable for the magnitude of the input. 

Because of the exponential term, 𝑘𝑒𝑚 has largest effect when the error in the pendulum energy 

is larger, while 𝜂 has largest effect when the error is small [9]. 

Because |𝐸𝑝𝑒𝑛 − 𝜂𝐸𝑢𝑝| is used in an exponential term, the input from 𝑢𝑒𝑚 is very large when 

𝐸𝑝𝑒𝑛 is small, causing 𝐸𝑝𝑒𝑛 to rapidly increase. However, the increase of energy decreases as 

𝐸𝑝𝑒𝑛  approaches 𝐸𝑢𝑝 . If the term 𝑢𝑠𝑢  was not included in the control input 𝑢 described by 

(4.30), it is a risk that 𝐸𝑝𝑒𝑛 never reaches 𝐸𝑢𝑝, depending on the energy reducing effects from 

𝑢𝑐𝑤, 𝑢𝑣𝑤 and friction in the system. By also including the 𝑢𝑒𝑚 term with a large enough value 

of 𝑘𝑒𝑚 it can be guaranteed that 𝐸𝑝𝑒𝑛 will reach 𝐸𝑢𝑝 [9]. When the necessary pendulum energy 

is reach, the 𝑢𝑒𝑚 term will work to reduce the energy, meaning that 𝑢𝑠𝑢 and 𝑢𝑒𝑚 will cancel 

each other out and 𝐸𝑝𝑒𝑛 is slightly above 𝐸𝑢𝑝. 

This means that a swing up controller as described by (4.30)-(4.34) and proper tuning will result 

in a rapid increase in the pendulum energy at the start. The rate of energy increase is reduced 

as 𝐸𝑝𝑒𝑛 approaches 𝐸𝑢𝑝, but it is guaranteed that 𝐸𝑝𝑒𝑛 will reach 𝐸𝑢𝑝. The terms 𝑢𝑐𝑤 and 𝑢𝑣𝑤 

ensures that limitations on track length and cart velocity are not violated. Because of the 

reduced rate of energy increase when 𝐸𝑝𝑒𝑛 is close to 𝐸𝑢𝑝, the 𝑢𝑐𝑤 and 𝑢𝑣𝑤 terms will have a 

larger importance on the input. This leads to the cart being close to the centre of the track and 

at low velocity when the pendulum swings to the upright position, giving the LQR controller a 

good starting point for catching the pendulum.  
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4.2.1 Tuning the swing up controller 

The tuning has been done by simulations in Simulink. The IPC system is simulated using the 

simulation model in section 3.5. Encoder measurements has been simulated with quantization 

blocks and the system states has been estimated as described in section 4.1, making it equal to 

what will be used on the real system. The input 𝑢 is limited to ±20𝑚/𝑠2, as it will be for the 

real system. 

In the final controller the system will switch from the swing up controller to the LQR controller 

if |𝜃| < 0.2𝑟𝑎𝑑. This switch has not been included in the tuning. This is done to ensure that 

𝐸𝑝𝑒𝑛will stabilize around 𝐸𝑢𝑝, even after the point where the controller switch is normally 

done. It has been sought to ensure that pendulum will reach at least |𝜃| < 0.15𝑟𝑎𝑑 or that  

�̇� < 2𝑟𝑎𝑑/𝑠, if the pendulum does a full rotation, on every swing after the first that crosses 
|𝜃| < 0.2𝑟𝑎𝑑. This ensures that the LQR controller should manage to stop and balance the 

pendulum. See section 4.3.4 for the selection of these values. 

Further it has been sought to reduce the time and number of swings necessary for the swing up, 

while keeping the cart well within the track length of ±0.43𝑚 and keeping the cart velocity 

below maximum of 1.5𝑚/𝑠. The controller is tuned to have some tolerance to these limits to 

allow for some differences in the real system and the model and for cases where the controller 

is started while the pendulum already swinging.  

