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Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that can be manufac-
tured sustainably and represent a promising green alternative to petrochemical-based 
plastics. Here, we describe the complete genome of a new marine PHA-producing 
bacterium—Photobacterium ganghwense (strain C2.2), which we have isolated from 
the Black Sea seashore. This new isolate is psychrotolerant and accumulates PHA 
when glycerol is provided as the main carbon source. Transmission electron micros-
copy, specific staining with Nile Red visualized via epifluorescence microscopy and 
gas chromatography analysis confirmed the accumulation of PHA. This is the only 
PHA-producing Photobacterium for which we now have a complete genome sequence, 
allowing us to investigate the pathways for PHA production and other secondary me-
tabolite synthesis pathways. The de novo assembly genome, obtained using open-
source tools, comprises two chromosomes (3.5, 2 Mbp) and a megaplasmid (202 kbp). 
We identify the entire PHA synthesis gene cluster that encodes a class I PHA syn-
thase, a phasin, a 3-ketothiolase, and an acetoacetyl-CoA reductase. No conventional 
PHA depolymerase was identified in strain C2.2, but a putative lipase with extracel-
lular amorphous PHA depolymerase activity was annotated, suggesting that C2.2 is 
unable to degrade intracellular PHA. A complete pathway for the conversion of glyc-
erol to acetyl-CoA was annotated, in accordance with its ability to convert glycerol to 
PHA. Several secondary metabolite biosynthetic gene clusters and a low number of 
genes involved in antibiotic resistance and virulence were also identified, indicating 
the strain's suitability for biotechnological applications.
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1  |  INTRODUC TION

The adverse effects plastic waste has on our biosphere (Chae 
& An, 2018; Eriksen et al., 2014; Sebille et al., 2015) demand a 
global need to implement plastic clean-up strategies and replace 
petrochemical-based plastics with biodegradable, bio-based poly-
mers (Haward, 2018). Polyhydroxyalkanoates (PHAs) are a group 
of thermoplastic biopolyesters (Harding et al., 2007; Raza et al., 
2018; Zhang et al., 2018) which are biodegradable and immunolog-
ically inert (Wang et al., 2014). The most common PHA is polyhy-
droxybutyrate (PHB), which can be produced by diverse bacteria 
(Inoue et al., 2016; Koller et al., 2011; Muhammadi et al., 2015; 
Sathiyanarayanan et al., 2017), which synthesize and store it as 
intracellular reserves of carbon and energy (Cavaillé et al., 2016; 
Keshavarz & Roy, 2010; Sedlacek et al., 2019; Slaninova et al., 
2018). The most prevalent bacteria used in industrial bioplastic 
production are (1) Cupriavidus necator H16 (Yield10 Bioscience; 
CJ CheilJedang; Tianjin GreenBio Materials Co.; TianAn Biologic 
Materials Co.; Bio-On Srl.), (2) Alcaligenes sp. (Biomer; HB Industrial 
S.A.); and (3) genetically engineered Escherichia coli that received 
PHA synthesis genes from naturally PHA producing bacteria such 
as C. necator H16 (Patent no. US5480794A, former Metabolix), 
Rhodospirillum rubrum (Patent no. US5849894A, CJ CheilJedang 
Corp), or Ralstonia eutropha modified to express the synthase 
gene from Pseudomonas fluorescens GK-13 (Danimer Scientific; 
Noda et al., 2005). However, commercialization and production 
of bacterial PHA are constrained by its expensive substrates such 
as refined sugars, starch, or valuable plant oil (Koller & Marsalek, 
2015), making its price twofold that of conventional, petroleum-
based plastics (average cost of PHB was reported to be approx. 
4.88 USD/kg; Raza et al., 2018).

To decrease the production costs, a PHA producing strain should 
be able to grow to high cell densities and accumulate large amounts 
of PHA at the account of inexpensive carbon resources such as 
glycerol (Gahlawat & Soni, 2017; Poblete-Castro et al., 2014), waste 
cooking oil (Sangkharak et al., 2020; Vastano et al., 2019), or other 
low-cost biomass (whey, starch, spent coffee grounds, wastewaters, 
wheat, and rice straw, lignin, etc.; Alcântara et al., 2020). As biodiesel 
production is increasing, the glycerol market has expanded rapidly, 
and using this by-product as a cheap substrate could be integrated 
into a circular economy approach (El-malek et al., 2020). In this con-
text, we isolated a new strain of Photobacterium ganghwense that 
can convert glycerol to biodegradable polymers (PHA) in the form of 
poly-3-hydroxybutyrate (PHB).

The Photobacterium genus encompasses Gram-negative, 
facultative-anaerobic, and motile bacteria, which are widespread 
throughout marine environments where some species live symbiot-
ically with marine animals (Urbanczyk et al., 2011). This genus is rel-
atively new, with 22 of the 28 existing species described within the 
last 15 years (Labella et al., 2017; Machado & Gram, 2017). Although 
several draft genomes are available, complete genomes exist for 
only three species (P. damselae, P. profundum, and P. gaetbulicola). 
Neither one of them is documented as a PHA producer.

