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Abstract
Polynomials appear in many different fields such as statistics, physics and op-
timization. However, when the degrees or the number of variables are high, it
generally becomes quite difficult to solve polynomials or to optimize polynomial
functions. An approach that can often be helpful to reduce the complexity of
such problems is to study symmetries in the problems. A relatively new field,
that has gained a lot of traction in the last fifteen years, is the study of symmetry
in polynomial rings in increasingly many variables. By considering the action of
the symmetric groups on these polynomial rings, one can for instance show that
certain sequences of symmetric ideals in increasingly larger polynomial rings are
finitely generated up to orbits.

In this thesis we will investigate some properties of such sequences. In par-
ticular the Hilbert Series and Gröbner bases of Specht ideals, a class of ideals
arising from the representation theory of the symmetric group. We prove a con-
jectured Gröbner basis for Specht ideals of shape (n−k, 1k) and give two different
criteria for verifying the conjecture for other Specht ideals. We also build on a
result from the representation theory of the symmetric group by showing that
the leading monomials of the standard Specht polynomials span the vector space
of leading monomials of Specht polynomials.
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4.2. Gröbner bases: Specht ideals of shape (n− k, 1k)................................... 55

4.2.1. Hilbert series revisited ............................................................... 62

4.3. Reduced conjecture and standard Specht polynomials ............................ 65
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List of Notations

• N = {1, 2, 3, ...}

• N0 = {0, 1, 2, ...}

• [n] = {1, 2, ..., n}

• Xn = {x1, x2, ..., xn}

• X�n - the free commutative monoid generated by Xn

• Rn = K[Xn]

• x = x1x2 · · · xn

• ⊂ - strict subset

• < - strictly less than

• / - “ideal of” or “dominated by”

• supp(f) - the set of all the variables appearing in f ∈ Rn
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Introduction

Polynomials are some of the most fundamental objects in mathematics and have
a long history of being studied by mathematicians from all over the world. From
Diophantus of Alexandria around 200 AD to the modern day mathematician with
the aid of a computer, polynomials have been a great source of inspiration and
frustration for a lot of people over the years. And yet with all of these people
looking to find a way to solve or optimize polynomial functions, not one has found
an approach that can be claimed to be completely satisfactory.

Although, maybe this is a good thing since so many different mathematical theo-
ries owe their existence to the complexity of such questions. For instance, would
Galois theory exist and what would take its place as an inspiration to develop
group theory? Most likely, group theory would have a much smaller significance,
and Galois theory, if it existed, would not be all that interesting.

On the other hand, due to the importance of polynomials in most scientific
branches, a lot of problems would be easier to deal with. They appear in statistics
as polynomials in stochastic variables, in finance they can be used to model how
interest accumulates, physicist may use them to describe the trajectory of objects
and engineers can use them to model a robots movements. Thus understanding
polynomials better could significantly impact the world.

A principle that is often helpful to understand a problem or to find optimal
solutions, is to notice and exploit an inherent symmetry that many problems
possess. For instance, if we are looking for zero sets of symmetric polynomials,
then as soon as we have found one zero point we know that the orbits of the point
must be a zero point as well. Thus it suffices to find a single zero point per orbit.
That is, if we have a polynomial or polynomial function with some symmetry, we
can try to use the symmetry to reduce the complexity of solving the polynomial
or to optimize the polynomial function.

It is at this intersection of polynomials and symmetries that this thesis takes place.
We will be looking at ideals consisting of polynomials that are not necessarily
symmetric, but stable under the permutation action of the symmetric group.
That is, polynomial ideals that contain all the orbits of the polynomials.

Furthermore, we will be considering these ideals in polynomial rings in an in-
creasing number of variables, thereby obtaining sequences of symmetric ideals.
We will see that several algebraic properties stabilize in such sequences. That is,
at some point increasing the number of variables does not seem to bring anything
new to the situation. Additionally, restricting to symmetric ideals appear to be
a good way to deal with the polynomial ring in infinitely many variables. It en-
sures, for instance, that the ideals are finitely generated up to the action of the
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symmetric group, as was shown in [5], [1] and [13]. Thus the limiting object of
such sequences behave rather nicely.

In particular we will be looking at a class of ideals arising from the representation
theory of the symmetric group, called Specht ideals. These ideals are generated
by the irreducible representations of the symmetric group and are therefore a
natural class of ideals to consider seeing as we are working with the action of the
symmetric group.

We will be investigating the Hilbert series of some of the sequences of Specht ideals
and the equivariant Hilbert series of the projective limit of these sequences. We
also investigate a conjectured Gröbner basis of some of the sequences and the
equivariant Gröbner basis of their limiting ideal. To facilitate this investigation
we make use of some results regarding Specht ideals from [16] and [21], where
they also studied these ideals. We also make use of some results regarding general
sequences of symmetric ideals from [17] and [10].

Towards the end of the thesis we present some further research areas for these
sequences, for instance free resolutions and the Castlenuovo-Mumford regularity.
This can be thought of as an invariant that describes the complexity of a minimal
free resolution of an ideal. Thus, with regards to our sequences, it describes how
this complexity increases with the increase in the number of variables.

The first three chapters review some known results regarding polynomial rings and
representation theory, after which we move on to some original results in Chapter
4. We begin, in Chapter 1, with an introduction to some essential concepts from
commutative algebra along with some tools that we will need later. We go through
the definitions of Hilbert series and Gröbner bases and introduce some classical
results regarding these.

Afterwards, in Chapter 2, we introduce representation theory of the symmetric
group. We present some fundamental results from representation theory of finite
groups, before looking at the symmetric group in particular. We will show how the
regular representation of the symmetric group can be decomposed into irreducible
representations. Chapter 3 will be used to describe the general framework for
working with sequences of symmetric ideals and symmetric ideals in the infinite
polynomial ring. In this chapter we extend some of the definitions and ideas
from the finite polynomial rings, that we introduced in Chapter 1, to the infinite
polynomial ring.

Then we move on to Chapter 4 where we look at sequences of Specht ideals.
This is the main part of this thesis and contains several new results. Firstly, in
section 4.1, we compute the Hilbert series for some Specht ideals corresponding
to partitions of the form (n− k, k). This was also studied in the article [25], but
the work we present is independent of this. Then, in Theorem 4.2.1, we show
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that the Specht ideals of shape (n−k, 1k) has a very natural Gröbner basis which
supports a more general conjecture regarding Gröbner bases of Specht ideals.
This extends previous studies of this class of ideals done in [9], and could be of
interest outside the study of Specht ideals. We also use these Gröbner bases,
and a result from [10], to give the equivariant Hilbert series of the corresponding
sequences in Theorem 4.2.2.

Furthermore, we provide a reduction to the Gröbner basis conjecture in Lemma
4.3.1 and give two different criterion for verifying the conjectured Gröbner basis
for other Specht ideals in Theorem 4.3.2 and 4.4.1. One that can be thought of as
a variation of Buchbergers’ criterion, except modified for symmetric sequences,
and one that specifically applies to the Specht ideals of shape (n − k, k). The
former is not restricted to Specht ideals and hence may be of interest in the study
of symmetric sequences in general.

In Theorem 4.3.1, we extend a result from representation theory by showing
that the leading monomials of the standard Specht polynomials represent all the
leading monomials of the Specht polynomials. Lastly, in Proposition 4.5.1, we
give some conditions for the existence of an “equivariant Hilbert polynomial”
before presenting some possibilities for further research in Chapter 5.
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Chapter I / Polynomial rings

We begin this chapter by recalling some basic definitions of rings and ideals and
proceed to give a general framework for working in polynomial rings. Concepts
like Gröbner bases, Krull dimension, Hilbert series and decompositions of ideals
are introduced and provided examples for.

Krull dimension and Hilbert series are both ways of describing the size of an ideal,
although the Krull dimension relates the size to more fundamental ideals (prime
ideals) and the Hilbert series describes the size of an ideal by breaking it down to
finite dimensional vector spaces. Primary decomposition is a way of describing
it as an intersection of primary ideals, a generalization of prime ideals. Gröbner
bases are generating sets of ideals that help us determine when an element is in
the ideal or not, which is generally not a trivial question. They are also often
used to compute intersections and Hilbert series.

Thus, all of these concepts are introduced to deal with various notions of the size
of an ideal, what the fundamental components of an ideal is, when is an element
a member of an ideal and so forth. In essence they are ways of describing some
of the fundamental properties of an ideal.

In this chapter we will assume the reader has some previous knowledge about
sets and set operations, equivalence classes, monoids and groups. We will give
the definition of a ring and ideal for instance, but it will be helpful to have
seen such objects before. All of these concepts are generally included in any
introductory book on algebra, for instance in [8].

1.1. Ideals, varieties and dimension

Recall that a ring, {R,+,·}, is a set R together with an additive and a multi-
plicative operation such that {R,+} is an abelian group, {R,·} is a monoid, and
multiplication distributes with respect to addition:

a · (b+ c) = a · b+ a · c,

(b+ c) · a = b · a+ c · a.

For brevity we denote the ring by R.

We will mostly work with the polynomial ring Rn = K[Xn], where Xn is the set
of variables {x1, x2, ..., xn}, with n ∈ N. If n = 0 we will just let Rn denote K,
where K is a field (a commutative ring with multiplicative inverses). We will
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Chapter I/Polynomial rings

restrict to the case where K is a field of characteristic zero. That is, if 1 and
0 are the multiplicative and additive identity elements of K respectively, then
min{k ∈ N|k · 1 = 0} does not exist.

We define Rn to be the set of all finite sums of the form
∑

α∈M aαx
α, where

xα = xα1
1 x

α2
2 · · · xαnn , aα ∈ K and M is a finite subset of Nn

0 . When we have a
particular set of polynomials, we often tend to work with the ideals they generate
instead of the polynomials themselves. Recall that an ideal, I / R, of a ring, R,
is an additive subgroup of R such that ra ∈ I ∀ r ∈ R and a ∈ I. So if we have
the polynomials f1, f2, ..., fr ∈ Rn, we say that the ideal they generate is the set

〈f1, f2, ..., fr〉 =

{ r∑
i=1

hifi | hi ∈ Rn ∀ i
}
.

When we work with rings and ideals we often need to make use of a ring homo-
morphism. That is, a map, φ : R→ R′, such that φ(ab+ c) = φ(a)φ(b) +φ(c) for
all a, b, c ∈ R. Note that on the left hand side of the equation we are using the
ring operations of R and on the left we use the ring operations of R′.

A closely related object to an ideal that we often consider is the quotient ring,
R/I. This ring is defined as the ring of equivalence classes, [a] := a + I, under
the equivalence relation a ∼ b if a − b ∈ I. The ring operations are defined as
follows:

(a+ I)(b+ I) = ab+ I,

(a+ I) + (b+ I) = (a+ b) + I.

One can think about the quotient ring as the the image of the ring homomorphism
q(a) = a+ I ∀ a ∈ R.

Associated to sets of polynomials and ideals we have what is called a variety. This
is the set of points in Kn where all the polynomials in the set/ideal, vanish. It is
easy to see that for a set of polynomials F = {f1, f2, ..., fr}, its variety, V (F ), is
equal to the variety of the ideal that it generates, that is V (F ) = V (〈F 〉). Thus,
if we are considering a set of polynomials, we can replace the set with the ideal
that it generates, and this won’t affect the associated variety. Since it can often
be advantageous to work with ideals instead of sets, we will often be doing this.

In fact we can take this one step further and consider the ideal of all polynomials
vanishing on the variety of our polynomials: I(V (F )) = {f ∈ Rn|f(a) = 0 ∀ a ∈
Kn}. Although, in general, this ideal will not be the same as 〈F 〉 and also the
above description does not give us an algebraic description of the ideal I(V (F ))
in terms of a generating set of the ideal. The following theorems will help us with
that.

First we present a fundamental property that some rings possess called Noethe-
rianity. This is a crucial property for the Hilbert basis theorem and the Lasker-
Noether theorem. It is defined as follows:
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Definition 1.1.1. A ring S is Noetherian if any sequence of ideals of S, I1 ⊆
I2 ⊆ ..., stabilizes, that is, if there exist an integer n such that In = In+1 = ....
This is often called the ACC, or the ascending chain condition.

Theorem 1.1.1. The ring Rn is Noetherian.

Thus if we have an ideal, I, generated by elements {f1, f2, ...} ⊆ Rn, then we can
construct the sequence of ideals 〈f1〉 ⊆ 〈f1, f2〉 ⊆ ..., and due to the Noetherianity
of Rn, we know that it must stabilize. Thus I = 〈f1, f2, ..., fk〉, for some k ∈ N.
In fact one can argue that the theorem above is equivalent to the Hilbert basis
theorem:

Theorem 1.1.2 (Hilbert Basis Theorem). Every ideal in Rn is generated by
finitely many elements.

Thus the ideal I(V (F )) is finitely generated. The next theorem gives a different
way of characterizing the ideal. Before that however, we need a definition: The
radical of an ideal, I of Rn, denoted

√
I, is the ideal consisting of all polynomials

f ∈ Rn such that fm ∈ I, for some positive integer m. An ideal, I, is called
radical if I =

√
I.

Theorem 1.1.3 (Hilbert’s (strong) Nullstellensatz). If K is an algebraically
closed field and I / K[Xn], then

√
I = I(V (I)).

The proofs of theorems 1.1.1, 1.1.2 and 1.1.3 along with a more in-depth delib-
eration on the topic of varieties and radical ideals can be found in [7], chapters 2
and 4.

Next we introduce the notion of the Krull dimension of an ideal.

The Krull dimension of a ring is defined as the supremum of the lengths of chains
of prime ideals: P0 ⊂ P1 ⊂ ... ⊂ Pr, where the inclusions are strict and the length
is the integer r. Recall that a prime ideal is the anologue of ideals generated by
prime numbers in Z, that is, they are the ideals, I, such that if pq ∈ I, then p ∈ I
or q ∈ I. We define the Krull dimension of ideal, I /Rn, to be the Krull dimension
of the quotient ring Rn/I. An ideal, J / Rn/I is of the form q(L), where L / Rn

contains I and q is the quotient map. It can also be shown that J is prime if L
is prime. Thus the Krull dimension of I is the supremum of the lengths of chains
of prime ideals that contain I.

Note that even if a ring is Noetherian it need not be of finite Krull dimension
since the Krull dimension is ascertained by taking the supremum over a possibly
infinite set of sequences of ideals (see for instance [15], Example 5.96).

Although the definition of the Krull dimension might seem somewhat non intu-
itive, we can take advantage of a correspondence between prime ideals and what
we call irreducible varieties to rephrase it in more geometric terms.
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Chapter I/Polynomial rings

Definition 1.1.2. An irreducible variety V ⊂ Kn, is a variety with the property
that if V = W1 ∪W2 for some varieties W1 and W2, then V = W1 or V = W2.

Theorem 1.1.4. Let K be an algebraically closed field, V ⊆ Kn be a variety and
I / Rn. Then I(V ) is prime if and only if V is irreducible. Similarly V (I) is
irreducible if and only if I is prime.

Proof. See Corollary 4 in [7] Chapter 4.5.

If we have two ideals I, J / Rn, with I ⊆ J , then clearly V (J) ⊆ V (I). Similarly,
if we have two varieties V, U ⊆ Kn, with V ⊆ U , then I(U) ⊆ I(V ). Thus
the Krull dimension of an ideal I / Rn can be thought of as the supremum of
lengths of chains of irreducible varieties where the inclusions are the reverse of
the inclusions of the corresponding prime ideals.

Lastly, in this section, we introduce the concept of primary decomposition. Geo-
metrically this can be thought of as a way of understanding an object by looking
at its fundamental components. The fact that we can do such a thing, is again a
consequence of the Noetherian property of Rn.

We start with a definition of a generalization of prime ideals:

Definition 1.1.3. An ideal I / Rn is primary if whenever fh ∈ I either f ∈ I
or hk ∈ I for some k ∈ N.

Just like prime ideals are a generalization of prime numbers, primary ideals is a
generalization of powers of prime numbers, that is, 〈pk〉 is a primary ideal in Z if
p is a prime number.

Definition 1.1.4. A primary decomposition of an ideal I is an intersection of
primary ideals, ∩ki=0Pi, equal to the ideal I. The decomposition is minimal if
∩i 6=jPi 6⊂ Pj ∀j and if the

√
Pi’s are distinct.

Thus, if we continue with our analogous situation in Z with ideals of powers of
prime numbers, we may think of a primary decomposition as being similar to
factoring numbers into powers of prime numbers. Also, note that the intersection
of two ideals is an ideal itself. To see this let r ∈ R and a ∈ I∩J for some I, J /R,
then, since ra ∈ I and ra ∈ J , we have ra ∈ I ∩ J . Similarly if a, b ∈ I ∩ J , then
a+ b ∈ I and a+ b ∈ J , thus a+ b ∈ I ∩ J so I ∩ J is an ideal.

From Definition 1.1.3, we can see that the radical of a primary ideal is a prime
ideal. Also, note that taking the radical commutes with taking intersections, that
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is, if I = ∩ki=1Pi, then
√
I = ∩ki=1

√
Pi (see Proposition 16 in Chapter 4.3 in [7] for

a proof). Thus if we have a minimal primary decomposition of a radical ideal,
then all the primary ideals in the decomposition must be prime ideals.

We finish this section with the main result of this topic:

Theorem 1.1.5 (Lasker-Noether). Every ideal, I, in Rn has a minimal primary
decomposition, ∩ki=0Pi, and the

√
Pi’s are uniquely determined by I.

Proof. See Theorem 7 and 9 in Chapter 4.7 of [7].

Thus in the case of radical ideals we can speak of the minimal primary decom-
position.

1.2. Orderings and Gröbner bases

When dealing with univariate polynomials we are in the nice position that it is
obvious when one monomial is larger than the other. Thus division of polynomials
makes perfect sense and the Euclidean algorithm provides us with a method of
computing a quotient and a remainder. However, in the multivariate case, the
question of which of two monomials is larger needs to be settled before general
division makes sense. But even after settling on a particular order, uniqueness of
remainder can still fail and thus we need something extra to deal with that. This
is where Gröbner bases comes into the picture.

First we present the definition of a monomial order: A monomial order, “≤” on
Rn is a relation on the set of monomials of Rn, denoted X�n, such that:

i “≤” is a total order, that is,

a) ∀ xα,xβ ∈ X�n, either xα ≤ xβ or xβ ≤ xα,

b) if xα ≤ xβ and xβ ≤ xα, then α = β,

c) if xα ≤ xβ and xβ ≤ xγ, then xα ≤ xγ,

ii ∀ xα,xβ,xγ ∈ X�n such that xα ≤ xβ, we have that xα+γ ≤ xβ+γ,

iii ∀ xα ∈ X�n, 1 ≤ xα

11



Chapter I/Polynomial rings

When these conditions are fulfilled it may be proven that “≤” is a well-ordering,
that is, that there are no infinte strictly decreasing sequences of monomials. For
the proof of this claim see [7], Corollary 6.

A very common monomial order to use is the lexicographical order, also called
the “lex” order. This order is defined as the relation xα < xβ if the leftmost
nonzero entry in the vector β−α is positive. The lex order gives us the following
relation on the variables: x1 > x2 > ... > xn, thereby the name lexicographical.
We will also have use for an order called the invlex order. It is defined as follows:
xα < xβ if the rightmost nonzero entry in the vector β −α is positive. Thus, the
invlex order gives the following relation on the variables: x1 > x2 > ... > xn.

Now that we have a good definition of what an ordering is, we can start dividing
polynomials. But first some notation, let f ∈ Rn, then lm≤(f) denotes the
leading monomial of f with respect to the chosen order. We will usually forgo
the subscript if there is no ambiguity regarding the order. Similarly, lt(f) and
lc(f), denotes the leading term and the coefficient of the leading term respectively,
thus lt(f) = lc(f) lm(f).

We will describe the division algorithm by using an example. A more thorough
exposition can be found in [7], Chapter 2.3, but we just need to know that such
an algorithm exist and what can be problematic with the algorithm.

Theorem 1.2.1. Let f, h1, h2, ..., hk ∈ Rn and let ”≤” be an ordering on X�n.
Then there exists polynomials r, q1, q2, ...qk ∈ Rn such that f =

∑k
i=1 hiqi + r and

no monomial of r is divisible by any of the monomials lm(h1), lm(h2), ..., lm(hk).

We will call r the remainder of f on division by H = {h1, h2, ..., hk}.

Proof. See Theorem 3 in [7] Chapter 2.3.

Let f = x1x
2
2 + x1x2 ∈ R2 and let X�2 be ordered lexicographically. We will

divide f by the polynomials h1 = x1 + x2 and h2 = x1x2 + x1. We start with the
following setup:

,
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where q1 and q2 are the quotients, that is, f = h1q1 + h2q2 + r, where r is the
remainder. Since lm(f) > lm(h1) and lm(h1)| lm(f), we write

.

What we have left, x1x2 − x3
2, still has a leading monomial that is both larger

than and divisible by lm(h1). Thus we repeat the same process.

The leading monomial of −x3
2 − x2

2 is smaller than the leading monomial of both
h1 and h2, thus we stop here and let r = −x3

2 − x2
2. That is, we have obtained

the following expression

f = x1x
2
2 + x1x2 = (x1 + x2)(x2

2 + x2)− x3
2 − x2

2 = h1q1 + r.

However, note that f = x2h2, thus, if we were to the division with h1 and h2

reordered, we would get that x1x
2
2 + x1x2 = x2(x1x2 + x1). That is, both the

remainder and the quotients depend on the order in which we list the polynomials
we wish to divide over. However, we will see that uniqueness of remainder can
be achieved by the use of Gröbner bases.

Given an ideal I / Rn, we will let lm(I) denote the leading monomial ideal of I,
that is, the ideal generated by the leading monomials of I, lm(I) := 〈lm(f)|f ∈ I〉.
We have the following definition of a Gröbner basis of I:

13



Chapter I/Polynomial rings

Definition 1.2.1. A finite subset G ⊆ I/Rn is a Gröbner basis of I if 〈lm(G)〉 :=
〈lm(g)|g ∈ G〉 = lm(I).

Note that the definition of a Gröbner basis is dependant on a particular monomial
order on X�n. Thus if G is a Gröbner basis of I / Rn with respect to a monomial
order ”≤”, it may not be a Gröbner basis with respect to a different order.

Ideals of Rn have the following useful property:

Proposition 1.2.1. Given an ideal I / Rn and a monomial order, there exists a
Gröbner basis, G, for I and I = 〈G〉.

Proof. See Corollary 6 in Chapter 2.5 of [7].

Let us look again at our example of dividing the polynomial f = x1x
2
2 + x1x2 by

h1 = x1 +x2 and h2 = x1x2 +x1. Notice that the reason we were unable to end up
with a zero remainder was that the leading monomial of r = −x3

2−x2
2, was smaller

than the leading monomial of both h1 and h2, thus lm(r) /∈ 〈lm(h1), lm(h2)〉. So
even though the definition of a Gröbner basis may not seem an obvious one, it
gets us right to the central issue with the division algorithm. Thus we have the
following property for Gröbner bases:

Proposition 1.2.2. If G is a Gröbner basis of I / Rn, then the remainder, f
G

,

of f ∈ Rn on division by G, is unique. In particular, if f ∈ I, then f
G

= 0.

Proof. For the second statement, note that if f
G 6= 0, then lm(f

G
) ∈ 〈lm(G)〉

since G is a Gröbner basis. Also, lm(f
G

) = h lm(g), where g ∈ G and h ∈ Rn is a
nonzero monomial. However, due to Theorem 1.2.1, this is a contradiction, thus

lm(f
G

) = 0.