The tuning of the swing up controller proved to be a cumbersome procedure, as it has a total of 

five tuning parameters, 𝑘𝑐𝑤, 𝑘𝑣𝑤, 𝑘𝑠𝑢, 𝑘𝑒𝑚  and 𝜂 . No good way of determining the tuning 

parameters by calculation have been found. The tuning is therefore done as an iterative process 

where the tuning parameters have been modified based on intuition, understanding of the 

function of the controller, and simulation results. A general way of obtaining a decent result is 

to start using only the 𝑢𝑐𝑢term. Then increase 𝑘𝑠𝑢 until 𝐸𝑝𝑒𝑛can reach 𝐸𝑢𝑝. Then introduce 

𝑢𝑐𝑤 and 𝑢𝑣𝑤 and increase their parameters until the limitation of track length and maximum 

cart velocity is not violated. Also adjust 𝑘𝑠𝑢 to ensure that 𝐸𝑝𝑒𝑛 can reach 𝐸𝑢𝑝. Finally, the 𝑢𝑒𝑚 

is introduced and its weight gradually increased. All tuning parameters needs to be gradually 

modified until a good result is achieved. The final tuning parameters are shown in Table 4.1. 

Table 4.1 Parameters for swing up controller. 

Swing up control parameters 

Symbol Value 

𝒌𝒔𝒖 0.57 
𝒌𝒄𝒘 6.5 
𝒌𝒗𝒘 3.2 
𝒌𝒆𝒎 9.3 
𝜼 1.265 

 
 

Figure 4.5 shows the pendulum angle and angle velocity for a simulation of the swing up 

controller using the above parameters. Figure 4.6 shows the corresponding calculation of the 

pendulum energy and Figure 4.7 shows the corresponding input, cart position and cart velocity.  
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As seen in Figure 4.5 the pendulum crosses the controller switching angle on the third swing 

after approximately 2 seconds. The pendulum almost reaches an angle of 𝜃 = 0, before it 

swings back. At the next swing the pendulum passes 𝜃 = 0, with an almost zero angular 

velocity. This indicates that the LQR controller most likely should catch the pendulum in the 

upright position.  

 

Figure 4.5 Pendulum angle and angular velocity for tuned swing up controller.𝜃 is not limited to 
[−𝜋, 𝜋], as this makes it easier to interpret the figure.  

Figure 4.6 shows that the pendulum energy increase rapidly at the start.  From 0.6 seconds the 

rate of increase smoothens out and from 1.7s is maintained around 𝐸𝑢𝑝. The pendulum energy 

shows a stepping increase. The flat parts of the curve are there because either �̇� is close to zero, 

𝜃 is close to 0 or 𝜋 or because the cart is near the track end and must change direction. To 

achieve the pendulum to swing up in as little as three swings, the controller is tuned quite 

aggressively. This leads to the overshoot of pendulum energy around 3 seconds. This is 

however considered to be acceptable.  

The rate of energy increase between 0.6s and 1.7s could have been increase with a larger value 

of 𝑘𝑠𝑢, but this reduced the controllers ability to stabilize 𝐸𝑝𝑒𝑛 around 𝐸𝑢𝑝. 

 

Figure 4.6 Pendulum energy for tuned swing up controller. 
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Figure 4.7 shows that the cart velocity is well within the limits. The cart position is at minimum 

5cm from its limitation, which is acceptable. The input is saturated at a small part of the time 

and is otherwise considered to have low noise most of the time.  

 

Figure 4.7 Input, cart position and cart velocity for tuned swing up controller. 

It will not be performed any stability analysis here, but it is referred to the stability analysis 

done in the by Chatterjee et al. [9]. Here they state that the controller ensures stability under 

reasonable conditions, such that the system has the necessary performance regarding track 

length and input, that the tuning variables are chosen properly and that the LQR controller 

manages to “catch” the pendulum. 

4.3 LQR control for balancing in upright position 

To balance the pendulum in the upright position a linear quadratic regulator is used. This a 

state-feedback controller for linear systems, where the control input is calculated using a 

feedback gain on the errors in the state. The feedback gain is found as a solution to a quadratic 

programming optimization problem, where errors in the state and the control input are 

associated with a cost, and the system model is used as an equality constraint. The optimization 

problem therefore finds the feedback gain that minimizes the cost over a chosen predicted future 

time horizon. The calculated gain is considered as the optimal feedback gain 

The LQR comes in some variations. In this implementation the version often referred to as 

infinite-horizon, discrete- time LQR. This means that optimization problem finds the gain that 

will minimize the cost for an infinite future. The system will be modelled as a discrete-time 

linear time invariant, based on a linearization around the equilibrium where the pendulum is in 

the upright position. The timesteps are 0.005𝑠 , corresponding to the update frequency of 