The biotechnological potential of this genus is yet to be explored 
and most studies have focused on individual members’ pathogenic-
ity toward animals and humans (Abushattal et al., 2020; Fumanal 
et al., 2020; Rivas et al., 2013; Romalde, 2002). Information re-
garding PHA production within the Photobacterium genus is scarce 
and, to our knowledge, only two species (P.  leiognathi and P. phos-
phoreum) have been described to accumulate intracellular PHAs 
when provided with glycerol and peptone as carbon and nitrogen 
substrates (Boyandin et al., 2008). None of these PHA-producing 
Photobacterium has a complete genomic sequence publicly available.

In this study, we report the isolation of a new PHA-producing 
Photobacterium ganghwense (Park et al., 2006) strain (C2.2) and its 
complete genomic sequence, the first complete sequence available 
for this species. Furthermore, we present strain C2.2’s PHA produc-
tion phenotype, its genetic basis, and provide valuable insights into 
other predicted metabolic capacities, gene transfer, structural mod-
ifications, virulence, and antibiotic resistance.

2  |  MATERIAL S AND METHODS

2.1  |  Bacterial isolation and PHA screening

A wet sand sample was collected in February 2018 from a Black Sea 
beach on the Romanian shoreline (location coordinates: 44.215993; 
29.656308; marine water temperature 2°C, pH 7, salinity 17‰; 
Appendix Table A1). To detach the bacterial cells from sand particles, 
the sample was placed on a rotative incubator (150  rpm) in filter-
sterilized marine water for 5  days at 20°C. After the detachment 
step, the aqueous phase was collected by centrifugation (6000  g, 
5 min, 24°C), serially diluted up to 10−4 and spread (100 µl) on solid 
artificial seawater media (ASW) supplemented with 1  g/L yeast 
extract, 1  ml trace element solution, and 10  ml vitamin solution 
(ASW-Y media; Xiao & Jiao, 2011). Morphologically distinct colo-
nies grown on ASW-Y media were selected and isolated. To screen 
for PHA-production the solid ASW media was supplemented with 
sterile glycerol (2% w/v) and Nile Red staining solution (0.25 mg/ml) 
immediately after autoclavation. Plates with glycerol and Nile Red 
for PHA screening were inoculated with the previously isolated bac-
terial strains and incubated in the dark for 14 days (20°C). The for-
mation of fluorescent granules (PHA accumulation) was evaluated 
daily using wet mount slides and viewed through epifluorescence 
microscopy (Zeiss Axioplan, Carl Zeiss, Germany; FS00 filter (λex: 
545/±25 nm, λem: 560–710 nm).

2.2  |  Bacterial strain identification

The bacterial strain was identified by 16S rRNA gene sequence simi-
larity. The genomic DNA was extracted with the PureLink Genomic 
DNA Extraction kit (Invitrogen, #K1820), according to the manu-
facturer's instructions. DNA quantity and quality were evaluated 
by 0.8% agarose gel electrophoresis and Qubit dsDNA BR assay 
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kit (Life Technologies, #Q32850). 16S rRNA gene sequence was 
amplified with the universal primers 27F/1429R. The PCR prod-
uct was purified and sequenced at Genetic Lab (http://www.genet​
iclab.ro/). Strain identification was based on the 16S rRNA gene 
sequence similarity using the EzTaxon database (http://www.eztax​
on.org/). Phylogenetic analyses were conducted using the Molecular 
Evolutionary Genetics Analysis (MEGA) version 7.0 (Kumar et al., 
2016), with bootstrap values generated from 1000 replicates using 
the Neighbor-Joining method (Saitou & Nei, 1987). The type strain 
Cupriavidus necator N-1 (DSM 13513) was chosen as a root for the 
phylogenetic tree. The closest neighbors and type strain from the 
EzBioCloud database (Yoon et al., 2017) were included in the tree.

2.3  |  Confirmation of PHA accumulation

Transmission electron microscopy (TEM) was used for PHA granule 
visualization. For this, cells were pre-cultured in ASW-Y rich media 
(supplemented with 5 g/L tryptone), collected by centrifugation, and 
washed in sterile ASW. Freshly-collected cells were resuspended in 
ASW without NH4Cl and supplemented with 2% (w/v) glycerol and 
2 g/L urea as carbon and nitrogen sources. The culture (starting at 
OD600 of 0.2) was incubated at 20°C, 150 rpm. For TEM investiga-
tion, 1 ml of bacterial culture was harvested at 24 and 72 h. TEM 
was performed as described elsewhere (Pokrovskaya et al., 2012). 
Briefly, cells were fixed with 2.5% glutaraldehyde in PHEM buffer 
(60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 4 mM MgSO4·7H2O), 
processed and imaged using Hitachi HT7800 TEM with a Xarosa 
camera (EMSIS GmbH).