For the first statement let f ∈ Rn such that f /∈ I and let r1 and r2 be two distinct
nonzero remainders of f on division by G. Note that f − r1 and f − r2 are both
in I and have a zero remainder on division by G. Thus, h = (f − r1)− (f − r2)

is a nonzero polynomial with h
G

= 0. But h = r2 − r1 and due to Theorem 1.2.1
none of the terms of r1 and r2 are divisible by any of the leading monomials in

lm(G). Since h
G

= 0 and none of the terms of h are divisible by any elements in
lm(G), then h = 0⇒ r1 = r2, which is a contradiction.
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Let us now turn to the question of determining whether a given set of polynomials
is a Gröbner basis for an ideal. Recall that in the previous example, we had
that {h1, h2} was not a Gröbner basis of 〈h1, h2〉 since we found an element,
r = −x3

2 − x2
2 ∈ 〈h1, h2〉, with the property that lm(r) /∈ 〈lm(h1), lm(h2)〉. That

is, we were able to construct an element in the ideal with a leading monomial
smaller than the leading monomial of the generators. This is exactly the property
that Buchberger’s criterion focuses on so we present it here:

Theorem 1.2.2 (Buchberger’s criterion). Let G be a finite subset of I /Rn. Then
G is a Gröbner basis of I if and only if for all pairs {g1, g2} ⊆ G, we have that

S(g1, g2)
G

= 0, where

S(g1, g2) =
lcm(lm(g1), lm(g2))

lt(g1)
g1 −

lcm(lm(g1), lm(g2))

lt(g2)
g2,

is the S-polynomial of g1 and g2.

Proof. See Theorem 6 in Chapter 2.6 of [7].

This criterion can be relaxed a bit by focusing only on the leading monomials
and not on the entire factorization. Before we state it we introduce some new
notation. If a polynomial f ∈ Rn can be written of the form f =

∑
higi with

lm(f) ≥ lm(higi) ∀ i, where hi ∈ Rn and gi ∈ G, then we write f →G 0. Then

clearly we have that f
G

= 0⇒ f →G 0.

Theorem 1.2.3. Let G be a finite subset of I / Rn. Then G is a Gröbner basis
of I if and only if for all pairs {g1, g2} ⊆ G, we have that S(g1, g2)→G 0..

Proof. See Theorem 3 in Chapter 2.9 of [7].

There are also algorithms for computing a Gröbner basis of an ideal, but we will
not be needing them here. What we will be needing is to determine generating
sets of intersections of ideals with certain subrings. This is also something that
Gröbner bases can help us with.

The setup is as follows: let I / Rn and G be a Gröbner basis of I for some order.
Suppose we would like to describe the ideal I ∩ K[x2, x3, ..., xn], what would a
generating set be for this ideal? In general it is not sufficient to simply look at the
intersection of a generating set of I, and K[x2, x3, ..., xn], however, if we consider
a particular kind of Gröbner bases, this exactly what we can do. For this we need
a definition:
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Definition 1.2.2. An order ”≤”, on X�n, is called an elimination order of type
l, where l ∈ [n], if any monomial divisible by xi, for 1 ≤ i ≤ l is larger than any
monomial in K[xl+1, xl+2, ..., xn].

We clearly have that the lex order is an elimination order of maximal type for any
ring Rn. By limiting to these orderings we get the Gröbner bases we are looking
for. In fact it turns out that we get a stronger property than we were looking for.

Theorem 1.2.4. Fix an ordering of type l ∈ [n] on X�n and let G be a Gröbner
basis of I / Rn, then G ∩K[xl+1, xl+2, ..., xn] is a Gröbner basis of
I ∩K[xl+1, xl+2, ..., xn].

Proof. See Theorem 2 in Chapter 3.1 of [7] and the corresponding exercises.

1.3. Hilbert Series and exact sequences

To understand the size of an ideal in a more intuitive way than looking at its
Krull dimension, we consider the Hilbert series of an ideal. For instance, if we
consider the polynomial ring Rn, then we may view the dth graded component
of Rn as the vector space spanned by the polynomials of degree d in Rn. Then
the Hilbert series would give us the dimension of each degree d component. Thus
Hilbert series is a way of considering an ideal to be ”the sum of its parts”.

Before defining Hilbert series we start with the definition of a graded ring and
homogeneous ideals.

Definition 1.3.1. A polynomial f ∈ Rn is homogeneous if all the monomials
appearing in f have the same degree. An ideal generated by homogeneous polyno-
mials is a homogeneous ideal.

We have the following useful property for homogeneous ideals, which is sometimes
used as the definition of a homogeneous ideal:

Proposition 1.3.1. An ideal I /Rn is homogeneous if and only if for any f ∈ I,
all the homogeneous components of f are also in I.

16



1 /

Proof. Let I / Rn be a homogeneous ideal generated by f1, f2, ..., fk. Then any
f ∈ I can be written of the form f =

∑k
i=1 hifi, with hi ∈ Rn for all i. Write

each hi, as the sum of its homogeneous components, hi =
∑

j gi,j. Then we can
write f as the sum of its homogeneous components in the following way: For each
d ≤ deg f let Ad be the set of pairs (i, j) such that deg gi,j + deg fi = d, then
f =

∑
d≤deg f

∑
(i,j)∈Ad gi,jfi. Then clearly any homogeneous component of f can

be written on the form
∑

(i,j)∈Ad gi,jfi, which is an element of I.

Conversely, if all homogeneous components of any element f ∈ I is in I, then any
generator of I can be replaced it with its homogeneous components.

Thus we can say that a homogeneous ideal is equal to the span over K of all the
homogeneous polynomials in the ideal. This observation leads to the concept of
a graded ring.

A ring S, is called graded (or N0-graded) if it can be written as a direct sum of
its graded components: S =

⊕
d≥0 Sd, where the graded components are abelian

groups and SiSj ⊆ Si+j. For instance, for the polynomial ring Rn we consider its
dth-graded component to be the vector space of the homogeneous polynomials of
degree d. Note, however, that we also need to include the zero element in the dth

graded component.

Similarly, we say that an ideal, I / S, is graded if S is a graded ring and I =⊕
d≥0(I∩Sd). Thus we say that I inherits its grading from S. Due to Propostition

1.3.1 we can see that the graded ideals in a graded ring are the homogeneous
ideals. Also, note that the quotient ring S/I inherits a grading from S by summing
over the quotient groups Sd/(I ∩ Sd).

Before introducing the Hilbert series we consider a more general construction
called a generating funtion. If we have a sequence of numbers given by the
function f(n), that is, a sequence of the form (f(n))n∈N0 , then its generating
function is the power series F (t) =

∑
n≥0 f(n)tn. Thus a generating function can

be considered as a more compact way of writing a sequence of numbers.

The Hilbert series of an ideal I / Rn depends on a given grading and is defined
as the generating function HI(t) =

∑
d≥0HFI(d)td, where HFI(d) = Dim(Id)

is the Hilbert function of I. HFI(d) denotes the dimension of the dth-graded
component where the grading of I is inherited from the grading of Rn. Equiva-
lently, we can consider the Hilbert series of the quotient ring Rn/I: HRn/I(t) =∑

d≥0HFRn/I(d)td. We can say the following about the Hilbert series of a homo-
geneous ideal:

Theorem 1.3.1 (Hilbert-Serre). The Hilbert series of a homogeneous ideal I /Rn

is a rational function of the form f(t)
(1−t)d , where f(t) is a polynomial with integer

coefficients.
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Proof. See [2] Theorem 11.1.

It turns out that if we employ a more general result about generating functions,
the Hilbert-Serre theorem is equivalent to the Hilbert function being eventually
polynomial. That is, that there exist some m ∈ N0 such that HFI(n) = HPI(n)
for n ≥ m and where HPI(n) is a polynomial. We define the polynomial, HPI(n),
to be the Hilbert polynomial and in fact it can be shown that HPI(n) has integer
coefficients (see [7], Proposition 3, Chapter 9).

Lemma 1.3.1. A sequence of numbers in C, (f(n))n∈N0, is eventually polynomial

if and only if
∑

n≥0 f(n)tn = h(t)
(1−t)d for some polynomial h and some d ∈ N0.

Proof. See Corollary 4.1.7 in Chapter 4 of [3].

Thus we have an equivalence between the existence of the Hilbert polynomial
and the rationality of the Hilbert series. We proceed by looking at how one
might calculate the Hilbert series of an ideal. Firstly we have the following useful
lemma:

Lemma 1.3.2. The Hilbert series of a homogeneous ideal I / Rn is equal to the
Hilbert series of lm(I).

Proof. Follows from Proposition 9 in [7], Chapter 9.3.

Thus, if we already have a Gröbner basis of an ideal, we may instead consider
its initial ideal when we compute the Hilbert series. This is often a good idea
seeing as monomial ideals tend to be easier to handle. For instance, similar to
Proposition 1.3.1, we have the following property regarding monomial ideals:

Lemma 1.3.3. An ideal I E Rn is monomial if and only if for any f ∈ I all the
terms of f are also in I.

Proof. See Lemma 3 of [7] Chapter 2.4.

Due to this property we can show that computing intersections of monomial ideals
is quite straightforward.
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Proposition 1.3.2. Let I be a monomial ideal generated by the monomials
m1, ...,mk and let J be a monomial ideal generated by the monomials n1, ..., nl.
Then I ∩ J is a monomial ideal generated by the monomials lcm(mi, nj) ∀ i ∈
[k], j ∈ [l].

Proof. If f ∈ P = I ∩ J , then f ∈ I and f ∈ J . By Lemma 1.3.3, all the terms
of f lie in I and in J , thus all the terms of f lie in P . Thus, by Lemma 1.3.3, we
have that P is a monomial ideal.

Clearly lcm(mi, nj) ∈ P ∀ i ∈ [k] and j ∈ [l], so we will show that any monomial
of P is divisible by some monomial of the form lcm(mi, nj). So let m be a
monomial of P , then mi|m and nj for some i ∈ [k] and j ∈ [l], thus lcm(mi, nj)|m.
Therefore we have that P = 〈{lcm(mi, nj)|i ∈ [k], j ∈ [l]}〉.

Thus if we write a monomial ideal, I, as the sum of two monomial ideals, J1

and J2, then we get that HI(t) = HJ1(t) +HJ2(t)−HJ1∩J2(t). This follows from
considering the dth graded components of the ideals I, J1, J2 and J1 ∩ J2 as finite
dimensional vector spaces. Thus, if we know the Hilbert series of J1, J2 and if it
is easier to compute the Hilbert series of J1 ∩ J2 than of I, then we can compute
the Hilbert series of J1 ∩ J2 to determine the Hilbert series of I.

Another object that can be of great use when computing Hilbert series is an
exact sequence. Essentially the idea with exact sequences is to relate an ideal
to different (easier) ideals via a sequence of maps and deduce from those ideals
what the Hilbert series must be.

Definition 1.3.2. An exact sequence is a sequence of homomorphisms

... −→ Sn+1
∂n+1−→ Sn

∂n−→ Sn−1 −→ ...,

where Im(∂n+1) = Ker(∂n).

An easy example of an exact sequence of rings is the following. Let I be an ideal
of Rn, then the following is an exact sequence:

0
id−→ I

ι−→ Rn
q−→ Rn/I

0−→ 0,

where ι is the inclusion map and q is the quotient map. Then id(0) = {0} =
Ker(ι), ι(I) = I = Ker(q) and q(Rn) = Rn/I = Ker(0). We usually skip writing
down the homomorphisms id and 0.

Note that if we are using the standard grading for all the rings in the above
sequence, the maps are all degree-preserving. That is, the degree of the image
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of an element is the same as the degree of the element itself. Thus if we restrict
the map to the dth-graded components, we get a map between finite dimensional
vector spaces:

0
id−→ Id

ι|Id−→ (Rn)d
q|(Rn)d−→ (Rn/I)d

0|(Rn/I)d−→ 0,

where ι|Id denotes the restriction of ι to the dth-graded component of I and similar
for the other maps.

Clearly Dim((Rn)d) = Dim(Im(q|(Rn)d))+Dim(Ker(q|(Rn)d)), and so we have that
Dim((Rn)d) = Dim(Ker(0|(Rn/I)d)) + Dim(Im(ι|Id)) = Dim((Rn/I)d) + Dim(Id).
Thus we get the following identity:

HRn(t) = HRn/I(t) +HI(t).

So if we know the Hilbert series of two of the rings above, then we can find the
Hilbert series for the third.

In general, if we are looking for the Hilbert series of an ideal, we may start
by looking for related objects that we understand better and try to construct a
sequence just like we did for this example. Then we can apply the same argument
as above in a more general setting to get the following result:

Proposition 1.3.3. Let

0 −→ Sn
∂n−→ ... −→ S2

∂2−→ S1 −→ 0,

be an exact sequence of graded rings, then HS1(t) =
∑n

i=2(−1)iHSi(t).

Proof. We restrict to the dth-graded components:

0 −→ (Sn)d
∂n|(Sn)d−→ ... −→ (S2)d

∂2|(S2)d−→ (S1)d −→ 0.

Then, due to the exactness of the sequence, we get that

Dim((S1)d) = Dim(Im(∂2|(S2)d)) = Dim((S2)d)−Dim(Ker(∂2|(S2)d)) =

Dim((S2)d)−Dim(Im(∂3|(S3)d)) = Dim((S2)d)−Dim((S3)d)+Dim(Ker(∂3|(S3)d) =

... =
n∑
i=2

(−1)i Dim((Si)d) + (−1)k+1 Dim(Ker(∂n|(Sn)d)) =

n∑
i=2

(−1)i Dim((Si)d) + 0 =
n∑
i=2

(−1)i Dim((Si)d).
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We can apply this principle to show the following:

Lemma 1.3.4. Let n > 0, then the Hilbert Series of Rn is HRn(t) = 1
(1−t)n .

Proof. We give an inductive proof of this statement. For n = 1, we clearly we
have that HR1(t) = 1 + t+ t2 + ... =

∑∞
i=0 t

i = 1
1−t .

Now assuming the statement is true for n = k−1 ≥ 1, we show that it holds true
for n = k:

We clearly have that Rk−1 ' Rk/〈xk〉. We also have the following exact sequence:

0 −→ Rk(1)
×xk−→ Rk

q−→ Rk/〈xk〉 −→ 0,

where Rk(1) denotes the ring Rk except that we have shifted the grading to start
at 1. This is often called the 1th twist of Rk. We do this so that when an element
f ∈ Rn(1) of degree d is sent to Rk via multiplication by xk, then f ×xk also has
degree d.

By Proposition 1.3.3 we have HRk(t) = HRk/〈xk〉 + HRk(1)(t). Since Rk(1) is the
same as Rk, except for a twist in the grading by 1, we have that HRk(1)(t) =
tHRk(t). And since Rk/〈xk〉 ' Rk−1, we have that HRk/〈xk〉(t) = HRk−1

(t), which
by the induction hypothesis is equal to 1

(1−t)k−1 . Thus HRk(t) = HRk−1
+ tHRk(t),

which implies that HRk(t) = 1
(1−t)HRk−1

(t) = 1
(1−t)k .

This result, together with the previous example following Definition 1.3.2, shows
that we can easily pass from the series HI(t) to HRn/I(t) by simply subtracting
it from HRn(t). Thus we may use whichever one we prefer.

We will now turn to a particular type of rings that exploit the principle of exact
sequences very nicely, namely complete intersection rings. We start with a defi-
nition, but first recall that a is a zero divisor of a ring S, if there exists a nonzero
b ∈ S such that ab = 0.

Definition 1.3.3. A regular sequence in Rn, is a sequence of homogeneous poly-
nomials (f1, f2, ..., fk) such that fi is not a zero divisor of Rn/〈f1, f2, ..., fi−1〉 for
all i.

A ring, Rn/I, is a complete intersection ring if the ideal, I, is generated by a
regular sequence. Note that the ring, Rk/〈xk〉, from the proof of Lemma 1.3.4, is
a complete intersection ring.

Complete intersection rings have the following useful property:

21



Chapter I/Polynomial rings

Proposition 1.3.4. Let Rn/I be a complete intersection ring and let I be gener-
ated by the regular sequence (f1, f2, ..., fk) of degrees d1, d2, ..., dk, then HRn/I(t) =∏k
i=1(1−tdi )
(1−t)n .

Proof. Let i ∈ [k], then, since fi is a nonzero divisor of Rn/〈f1, ..., fi−1〉, the
following sequence is exact:

0 −→ (Rn/〈f1, ..., fi−1〉)(di)
×fi−→ Rn/〈f1, ..., fi−1〉

q−→ Rn/〈f1, .., fi〉 −→ 0.

By Proposition 1.3.3, we have that

HRn/〈f1,...,fi〉(t) = HRn/〈f1,...,fi−1
(t)−H(Rn/〈f1,...,fi−1〉)(di)(t) =

(1− tdi)HRn/〈f1,...,fi−1〉(t).

Thus, inductively, we have

HRn/〈f1,...,fk〉(t) =
k∏
i=1

(1− tdi)HRn(t).

So by Lemma 1.3.4 we get that

HRn/〈f1,...,fk〉(t) =
k∏
i=1

(1− tdi)HRn(t) =

∏k
i=1(1− tdi)
(1− t)n

.
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In this chapter we turn to representation theory, a topic that can be thought of as
a generalization of vector spaces. For instance, if we have a vector space V and a
scalar c, then multiplying all the elements of V , by c, can be thought of as a way
of stretching or shrinking the space (depending on c). Now, if we would like to
allow for more possibilities in how we affect the vector space V , be it by turning
the space clockwise or reflecting it along a line etc., then we need representation
theory.

The first section of this chapter serves as a quick introduction to representation
theory for finite dimensional vector spaces and will also describe the relation be-
tween a few similar concepts such as group actions, representations and modules.
We will introduce a couple of central results for representation theory, namely
Masche’s Theorem and Schur’s Lemma and describe how to classify components
of the vector space that behaves similarly when we start affecting it by rotations,
reflections or similar actions.

Section two and three will go into the representation theory for the symmetric
group. The theory for the symmetric group is quite well studied and therefore
offers a lot of useful tools that we can take advantage of in the later chapters. It
will also provide some context for why we consider Specht ideals in Chapter 4.
Section two will focus on the finite dimensional case, which will be of use when
we apply it to the polynomial ring in section three.

2.1. Group actions, representations and modules

A group action of a group, G, on a set X can be though of as a way to identify the
group elements as automorphisms of X. Thus the group elements are “acting”
on X according to specific automorphisms.

For instance, we can define the symmetric group, S2, to be acting on R2, by
swapping basis vectors. That is, if σ ∈ S2 and v = (v1, v2) ∈ R2, then we define
the action of S2 by σ(v) = (vσ(1), vσ(2)). Clearly, with this definition, the group
elements correspond to automorphisms of R2.

Formally, we define a left group action G, on X, to be a map α : G × X → X,
that satisfies the following:

α(idG, x) = idX(x),

α(g, α(h, x)) = α(g · h, x),
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∀g, h ∈ G and x ∈ X.

Usually we denote α(g)(x) by gx. Equivalently, we can define a group action to
be a group homomorphism α : G→ Aut(X).

A representation of a group G is similar to a group action, except we consider
the action on a vector space and not a general set. Thus a representation of G
on the vector space V is a triple (ρ,G, V ), where ρ : G → Aut(V ) is a group
homomorphism.

A common representation that we will be using a lot is the following: Given an
integer n ∈ N, we let Sn denote the symmetric group on the set [n]. Let ρ : Sn →
Aut(Rn) be the map defined by ρ(σ)f(x1, x2, ...xn) = f(xσ(1), xσ(2), ..., xσ(n)) ∀ σ ∈
Sn & f ∈ Rn, then (ρ, Sn, Rn) is a representation of Sn on the infinite dimen-
sional vector space Rn. Notice that this action of the symmetric group is degree-
preserving, so we can equivalently define the representations (ρd, Sn, Rn,d) in a
similar way for each degree d component. Then the representation, ρ, is just the
direct sum of the degree d representations, ρd.

This suggests the following definition of a subrepresentation: Given a represen-
tation (ρ,G, V ) and a subspace W of V , (ρ|W , G,W ), is a subrepresentation of
(ρ,G, V ) if W is stable under the action of G, that is, if gw ∈ W ∀ w ∈ W
& g ∈ G. The reason we need it to be stable is simply to ensure that the restric-
tion of ρ to the codomain W is an automorphisms of W .

A particular kind of subrepresentation will be of interest to us, these are called ir-
reducible representations. These are the nonzero representations that doesn’t con-
tain any smaller subrepresentations except the trivial subspace. The irreducible
representations allow for the following nice description of a representation:

Theorem 2.1.1 (Maschke’s Theorem). Let (ρ,G, V ) be a representation of a
finite group G on a finite dimensional vector space V . If V is a vector space
over a field of a characteristic that does not divide the order of G, then ρ can be
written as a direct sum of irreducible representations.

Proof. See Theorem 1.5.3 in [20].

We will usually write such a decomposition of a representation (ρ,G, V ) as V =⊕k
i=1W

(i), where each W (i) is irreducible, and only define the corresponding
maps, ρi : G→ W (i), if necessary.

A decomposition of a representation into irreducible representations will not in
general be unique. Just consider the representation of S2 on R2 defined by σ(v) =
Sgn(σ)v. Then, if e1 and e2 are the standard basis vectors, we can decompose the

24



2 /

vector space into the direct sum of the span of e1 and the span of e2, alternatively
we can decompose it as the span of e1 + e2 and the span of e1− e2. Clearly these
decompositions are irreducible, but they do not give the same subspaces.

On the bright side, a decomposition into irreducibles is unique up to isomorphism.
That is, a decomposition of a representation, (ρ,G, V ), of a finite group G on
a finite vector space can be written as V =

⊕
imiW

(i), where each W (i) is
irreducible and mi denotes the number of times W (i) occurs in V . This is called
an isotypic decomposition of V , and each collection of isomorphic irreducibles,
miW

(i), is called an isotypic component. The fact that this decomposition is
unique follows from another central result in representation theory called Schur’s
Lemma:

Theorem 2.1.2 (Schur’s Lemma). Let (ρ,G, V ) and (φ,G,W ) be two irreducible
representations of a finite group G on finite dimensional vector spaces V and
W . If θ : V → W is a G-homomorphism, that is, a linear mapping such that
θ ◦ ρ(g) = φ(g) ◦ θ ∀ g ∈ G, then either θ is a G-isomorphism, or it is the zero
map.

Proof. See Theorem 1.6.5 in [20].

Corollary 2.1.1. A representation, (ρ,G, V ), of a finite group G on a finite
vector space V , has a unique isotypic decomposition.

Proof. Let V have two decompositions into irreducibles and let V =
⊕

imiW
(i)

and V =
⊕

i niU
(i) be the corresponding isotypic decompositions. Let U (k) be

isomorphic to W (j) for some k and j. We have that id : V → V be a G-
automorphism and let pi : V → miW

(i) be a projection onto miW
(i). Clearly the

restriction of pi ◦ id from U (k) to any of the copies of W (i) is a G-homomorphism.
Thus when i 6= j, Schur’s Lemma says that (pi◦id)|W (i)

U(k) is the zero map. Therefore

we have that θ(U (k)) ⊆ mjW
(j).

Since the argument was done for an arbitray irreducible component, we get
that id(niU

(i)) ⊆ mlW
(l), when U (i) is isomorphic to W (l) and since id(V ) =⊕

id(niU
(i)) = V =

⊕
imiW

(i) we get that ni = ml. Thus the two isotypic
decompositions are the same.

Lastly in this section we will look at a different way of talking about a repre-
sentation, namely as a module. A module is similar to a vector space except
that instead of having a scalar field, we have a ring taking its place. We intro-
duce modules because it can sometimes be more convenient to consider a module
rather than a representation.
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Definition 2.1.1. Let R be a ring and G an abelian group. Then G is a left
R-module if we can define a “ring action” on M , that is, a multiplicative map
· : R×G→ G, such that:

·(idR, g) = g,

·(r, g) + ·(s, g) = ·(r + s, g),

·(r, ·(s, g)) = ·(rs, g),

·(r, g) + ·(r, h) = ·(r, g + h),

∀ r, s ∈ R and g, h ∈ G.

Usually we replace the notation ·(r, g) by rg, and since we will mainly be working
with the scenario that R is a commutative ring we will just call a left R-module
for an R-module since then the left and right modules coincide.

To see the connection between modules and representations, consider a represen-
tation, (ρ,G, V ), where V is a vector space over the field, K, and construct the
group ring of K and G, K[G]. K[G] is defined to be the set of finite formal sums
{
∑k

i=1 cigi|ci ∈ K, gi ∈ G}, where the additive and multiplicative in K[G] are
natural extensions of the ring and group operations on K and G. That is, for
c, d ∈ K and g, h ∈ G, let (cg) · (dh) = (cd)(gh), where the product (cd) is taken
to be the product in K and (gh) is the product in G.