200𝐻𝑧. 
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Considering a discrete-time LTI11 system described by  

 𝑥𝑡+1 = 𝐴𝑑𝑥𝑡 + 𝐵𝑑𝑢𝑡 , (4.35) 

where 𝑡  denotes the discrete timesteps, the optimization problem for the infinite-horizon, 

discrete- time LQR is defined as  

 𝑚𝑖𝑛
𝑧
𝑓∞(𝑧) =

1

2
∑𝑥𝑡+1

𝑇 𝑄𝑐𝑥𝑡+1

∞

𝑡=0

+ 𝑢𝑡
𝑇𝑅𝑐𝑢𝑡  (4.36) 

subject to the equality constraints  

 𝑥𝑡+1 = 𝐴𝑑𝑥𝑡 + 𝐵𝑑𝑢𝑡 

𝑥0 = 𝑔𝑖𝑣𝑒𝑛. 

(4.37) 

(4.38)  

Further we have that 𝑄𝑐 ≥ 0 and 𝑅𝑐 > 0. Both are diagonal matrices containing the cost for 

errors in the states and cost for the input respectively. The subscript, 𝑐, is used to differentiate 

these from the Q and R in the Kalman filter. The dimension of the optimization problem is 

given by the number of states and inputs, 𝑥𝑡 ∈ ℝ
𝑛𝑥 and 𝑢𝑡 ∈ ℝ

𝑛𝑢 .As seen the from the 

summation, the problem spans over an infinite horizon. This means that the problem has an 

infinite dimension, as 𝑧𝑇 = (𝑢0
𝑇 , … , 𝑢∞

𝑇 , 𝑥1
𝑇 , … , 𝑥∞

𝑇 ) [33 p 64]. 

Given that the optimization problem in (4.36)-(4.38) is bounded above, meaning that 𝑓∞(𝑧) <
∞ for some feasible 𝑧, and that the system given by (4.37) is stabilisable12, the problem is a 

solution of the algebraic Riccati equation [33 p 64-65].The feedback control law given by 

 𝑢𝑡 = −𝐾𝐶𝑥𝑡 (4.39) 

where 𝐾C is here the state feedback gain, can then be found by  

 𝑃 = 𝑄𝑐 + 𝐴𝑑
𝑇𝑃(𝐼 + 𝐵𝑑𝑅𝑐

−1𝐵𝑑
𝑇𝑃)−1𝐴𝑑  

𝑃 = 𝑃𝑇 ≥ 0 

𝐾𝑐 = 𝑅𝑐
−1𝐵𝑑𝑃(𝐼 + 𝐵𝑑𝑅

−1𝐵𝑑
𝑇𝑃)−1𝐴𝑑 

(4.40) 

(4.41) 

(4.42) 

 

 

(4.40) is the algebraic Riccati equation, which may have several solutions, but only one is 

positive semidefinite. Is shown by (4.41) the positive solution is chosen. The feedback gain 

matrix is calculated by (4.42) [33 p 64-65]. Note that when reference tracking is used, the 

feedback control law is modified to  

 

11 LTI – linear time invariant. 
12 Stabilizable is a weaker form of controllable, and states that any modes that are not asymptoticly 
stable should be controllable. 
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 𝑢𝑡 = −𝐾𝐶(𝑥𝑟𝑒𝑓𝑡𝑥𝑡), (4.43) 

where 𝑥𝑟𝑒𝑓 is the state reference. 

In the following linearization of the system around the pendulum up position is shown. The 

model will then be extended to include integral action for the cart position. In both cases the 

model will be a continuous time model. The discretisation of the system model is done in 

MATLAB using the c2d function and the gain matrix is found using the dlqr function. In the 

end a discussion around the switching angle between the swing up and LQR controller is given.  