2.4  |  Growth characteristics and polymer 
accumulation

The growth dynamics and polymer accumulation were monitored in 
250 ml flasks with 100 ml of ASW media supplemented with 1 ml 
trace element solution, 10 ml vitamin solution, 2% pure glycerol (PG) 
as sole carbon, and 0.2% urea as the nitrogen source. The flasks were 
equipped with breather screw caps with ePTFE membranes, for bet-
ter aeration. Biological replicates were started at OD600 equal to 
0.2 and grown for 21 days, at 20°C and 150 rpm. The growth of C2.2 
culture was monitored by measuring the optical density at 600 nm 
(OD600). At each time point, three flasks (biological replicates) were 
sacrificed, and the cell dry weight (CDW) was determined follow-
ing the biomass harvesting at 11500 g for 5 min. The pellet was 
freeze-dried at −55°C (CHRIST ALPHA1-2 LDPlus, Fisher Scientific) 
and weighed. The total amount and the composition of PHAs were 
determined following methanolysis of freeze-dried, ground samples. 
Approximately, 30 mg of dry pellet were subjected to methanoly-
sis with 1.5% sulfuric acid/methanol (3 ml) and chloroform (3 ml) at 
100°C for 72 h, in screw-capped test tubes. Benzoic acid (2 mg/test 
tube) was used as an internal standard. Poly[(R)-3-hydroxybutyric 
acid] (PHB; #363502, Sigma) was used as positive controls. After 

methanolysis, 2  ml of ammonia solution (12.5%) was added to 
separate the organic and aqueous phases. The organic phase con-
taining methyl ester derivatives was analyzed by a GC-MS system 
(Varian Saturn 2000) equipped with an HP 5 MS (5%)—diphenyl 
(95%)—dimethylsiloxane capillary column (30 m, 0.25 mm diameter, 
1 μm film thickness). 1 μl sample was injected with 5.0 purity helium 
as the carrier gas, 13.81 psi, total flow 9 ml/min, column flow 1 ml/
min, purge flow 3.0  ml/min, temperature increment of 10°C/min 
from 50°C to 260°C, injector temperature 220°C. Data analysis was 
performed using Saturn 2000 MS Workstation.

2.5  |  Genomic DNA extraction

Photobacterium ganghwense C2.2 DNA was extracted from cells 
cultivated on ASW-Y rich media, at 20°C with 150  rpm for 24  h. 
The extraction was carried out using the PureLink Genomic DNA 
Extraction kit (Invitrogen, #K1820), according to the manufacturer's 
instructions. The DNA quantity and quality were evaluated by 0.8% 
agarose gel electrophoresis and Qubit dsDNA BR assay kit (Life 
Technologies, #Q32850).

2.6  |  Genome sequencing

Sequencing of P.  ganghwense C2.2’s genome was done at the 
Functional Genomics Center Zurich (FGCZ, ETH Zurich and the 
University of Zurich, Switzerland; http://www.fgcz.ch/), using 
the PacBio RSII platform (Pacific Biosciences). The SMRTbell li-
brary was generated using the DNA Template Prep Kit 1.0 (Pacific 
Biosciences, USA, #100-259-100). The start concentration of 
the genomic DNA was measured using a Qubit dsDNA BR assay 
kit (Life Technologies, #Q32850). Then the genomic DNA (5 μg) 
was mechanically sheared to obtain an average size distribution 
of 15–20 kb, using a Covaris gTube (Kbiosciences, GB, #520079). 
Fragment size distribution was assessed using Bioanalyzer 2100 
12  K DNA Chip assay (Agilent, #5067-1508). Sheared genomic 
DNA (5  μg) was DNA-damage repaired and end-repaired using 
polishing enzymes suggested by the manufacturer. To create 
the SMRTbell template, a blunt-end ligation reaction was per-
formed, which was then followed by exonuclease treatment. To 
select the size of the SMRTbell template and enrich for large 
fragments (>12 kbp) we used a BluePippin device (Sage Science). 
The size-selected library was quality inspected and quantified on 
the Agilent Bioanalyzer 12 kb DNA Chip and a Qubit Fluorimeter 
(Life technologies), respectively. A ready-to sequence SMRT bell-
Polymerase Complex was created using the P6 DNA/Polymerase 
binding kit 2.0 (Pacific Biosciences, #100-236-500) according 
to the manufacturer's instructions. The Pacific Biosciences RS2 
instrument was programmed to load and sequence the sample 
on one SMRT cell v3.0 (Pacific Biosciences, #100-171-800). A 
MagBead loading (Pacific Biosciences, #100-133-600) method 
was chosen to improve the enrichment of the longer fragments. 

http://www.geneticlab.ro/
http://www.geneticlab.ro/
http://www.eztaxon.org/
http://www.eztaxon.org/
http://www.fgcz.ch/
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To assess the adapter dimer contamination, the sample loading 
efficiency, the obtained average read length, and the number of 
filtered sub-reads, a sequencing report was generated for every 
cell, via the SMRT portal. NanoPlot (De Coster et al., 2018) was 
used to assess the quality of the subreads.