With this definition K[G] is a (commutative) ring. Since V is a vector space
over K and we have defined a representation of G on V that gives us K-linear
automorphisms of V we can easily see that V is a K[G]-module by extending the
map, ρ, by letting ρ(cg) = cρ(g), for all c ∈ K and g ∈ G. Thus we may refer to
the K[G]-module V , instead of the representation (ρ,G, V ), but still be referring
to the same thing.

2.2. Decomposition of the symmetric group
representation

In this section we will consider the representation of the symmetric group, Sn,
and we will show how one can construct the complete list of irreducible repre-
sentations. We start by introducing a representation that contains all possible
irreducible representations (up to isomorphism) and then we describe each such
irreducible component. We will mostly present the relevant results and not go
too much into any argumentation in this section.

The representation we will focus on is generally called the regular representation
and is constructed by having a group G act on itself in a natural way. Firstly,
we construct the group ring K[G] and note that we may consider it a vector
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space over K where the group elements are the basis vectors. Thus if G is
finite, then K[G] becomes a finite dimensional vector space. Then we let G
act on K[G] the following way: for g ∈ G and f =

∑k
i=1 cigi ∈ K[G], we let

gf = g(
∑k

i=1 cigi) =
∑k

i=1 ci(ggi), where ggi is taken as the multiplication in G.

Before we state the first result, recall that a conjugacy class of G, [a], is a subset
of G consisting of all elements of G that are conjugate to a. That is, [a] = {b ∈
G|b = gag−1 for some g ∈ G}. Note that this defines an equivalence relation on
G, so the conjugacy classes are disjoint.

Proposition 2.2.1. Let K[G] =
⊕

imiW
(i), where the W (i)’s form a complete

list of irreducible representations and W (i) 6' W (j) for i 6= j. Then mi =
dim(W (i)) and K[G] =

⊕k
i=1miW

(i), where k is the number of conjugacy classes
of G.

Proof. See [20] Proposition 1.10.1.

Thus to find the number of irreducible representations of Sn we simply have to
find the number of conjugacy classes of Sn. It is well known that the cycle types
of the elements of Sn determines the conjugacy classes (see for instance Chapter 1
of [20]). Given an element σ ∈ Sn such that σ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) =
6, σ(6) = 4 and σ(i) = i for the rest, then we express it in cycle notation in the
following way σ = (1, 2, 3)(4, 6)(5)(7)...(n) = (1, 2, 3)(4, 6). Then we define its
cycle type to be the ordered tuple of the lengths of each subcycle in descending
order. Thus the cycle type of σ is (3, 2, 1, 1, ..., 1).

Note that if we take a product of two cycles τ1 = (1, 2) and τ2 = (2, 3), then
we have to write the product, τ1τ2 = (1, 2)(2, 3), as disjoint cycles before we can
find its cycle type. Thus the cycle type of τ1τ2 = (1, 2, 3) is (3, 1, 1, ..., 1) and not
(2, 2, 1, 1, ..., 1).

Clearly, if we sum up the components of the cycle type of an element σ ∈ Sn,
it is equal to n. Thus the cycle type is a partition of n, that is, a decreasingly
ordered tuple of positive integers that sum up to n. We usually write λ ` n,
when λ = (λ1, λ2, ..., λl) is a partition of n. Similarly, if we have a partition of
n, then it defines the cycle type of an element in Sn For instance, the partition
(1, 1, ..., 1) ` n describes the cycle type of the identity of Sn and the partition
(n) ` n describes the cycle type of (1, 2, ..., n) ∈ Sn.

Thus the number of irreducible components of the representation of Sn is equal to
the number of partitions of n. Unfortunately, no one has found a closed formula
that gives the number of partitions of n. However, it can be computed using a
generating function. More information on this can be found in [11].
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It will not be necessary for us to know the number of irreducible components,
so we will not go into that. What is of interest to us, is that the partitions
give us a particularly nice way of describing each irreducible component of our
representation. Thus for the remainder of this section we will take advantage
of this bijection between partitions of n and irreducible representations of Sn to
describe the irreducible representations.

To start with note that the set of partitions of n can be equipped with a partial
order thus making it a poset, that is, a partially-ordered set. A partial order on a
set, S, is defined as a relation, “≤”, that satisfies the following for all a, b, c ∈ S:

a ≤ a,

a ≤ b & b ≤ a ⇒ a = b,

a ≤ b & b ≤ c ⇒ a ≤ c.

Note that from the definition above, there is a possibility that neither a ≤ b nor
b ≤ a for two elements of a, b of S.

We will make use of a partial order on the set of partitions of n, called the
dominance order, when we get to the Specht ideals. We say that λ = (λ1, ..., λl)
dominates µ = (µ1, ..., µk), written µ E λ, if

∑j
i=1 λi ≤

∑j
i=1 µi for all j ≤

min{l, k}. This is clearly a partial order on the partitions of n.

To construct the irreducible representation corresponding to a particular partition
we associate, to each partition λ ` n, a set of tableaux :

Definition 2.2.1. Let λ = (λ1, ..., λl) ` n, then a tableau, T , of shape λ is an
array of n boxes indexed by [n] arranged in the following way:

T =

α1,1 α1,2 ... ... ... α1,λ1

α2,1 α2,2 ... ... α2,λ2

... ... ... ...

... ... ... ...

αl,1 ... αl,λl

,

where αi,j ∈ [n] and αi,j 6= αr,s when (i, j) 6= (r, s). We will let, Tab(λ) denote
the set of tableaux of shape λ.
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Given a partition λ ` n we say that two tableaux, T, T ′ ∈ Tab(λ), are row
equivalent if the ith row of each tableaux contain the same indices for all i. This
is an equivalence relation on the set of tableaux of shape λ and we call the
equivalence classes, [T ], tabloids. We can also define these equivalence classes by
letting Sn act on the tableaux by permuting the indices of a tableau. Then, if we
let SRi be the subgroup of Sn that only permutes the indices of the ith row of T ,
and if we let RT := SR1 × SR2 × ... × SRl , then we can define [T ] to be the set
RTT . We usually call RT the row stabilizer of T .

This action on the tableaux can be used to define an action on the tabloids as well.
Just note that if τ(T ) is row equivalent to the tableau T for τ = (τ1...τk), then
for any σ ∈ Sn, σ(τ(T )) = στ(T ) = (σ(τ1)...σ(τk))σ(T ), where (σ(τ1)...σ(τk)) is
a row stabilizer of σ(T ). Thus, if we define the Sn-action on the tabloid [T ], to
be given by σ([T ]) := [σ(T )], then this action is well-defined. This tells us that
we can consider the vector space Mλ := {

∑l
i=1 ci[Ti] | ci ∈ K, T ∈ Tab(λ)},

spanned by the equivalence classes [T ], as an Sn-module.

Similarly to the row stabilizer, we define CT to be the column stabilizer of T and
we let eT :=

∑
σ∈CT Sgn(σ)σ([T ]) be the polytabloid corresponding to T . Since

we have that the action of Sn on the tabloids is well-defined, then we have that
eT = eT ′ when T and T ′ are row equivalent. Another useful observation on the
polytabloids is the following:

Lemma 2.2.1. Let T be a tableau and σ ∈ Sn, then eσT = σeT .

Proof. See lemma 2.3.3 in Chapter 2 of [20].

The polytabloids of shape λ generates a module, Sλ, that we call the Specht
module corresponding to λ. We have the following result regarding the Specht
modules:

Theorem 2.2.1. When K = C, the Specht modules form a complete list of
irreducible representations of Sn.

Proof. See Theorem 2.4.6 in [20].

Although we need the field to be algebraically closed to guarantee that the Specht
modules are the irreducible representations, the next result holds even if it is not.
Before that we will define a tableau to be standard if the indices of the rows are
increasing (from left to right) and the indices of the columns are increasing(from
top to bottom).

Theorem 2.2.2. The polytabloids corresponding to the standard tableaux of shape
λ is a basis of Sλ.

Proof. See Theorem 2.5.2 in [20].
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2.3. Representation in the polynomial ring and Specht
ideals

When representing the symmetric group Sn in Rn we are in a slightly different
situation seeing as the vector space is now infinite dimensional. However, the
theory for the finite case we’ll still be of great help. We will still be using the idea
of associating a partition to each irreducible representation and their generators
will correspond to the tableaux of that partition. However, we begin with a bit
of invariant theory.

The idea is to first identify all the invariant polynomials in Rn, that is, the ones
that are left fixed by the action of Sn. Since each invariant polynomial can be
considered as a generator for the trivial subrepresentation, we will group them
together and just consider the remaining part of the ring. Then the remainder
of the ring will contain the more “interesting” irreducible representations, so we
can focus on this part.

We will consider the natural representation of Sn on Rn given by σf(x1, x2, ..., xn)
= f(xσ(1), xσ(2), ..., xσ(n)) ∀ σ ∈ Sn and f ∈ Rn. Then the invariant, or symmetric,
polynomials are the ones with the property that σf = f ∀ σ ∈ Sn, and we denote
the set of invariant polynomials as RSn

n . Note that since the action of σ is a
homomorphism, we have that the sum and product of two invariant polynomials
are invariant. Thus RSn

n has a ring structure and is therefore called the invariant
ring of Sn.

Of particular interest are the elementary symmetric polynomials. They are de-
fined as e1 =

∑
i∈[n] xi, e2 =

∑
i,j∈[n],i<j xixj, ..., en = x1x2 · · ·xn. It can be shown

that any symmetric polynomial, f ∈ Rn, can be written uniquely as a polynomial
in the ei’s, that is, we have the following theorem:

Theorem 2.3.1. Let f ∈ RSn
n , then f(x) = h(e1(x), ..., en(x)), where h ∈

K[e1, ..., en] is unique.

Proof. See Theorem 3 in Chapter 7.1 of [7].

In addition to focusing on the non-symmetric polynomials, we can reduce the set
of polynomials we consider a little more by making the following observation: If
W ⊆ Rn is irreducible, then for any symmetric polynomial f , we have that fW is
an isomorphic copy of W since σ(fw) = σ(f)σ(w) = fσ(w) ∀ σ ∈ Sn and w ∈ W .
Thus we can construct many copies of the same irreducible representation. There-
fore we can instead consider the covariant ring, RnSn

= Rn/〈e1(x), ..., en(x)〉. We
know the following about the covariant ring:
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Theorem 2.3.2. The covariant ring RnSn
is the regular representation of Sn.

Proof. See [22], Proposition 4.9.

Note that in [22], the result above is proven for the complex numbers, however,
as mentioned in Chapter 8.1 of [4], the result also holds for the real numbers
and thus it holds for our case. In the same chapter they also give the following
decomposition of the polynomial ring: Rn ' RnSn

⊗K[Sn] R
Sn
n , where ⊗K[Sn]

denotes the tensor product of the K[Sn]-modules RnSn
and RSn

n . We will give a
quick definition of tensor products for clarity, but for our purposes it will simply
serve as a nice way of separating the “uninteresting” symmetric polynomials and
the more “interesting” covariant ring.

Definition 2.3.1. Let M and N be R-modules, where R is some commutative
ring. Then the tensor product of M and N over R, M⊗RN , is the R-module with
generators {m⊗ n|m ∈ M,n ∈ N} and that satisfies (am + bm′)⊗ (cn + dn′) =
ac(m⊗ n) + ad(m⊗ n′) + bc(m′ ⊗ n) + bd(m′ ⊗ n′) for all m,m′ ∈ M,n, n′ ∈ N
and a, b, c, d ∈ R.

It may be easiest to think of the tensor product as the product M × N , except
that we impose some extra relations on the elements. Note, however, that the
elements of M ⊗R N are of the form

∑k
i=1 ri(mi ⊗ ni), with mi ∈M,ni ∈ N and

ri ∈ R, and not generally on the form m⊗n. Thus the analogy with the product
space has its limitations.

Returning to the topic at hand, based on the theory we went through in the last
section, Theorem 2.3.2 tells us that we will find all irreducible representations of
Sn in the covariant ring. We also know that we can use the partitions of n to
identify all the distinct components.

To construct each irreducible component we define the Specht polynomials :

Definition 2.3.2. Let λ ` n and T ∈ Tab(λ), then, if λ2 > 0, the Specht
polynomial corresponding to T is the polynomial fT :=

∏λ2
c=1

∏
i<j(xαi,c − xαj,c),

where αi,c denotes the index of the box in the ith row and cth column of T . When
λ2 = 0, we define the Specht polynomial to be fT := 1.

Example 2.3.1. Let (3, 2, 1) ` 6 and T ∈ Tab((3, 2, 1)) be the tableau

T =

3 6 4

1 5

2

,

then fT = (x3 − x1)(x3 − x2)(x1 − x2)(x6 − x5).
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A different way of defining the Specht polynomials is to take the product of the
Vandermonde determinants corresponding to the indices of each column. Also,
note that in the preceding example f(12)T = (12)fT = −fT . In fact we can see
that when σ ∈ CT , we have that σfT = ±fT , and in general we have fσ(T ) = σfT
for any tableau of any shape. Note that this is the just like the equation we had
in Lemma 2.2.1 in the previous section, that is, eσT = σeT . This fact has an
immediate consequence:

Corollary 2.3.1. Let λ ` n and K = C, then spanK{fT |T ∈ Tab(λ)} form an
irreducible representation of Sn.

Proof. Define the map θ : spanK{eT |T ∈ Tab(λ)} → Sλ to be the map given
by θ(fT ) = eT . By the comment preceding the Lemma we have that eσT = σeT
and fσT = σfT , thus θ(σfT ) = θ(fσT ) = eσT = σeT = σθ(fT ). Therefore we
have that θ is an Sn-isomorphism. From Theorem 2.2.1 we know that Sλ is an
irreducible representation. Thus spanK{fT |T ∈ Tab(λ)} is also an irreducible
representation.

Due to Corollary 2.3.1 we will also call spanK{eT |T ∈ Tab(λ)} the Specht module.
Another consequence of this identification is the following:

Corollary 2.3.2. If K = C then the Specht modules spanK{fT |T ∈ Tab(λ)}
form a complete list of irreduble representations of the covariant ring RnSn

.

Proof. By Theorem 2.3.2 the covariant ring is the regular representation and
thus contains all irreducible representations (up to isomorphism). From Theo-
rem 2.2.1 we know that the Specht modules form a complete list of irreducible
representations of Sn and by Corollary 2.3.1 we know that the Specht module
spanK{fT |T ∈ Tab(λ)} is isomorphic to the Specht module Sλ.

Thus, to sum up, we can write the Sn-moduleRn as the tensor productRnSn
⊗K[Sn]

RSn
n , where the covariant ring RnSn

decomposes into the Specht modules spanned
by the Specht polynomials and each element of the invariant ring RSn

n spans its
own trivial representation. Essentially the Specht modules play an important role
in the representation theory of the symmetric group and this is what motivates
the following definition:

Definition 2.3.3. The Specht ideal of shape λ is the ideal generated by the Specht
polynomials of shape λ.
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We call a Specht polynomial for a standard Specht polynomial if the correspond-
ing tableaux is standard. In the last section we ended with a result regarding
a basis of the Specht modules which was independent of whether K was alge-
braically closed or not. We have a similar result for the Specht ideals:

Proposition 2.3.1. Let λ ` n. The standard Specht polynomials corresponding
λ generate the Specht ideal of shape λ.

Proof. See Theorem 1.1 in [18].
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In this chapter we consider how to deal with the polynomial ring in infinitely
many variables, R = K[X], where X = {xi|i ∈ N}. This ring can be viewed
as the the union of all the finite polynomial rings, R = ∪n∈N0Rn, so its natural
to interpret it as a limiting object of the sequence of polynomial rings in finitely
many variables. Similarly, we can consider ideals in this ring as limits of sequences
of ideals in the finite variable polynomial rings. Thus we can define a variation of
Hilbert series for this ring by considering the corresponding sequences of Hilbert
series for the finite polynomial rings.

We will see that dealing with these sequences become easier when the sequences
of ideals are symmetric since this allows us to consider R as a module over the
group ring R[S∞], where S∞ is the infinite symmetric group. With this group
action defined we can define a variation of Gröbner bases for ideals in this ring
“up to orbits”.

However, before we go into Hilbert Series and Gröbner bases, we should establish
some fundamental properties of the ring R. We introduce a variation of Noethe-
rianity for R and look at how we can order the monomials in a sensible way.

3.1. Noetherianity up to symmetry

Although we cannot say that the infinte polynomial ring is Noetherian as a ring,
we can consider it as an R[S∞]-module which luckily makes it Noetherian as a
module. Thus we circumvent that problem nicely. However, we must be careful
regarding how we choose to order the elements of R since the Noetherianity of
the module is dependant on the ordering.

We will go through the main steps that establishes R as Noetherian since it will
highlight some principles that will be useful to keep in mind when working in
R. The proof follows (in principle) the same approach as they do in [7] for the
ring Rn, but some more care needs to be taken, particularly with regards to
the ordering. Thus we will start with some definitions and properties regarding
orderings, continue with Gröbner bases and use the relation between Gröbner
bases and orderings to establish finite generation of ideals. That is, we establish
a variation of Hilbert basis theorem which can be seen as equivalent to the module
being Noetherian. It is also worth pointing out that most of what follows is taken
from [1] except they do this in a more general setting where the set of variables
is not necessarily countable.
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The elements of R is defined in the similarly to the finite case, that is, R =
{
∑m

i=1 kiwi | ki ∈ K, wi ∈ X�, m ∈ N}, where X� is the free commutative monoid
generated by X. The infinite symmetric group we define as S∞ = {σ : N→ N | σ
is a bijection that fixes all but a finite set of elements of N}. Note that in a
similar way as the ring R can be thought of as the union of the finite rings Rn,
we can think of S∞ as the union of all the finite symmetric groups, Sn, where Sn
is embedded into Sn+1 as the stabilizer of n+ 1.

To consider R as a module we define the group ring of S∞ and R as the ring
R[S∞] = {

∑m
i1
riσi | ri ∈ R, σi ∈ S∞}. So R is an R[S∞]-module, where

elements of S∞ acts on elements of R by permuting the indices of the variables
in X. Thus when we consider ideals in R, we need them to be closed under the
action of S∞. We usually denote this condition by S∞I ⊆ I, or say that I is a
stable ideal. Thus stable ideals are the submodules of R. We call the ideals that
are stable with respect to the symmetric group, symmetric ideals.

Just like the ring R can be considered a limit of the sequence (Rn)N0 , we can
consider a stable ideal I /R as the limit of the sequence (In)N0 , where In = I∩Rn

is an ideal in Rn. The ideals In are clearly stable under the action of Sn, thus we
get a sequence of symmetric ideals.

To establish Noetherianity we also need an ordering on X� that behaves nicely
with the group action we just introduced. We start with a definition:

Definition 3.1.1. A relation ”≤” on a set, Y , is a quasi-order if it is reflexive
and transitive. That is,

y ≤ y ∀ y ∈ Y,
and

y1 ≤ y2 & y2 ≤ y3 =⇒ y1 ≤ y3, ∀ y1, y2, y3 ∈ Y.
In addition it is called a well-quasi-order if any subset of non-related elements,
is finite.

For a quasi ordered set Y , we will let F (Z) denote the final segment generated
by Z ⊆ Y . F (Z) is defined to be a final segment if for any y ∈ Y such that there
exists a z ∈ Z with z ≤ y, then y ∈ Z. Then it can be shown that a quasi-order
set has the following properties(see [1], proposition 2.1):

Lemma 3.1.1. Let ”≤” is a quasi-order on a set Y , then the following are
equivalent:

i ”≤” is a well-quasi-order

ii Each final segment is finitely generated.
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Given an order ”≤” on X� we can build a new order called the symmetric can-
cellation order that will be useful when we consider R as a module. It is defined
as follows: w � u if w ≤ u and there exists a group element, σ ∈ S∞, such that
σw|u with σw′ ≤ σw for any w′ ≤ w.

Thus, if we use the symmetric cancellation order, we can think of the set of
leading monomials of a stable ideal as our version of a final segment. Then,
due to Lemma 3.1.1, if we have an ordering on X� such that the corresponding
symmetric cancellation order is a well-quasi-order, we get that the sets of leading
monomials are finitely generated.

To find such an ordering we start with a definition:

Definition 3.1.2. An ordering, ”≤”, on X is a cardinal-well ordering if the
complement of any nontrivial final segment has strictly smaller cardinality than
the cardinality of X.

Note that if we take the lex order on X� and restrict it to X we do not get
a cardinal-well order. To see this consider for example the final segment Y =
{x1, x2, x3} ⊆ X, then the complement Y c has the same cardinality as X. How-
ever, if we consider the invlex order on X� it restricts to a cardinal-well ordering
of X. This is important due to the following theorem:

Theorem 3.1.1. If ”≤” is a lexicographical ordering of X� that restricts to a
cardinal-well ordering of X, then the corresponding symmetric cancellation order
is a well-quasi-order.

Proof. See theorem 2.20 in [1]. Note that by “a lexicographical ordering” it is
meant that if X is ordered by ≤∗, then the corresponding lexicographical ordering
on X� is defined as follows: Let w, u ∈ X�, then w, u ∈ X�n for some n ∈ N, thus
w = xα and u = xβ. Let xi = max≤∗{xj|xj ∈ supp(w) ∪ supp(u) & αj 6= βj},
then w > u if αi > βi.

The next step is to define a notion of a Gröbner basis for ideals of R. But
first we introduce the following notation: If Y is a subset of a ring A, then
〈Y 〉A := {

∑k
i=1 aiyi | ai ∈ A, yi ∈ Y }. We usually skip the subscript when the

ring A is clear from context.

Definition 3.1.3. A subset G of a stable ideal I/R is a Gröbner basis if 〈F (G)〉K
and 〈lm(f) | f ∈ I〉K are equal.
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Note that the sets in the definition are generated over K, not R[S∞]. The dis-
tinction is an important one since if we have an polynomial, f , in a stable ideal
I, and a group element σ ∈ S∞, we do not necessarily have an h ∈ I with
lm(h) = lm(σf). Similarly to the finite case we have the following properties
regarding Gröbner bases.

Lemma 3.1.2. Let G ⊂ I / R be a Gröbner basis of a stable ideal I, then
〈G〉R[S∞] = I.

Proof. Let Jn = 〈G〉R[S∞] ∩Rn, then we have that lm(Jn) = lm(In) since
〈F (G)〉K = 〈lm(f) | f ∈ I〉K . Since lm(Jn) = lm(In) and Jn ⊂ In, then by
Proposition 1.2.1 we have that In = Jn. Thus I = ∪n∈N0In = ∪n∈N0Jn = 〈G〉R[S∞].

Proposition 3.1.1. Let ”≤” be an order on X� such that the corresponding
symmetric cancellation order is a well-quasi-order. Then every stable ideal of R
has a finite Gröbner basis.

Proof. By statement ii of Lemma 3.1.1, we have that F (G) is finitely generated
since F (G) is defined to be a final segment and the symmetric cancellation order
is a well-quasi-order.

By the comments preceding Theorem 3.1.1 and the theorem itself we have that
the symmetric cancellation ordering corresponding to the invlex order is a well-
quasi-order. And due to Proposition 3.1.1 we get that every stable ideal has a
finite Gröbner basis. Thus if we have an increasing sequence of stable ideals,
I1 ⊆ I2 ⊆ ..., then I = ∪n∈N0In has a finite Gröbner basis G ⊆ I. Since G ⊆ In
for some n ∈ N0, then In = In+1 = .... Thus we have the following theorem:

Theorem 3.1.2. The R[S∞]-module, R, is Noetherian.

As was mentioned in the beginning of this section, if we take the intersection of
a stable ideal I and Rn for all n ∈ N0, we get a sequence of symmetric ideals.
Similarly, if (In)n∈N0 is a sequence of symmetric ideals In / Rn with RmSm(In) ⊆
Im ∀ m ≥ n, then we get the stable ideal I = ∪n∈N0In / R. Such sequences are
called (Sn-)invariant filtrations. We say that a filtration stabilizes if there exist
a k ∈ N such that In = RnSn(Ik), for all n > k.
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Proposition 3.1.2.

i There is a bijection between stable ideals of R and invariant filtrations
(In)n∈N0 with the property that In ∩Rm ⊆ Im ∀ m < n.

ii Every filtration stabilizes.

