
Faculty of Science and Technology
Department of Computer Science

General Monitoring of Observational Units in the Arctic Tundra

Erlend Melum Karlstrøm
INF-3990: Master’s Thesis in Computer Science
May 15, 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“"All right, I’ve been thinking. When life gives you lemons? Don’t make
lemonade. Make life take the lemons back! Get mad! ’I don’t want your damn

lemons! What am I supposed to do with these?’
Demand to see life’s manager! Make life rue the day it thought it could give
Cave Johnson lemons! Do you know who I am? I’m the man who’s going to
burn your house down! With the lemons! I’m going to get my engineers to

invent a combustible lemon that burns your house down!"”
– Cave Johnson - Portal 2 (2011)

Abstract
Climate change is going to change what we know about the arctic tundra.
Patterns in the behavior of the wildlife that lives there are predicted to undergo
a shift, and it will therefore be important to have reliable sources of empirical
data, so that we can understand how these developments are playing out. The
arctic tundra is remote and difficult to deploy sensing instruments on, and
signal coverage is unreliable.

Finding a way to monitor them reliably from a distance is needed.

This thesis describes how a prototype for a Wireless Sensor Network was
designed, implemented, and tested, with the aim of connecting Observational
Units together in a local cluster, and cooperate amongst themselves to propagate
monitoring data to external servers.

The system was designed so that nodes can dynamically discover neighboring
nodes within their range, and gossip knowledge about where sinks are in the
network. Sinks are nodes which have managed to establish a link with an
external server, and the paths to these sinks are spread across the network.
Such that if only node in the entire cluster is a sink, then data from every node
has a path outside of the cluster.

Results from running validation shows that the implemented prototype func-
tions as intended, but experiments have revealed apparent weaknesses. The
number of paths which are shared in gossiping shows an exponential growth
when the number of nodes in a cluster grows linearly. The experiments into
bundling andmonitoring-data propagation shows that combining data together
causes a reduction in these types of transmissions by a factor equal to that
of the number of data fragments which are combined, however the Partial
Bundle Policy measure to increase throughput for fringe nodes has unexpected
consequences.

The prototype systemworks as intended per the design. We have found however
that the system is not scalable due to the extent of the accumulated path
knowledge. Suggestions for avenues to address this has been outlined in the

iv abstract

discussion chapter. There is a need to explore how something similar to this
prototype would look and perform in a real-life deployment on the arctic
tundra.

Acknowledgements
First I would like to thankmy friend and collaborator during this project, Sigurd
Karlstad. Having someone to argue with, and point out when I’m being an
idiot has been tremendously useful.

I would also like thank my main advisor Professor John Markus Bjørndalen,
and my co-advisors Professor Otto Anshus, and Post-doc Issam Raïs as well, for
providing guidance and support whenever I needed it.

Lastly, I would like to thank my family for being supportive during this pe-
riod, and their ever-present encouragement towards me to get this master’s
degree.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of definitions xv

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2

1.2.1 Author’s Contribution: 2
1.2.2 Sigurd Karlstad’s Contribution: 2
1.2.3 Collaboration: . 3

1.3 Limitations . 3
1.4 Thesis Outline . 3

2 Background 5

3 Design Principles 9
3.1 Power Scarcity . 9
3.2 Energy-efficiency . 10
3.3 Unreliable Connectivity - Internal 10
3.4 Unreliable Connectivity - External 10
3.5 Habitat Non-interference 10
3.6 Persistent Data Storage . 11

4 Related Work 13
4.1 Wireless Sensor Networks 13
4.2 Delay-Tolerant Networking 15
4.3 Environmental Monitoring 17

vii

viii contents

5 Architecture 19
5.1 Topology and Communication 19
5.2 Duty Cycling . 19
5.3 Neighbors . 21
5.4 Sinks . 21
5.5 Paths . 21
5.6 Data Generation: Reports 23
5.7 Data Propagation . 23
5.8 Time Synchronization . 23

6 Design 25
6.1 Starting Phase and Operational Phase 25
6.2 Generating Paths (How do we find paths?) 32
6.3 Path Selection (How do we select paths?) 33
6.4 Monitoring Data and Reports 35
6.5 Mailboxes . 35
6.6 Constructing Bundles / Data Combination 38
6.7 Sending Partial Bundles . 39

7 Implementation 41
7.1 Introduction Broadcast . 42
7.2 Topology generation . 42
7.3 Environmental Readings . 43
7.4 Battery Drain . 43
7.5 Simulated Duty Cycling . 43
7.6 Simulated Skew . 44

8 Validation 45
8.1 Validation Setup . 45
8.2 Validation Design . 46

8.2.1 General Network Validation 46
8.2.2 Bundling Validation 50

8.3 Validation Results . 51
8.3.1 General Network Results 51
8.3.2 Bundling Results . 53

9 Experiments 55
9.1 Experimental Setup . 55
9.2 Experiment Design . 55

9.2.1 General Network Experiments 56
9.2.2 Bundling Experiments 59

9.3 Experiment Results . 61
9.3.1 General Network Results 61
9.3.2 Bundling Results . 67

contents ix

10 Discussion 73
10.1 Decentralized Architecture 73
10.2 Load-Balancing . 74
10.3 Scalability . 75

10.3.1 Suggestions for Improvement 75
10.4 Node Monitoring . 76

10.4.1 Fault Inference from Analysis and Trends 76
10.4.2 Alternative: Falcon-esque Approach 76

10.5 Is Partial Bundle Policy Worth It? 77
10.6 Simulator . 78
10.7 Missing Validations/Experiments 79

10.7.1 Sink-paths while varying the number of sinks 79
10.7.2 Measuring CPU and memory performance 79
10.7.3 Influence of bundle size on delays 80
10.7.4 Validating Partial Bundle Policy 80

10.8 Improvements for Bundling and Debug Data 80
10.8.1 Bundle Timeout . 80
10.8.2 Flush . 81
10.8.3 More Extensive Debugging 81

11 Further Work 83
11.1 Implementation with Micro-controllers 83
11.2 Relay Nodes . 85
11.3 Virtual Nodes . 85
11.4 Content-Delivery Protocol Adaptation 85
11.5 Ideas from DTN: Heterogeneous Support 85

12 Conclusion 87

Bibliography 89

List of Figures
2.1 Map of Troms and Finnmark fylke, Norway showing the COAT

instrument placements. Image taken from their website at [2] 6

5.1 A simplified data flow diagram of a single OU. 20
5.2 Mesh network showing links, and the communication range

of one node. 20
5.3 Mesh network showing which nodes have managed to estab-

lish a link to the homebase. Up-arrows with an ’X’ in them,
means they have not. 22

5.4 The useful paths for the circled node on the left, given the
present sinks shown in fig 5.3. 22

6.1 Simplified diagram of a node’s life cycle. Figure is shared with
Sigurd Karlstad. 26

6.2 Flow chart describing the starting phase. Figure is shared with
Sigurd Karlstad. 27

6.3 Flow chart describing the introduction mode. Figure is shared
with Sigurd Karlstad. 28

6.4 Flow chart describing the reactive gossip mode. Figure is shared
with Sigurd Karlstad. 29

6.5 Flow chart describing the operational phase. Figure is shared
with Sigurd Karlstad. 30

6.6 Flow chart describing the awake cycle. Figure is shared with
Sigurd Karlstad. 31

6.7 Flow chart of the receiver thread. Figure is shared with Sigurd
Karlstad. 32

6.8 Flow chart of the path score calculation algorithm. Figure is
shared with Sigurd Karlstad. 34

6.9 Flow chart describing how management messages are han-
dled. Figure is shared with Sigurd Karlstad. 36

6.10 Flow chart describing how content messages are handled.
Figure is shared with Sigurd Karlstad. 37

6.11 Flow chart describing the algorithm for merging bundles. . . 38

xi

xii l ist of f igures

6.12 Flow chart describing the algorithm for deciding the Partial
Bundle Policy . 40

8.1 A network with two sinks. Figure shared with Sigurd Karlstad 47
8.2 A network with one sink. Figure shared with Sigurd Karlstad. 49
8.3 Figure describing the method for the optimal parent calcula-

tion validation. Figure shared with Sigurd Karlstad. 49
8.4 Figure describing the method for the connection disruption

recovery validation. Figure shared with Sigurd Karlstad. . . . 50

9.1 A set of network configurations which are named Sca1-Sca10.
Figure shared with Sigurd Karlstad. 57

9.2 Graph showing how the number of total sink-paths increase
with network size. Figure shared with Sigurd Karlstad. . . . 61

9.3 Graph showing how the length of the shortest path on each
node, and the longest path on each node grows with the net-
work size. Figure shared with Sigurd Karlstad. 62

9.4 Graph showing how the total number of transmissions in the
starting phase grows with the network size. Figure shared
with Sigurd Karlstad. 63

9.5 Graph showing how the total number of transmissions dur-
ing a new sink operation grows with the network size. Figure
shared with Sigurd Karlstad. 64

9.6 Graph showing how the total number of transmissions grows
with the network size when the system is allowed to start in
the starting phase and run over 15 cycles. Figure shared with
Sigurd Karlstad. 66

9.7 Graph showing how the total content transmissions grow when
Bundling is enabled with Partial Bundle Policy. 67

9.8 Graph showing how the total content transmissions grow when
Bundling is enabled without Partial Bundle Policy. 68

9.9 Graph showing how the total content transmissions grow when
Bundling is disabled. 68

9.10 Graph showing how content transmissions grow with differ-
ent bundle sizes. 69

11.1 A diagram showing a possible adaptation into a micro-controller
based hardware architecture 84

List of Tables
8.1 Table of the paths which we expect to be generated in the

stated configuration. Table shared with Sigurd Karlstad . . . 47
8.2 Table describing the sequence of events where the node changed

its parent. The event mentiond involves setting NODE 1’s bat-
tery to 30%. Table shared with Sigurd Karlstad. 52

8.3 Paths before disruption. Figure shared with Sigurd Karlstad. 53
8.4 Paths after disruption. Figure shared with Sigurd Karlstad. . 53
8.5 Paths after rejoin. Figure shared with Sigurd Karlstad. 53

9.1 Table showing the average delay between reports being gen-
erated and arriving at the homebase for every node in net-
work. The unit of measurement is cycles of sleeping and be-
ing awake. Label explanation: Node - ID of a particular node,
BWP - Bundling enabled with Partial Bundle Policy enabled,
BWOP - Bundling enabled with Partial Bundle Policy disabled,
BDIS - Bundling disabled. 70

xiii

List of definitions
Observational Unit: An Observational Unit is a small battery-powered com-

puter able to record data using sensors connected to the hardware itself,
they are created to withstand the harsh environment in the arctic tundra.
In this thesis, Observational Units and the more general term ’node’ will
be used interchangably.

Homebase: AHomebase is a server / machine that is considered as an external
machine in comparison with the nodes in a cluster. The Homebase
is where the nodes tries to propagate data to, and is the source of
authoritative time. All the nodes will try to gain access to the homebase
server, but only those that are able to connect will be turned into a
"sink"-node.

Sinks: A sink-node is an OU that is directly connected to a Homebase, this
means that this is the node that all the other nodes in the network will
try to propagate messages to.

Neighbor: From the perspective of a given OU, a neighbor is another OUwhich
is close enough to do short-range communication reliably.

xv

1
Introduction
Climate change and radical ecological shifts has been a topic of ever-increasing
concern in recent times. The arctic tundra – the earth’s northernmost terrestrial
biome – is predicted to be especially impacted in this regard, with average
temperatures increasing by as much as 10*C by the next century. Such a rapid
shift is likely to have far-reaching consequences and result in a new status quo
which current scientific models will be unable to accurately predict. [8]

With these concerns in mind, the Fram Centre proposed in 2013 a plan for the
establishment of a Climate-ecological Observatory for Arctic Tundra (COAT) to
monitor how these changes impact ecosystems on the tundra in the long term.
Implementation of this plan has involved deploying several on-the-ground
sensing instruments – like camera traps with food as bait, and temperature
sensors – to harvest data on activity in the surrouding area.

This is easier said than done however. The arctic tundra is harsh and remote;
varied weather, below-freezing temperatures, infrastructure scarcity, unreliable
signal coverage, and long distances are all present factors which make the
tundra a challenging deployment environment.