2.7  |  Genome assembly

The raw data was initially assembled by the Hierarchical Genome-
Assembly Process 3 (HGAP3) pipeline (Pacific Biosciences). The 
final assembly was done in-house using open-source tools. For this, 
a subassembly was initially created using the wtdbg2 assembler 
(Ruan & Li, 2019), with an estimated genome size parameter set at 
the HGAP3 assembly size value of 5.8 Mbp. The final assembly was 
generated with the Flye assembler (Kolmogorov et al., 2019) using 
the wtdbg2-generated subassembly, the HGAP assembly size as a 
reference, and two rounds of polishing. To assess the completeness 
of the assembly we used: Bandage (Wick et al., 2015) for graph visu-
alization, Quast (Mikheenko et al., 2018) for obtaining the technical 
metrics, and BUSCO (Seppey et al., 2019) for evaluating the gene 
content and presence of single-copy orthologs. Circlator (fixstart; 
Hunt et al., 2015) was used for changing the start position of the 
contigs to the origin of replication.

The whole-genome taxonomic affiliation was assessed by in sil-
ico genome hybridization with OrthoANI (Lee et al., 2016) to com-
pare the Photobacterium C2.2 genome to the existing draft genome 
of the type strain P. ganghwense DSM22954T (ASM102945v1).

2.8  |  Genome annotation

ORF prediction and genome annotation were performed using 
NCBI PGAP (Prokaryotic Genome Annotation Pipeline). CGView 
(Stothard & Wishart, 2005) was employed for genome visualiza-
tion. Besides PGAP annotation, CDS were also functionally anno-
tated via the eggNOG-mapper v2 using the DIAMOND mapping 
mode (Huerta-Cepas et al., 2017, 2019); KEGG annotation through 
KoalaBLAST (Kanehisa et al., 2007, 2016); as well as Pathway Tools 
(Karp et al., 2015) and the integrated PathoLogic annotation tool, 
with the MetaCyc database (Caspi et al., 2012) for metabolic path-
way mapping. For the PHA depolymerase annotation, we used the 
PHA Depolymerase Engineering Database (Knoll et al., 2009) and 
BLASTp (Altschul et al., 1990). Annotation quality and genome com-
pleteness were verified through a DIAMOND alignment against 
the UniProt TrEMBL database (Buchfink et al., 2014; Ravintheran 
et al., 2019; The Uniprot Consortium, 2019; Watson & Warr, 2019). 
Secondary Metabolite Biosynthetic Gene Clusters (smBGCs) 
were predicted using antiSMASH v5.0 (Blin et al., 2019). Contigs 
were screened for antimicrobial and virulence marker genes using 
Abricate (https://github.com/tseem​ann/abricate; Seemann, 2017) 
with the Resfinder database (http://genom​icepi​demio​logy.org/; 
Zankari et al., 2012), and the Virulence Factor Database (VFDB; Liu 

et al., 2019), respectively. Prophage regions were identified using 
PHASTER (Arndt et al., 2016). A workflow of the sequencing, assem-
bly, and annotation processes is presented in Appendix Figure A1.

3  |  RESULTS AND DISCUSSION

3.1  |  Isolation and characterization of P. 
ganghwense strain C2.2

A total number of 82 bacterial isolates were obtained from the sedi-
ment samples. From all the isolates, PHA-production screening done 
by Nile Red staining highlighted strain C2.2, as its cell fluorescence 
was observed after 24 h (Figure 1) and maintained throughout the 
entire incubation period (14-days). Intracellular PHA granule accu-
mulation was demonstrated by TEM imaging after growing the C2.2 
in liquid media supplemented with glycerol as a sole carbon source 
(Figure 1). Cells with numerous small inclusions were already present 
after 24 h of incubation. After 72 h of incubation, the PHA granules 
and the cells had shown an apparent growth in size. Enlargement 
of the cell size may be a mechanism to maximize the capacity for 
granule storage.

3.2  |  16S rRNA gene sequence and 
phylogenetic analysis

16S rRNA gene comparison against the EzTaxon database showed 
the close taxonomical relation of strain C2.2 to members of the 
Photobacterium genera, especially with P. ganghwense DSM22954T. 
Strain C2.2 shared a 16S rRNA gene sequence similarity of 99.86% 
and a 99.68% genome identity (see below) with the P. ganghwense 
DSM22954T type strain. Based on the 16S rRNA gene sequence 
analysis, the isolated strain was grouped into a distinct cluster, to-
gether with two P. ganghwense strains, distant from the other three 
Photobacterium species with complete genomic sequences (Figure 2).