Proof. See [1] Lemma 4.6 and Theorem 4.7.

We will mostly be working with filtrations generated by some symmetric ideal
Ik / Rk, that is, a sequence, (In)n∈N0 , where

In =

{
〈Sn(Ik)〉Rn , for n ≥ k,

Ik ∩Rn, else,

thus stabilization is not an interesting question. However, it is worth asking
whether, for such a filtration, we have the property described in 3.1.2 part i. Let
us call this the intersection property.

The following is an example that not all such filtrations has the intersection
property:

Example 3.1.1. Let I2 be the symmetric ideal 〈x1 + x2〉 / R2 and let (In) be the
filtration it generates. Then I3 = 〈S3I2〉 = 〈x1 + x2, x1 + x3, x2 + x3〉.

Since (x1 +x2)− (x2 +x3) = x1−x3 ∈ I3, then 1
2
((x1 +x3) + (x1−x3)) = x1 ∈ I3

and since I3 is symmetric, then I3 = 〈x1, x2, x3〉. Clearly {x1, x2, x3} is a Gröbner
basis with respect to the invlex order, thus I2 is a strict subset of I3∩R2 = 〈x1, x2〉.

This raises the question of how we can determine if a given filtration has the
intersection property.

3.2. Equivariant Gröbner bases and Hilbert series

Even though the R is Noetherian as an R[S∞]-module, it turns out that viewing it
as an R[S∞]-module is not a very practical perspective to work with. The main
reason is that there is no order on X� such that the act of taking the leading
monomial commutes with the group action of S∞. That is, if f = x1 + x2 ∈ R
and σ = (12) ∈ S∞, then it is not true that lm(σf) = σ lm(f) for any order.
Thus, as was mentioned in the previous section, the leading monomial ideal is
not generally a symmetric ideal.
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Therefore we will present an alternative way of working with R, that takes care
of this problem without giving us restrictions with regards to the ideals we can
consider. This will involve a different notion of a Gröbner basis than what we
previously considered, called an equivariant Gröbner basis. We will also introduce
a variant of Hilbert series for the infinite case, called equivariant Hilbert series.

We start by defining a monoid action in a very similar to the way we defined a
group action in Chapter 2.

Definition 3.2.1. A left monoid action of a monoid, Π, on a set S, is a map,
α : Π× S → S, such that

α(idΠ, s) = idSs,

and

α(g, α(h, s)) = α(g · h, s),

for all g, h ∈ Π and s ∈ S.

Now let us consider an action of a monoid Π on the ring R with the property
that π(cw) = cπ(w), when π ∈ Π, c ∈ K and w ∈ X�. Then, as a generalization
of the group ring in the last section, we introduce the skew-monoid ring :

R[Π] =

{ k∑
i=1

riπi | ri ∈ R, πi ∈ Π

}
.

We define addition in R[Π] the same way as with the group ring, but multi-
plication is defined differently. For r1π1 and r2π2 we define the product to be
r1π1 ∗r2π2 = r1π1(r2)π1π2, then we extend it my letting it distribute with respect
to addition.

To address the problem we mentioned in the beginning of this section we introduce
a new type of ordering:

Definition 3.2.2. We say that a monomial order, ”≤”, on X� is a Π-order if
for all w, u ∈ X� with w ≤ u and all π ∈ Π, we have that π(w) ≤ π(u).

Since we do not have S∞-orders, we need to find an appropriate monoid to replace
it with. The following monoid will do that for us:

Definition 3.2.3. Let Inc(N) be the monoid {φ : N→ N | φ(a) < φ(b) ∀ a < b},
with composition as the binary operation.
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We will let the action of Inc(N) on R be defined by φ(xi) = xφ(i) for any xi ∈ X
and φ ∈ Inc(N). Since any monomial w ∈ X� is contained in X�n for some n ∈ N,
then, for any φ ∈ Inc(N), there exist a σ ∈ S∞ such that φ(w) = σ(w). Therefore
the Inc(N)-action takes on the appearance of that of a submonoid of S∞. Thus,
if I / R is stable with respect to S∞, then it is stable with respect to Inc(N).

In addition, we clearly have that the invlex order is an Inc(N)-order, and so the
leading monomial ideals of stable ideals are stable under the Inc(N)-action. So
we have resolved the issue that the leading monomial ideals are not generally
symmetric, but now we have to show that the results from the last section also
holds true for the monoid Inc(N). We start by introducing a variation of Gröbner
basis for Π-stable ideals of R.

Definition 3.2.4. If ”≤” is a Π-order and I / R is a stable ideal with respect to
Π, then G ⊆ I is a Π-equivariant Gröbner basis of I if 〈lm(ΠG)〉 = lm(I).

Also, for w, u ∈ X�, we will let w|Πu denote that π(w) divides u for some π ∈ Π.
We can consider the partial-order |Inc(N) as the analogue of the symmetric cancel-
lation order from the last section. Then clearly an Inc(N)-equivariant Gröbner
basis of an I / R with S∞I ⊆ I is also a Gröbner basis with respect to the
symmetric group in the sense of Definition 3.1.3.

We also have the following properties from [12], Proposition 2.10 and Theorem
2.14:

Theorem 3.2.1. Let I / R with S∞I ⊆ I, then:

i Inc(N)I ⊆ I,

ii I is finitely generated over R[S∞] if and only if I is finitely generated over
R[Inc(N)],

iii R is Noetherian as an R[S∞]-module if it is Noetherian as an R[Inc(N)]-
module,

iv R is Noetherian as an R[Inc(N)]-module.

The same article gives an algorithm for computing Inc(N)-equivariant Gröbner
bases. Also, since the leading monomial ideals are stable with respect to the
Inc(N)-action, it follows from property iv of 3.2.1 that the leading monoial ideals
are finitely generated. Hence there is a finite equivariant Gröbner basis for any
Inc(N) stable ideal. Thus the properties above tells us that we can work with R
as an R[Inc(N)]-module without restricting ourselves with regards to the ideals
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that we consider. Most importantly we have a more practical setting to work
with S∞-stable ideals.

One thing that works a little differently from considering R as an R[S∞]-module
occurs when we consider Inc(N)-filtrations. Recall that filtrations of symmetric
ideals generated by a symmetric ideal Ik / Rk were generated by taking intersec-
tions and symmetrizing, that is, constructing the ideals Ik ∩ Rn for n < k and
〈Sn(Ik)〉Rn for n > k. In the Inc(N)-setting we can still do that and by property
ii of 3.2.1 we know have that the limiting ideals are finitely generated. Alterna-
tively we can construct Inc(N)-filtrations for any ideal Ik / Rk in the following
way:

In =

{
Ik ∩Rn for n < k,

〈Inc(N)k,n(Ik)〉Rn for n > k,

where Inc(N)k,n = {φ ∈ Inc(N) | φ(k) ≤ n}. Then the ideal I = ∪n∈N0In is
Inc(N)-stable. However, such ideals need not be symmetric so we get a larger
class of ideals and sequences that we can consider.

Although, if we start with a symmetric ideal Ik /Rk then the symmetric filtration
and the Inc(N)-filtration it generates are the same filtration. To see this let f ∈ Ik
and σ ∈ Sn. Then, as stated in [12] preceding Proposition 2.10, σf = (φ ◦ τ)f
for some τ ∈ Sk and φ ∈ Inc(N)k,n. Thus 〈Sn(Ik)〉Rn = 〈Inc(N)k,n(Ik)〉Rn , so the
sequences are the same. We state this as a lemma:

Lemma 3.2.1. The symmetric filtration generated by a symmetric ideal Ik / Rk

is equal to the Inc(N)-filtration generated by Ik.

One caveat regarding Lemma 3.2.1 worth mentioning is that even if B ⊂ Ik is
a generating set for the symmetric filtration it need not be a generating set for
the Inc(N)-filtration. Just consider the filtration (In)n∈N0 , where I0 = {0} and
In = 〈Snx1〉Rn ∀ n ≥ 1. It can be generated by x2, as a symmetric filtration, but
not as an Inc(N)-filtration.

We can use this way of defining sequences to give the following partial answer to
the question raised at the end of the last section:

Proposition 3.2.1. Let Ik / Rk be a symmetric ideal and (In)n∈N0 a symmetric
filtration generated by Ik. Let X� be equipped with the invlex order and G ⊆ I =
∪n∈N0In be a finite Inc(N)-equivariant Gröbner basis of I contained in Id. Then
In ∩Rm ⊆ Im ∀ m < n ≤ k and d ≤ m < n.

Proof. Since Im = Ik ∩ Rm for m ≤ k, it is clearly true for m < n ≤ k.
For d ≤ m < n, note that since G is an Inc(N)-equivariant Gröbner basis of
I, then Inc(N)d,m(G) is a Gröbner basis of I ∩ Rm. Since Sm(G) ⊆ Im, then
Inc(N)d,m(G) ⊆ Im, thus Im = I ∩Rm =⇒ Im = In ∩Rm.
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Thus the condition that d = k in the above proposition, is sufficient (although
maybe not necessary?) for the sequence to have the intersection property. As we
saw in Example 3.1.1, the generating ideal I2 = 〈x1 + x2〉 does not contain an
equivariant Gröbner basis, but the next ideal I3 = 〈x1, x2, x3〉 does contain one,
namely {x1}. That is, d was not equal to k in this example and the sequence did
not have the intersection property.

We will leave the topic of Gröbner bases and turn to the topic of Hilbert series
for the infinite situation. This will be a natural continuation of the finite case
and is defined for the Inc(N)-action, that is, for the more general class of ideals.

Definition 3.2.5. The equivariant Hilbert series of an Inc(N)-filtration
(In)n∈N0, that is, a sequence of ideals with Inc(N)m,n(Im) ⊆ In for all m < n, is
defined as the generating function

H(In)n∈N0
(s, t) =

∑
n≥0

HIn(t)sn.

Similarly, we define the equivariant Hilbert series of an Inc(N)-stable ideal I / R
as the equivariant Hilbert series of the Inc(N)-filtration (I ∩R)n∈N0.

Recall that in the finite case we could define the Hilbert series of In equivalently
as the Hilbert series of the quotient ring Rn/In, since HIn(t) = HRn(t)−HRn/In(t)
and we know HRn(t) to be equal to 1

(1−t)n . We can do the same for the infinite

case by calculating the equivariant Hilbert series of the filtration (Rn)n∈N0 .

Example 3.2.1. We calculate the equivariant Hilbert series of the filtration
(Rn)n∈N0,

HR(s, t) =
∑
n≥0

sn

(1− t)n
=

1

1− s
1−t

=
1− t

1− t− s
.

Also similar to the finite case, we have a theorem that ensures that the equivariant
Hilbert series are rational.

Theorem 3.2.2. Let (In)n∈N0 be an Inc(N)-filtration of graded ideals, then the
equivariant Hilbert series is a rational function of the form

H(Rn/In)n∈N0
(s, t) =

g(s, t)

(1− t)d ·
∏k

j=0((1− t)cj − fj(t)s)
,

with fj(t) ∈ Z[t] with cj, k ∈ N0, fj(1) > 1 and cj ≤ 1 ∀ j and g(s, t) ∈ Z[s, t].

Proof. See [17] Proposition 7.2.
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The topic of the last chapter is relatively new, and so it makes sense to investigate
a class of ideals that have a strong connection with the representation theory of
the symmetric group. Thus we will be considering the Specht ideals that was
introduced in Chapter 2. We will investigate a conjecture Gröbner basis and
calculate the Hilbert series for some sequences of Specht ideals. We mostly focus
on Specht ideals of shape (n − k, k) and (n − k, 1k), but will also present some
results regarding Specht ideals of a general shape.

In the first two sections we compute the Hilbert series of Specht ideals of shape
(n− k, k). Then we prove a general form of a Gröbner basis for the Specht ideals
of shape (n − k, 1k) before using this to get the equivariant Hilbert series of the
corresponding sequences.

Afterwards we investigate which parts of the proof may generalize to other parti-
tions and use the results to present a criterion for verifying a conjectured Gröbner
basis for the Specht ideals of any shape. We also get a reduced conjecture from
this investigation and show that the leading monomials of the standard Specht
polynomials are sufficient to describe the leading monomials of any Specht poly-
nomial.

At the end we present a specific criterion for the Specht ideals of shape (n− k, k)
that is based on the Hilbert series of these ideals. We finish by analyzing some
of the equivariant Hilbert series we obtained.

4.1. Hilbert series: Specht ideals of shape (n− k, k)

In this section we look at the Hilbert series of some of the Specht ideals of shape
(n−k, k) and eventually the equivariant Hilbert series of the sequences they gener-
ate. However, before we start with the computations we can make an observation
to reduce the computation time a little.

The nice thing about considering Specht ideals in the setting of sequences of ideals
is that the image of a Specht ideal in n variables after applying the group action
of Sm, for m ≥ n, is that it corresponds to another Specht ideal in m variables.
So they naturally induce a sequence of ideals themselves. That is,

Lemma 4.1.1. let λ ` n be the partition (λ1, λ2, ..., λl), with λ1 = λ2, and let
λm = (λ1 +m,λ2, ..., λl), with n, l,m ∈ N. Then 〈Sn+mIλ〉Rn+m = Iλm.
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Proof. Let h be a generator of 〈Sn+mIλ〉Rn+m , then h = σ(fT ), where T ∈ Tab(λ)
and σ ∈ Sn+m. Let

T =

α1,1 α1,2 ... α1,k

α2,1 α2,2 ... α1,k

.. .. ..

.. ..

αl,1

Consider the tableau T ′ ∈ Tab(λm), where

T ′ =

σ(α1,1) σ(α1,2) ... σ(α1,k) α1,k+1 ... α1,k+m

σ(α2,1) σ(α2,2) ... σ(α1,k)

.. .. ..

.. ..

σ(αl,1)

,

and α1,k+s are the remaining indices of [n+m], that is α1,k+s 6= σ(αi,j) for j ≤ k.
Clearly σ(fT ) = fT ′ ∈ Iλm since the columns of length one does not contribute to
fT ′ , thus 〈Sn+mIλ〉Rn+m ⊆ Iλm .

For the reverse inclusion, we start with a tableau T ′ ∈ Tab(λm) indexed by
αi,j and apply a group element τ ∈ Sn+m such that τ(αi,j) ∈ [n] for all the
indices (i, j) that make up a tableau of shape λ. Then τ(fT ′) = fT for some
T ∈ Tab(λ), thus fT ′ = τ−1(fT ) ∈ Sn+mIλ. Hence Iλm ⊆ 〈Sn+mIλ〉Rn+m and
therefore Iλm = 〈Sn+mIλ〉Rn+m .
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Thus when we consider the sequence of ideals generated by a Specht ideal, we are
in fact considering sequences of Specht ideals. Combining this observation and
the fact that the standard Specht polynomials generate the Specht Ideals (see
Lemma 2.3.1), we get an easier job when running computations. That is, we can
simply define the ideals generated by the standard Specht polynomials of a given
shape, instead of having to compute the orbit of a Specht polynomial.

With this observation we are ready to look at some calculations. First we present
the approach and then we look at some calculations.

Method

Let λ = (λ1, λ2, ...λk) ` n, where n, k ∈ N and λ1 = λ2. Define

Im :=

{
Iλ ∩Rm, if m ≤ n,

〈SmIλ〉Rm , else.

Step 1: We define the ideal Iλ in some computer algebra system as the ideal
generated by the set SFλ = {fT |T ∈ Tab(λ)}. Then we calculate the Hilbert
series of Iλ.

Step 2: For the next ideal in the sequence generated by Iλ, 〈Sn+1Iλ〉Rn+1 , we and
define the partitions λm := (λ1 + m,λ2, ..., λk). By Lemma 4.1.1 we know that
In+m = Iλm = 〈SFλm〉, thus we calculate the Hilbert series of In+1.

Step 3: Repeat step 2 for m = 2,m = 3, ... until a pattern emerges (if a pattern
emerges). If a pattern does not appear, then we have to abort.

If the ideal Im 6= 〈0〉 for m < n, and we are interested in the equivariant Hilbert
series of the filtration of I = ∪m∈N0Im, we also need to look at the intersections.

Step 4: Let b = min{m|Im 6= 〈0〉}. Then we calculate a Gröbner basis, G, of
Iλ with respect to an elimination order of type n− b (for instance the lex order).
Then we calculate the Hilbert series of Im = 〈G ∩Rm〉 for all b ≤ m < n.

Step 5: Assuming a pattern emerged in step 3, calculate the equivariant Hilbert
Series of the filtration.

Remark 4.1.1. Note that step 4 may be omitted if we are not interested in the
whole filtration. The resulting expression will still be a rational function, since it
is equal to the equivariant Hilbert series of the filtration minus a finite number of
Hilbert Series’.
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We will begin by looking at partitions of the form (k, k). Although for k = 1, we
will not need to use the method above. But for step 5 we will need the following
lemma. Firstly we define

(
m
k

)
to be zero when m < k.

Lemma 4.1.2. Let k ≥ 0 then
∑

m≥0

(
m
k

)
sm = sk

(1−s)k+1 .

Proof. See (4.1.6) in Chapter 4 of [3].

Partition (1,1)

In this case Im = 〈x1 − xi|i ∈ [m]\{1}〉 for m ≥ 2 and I1 = I0 = 〈0〉. If we
consider the quotient ring Rm/Im, we can identify it with R1 by identifying xi
with x1 for all i > 1. From Lemma 1.3.4 we know that HR1(t) = 1

1−t , that is

HRm/Im(t) =

{
1, if m = 0,

1
1−t , else.

Thus

HR/I(s, t) = 1 +
∞∑
i=1

si

1− t
= 1 +

1

1− t

(
− 1 +

∞∑
i=0

si
)

=

1 +
1

1− t

(
− 1 +

1

1− s

)
= 1 +

s

(1− t)(1− s)
=

st− t+ 1

(1− t)(1− s)

Since HR(s, t) = 1−t
1−s−t , we get that the equivariant Hilbert series of the ideal is

HI(s, t) = HR(s, t)−HR/I(s, t) =
1− t

1− s− t
− st− t+ 1

(1− t)(1− s)
=

(1− t)2(1− s)− (st− t+ 1)(1− s− t)
(1− t)(1− s)(1− s− t)

=
s2t

(1− t)(1− s)(1− s− t)
.

For the next partition we start by including the Macaulay2-code that was used
for the calculation. This will not be included for the other partitions seeing as
they follow the same procedure.
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Partition (2,2)

Let Im = 〈fT |T ∈ StdTab((m− 2, 2))〉 for m ≥ 4 and Im = I4 ∩Rm for m < 4.

The following code uses the package “SpechtModule” in Macaulay2.

i1 : R_4 = QQ[x_0..x_3]

i2 : p = new Partition from{2,2};

i3 : T = standardTableaux(p);

i4 : I_4 = ideal(spechtPolynomial(T_0,R_4),

spechtPolynomial(T_1,R_4));

i5 : hilbertSeries(I_4, Reduce => true)

2

1 + 2T + T

o5 = -----------

2

(1 - T)

Note that the function “hilbertSeries”, gives the Hilbert series of the quotient
ring. Thus HR4/I4(t) = 1+2t+t2

(1−t)2 .

For step 2 and 3 we use a similar code and get these results:

HR5/I5(t) =
1 + 3t+ t2

(1− t)2
,

HR6/I6(t) =
1 + 4t+ t2

(1− t)2
,

HR7/I7(t) =
1 + 5t+ t2

(1− t)2
.

It appears as thought the Hilbert series of Rm/Im is HRm/Im(t) = 1+(m−2)t+t2

(1−t)2 for
m ≥ 4.

The ideal I4 intersects non trivially with R3, so we do step 4 as well.

i1 : R_4 = QQ[x_0..x_3, MonomialOrder => Lex];

i2 : p = new Partition from{2,2};

i3 : T = standardTableaux(p);

i4 : I_4 = ideal(spechtPolynomial(T_0,R_4),

spechtPolynomial(T_1,R_4));

i5 : G = gens gb I_4
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o5 = | x_1^2x_2-x_1^2x_3-x_1x_2^2+x_1x_3^2+x_2^2x_3-x_2x_3^2

x_0x_2-x_0x_3-x_1x_2+x_1x_3 x_0x_1-x_0x_3-x_1x_2+x_2x_3 |

i6 : I_3 = ideal(sub(G_0_0,R_3));

i7 : hilbertSeries(I_3, Reduce => true)

2

1 + T + T

o7 = ----------

2

(1 - T)

Thus the Hilbert series of R3/I3 is HR3/I3(t) = 1+t+t2

(1−t)2 , and there are no more non

trivial intersections. Therefore the Hilbert series of Rm/Im appears to be

HRm/Im(t) =

{
1+(m−2)t+t2

(1−t)2 , for m ≥ 3,
1

(1−t)m , for 0 ≤ m < 3.

Then the last step is calculating the equivariant Hilbert series.

HR/I(t) =
∑
m≥0

HRm/Im(t)sm =
2∑

m≥0

sm

(1− t)m
+
∑
m≥3

(1 + (m− 2)t+ t2)sm

(1− t)2
=

1− s3

(1−t)3

1− s
(1−t)

+
(1 + t2)s3

(1− t)2

∑
m≥0

sm +
ts2

(1− t)2

∑
m≥1

msm =

(1− t)3 − s3

(1− t)(1− t− s)
+

(1 + t2)s3

(1− t)2(1− s)
+

ts3

(1− t)2(1− s)2
=

(1− t)2 + s(1− t+ s)

(1− t)2
+

(1 + t2)s3

(1− t)2(1− s)
+

ts3

(1− t)2(1− s)2
=

−s4t2 + s3t2 + s2t2 − s(2t2 − 3t+ 1) + (t− 1)2

(1− t)2(1− s)2

To solve the sums above, we used Lemma 4.1.2 with k = 0 and k = 1. We can
get an easier expression as if we compute HI(s, t),

HI(s, t) = HR(s, t)−HR/I(s, t) =

1− t
1− s− t

− −s
4t2 + s3t2 + s2t2 − s(2t2 − 3t+ 1) + (t− 1)2

(1− t)2(1− s)2
=

−s3t2(s2 + s(t− 2)− t)
(1− t)2(1− s)2(1− s− t)

.
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Partition (3,3)

Let Im = 〈fT |T ∈ StdTab((m− 3, 3)) for m ≥ 6 and Im = I6 ∩Rm for m < 6.

We follow the same method and use a similar code as for partition (2,2), thus we
just list the results here.

The ideal, Im, is nonzero for m ≥ 4, thus step doing 1 to 4 gives us these results:

HR4/I4(s, t) =
1 + t+ t2 + t3 + t4 + t5

(1− t)3
,

HR5/I5(s, t) =
1 + 2t+ 3t2 + 4t3

(1− t)3
,

HR6/I6(s, t) =
1 + 3t+ 6t2 + 5t3

(1− t)3
,

HR7/I7(s, t) =
1 + 4t+ 10t2 + 6t3

(1− t)3
,

HR8/I8(s, t) =
1 + 5t+ 15t2 + 7t3

(1− t)3
.

It appears as if HRm/Im(s, t) =
1+(m−3)t+(m−2

2 )t2+(m−1)t3

(1−t)3 , for m ≥ 5, that is

HRm/Im(s, t) =


1+(m−3)t+(m−2

2 )t2+(m−1)t3

(1−t)3 , for m ≥ 5,
1+t+t2+t3+t4+t5

(1−t)3 , for m = 4,
1

(1−t)m , for 0 ≤ m < 4.

To compute the equivariant Hilbert series, we will need Lemma 4.1.2 again.