4.3.1 Linearization around upright equilibrium 

Since we are going to linearize the mathematical model, we will do this based on a model where 

the pendulum friction only consists of a damping term, as this is already linear. The system 

model is then given as 

 �̇� = [

�̇�1
�̇�2
�̇�3
�̇�4

] =

[
 
 
 
 

𝑥2
𝑢
𝑥4

𝑚𝑔𝑙𝑠𝑖𝑛(𝑥3)

𝑚𝑙2 + 𝐼
−
𝑚𝑙𝑐𝑜𝑠(𝑥3)

𝑚𝑙2 + 𝐼
𝑢 −

𝑘𝑑
𝑚𝑙2 + 𝐼

𝑥4]
 
 
 
 

. (4.44) 

The system has two equilibrium points, one with the pendulum down, and one with the 

pendulum up. We will linearize the model in the pendulum up position. At this equilibrium we 

have the following state and input 

 �̅� =  [

∗
0
0
0

] , �̅� = 0. (4.45) 

Note here that the cart position is irrelevant, and therefore marked with a star. The linearization 

is performed using a first order Taylor series expansion around the equilibrium point, given by 

 𝑓(𝑥, 𝑢) ≈ 𝑓(�̅�, �̅�) +
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥,𝑢=𝑢

(𝑥 − 𝑥) +
𝜕𝑓

𝜕𝑢
|
𝑥=𝑥,𝑢=𝑢

(𝑢 − 𝑢). (4.46) 

Note that (4.44) only contains two nonlinear terms, the terms containing sin(𝑥4)and cos(𝑥4), 
in the differential equation for the 𝑥4 state. We will therefore only perform the linearization for 

these two terms and then put the result back into (4.44).  

For the first term,  

 𝑓𝑎(𝑥, 𝑢) =
𝑚𝑔𝑙𝑠𝑖𝑛(𝑥3)

𝑚𝑙2 + 𝐼
, (4.47) 

we get the linear approximation 
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fa(x, u) ≈
𝑚𝑔𝑙𝑠𝑖𝑛(0)

𝑚𝑙2 + 𝐼
+ (

mglcos(0)

ml2 + I
) ∗ (x3 − 0) + 0 

≈
mgl

ml2 + I
x3 

(4.48) 

For the second term, 

 𝑓𝑏(𝑥, 𝑢) = −
𝑚𝑙𝑐𝑜𝑠(𝑥3)

𝑚𝑙2 + 𝐼
𝑢, (4.49) 

 

we get the linear approximation 

 
𝑓𝑏(𝑥, 𝑢) ≈ −

𝑚𝑙𝑐𝑜𝑠(0)

𝑚𝑙2 + 𝐼
∗ 0 + −

𝑚𝑙𝑠𝑖𝑛(0)

𝑚𝑙2 + 𝐼
∗ (𝑥3 − 0) −

𝑚𝑙𝑐𝑜𝑠(0)

𝑚𝑙2 + 𝐼
∗ (𝑢 − 0) 

≈ −
𝑚𝑙

𝑚𝑙2 + 𝐼
𝑢 

(4.50) 

From the linear approximations (4.48) and (4.50), and the linear terms in (4.44), we can write 

the system as a linear state space model on the form 

�̇� = 𝐴𝑥 + 𝐵𝑢, 

with  

 𝐴 =

[
 
 
 
 
0 1 0 0
0 0 0 0
0 0 0 1

0 0
𝑚𝑔𝑙

𝑚𝑙2 + 𝐼
−

𝑘𝑑
𝑚𝑙2 + 𝐼]

 
 
 
 

 (4.51) 

and 

 𝐵 =

[
 
 
 
 

0
1
0

−
𝑚𝑙

𝑚𝑙2 + 𝐼]
 
 
 
 

. (4.52) 

The linearization around the equilibrium point consist only of linearizing cos(𝜃) to be equal 

to 1, as this is the only nonlinear part of the original model. Figure 4.8 shows a comparison of 

𝑐𝑜𝑠(𝜃) and the linearization, around 𝜃 = 0. The figure shows that the linearization will have 

an error less than 0.03 for when 𝜃 ≤ ±0.25, making the linearization a good approximation for 

expected values of 𝜃 expected while the pendulum is balanced in the upright position. 
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Figure 4.8 Comparison of 𝑐𝑜𝑠(𝜃) and the linearization 𝑐𝑜𝑠(𝜃) ≈ 1 around 𝜃 = 0. 