This thesis presents the architecture and design of a decentralized overlay
system for Observational Units (OU) which enables them to use each other as
relays to external servers when uniform signal coverage cannot be assumed.
Along with this is a propagation scheme for debugging data which combines
fragments into larger pieces in order to reduce transmissions – a significant

1

2 chapter 1 introduction

source of energy expenditure.

1.1 Motivation

Themotivation for this project is the need for a scheme for delivering debugging
data and status updates from Observational Units. Propagating data should
be energy-efficient, reliable, and maintain a level of throughput to the degree
that the data is still useful by the time it arrives to users.

1.2 Contributions

The prototype and system design presented in this thesis has been worked on
by two people: the author, and Sigurd Karlstad, another master student here at
UiT. Throughout this project, the author has cooperated closely with Karlstad,
due to the subject of each thesis’ being quite similar. It is therefore necessary
to give a precise description of what each person takes credit for.

This thesis contains the following contributions:

1.2.1 Author’s Contribution:

• Bundling and Partial Bundle Policy

• Content Propagation and Debug Report Generation

• An description of technology and techniques in WSNs and Habitat Moni-
toring

• An analysis of the difficulties inherent in designing habitat monitoring
systems for the arctic tundra, based on previous experiences

• Bundling Validation and Experiments

• A discussion of weaknesses, improvements, and pros and cons.

1.2.2 Sigurd Karlstad’s Contribution:

• Time Synchronization Operations and all uses of it.

1.3 limitations 3

• Node network clock stability.

1.2.3 Collaboration:

• Path Handling

• Path Score Calculation

• Mailbox Handling

• General System Architecture

• General Network Validation and Experiments

• Homebase Architecture

• All other support-code such as: Server Script, etc.

1.3 Limitations

This thesis will not be presenting a real-world deployment of Observation
Units. When OUs are spoken about and how they gather data about their
surroundings, the actual data is fake. The OUs that are discussed are purely
virtual and are meant to demonstrate how an overlay network would act with
this kind of data. Details about how the system simulates the OUs is explained
in Chapter 7.

1.4 Thesis Outline

This thesis is structured into 12 chapters, and excluding the introduction they
are:

• Chapter 2: Background, describes the circumstances which one ought to
be familiar with when designing computer systems towards the tundra,
by examining previous experiences.

• Chapter 3: Design Principles, an attempt to formulate principles to guide
a concrete design on the back of what we learned in the background.

4 chapter 1 introduction

• Chapter 4: Related Work, a presentation of relevant work done in various
fields, along with a discussion on their applicability to our circumstances.

• Chapter 5: Architecture, a description of the proposed system’s main
functionality.

• Chapter 6: Design, a deeper dive into the workings of the proposed
system.

• Chapter 7: Implementation, a description of the attempt to simulate the
restrictions and behavior an OU will find itself in.

• Chapter 8: Validation, an investigation into the correctness of the imple-
mented prototype.

• Chapter 9: Experiments, an investigation into the characteristics of the
implemented prototype.

• Chapter 10: Discussion, an evaluation of what has been produced, explor-
ing problems, weaknesses and areas of improvement.

• Chapter 11: Further Work, a discussion about the potential paths forward.

• Chapter 12: Conclusion, a summary about our aim, experiences and
lessons learned.

2
Background
In this section, the background of this thesis will be presented. This includes
an introduction to Habitat Monitoring and WSNs in Computer Science, and
an outline of connected projects that serve as the underlying context for this
thesis.

The most common approach in monitoring habitats and natural environments
– according to Oliveira et al in a survey from 2011 [14] – is in deployment of
a Wireless Sensor Network(WSN) consisting of hundreds up to thousands of
individual devices,which organize themselves into a network, and cooperate to-
wards accomplishing some task. These devices are usually small in dimensions
and cheaper to acquire than compared to, for example a personal computer.
On the other hand, they also have less resources to work with when it comes to
computational capacity, energy resources and transmission capabilities.

Common problems addressed in WSN research can be summarized as finding
ways to use this constrained sum of resources efficiently. Nodes in this type of
system are often powered by batteries and have small communication ranges
– as well as being limited in their processing and storage capacity due to the
hardware solutions usually emphasizing low-power, low-cost devices with small
physical dimensions.

This set of difficulties is carried over into habitat monitoring, but the problem of
conserving power becomes even more pronounced in this case. Monitoring nat-
ural habitats for research purposes often carries with it a requirement for any

5

6 chapter 2 background

Figure 2.1: Map of Troms and Finnmark fylke, Norway showing the COAT instrument
placements. Image taken from their website at [2]

sort of human activity to be kept to a minimum, either in order to reduce the
influence the monitoring itself has on the observed, or minimize the necessity
for maintenance trips as the deployment site may be quite remote. With this
in consideration, ensuring that a sensor network can stay alive for extended
periods of time (at least collectively) without needing maintenance/interfer-
ence from humans, becomes a vital quality of any solution which seeks to be a
viable option when potential users are considering which system to choose for
their deployment.

The COAT Project is one such potential user. Their efforts thus far in monitor-
ing the Varanger Region in northern Norway and on Svalbard has consisted in
placing camera traps in these areas to monitor the movement and presence of
different animal species. A map from their website [2] shows the placement
of measuring instruments that they have placed and pictures they have ac-
cumulated of different animal species. In their Science Plan [8], a document
describing how they are going to implement their ecological tundra monitor-
ing experiments, COAT affirms their intent to have a minimal environmental
footprint, both when conducting their measurements and associated activities
like collecting data from instruments.

7

In conjunction with COAT, the Computer Science Department at UiT has also
taken an interest in the measuring instruments that are placed on the tundra.
The DAO (Distributed Arctic Observatory) Project uses instruments called OUs
(Observation Units), that are distributed in the tundra and monitors state
variables before reporting back somewhere for further analysis [17].

In a paper by Raïs et al [17] where they experiment with using a UAV drone
to carry in fresh batteries and function as a temporary network access point,
deploying in the arctic tundra is described as "expensive, time-consuming
and dangerous" and asserts the need for automation such that physical visita-
tions by humans can be reduced to a strict minimum. The size of batteries is
also mentioned, in that large batteries are generally not practical, because of
environmental concerns and regulations.

In an earlier master’s thesis from the same institution by Øystein Tveito, the
author describes experiences with building and deploying hardware on the
tundra in detail, describing a lengthy trip to deploy the OUs and then finding
that the OUs were having problems reporting back after being set up. In his
thesis [21], he outlines several deployment cycles. In the first, no OUs had
managed to establish a connection to the back-haul network. These problems
were hypothesized to be the result of erroneous mounting of the antenna.
This was adjusted for the next attempt. In the second, some OUs managed to
report back, but not all. The hypothesis here was that the local environment
was most likely obstructing the signal. In addition, the coverage map which
had been used to determine whether or not a connection was possible, were
not generated from in-the-field test data but rather made by an algorithm,
most likely based on approximations. These experiences shows that building a
system around the assumption that every OU is going to be able to establish
a direct connection with a cell tower, and by extension with the back-haul
network, to be an unreasonable one.

Tveito also mentions considerations he had to make when designing containers
for the hardware modules. Since the locations that they were going to deploy
to where situated in national parks, some regulations about visibility and
interfering with the local fauna had to be observed. His interpretation was
that the environment "... must appear to be unspoiled nature. ... they must be
camouflaged to be as unnoticable as reasonably possible."[21].

With these experiences in mind, the next chapter will try to summarize what
seems to be required of a design which seeks to viable in a arctic tundra
deployment environment.

3
Design Principles
This section seeks to investigate which general principles can serve to guide
the design of systems of networked observation instruments on the arctic
tundra.

3.1 Power Scarcity

The tundra consists mostly of large and remote areas of wilderness. This is not
a place teeming with human activity, settlements, or power lines. The point is
that providing the nodes with electricity for as long as several months to a year
is quite a challenge.

Sensing equipment will be relying on battery reserves, and using methods like
solar panels to recharge is not feasible in the winter because of the extended
dark period so far north. Sending maintainence crews regurlarly is impractical
due to the distances involved, and the winter will again further complicate
things. It is therefore necessary to make use of what is there from initial
deployment.

This also excludes the use of base stations in the local area which can be larger
than the nodes and has persistent power, as there is not anywhere to get it
from.

9

10 chapter 3 design principles

3.2 Energy-efficiency

Generally, transmission is an expensive operation, and much more so than
computation.

Wireless Data Transmission is more expensive than data processing. Making it
preferable to process whatever data is needed at the node rather than send it.
[14]

The power consumed when the radio is in receive mode is almost equal to
that consumed when transmitting. So the radio should be turned off when not
necessary. [14]

Therefore an important consideration when making design choices for this
system will be whether or not it contributes to the overall number of transmis-
sions.

3.3 Unreliable Connectivity - Internal

Nodes are thought to be spread over a wide area, and therefore every node may
not be in range of any other. However, planning placements in the field based
on this alone may not be sufficient, as there may be obstructions to the signal
in the physical environment. A dynamic, and unstructured mesh topology is
therefore necessary to support.

3.4 Unreliable Connectivity - External

As previous experiences have shown, whether or not the OUs are able to get
a signal to external parties is uncertain, and we must therefore make two
considerations: we cannot know how many OUs have this connection, but it is
likely to be few, and we cannot know which have it.

3.5 Habitat Non-interference

There is a general need for OUs and other equipment to not interfere with the
natural environment in which they are placed.

This might mean that they have to be camouflaged to a degree, to not influence

3.6 persistent data storage 11

the fauna’s behavior, and also not invite curious critters or humans even to
potentially damage the device. This places restrictions on how the physical
make-up of the OU. The size of the OU itself plays a part here, as it seems
reasonable to assume that the bigger it is, the harder it is going to be to
adequately hide it. This has consequences for what kind of hardware we can
expect to have available.

3.6 Persistent Data Storage

Sensor readings must be stored persistently on the OU. Research data is
important to keep secure, and in COAT’s case their tundra monitoring is an
on-going experiment over a long timeframe, so whatever overlay network or
experimental node hardware is tested in the field, cannot interfere or potentially
lose raw data from the sensing equipment. Providing for this also enables us
to extract the raw data directly from the OU when they are fetched.

4
Related Work
In this section we will review a selection of earlier works in the fields of Wire-
less Sensor Networks (WSNs), Habitat Monitoring, Delay-Tolerant Networking
(DTN), and System Monitoring.

4.1 Wireless Sensor Networks

One of the best known works in WSN research [19] is the Low Energy Adaptive
Clustering Hierarchy protocol, published in the year 2000 by Heinzelman et
al.

LEACH [7] is an energy-efficient communication protocol in which nodes are
dynamically clustered into groups where they take turns gathering data in the
cluster and sending it to an external receiver. Coordinating amongst themselves,
the nodes select one of their number to be a Cluster Head (CH). The CH acts
as a localized base station which collects bits of data from the other nodes in
the cluster, and then sends it towards a high-capacity sink further away. After
a period, another node relieves the previous one of this responsibility, and acts
as Cluster Head until it in turn is relieved. Thus, the cost of acting as Cluster
Head is spread evenly among the nodes present in the local cluster.

A paper by Lindsey et al from 2002 presented PEGASIS [11]. An improvement
on the LEACH protocol, the network forms a chain composed of the nodes –

13

14 chapter 4 related work

as opposed to LEACH’s star-like clustering with the Cluster Head at the center.
By following the chain, the nodes propagate their data forward where on each
step it is fused together bit by bit, and eventually arrives at the last node, who
is responsible for transmitting the final package to a base station. As in LEACH,
this task of transmitting to the base station is rotated to another node after
completing it, thus spreading out this cost in energy.

The problem with using a similar solution in our circumstances, is that LEACH
and PEGASIS assumes that it is possible for every node to reach a base station,
or every other node, and as we have outlined in the previous chapters, this is
not a reasonable assumption in our case.

LEACH and PEGASIS both use something called an "Advertisement Phase" [7]
[11] in which the nodes coordinate between each other to decide on which
one of them should be the one to contact the base station. We will be doing
something similar in our design, where a initial, high-activity period where
duty cycling is disabled will serve as a window where the OUs can discover
each other and do an introduction.