HR/I(s, t) =
∑
m≥0

HRm/Im(t)sm =
3∑

m=0

sm

(1− t)m
+

(1 + t+ t2 + t3 + t4 + t5)s4

(1− t)3
+

∑
m≥5

1 + (m− 3)t+
(
m−2

2

)
t2 + (m− 1)t3

(1− t)3
sm =

1− s4

(1−t)4

1− s
(1−t)

+
(1 + t+ t2 + t3 + t4 + t5)s4

(1− t)3
+

s5

(1− t)3

∑
m≥0

sm+
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ts3

(1− t)3

∑
m≥2

msm +
t2s2

(1− t)3

∑
m≥3

(
m

2

)
sm +

t3s

(1− t)3

∑
m≥4

msm =

(1− t)4 − s4

(1− t)3(1− t− s)
+

(1 + t+ t2 + t3 + t4 + t5)s4

(1− t)3
+

s5

(1− t)3

∑
m≥0

sm+

ts3

(1− t)3

((∑
m≥1

msm
)
− s
)

+
t2s2

(1− t)3

((∑
m≥2

(
m

2

)
sm
)
− s2

)
+

t3s

(1− t)3

((∑
m≥1

msm
)
− s− 2s2 − 3s3

)
=

s(s(s− t+ 1) + (1− t)2) + (1− t)3 + (1 + t+ t2 + t3 + t4 + t5)s4

(1− t)3
+

s5

(1− t)3(1− s)
+
ts4 − ts4(1− s)2

(1− t)3(1− s)2
+
t2s4 − t2s4(1− s)3

(1− t)3(1− s)3
+

t3s2 − t3s(s+ 2s2 + 3s3)(1− s)2

(1− t)3(1− s)2
=

−s7t3(t2 + t− 2) + s6t3(3t2 + 3t− 4)− s5(3t5 + 3t4 − t3) + s4t3(t2 + t+ 1)
+ s3t3 + s2(−3t3 + 6t2 − 4t+ 1) + s(−1 + t)2(−2 + 3t) + (1− t)3

(1− s)3(1− t)3

Thus,
HI(s, t) = HR(s, t)−HR/I(s, t) =

−s4t3(s4(t2 + t− 2) + s3(t3 − 3t2 − 6t+ 6)
− s2(3t3 − 3t2 − 10t+ 5) + st(3t2 − t− 5)− t3)

(1− s)3(1− t)3(1− s− t)
.

Partition (4,4)

Let Im = 〈fT |T ∈ StdTab((m− 4, 4)) for m ≥ 8 and Im = I8 ∩Rm for m < 8.

In this case the ideal, Im, is nonzero for m ≥ 5, thus doing step 1 to 4 gives these
results:

HR5/I5(s, t) =
1 + t+ t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9

(1− t)4
,

HR6/I6(s, t) =
1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 2t6 − 2t7 − t8

(1− t)4
,

HR7/I7(s, t) =
1 + 3t+ 6t2 + 10t3 + 15t4

(1− t)4
,
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HR8/I8(s, t) =
1 + 4t+ 10t2 + 20t3 + 21t4

(1− t)4
,

HR9/I9(s, t) =
1 + 5t+ 15t2 + 35t3 + 28t4

(1− t)4
.

It seems as if HRm/Im(t) =
1+(m−4)t+(m−3

2 )t2+(m−2
3 )t3+(m−1

2 )t4
(1−t)4 for m ≥ 7, thus

HRm/Im(t) =


1+(m−4)t+(m−3

2 )t2+(m−2
3 )t3+(m−1

2 )t4
(1−t)4 , for m ≥ 7,

1+2t+3t2+4t3+5t4+6t5+2t6−2t7−t8
(1−t)5 , for m = 6,

1+t+t2+t3+t4+t5+t6+t7+t8+t9

(1−t)5 , for m = 5,
1

(1−t)m , for 0 ≤ m < 5.

Then we compute the equivariant Hilbert series:

HR/I(s, t) =
∑
m≥0

HRm/Im(t)sm =
4∑

m=0

sm

(1− t)m
+

1 + t+ t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9

(1− t)5
s5+

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 2t6 − 2t7 − t8

(1− t)5
s6+

∑
m≥7

1 + (m− 4)t+
(
m−3

2

)
t2 +

(
m−2

3

)
t3 +

(
m−1

2

)
t4

(1− t)4
sm.

The expressions become a bit long for this one so we will just jump right to the
results:

HR/I(s, t) =
gR/I(s, t)

(1− s)4(1− t)4
,

where

gR/I(s, t) = −s10t4(t2 + 4t+ 5)(1− t)2 + s9t4(t5 + 5t4 + 9t3 − 7t2 − 23t+ 15)−

s8t4(4t5 + 10t4 + 16t3 − 8t2 − 32t+ 13) + s7t4(6t5 + 10t4 + 14t3 − 2t2 − 18t+ 1)

−s6t4(4t5 + 5t4 + 6t3 + 2t2 − 2t− 1) + s5t4(t5 + t4 + t3 + t2 + t+ 1)+

s4t4 − s3(4t4 − 10t3 + 10t2 − 5t+ 1) + s2(6t2 − 8t+ 3)(1− t)2

s(4t− 3)(1− t)3 + (1− t)4,
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and

HI(s, t) = HR(s, t)−HR/I(s, t) =
gI(s, t)

(1− s)4(1− t)4(1− s− t)
,

where

gI(s, t) = s5t4(s6(t2 + 4t+ 5)(1− t)2 + s5(4t4 + 13t3 − 3t2 − 34t+ 20)+

s4(t6 − 6t4 − 32t3 − 8t2 + 70t− 28)− s3(4t6 − 4t4 − 38t3 − 22t2 + 63t− 14)+

s2t(6t5 − t3 − 22t2 − 18t+ 21)− st2(4t4 − 5t− 5) + t6).

Partition (5,5)

Let Im = 〈fT |T ∈ StdTab((m− 5, 5)) for m ≥ 10 and Im = I10 ∩Rm for m < 10.

The ideal, Im, is nonzero if m ≥ 6, so step 1 to 4 gives us these results:

HR6/I6(s, t) =
1 + t+ t2 + ...+ t14

(1− t)5
,

HR7/I7(s, t) =

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t9 + 9t8 − 4t9 − 3t10 − 2t11 − t12

(1− t)5
,

HR8/I8(s, t) =

1 + 3t+ 6t2 + 10t3 + 15t4 + 21t5 + 28t6 − 6t7 − 11t8 − t9 + 3t10 + t11

(1− t)5
,

HR9/I9(s, t) =
1 + 4t+ 10t2 + 20t3 + 35t4 + 56t5

(1− t)5
,

HR10/I10(s, t) =
1 + 5t+ 15t2 + 35t3 + 70t4 + 84t5

(1− t)5
.

It seems as if HRm/Im(t) =
1+(m−5)t+(m−4

2 )t2+(m−3
3 )t3+(m−2

4 )t4+(m−1
3 )t5

(1−t)5 , for m ≥ 9,
thus,

HRm/Im(t) =


1+(m−5)t+(m−4

2 )t2+(m−3
3 )t3+(m−2

4 )t4+(m−1
3 )t5

(1−t)5 , for m ≥ 9,
1+3t+6t2+10t3+15t4+21t5+28t6−6t7−11t8−t9+3t10+t11

(1−t)5 , for m = 8,
1+2t+3t2+4t3+5t4+6t5+7t6+8t9+9t8−4t9−3t10−2t11−t12

(1−t)5 , for m = 7,
1+t+t2+...+t14

(1−t)5 , for m = 6.
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Then we compute the equivariant Hilbert series:

HR/I(s, t) =
∑
m≥0

HRm/Im(t)sm =
5∑

m=0

sm

(1− t)m
+

1 + t+ t2 + ...t14

(1− t)5
s6+

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t9 + 9t8 − 4t9 − 3t10 − 2t11 − t12

(1− t)5
s7+

1 + 3t+ 6t2 + 10t3 + 15t4 + 21t5 + 28t6 − 6t7 − 11t8 − t9 + 3t10 + t11

(1− t)5
s8+

∑
m≥9

hm(t)

(1− t)5
sm,

where hm(t) =
1+(m−5)t+(m−4

2 )t2+(m−3
3 )t3+(m−2

4 )t4+(m−1
3 )t5

(1−t)5 .

Again, the expressions become quite long, so we will go right to the results.

HR/I(s, t) =
gR/I(s, t)

(1− s)5(1− t)5
,

where
gR/I(s, t) = s13t5(t3 + 6t2 + 14t+ 14)(1− t)3+

s12t5(t5 + 9t4 + 35t3 + 60t2 + 21t− 56)(−1 + t)2−

s11t5(t9 + t8 + 6t7 + 21t6 + 46t5 + 11t4 − 154t3 − 99t2 + 246t− 79)+

s10t5(5t9 + 5t8 + 15t7 + 35t6 + 65t5 + 35t4 − 195t3 − 135t2 + 215t− 41)−

s9t5(10t9 + 10t8 + 20t7 + 35t6 + 55t5 + 45t4 − 135t3 − 100t2 + 80t− 1)+

s8t5(10t9 + 10t8 + 15t7 + 21t6 + 28t5 + 29t4 − 46t3 − 36t2 + 3t+ 1)−

s7t5(5t9 + 5t8 + 6t7 + 7t6 + 8t5 + 9t4 − 4t3 − 3t2 − 2t− 1)+

s6t5(t9 + t8 + t7 + t5 + t4 + t6 + t3 + t2 + t+ 1) + s5t5−

s4(5t5 − 15t4 + 20t3 − 15t2 + 6t− 1)+

s3(10t3 − 20t2 + 15t− 4)(−1 + t)2+

s2(10t2 − 15t+ 6)(1− t)3+

s(5t− 4)(1− t)4 + (1− t)5,

and

HI(s, t) = HR(s, t)−HR/I(s, t) =
gI(s, t)

(1− s)5(1− t)5(1− s− t)
,

where

gI(s, t) = s6t5(−s8(t3+6t2+14t+14)(1−t)3−s7(5t4+32t3+68t2+35t−70)(1−t)2+
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s6(t9 + 10t6 + 65t5 − 180t3 − 270t2 + 74t4 + 435t− 135)+

s5(t10− 5t9 − 10t6 − 100t5 − 200t4 + 250t3 + 480t2 − 540t+ 120)−

s4(5t10 − 10t9 − 5t6 − 85t5 − 275t4 + 195t3 + 450t2 − 336t+ 42)+

s3t(10t9 − 10t8 − t5 − 38t4 − 209t3 + 81t2 + 216t− 84)−

s2t2(10t8 − 5t7 − 7t3 − 84t2 + 14t+ 42) + st4(5t6 − t5 − 14)− t10).

The above calculations are reliant on the patterns of the Hilbert series holding
up, which we have not confirmed. But we can make this observation:

Remark 4.1.2. Looking a little closer at the patterns that appeared in each cal-
culation above, we can see that they all fall under the following general pattern:
Given a partition (n− k, k) ` n, with k < n, then it seems as if

HRn/In(t) =

∑k−1
i=0

(
n−k−1+i

i

)
ti +

(
n−1
r−1

)
tk

(1− t)k
.

We can also make the following observation on the equivariant Hilbert series
above:

Remark 4.1.3. If we look closer at the equivariant Hilbert series, HI(s, t), for
the filtration of I(k,k), then, based on the above calculations, they appear to be of

the form HI(s, t) = gI(s,t)
(1−s)k(1−t)k(1−s−t) , where sk+1tk|gI . It also appears as if we

can write gI as gI(s, t) = sk+1tk
∑2(k−1)

i=0 fi(t)s
i, where fi(t) 6= 0, deg(fi(t)) ≤∑k−1

j=0 , ∀ i, and
∑2(k−1)

i=0 fi(t) = 1.

Some effort was put into proving the pattern in Remark 4.1.2, but it was unsuc-
cessful, however, it turns out that it was proven in [21], Theorem 2.1. Thus, the
equivariant Hilbert series above are correct.

The proof of that theorem was reliant on the following recurrance relation between
the Specht ideals:

HRn/I(n−k,k)(t) = HRn−1/I(n−k−1,k)
(t) +

t

1− t
HRn−1/I(n−k,k−1)

(t).

Thus it was natural to look for similar patterns for partitions of length three.
And although it seemed like they were often related in some way, no consistent
pattern was found. However, the search led to the following observation on the
Hilbert series of Specht ideals corresponding to partitions of shape (n− k, 1k) :=
(n− k, 1, 1, ..., 1):
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Remark 4.1.4. Let (n− k, 1k) ` n, with k < n, then it appears as if

HRn/I(n−k,1k)
(t) = (1+t+t2+...+tk−1)HRn−1/I(n−k−1,1k)

(t)+
tk

1− t
HRn−1/I(n−k,1k−1)

(t).

To prove this relation we will first prove a conjectured Gröbner basis of these
ideals, which in turn will give us a sequence of leading monomial ideals. Then
the recurrance relation will follow from a result in [10] on monomial ideals.

4.2. Gröbner bases: Specht ideals of shape (n− k, 1k)

In this section we investigate a conjectured Gröbner basis for the Specht ideals
and give a proof of this conjecture for the ideals I(n−k,1k). But first we present a
result concerning the relationship between Specht ideals corresponding to different
partitions.

Lemma 4.2.1. Let λ, µ ` n with λ D µ, then Iµ ⊆ Iλ.

Proof. See [16], Theorem 1.

Thus, if one experiments with some Gröbner basis calculations of the Specht
ideals, the following conjecture is quite natural:

Conjecture 4.2.1. Let λ ` n, then the Specht polynomials of shape µ ` n, where
λ D µ, form a Gröbner basis of Iλ.

In the first part of this section we prove this conjecture for the partitions (n−k, 1k)
and then we look at some implications regarding the Hilbert series of such Specht
ideals. In the next section we investigate the proof in detail to see which parts of
it may generalize and in particular we argue that Conjecture 4.2.1 is equivalent
to a more reduced conjecture.

We will prove the following theorem for the partitions (n− k, 1k):

Theorem 4.2.1. Let k ∈ N and λn,k = (n − k, 1k) be a partition of n, with
0 < k < n. Then the set Fλn,k = {fT |T ∈ Tab(λn,k)} form a Gröbner basis of the
Specht ideal Iλn,k = 〈Fλn,k〉 with respect to any permutation of the lex order.
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We first have to establish some preliminary results that will be useful for the
main proof. But first let us define what is meant by a ”permutation of the lex
order”:

Definition 4.2.1. Let σ ∈ Sn and “<σ,lex” be the monomial order on the set of
monomials of Rn defined by in the following way: Let xα, xβ ∈ X�n, then

xα <σ,lex x
β

if the first nonzero entry of σ(β)− σ(α) is positive. Call this the σ-lex order.

The σ-lex order that orders the variables such that the indices are decreasing is
the invlex order. Next we do the following exercise from [7] Chapter 2.

Lemma 4.2.2. Let f, g ∈ Rn and xα,xβ ∈ X�n, then S(xαf,xβg) = xγS(f, g),

where xγ = lcm(xα lm(f),xβ lm(g))
lcm(lm(f),lm(g))

.

Proof. Since lm(pq) = lm(p) lm(q) ∀ p, g ∈ Rn and lm(xκ) = xκ ∀ xκ ∈ X�n, we
have

S(xαf,xβg) =
lcm(lm(xαf), lm(xβg))

lm(xαf)
xαf − lcm(lm(xαf), lm(xβg))

lm(xβg)
xβg =

lcm(xα lm(f),xβ lm(g))

xα lm(f)
xαf − lcm(xα lm(f),xβ lm(g))

xβ lm(g)
xβg =

lcm(xα lm(f),xβ lm(g))

lm(f)
f − lcm(xα lm(f),xβ lm(g))

lm(g)
g =

lcm(xα lm(f),xβ lm(g))

lcm(lm(f), lm(g))

(
lcm(lm(f), lm(g))

lm(f)
f − lcm(lm(f), lm(g))

lm(g)
g

)
=

lcm(xα lm(f),xβ lm(g))

lcm(lm(f), lm(g))
S(f, g) = xγS(f, g).

Given a tableau T of shape λn,k, let xT denote the squarefree monomial consisting
of all the variables corresponding to the first column of T . That is, if

T =

i1 i6 i7

i2

i3

i4

i5
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is a tableau of shape λ7,4, then xT = xi1xi2xi3xi4xi5 . Given two tableaux T and
T ′, we let xT,T ′ denote the least common multiple of xT and xT ′ , or equivalently,
xT,T ′ =

∏
xi∈U xi, where U = supp(xT ) ∪ supp(xT ′).

As a corollary to Lemma 4.2.2 we show that:

Corollary 4.2.1. If T, T ′ ∈ Tab(λn,k), then S(xTfT ,xT ′fT ′) = xT,T ′S(fT , fT ′).

Proof. Due to Lemma 4.2.2, we just need to show that
lcm(xT lm(fT ),xT ′ lm(fT ′ ))

lcm(lm(fT ),lm(fT ′ ))
= xT,T ′ . If we let lm(fT ) = xα and lm(fT ′) = xβ, then we

can write xT lm(fT ) = xα
′

and xT ′ lm(fT ′) = xβ
′
, where

α′i =

{
1 + αi, if xi|xT
αi, else,

and

β′i =

{
1 + βi, if xi|xT ′
βi, else.

Similarly, if we let lcm(xα,xβ) = xγ, we set lcm(xTxα,xT ′x
β) = xγ

′
, where

γ′i =

{
1 + γi, if xi|xT,T ′
γi, else.

Since supp(xα
′
) = supp(xT ) and supp(xβ

′
) = supp(xT ′), we have

supp(xγ
′
) = supp(xT,T ′). Thus,

lcm(xT lm(fT ),xT ′ lm(fT ′))

lcm(lm(fT ), lm(fT ′))
=

lcm(xα
′
,xβ

′
)

lcm(xα,xβ)
=

xγ
′

xγ
=

∏
xi∈supp(xγ′ )

xi =
∏

xi∈supp(xT,T ′ )

xi = xT,T ′ .

Lemma 4.2.3. Let φ : Rn → Rn be the ring homomorphism defined by

φ(xj) =

{
x1, for j = 1,

xj + x1, else.

Then φ is a ring automorphism.
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Proof. If we let θ : Rn → Rn, be the ring homomorphism

θ(xj) =

{
x1, for j = 1,

xj − x1, else,

then it is clear that φ ◦ θ = θ ◦ φ = idRn , so φ is a bijection.

Lemma 4.2.4. The ideal of leading monomials of Fλn,k with respect to the invlex
order is

〈lm(Fλn,k)〉 = 〈xi1x2
i2
· · · xkik |1 < i1 < i2 < ... < ik ≤ n〉.

This is also the ideal 〈lm(SFλn,k)〉, where SFλn,k = {fT |T ∈ StdTab(λn,k)}.

A column-standard tableau, is a tableau where the indices of the columns are
strictly increasing. Given a tableau, T , of shape λ ` n, there exists a column-
standard tableau T ′ of shape λ such that fT = ±fT ′ . To see this, just note that
permuting the indices of any column of T has the effect of multiplying fT with
±1.

Proof. Due to the preceding comment we may restrict our attention to column-
standard tableaux. So let T ∈ Tab(λn,k) be column-standard, then

T =

ik+1 ik+2 .. .. in

i1

i2

..

..

ik

,

with 1 ≤ ik+1 < i1 < i2 < ... < ik ≤ n, and the leading monomial of fT is
lm(fT ) = xi1x

2
i2
· · · xkik .

Conversely, given a tuple (i1, i2, ..., ik) ∈ Nk, with
1 < i1 < i2 < ... < ik ≤ n, we can construct a column-standard tableau T ∈
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Tab(λn,k)

T =

ik+1 ik+2 .. .. in

i1

i2

..

..

ik

,

with ik+1 < i1 and the other indices are the remaining indices in [n].

For the second statement, we do the same thing, except that we let ik+1 = 1 and
order the indices ik+2, ..., in increasingly.

Proof of theorem 1. Since the collection of Specht polynomials is symmetric, we
will just prove the theorem for the invlex order, and the rest will follow. In fact,
we will prove the stronger statement that SFλn,k is a Gröbner basis of Iλn,k using
induction on k.

For k = 1, SFλn,1 = {x1 − xi|i ∈ [n]\{1}}. Let fT = (x1 − xj),
fT ′ = (x1−xi) ∈ SFλn,1 , with i 6= j, then S(fT , fT ′) = xix1−xjx1. Thus, if i > j,
S(fT , fT ′) = −x1fT ′+x1fT , and lm(S(fT , fT ′)) = xix1 = lm(−x1fT ′) > lm(x1fT ).
So S(fT , fT ′)→SFλn,1

0 and SFλn,1 is a Gröbner basis of Iλn,1 .

Now, assuming the statement is correct for k ≥ 1 we show that it is true for k+1.

Let StdTab[n+1]\{1}(λn,k) be the standard tableaux of shape λn,k with indices in
[n+1]\{1}. By lemma 2.3.1 and 4.2.3, we know that φ(SFλn+1,k+1

) is a generating
set for φ(Iλn+1,k+1

). Note that if i < j and i, j ∈ N, then

φ(xi − xj) =

{
−xj, if i = 1,

xi − xj, else.

Thus, φ(SFλn+1,k+1
) ⊆ {(−1)k−1xTfT |T ∈ Tab[n+1]\{1}(λn,k)}. To show that

φ(SFλn+1,k+1
) = {±xTfT |T ∈ Tab[n+1]\{1}(λn,k)}, let

T ∈ Tab[n+1]\{1}(λn,k), then fT = ±fT ′ , where T ′ is a column-standard tableau
and the n− k − 1 rightmost indices of T ′ are ordered increasingly.

Consider the tableau T ′′ ∈ StdTab(λn+1,k+1):
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T ′′ =

1 ik+2 .. .. in

i1

i2

..

..

ik+1

,

where

T ′ =

i1 ik+2 .. .. in

i2

..

..

ik+1

.

Clearly φ(fT ′′) = xT ′fT ′ , thus

φ(SFλn+1,k+1
) = {±xTfT |T ∈ Tab[n+1]\{1}(λn,k)}.

Since it is irrelevant for our argument whether the polynomials are multiplied by
plus or minus 1, we will assume they are always multiplied by 1.

We show that φ(SFλn+1,k+1
) is a Gröbner basis of φ(Iλn+1,k+1

). Let
xTfT ,xT ′fT ′ ∈ φ(SFλn+1,k+1

). By Corollary 4.2.1,

S(xTfT ,xT ′fT ′) = xT,T ′S(fT , fT ′),

By the induction hypothesis Fλn,k = {fT |T ∈ Tab[n+1]\{1}(λn,k)} is a
Gröbner basis with respect to any permutation of lex order. Let U = supp(xT,T ′)
and RU = K[U ]. Since all permutations of the lex order are elimination orders
of maximal type, Fλn,k ∩RU is a Gröbner basis with respect to a permutation of
the lex order with xi < xj ∀i ∈ U, j /∈ U .

However, Fλn,k ∩RU is symmetric with respect to the symmetry group on the set
U , SU , and therefore it is a Gröbner basis with respect to the τ -lex order for any
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τ ∈ SU . Since there exists a τ ∈ SU such that the τ -lex order on U� is equivalent
to the restriction of the invlex order to U�, we can just continue to work with the
invlex order.

Thus we can write S(fT , fT ′) =
∑
hjfTj with fTj ∈ Fλn,k ∩ RU and hj ∈ RU and

lm(S(fT , fT ′)) ≥invlex lm(hjfTj). Since xT,T ′fTj ∈ H for any fTj ∈ Fλn,k ∩RU , we
have that

S(xTfT ,xT ′fT ′) = xT,T ′S(fT , fT ′) =
∑

hjxT,T ′fTj

factors over φ(SFλn+1,k+1
) and

lm(S(xTfT ,xT ′fT ′)) = xT,T ′ lm(S(fT , fT ′)) ≥invlex

xT,T ′ lm(hjfTj) = lm(hjxT,T ′fTj).

Thus φ(SFλn+1,k+1
) is a Gröbner basis of φ(Iλn+1,k+1

).

If we use the index set [n + 1]\{1}, instead of [n], then we know from Corollary
4.2.1 and the induction hypothesis that

lm(Iλn,k) = 〈xi2x2
i3
· · · xkik+1

|2 < i2 < i3 < ... < ik+1 ≤ n+ 1〉.