4.3.2 Adding integral action on the cart position 

The LQR controller was first implemented using a system described by the A and B matrix in 

(4.51) and (4.52). On the implementation on the real system this gave a small constant offset 

on the cart position. This indicates that the system has a constant disturbance or measurement 

error. To compensate for this, integral action on the cart position is added by extending the 

system with what is often referred to as an augmented state [34]. The system is extending by 

adding a state described by the model  

 �̇� = 𝑥𝑟𝑒𝑓1 − 𝑥1 (4.53) 

This means that the state w is equal to the integral of the error in the cart position. The system 

can then be described using the extended state matrix 

 𝛾 = [
𝑥
𝑤
] (4.54) 

and the state space model  

 �̇� = 𝐴1𝛾 + 𝐵1𝑢 (4.55) 

with  

 

 𝐴1 =

[
 
 
 
 

0
0

𝐴 0
0

−1 0 0 0 0]
 
 
 
 

 (4.56) 

 

 

and 

 𝐵1 = [
𝐵
0
]. (4.57) 
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This model is used for calculating the LQR gain, 𝐾𝑐 . The states of the actual system 𝑥 are 

estimated as described in section 4.1 and the extended state is calculated from this by  

 𝑤 =∫ 𝑥𝑟𝑒𝑓1 − �̂�1

𝑡

0

𝑑𝑡 (4.58) 

The complete LQR control system is described by the block diagram in Figure 4.9. 

 

 
Figure 4.9 Block diagram of complete LQR controller. 

4.3.3 Tuning LQR controller 

The LQR controller is tuned by adjusting 𝑄𝑐 and 𝑅𝑐. The tuning was first done in simulation 

until a decent result was achieved before it was fine-tuned on the real model. For the controller 

we are mainly concerned with keeping the pendulum angle and the cart position close to their 

reference. This would lead to the cart velocity and pendulum angular velocity also being close 

to 0, which will be their reference while the pendulum is balanced in the upright position. It 

was further decided that an error in the pendulum angle of 0.02𝑟𝑎𝑑 should have approximately 

the same cost as an error in the cart position of 0.06𝑚. This means that the cost associated with 

an error in the 𝑥3 should be 3 times larger than the cost associated with the 𝑥1. This was used 

as a starting point. The cost associated with input was adjusted to get pendulum to balance and 

response quickly to a disturbance in the form of a small push, while not getting a control input 

that is noise when the pendulum is balanced. The cost associated with the augmented state was 

then adjusted so that the cart was stable at the reference point. The cost for the cart velocity and 

the pendulum angular velocity was increase slightly, as this seemed to give a slightly smother 

response after a push. The final cost values are 

 𝑄𝑐 =

[
 
 
 
 
4 0 0 0 0
0 0.1 0 0 0
0 0 11 0 0
0 0 0 0.2 0
0 0 0 0 0.16]

 
 
 
 

 (4.59) 

And  

 𝑅𝑐 = 0.002 (4.60) 
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This gives the state feedback gain of 

 𝐾𝑐 = [−46.5 −35.1 −139.7 −23.2 8.0] (4.61) 

The eigenvalues for the closed loop system are found by 𝑒 = 𝑒𝑖𝑔(𝐴1𝑑 − 𝐵1𝑑𝐾𝑐), where 𝐴1𝑑 

and 𝐵1𝑑 are the discretised model corresponding to 𝐴1 and 𝐵1. It should be noted that these 

eigenvalues do not include the dynamics generated by the EKF estimation of �̇�. This gives the 

eigenvalues 

 𝑒 =

[
 
 
 
 

0.999
0.9908 − 0.0075𝒊
0.9908 + 0.0075𝒊

0.9635
0.8449 ]

 
 
 
 

 (4.62) 

 

All eigenvalues have a magnitude off less than one, and the system should therefore be stablem 

4.3.4 Pendulum angle for switching between swing up control and LQR 

The pendulum angle used for switching between the swing up controller and the LQR controller 

is 𝜃 ≤ |0.2|. This angle is chosen because the error of the linearization is quite small for the 

whole working range of the LQR controller. Further the LQR controller will in most cases 

manage to recover the pendulum to the balance point if it is within this range and it manages to 

catch the pendulum a it is swung up. This is based on testing in simulations and verified on the 

real system.  

 

4.4 Final control system  

The final control system can then be summarised by the block diagram in Figure 4.10. 

 
Figure 4.10 Control system block diagram. 
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5 RESULTS 

Figure 5.1 shows a plot of all states and the control input both for the real system and a 

simulation. In the figure the pendulum is swung up from the pendulum down to the pendulum 

up position. After 10 seconds a sequence of changes to the cart position reference is performed 

as indicated in the figure. 