A master’s thesis by Camilla Stormoen from 2018 from UiT [20] uses some
ideas from LEACH and some of its derivatives as a basis for developing an
approach where the nodes form links in a mesh network based upon if they are
in radio-transmission range of each other. This approach uses a bully algorithm
to elect a CH, where nodes gossip a score to their neighbors to decide who
should be elected. A path to the potential CH is gossiped along with the score.
When the nodes have decided a CH, they will wait for it request data from
them, and then send data along the path so that it can be collected at the CH
and be stored.

This is a design which addresses the need for an unstructured mesh network
where no assumptions can be made in regards to what links exists between
the OUs. It also uses a path gossiping mechanism so that nodes several degrees
of separation away can have knowledge about certain notable nodes. However,
our design will not be as concerned with collecting data from the nodes on a
single node where it can be accessed, and instead takes advantage of the fact
that multiple sinks can be present in the network at once, and nodes should
route their data to the one that is most suitable according to the path selection
algorithm.

4.2 delay-tolerant networking 15

4.2 Delay-Tolerant Networking

Delay-Tolerant Networking, or Disruption-Tolerant Networking as its some-
times called, is an area in networking research which is chiefly concerned
with designing systems which are tolerant of long delays and interruptions in
end-to-end transmissions[3]. The term was coined in 2003 by a team of the
Internet Research Task Force with the publishing of RFC 4838 (Delay-Tolerant
Networking Architecture). At this time the focus in DTN research was on the
question of how to facilitate communication in deep space over long distances,
which had borne an architecture for the Interplanetary Internet (IPN) project,
with an aim to provide Internet-like services across the gap that separates
celestial objects. The RFC [1] that was published suggested an extension of
this architecture to apply these concepts to terrestrial networks – as they also
suffer from delays and disruption. The DTN perspective was broadened to
include networks and connection patterns of other types, an example of which
is opportunistic mobile ad-hoc networks, where nodes can be unavailable for
extended periods of time.

A review from 2008 by Fall and Farrell [3] discusses the current state of research
in DTNs, and provides an useful outline of the design elements and principles
that has been associated with this kind of network since its inception. Some of
which are:

• Accommodation of long network delays and possible disruption

• Operation in heterogeneous networks. As a result of being able to support
a variety of protocols at the same time by using convergence layer
adapters, which enables translation of data units specific to each protocol
into a DTN data unit and back. Another point for heterogeneity is a
pluralism in supported naming formats.

• Data bundling, in the sense of combining all the data that is needed to
complete a transaction in a protocol into a single data unit, in order to
minimize the amount of exchanges necessary to complete it.

• Routing protocols and technology are ambiguous. In order to be applica-
ble in a number of different operating environments, a DTN node may
have to be able to use a set of different routing strategies and protocols
to propagate what it wants and to where. Routing may involve a number
of factors, such as managing multiple copies, using network knowledge
of various resolutions (including knowledge of topology and ongoing
traffic),

• Custody transfer. A custodian of a bundle is the stated "responsible entity"

16 chapter 4 related work

formaking sure that the bundle is not lost in the network, as an alternative
to the originating node keeping track of whether or not its data arrived
successfully at the intended destination. Being the custodian of a data
bundle entails keeping it safely in persistent memory until it can be
further forwarded and stored in the same manner at the next node along
the path. Custodianship is thereby transferred to this node.

While the DTN concepts were formulated some time ago and where designed
to accommodate a Internet-like network architecture, a newer paper from 2012
by Pöttner et al. [16] demonstrates an implementation of the bundle protocol
towards WSNs. They conduct an experiment revolving around a temperature
micro-sensor which is placed on a rooftop, and is intermittently connected to
a relay node placed inside an elevator. The elevator moves from the rooftop
floor to a another node placed on a lower floor which then forwards the data
to a back-end computer where it is processed and further analyzed. This chain
forms a relay from the temperature sensor on the rooftop to the back-end
computer where the node in the elevator functions as a data mule for the data
readings.

This is facilitated by an implementation of a bundle protocol convergence layer
called µDTN which can carry data to intermittently connected destinations,
and provides interoperability between heterogeneous hardware platforms. In
their conclusion, they state that a bundle-like protocol is a suitable choice for
heterogeneous solutions which seeks to integrate low-power WSN networks
with back-end systems possessing more substantial network and computational
resources. They argue that a form of bundle protocol should be the first choice
for WSNs where delay-tolerant communication and back-end connectivity is a
requirement.

Overall, this focus on introducing features that enable a network to compensate
for long delays and disruptions, appers like a good fit for our circumstances.
Bundling of transaction data and custody transfer, are features which enable a
sort of decoupling between the originator of a request and the final recipient,
which would allow a transaction to be completed successfully without the need
for both of them to be connected and available at the same time.

We will be using the custody transfer concept in our design, in the sense that
once bundles are propagated from the node which generated it, it will rescind
its responsibility that it arrives at the homebase. This responsibility will instead
fall on the next node it was propagated to, until it propagates it further.

We will also be using a bundle concept, but not in the sense of packaging data
which are needed to complete a multi-step interation into a singel piece, but
rather as an object consisting of potentially numerous pieces of separate data

4.3 environmental monitoring 17

units which may or may not be from the same node.

4.3 Environmental Monitoring

Monitoring natural processes is a problem-space which has not garnered the
same kind of attention in Computer Science as fields like Artificial Intelligence
or Cloud Computing have, but there are some related works in this field.

The survey by Oliveira et al [14] – which was mentioned in the Chapter 2
chapter – provides an outline for some of the challenges which this area of
research must address. We are not going through all of them because the list is
quite long and not all of them are relevant, but here are some that are:

• Power Management: An essential feature for long-term operation, espe-
cially for remote locations where visitation is impractical.

• Remote Management: Some form of remote configuration and operation
is necessary, again due to how remote and isolated some locations may
be.

• Mesh Routing Support: mesh network topologies can both provide multi-
hop and path diversity, so routing protocols which can support this is
crucial

• Size: reducing the size is essential for many use-applications.

This survey also goes through some notable applications of environmental
monitoring. Among which is the first WSN that was implemented with habitat
monitoring in mind [14]. Published in 2002 by Mainwaring et al [12] The goal
was to monitor certain bird populations on some islands off the U.S east coast,
specifically their nesting behavior given some environmental variables – like
temperature. Their approach consists of deployment of some hundred micro-
sensors, which are organized into a tiered hierarchical network, where the
nodes will use multi-hop forwarding and coordinate between each other.

Our design uses multi-hop forwarding, but Mainwaring et al uses more substan-
tial hardware for gateways which are locally present to the sensing instruments,
and the base station that is connected to the internet via a satellite link (I was
unable to find if these use batteries or wired power).

5
Architecture
In this section we will be looking at the architecture and primary functionality
of the proposed system.

5.1 Topology and Communication

The proposed system is thought to function in a mesh topology, where the
links between nodes are formed via being within a certain proximity to each
other, and are not determined by the need to conform to a star-like structure
for example.

Communication will be facilitated through wireless ad-hoc communication,
and OUs will therefore have a limited range of communication (fig 5.2). The
exact range will depend on the technology that they use, and the surronding
physical environment. A system design will have to allow for the fact that any
one-to-one communication between entities cannot be presumed.

5.2 Duty Cycling

In order to conserve their battery, nodes will shut down most of their systems,
including transceivers, and will be unavailable for an extended period of time.

19

20 chapter 5 architecture

Figure 5.1: A simplified data flow diagram of a single OU.

Figure 5.2: Mesh network showing links, and the communication range of one node.

5.3 neighbors 21

This sleep phase is then followed by a time interval where they are awake
and available, and is therefore the only time in which they will attempt to
communicate. A sleeping phase followed by an awake phase is referred to as a
cycle, and forms the basis for how nodes will try to schedule their activity. The
time intervals for sleeping and being awake is uniform in the network, and so
the nodes’ schedules will overlap if their measures of time are similar.

5.3 Neighbors

Nodes that are in range of each other, and can maintain stable connections, will
be referred to in this thesis as a Neighbor, and by extension, the neighbors of a
given node will collectively be referred to as that node’s Neighborhood. Every
node will keep a record of their Neighbors and characteristics about them, like
contact information, battery levels and link latency.

Periodically, the nodes will check up on each other through pings, and exchange
data about their status. If a Neighbor is found to be unresponsive, the trans-
mitting node will update this neighbor’s record, and won’t communicate with
it for the rest of that cycle. If the Neighbor is unresponsive for a given number
of cycles in a row, it will be tagged as inactive, and the transmitting node will
stop trying to communicate with them.

5.4 Sinks

Outside of the local cluster, is the homebase: a static server in the background
which is the final destination for propagated data and a source for authoritative
time. Every cycle the OUs will test their connection with the homebase, and try
to establish a link (fig 5.3). If this is successful, they will become a sink: a relay
for fellow nodes who have not managed to establish this link themselves.

5.5 Paths

Overlaid on the mesh network is a path routing scheme which gives the nodes
knowledge about who which sinks exist in the local network, and where they
are in relation to themselves. The paths describe which sink they lead to and
which intermediate steps are between the sink and the particular node. By
using these, nodes can propagate their data to the homebase without requiring
a direct connection themselves.

22 chapter 5 architecture

Figure 5.3: Mesh network showing which nodes have managed to establish a link to
the homebase. Up-arrows with an ’X’ in them, means they have not.

Figure 5.4: The useful paths for the circled node on the left, given the present sinks
shown in fig 5.3.

5.6 data generation: reports 23

5.6 Data Generation: Reports

Once every cycle, the OUs will generate a report with information pertaining
to their status and activity. This report is arranged as a JSON-formatted string,
which is then inserted into a Bundle Object. This object is a simple structure
which contains: a list of string-objects, a length counter for this list, and a flag
which indicates whether or not the list has reached an optimal length.

5.7 Data Propagation

The bundle object is then inserted into the node’s Outbox, where it will be
propagated towards a sink or to the Homebase – if certain conditions are
in place (this is explained in section x.xx). Before propagating the bundle,
the node will check its list of paths and select the best one (this process is
described in section x.x.xx). The first step in this path will be one of this node’s
Neighbors, which will be the first recipient of the bundle on its journey to the
homebase.

5.8 Time Synchronization

To compensate for clock drift, the nodes will periodically request time syn-
chronization with their neighbors, so that they can have sleep schedules with
as much overlap as possible. How they do this depends on whether or not
there are sinks present in the network, if there are then they will use the path
selection algorithm to figure out which neighbor is closest to the sink, as its
presumed that they would have a more accurate clock. If not then the node
will gather timestamps from all of its neighbors and aggregate them to get an
average.

The details of this and how the nodes calculate new clock settings will not be
described in this thesis, this is something that has been worked on by Sigurd
in his thesis [9], and more can be found there.

6
Design
This chapter will cover important aspects of the design of the proposed solu-
tion.

6.1 Starting Phase and Operational Phase

The network as a whole goes through two phases of operation. The first is the
Starting Phase, which is entered when a node is booted up for the first time,
and ends when one of the OUs detects that a specified amount of time has
passed since boot, and then floods a message to all the other nodes.

The purpose of this phase is for new OUs to do a broadcast upon boot, and form
neighbor relationships based on the responses it received, and do an initial
exchange of paths – if any sinks are discovered right from the get-go.

This phase is characterized by high activity and is meant to have the nodes
remain awake for an extended period of time so that they can establish the
network without worrying about divergent awake cycles. The message that is
flooded after one node detects that a certain amount of time has passed since it
booted (this will probably be the first node to boot) also serves as a mechanism
for synchronizing the nodes’ sleep schedules so that they can overlap from the
start.

25

26 chapter 6 design

Figure 6.1: Simplified diagram of a node’s life cycle. Figure is shared with Sigurd
Karlstad.

The second is the Operational Phase, which is entered immediately after the
starting phase is concluded, and goes on as along as there are nodes in the
network. The Operational Phase is characterised by a sleeping period and a
awake period, the former in order for the node to save some power by partially
shutting down for the majority of a cycle, and the latter in order to perform
tasks with other nodes – like transmit data to (or towards) the homebase,
perform clock synchronization with other nodes, or adjust their knowledge of
the network when changes occur.