3.3  |  Polymer accumulation on pure glycerol

Pure glycerol (PG) was used to assess the PHB-production pheno-
type of strain C2.2. Intracellular polymer accumulation (% CDW) and 
final PHB production (g/L) were obtained from 2% PG. Culture opti-
cal density, CDW, and PHB content increased steadily throughout 
the cultivation. They stabilized after 7 days (OD600 of 33.3 (±0.3)) 
and remained in close range until the 14th day. Peak values were 
recorded on the 14th day and reached 65.4% PHB content, with 4 
(±0.3) g/L PHB (Figure 3). Strain C2.2 showed the highest overall 
PHB production (g/L) among those reported for PHA-producing 
Gammaproteobacteria in similar conditions (use of PG as a sole car-
bon source and shake flask cultivations; see comparative Table 1). 
This and the moderate halotolerance of the C2.2 strain indicate its 
suitability for larger-scale PHA-production testing.

https://github.com/tseemann/abricate
http://genomicepidemiology.org/
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3.4  |  Genome of P. ganghwense strain C2.2

The genome assembly of P. ganghwense stain C2.2 was covered 
113x, with a total size of 5,744,420 bp, GC content of 50.34%, and is 
comprised of two chromosomes and one plasmid (Table 2). Genome 
comparison of strain C2.2 to the type strain of P. ganghwense 
DSM22954T (ASM102945v1) showed an average nucleotide iden-
tity of 99.68% further supporting the classification of the C2.2 strain 
as a member of the P. ganghwense species. In terms of genome size, 
typically, Photobacterium species have genomes ranging from 4.2 to 
6.4 Mbp, and a GC content between 38.7% and 50.9% (Machado 
& Gram, 2017). Thus, the 5.74 Mbp size genome and 50.34% GC 
content of strain C2.2 is similar to that of other metabolically ver-
satile Photobacterium species (e.g., P. profundum and P. halotolerans) 
and to that of the P. ganghwense type strain (ASM102945v1). The 
C2.2 genome arrangement (Figure 4) into two circular chromo-
somes is observed for the other two Photobacterium species with a 
complete genomic sequence available and appears specific for the 
Vibrionaceae family (Machado & Gram, 2017). As shown for other 
species of the genus (Machado & Gram, 2017; Vesth et al., 2010), 
the second chromosome and the plasmid (202 kbp) can be a source 
of genomic plasticity and strain-specific differences. In most cases, 
the studied Photobacterium strains have plasmids that range in size 
from 35 to 80 Kbp (Machado & Gram, 2017). The C2.2 megaplas-
mid is the second-largest plasmid (202.454  bp) of the genus (the 
largest—319.190  bp—belonging to P. damselae strain Phdp Wu-1; 
GenBank assembly accession no. GCA_003130755.1).

Genome annotation, by PGAP, yielded 4,983 coding sequences 
(CDS), 188 tRNAs, 55 rRNAs (Table 3). Assembly completeness 

evaluation (BUSCO, Appendix Table A2) indicated that single-copy 
orthologs were 100% and, respectively, 99.6% complete for Bacteria 
and Vibrionales lineages. According to the PathoLogic results, the 
CDS encode for enzymes involved in 304 metabolic pathways. After 
annotation, a DIAMOND blast against the UniProt TrEMBL database 
showed that 92.35% of CDS have over 90% similarity to protein se-
quences from TrEMBL, indicating the sequencing method did not 
have a negative impact on assembly quality and protein prediction. 
No CRISPR arrays were annotated.

Genomic basis for PHA accumulation in P. ganghwense strain 
C2.2. The PHA-positive phenotype of strain C2.2. was confirmed 
by the presence of a complete phaCAB operon (Figure 5) via func-
tional annotations of clusters of orthologous groups (COGs). The 
phaCAB is located on chromosome 2, and also includes a phaP gene 
encoding a phasin family protein (FH974_19300), a surface protein 
with a role in PHA granule stabilization and production (Figure 3). 
The only annotated phaC (FH974_19305) encodes for a class I poly-
hydroxyalkanoic acid synthase, which polymerizes CoA thioesters 
of short carbon chain length hydroxyalkanoic acids (C3-C5). phaA 
(FH974_19295) and phaB (FH974_19290) encode for: acetyl-CoA 
acetyltransferase—the first enzyme in the PHA synthesis pathway, 
and an acetoacetyl-CoA reductase. phaCAB cluster organization 
and its similarity of protein sequences with the functional ones of 
Cupriavidus necator H16 (DSM 428; Kutralam-Muniasamy et al., 
2018; Figure 5), suggest an operational PHA-synthesis pathway in 
strain C2.2.

Additionally, three putative phaP, four phaA, nine phaB, and one 
phaD, encoding hypothetical PHA synthesis transcriptional regula-
tors (De Eugenio et al., 2010), were annotated for strain C2.2.

F I G U R E  1 Epifluorescence microscopy 
of Nile Red stained cells (a, b) and TEM 
(c, d). P. ganghwense C2.2 cells after 24 (a, 
c) and 72 h (b, d) cultivation on 2% pure 
glycerol, as sole carbon source, at 20°C. 
The bars represent 1 μm

(a) (b)

(c) (d)
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F I G U R E  2 16S rRNA gene-based phylogenetic relationships of the “C.2.2” strain. The numbers shown at the tree nodes indicate 
bootstrap values (in %) based on 1000 replications. The scale bar indicates 0.02 substitutions per nucleotide position. Photobacterium strains 
with a complete genomic sequence available in public databases are underlined