Figure 5.2 shows all states and the control input as the pendulum is balanced in the pendulum 

up position, with the reference for all states as 0. The pendulum is exposed to disturbances in 

the form of a small push at the times indicated by the grey lines. At the time marked with a red 

line an additional weight of 170g is added to the end of the pendulum. 170g equals 

approximately 1.2 times the weight of the pendulum. The added weight is a screwdriver inserted 

into the end of the pendulum. 

A video demonstration of the system can be found in the digital appendix.  The video will show 

• Homing procedure. 

• Swing up of the pendulum. 

• Balancing the pendulum while the cart position reference is changed. 

• Balancing of the pendulum in the upright position, while being exposed to pushes and 

adding additional weight to the end of the pendulum. 

• Stopping and restarting the controller at random times, to show how the system recovers 

to the reference. 
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Figure 5.1 Swing up of the pendulum and change in cart position reference. The figure shows plots 
of all states and the input for the real system and a simulation, along with their refference values. The 
Pendulum is swung up from the pendulum down position to the pendulum up position starting at time 
= 0s. At times 10s, 15s and 22s the refference for the cart position is changed. 
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Figure 5.2 Balancing pendulum with LQR controlling while being exposed to disturbance. The figure 
shows all states and control input as the pendulum is balanced in the upright position. The pendulum 
is exposed to disturbance in the form off a push at times marked with grey vertical lines. At the time 
marked with the red vertical line an additional weight of 170g is added to the end of the pendulum. 
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6 DISCUSSION 

Figure 5.1 shows that the swing up controller manages to swing the pendulum from the 

pendulum down position to the pendulum up position, where the LQR controller takes over and 

balances the pendulum in the pendulum up position. The swing up controller use approximately 

2 seconds and three swings to get the pendulum to an angle of 𝜃 ≤ 0.2𝑟𝑎𝑑, where the controller 

is switch to LQR control. After approximately 3 seconds the LQR controller has stabilized all 

states close to their reference. This shows that the control system generally functions as 

planned. 

6.1 Accuracy of mathematical model and simulation 

It is seen in Figure 5.1 that the real system and the simulation is a very close match. This shows 

that the mathematical model is a very good representation of the real system. This has been 

very beneficial through the controller design process, as the controllers could be tested in 

simulations, and the performance would be very similar on the real system. The only mismatch 

seen in Figure 5.1 is around 𝑡𝑖𝑚𝑒 = 2𝑠, this will be commented on in section 6.3. 

6.2 Swing up controller 

The chosen swing up controller manages to swing up the pendulum to the upright position in 

three swings. The controller generally performs well both when starting with the pendulum 

hanging straight down or when the pendulum already is swinging when the controller is started. 

This can be seen in the demonstration video. If the pendulum already is swinging when the 

controller is started there is some variations of the number of swings needed before the upright 

position is reached. In some cases, it has been necessary with up to 5 swings after the controller 

is switched on. This seems to depend on cart position and pendulum angle when the controller 

is started. It has been hard to reproduce this, as the controller is started manually by pushing a 

button and is therefore added as a general observation.  

It has been a couple of cases when the controller is started with the pendulum already swinging, 

where both the cart and the pendulum oscillate. In this case the pendulum will oscillate with 

amplitudes of𝜃 > |2|𝑟𝑎𝑑. The oscillations are of constant magnitude, and the pendulum will 

never reach the upright position. The problem is not illustrated by a plot in this report because 

it is hard to reproduce and have only occurred a few times while data has not been logged. For 

the same reason, the problem has not been investigated thoroughly. However, the swing up 

controller was first implemented to swing up in 4 swings, in this case the mentioned oscillations 

was never been observed. To achieve a swing up in 3 swings the controller is tuned considerably 

more aggressive than for a swing up in 4 swings. Chatterjee et al. [9] concludes that the swing 

up controller is stable under reasonable conditions. It is therefore considered that the aggressive 

tuning needed to achieve a swing up in 3 swings is on the limit of the criteria for a stable 

controller, and therefor has some edge cases where the pendulum will never reach the upright 

position.  
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It has also been tried to achieve a swing up in 2 swings in simulations. This has been achieved 

without violating the IPC model limitations, but the LQR controller could not “catch” the 

pendulum, as it had to high angular velocity when the upright position was reached. It is 

therefore concluded that the IPC model should be capable of a swing up in less than 3 swings, 

but the energy-based controller is not the right controller for this.  