The Operational Phase has 4 logically separate stages:

• Sleeping: the sensors will be read from as events happen and this data
will be stored in memory, but nothing else is happening otherwise.

• Post-sleep: when sleep is exited, the node will load its state from disk,
and turn on the receiver.

• Awake: perform tasks: propagate bundles, ping neighbors, and update
the clock.

• Pre-sleep: save state and sensor buffer to disk, and turn off the receiver.

6.1 starting phase and operational phase 27

Figure 6.2: Flow chart describing the starting phase. Figure is shared with Sigurd
Karlstad.

28 chapter 6 design

Figure 6.3: Flow chart describing the introduction mode. Figure is shared with Sigurd
Karlstad.

6.1 starting phase and operational phase 29

Figure 6.4: Flow chart describing the reactive gossip mode. Figure is shared with
Sigurd Karlstad.

30 chapter 6 design

Figure 6.5: Flow chart describing the operational phase. Figure is shared with Sigurd
Karlstad.

6.1 starting phase and operational phase 31

Figure 6.6: Flow chart describing the awake cycle. Figure is shared with Sigurd
Karlstad.

32 chapter 6 design

Figure 6.7: Flow chart of the receiver thread. Figure is shared with Sigurd Karlstad.

The last stage is not included in fig 6.1, but it is the inverse stage of "Prepare
for Awake Cycle", which would be after the "Time to Sleep?" conditional says
Yes.

Additionally, if the node discovers that its battery has reached a certain thresh-
old, it will stop communicating with its neighbors all together, and effectively
exit the network. This is called the Low-Power Mode and is meant to get as
much environmental sensing out of the current energy levels as possible, before
it dies.

6.2 Generating Paths (How do we find paths?)

Every path leads to a sink, which is a node that is able to connect to the
homebase and can then function as a gateway for nearby nodes which do
not.

Paths are generated, either in the starting phase when the nodes are performing
their initial introductions, or further down the line when a node manages to

6.3 path selection (how do we select paths?) 33

establish a connection, after previously being unable to.

Paths are discarded, either when a sink loses its connection – which prompts
the nodes in the network to remove their paths to this sink–, or when a node
which served as a intermediate step in any path becomes unresponsive, and
has to be removed as a result.

Sinks will advertise themselves to the rest of the network by sending messages
to their neighbors, who will themselves further propagate the message to their
own neighbors and so on. This message contains a path which shows the
receiving node which intermediate steps are between it and a sink. These
messages are epidemically spread in the network from the sink once they
establish a connection, but nodes will only spread the path further if they
choose to accept it, which will prevent the messages from being spread over
and over again.

Whether or not a path is accepted is dependent on some criteria. Incoming
paths must:

• Not be already present in this node’s path list (Duplication)

• Not contain this node as a step (Self-Reference)

Additionally, any paths that contain a neighbor as a step, will not be shared to
that neighbor, as it will fail the Duplication criteria anyway.

6.3 Path Selection (How do we select paths?)

Of the hopefully numerous paths which has been collected by the node, one
has to be selected for use in propagation. The nodes use a score to evaluate
which path is the best to route through, which is based on 3 metrics:

• Path Length: the amount of intermediate nodes in a path.

• Neighbor Latency: the round trip time latency between the neighbor and
this node.

• Neighbor Battery Reserves: percentage of power battery left on the neigh-
bor

The numbers from each measurement is normalized so that they are balanced
against each other. In addition, a weight is added to each metric so that one

34 chapter 6 design

Figure 6.8: Flow chart of the path score calculation algorithm. Figure is shared with
Sigurd Karlstad.

aspect can be emphasized over another if needed – If battery reserves are
thought to be more important than RTT latency for example. Whichever path
has the smallest score, will be considered the best for routing by the node.

The formulas for calculating the scores can be seen here:
Partial Battery Score:

�B = (100 − '4<08=8=6�0CC4A~%4A24=C064)/100

Partial RTT Score:

'B = ">BC'424=C')) /�86ℎ4BC'42>A343'))

Partial Path Length Score:

%B = %0Cℎ!4=6Cℎ/!>=64BC =>F=%0Cℎ

Total Score
((� ∗ �B) + (� ∗ 'B) + (� ∗ %B))/3

Where �, �, and � are the weights.

6.4 monitoring data and reports 35

6.4 Monitoring Data and Reports

Monitoring and delivering debug data to interested parties, is accomplished
through the generation and propagation of reports which the node’s main loop
is responsible for carrying out once per cycle.

The report consists of information about the following aspects:

• Operational Status: characteristics about the OU’s current state, e.g.:
battery levels, sink connection, and errors logged.

• Sensor Instrument Status: e.g.: readings since last report, sample value.

• Transmission Record: e.g.: transmissions since last report, transmissions
in total, transmissions along different categories.

The implementation generates a report like the one seen in fig [example report].
When the node wakes up after sleep, the report is generated before starting the
cycle, inserted into a new bundle, and then added to the node’s Outbox.

6.5 Mailboxes

Message passing is the mode of communication in the proposed system.

Events, data, and requests are all propagated in the form of amessage. Messages
have headers which describes an operation or intent, and they also have a
payload.

Each node has 3 mailboxes, each for a different purpose:

• Management: handles messages related to network management, and
events that may trigger a recalibration – like being notified of: new paths,
new sinks, lost sinks, lost non-sink nodes, etc.

• Inbox: contains newly-received messages with the type of ’content’.

• Outbox: contains messages with the type of ’content’ that are ready for
transmission.

’content’ is a universal descriptor for anything that is meant to be propagated
towards and received by the homebase. The payload is presently a JSON-
formatted string (report), but it is never processed by intermediate nodes, so

36 chapter 6 design

Figure 6.9: Flow chart describing how management messages are handled. Figure is
shared with Sigurd Karlstad.

6.5 mailboxes 37

Figure 6.10: Flow chart describing how contentmessages are handled. Figure is shared
with Sigurd Karlstad.

38 chapter 6 design

Figure 6.11: Flow chart describing the algorithm for merging bundles.

it could in theory be anything of interest.

All othermessages are processed by themanagementmailbox, and has a variety
of descriptors such as "new_path", "ping", etc.

6.6 Constructing Bundles / Data Combination

Data fusion or aggregation is a common method for reducing data volumes –
PEGASIS and LEACH are examples here. The reasons for doing so are plenty:
save space on devices, reduce message payload sizes, reduce processing times,
etc. In this thesis,wewill be concerning ourselves with another reason: reducing
necessary transmissions.

From the author’s point of view, it is not obvious how to aggregate or fuse
diagnostic/debug/status data into a form that does not disentangle it from the
node it is about, or lose important information in general.

So, instead of reducing the volume of data, the proposed solution instead
combines reports into larger volumes called bundles, so that they at least

6.7 sending partial bundles 39

can be transmitted at the same time. Initiating a transmission, turning on a
transceiver and so on, is a more expensive operation than sending data itself.
By this measure then, performing 3 separate transmissions would be more
expensive in total, than performing a single one with 3 times the data.

6.7 Sending Partial Bundles

Data is propagated towards the sink or the homebase by determining checking
the sink-path list and selecting the best path for propagation. Data is sent in
the form of bundles containing multiple reports. In order to get a reduction in
the total amount of transmissions that is accumulated in the network, bundles
cannot be sent unless either of the following conditions hold true:

• the bundle has an optimal length,

• or the node is allowed to send "partial" bundles, meaning bundles which
has not reached its length.

The first condition is in place to reduce the overall amount of transmissions
which take place during propagation of these reports, and only forward the
bundle if it has accumulated a certain amount of reports, upon which it will be
declared as optimal. The second condition is a mechanism which allows certain
nodes to forward bundles, whether or not they are optimal. This is intended
to be a way for the network to get a higher degree of throughput, and to avoid
having to accumulate reports on a single node before it can be sent.

This mechanism has been named as the node’s Partial Bundle Policy, and is
calculated based on the likelihood of other nodes using this one as a relay
towards a sink. Without this, the nodes would simply have to wait for a number
of cycles equal to the optimal length of a bundle before anything arrives at the
homebase.

40 chapter 6 design

Figure 6.12: Flow chart describing the algorithm for deciding the Partial Bundle Policy

7
Implementation
This chapter is about the implementation of the prototype system which the
author in collaboration with Sigurd Karlstad has developed in accordance with
the proposed system architecture and design.

The content of this chapter is shared between both authors, where both deserve
50% credit for it.

• Programming Languages:

– Golang v1.16 [5]

– Python v3.9.4 [15]

• Golang Packages:

– Termui v3.1.0 [4]

The code for the prototype nodes was implemented in Golang [5], which is
a open-source programming language, designed at Google. Here, Golang’s
stock http-library is used for functionality such as hosting an API on each
node, and handling the sending of data in the form of HTTP-requests using
the TCP(Transmission Control Protocol) protocol. The homebase is also im-
plemented in Golang, and uses the http-library in much the same way. The
homebase also uses the termui-package from Gizak on GitHub to provide

41

42 chapter 7 implementation

a GUI(Graphical User Interface) in the terminal, which has been helpful in
presenting the data that the homebase has received from the nodes.

The Python [15] language was used to make a script which automated the
process of launching multiple nodes in different configurations. The subprocess
module from Python’s standard library was used to start andmanage the nodes,
and provide the executables with the correct arguments to form the network
topology that was needed.

7.1 Introduction Broadcast

When the nodes introduce themselves to the other nodes in the network, the
nodes send messages to a range of node addresses. These receiving nodes
will then respond with a message, which indicates whether or not they accept
or reject the handshake. They make this decision based on their internal
list of expected neighbors (this is explained in section 7.2). This range of
node addresses is supposed to simulate a radio frequency range dedicated for
broadcasting.

7.2 Topology generation

A node is initialized with a list of node addresses which tells it which neighbors
it is supposed to have. This is used by the node to decide which introduction
messages from new nodes it is supposed to reject or accept. This list of nodes
is either supplied from the python script, which has many predefined networks
stored, or it may be supplied by hand, when starting a single node.

This is intended to simulate how nodes will not get a response when attempting
to contact potential neighbors which are out of radio range. This approach
makes it so that the network is always guaranteed to generate itself in the same
way every time, given the same configuration. While this is not representative
of how this would work in a real-world deployment scenario, this enables us
to reproduce network behavior and specific scenarios multiple times, making
the network characteristics easier to validate and experiment on.

7.3 environmental readings 43

7.3 Environmental Readings

While this section is more relevant to Erlend Karlstrøms thesis, it is still relevent
for Sigurd Karlstad, as the main focus of the OUs is to record environmental
readings. OUs observe the surrounding physical environment, and produce data
which reports on the state of it. In this project, this functionality is simulated
by using random generation, in order to populate the reports that the nodes
produce. Events are produced randomly during node sleep to simulate an
IR-sensor detecting movement and taking a picture with its IR-camera. The
humidity and oxygen counts uses random number generation to produce
averages within a certain range.

7.4 Battery Drain

As environmental readings from sensor components are simulated, so are
those components’ drain on the battery. The battery levels are represented
via a variable in the node that is initialized to 99.9, intended to represent a
percentage value. As the node goes through its cycles, a new value for the
battery is calculated based on two factors: the time since the node was first
initialized, and the amount of transmissions it has sent and received. The
calculation itself is very simple, and is not based on any kind of estimation
of battery drain in a real-world scenario. While the battery drain itself is not
relevant in a simulated system, it is very relevant in order to demonstrate the
score calculation and path selection features.

7.5 Simulated Duty Cycling

Between each awake-cycle the nodes sleep to simulate the duty cycling in the
system. The nodes use timestamps to keep track of when they last awoke and
slept, and checks them periodically during execution to keep time. While the
node is sleeping, it will reject any incoming transmission, as an OU which has
turned off its antenna would also be unavailable for communication. This is
implemented as the receiver-thread checking the awake flag before processing
the message, and if the flag says that the node is supposed to be sleeping, then
the response will be a custom error code. The error will be handled by the
other node as if the node did not respond at all, i.e. a timeout error.