F I G U R E  3 Time-dependent cell dry 
weight (CDW) and PHA accumulation. 
Changes in P. ganghwense C2.2 cell dry 
weight (dark gray) and PHA accumulation 
(light gray; in g/L) when cultivated in 
shake flasks, on 2% pure glycerol, at 20°C. 
Bar graphs represent mean values (± SD) 
of three independent experiments
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Unlike other PHA-producing bacteria, genes encoding the PHA-
dependent transcriptional regulatory proteins (phaR/Q/F) and PHA 
depolymerase (phaZ) were not identified in the genome of P. gangh-
wense strain C2.2. The absence of PHA depolymerase was validated 
via a BLASTp search against the PHA Depolymerase Engineering 
Database (http://www.ded.uni-stutt​gart.de/; DED). This finding may 
explain the prolonged stability of accumulated PHB in the shake flask 
experiments (Figure 3). In a recent paper, de Vogel et al. (2021) high-
lighted similar features for two Vibrio strains (V. proteolyticus ATCC 
15338 and V. alginolyticus ATCC 33787) that lack sequences similar 

to PhaZ depolymerases. For those strains, the authors re-assigned 
two initially annotated lipases as putative extracellular PHA depoly-
merases. The putative depolymerases were found to be most similar 
to the PhaZ7 depolymerase present in Paucimonas lemoignei, with 
demonstrated depolymerase activity for extracellular amorphous 
PHA (native PHA granules; Handrick et al., 2001). A BLASTp hit sim-
ilar to this supposed extracellular depolymerases (92% coverage, 
82%–84% identity) was found in the genome of Photobacterium sp. 
C2.2 (FH974_07335). Its presence may indicate the ability of strain 
C2.2 to degrade PHB only after PHB’s extracellular release succeed-
ing the cell death. The confirmation of depolymerase activity for this 
putative lipase needs to be addressed in future experiments.

In contrast, C. necator H16, the model strain for PHA production 
studies, has five well-characterized intracellular and two extracel-
lular depolymerases, as well as two oligomer hydrolases (Brigham 
et al., 2012). The absence of a depolymerase may prove advanta-
geous for biotechnological applications, as PHA-producing strains 
are usually genetically engineered to inactivate the depolymeriza-
tion step for a higher yield in PHA production and increase the PHA 
molecular mass (Adaya et al., 2018; Kadouri et al., 2003; Kobayashi 
& Kondo, 2019).

Likewise, except for the extracellular PHA oligomer hydro-
lase PhaY, all the genes for enzymes involved in the catabolism of 

TA B L E  1 Production of PHA from pure glycerol by Gammaproteobacteria strains and Cupriavidus necator

Strain Time (h)
Culture volume 
(ml)a 

Pure 
glycerol 
(%; v:v) CDW (g/L)

PHA content (% of 
CDW) References

Photobacterium 
ganghwense C2.2

96
14 days

100 2 3.1
6.3

53
65.4

Current study

Vibrio harveyi MCCB 284 72 200 2 3 68 Mohandas et al. 
(2017)

Vibrio spp. M11/M14/
M20/M31

24 h after 
stationary 
phase

200 1 0.31/0.31/0.44/0.45 30.2/31.5/42.8/24 Chien et al. 
(2007)

Vibrio proteolyticus 48 NM 1 ~ 1.6 <10 Hong et al. 
(2019)

Salinivibrio sp. M318 48 50 3 7.2 39 Van Thuoc et al. 
(2019)

Zobellella denitrificans 
MW1

100 300 2 3.7 73.5 Ibrahim and 
Steinbüchel 
(2010)

Aeromonas spp. AC_01/
AC_02/AC_03

48 NM 1 1.69/1.48/1.2 7.8/5/3.6 Możejko-
Ciesielska 
and Pokoj 
(2018)

Halomonas sp. KM-1 60 20 2 NM 40.5 Kawata and 
Aiba (2010)

Cupriavidus necator DSM 
545b 

88 100 2
3

~6.35
~7.18

~77
~79

Sun et al. (2020)

Cupriavidus necator DSM 
545b 

33.5 Fed-batch
1500

24.9 82.5 62 Cavalheiro et al. 
(2009)

A PHB content (wt%) was expressed as a percentage of PHA mass in dry cell mass.
Abbreviation: NM, not mentioned.
aThe culture volume in shake flask, if not mentioned otherwise.; bCupriavidus necator DSM 545 is used in the industrial production of PHA.

TA B L E  2 The metrics for the in-house Flye assembly generated 
with QUAST

Assembly metrics Assembly metrics

# contigs 3 GC (%) 50.34

Contig 1 length 
(bp)

3,515,384 N50 3,515,384

Contig 2 length 
(bp)

2,026,582 N75 2,026,582

Contig 3 length 
(bp)

202,454 Avg. coverage 
depth

113

Total length 5,744,420 # N's per 
100 kbp

0

http://www.ded.uni-stuttgart.de/
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F I G U R E  4 The two chromosomes 
and plasmid of P. ganghwense strain C2.2. 
The genome maps consist of genome 
information displayed circularly (from 
the outside in): CDS, tRNA, rRNA, G + C 
content, and GC skew
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hydroxyacyl monomers were annotated in strain C2.2 genome: 
FabG (FH974_05790, FH974_24585), acetoacetate CoA synthetase 
AacS (FH974_21375), 3-oxoacid-CoA-transferase subunits A and B 
(ScoA -  FH974_04750; ScoB -  FH974_04745, FH974_24545), and 
3-hydroxyisobutyrate dehydrogenase MmsB (FH974_21025).