6.2.1 Alternative swing up controller 

As an alternative method to swing up the pendulum, the method presented by Tum et.al. in [6] 

was considered. Their approach is to use a feed forward controller where a planned trajectory 

of the system states is used as a reference input to a state feedback controller.  

The planned trajectory is found by solving an optimization problem which includes the system 

model and system limitations as constraints. This means that the system should be able to follow 

this optimal trajectory [6]. The trajectory optimization problem can be solved in advance to 

reduce the computation cost of the controller. 

The feedback controller used by Tum et.al. in [6] is similar to the LQR controller presented in 

section 4.3. However, since it is used for the whole range of pendulum angles, the feedback 

cannot be calculated in advance as the linearization is only valid around 𝜃 = 0. Instead the 

system is linearized around the current state and the LQR optimization problem is solved at 

each iteration. This means that the feedback controller will have a considerable computational 

cost. 

This method of swinging up the pendulum was not implemented mainly because it was 

uncertain if the microcontroller would handle the computational cost. It was also considered to 

be a bit more work with implementing this method and it was a limited time before the deadline. 

With the controller as implemented in this project one update of the control input is calculated 

by the microcontroller in 100𝜇𝑠. This means that the microcontroller can take a significant 

increase in computational cost and still achieve an update frequency of 200Hz. It is therefore 

likely that it would manage the computational cost of the method prese Tum et.al. Using this 

approach, it might be possible to achieve a swing up in less than 3 swings. 

6.3 “Catching” the pendulum with the LQR controller 

The only part of Figure 5.1 were there is a difference between the simulation and the real system  

is around the point where the controller switch from swing up control to LQR control. This 

should not be seen as an difference in the mathematical model and real system, but rather as 

small random variations in the real system and the swing up controllers ability to control the 

pendulum energy at its setpoint, 𝐸𝑢𝑝 . This result in the pendulum having slightly different 

angular velocities as the controller is switched to LQR control. These variations are expected 

and does not cause a problem, but very small variations can create significantly different 

responses in the control input. If the pendulum comes in at a velocity too low for 𝜃 to reach 0, 

the cart must move underneath the pendulum, to compensate for this. If the pendulum comes 

in at a velocity that would make it go past 𝜃 = 0, the LQR must slow down the angular velocity, 

by moving the cart away from the pendulum. This is seen in the video demonstration. It should 

be mentioned that during testing it has not been a single incident where the LQR controller has 

not managed to stop and balance the pendulum if it has passed the switching angle. 



 Chapter 6 

77 

 

6.4 Balancing the pendulum in upright position 

Both Figure 5.1 and Figure 5.2 shows that the pendulum is balanced well in the upright position. 

The pendulum angle is steady close to 0 and the cart position is close to its reference if there is 

no disturbance, or reference change. The cart has small movements of around ±1𝑐𝑚 while the 

pendulum is balanced. This is not visible in the figures but can be seen in the video 

demonstration. 

After the reference changes in the cart position in Figure 5.1 it is seen that the cart position has 

a slight overshoot of the reference, and it takes a few seconds before it slowly approaches the 

reference. This overshoot and slow approach to the reference is because of the integral action 

in the controller. The integral action was added to compensate for a constant offset from the 

cart position reference. After some investigation it was found that also the pendulum was often 

balanced with a constant offset from 𝜃 = 0. The offset is usually in the negative direction with 

a magnitude of less than 0.01𝑟𝑎𝑑, but would change after the system was restarted. This 

indicates that the offset on the cart position is caused by the constant offset in the pendulum 

angle, which is probably caused by the two following possible reasons. One possibility is that 

the pendulum has it centre of gravity slight to one side, for example from a slight bend. This 

would create an offset that will always be in the system. The second possible reason is that the 

angle of the pendulum in the stable pendulum down position can vary, because of friction 

forces. This means that the initial pendulum angle set in the homing procedure will have some 

variations. 

This means that the LQR control system must include integral action to compensate for the 

offset, as its direction and magnitude will vary. Figure 5.1 shows that the chosen cost value in 

associated with the integral action 𝑄𝑐  is a good compromise between compensating for the 

offset quickly and reducing the overshoot after the reference change. The maximum overshoot 

in the cart position in the figure, around 17 seconds, is found to be 4𝑐𝑚 by checking the data.  