44 chapter 7 implementation

7.6 Simulated Skew

While this section is more relevant to Sigurd Karlstads thesis, it is still relevant
to Erlend Karlstrøm as the local clock skew is a common problem for WSNs.
When nodes are disconnected from services like NTP, a computer’s RTC clock
will tend to skew away from the authoritative time. This skew is simulated in
the prototype by maintaining a variable in the node which is added to real
clock timestamps whenever the node needs to record the current time. This
variable is incremented by a factor after the sleep cycle ends, which simulates
clock drift during duty cycling. The factor is generated by the nodes upon
intialization, and is a random number in a certain range specified by the
configuration file. The randomness is meant to intentionally create differences
in the nodes’ clocks, as the clock drift of computing devices located in the
tundra may be influenced by a set of different factors. In [22], by Yik-Chung
Wu et al. they state that "In the long term, clock parameters are subject to
changes due to environmental or other external effects such as temperature,
atmospheric pressure, voltage changes, and hardware aging". This difference
is what the skew is supposed to simulate.

8
Validation
In this chapter we will aim to confirm the correctness of selected parts of the
system’s functionality as they were outlined in the architecture and design
chapters.

The General Network Validation,General Network Validation Results,Validation
Setup, and the relevant data are all shared between the author of this thesis,
and Sigurd Karlstad, where both deserve 50% credit for it.

However the Bundling Validation is created only by the author of this thesis,
and deserve full credit for it.

8.1 Validation Setup

All the following validations were done on a HP Z4 G4 Workstation with the
following specifications:

• CPU: Intel Xeon W-2123 8-core @ 3.900 GHz

• GPU: NVIDIA Quadro RTX 4000

• RAM: 32 GiB DDR4 Memory

45

46 chapter 8 validation

• OS: Ubuntu 20.04.1 LTS 64-bit

• Kernel Version: 5.4.0-56-generic

While doing the validation described in the subsequent sections, we will be
using the following settings if not specified otherwise:

• Simulated skew: In the range of -3 to 3 seconds (except 0).

• Cycles per Sync: Synchronization is performed once per awake-cycle.

• Bundling behavior: Optimal bundle size set to 3, with Partial Bundle
Policy.

• Score Weights: Path weight set to 2.0, Battery weight set to 4.0, Latency
weight set to 1.0.

• Battery Discharging: Enabled

8.2 Validation Design

8.2.1 General Network Validation

These network validations are aimed to test and validate the general archi-
tecture of the system and that it operates as was outlined in the architecture
and design sections. Parts we are going to investigate include: path generation,
sharing, acceptance, selection and removal, optimal parent calculation, and
rejoining after network disruption.

Path Discovery and Path Acceptance during Starting Phase

To validate how accurate and correct the path generation and path accep-
tance is, we need to test how the paths are shared and stored in the starting
phase. These tests are done because path generation, acceptance, and shar-
ing are core components of the system solution. It is also important because
without extended network knowledge(Outside the local "neighborhood"), data
propagation and time synchronization would be not possible.

Method: Using the network structure shown in figure 8.1. We start the network
in the starting phase, and read the paths off the reports to check if they are
correct. After running the test we expect that the generated and accepted paths

8.2 validation design 47

Figure 8.1: A network with two sinks. Figure shared with Sigurd Karlstad

Node Paths to Sink Node 0 Paths to Sink Node 6
0 [[1, 6],[2, 4, 5, 6],[2, 3, 1, 6],[1, 3, 2, 4, 5, 6]]
1 [[0],[3, 2, 0],[6, 5, 4, 2, 0]] [[6],[3, 2, 4, 5, 6],[0, 2, 4, 5, 6]]
2 [[0],[3, 1, 0],[4, 5, 6, 1, 0]] [[0, 1, 6],[4, 5, 6],[3, 1, 6]]
3 [[1, 0],[2, 0],[1, 6, 5, 4, 2, 0],[2, 4, 5, 6, 1, 0]] [[1, 6],[2, 0, 1, 6],[2, 4, 5, 6],[1, 0, 2, 4, 5, 6]]
4 [[2, 0],[2, 3, 1, 0],[5, 6, 1, 0],[5, 6, 1, 3, 2, 0]] [[5, 6],[2, 0, 1, 6]]
5 [[4, 2, 0],[6, 1, 0],[4, 2, 3, 1, 0],[6, 1, 3, 2, 0]] [[6],[4, 2, 0, 1, 6],[4, 2, 3, 1, 6]]
6 [[1, 0],[1, 3, 2, 0],[5, 4, 2, 0],[5, 4, 2, 3, 1, 0]]
7 [[2, 0],[2, 3, 1, 0],[2, 4, 5, 6, 1, 0]] [[2, 0, 1, 6],[2, 4, 5, 6],[2, 3, 1, 6]]

Table 8.1: Table of the paths which we expect to be generated in the stated configura-
tion. Table shared with Sigurd Karlstad

48 chapter 8 validation

will look similar in both cases to the paths shown in table 8.1.

Path Discovery and Path Acceptance during Operational Phase

To validate how accurate and correct the path generation and path acceptance
is, we need to test how the paths are shared and stored in the operational
phase. These tests are done because path generation, acceptance, and sharing
are core components of the system solution. It is also important because
without extended network knowledge(Outside the local "neighborhood"), data
propagation and time synchronization would be not possible.

Method: Using the network structure shown in figure 8.1, with the modification
of having no sinks initially. Let the network run for 2 cycles, then promote the
same node that was a sink in the previous experiment to a sink-node – Same
sink as shown in the figure, node 80. After running the test we expect that
the generated and accepted paths will look similar in both cases to the paths
shown in table 8.1.

Optimal Parent Calculation

To validate if a node is able to calculate and select an optimal parent from one
of the first steps in the known path list, and calculate this based on the local
knowledge of the neighboring nodes. These tests are important because it also
demonstrates a node’s ability to calculate a score for potential parents, and act
on the result in a correct manner. Switching between optimal parents as their
batteries drain, network-links decay or best paths become longer, is the way in
which the system implements decentralized load-balancing.

Method: Using the network structure shown in figure 8.2. Start a network with
bundling disabled and, generation of data continually so that the child node is
always sending data to its parent. Record the path score values for nodes the
current parent and the other potential one. A message is sent to the current
parent which will artificially adjust its battery. The score is scored with regular
intervals until the child node changes its parent node. Figure 8.3 describes the
method with figures.

Connection Disruption Recovery

To validate if: neighboring nodes are able to detect if a node is "dead", all
paths in the network that uses this node as a step are removed, and the "dead"
node is successfully re-integrated when it starts communicating again. This

8.2 validation design 49

Figure 8.2: A network with one sink. Figure shared with Sigurd Karlstad.

Figure 8.3: Figure describing the method for the optimal parent calculation validation.
Figure shared with Sigurd Karlstad.

50 chapter 8 validation

Figure 8.4: Figure describing the method for the connection disruption recovery vali-
dation. Figure shared with Sigurd Karlstad.

test is important because it demonstrates a node’s ability to join a network
after a disruption in communication, and the network’s ability to recalibrate
when previous members of the network join once again after being considered
dead. These are capabilities that contribute to the overall robustness of the
distributed system.

Method: Using the network structure shown in figure 8.2. Start a network
that is able to start and connect in a normal manner, and let it run. After a
few cycles, select one node to appear as though it is dead by not sending or
answering requests, so that it will be considered dead by the rest of the network.
Once the rest of the nodes are done with the recalibration process, resume
the connections and check if it is able to rejoin the network again. To verify
that the rejoining process has been successful, we record all paths: prior to
stopping the selected node’s communications, after it has been considered dead
by all neighboring nodes, and after it has joined the network again. Finally, the
paths in all three instances are checked for correctness. Figure 8.4 describes
the method with figures.

8.2.2 Bundling Validation

These bundling validations are aimed to test and validate the bundling and
report mechanisms of the system and that it operates as was outlined in the
architecture and design sections.

Eventual Arrival For Reports

To validate if: reports which are generated on the nodes all eventually ar-
rive at the homebase. This test will show that reports are not lost due to
some algorithmic error in the propagation mechanism, or the bundle merge
mechanism.

Method: Using the network structure Sca8 from figure 9.1, run the system

8.3 validation results 51

normally. Track the reports which are generated in between 0-60 cycles. Allow
the system to run until cycle 70 so that stragglers get a chance to arrive. Do
this for all of these settings: Bundling with Partial Bundle Policy, Bundling
without Partial Bundle Policy, and Bundling disabled. If there are no gaps in
the cycle numbers in the reports, then we will know that this validation was
successful.

8.3 Validation Results

8.3.1 General Network Results

Path Discovery and Path Acceptance during Starting Phase

After running the tests and comparing the results with the sink paths we
expected to see, shown in table 8.1, we then saw that although the paths were
not in the same order, the paths that were generated while in the starting
phase of the system’s life-cycle were themselves identical.

Based on this result we can conclude that the path discovery, path acceptance,
and path sharing is working as intended for this particular configuration, when
starting the network with a pre-configured sink. Although not shown here,
while developing and debugging the simulator we have also tested all the
configurations that we have made for it, and have found the same to be true
for all of them.

Path Discovery and Path Acceptance during Operational Phase

After running the tests and comparing the results with the sink paths we
expected to see, shown in table 8.1, we then saw that although the paths were
not in the same order, the paths that were generated while in the operational
phase of the system’s life-cycle were themselves identical.

Based on this result we can conclude that the path discovery, path acceptance,
and path sharing is working as intended for this particular configuration, when
promoting a node to a sink while in the operational phase. While developing
and debugging the simulator we have also tested all the configurations that
are available in the simulator, and while not shown here, have found the same
to be true for all of them.

52 chapter 8 validation

TRANSMISSION # TRMS REASON PARENT N 1 SCORE N 2 SCORE
1 Time-Synchronization Node 1 0.390813 0.668333
2 Content Propegation Node 1 0.423120 0.669333
3 Time-Synchronization Node 1 0.423120 0.702830
4 Content Propegation Node 1 0.430342 0.702830
(EVENT OCC.)
5 Time-Synchronization Node 1 0.430342 0.702830
6 Content Propegation Node 2 1.494231 0.702830
7 Time-Synchronization Node 2 1.494231 0.708385
8 Content Propegation Node 2 1.494231 0.715608

Table 8.2: Table describing the sequence of events where the node changed its parent.
The event mentiond involves setting NODE 1’s battery to 30%. Table shared
with Sigurd Karlstad.

Optimal Parent Calculation

By running the test and observing the transmissions and debug updates from
the nodes, we were able to create table 8.2 to show the sequence of events
and what the nodes estimated the potential parent’s scores to be at the given
times. Please remember that a lower score is better than a larger one, and that
these nodes are in the configuration shown in 8.2. The table shows that node
3 estimated the scores of its potential parents to be 0.39-0.43 for node 1 and
0.69-0.70 for node 2. After the reduction in battery caused node 1’s score to
spike to 1.49, node 3 was able to calculate that node 2 – with its 0.70-0.71 –
was the better option and select it as its preferred parent instead.

This shows that the nodes are able to incorporate changes into their score
estimates – changes which they extract from the metadata of requests that
they have exchanged with their parents. In this experiment we saw that node
3 updated its information one cycle after the change, and was able to choose a
new parent when the scores skewed in another node’s favor.

8.3 validation results 53

Connection Disruption Recovery

N PATHS
0
1 [[0], [3, 2, 0]]
2 [[0], [3, 1, 0]]
3 [[2, 0], [1, 0]]

Table 8.3: Paths before dis-
ruption. Figure
shared with Sig-
urd Karlstad.

N PATHS
0
1 [[0]]
2 [[0]]
3 []

Table 8.4: Paths after dis-
ruption. Figure
shared with Sig-
urd Karlstad.

N PATHS
0
1 [[0], [3, 2, 0]]
2 [[0], [3, 1, 0]]
3 [[2, 0], [1, 0]]

Table 8.5: Paths after rejoin.
Figure shared
with Sigurd
Karlstad.

After running the tests and recording the sink path lists in the 3 different stages
of the network, we were able to create the 3 tables as shown in table 8.3, 8.4,
and 8.5.