As expected, strain C2.2. harbored all four genes (glpK, glpD, 
glpC, glpB) of the glycerol conversion pathway: glpK (FH974_00925) 
encodes for a glycerol kinase that converts glycerol to glycerol 
3-phosphate; glpD (FH974_00520) encodes for a glycerol-3-
phosphate dehydrogenase that converts glycerol 3-phosphate to di-
hydroxyacetone phosphate, which feeds into the glycolysis pathway, 
where it ultimately becomes acetyl-CoA, a substrate for PHB synthe-
sis (Kok et al., 1998); glpC (FH974_06490), and glpB (FH974_06495) 
encode subunits for an anaerobic glycerol-3-phosphate dehydroge-
nase (Cole et al., 1988).

Previous studies have shown the efficient use of glycerol for PHA 
production (Phithakrotchanakoon et al., 2015; Rodríguez-Contreras 
et al., 2015; Tanadchangsaeng & Yu, 2012). In the case of C. necator 
H16, when glycerol was used instead of expensive sugars (e.g., glu-
cose), the molecular weight of the resulting polymer was reduced, 
but its thermal and mechanical properties remained unchanged 
(Tanadchangsaeng & Yu, 2012).

Other pathways. Several metabolic pathways of biotechnologi-
cal interest were annotated: a complete pathway for the degradation 
of phenylacetate (Teufel et al., 2010) to acetyl CoA, with a total of 
51 genes involved in the degradation and metabolism of xenobiotics; 
complete pathways for the synthesis of various isoprenoids; genes 
involved in the metabolism of various terpenoids and polyketides; 
pathways for the degradation of various carbohydrates, such as 
starch, glycogen, chitin, etc. Such metabolic versatility could prove 
useful in expanding the range of raw substrates for the production 
of PHAs.

Prediction of smBGCs. Secondary metabolites have great po-
tential for biotechnological applications (e.g., antibiotics, pigments, 

growth hormones, antitumor agents, and others). Since the pro-
duction of bioactive molecules is poorly studied in Photobacterium 
(Čihák et al., 2017), we screened the genome of strain C2.2 for 
putative smBGCs. Based on their homology to known smBGCs, 
we predicted seven such gene clusters: four smBGCs on the large 
chromosome and three on the small chromosome. Strain C2.2 
megaplasmid CDSs included no smBGCs nor genes involved in 
horizontal gene transfer. The smBGCs identified on the larger 
chromosome encode for antimicrobial functions: bacteriocin 
(FH974_15530), thiopeptide (FH974_04020 - FH974_04040), and 
betalactone (FH974_13860 -  FH974_13885). These compounds 
provide a competitive advantage and protection from other mi-
crobial community members but could also mediate interspe-
cies interactions (Čihák et al., 2017). The smBGCs identified on 
the smaller chromosome encode for: ectoine (ectABC operon), 
aryl polyene (T2PKS; FH974_24595), and polyketide (T1PKS; 
FH974_21825) synthesis. Polyketides like aryl polyene pigments 
are broadly distributed within Bacteria (Grammbitter et al., 2019). 
Polyketides, together with ectoine, serve as protection against re-
active oxygen species and may have a protective role for strain 
C2.2 in marine environments (Das et al., 2015; Schöner et al., 
2016). Further research is needed to investigate whether there is 
a link between the production of these compounds and certain 
environmental conditions.

Antimicrobial susceptibilities and resistance genes. Since many 
strains of the Photobacterium genus are well known for their virulence 
and antimicrobial resistance (Chiu et al., 2013; Fuertes-Perez et al., 2019; 
Labella et al., 2017; Nonaka et al., 2012), we screened the P. ganghwense 
C2.2 genome for the acquired resistance mechanisms using Abricate. 
Surprisingly, strain C2.2 had only one antibiotic resistance gene (qnrS5) 
associated with resistance to fluoroquinolone (Han et al., 2012).

Abricate revealed several putative virulence-associated genes: 
cheW-2 chemotaxis protein, fliG—flagellar motor protein, fliM, and 
fliN, both polar flagellar switch proteins, involved in cell signaling and 
motility in liquid environments. These genes represent only a small 
fraction of the 15 core virulence genes of Gammaproteobacteria 
(Vázquez-Rosas-Landa et al., 2017).

Acquisition of additional virulence genes by horizontal gene 
transfer could be possibly mediated by one of the five phage regions 
predicted by PHASTER (Srividhya et al., 2007; Vázquez-Rosas-Landa 
et al., 2017). However, all five prophage regions are incomplete, 
with the largest being 103  kb in length and located on the small 
chromosome.