Since the elements of φ(SFλn+1,k+1
) is of the form xTfT , with

T ∈ Tab[n+1]\{1}(λn,k), we have that

〈lm(φ(SFλn+1,k+1
))〉 = 〈xi1x2

i2
· · · xk+1

ik+1
|1 < i1 < i2 < ... < ik+1 ≤ n+ 1〉.

As we can see this is equal to 〈lm(SFλn+1,k+1
)〉. Since φ(SFλn+1,k+1

) is a
Gröbner basis of φ(Iλn+1,k+1

), we have that

lm(φ(Iλn+1,k+1
)) = 〈lm(φ(SFλn+1,k+1

))〉 = 〈lm(SFλn+1,k+1
)〉.

We have that Iλn+1,k+1
and φ(Iλn+1,k+1

) are homogeneous ideals, thus, according to
Lemma 1.3.2, their Hilbert Series are equal to the Hilbert series of their leading
monomial ideals. Also, since φ is a degree-preserving isomorphism, we get

Hlm(Iλn+1,k+1
)(t) = HIλn+1,k+1

(t) = Hφ(Iλn+1,k+1
)(t) =

Hlm(φ(Iλn+1,k+1
))(t) = H〈lm(SFλn+1,k+1

)〉(t).

Since 〈lm(SFλn+1,k+1
)〉 ⊆ lm(Iλn+1,k+1

) and their Hilbert series agree, we get an
equality, that is 〈lm(SFλn+1,k+1

)〉 = lm(Iλn+1,k+1
). Thus SFλn+1,k+1

(and therefore
Fλn+1,k+1

) is a Gröbner basis of Iλn+1,k+1
.
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4.2.1. Hilbert series revisited

As mentioned after Remark 4.1.4, the Gröbner basis would give us the recurrence
relation of Hilbert series. Thus, having established Theorem 4.2.1, we will look
into how this works so that we may get the Hilbert series of the ideals Iλn,k . But
first we need a few preliminary results.

Corollary 4.2.2. Let (Im)m∈N0 be the filtration of Iλk+1,k
, for k > 0. Then the

sequence of leading monomial ideals (lm(Im))m∈N0 is the Inc(N)-invariant chain
given by

lm(Im) =

{
〈Inc(N)x2x

2
3 · · · xkk+1〉 ∩Rn, for n > k,

〈0〉, else.

Proof. For n > k it follows from Lemma 4.2.4 and Theorem 4.2.1. For n ≤ k,
note that Ik+1 = Iλk+1,k

is a principal ideal with support {x1, x2, ..., xk+1}, thus
In = Ik+1 ∩Rn = 〈0〉.

Interestingly this immediately implies the following:

Corollary 4.2.3. The following holds for the filtration of Iλk+1,k
:

i The polynomial fT , where T ∈ StdTab(λk+1,k) is an equivariant Gröbner
basis of ∪n>kIλn,k ,

ii the filtration of Iλk+1,k
has the intersection property.

Proof. The first statement follows from Corollary 4.2.2 and the second follows
from the first statement if we employ Proposition 3.2.1.

From Corollary 2.2 in [10], we get the recursive relation of the Hilbert series of
lm(Iλn,k) and since the ideals, Iλn,k , are homogeneous, Lemma 1.3.2 tells us that
this relation holds for the ideals, Iλn,k , as well. That is, we have the following
lemma:

Lemma 4.2.5. For n > k + 1 and k > 1, we have

HRn/Iλn,k
(t) =

( k−1∑
j=0

tj
)
HRn−1/Iλn−1,k

(t) +
tk

(1− t)
HRn−1/Iλn−1,k−1

(t).
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Proof. Comes from using corollary 2.2 in [10] with r = k − 1, δr = 1, ar = k,
In = Iλn,k and Jn−1 = Iλn−1,k−1

.

To make good use of this recurrence relation, we first need some initial states.

Lemma 4.2.6. For n > 1 we have that HRn/Iλn,1
(t) = 1

1−t , and for n > 2, we

have that HRn/Iλn,n−1
(t) =

∑n(n−1)/2−1
i=0 ti

(1−t)(n−1) .

Proof. We have shown the first statement already in Section 4.1.

For the second statement note that Iλn,n−1 is a principal ideal generated by a

polynomial of degree
∑n−1

j=1 j = n(n−1)
2

. This can easily be seen by using the
definition of fT , where T ∈ Tab(λn,n−1), and by counting the factors. Since
Iλn,n−1 is a principal ideal, then Rn/Iλn,n−1 is a complete intersection ring. Thus
by Proposition 1.3.4 we have

HRn/Iλn,n−1
(t) =

1− tn(n−1)/2

(1− t)n
=

∑n(n−1)/2−1
i=0 ti

(1− t)(n−1)
.

With these initial states and the recurrence relation we can calculate the Hilbert
series of Iλn,k . We will not be using this to provide a general form of the Hilbert
series for all λn,k since they quickly become quite messy, but we will use this for
the first few sequences:

Example 4.2.1. We know that for the partitions (n− 1, 1) the Hilbert series are
HRn/I(n−1,1)

= 1
1−t , so we will look at the partitions (n− 2, 1, 1).

First we rewrite the recurrence relation in a more useful form:

HRn/Iλn,k
(t) =

( k−1∑
j=0

tj
)
HRn−1/Iλn−1,k

(t) +
tk

(1− t)
HRn−1/Iλn−1,k−1

(t) =

( k−1∑
j=0

tj
)(( k−1∑

j=0

tj
)
HRn−2/Iλn−2,k

(t) +
tk

(1− t)
HRn−2/Iλn−2,k−1

(t)

)
+

tk

(1− t)
HRn−1/Iλn−1,k−1

(t) =

( k−1∑
j=0

tj
)2

HRn−2/Iλn−2,k
(t)+

( k−1∑
j=0

tj
)

tk

(1− t)
HRn−2/Iλn−2,k−1

(t) +
tk

(1− t)
HRn−1/Iλn−1,k−1

(t) =
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...

...( k−1∑
j=0

tj
)n−k−1

HRk+1/Iλk+1,k
(t) +

n−k−1∑
i=1

( k−1∑
j=0

tj
)i−1

tk

(1− t)
HRn−i/Iλn−i,k−1

(t). (1)

Using Lemma 4.2.6 we get that for the partitions (n − 2, 1, 1) the Hilbert series
are:

HRn/Iλn,2
(t) = (1 + t)n−3 1 + t

(1− t)2
+

t2

(1− t)2

n−3∑
i=1

(1 + t)i−1 =

(1 + t)n−2 + t2
∑n−3

i=1 (1 + t)i−1

(1− t)2

Example 4.2.2. We calculate the Hilbert series for the partitions λn,3. Using
the relation 1 from the previous example we get

HRn/Iλn,3
(t) =

(1 + t+ t2)n−k−1HR4/Iλ4,3
(t) +

n−4∑
i=1

(1 + t+ t2)i−1 t3

(1− t)
HRn−i/Iλn−i,2

(t).

Using Lemma 4.2.6 and the Hilbert series of the partitions λn,2 we get

HRn/Iλn,3
(t) = (1 + t+ t2)n−k−1 1 + t+ t2 + t3 + t4 + t5

(1− t)3
+

n−4∑
i=1

(1 + t+ t2)i−1 t3

(1− t)
(1 + t)n−i−2 + t2

∑n−i−3
j=1 (1 + t)i−1

(1− t)2
=

(1 + t+ t2)n−k−1(1 + t+ t2 + t3 + t4 + t5)

(1− t)3
+

t3
∑n−4

i=1 (1 + t+ t2)i−1(1 + t)n−i−2 + t2
∑n−i−3

j=1 (1 + t)i−1

(1− t)3
.

We can also use Theorem 2.4 in ([10]) to get the equivariant Hilbert series of the
filtration of Iλn,k :
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Theorem 4.2.2. Let k > 0 and Iλk = ∪n>k Iλn,k / R. Then

HR/Iλk
(s, t) =

gλk(s, t)

(1− t)k
∏k

i=1(1− s(1 + t+ ...+ ti−1))
,

where

gλk(s, t)(1− t− s) = (1− t)
k∏
i=1

(1− s− t+ sti)− sk+1tk(k+1)/2

and the above fraction is the reduced form of HR/Iλk
(s, t).

Proof. Let lm(Iλk) = ∪n>k lm(Iλn,k). Since HIλn,k
(t) = Hlm(Iλn,k )(t), we have

that HIλk
(s, t) = Hlm(Iλk )(s, t). Now we use Theorem 2.4 in [10] with gr,a,u(s, t) =

gλk(s, t), r = k, ur = k + 1 and ai = i ∀ i.

Since the equivariant Hilbert series is a sum of Hilbert series multiplied by powers
of s, we may use it to find a particular Hilbert series by taking derivatives with
respect to s, divide by the factorial of number of derivatives, and then evaluate
the resulting sum for s = 0.

4.3. Reduced conjecture and standard Specht
polynomials

We will continue to consider Conjecture 4.2.1 for other partitions than (n−k, 1k).
To begin with we investigate whether the proof for the partitions (m− k, 1k) can
be generalized to other partitions. The answer is unfortunately no, and we begin
by explaining some of the difficulties. However, parts of the proof work for other
partitions as well and will be useful in reducing Conjecture 4.2.1.

Additionally, it will provide us with a strengthening of Proposition 2.3.1. That
is, we will see that the leading monomials of the standard Specht polynomials
are all the leading monomials of Specht polynomials. Lastly we use these two
results to give us a condition for verifying the conjectured Gröbner basis for any
filtration of a Specht ideal.

We start with a simple example that illustrates some of the problems with gen-
eralizing the proof.
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Example 4.3.1. Let λ = (3, 2), then the Specht polynomial of any partition
dominated by λ is a multiple of the Specht polynomials corresponding to λ or
µ = (3, 1, 1). We will use the invlex order and begin by restricting to the standard
tableaux of shape λ and µ. Then we pass them through the map φ : R5 → R5

given by x1 7→ x1 and xi 7→ xi + x1 for i > 1.

Let B = φ(fT |T ∈ StdTab(λ) ∪ StdTab(µ)) and let

S =
1 2 3

4 5
, T =

1 3 5

2 4
.

Also, let

S ′ =
2 3

5
, T ′ =

3 5

4
,

then

S(φ(fS), φ(fT )) = φ(x4fS′ , x2fT ′) = x2x4fS′ − x5x2fT ′ =

x2(x4fS′ − x5fT ′) = x2S(fS′ , fT ′).

Already we can see that Corollary 4.2.1 is of no use to us, otherwise we would be
able to write S(φ(fS), φ(fT )) = x2x4S(fS′ , fT ′), but let us keep going to see what
else might go wrong. By using an induction similar to the proof we would restrict
to the variables supp(fS′) ∪ supp(fT ′) = {x2, x3, x4, x5} and write S(fS′ , fT ′) =∑
hifTi with Ti ∈ Tab{2,3,4,5}((3, 1)), where we assume that the set of fTi’s is a

Gröbner basis. However, that would allow for the possibility that Ti =
2 3 5

4
,

for some i, and x2fTi is not in B. Thus we would potentially end up with poly-
nomials that may not be in the image of φ.

Thus we have given an example that shows two main steps where the proof is
difficult to generalize. The first one forces us to put restrictions on the hi’s and
the second requires that we find a way of giving a harsher restriction than simply
restricting to the support of the polynomials.

Let us now look at which steps of the proof that does generalize. When we
considered the partitions (n− k, 1k), one of the first things we did was to restrict
to the Specht polynomials corresponding to (n − k, 1k). Thus we where able to
restrict our attention to the Specht polynomials of one particular partition.

In general, when we consider a filtration of the Specht ideal corresponding to
some partition λ ` n, the conjectured Gröbner basis of the next ideal in the
sequence, Iλ′ , where λ′ = (λ1 + 1, λ2, ..., λl), will contain Specht polynomials of
more partitions than Iλ. However, the next thing we will show is that we may
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restrict our attention to the partitions µ = (µ1, µ2, .., µk) E λ′, where µ1 = λ1 +1.
Thus we only need to consider a finite number of partitions per filtration.

Before we show this, let us adopt the convention that if, for a partition λ =
(λ1, ..., λl) ` n, we refer to λi, where i /∈ [l], then we let λi = 0.

Lemma 4.3.1. Let µ E λ be partitions of n, then there exist a partition, τ ` n,
with τ E λ and τ1 = λ1, such that any Specht polynomial of shape µ is a multiple
of a Specht polynomial of shape τ .

Proof. We construct a partition that will satisfy the lemma by using induction
on the difference d = λ1 − µ1.

For d = 0, we can simply let τ = µ. So suppose the lemma is true for d ≥ 0, then
we show that it is true for d+ 1.

Let m = min{j|µj > λj} and let r = max{j|µj = µm}. Then we define the
partition σ = (µ1+1, µ2, ..., µr−1, µr−1, µr+1, ..., µl), where l = length(µ). We will
show that σ E λ. Suppose this is not the case and let s = min{j ∈ N|

∑j
i=1 λi <∑j

i=1 σi}. Then we consider two possibilities:

If s ≥ r we have that
∑s

i=1 σi = µ1 + 1 +µ2 + ...+µr−1 +µr−1 +µr+1 + ...+µs =∑s
i=1 µi. But since µ E λ we have

∑s
i=1 µi ≤

∑s
i=1 λi. Thus

∑s
i=1 σi ≤

∑s
i=1 λi,

which contradicts the choice of s.

If s < r, we have
∑s

i=1 λi <
∑s

i=1 σi =
∑s

i=1 µi + 1. Since µ E λ, we have∑s
i=1 λi ≥

∑s
i=1 µi, thus

∑s
i=1 λi =

∑s
i=1 µi. Since µ1 < λ1 and µj ≤ λj ∀ j < m,

we know that m ≤ s < r. But we also have that
∑s+1

i=1 λi ≤
∑s+1

i=1 µi, which is a
contradiction since µs+1 > λs+1 and

∑s
i=1 λi =

∑s
i=1 µi.

Since both cases gives a contradiction, we have that σ E λ. Note that all the
columns of σ either have length 1 or are at most the same length as the corre-
sponding column of µ. Thus if fT is any Specht polynomial of shape µ, then it is
of the form hfS′ , where S ′ ∈ Tab(σ) and h is some polynomial.

We have established that σ E λ and that λ1 − σ1 = d, so by the induction
hypothesis fS′ = gfS, where g is some polynomial, S ∈ Tab(τ) and τ is a partition
dominated by λ with τ1 = λ1. Thus fT = hgfS and the proof is complete.

Essentially this tells us that when we investigate Conjecture 4.2.1 for a sequence
of Specht ideals generated by a partition λ ` n, we may restrict our attention to
the orbits of the partitions µ E λ with µ1 = λ1. Conjecture 4.2.1 combined with
this observation is enough to reduce the conjecture to the following:
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Conjecture 4.3.1. Let λ ` n, then the Specht polynomials of shape µ ` n, where
µ E λ with µ1 = λ1, form a Gröbner basis of Iλ.

The next reduction we can make is on the tableaux that we consider. Recall
that in the proof we did for the partition (n − k, 1k), we started by restricting
to the standard tableaux when using the invlex ordering. This turns out to be
something we can generally do, as the following argument will show.

Before we can prove the statement, we need a few preliminary results and some
terminology.

Given a partition λ ` n, we let Fλ = {fT |T ∈ Tab(λ)} and SFλ = {fT |T ∈
StdTab(λ)}. Two tableaux, T and T ′, are said to be row equivalent if T = σ(T ′),
for some row stabilizer σ of T ′, that is, the index set of the ith row of T is the
same as for the ith row of T ′ for any i.

Lemma 4.3.2. Let λ ` n and let T, T ′ ∈ Tab(λ) be two row equivalent column-
standard tableaux. Then lm(fT ) = lm(fT ′) with respect to the invlex order.

Proof. Let cj denote the jth column of T and let fcj denote the Vandermonde
polynomial corresponding to the jth column. Then we can write fT as fc1fc2 ···fcl ,
where l = length(λ⊥). Then, since lm(hg) = lm(h) lm(g) ∀ h, g ∈ Rn, we have
that lm(fT ) = lm(fc1) lm(fc2) · · · lm(fcl).

We can write any column cr as

cr =

α1,r

α2,r

..

..

αk,r

,

where α1,r < α2,r < ... < αk,r, since T is column-standard.

Then fcr =
∏

i<j(xαi,r − xαj,r) and so

lm(fcr) =
∏
i<j

lm(xαi,r − xαj,r) =
∏
i<j

xαj,r =
∏
j

xj−1
αj,r

.
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Thus, given an index, s, in the jth row of cr, the degree of xs, in lm(fcr), is j− 1.
And since the index does not appear in any other column, then this is also the
degree of xs in lm(fT ).

Thus, the number of the row in which an index s appears, is enough to determine
the degree of xs in lm(fT ). Since T ′ is row equivalent to T , then this row number
is the same for any index s, thus lm(fT ) = lm(fT ′).

Lemma 4.3.3. Let λ ` n and let T ∈ Tab(λ) be column-standard, then there
exists a standard tableau, T ′ ∈ StdTab(λ), that is row equivalent to T .

Proof. We prove this by induction on n. For n = 1 there is only one tableau, it
is standard, column-standard and of course, row equivalent to itself.

Assuming the statement is true for n ≥ 1, let λ ` n + 1 and T ∈ Tab(λ) be
column-standard. Then the index n + 1 is in the bottom of a column of T . Let
ci denote said column and let k be the length of this column. Without loss of
generality, we may assume that ci is the rightmost column of length k. If it is
not, then we can switch the column with the rightmost column of length k and
be left with a row equivalent column-standard tableau.

Let us remove the box in T that contains the index n+1. Then we end up with a
column-standard tableau S ∈ Tab(µ), where µ is some partition of n. According
to the induction hypothesis, there exist a standard tableau S ′ ∈ StdTab(µ) that
is row equivalent to S. Now we can just reattach the box with the index n + 1
to S in the same position as we removed it, and we have a standard tableaux
T ′ ∈ Tab(λ) that is row equivalent to T .

Here is an alternative proof of Lemma 4.3.3.

Proof. Let T ∈ Tab(λ) be column-standard. Let T ′ be the row standard tableau
we get if we order the indices of each row of T increasingly. We show that
T ′ ∈ StdTab(λ).

If T ′ is not standard, then there has to exist a column cr of T ′ with two consecutive
indices αi,r and αi+1,r such that αi,r > αi+1,r. Thus we have the following picture:
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T ′ =

.. .. .. .. .. .. ..

αi,1 αi,2 .. .. αi,r .. ..

αi+1,1 αi+1,2 .. .. αi+1,r .. ..

.. .. .. .. .. .. ..

.

Since T ′ is row-standard, then αi+1,1 < αi+1,2 < ... < ... < αi+1,r < αi,r and
αi,1 < αi,2 < ... < ... < αi,r. Thus there are at most r − 1 indices in the ith

row that are smaller than r indices in the (i+ 1)th row which implies that T was
not column-standard to begin with. This is a contradiction, and thus T ′ must be
standard.

Theorem 4.3.1. Let λ ` n, then 〈lm(SFλ)〉 = 〈lm(Fλ)〉 with the invlex order.

Proof. Clearly 〈lm(SFλ)〉 ⊆ 〈lm(Fλ)〉, so we just have to show the reverse inclu-
sion.

Let T ∈ Tab(λ), then there exists a column-standard tableau, T ′ ∈ Tab(λ)), such
that fT = ±fT ′ . According to Lemma 4.3.3 there exists a tableau
T ′′ ∈ StdTab(λ), row equivalent to T ′. From Lemma 4.3.2 we know that lm(fT ′) =
lm(fT ′′), thus

lm(fT ) = lm(fT ′) = lm(fT ′′).

Therefore we have that
〈lm(Fλ)〉 ⊆ 〈lm(SFλ)〉.

Together with the first inclusion we get

〈lm(SFλ)〉 = 〈lm(Fλ)〉.

Thus, not only do the standard Specht polynomials span the space of Specht
polynomials, but their leading monomials also span the space of leading mono-
mials of Specht polynomials. In fact we can say that they provide a basis seeing
as no two different standard Specht polynomial has the same leading monomial.
This is similar to Theorem 1.1 in [18], where they show that the standard Specht
polynomials is in fact a basis for the Specht polynomials.
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4.3.1. Gröbner basis criterion

We will introduce a criterion that can be used to verify that a generating set of
a symmetric sequence is an equivariant Gröbner basis with respect to the invlex
order. In particular this criterion, in combination with the results of the previous
section, will be useful for giving a condition to verify the conjectured Gröbner
basis for a filtration of any Specht ideal.

We will present a few results before that we need to show the criterion.

Lemma 4.3.4. Let f, g ∈ G ⊂ Rn with supp(f) ∩ supp(g) = ∅, then
S(f, g)→G= 0.

Proof. See Proposition 4 in Chapter 2.9 of [7].

Before the next lemma we will extend the notation Rn a bit by defining RU to be
the polynomial ring, K[xu1 , xu2 , ..., xun ], when U = {u1, u2, ..., un} ⊂ N. Similarly
we let SU denote the symmetric group on the indices u1, u2, ..., un.

Lemma 4.3.5. Let G be a finite symmetric subset of Rk and let U ⊂ N with
|U | = k. Then for any m ≥ max(j ∈ U), (SmG) ∩ RU = τ(G), where τ is any
element of Inc(N) such that τ([k]) = U .

Proof. Clearly we have that τ(G) ⊂ RU , since τ([k]) = U . Also, τ(G) ⊆ SmG,
since m ≥ max(j ∈ U) and Inck,m(N) acts as a submonoid of Sm on Rk. Thus
τ(G) ⊆ (SmG) ∩RU .

The set (SmG) ∩ RU is clearly in bijection with the set G, thus they have the
same size. And since τ is an injective map, |τ(G)| = |G|. Combined with the
inclusion above, this means that τ(G) = (SmG) ∩RU .

Theorem 4.3.2. Let (In)N0 be a symmetric filtration generated by Ik for some
k ∈ N. Suppose G is a generating subset of Ik such that S2k−1G is a Gröbner
basis of I2k−1 with respect to the invlex order, then,

Gm =

{
(SkG) ∩Rm, if m < k,

SmG, else,

is a Gröbner basis of Im with respect to any permutation of the lex order.
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Proof. Clearly the sequence (Gn)n∈N0 has the intersection property, thus for m <
2k− 1, Gm = G2k−1 ∩Rm and Gm is a Gröbner basis for I2k−1 ∩Rm with respect
to the invlex order since the invlex order is an elimination order of maximal type.

Also, if k ≤ m ≤ 2k − 1, Im = 〈Gm〉 = 〈G2k−1 ∩ Rm〉 = I2k−1 ∩ Rm, thus the
filtration generated by I2k−1 is equal to (In)N0 . So, for m ≤ 2k − 1, Gm is a
Gröbner basis for Im with respect to the invlex order.

Let us consider the case when m > 2k− 1. Given f1, f2 ∈ Gm, let U be the index
set of supp(f1)∪supp(f2). Since f1 = σ1f

′
1 and f2 = σ2f

′
2 for some f ′1, f

′
2 ∈ G ⊂ Ik

and σ1, σ2 ∈ Sm, we have that |U | ≤ 2k. If |U | = 2k, Lemma 4.3.4 says that
S(f1, f2)→Gm 0.

If |U | < 2k, let RU be the polynomial ring with index set U and let GU = Gm∩RU .
Let f1, f2 ∈ GU , then by Lemma 4.3.5 there are f ′1, f

′
2 ∈ G|U | such that f1 = τ(f ′1)

and f2 = τ(f ′2), for some τ ∈ Inc(N) with τ(|U |) = U .

Since |U | < 2k, G|U | is a Gröbner basis of I|U | with respect to the invlex or-
der, thus we have that S(f ′1, f

′
2) =

∑
higi, where hi ∈ R|U | and gi ∈ G|U | and

lm(S(f ′1, f
′
2)) ≥ lm(higi) ∀ i. Thus, since the invlex order is an Inc(N)-order, we

have that

S(f1, f2) = lcm(lm(f1), lm(f2))

(
f1

lm(f1)
− f2

lm(f2)

)
=

lcm(lm(τ(f ′1)), lm(τ(f ′2)))

(
τ(f ′1)

lm(τ(f ′1))
− τ(f ′2)

lm(τ(f ′2))

)
=

τ(lcm(lm(f ′1), lm(f ′2)))τ

(
f ′1

lm(f ′1)
− f ′2

lm(f ′2)

)
=

τ(S(f ′1, f
′
2)) = τ

(∑
higi

)
=
∑

τ(hi)τ(gi),

where τ(hi) ∈ RU and τ(gi) ∈ GU .