The first, table 8.3, shows that before inducing the artificial disruption the
nodes had all the sink paths that is expected from the configuration shown in
fig 8.2. The second, 8.4, shows that after the disruption, and having node 3
being considered dead by nodes 0, 1 and 2, and node 3 considering the others
dead from its perspective, the sink paths were reduced to just node 1 and 2
having a single path directly to node 0. The third, table 8.5, shows that after
node 3 stopped being disrupted, it was able rejoin the network, and the paths
that were present prior to the event were fully restored – for node 3 which lost
all its paths, and nodes 1 and 2 who lost their paths through node 3.

From looking at the first table 8.3, and the second table 8.4 we are able to
conclude that the system is able to remove the reduntant paths of "known" dead
nodes, so that it will not route through them. This means that the system’s sink
node removal functionality works as intended.

From looking at the second table 8.4, and the third table 8.5 we can also
conclude that nodes once believed to be dead, are given the paths that they
previously deleted upon rejoining, and that the other nodes can accurately
recognize this node as a routing option once again.

8.3.2 Bundling Results

Eventual Arrival For Reports

This validation was done in parallel with the experiment that measured the
delay in packages arriving in section 9.2.2. Looking at the homebase’s counter

54 chapter 8 validation

for how many reports it has received from each node, it was observed that
there was no gap in the reports’ cycle numbers. We can therefore conclude the
no reports are lost during propagation or merging.

9
Experiments
In this chapter we will aim to uncover the characteristics of the implemented
solution by measuring various aspects of it.

The General Network Experiments, General Network Results, Experiments
Setup, and the relevant data are all shared between the author of this thesis,
and Sigurd Karlstad, where both deserve 50% credit for it.

However the Bundling Experiments is created only by the author of this thesis,
and deserve full credit for it.

9.1 Experimental Setup

All the following experiments were done with the same setup as in Chapter 8,
section 8.1.

9.2 Experiment Design

For the experiments, we will be using a set of network configurations which
can be seen in fig 9.1. Each configuration has been procedurally generated by
following a set of rules, which are as follows:

55

56 chapter 9 experiments

• Start with a triangle (This is Sca1)

• Add two nodes, one with two links to the pre-existing nodes, and the
other with one link to any node.

– Repeat this step as needed

This set of configurations will represent a single network that scales progres-
sively.

9.2.1 General Network Experiments

These experiments aim to test the network’s stability and capacity to deal with a
growing number of nodes in different aspects, i.e. the system’s scalability.

Sink Path Scaling

This experiment aims to measure how much the number of sink paths grows,
as the number of nodes increases. More specifically, measure by what degree
the volume of local knowledge grows, based on the number of nodes present in
the network. This is important to investigate, because the list of sink paths is
not only added to or removed from, but also frequently iterated over to inform
decisions that takes the node’s placement in the network into account – such
as selecting which path to a sink is the best.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting
phase, and have all the nodes count the amount of paths they have. We add
these counts together and obtain a total amount of paths for each network
configuration.

Path Length Scaling

This experiment aims to measure how much the lengths of paths grow, as the
number of nodes increases. More specifically, it will find the average length
of the shortest paths for all the nodes in a network, and the average length
of the longest paths for the same nodes, and show the difference between
them. This is important to investigate, because the shortest paths are often
the most favourable routing options, and seeing how much they scale with the
network size is interesting. The longest paths are the least used because of
their length, but they take up the most space in the path list, and require the

9.2 experiment design 57

Figure 9.1: A set of network configurations which are namedSca1-Sca10. Figure shared
with Sigurd Karlstad.

58 chapter 9 experiments

most communication to propagate through the network, as every step in a path
essentially equals one transmission.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting
phase, and have all the nodes report back the length of their shortest path,
and the length of their longest path. These values are then averaged into a
representation for the network as a whole. When this has been done for all the
network configurations, they are then compared against each other.

Transmissions during starting phase

This experiment aims to measure how many transmissions were sent and
received during the starting phase, with a growing number of nodes. More
specifically, measure how many transmissions were needed to establish and
stabilize the network, from initialization to full operation, and how does this
amount grow for the different network configurations. This is important to
investigate, because the starting phase will be the space of time where the
network experiences the most activity in terms of transmissions in the least
amount of time. Since high energy consumption has been so closely linked
with wireless transmissions, in this case, poor scalability may be a contributing
factor to high energy usage during the starting phase.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting
phase, and have all the nodes record all the transmits done, which include all
sends, and all successful receives. These transmit numbers are added together,
which gives the total amount of transmissions during the starting phase across
all nodes.

Transmissions during new sink operation

This experiment aims to measure how many transmissions were sent and
received during the operation of adding a sink into the network and sharing
the paths to that sink, as the number of nodes in the network grows. This is
important to investigate, because the act of adding a new sink, generates a
lot of messages which needs to be propagated across the whole network, and
checking how the amount of transmissions grows based on a network size will
then show how the sink path sharing scales on its own.

Method: This experiment runs through all the different network configura-
tions shown in figure 9.1, from sca1-sca10. However, with one modification:

9.2 experiment design 59

the networks do not contain a sink initially. After the starting phase has fin-
ished, we send a message to node converting it into a sink. We then record
how many transmissions this event caused to be generated for each network
configuration.

Transmissions normal operation

This experiment aims to measure how many transmissions were sent and re-
ceived during the normal operations done in the operational phase. This is
important to investigate, because it will shows how the starting phase – charac-
terized by stabilization, and path sharing – contrasts with the communication
pattern in the operational phase, such as time synchronization, and data prop-
agation. It also shows that as long as the network remains stable, transmissions
will remain close-to linear, and will not show any spikes – which would be
indicative of moments when the network needs to recalibrate, such as when a
new sink is added and new paths needs to be propagated.

Method: This experiment runs through a selection of the different network
configurations shown in figure 9.1, using sca2, sca4, sca6, sca8, and sca 10. We
start the networks in the starting phase, and record all transmissions done
for 15 awake cycles(including the starting phase as the 0th cycle). No special
actions are performed, and the network is allowed to run normally.

9.2.2 Bundling Experiments

This section presents the method and reasoning behind the experiments which
aims to measure various aspects of the bundling and data propagation imple-
mentation.

Transmissions with Bundling, Bundling with Partial Bundle Policy,
and without bundling

This experiment aims to measure the difference in content transmissions when
the nodes have: Bundling enabled with Partial Bundle Policy enabled, Bundling
enabled with Partial Bundle Policy, and Bundling disabled all together. This
is important to investigate as it will show how much of an impact bundling
as a feature has on the nodes’ transmission count when forwarding debug
information.

Method: This experiment runs through a selection of the different network
configurations shown figure 9.1, using sca2, sca4, sca6, sca8, and sca10. We start

60 chapter 9 experiments

the networks in the starting phase, and record the content transmissions done
for 15 awake cycles(including the starting phase as the 0th cycle). No special
actions are performed during execution, and the network is allowed to run
normally. This setup is run 3 times, and each time with the following variation:
1. bundling enabled, and Partial Bundle Policy enabled; 2. bundling enabled,
but with Partial Bundle Policy disabled; 3. bundling disabled and Partial Bundle
Policy also disabled as a consequence. In this experiment, the bundling size is
set to 3.

Transmissions with different bundling sizes

This experiment aims to measure the impact on content transmissions when
the nodes are using different sizes for optimal bundles. Partial Bundle Policy is
going to be enabled, so the behavior will not be as predictable as if every node
simply saved up their fragments and propagated their optimal bundle on the
same cycle, thus making this an interesting case to investigate.

Method: In this experiment we will be using the following settings: network
configuration is Sca10 (fig 9.1), battery decrease turned off, bundling enabled
with Partial Bundle Policy enabled as well, the timespan will be from the
starting phase to 30 completed awake cycles. These settings will be used in 5
runs, where each run will be initialized with a different optimal bundle size –
the span of which will be: 1, 3, 5, 7 and 9.

Delay in packages arriving with bundling partial policy, and
without bundling

This experiment aims to measure the difference between two points in time:
when reports are generated, and when they reach the homebase. Varying
between bundling with partial policy, bundling without partial policy, and no
bundling, will allow us to see how the throughput is affected by these modes
in comparison with each other.

Method: In this experiment we will be using the following settings: network
configuration is Sca8 (fig 9.1), battery decrease turned off, optimal bundle size
set to 3 where applicable, the timespan will be from the starting phase to 70
completed awake cycles. As an addendum to that last point, we will only be
tracking reports that were generated up until the 60th cycle. The 10-cycle gap
is to give in-transit reports time to arrive to the homebase, but we are not
counting reports generated after the 60th. To calculate the differences, we
will be extracting the cycle number from each report and compare it to the
cycle number that the sink registered when it sent the report directly to the

9.3 experiment results 61

Figure 9.2: Graph showing how the number of total sink-paths increase with network
size. Figure shared with Sigurd Karlstad.

homebase.

9.3 Experiment Results

This section will present the results from conducting the experiments outlined
in the section 9.2.

9.3.1 General Network Results

This section present the results from conducting the general network experi-
ments outlined in section 9.2.1

Sink Path Scaling

After running the experiments while using the scalability testing configurations
shown in figure 9.1, we were able to create a graph containing the total amount
of sinks in the network at those specific configurations, shown in fig 9.2.

By looking at the graph in figure 9.2 we can see that by increasing the amount
of nodes in the system, which creates new possible paths, they end up grow-

62 chapter 9 experiments

Figure 9.3: Graph showing how the length of the shortest path on each node, and the
longest path on each node grows with the network size. Figure shared
with Sigurd Karlstad.

ing exponationally. This means that while the network size is low the path
sharing, and path acceptance algorithm works well, but when as the network
grows larger, the amount of paths will grow exponentially rather than run
proportionally to the number of nodes as it grows linearly.

In conclusion, the path sharing and path acceptance works well while the
network remains small or has few to no cycles in the topology. However, it
scales poorly to larger networks, containing multiple cycles. Considering that
WSNs often scale to thousands of nodes, this poor scaling in the space of just 3
to 21 nodes is rather severe.

Path Length Scaling

After running the experiments while scaling through the scalability testing
configurations shown in figure 9.1, we were able to create a graph containing
the averages of the longest paths and the shortest paths for all the network
configurations. The graph is shown in fig 9.3.

By looking at the graph in figure 9.3 we can see thatwhile increasing the amount
of nodes in the system, the average shortest path remains at approximately the
same length, with a minimal linear growth, while the average longest path is
growing more dramatically, but also linearly. This means that while the network

9.3 experiment results 63

Figure 9.4: Graph showing how the total number of transmissions in the starting
phase grows with the network size. Figure shared with Sigurd Karlstad.

size is growing, the shortest available path will increase far less on average
than the ones at the other end of the spectrum, which in turn means that the
paths that are most relevant for routing are growing the least, while the ones
least relevant are growing the most.

In conclusion, the shortest paths will on average grow minimally for each node
– at least according to the experiment. We may also note on the other hand,
that the paths shared between the nodes may contain so many steps – and
keeping in mind that these are the longest ones, and thus least favored for
routing – that they amount to little more than simply taking up a significant
amount of space and processing time. While their presence does provide a
guarantee of absolute redundancy – in that all paths are maintained as long as
they are not deemed useless, which means that as long as a theoretical path
exist in the network the nodes will know about it – it is not so obvious from
the authors’ point view whether or not this is a worthwhile trade-off.

Transmissions during starting phase

After running the experiments while scaling through each of the scalability
testing configurations shown in figure 9.1, we were able to create a graph
containing all the transmissions between nodes during the starting phase. The
graph is shown in fig 9.4.

By looking at the graph in figure 9.4 we can see thatwhile increasing the amount
of nodes in the system, the total amount of transmissions grows linearly with

64 chapter 9 experiments

Figure 9.5: Graph showing how the total number of transmissions during a new sink
operation growswith the network size. Figure sharedwith Sigurd Karlstad.

small increase between each configuration, except a big jump between sca9
and sca10, which we suspect is because of node 19 forming another topological
cycle with node 16 and node 5. The pathing opportunity which is subsequently
created needs to be propagated to the rest of nodes, and will be propagated to
all of them, because it is on the periphery of the sink and can therefore form
a detour for several existing paths. This will therefore result in several new
longer paths which uses node 19 as a step.