TA B L E  3 Genome features for strain C2.2

Features Features

Genome size (bp) 5,744,420 CDS (coding) 4.875

Chromosome 2 tRNAs 188

Plasmid 1 rRNAs 55

Genes 5.198 ncRNAs 4

CDS (total) 4.951 Pseudogenes 76

F I G U R E  5 Simplified comparative analysis of PHA gene clusters from the PHA model organism C. necator H16 and P. ganghwense C2.2. 
The coding regions are indicated as follows: PHA synthase gene phaC (black); precursor-generating enzymes genes phaA (dark gray) and 
phaB (light gray); surface protein gene phaP (oblique lines); PHA dependent transcriptional regulator phaR (white). The numbers above the 
coding regions indicate the sequence similarities with the protein counterparts of C. necator H16
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Auspiciously, a low number of antibiotic resistance and virulence 
genes along with the incomplete prophage regions are an indicator 
of genome stability, which may be beneficial in the potential biotech-
nological applications of P. ganghwense strain C2.2.

4  |  CONCLUSIONS

We obtained the first complete genomic sequence for a 
Photobacterium ganghwense strain. Moreso, strain C2.2 is capable of 
using glycerol, as a sole carbon source, to produce PHA granules. 
Genome analysis revealed the presence of all the genes required to 
synthesize PHA from glycerol, supporting the PHA-producing phe-
notype. Observation of PHA accumulation dynamics showed a sus-
tained increase in PHA content, with peak CDW and PHB content 
on day 14th. Gene annotation indicated the lack of a PHA depoly-
merase in the strain C2.2 genome. Although a putative lipase with 
the presumed ability to degrade extracellular amorphous PHA was 
annotated, our findings suggest that strain C2.2 is naturally prone to 
accumulate PHA for extended periods, a feature of great biotechno-
logical importance. Also, the multitude of secondary metabolic path-
ways combined with the low number of genes involved in antibiotic 
resistance and virulence can be a plus from an applied science per-
spective. Our findings highlight the biotechnological potential of P. 
ganghwense strain C2.2, increasing the existing knowledge regarding 
PHA-producing bacteria. The complete genome of a Photobacterium 
ganghwense contributes to the understanding of the Photobacterium 
genus.
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Items Description

Submitted to INSDC SRA, BioProject, Genome

Investigation type Bacteria

Project name Complete genome sequence of 
Photobacterium ganghwense C2.2

Geographic location 44.215993, 29.656308

Geographic location name Romania, Constanta, Black Sea

Collection date 2/15/2018

Environment (biome) Shore

Environment (feature) Seashore

Environment (material) Sea sand

Environmental package Sediment

Subspecific genetic lineage Strain C2.2

Number of replicons 2

Extrachromosomal elements 1

Estimated size 5,744,420 bp

Observed biotic relationship Free-living

Trophic level Heterotroph

Relationship to oxygen Aerobic

Sequencing method PacBio RSII

Finishing strategy (status; coverage; contigs) Complete; 113; 3

Sediment depth 0 m

Sediment elevation 0 m

Sediment particle classification Sand

Sediment pH 7

Sediment salinity 17‰

Sediment temperature 2°C

TABLE A1 General features of P. 
ganghwense strain C2.2 based on MIGS 
mandatory information

BUSCO

Bacteria BUSCOs Vibrionales BUSCOs

HGAP3 Flye HGAP3 Flye

Complete BUSCOs 99.2% (123) 100% (124) 98.2% (1420) 99.6% (1439)

Complete and 
single-copy 
BUSCOs

98.4% (122) 99.2% (123) 97.9% (1425) 99.3% (1435)

Complete and 
duplicated 
BUSCOs

0.8% (1) 0.8% (1) 0.3% (5) 0.3% (4)

Fragmented 
BUSCOs

0% (0) 0% (0) 0.7% (10) 0.1% (2)

Missing BUSCOs 0.8% (1) 0% (0) 1.1% (15) 0.3% (5)

Total BUSCO groups 
searched

124 1445

TABLE A2 BUSCO evaluation of the 
completeness of P. ganghwense C2.2 
genome assemblies
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Program Version Specific parameters used

NanoPlot 1.28.2 --plots hex dot

wtdbg2 2.5 -A -c rs -g 5.8m -S 2

Flye 2.6 --pacbio-raw [subreads.fastq] --subassemblies 
[wtdbg2.fasta] --genome-size 5.8m -i 2

Bandage 0.8.1

seqtk 1.3-r106 seq -r

Quast 5.0.2 -f --pacbio

BUSCO 4.0.1 --auto-lineage-prok -m geno --long

DIAMOND 0.9.29.130 --db [TrEMBL db] -f 6 --max-target-seqs 1

EggNOG Mapper 2.0.1 -m diamond

Abricate 0.5 --db [vfdb/resfinder]

Pathway Tools 23.5

antiSMASH 5.1.2

Database Version

VFDB 2020 -01-17

Resfinder 2019-10-01

TrEMBL 2019-12-11

EggNOG 5.0.0

TABLE A3 The bioinformatics tools, 
software versions, specific settings, and 
databases used in this study