And since the invlex order is an Inc(N)-order, we have that lm(S(f1, f2)) =
lm(τ(S(f ′1, f

′
2))) ≥ τ(lm(higi)) = lm(τ(hi)τ(gi)) ∀ i. Thus S(f1, f2) →GU 0 and

therefore S(f1, f2) →Gm 0, so Gm is a Gröbner basis of Im. Lastly, since Gm is
symmetric for all m, it is a Gröbner basis with respect to any permutation of the
lex order.

Given λ ` n let Gλ denote the set {fT |T ∈ ∪ µEλ,
µ1=λ1

Tab(µ)} and let λi = (λ1 +

i, λ2, ..., λl), for i ≥ 0. We are now in a position to state the following:
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Corollary 4.3.1. Let λ ` n and suppose Gλn−1 is a Gröbner basis of Iλn−1 with
respect to the invlex order. Then, for any permutation of the lex order, Gλ ∩Rm

is a Gröbner basis of Iλ ∩ Rm for m < n and Gλi a Gröbner basis of Iλi for all
i ≥ 0.

Proof. From Lemma 4.1.1 we know that 〈SmIλ〉Rm = Iλm−n and since Gλ0 is
symmetric the statement follows from Theorem 4.3.2.

Thus if we want to verify Conjecture 4.3.1 for a sequence of partitions, λi ` n+ i
generate by some λ ` n, we just need to check it for one partition, namely
λn−1. Note that by using Theorem 4.3.1 we can improve Corollary 4.3.1 by only
consider the Specht polynomials corresponding to the standard tableaux (if we
use the invlex order). Before looking at some examples where we make use of
Corollary 4.3.1 and Theorem 4.3.1, we will show that verifying this criterion also
means that restricting to the standard Specht polynomials gives us an equivariant
Gröbner basis of the filtration.

We start by making the following observation:

Lemma 4.3.6. Let λ ` n, then SFλi ⊆ Incn,n+i(N)SFλ.

Proof. We prove the inclusion by induction on i. Clearly the statement is true
when i = 0, so we assume it is true for i ≥ 0 and show that it is true for i+ 1.

Let T ∈ StdTab(λi+1) and let m be the index in the rightmost box of the first
row. If we cut off that box (and the index m) we are left with a tableau T ′ ∈
StdTab[n+i]\m(λi) and clearly fT = fT ′ . Let T ′′ = σT ′, where σ = (n + i n +
i − 1 ... m) ∈ Sn+i, then T ′′ ∈ StdTab(λi). Let τ ∈ Incn+i,n+i+1(N) be the map
defined by

τ(j) =

{
j, if j < m,

j + 1, else.

Clearly τ(T ′′) = T ′, thus τ(fT ′′) = fT ′ = fT and fT ∈ Incn+i,n+i+1(N)SFλi
which means that SFλi+1 ⊆ Incn+i,n+i+1(N)SFλi . By the induction hypothesis,
SFλi ⊆ Incn,n+i(N)SFλ, thus SFλi+1 ⊆ Incn+i,n+i+1(N)SFλi ⊆ (Incn+i,n+i+1(N) ◦
Incn,n+i(N))SFλ.

To show the final inclusion, let φ1 ∈ Incn,n+i(N), φ2 ∈ Incn+i,n+i+1(N) and i ∈ [n].
Then φ1(i) ≤ n + i and φ2(φ1(i)) ≤ n + i + 1, thus φ2 ◦ φ1 ∈ Incn,n+i+1(N) and
(Incn+i,n+i+1(N) ◦ Incn,n+i(N)) ⊆ Incn,n+i+1(N). Therefore we have that SFλi+1 ⊆
(Incn+i,n+i+1(N) ◦ Incn,n+i(N))SFλ ⊆ Incn,n+i+1(N)SFλ.

Keeping the same notation as above, this tells us the following:
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Corollary 4.3.2. If Gλn−1 is a Gröbner basis of Iλn−1 with respect to the invlex
order, then

SGλ := {fT |T ∈ ∪ µEλ,
µ1=λ1

StdTab(µ)}

is an equivariant Gröbner basis of the filtration of Iλ and thus the filtration has
the intersection property.

Proof. Corollary 4.3.1 tells us that Gλm is a Gröbner basis of Iλm for m ≥ 0
and Theorem 4.3.1 tells us that we can restrict to the standard tableaux. Lastly
Lemma 4.3.6 tells us that the Inc(N)-orbits of SGλ includes the Specht polyno-
mials corresponding to the standard tableaux.

The second statement follows from Proposition 3.2.1.

Let us finally use Corollary 4.3.1 and check Conjecture 4.3.1 for some filtrations.
Since the conjecture has already been verified for all sequences generated by
partitions of 1, 2 and 3, we start with partitions of 4.

Example 4.3.2 (Partitions of 4). The only partition of 4 that we have not con-
sidered is (2, 2). This one dominates the partition (2, 1, 1) so we include those
Specht polynomials. From Corollary 4.3.1 we know that to verify the conjectured
Gröbner basis for any partition of the form (n−2, 2) we need only check it for the
partition (5, 2) and we only need to consider tableaux of shape (5, 2) and (5, 1, 1).
Also, if we use the invlex order, then according to Theorem 4.3.1 we can restrict
our attention to the standard tableaux of these shapes.

For practical purposes we will use the lex order and swap all the standard tableaux,
T , with the tableaux τ(T ), where τ = (1, n)(2, n−1) · · · (i+1, n− i) · ·· ∈ Sn. Note
that this is equivalent to using invlex order and standard tableaux since “≤τ,lex”
is equal to “≤invlex”. We run the following code on the computer system Magma:

//Compute the tableaux

S1:=StandardTableaux([6,2,1]);

S2:=StandardTableaux([6,1,1,1]);

T:=SetToIndexedSet(S1 join S2);

//Define the polynomial ring(default order is lex)

n:=9;

Q:=Rationals();

X:=PolynomialRing(Q,n);

/*Computes the Specht polynomial of the conjugate of the tableau

tau(T), where tau = (1 n)(2 n-1) ... (i+1 n-i)... in S_n.*/
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specht:=function(T);

j:=NumberOfRows(T);

tmp:=X!1;

for i in {1..j} do

tmp2:=Row(T,i);

for k in {1..#tmp2-1} do

for l in {k+1..#tmp2} do

K:=Integers()!tmp2[k];L:=Integers()!tmp2[l];

tmp:=tmp*(X.(n+1-K)-X.(n+1-L));

end for;

end for;

end for;

return tmp;

end function;

/*Compute the Specht polynomials and check if it is

a Gröbner basis*/

G:=[specht(Conjugate(T[i])) : i in [1..#T]];

IsGroebner(G);

and the resulting answer is “true”, that is, we have confirmed that {fT |T ∈
StdTab((5, 2)) ∪ StdTab((5, 1, 1))} is a Gröbner basis for I(5,2). Thus the con-
jecture is verified for I(n−2,2) for all n ≥ 4 and for all σ-lex orderings.

Example 4.3.3 (Partitions of 5). We will do the same thing as in the previous
example for the sequences generated by Specht ideals of partitions of 5. The only
one that we have not considered is (2, 2, 1). This partition dominates (2, 13). Thus
we run the above code again, we just change n to be 9 and the partitions to be
(6, 2, 1) and (6, 13).

The result is again “true”, thus the conjecture holds for the ideals I(2,2,1).

Example 4.3.4 (Partitions of 6). If we apply the method above for the partition
(3, 3), we find that the Specht polynomials of (n−3, 3), (n−3, 2, 1) and (n−3, 13)
is a Gröbner basis of the ideal I(n−3,3) for all n ≥ 6. However, when we considered
the other partitions of 6 that we have left (partitions (23) and (2, 2, 1, 1)), then
the computation time exceeded a week and was aborted.

Example 4.3.4 shows that the method above has its limitations. However, it
is worth pointing out that we can use Theorem 4.3.2 for other ideals than the
Specht ideals. Thus if a filtration is generated by Ik, for small k, and we have a
suggestion for an equivariant Gröbner basis contained in Ik, then we could use
the method above to verify our suggestion.
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4.4. Gröbner basis criterion: partition (n− k, k)

In this section we give a new criterion to verify Conjecture 4.3.1. The criterion
might be more efficient than the one we introduced in Corollary 4.3.1, but only
applicable to partitions of the form (n− k, k). We will also be applying the new
criterion to verify the conjecture for the partition (n−k, k), for some values of k.

Recall that to establish Hilbert series recurrence relation for the partitions of
the form (n − k, 1k), we first verified the Gröbner basis conjecture. The main
approach in this section is exactly opposite. That is, since we know the Hilbert
series of partitions of the form (n−k, k), we can use this to verify the conjecture.

As was mentioned at the end of section 4.1, we have some recurrence relations
for the Specht ideals of shape (n− k, k).

Lemma 4.4.1. Let n > 2k ≥ 2, then we have the following relation:

HRn/I(n−k,k)(t) = HRn−1/I(n−k−1,k)
(t) +

t

1− t
HRn−1/I(n−k,k−1)

(t).

For the partition (k, k) with k > 1, we have the following relation:

HR2k/I(k,k)(t) = HR2k−1/I(k−1,k−1,1)
(t) +

t

1− t
HR2k−1/I(k,k−1)

(t).

Proof. See Corollary 5.4 in [21].

We will now proceed to give the same recurrence relations for the leading mono-
mials of a subset of the conjectured Gröbner basis. Then we can use this to give
a criterion to verify Conjecture 4.3.1 for the partitions of the form (n− k, k).

We will be using the invlex order and define the subsets as follows: Given the
partition (k, k) ` 2k ≥ 2, we define

B(k,k) := {fT |T ∈ ∪λE(k,k)
λ1=k

StdTab(λ) and x2
2k 6 | lm(fT )},

and for n > 2k,
B(n−k,k) := B(n−k−1,k)∪

{fT |T ∈ ∪λE(n−k,k)
λ1=n−k

StdTab(λ), and xn| lm(fT ), x2
n 6 | lm(fT )}.

For the partition (k, k, 1), with k ≥ 1, we define

B(k,k,1) := {fT |T ∈ ∪λE(k,k,1)
λ1=k

StdTab(λ)}.

76



4 /

Thus we have that B(n−k,k) is a subset of the conjectured Gröbner basis of I(n−k,k)

and that B(k,k,1) is a subset of the conjectured Gröbner basis of I(k,k,1). Also,
since the standard Specht polynomials of shape (n− k, k) is a subset of B(n−k,k),
we have that 〈B(n−k,k)〉 = I(n−k,k) and similarly we have that 〈B(k,k,1)〉 = I(k,k,1).

Once the recurrence relations of the Hilbert series have been established for the
ideals 〈lm(B(n−k,k))〉 and 〈lm(Bk,k,1)〉, then we can use this to show the following:

Theorem 4.4.1. Let k > 1, then if B(d,d,1) is a Gröbner basis for the ideal I(d,d,1)

for all d ∈ [k], then B(n−d,d) is a Gröbner basis for I(n−d,d) for any n ≥ 2d and
any d ∈ [k + 1].

We start by noting the following relations:

Lemma 4.4.2. Let k > 1 and n > 2k, then

lm(B(n−k,k)) = lm(B(n−k−1,k)) ∪ xn lm(B(n−k,k−1)),

and
lm(B(k,k)) = lm(B(k−1,k−1,1)) ∪ x2k lm(B(k,k−1)).

Proof. The first equality is clear from the construction of B(n−k,k), so we only
have to show the second equality.

Firstly we show that B(k,k)∩R2k−1 = B(k−1,k−1,1). Clearly B(k−1,k−1,1) is a subset of
both R2k−1 and B(k,k), so we show the opposite inclusion. Let fT ∈ B(k,k)∩R2k−1,
then T ∈ StdTab(λ) with λ / (k, k) and λ1 = k and λ2 < k. The index 2k must
be in the rightmost box of the first row so we can cut away this box and get a
standard tableaux, S, of the partition λ′ = (λ1 − 1, λ2, ..., λl) such that fT = fS.
Since λ′1 = k − 1, we just have to check that λ′ E (k − 1, k − 1, 1).

We know that λ1 = k and λ2 < k. Thus λ′1 = k−1 and λ′2 ≤ k−1 and therefore we
have that λ3 ≥ 1. Thus λ′ E (k−1, k−1, 1) and fT = fS ∈ B(k−1,k−1,1) That is, we
know that Bk,k∩R2k−1 ⊆ B(k−1,k−1,1) and hence that B(k,k)∩R2k−1 = B(k−1,k−1,1).
The next thing to show is that D := lm(B(k,k))\ lm(B(k−1,k−1,1)) =
x2k lm(B(k,k−1)). We start with the inclusion D ⊆ x2k lm(B(k,k−1)).

Let lm(fT ) ∈ D for some T ∈ StdTab(λ), where λ E (k, k) and λ1 = k. Since
x2k| lm(fT ) and x2

2k 6 | lm(fT ), then the index 2k lies in the rightmost box of the
second row of T and in a column of length 2. Thus if we remove this box we
get a standard tableau S of the partition λ′ = (λ1, λ2 − 1, λ3, ..., λl) such that
lm(fT ) = x2k lm(fS). Since the partition λ′ is constructed by removing 1 from
the second part of the partition λ and (k, k − 1) can be constructed from (k, k)
the same way, we have that λ′ E (k, k − 1). Therefore D ⊆ x2k lm(B(k−1,k−1,1)).

The opposite inclusion is attained by following the exact same procedure back-
wards. ThusD = x2k lm(B(k−1,k−1,1)) and therefore lm(B(k,k)) = lm(B(k−1,k−1,1))∪
x2k lm(B(k,k−1)).
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This gives us a way of writing the ideals of leading monomials as a sum of ideals
of leading monomials. To take advantage of this, we also need to determine what
the intersections of the ideals in the right side of the equations in Lemma 4.4.2
is. For this we have the following lemma:

Lemma 4.4.3. Let k > 1 and n > 2k, then

〈lm(B(n−k−1,k))〉Rn ∩ xn〈lm(B(n−k,k−1))〉Rn = xn〈lm(B(n−k−1,k))〉Rn ,

and

〈lm(B(k−1,k−1,1))〉R2k
∩ x2k〈lm(B(k,k−1))〉R2k

= x2k〈lm(B(k−1,k−1,1))〉R2k
.

Proof. From Proposition 1.3.2 we know that the intersections are generated by
the least common multiples of the generators of the ideals. Thus we will look at
these generators.

If m ∈ lm(B(n−k−1,k)) and n ∈ xn lm(B(n−k,k−1)), then we know that
xn 6 | m and n = xnr for some r ∈ lm(B(n−k,k−1)). Thus lcm(m,n) = xn lcm(m, r).
This means that

〈lm(B(n−k−1,k))〉Rn ∩ xn〈lm(B(n−k,k−1))〉Rn =

xn(〈lm(B(n−k−1,k))〉Rn ∩ 〈lm(B(n−k,k−1))〉Rn).

Similarly we can show that

〈lm(B(k−1,k−1,1))〉R2k
∩ x2k〈lm(B(k,k−1))〉R2k

=

x2k(〈lm(B(k−1,k−1,1))〉R2k
∩ 〈lm(B(k,k−1))〉R2k

).

Thus we can focus on the intersections

〈lm(B(n−k−1,k))〉Rn ∩ 〈lm(B(n−k,k−1))〉Rn

and
〈lm(B(k−1,k−1,1))〉R2k

∩ 〈lm(B(k,k−1))〉R2k
.

Let lm(fT ) ∈ 〈lm(B(n−k−1,k))〉Rn for some T ∈ StdTab(λ), where λ E (n−k−1, k).
Then lm(fT ) is divisible by lm(fS) for some S ∈ StdTab(λ′), where λ′ = (λ1 +
1, λ2, ..., λl − 1). We will now show that λ′ E (n − k, k − 1). If this is not the
case, then λ′2 > k − 1. Since λ′1 = n − k, then λ′2 = k which means that λ′ is a
partition of n. This is a contradiction since λ is a partition of n−1 and we didn’t
add anything to λ when we constructed λ′.
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Thus we know that lm(fT ) ∈ 〈B(n−k,k−1)〉Rn and we therefore have that
〈B(n−k−1,k)〉Rn ⊆ 〈B(n−k,k−1)〉Rn . This means that the first intersection is

〈lm(B(n−k−1,k))〉Rn ∩ 〈lm(B(n−k,k−1))〉Rn = 〈lm(B(n−k−1,k))〉Rn .

We can follow the same line of reasoning to show that

〈lm(B(k−1,k−1,1))〉R2k
∩ 〈lm(B(k,k−1))〉R2k

= 〈lm(B(k−1,k−1,1))〉R2k
.

Thus we get that

〈lm(B(n−k−1,k))〉Rn ∩ xn〈lm(B(n−k,k−1))〉Rn =

xn(〈lm(B(n−k−1,k))〉Rn ∩ 〈lm(B(n−k,k−1))〉Rn) = xn〈lm(B(n−k−1,k))〉Rn ,

and that
〈lm(B(k−1,k−1,1))〉R2k

∩ x2k〈lm(B(k,k−1))〉R2k
=

x2k(〈lm(B(k−1,k−1,1))〉R2k
∩ 〈lm(B(k,k−1))〉R2k

) = x2k〈lm(B(k−1,k−1,1))〉R2k
.

Before we can use this to verify the recurrence relation for the Hilbert series we
need one more result.

Lemma 4.4.4. Let I be a nonzero ideal of Rn for n > 0 and let i ∈ [n] and
j ∈ [n+ 1]. Then the following is true:

HRn/xiI(t) =
1

(1− t)n−1
+ tHRn/I(t),

HRn+1/〈I〉Rn+1
(t) =

1

1− t
HRn/I(t),

HRn+1/xj〈I〉Rn+1
(t) =

1

(1− t)n
+

t

1− t
HRn/I(t).

Proof. For the first equality, note that HxiI(t) = tHI(t) since all the polynomials
have increased their degree by one when multiplied with xi. Thus,

HRn/xiI(t) = HRn(t)−HxiI(t) = HRn(t)− tHI(t) =

HRn(t)− t
(
HRn(t)−HRn/I(t)

)
= (1− t)HRn(t) + tHRn(t) =

1

(1− t)n−1
+ tHRn/I(t).
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For second equality, note that since xn+1 is a non-zero divisor of Rn+1/〈I〉Rn+1

we can construct the following exact sequence:

0 −→ (Rn+1/〈I〉Rn+1)(1)
×xn+1−→ Rn+1/〈I〉Rn+1

q−→ Rn+1/〈I, xn+1〉Rn+1 −→ 0,

where q is the quotient map. The last ring, Rn+1/〈I, xn+1〉Rn+1 , is isomorphic to
Rn/I, thus, by Proposition 1.3.3, we get that

(1− t)HRn+1/〈I〉Rn+1
= HRn/I ⇒ HRn+1/〈I〉Rn+1

(t) =
1

1− t
HRn/I(t).

The last equality comes from applying the two first:

HRn+1/xj〈I〉Rn+1
(t) =

1

(1− t)n
− tHRn+1/〈I〉Rn+1

(t) =

1

(1− t)n
+

t

1− t
HRn/I(t).

Now we have enough tools to show the following:

Lemma 4.4.5. If k > 1 and n > 2k, then

HRn/〈lm(B(n−k,k))〉(t) = HRn−1/〈lm(B(n−k−1,k))〉(t) +
t

1− t
HRn−1/〈lm(B(n−k,k−1))〉(t)

and

HR2k/〈lm(B(k,k))〉(t) = HR2k−1/〈lm(B(k−1,k−1,1))〉(t) +
t

1− t
HR2k−1/〈lm(B(k,k−1))〉(t).

Proof. We start with the first equality. From Lemma 4.4.2 we know that
〈lm(B(n−k,k))〉 = 〈lm(B(n−k−1,k))〉Rn+xn〈lm(B(n−k,k−1))〉Rn and from Lemma 4.4.3
we know that 〈lm(B(n−k−1,k))〉Rn ∩ xn〈lm(B(n−k,k−1))〉Rn = xn〈lm(B(n−k−1,k))〉Rn .
Thus,

HRn/〈lm(B(n−k,k))〉(t) = HRn/〈lm(B(n−k−1,k))〉Rn (t)+

HRn/xn〈lm(B(n−k,k−1))〉Rn (t)−HRn/xn〈lm(B(n−k−1,k))〉Rn (t).

From Lemma 4.4.4 we get that

HRn/〈lm(B(n−k−1,k))〉Rn (t) =
1

1− t
HRn−1/〈lm(B(n−k−1,k))〉Rn−1

(t),

HRn/xn〈lm(B(n−k,k−1))〉Rn (t) =
1

(1− t)n−1
+

t

1− t
HRn−1/〈lm(B(n−k,k−1))〉Rn−1

(t)

80



4 /

and

HRn/xn〈lm(B(n−k−1,k))〉Rn (t) =
1

(1− t)n−1
+

t

1− t
HRn−1/〈lm(B(n−k−1,k))〉Rn−1

(t).

Thus,

HRn/〈lm(B(n−k,k))〉(t) =
1

1− t
HRn−1/〈lm(B(n−k−1,k))〉Rn−1

(t)+

1

(1− t)n−1
+

t

1− t
HRn−1/〈lm(B(n−k,k−1))〉Rn−1

(t)−

1

(1− t)n−1
− t

1− t
HRn−1/〈lm(B(n−k−1,k))〉Rn−1

(t) =

HRn−1/〈lm(B(n−k−1,k))〉Rn−1
(t) +

t

1− t
HRn−1/〈lm(B(n−k,k−1))〉Rn−1

(t).

Similarly for the second statement we have that

〈lm(B(k,k))〉R2k
= 〈lm(B(k−1,k−1,1))〉R2k

+ x2k〈lm(B(k,k−1))〉R2k
,

due to Lemma 4.4.2. And, due to Lemma 4.4.3, we have that

〈lm(B(k−1,k−1,1))〉R2k
∩ x2k〈lm(B(k,k−1))〉R2k

= x2k〈lm(B(k−1,k−1,1))〉R2k
.

From Lemma 4.4.4 we know that

HR2k/〈lm(B(k−1,k−1,1))〉R2k
(t) =

1

1− t
HR2k−1/〈lm(B(k−1,k−1,1))〉R2k−1

(t),

HR2k/x2k〈lm(B(k,k−1))〉R2k
(t) =

1

(1− t)2k−1
+

t

1− t
HR2k−1/〈lm(B(k,k−1))〉R2k−1

(t),

HR2k/x2k〈lm(B(k−1,k−1,1))〉R2k
(t) =

1

(1− t)2k−1
+

t

1− t
HR2k−1/〈lm(B(k−1,k−1,1))〉R2k−1

(t).

Thus

HR2k/〈lm(B(k,k))〉(t) = HR2k/〈lm(B(k−1,k−1,1))〉R2k
(t)+

HR2k/x2k〈lm(B(k,k−1))〉R2k
(t)−HR2k/x2k〈lm(B(k−1,k−1,1))〉R2k

(t) =

HR2k−1/〈lm(B(k−1,k−1,1))〉R2k−1
(t) +

t

1− t
HR2k−1/〈lm(B(k,k−1))〉R2k−1

(t).

Having established the recurrence relation, we can proceed to prove theorem 4.4.1.
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Proof of Theorem 4.4.1. We will do a nested inductive proof on n and d where d =
1 and n > 1 is our initial step. For d = 1, B(n−1,1) = {fT |T StdTab((n − 1, 1))},
and we already know from Theorem 4.2.1 that this is a Gröbner basis of I(n−1,1).

So suppose the theorem is true for the partition (m − l, l) for some l ∈ [k] and
any m ≥ 2l, let us show it is true for (2d, d) when d = l + 1.