In conclusion, increasing the size of the network does not scale in exactly the
same way as the amount of transmissions needed during the starting phase. It
will mostly scale linearly with the network size and the number of nodes itself
is not necessarily indicative of how many transmissions are needed to complete
the initial handshakes and path sharing. However, when topological cycles
are added into the network, like in sca10’s case, the transmissions needed for
sharing the paths will increase significantly, because it creates a new route
through an "older" part of the network.

Transmissions during new sink operation

After running the experiments while scaling through each of the scalability
testing configurations shown in figure 9.1, we were able to create a graph
containing all the transmissions between nodes during a new sink operation
while running in the operational phase. The graph is shown in fig 9.5.

9.3 experiment results 65

By looking at the graph in figure 9.5 we can see that while increasing the
amount of nodes in the system, the total amount of transmissions required
when adding a new sink to the network, while running in the operational
phase, grows exponentially with the number of nodes. The reason for this
exponential growth is likely because of the way in which paths are shared
in the operational phase. Contrary to the starting phase where paths are
shared along with handshakes, and not their own individual events as in the
operational phase . We can see that this growth is consistent with the earlier
experiment in section x.x.x[ref to Sink Path Scaling secion] were the number
of sink paths generated in the network was investigated – the growth there
was also exponential.

In conclusion, introducing a new sink node in the operational phase, will scale
exponentially with the number of nodes. Thus, introducing a sink node in
the operational phase instead of the starting phase will reduce the network’s
overall longevity because of the increase in transmissions. Hence, introducing
a sink node in the starting phase(like in the previous experiment) and holding
it connected for the duration of the networks deployment cycle, would be more
beneficial compared to introducing it while in the operational phase.

Transmissions normal operation

After running the experiments, for 15 awake cycles, while scaling through a
selection of the scalability testing configurations shown in figure 9.1, we were
able to create a graph containing all the transmissions between nodes during
the normal operations in the operational phase. The graph is shown in fig
9.6.

By looking at the graph in figure 9.6 we can see that while increasing the
amount of nodes in the system, the transmissions from starting phase (between
cycle 0 and 1), the transmissions increased sharply with the number of nodes,
particularly with sca10. Further, we can see that the transmission amount
increases steadily in a linear fashion, but also that the growth factor seems to
be somewhat influenced by the number of nodes, sca6 increases more across
time than sca4 for example, but not by much.

In conclusion, running the system after the starting phase, shows that the
growth in transmissions is linear and the factor growth is higher the more
nodes are present. The is to be expected, as naturally, more nodes means more
activity in the network.

66 chapter 9 experiments

Figure 9.6: Graph showing how the total number of transmissions grows with the
network size when the system is allowed to start in the starting phase and
run over 15 cycles. Figure shared with Sigurd Karlstad.

9.3 experiment results 67

Figure 9.7: Graph showing how the total content transmissions grow when Bundling
is enabled with Partial Bundle Policy.

9.3.2 Bundling Results

This section present the results from conducting the bundling experiments
outlined in section 9.2.2

Transmissions with bundling with partial bundle policy, bundling
without partial bundle policy, and no bundling

After running the experiments while varying between the different propagation
modes – bundling with partial bundle policy, bundling without partial bundle
policy, and bundling disabled – the graphs in fig 9.7, fig 9.8, and fig 9.9 were
produced from adding together all the transmissions accumulated by the nodes
from sending content on the given cycle indicated by the x-axis. Note that the
transmissions are cumulative, so the number shown for cycle 4 for example,
is equal to the amount of transmissions which occurred in that specific cycle,
added on top of the amount from the previous cycle 3.

By looking at the graphs, we can see that there is a notable contrast between
having bundling enabled (fig 9.7 and fig 9.8), versus not (fig 9.9). It would
seem that for all the network configurations, the transmission amount was
reduced by a factor of 2-3, which is best seen on the far right 15th cycle. As an

68 chapter 9 experiments

Figure 9.8: Graph showing how the total content transmissions grow when Bundling
is enabled without Partial Bundle Policy.

Figure 9.9: Graph showing how the total content transmissions grow when Bundling
is disabled.

9.3 experiment results 69

Figure 9.10: Graph showing how content transmissions grow with different bundle
sizes.

example, the exact numbers for Sca10 on the 15th cycle is: 673 for 9.7, 585 for
9.8, and 1755 for fig 9.9, i.e. the number for fig 9.9 is 2.61 times higher for that
in 9.7, and exactly 3 times higher for that in 9.8.

In conclusion, it would appear that bundling has a significant impact on the
amount of transmissions that are performed by the nodes in the system.
Bundling with the Partial Bundle Policy is slightly worse than without, but
this is a feature that aims towards striking a balance between the extremes of
bundling and no bundling, and looking at how the lines are much smoother
in 9.7 than in 9.8 where the lines have these intermittent plateaus, shows that
reports are received more regularly, while not sacrificing that many savings in
transmissions.

Transmissions with different bundling sizes

After running the experiments while varying the optimal bundle size that nodes
are initialized with, the graph in 9.10 was produced by adding together all the
transmissions accumulated by the nodes from sending content on the given
cycle indicated by the x-axis. Note that the transmissions are cumulative, so the
number shown for cycle for example, is equal to the amount of transmissions
which occurred in that specific cycle, added on top of the amount from the
previous cycle 3.

By looking at the graphs, we can see that there is a large jump in the reduction

70 chapter 9 experiments

Node BWP BWOP BDIS
8080 0.350 1 0
8081 0.333 1 0
8082 0.117 1 0
8083 0.317 1 0
8084 0.333 1 0
8085 1.000 1 0
8086 0.883 1 0
8087 0.433 1 0
8088 1.467 1 0

Node BWP BWOP BDIS
8089 1.000 1 0
8090 1.567 1 0
8091 1.000 1 0
8092 0.333 1 0
8093 1.000 1 0
8094 0.883 1 0
8095 1.383 1 0
8096 0.667 1 0

Table 9.1: Table showing the average delay between reports being generated and
arriving at the homebase for every node in network. The unit of measure-
ment is cycles of sleeping and being awake. Label explanation: Node - ID
of a particular node, BWP - Bundling enabled with Partial Bundle Policy
enabled, BWOP - Bundling enabled with Partial Bundle Policy disabled, BDIS
- Bundling disabled.

of transmissions when moving from 1 to 3 in optimal bundle size. Interestingly,
it would seem that the difference between each size becomes lesser while
increasing it. An explanation for this might be the Partial Bundle Policy, which
causes the nodes to ignore the restriction on sending content if it is not
optimized. This might indicate that while less optimal bundles are sent because
of the optimal bundle size being high, the number of transmissions caused by
partial bundles remains the same since they are independent of this, thus
leading to the numbers in 9.10, where increasing the optimal bundle size will
yield diminishing benefits.

In conclusion, it would appear that increasing the optimal bundle size with
Partial Bundle Policy enabled, yields a large reduction in the number of trans-
missions at the start, but this reduction gets increasingly smaller for higher
sizes. This is likely because partial bundles are not affected by the optimal
bundle size, and simply becomes a larger part of the whole, while the number
of optimal bundles decreases as the optimal bundle size gets larger.

Delay in packages arriving with bundling partial policy, and
without bundling

After running the experiments while varying between the different propaga-
tion modes – bundling with partial bundle policy, bundling without partial
bundle policy, and bundling disabled – table 9.1 was produced by averaging the
differences across the 60 cycles into a single value for each node.

9.3 experiment results 71

What is immediately apparent is the variation in numbers for different nodes
when Partial Bundle Policy is enabled, as opposed to the other two where
the delay is uniform. To explain these numbers: when Partial Bundle Policy
was turned off, the unaggragated series had this pattern: 2, 1, 0, 2, 1,... which
indicates that reports were accumulated on the originating node until the third
was generated, which optimized the bundle and allowed it to be sent. The
average of a [2,1,0] series is 1, and so this was the case for all the nodes. When
bundling was disabled, every report had a delay of 0, because it would always
reach the homebase on the same cycle that it was generated. When Partial
Bundle Policy was on variation started appearing between the nodes, most
likely because the topology, Partial Bundle Policy and path selection suddenly
became relevant as factors, as these can be quite varied between nodes.

In conclusion, it would appear that the Partial Bundle Policy introduces some
inequality between the nodes when it comes to when their reports reach the
homebase – the range was 0.117 to 1.567 in average delay – while this was not
the case for the other two cases. Another interesting point is that the delay was
for some nodes higher on average than if bundling without Partial Bundling
Policy has been used, which is ironic considering that it was supposed to be a
mechanism for increasing throughput.

10
Discussion
This section contains a discussion about central topics pertaining to the system
presented in this thesis. The first sections under this paragraph will talk about
some of the problems, weaknesses, and trade-offs which are present in the
design.

10.1 Decentralized Architecture

The proposed solution is decentralized in the sense that no elections are
performed, and no nodes are appointed for special roles in the network. The
Sink role is not one for coordinating the other nodes, but rather just a gateway
for data transmission.

This approach avoids the difficulties and overhead inherent in election algo-
rithms, and lets the nodes maintain some autonomy, as they are the ones
deciding where to send data based on the knowledge that has been shared
in the network. This equality and autonomy is also advantageous for fault-
tolerance, as losing a node only impacts the routing options of the others, and
won’t cripple the network in a fundamental way (such as losing the coordinator
in a star-topology).

We may also ask why a coordinator, or a "dictator"-role is necessary in the
first place. Reports are unique – no copies exists in the overlay network, and

73

74 chapter 10 discussion

custody is transferred as reports are propagated, so there are no consistency
issues to resolve. The data is not aggregated either, so keeping track of which
data pieces have been processed, and who should be responsible for doing it,
is not a relevant question.

That being said, the routing scheme does produce a lot of transmissions by
itself. Whenever a change occurs (a sink loses connection, a node runs out of
power), every node in the system has to made aware of this, so that they can
adjust their knowledge base. The advantage for this design as opposed to, for
example Stormoen’s design in [20], is that paths are always shared and kept,
and only need to be updated if a change does happen in the network. The
nodes do not need to come to a consensus about which to choose, they simply
share knowledge when needed, and then make their own decisions.

Despite this, there are other downsides which will be discussed in the next
sections.

10.2 Load-Balancing

Load-balancing was a central issue for LEACH [7] and PEGASIS [11], but in the
proposed solution this aspect has been less prioritized. While Low-Power Mode
and the pathing metrics in concert may balance the load somewhat on their
own, some more extensive guarantees may be necessary to introduce.

Incorporating battery charge as a metric into the Path Selection algorithm was
a conscious decision to compensate for some of the benefits lost by not using a
LEACH-esque architecture. If this metric is weighted enough it will allow nodes
to eventually avoid paths to neighbors which are struggling with their power
reserves, supposing that they have other routing options available.

This might not be good enough, as nodes are only aware of their Neighborhood’s
battery reserves and not the other intermediate nodes further down a path. An
improvement that may be made here is to have the nodes keep information
about the battery levels of every unique node, and then gossip this further
through the network such that every node has a complete picture of other
nodes’ status.

10.3 scalabil ity 75

10.3 Scalability

As the experiments from Chapter 9 show, the apparent exponential growth for
the number of paths, and messages needed to spread paths in the network,
does not bode well for the network’s ability to scale with more populated
networks.

However, something to note about the network topologies which were used
in those experiments (9.1), is that they are quite interconnected and contain
a decent number of cycles. It may be that if we had used something more
resembling a tree – with no or few cycles – that we wouldn’t have been able to
pick up on that trend with under 25 nodes.

What it does show at least is that there is potential for this kind of growth.
What amount of paths would Sca12, Sca15, or Sca30 have generated?

This result is not surprising, as every change in the network triggers a flood of
messages, and every usable path is spread around to every node. So, what are
our options?

10.3.1 Suggestions for Improvement

Reducing the number of paths that are necessary to store seems like a relatively
simple issue to handle. Introducing some form of rule that a node can only keep
a static number of paths per sink would drastically reduce the total number, at
least if we assume that the number of sinks is quite low. We could also expand
our filter for paths by introducing some more criteria. We can for example
judge that if two paths have a certain amount of the same intermediate nodes
then they are similar enough to warrant a ’one or the other, but not both’
decision.