6.5 Performance with disturbances 

Figure 5.2 shows how the system responds to disturbances. At the times marked with the three 

grey lines to the left in the figure, it is seen that the system manages to recover back to the 

reference values after a push is applied to the pendulum. The force in the push is not possible 

to measure, but it is quite significant. This can clearly be seen in the demonstration video.  

At times to the right of the red line in Figure 5.2 an additional weight of 170g is added to the 

end of the pendulum. This is approximately 1.2 times the pendulum weight. The added weight 

is a screwdriver inserted into the pendulum and is not fixed, meaning that it moves slightly 

inside the pendulum pipe. The system still manages to balance the pendulum, but it oscillates 

slightly more. This shows that the LQR control is robust to changes in the system.  

When a push is given to the pendulum with added weight, the pendulum angle is recovered 

close to 0𝑟𝑎𝑑  faster than without the added weight. This is because the add weight both 

increases the pendulum inertia and moves the pendulum centre of gravity further away from 

the cart. This means that the angular acceleration of the pendulum will generally be slower for 

force, than it would be without the added weight. The control input will then “overcompensate” 

for any error in the 𝜃and  �̇� states, causing a quicker response, but also oscillations. 
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6.6 IPC-model 

The IPC-model built in this master’s thesis project generally functions well. The track length 

of 86𝑐𝑚, the maximum control input of 20𝑚/𝑠2 and the maximum cart velocity of 1.8𝑚/𝑠 
makes the model a capable test bench for control problems related to the system. With the 

implemented control algorithm, the microcontroller calculates the new control input in less than 

100𝑚𝑠. This means that the microcontroller has a significant reserve regarding computation 

power, which makes the model suitable also for computational demanding control algorithms.  

The motor will get hot while it is enabled. With the control algorithm implemented in this 

project the system has been running almost constantly for periods of up to an hour. The motor 

is hot, but it is found acceptable as it is okay to touch it with a hand. This can however depend 

on the control algorithm implemented and the possibility of overheating should be considered 

for future users. If it is found necessary, the heat generation of the motor can be reduced by 

reducing the motor coil current in the stepper motor driver setup [14]. This will reduce the force 

generated by the motor and it might also be necessary to reduce the maximum acceleration. 

The control system for the model is ready for connection of an extra encoder. This means that 

pendulum can easily be extended to a double pendulum. Further the model has connections for 

a variety of serial communication protocols. This means that the system can easily be modified 

to be controlled from an external controller.  
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7 CONCLUSION 

In this thesis a model of an inverted pendulum on a cart system has been built and controllers 

have been implemented on the system to swing the pendulum from a pendulum down position 

to a pendulum up position and balance it there. A mathematical model has of the system have 

been derived and used to tune the controllers in simulations in MATLAB/Simulink 

The IPC-model consists of a pendulum connected to a cart sliding on a low friction railing. 

Pendulum angle and cart position is measured with encoders, and the cart can be moved with a 

stepper motor. The system is controlled by a microcontroller. The system has high computation 

power and high maximum control input to the cart, making it capable as a test bench for many 

control problems associated with the system. 

The implemented controller consists of an extended Kalman filter for calculating the pendulum 

angular velocity, an energy-based controller for swinging the pendulum from a down position 

to a up position, and a LQR controller for balancing the pendulum in the up position. 

The implemented extended Kalman filter ensures a low delay estimation of the angular velocity 

with low noise compared to a numerical differentiation of the measured angle. The estimation 

does however have some error if the pendulum is exposed to noise. 

The swing up controller swings the pendulum from a down position to an up position in 3 

swings and around 3 seconds.  

The LQR controller successfully balances the pendulum in the upright position. Further it 

successfully handles any change in the cart reference position well. If the pendulum is exposed 

to noise such as a push or added weight, the controller successfully maintains the pendulum in 

the upright position. 
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APPENDIX 

Digital Appendix 

The digital appendix delivered with this thesis contain: 

  A demonstration video. This can also be found at 

https://www.youtube.com/watch?v=hghaIoHLJYs  

  The code used on the microcontroller. 

  MATLAB/Simulink files used for the final simulation of the system. 

Thesis Appendix 

The appendix included in the thesis are: 

A. Electrical drawings of the circuit board and connections to components. 

 

https://www.youtube.com/watch?v=hghaIoHLJYs
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