We know from Lemma 4.4.5 that

HR2d/〈lm(B(d,d))〉(t) = HR2d−1/〈lm(B(d−1,d−1,1))〉(t) +
t

1− t
HR2d−1/〈lm(B(d,d−1))〉(t)

and from Lemma 4.4.1 that

HR2d/I(d,d)(t) = HR2d−1/I(d−1,d−1,1)
(t) +

t

1− t
HR2d−1/I(d,d−1)

(t).

Since we know that B(d−1,d−1,1) is a Gröbner basis for I(d−1,d−1,1) and, due to the
inductive hypothesis, that B(d,d−1) is a Gröbner basis for I(d,d−1), then

HR2d−1/〈lm(B(d−1,d−1,1))〉(t) = HR2d−1/I(d−1,d−1,1)
(t)

and
HR2d−1/〈lm(B(d,d−1))〉(t) = HR2d−1/I(d,d−1)

(t).

Thus we get that
HR2d/〈lm(B(d,d))〉(t) = HR2d/I(d,d)(t),

and since B(d,d) is a subset of I(d,d), it is a Gröbner basis of I(d,d).

Now, assuming the theorem is true for the partition (m− l, l) for some l ≥ 1 and
any m ≥ 2l and also for the partition (m−d, d), for some m ≥ 2d where d = l+1,
then we show that it is true for the partition (n− d, d), where n = m+ 1.

We know, by Lemma 4.4.5, that

HRn/〈lm(B(n−d,d))〉(t) = HRn−1/〈lm(B(n−d−1,d))〉(t) +
t

1− t
HRn−1/〈lm(B(n−d,d−1))〉(t),

and from our inductive hypothesis we know that B(n−d,d−1) and B(n−d−1,d) are
Gröbner bases of I(n−d,d−1) and I(n−d−1,d) respectively. Thus

HRn/〈lm(B(n−d,d))〉(t) = HRn−1/I(n−d−1,d)
(t) +

t

1− t
HRn−1/I(n−d,d−1)

(t) =

HRn/I(n−d,d)(t),

where the last equality follows from Lemma 4.4.1. Since B(n−d,d) is a subset of
I(n−d,d) with the same Hilbert series, we know that B(n−d,d) is a Gröbner basis of
I(n−d,d).
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Thus we can use Theorem 4.4.1 to verify the conjectured Gröbner basis for the
Specht ideals of shape (n − k, k). It is also worth noting that if one is able to
verify that B(k,k,1) is a Gröbner basis of I(k,k,1) for any k ≥ 1, then it would also
verify the conjecture for the ideals (n−k, k). But for now let us use this criterion
for some values of k.

Example 4.4.1 (k = 2). We have already verified that B(d,d,1) is a Gröbner basis
for Id,d,1 when d ∈ [2], thus Bn−d,d is a Gröbner basis of I(n−d,d) when d ∈ [3].
Note that we verified Conjecture 4.3.1 for these ideals in the previous section for
d ∈ {2, 3}, but B(n−d,d) is a strict subset of the conjectured Gröbner basis, so this
is a slightly stronger result.

Example 4.4.2 (k = 3). Let us look at the case when k = 3. Then we have
that B(3,3,1) = {fT |T ∈ StdTab(3, 3, 1) ∪ StdTab(3, 2, 2) ∪ StdTab(3, 2, 1, 1) ∪
StdTab(3, 14)}. To verify that this is a Gröbner basis we use the same code as in
Example 4.3.2 with the partitions (3, 3, 1), (3, 2, 2), (3, 2, 1, 1) and (3, 14) as input.

//Compute the tableaux

S1:=StandardTableaux([3,3,1]);

S2:=StandardTableaux([3,2,2]);

S3:=StandardTableaux([3,2,1,1]);

S4:=StandardTableaux([3,1,1,1,1]);

T:=SetToIndexedSet(S1 join S2 join S3 join S4);

//Define the polynomial ring(default order is lex)

n:=7;

Q:=Rationals();

X:=PolynomialRing(Q,n);

/*Computes the Specht polynomial of the conjugate of the tableau

tau(T), where tau = (1 n)(2 n-1) ... (i+1 n-i)... in S_n.*/

specht:=function(T);

j:=NumberOfRows(T);

tmp:=X!1;

for i in {1..j} do

tmp2:=Row(T,i);

for k in {1..#tmp2-1} do

for l in {k+1..#tmp2} do

K:=Integers()!tmp2[k];L:=Integers()!tmp2[l];

tmp:=tmp*(X.(n+1-K)-X.(n+1-L));

end for;

end for;

end for;
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return tmp;

end function;

//Compute the Specht polynomials and check if it is

a Gröbner basis*/

G:=[specht(Conjugate(T[i])) : i in [1..#T]];

IsGroebner(G);

The result is “true”, that is B(3,3,1) is a Gröbner basis of I(3,3,1) and thus B(n−d,d)

is a Gröbner basis of I(n−d,d) ∀ n ≥ 2d and d ∈ [4].

When we tried doing the same for the partition (4, 4, 1), the computation time
exceeded a week and we therefore aborted it.

4.5. Equivariant Hilbert series

We round off this chapter by exploring the equivariant Hilbert series a bit more
and comment on the results of this chapter.

Recall from Chapter 1 that the rationality of the Hilbert series is equivalent to
the existence of the Hilbert polynomial. Thus it is natural to ask if we can make a
similar statement for the infinite case. For instance, an interesting question would
be whether HRn/In(t) is eventually polynomial in the variable n if we allow the
coefficients to be rational functions in t. We can give an answer to that question
if we adjust the proof of Lemma 1.3.1 slightly. But first we define what we mean
by a rational function.

Let S be a nonzero commutative ring where for any s, r ∈ S such that s ∗ r = 0,
we have that either s or r is zero, then we call S an integral domain. When
we have an integral domain, S, we can construct the field of fractions of S.
This is the smallest field that S can be embedded in and can be constructed as
follows: Let L = {(s, r)|s, r ∈ S & r 6= 0} and equip L with the equivalence
relation (s, r) ∼ (s′, r′) if sr′ = s′r. Then the field of fractions of S is the field
L/ ∼ with the product defined as (s, r) ∗ (s′, r′) = (ss′, rr′) and the addition as
(s, r) + (s′, r′) = (sr′+ s′r, rr′). Note that we often write the elements (s, r) as s

r
.

The simplest example of a fraction field is to start with the integral domain Z
and construct the field Q by the method above. We will be considering the
fraction field C(t) := {p(t)

q(t)
|p(t), q(t) ∈ C[t]}, but if a more thorough introduction

is needed, please see [8], Chapter 7.5.

We start with a couple of lemmas before we go to the main statement.
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Lemma 4.5.1. Let (In)n∈N0 be a symmetric filtration, then there exist an integer
k ∈ N0 such that the Krull dimension Dim(Rn/In) is a polynomial of the form
An+B for n > k, where A = 0 or A = 1, and B ∈ N0.

Proof. See [17] Theorem 7.9.

Lemma 4.5.2. A sequence, (p(n))n∈N0, of complex polynomials of C[t] is given
by a polynomial in n of degree ≤ d if and only if∑

n≥0

p(n)xn =
h(x)

(1− x)d+1
,

for some polynomial h(x) ∈ (C[t])[x] of degree ≤ d.

Proof. See appendix.

Before the main result, note that when we say eventually polynomial, it will mean
eventually polynomial with coefficients in C(t). Then we can state the following:

Proposition 4.5.1. Let (In)n∈N0 be a filtration of ideals and let I = ∪n∈N0, then
the sequence of Hilbert series of Rn/In is eventually polynomial and has eventually
a constant Krull dimension if and only if the equivariant Hilbert series of R/I

can be written on the form g(s,t)
(1−t)d(1−s)k , where g(s, t) ∈ C[s, t] and d, k ∈ N0.

Proof. We start by letting m ∈ N0 be the smallest index such that HRn/In(t) is
the polynomial f(n) ∈ (C(t))[n] and the Krull dimension is the constant B, for
all n > m ∈ N0.

Thus we have that f(n)(1 − t)B = p(n) is a polynomial in (C[t])[n] for n > m.
Therefore we can write the the equivariant Hilbert series as

HR/I(s, t) =
m∑
n=0

HRn/In(t)sn +
1

(1− t)B
∑
n>m

p(n)sn =

m∑
n=0

(
HRn/In(t)− p(n)

(1− t)B

)
sn +

1

(1− t)B
∑
n≥0

p(n)sn.

Now we can apply Lemma 4.5.2 and rewrite the last sum:

HR/I(s, t) =
m∑
n=0

(
HRn/In(t)− p(n)

(1− t)B

)
sn +

1

(1− t)B
q(s, t)

(1− s)k
,
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where q(s, t) ∈ C[s, t]. Thus, by gathering all the (finite) terms in one fraction,
we get that

HR/I(s, t) =
g(s, t)

(1− t)d(1− s)k
.

To go the other way, we simply use the multivariate division algorithm (see The-
orem 1.2.1) to write g(s, t) as q(s, t)(1− s)k + r(s, t), where the degree of r(s, t)
in s is less than k or r(s, t) = 0. Thus we can write the equivariant Hilbert series
as

HR/I(s, t) =
q(s, t)

(1− t)d
+

r(s, t)

(1− t)d(1− s)k
.

If r(s, t) = 0, then, since the degree of q(s, t) in s is finite we have that HRn/In(t) =
0 for large enough n. Thus the sequence of Hilbert series is eventually the zero
polynomial and the Krull dimension is zero.

If r(s, t) 6= 0, then, since the degree of r(s, t) in s is less than or equal to k,
we can use Lemma 4.5.2 to write the second fraction as 1

(1−t)d
∑

n≥0 p(n)sn, with

p(n) ∈ (C[t])[n]. If we let m be the degree of q(s, t) in s, we can write

HR/I(s, t) =
q(s, t)

(1− t)d
− 1

(1− t)d
∑
n≤m

p(n)sn +
1

(1− t)d
∑
n>m

p(n)sn.

It is only the last part of the expression above where s occurs to any power greater
than m, and thus 1

(1−t)d
∑

n>m p(n)sn =
∑

n>mHRn/In(t)sn, and so the Hilbert

series is the polynomial p(n)
(1−t)d for n > m. Since p(n) ∈ (C[t])[n], d provides a

constant bound on the Krull dimension. Since we know, by Lemma 4.5.1, that the
Krull dimension is eventually of the form An+B, then we know that A = 0.

Since this is not the general form of the equivariant Hilbert series, Proposition
4.5.1 tells us that we cannot generally expect both the Krull dimension to be
constant and the Hilbert series to be eventually polynomial. Thus, we were quite
lucky when we calculated the Hilbert series of the Specht ideals corresponding
to the partitions (n − k, k), since it turned out the Hilbert series were eventu-
ally polynomial and of constant Krull dimension. This made it easier for us to
recognize the pattern that presented itself.

Conversely, when we considered the Hilbert series of the Specht ideals of shape
(n−k, 1k), we didn’t get equivariant Hilbert series of the form g(s,t)

(1−t)d(1−s)m . Thus,
since the Krull dimension was constant, we would not have been able to express
the Hilbert series as a polynomial. Instead we got expressions like,

HRn/I(n−2,12)
(t) =

(1− t)n−2 + t2
∑n−3

i=1 (1 + t)i−1

(1− t)2
,
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which has a function to the power of n and an increasing number of terms in the
numerator. That is, a pattern that is much harder to recognize. This could also
go some way to explain why it was difficult (and unsuccessful) to find a general
expression for the Hilbert series of the Specht ideals of shape (n− k, 1k).

Another interesting thing to note is that the Hilbert series of the polynomial ring
is not polynomial (or of constant Krull dimension). Thus, even if the sequence
of Hilbert series of Rn/In, for some filtration (In)n∈N0 , is eventually polynomial,
then the sequence of Hilbert series of In will not be eventually polynomial.
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In this chapter we look at a type of exact sequence called a free resolution. As we
have seen before, exact sequences can be nice tools to use when determining the
Hilbert series of an ideal. Similarly, resolutions are much used in algorithms for
computing the Hilbert series of an ideal, so they are an important class of exact
sequences.

Associated to free resolutions we have an invariant that is called the Castlenuovo-
Mumford regularity. This is an invariant that gives a bound for the largest degree
of a generator in a free resolution. Thus, in some sense, in provides a description
of the width of a free resolution. Similarly the projective dimension of an ideal
describes the minimal length of a free resolution. Thus the projective dimension
and regularity combined describes the minimal size of a free resolution.

Since we are considering filtrations of ideals, studying how the projective dimen-
sion and regularity evolve with the increase in variables would give us information
on how the complexity of free resolutions evolve with the increase in variables.

We will start this chapter by introducing resolutions and give some standard
results on the regularity and projective dimension of an ideal. Then we finish
by saying a few words on how this relates to the Specht ideals and present some
open questions about Specht ideals and symmetric filtrations.

5.1. Free resolutions and the Castelnuovo-Mumford
regularity

Resolutions are constructed using modules, thus before we can introduce resolu-
tions we need some definitions regarding the different types of modules that we
have.

Definition 5.1.1. Let A be a ring. An A-module, M , is

• a free A-module if it can be generated by a set of elements that are linearly
independent over A, and

• a graded A-module if AiMj ⊆Mi+j.
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If we have a free graded A-module, M , then, since its free, it can be written
as M =

⊕m
i=1Afi, where {f1, ..., fm} is a linearly independent generating set

of M . Also, since it is graded, for each A-module Afi there exist a degree-
preserving isomorphism to A(di), where di is the degree of fi, thus we write
M =

⊕m
i=1 A(di). Corresponding to these different types of modules we have

different characterizations of resolutions.

Definition 5.1.2. A free resolution, S, of a homogeneous ideal I E Rn, is an
exact sequence of free modules,

... −→ Si+1
∂i+1−→ Si −→ ... −→ S1

∂1−→ S0,

where S0/ Im(∂1) ' Rn/I. It is a graded resolution if all the modules are graded
and the homomorphisms are all degree-preserving.

When we introduced ideals in Chapter 1, we started with the Hilbert basis the-
orem. Here we also start with a result from Hilbert regarding the length of a
resolution. We say that a resolution is finite if only a finite number of modules
in the resolution are nonzero. If a resolution is finite we define the length of a
resolution to be the largest index, i, such that Si is nonzero.

Theorem 5.1.1 (Hilbert syzygy theorem). Every finitely generated graded Rn-
module has a free graded resolution of length at most n.

Proof. See Theorem 3.8 of Chapter 6 in [6].

This theorem guarantees the existence of the minimum length of a free graded
resolution of an ideal, I / Rn. Thus we give this minimum a name and call it the
projective dimension of I.

It follows from our comment on free graded modules that a free graded resolution
can be written on the form

... −→
⊕
j∈Z

Rn(j)di+1,j
∂i+1−→

⊕
j∈Z

Rn(j)di,j −→ ...

... −→
⊕
j∈Z

Rn(j)d1,j
∂1−→

⊕
j∈Z

Rn(j)d0,j ,

where, for each i,
∑
di,j = mi is the number of minimal generators of the ith

module. Thus the map ∂i, can be given by a matrix of the form

∂i =


αi1,1 αi1,2 ... αi1,mi
αi2,1 ... ... ...
... ... ... ...

αimi−1,1
... ... αimi−1,mi

 , (2)
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where each αik,j is a homogeneous element of Rn. For more on this, see for instance
chapter 2 and 4 of [19].

With such a description of a free graded resolution, we can define a free graded
resolution to be minimal if in addition αik,j is either zero or have positive degree.
The name minimal comes from the following proposition:

Proposition 5.1.1. A free graded resolution S is minimal if and only if the
image of the standard basis of Si is a minimal generating set of Im(∂i) for all i.

Proof. See Proposition 3.10 of Chapter 6 in [6].

As the next result will show, minimal resolutions possess certain properties that
make them very nice to consider.

Theorem 5.1.2. Let I be a homogeneous ideal of Rn. Then

• there exist a minimal free graded resolution of I,

• a minimal free graded resolution of I is unique up to isomorphism, and

• the length of a minimal free graded resolution is minimal.

Proof. See Theorem 7.5 in Chapter 7 of [19].

Thus we often speak of the minimal free graded resolution of I and could equiv-
alently define the projective dimension of I to be the length of the minimal free
graded resolution. Note that when we speak of an isomorphism of graded res-
olutions, S and F , we refer to a sequence of degree-preserving isomorphisms,
(φi : Si → Fi)i, such that the following diagram commutes

Si Si−1

Fi Fi−1

∂i

φi φi−1

di

,

that is, φi−1 ◦ ∂i = di ◦ φi.

A more thorough description of a free graded resolution than just looking at the
projective dimension, comes from considering the (graded) Betti numbers :
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Definition 5.1.3. The Betti number, bRi,j(I), of an ideal I E Rn is the number
of components of the form Rn(j) in the ith module of a minimal free resolution
of I over R.

Thus the Betti numbers describe the degree of each generator and the number
of generators of each module in the minimal free resolution of I. Also, we can
describe the projective dimension of I in terms of the Betti numbers, pd(I) =
max{i|bRni,j (I) 6= 0, for some j}.

Similarly, we define the Castelnuovo-Mumford regularity (or regularity) of I to
be the number reg(I) = max{j|bRni,i+j(I) 6= 0, for some i}. The reason we look

at max{j|bRi,i+j(I) 6= 0, for some i} instead of max{j|bRni,j (I) 6= 0, for some i},
is that bRni,j (I) = 0 whenever j < i. This is due to the fact that the elements
αik,j, as in (2), have positive degree if they are nonzero. Thus, since the maps ∂i
are degree preserving, there will be at least one degree shift per module in the
resolution.

So by removing these minimal shifts we can see that the regularity provides a
bound for the degrees of the minimal generators of the modules in the minimal
free resolution. We have the following bound of the regularity for a general
homogeneous ideal:

Theorem 5.1.3. If I E Rn is minimally generated by homogeneous elements of
degrees at most d, then reg(I) ≤ (2d)2n−2

.

Proof. See Theorem 18.10 in Chapter 18 of [19].

5.2. Open questions: Specht ideals

So far we have been looking into Hilbert series and Gröbner bases of Specht ideals
and the equivariant Gröbner bases and Hilbert series of their limiting ideals.
And although we are by no means done, there are other interesting questions to
consider with regards to these filtrations and symmetric filtrations in general.

For instance, in [23], they present a conjecture (Conjecture 1.1) that the regu-
larity of an Inc(N)-filtration, (In)n∈N0 , is eventually a linear function in n and in
[14] (Conjecture 5.1) they conjecture that the projective dimension is eventually
linear in n. It would be interesting to see whether this is true in general, or in
particular, whether it is true for the Specht ideals. Also, in [14], they present
several open problems regarding Inc(N)-filtrations. Amongst them is to study
how the Betti tables (tables of Betti numbers) develop with the increase in the
number of variables.
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We know by Theorem 5.1.1 that the projective dimension of a filtration is bounded
by a linear function. Also, the standard specht polynomials of a partition, λ, is a
minimal generating set is a minimal generating set of the corresponding Specht
ideal (see Theorem 1.1 in [18]). Thus, according to Theorem 5.1.3, the regularity
of a filtration of Specht ideals is bounded by (2d)2n−2

, where d is the degree of
any Specht polynomial of shape λ. The latter is not a very good bound, so it
would be interesting to investigate this further.

In the article [14] they also want to determine the primary decomposition of ideals
in a filtration. Related to this question, there is a conjecture that the Specht ideals
are radical. Thus if this was shown to be true, then the primary decomposition
of the Specht ideals would follow from [16], where they give the decomposition
of the radical ideal of any Specht ideal. So far it has been confirmed that the
Specht ideals are radical for the partitions (n− k, 1k) in Theorem 1.1 of [24], and
also for the partitions (n − k, k) and (k, k, 1) in [25], Theorem 3.1 and 4.2, but
not for Specht ideals in general.

The question of whether the Specht ideals are radical was contemplated in the
process of writing this thesis, but nothing became of it. Although, one might hope
that proving the Gröbner basis conjecture could be of help in such an endeavor.
Then we would know that the filtrations would have the intersection property,
which might be a good starting point for an inductive proof.

Lastly, it would be interesting to determine whether or not the filtrations of
Specht ideals have the intersection property. This could be achieved by confirming
Conjecture 4.3.1, or by finding an easier condition, than the one mentioned after
Proposition 3.2.1, to determine which filtrations have the intersection property.
Since the Specht ideals are so closely related to the symmetric group, it would
be interesting to know if they have the intersection property. Especially since
filtrations with the intersection property are in one-to-one correspondence with
the symmetric ideals in the infinite polynomial ring.
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Polynomial sequences

In this section we go through the proof of Lemma 4.5.2 and we follow the same
line of reasoning as in the proof of Corollary 4.1.7 in Chapter 4 of [3]. We will not
go into all the details but focus mostly on the parts where the field in question
is of particular relevance.

The difference between our situation and the situation in [3] is that (p(n))n∈N0 is
a sequence of complex polynomials and not just complex numbers.

The first thing they do in [3] is to establish the following as different bases of the
vector space of complex polynomials in x of degree ≤ d:

B1 = {xm|0 ≤ m ≤ d},
B2 = {xm(1− x)d−m|0 ≤ m ≤ d},

B3 = {
(
x
m

)
|0 ≤ m ≤ d},

B4 = {
(
x+m
d

)
|0 ≤ m ≤ d}.

We are considering the vector space C[t, x] as a module over the ring C[t] and
thus our analogous statement is that the sets above are generating sets where the
generators are linearly independent (over C[t]).

Proposition 6.0.1. The sets, Bi, for i = 1, .., 4, are linearly independent gener-
ating sets of (C[t])[x]≤d over C[t].

Proof. To see that they are all generating sets, note that since they are bases of
C[x]≤d, and T = {1, t, t2, ..} is a generating set of (C[x]≤d)[t] over C[x]≤d, and
thus the sets T × Bi is a generating set over C. Lastly, that means that Bi is a
generating set of (C[t])[x]≤d over C[t].

From Proposition 4.1.2 of [3] we know that the sets Bi are bases of C[x]≤d. To
see that they are linearly independent sets over C[t], let Bi = {bi,0, ..., bi,d} and

suppose there exist polynomials p0, ..., pd ∈ C[t] such that
∑d

j=0 pjbi,j = 0. Then
1
k!

∑d
j=0 p

(k)
j (0)bi,j = 0 for all k ∈ N0, where p

(k)
j (0) denotes the evaluation at t = 0

of the kth derivative of pj with respect to t. C. Since Bi is linearly independent

over C then 1
k!
p

(k)
j (0) = 0 ∀ k, j. That is, the coefficients of the polynomials are

all zero.
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The next step is to introduce the linear operators I,∆ and S on the module of
complex-polynomial-valued sequences {(p(n))n∈N0} defined as follows:

(Ip)(n) := p(n),

(∆p)(n) := p(n+ 1)− p(n),

(Sp)(n) := p(n+ 1).

Proposition 6.0.2. A sequence (p(n))n∈N0 is polynomial of degree ≤ d if and
only if (∆mp)(0) = 0 for all m > d.

Proof. The proof follows exactly the same was as the proof of Proposition 4.1.3
in [3].

From the proof of Proposition 4.1.3 in [3] it also follows that the coefficients of
the polynomial p(n) are p(m) := (∆mp)(0) in the B3 basis. Thus we can write
p(n) =

∑d
m=0 p

(m)
(
n
m

)
when p(n) is polynomial in degree d.

We can use this to rewrite the generating function:

∑
n≥0

p(n)xn =
∑
n≥0

( d∑
m=0

p(m)

(
n

m

))
xn =

d∑
m=0

p(m)
∑
n≥0

(
n

m

)
xn.

From Lemma 4.1.2 we know how to rewrite the last sum. Thus

d∑
m=0

p(m)
∑
n≥0

(
n

m

)
xn =

d∑
m=0

p(m) xm

(1− x)m+1
=

∑d
m=0 p

(m)xm(1− x)d−m

(1− x)d+1
=

h(x)

(1− x)d+1
,

where h(x) = sumd
m=0p

(m)xm(1− x)d−m ∈ (C[t])[x] since p(m) ∈ C[t] ∀ m ∈ [d].
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