A problem with filtering paths that may be useful, would be if some important
nodes check out of the network, and this causes some other nodes to be
completely without paths, how are they supposed to get new ones? A possible
answer to this issue, may be to have the node petition its neighbors to share
their list, and if they too have none, then they again would ask their neighbors.
Not keeping a complete list would remove the guarantees that a node will
always be aware of the best paths given the network’s structure at any given
time, but it may be necessary to sacrifice this aspect of the routing scheme, if
scaling to the same sizes as traditional WSNs is to be a feasible prospect.

Another measure we could employ is to limit how many neighbors a node can
communicate with, despite being in proximity of each other. This would result

76 chapter 10 discussion

in a smaller number of path options overall, and fewer neighbors to keep track
of. If this were to be implemented, the choice of neighbors could somehow
be done strategically, to for example negotiate a link based on the paths that
would be formed via this connection. The nodes would select neighbors based
on what they had to offer, and limit how many they chose based on some
arbitrary number. A pitfall here would be that fringe nodes in range of only
one neighbor are excluded and, thus fragment from the network, because they
could not offer any routing options.

10.4 Node Monitoring

The current approach to monitoring of the nodes’ health and activity can de-
scribed as a self-reporting, and self-diagnostic mechanism. This may be enough
for reporting on: their place and activity in the overlay network (transmissions
performed, paths, neighbors, etc), and the integrity of the sensing instruments
(assuming that the device has a self-diagnostic feature), but is it enough for
detecting other, more critical failures? Complete node software crashes or
Byzantine failures are examples of issues which the current system will not be
able to pick up on.

Complete crashes is something that a node’s neighbors may able to pick up on,
as they will be attempting to send pings, but resolving the nuance between
a temporary failed link and complete failure, is not so obvious if potentially
unreliable connections are taken as a given.

10.4.1 Fault Inference from Analysis and Trends

Analysis of the reports and the nodes’ behavior may make it possible to infer
certain things. Having access to all of the reports, the homebase may be able
to detect failures or abnormal behavior which is not explicitly apparent in
the reports themselves. For example, the homebase may be able to infer that
something is wrong by keeping track of the delay in which reports arrive to
it – if the homebase has not received a report from a particular node for 10
cycles, and the average delay is around 2, then this may worthy of logging for
inspection.

10.4.2 Alternative: Falcon-esque Approach

An alternative way of monitoring these nodes may to introduce a separate
entity which can spy on the primary OU program, and report on its status, while

10.5 is partial bundle policy worth it? 77

remaining disentangled and independent from the OU. Something conceptually
similar to Falcon [10] spies could be used here to observe the OUs inner goings-
on as a separate entity, and report back for analysis.

This sort of suggestion raises some key questions:

• First, at what level would this entity operate? It could be implemented
as a separate hardware module in a micro-controller architecture which
could observe the other components – verify that the sleep schedule is
followed, sensors are operational, and so on. It could also be implemented
as a

• Second, regardless of how it is implemented, how would it communicate
its observations? It would need to use the same equipment as the OU to
connect with external servers, and is also under the same limitations that
we have discussed in chapter 3. In order to deliver data reliably, it would
essentially have to implement the same architecture as the OU’s overlay
network. It would also draw a significant amount of power transmitting
everything.

10.5 Is Partial Bundle Policy Worth It?

In the experiments (Chapter 9) section 9.3.2, we saw that the difference in
transmissions performed when using Partial Bundle Policy versus not, was
negligible (for Sca10 there was a 15% difference). When we measured for the
delay in when reports arrived at the homebase compared to when they were
generated, we found that having the PBP enabled, reduced the average delay
for some nodes, and increased it for others. For the nodes which had a reduction,
some of them had quite a drastic decrease, and they were more numerous by
a small margin than the ones which experienced an increase.

What can we conclude from this? It would seem that in terms of transmissions,
the PBP created a noticeable, but not substantial increase. Considering that the
PBP was meant to strategically allow certain nodes to send more frequently,
the fact that the increase is not higher is a positive result. Comparing this to
our delay experiments, it would seem that in exchange for these transmissions,
what we are getting is a reduction in average delay for the majority of our
nodes, and a quite substantial reduction at that for some of them.

Whether or not this is a good trade-off really comes down to how important
we consider throughput to be, versus keeping a low transmission count. And if
we do, by how much?

78 chapter 10 discussion

One way of resolving this would be to investigate how it would affect the
system’s ability to function. If this increase in transmissions would mean that
the nodes run out of power before we need them to, we may have to sacrifice
this increase in throughput. On the other hand, if removing the PBP means
that the reports are arriving at the homebase too late to be useful, then we
may have to spend those transmissions.

Another issue is the apparent inequality that arises between nodes. Is this a
useful feature if it seemingly hinders some nodes from reporting?

10.6 Simulator

This section will address some issues with the simulator/implementation which
are appropriate to mention.

Why Not a Out-of-the-box Solution?

At some point in the project, using a out-of-the-box network simulator, like for
example ns-3 [13], to develop the system was suggested as a way to test the
logic and algorithms without having go through the work of implementing a
simulator from scratch. However, it was advised that these types of simulators
are quite complicated to use and takes some time and experience to get used
to. More familiar tools like Golang, Python and the HTTP protocol were chosen
instead.

Automating Multiple Consecutive Runs

This is done to some degree already as the python script allows for running a
full network launch and sustain it over several cycles, before waiting for all the
nodes to quit, and then start up a new network.

Getting multiple runs like this with a different set of parameters automatically is
what is currently not present. The current implementation can’t run through all
of the listed experiments with one push of a button, but instead requires manual
modification to the source files in order to get the required settings.

10.7 missing validations/experiments 79

Keeping Time by Cycles, Rather Than Timestamps

The current implemenation uses timestamps and static time durations to keep
track of how long the sleep and awake cycles are supposed to be. This is a bit
specific to the Golang language, but the point is that it would have been better
if the nodes scheduled these things around specific clock times, like "sleep from
now till 12:02:30", and "remain awake until 12:03:30", instead of simply making
a timestamp when it awakes, and then checks when the clocks has gone past
that timestamp plus a given duration like now. By doing this we can statically
align a cycle to a specific timeframe, and be sure that a node keeps to it.

10.7 Missing Validations/Experiments

This section will mention some experiments that would be appropriate to
conduct, but were not due to a lack of time.

10.7.1 Sink-paths while varying the number of sinks

Measuring how the number of sink-paths grow with different numbers of
active sinks, may be interesting to investigate as the number of total paths
will be directly linked with the number of sinks. The question will be by
precisely how much it increases with more sinks. In the author’s estimation,
this would most likely scale linearly with the number of sinks in the same
network topology.

10.7.2 Measuring CPU and memory performance

It was attempted to measure how the nodes performed in terms of CPU per-
formance and memory utilization with a golang library called pprof [6]. This
would allow for measuring how certain aspects of the node source code per-
formed and provide some analysis.

In the attempt, the CPU profiliing was difficult to understand and did not reveal
anything useful about the application. During some runs, it would not show
anything at all even. The memory profiling was not much better – the only
useful piece of information we were able to draw from it was that procedures
from golang’s http library used the majority of the memory.

Due to these difficulties, and a lack of time, this endeavour was ultimately
abandoned.

80 chapter 10 discussion

10.7.3 Influence of bundle size on delays

Measuring how varying the bundle size would influences delays, may be inter-
esting to investigate as the bundle size will have a direct influence on the delay
between when reports are generated, versus when they arrive at the homebase.
This would be especially true if the Partial Bundle Policy was not a factor, as
reports would simply accumulate on their originators until the bundle reaches
its optimal size. However, how things would play out with Partial Bundle Policy
enabled is more muddled, as this introduces a variable which is different for
each node.

10.7.4 Validating Partial Bundle Policy

The lack of a validation of the Partial Bundle Policy is quite a serious one, given
how much attention has been given to it as a feature. While doing test-runs in
the development phase, it seemed to be functional when it was implemented
– however, a structured approach where its correctness is investigated with
different parameters and some formal criteria, should have been included in
this thesis.

10.8 Improvements for Bundling and Debug Data

This section discusses some changes or features which may be added to im-
prove the debug data generation, and bundling construction and propagation
functionality.

10.8.1 Bundle Timeout

Adding a timeout to bundles is something that is already mentioned in the
original bundle specification document [18]. Adding this is as a feature for our
design may look something like this: attach a timestamp to every constructed
bundle, or bundle fragment. This will then be used during certain instances
(perhaps when nodes are about to send a bundle) to determine how long this
bundle has been circulating in the network. If it exceeds a certain arbitrary limit,
it will be tagged as processed, not be further propagated, and then ultimately
removed, without having reached the homebase.

While this would leave holes in the homebase’s record, and prevent a complete
history of debug data from being put together, it might be a necessary pre-
cautionary measure to prevent old bundles from circulating perpetually due

10.8 improvements for bundling and debug data 81

to a bug of some kind. If these bundles are allowed to accumulate it could
eventually fill up the storage if whichever node is stuck with them, and be
tatamount to a critical failure as the node is enable get rid of them.

10.8.2 Flush

Flushing a node’s system may provide the same kind of precautionary measure
against old data slowly building up and causing failures as Bundle Timeouts.
Flushing caches, refreshing the memory and checking the persistent storage
for old fragments which no longer serve a purpose are actions which fall under
this kind of "housekeeping".

10.8.3 More Extensive Debugging

The current method of generating a summarizing report about the state of
a node and its activity is a relatively simplistic one. The way that report
generation is implemented, they will be relatively small in terms of size in
bytes – the only elements which are not single fields of integers or short strings,
are the sink-path and neighbor lists.

However, this is by no means exhaustive. A more extensive system of error, and
event logging may be implemented. Notable events may be, for example, when
a node deems another as ’dead’ after failing to contact it, and it could then
generate a log entry with some details. Core dumps, and raw data from sensing
instrument self-diagnostics are also potential elements to consider here.

11
Further Work
This chapter will discuss some future paths for this project, along with some
more radical changes to the design.

11.1 Implementation with Micro-controllers

In the survey on Habitat Monitoring by Oliveira et al [14], the use of micro-
controllers and similar architectures are put forward as a more energy-efficient
alternative to using miniaturized computers like Raspberry PIs.

By following this line of reasoning, fig 11.1 shows what a micro-architecture
implementing the OUs described in thesis may look like. The efficacy of this
design may be limited due to the author’s lack of experience working with this
kind of hardware.

Suggesting an architecture based on micro-controllers for use on the tundra
may be amoot point, as Raïs et al [17] state in their paper that such architectures
have, at best, limited support for more advanced network functionalities, which
may be required for our purposes.

83

84 chapter 11 further work

Figure 11.1: A diagram showing a possible adaptation into a micro-controller based
hardware architecture

11.2 relay nodes 85

11.2 Relay Nodes

The OUs are placed according to where users believe they may get the best/-
most sensor readings in the deployment environment. However, this set of
placements does not necessarily coincide with the set of placements where the
best antenna reception is. Relay nodes could be introduced as non-sensing OUs
which are placed strategically in the environment to maximize the antenna
reception, patch holes in a fragmented local cluster, or serve as optimal neigh-
bors in some way. While they are not strictly sensing instrument, they could
conform to the size, and non-obtrusion requirements that the OUs would be
under.

11.3 Virtual Nodes

Some parts of a network may experience a rather high degree of traffic and
activity. Most likely, these are nodes which are either sinks, or centrally placed
such that they are frequently chosen for routing by other nodes. Virtual nodes
may provide a way to offload some stress off these OU by building horizontally.
A couple of relay nodes could be placed in the same location as a sensing node
and form a sub-cluster where each member appears the same to outside nodes.
They would then distribute work and responsibilities between each other using
a separate scheme.

11.4 Content-Delivery Protocol Adaptation

The current debug data propagation scheme is in principle a content-delivery
protocol. It could also be used for propagating sensor data itself like images,
and raw data from readings, since there are no hard requirements for what
the message payloads should contain or how large they should be.

11.5 Ideas from DTN: Heterogeneous Support

The earlier work in DTNs talks about providing support for interoperability
between heterogeneous networks. This topic was not focused on in this the-
sis, but it is relevant considering that WSNs are often implemented using
different protocols and architectures from the ones used in more substantial
computers. Gateways are often used as hubs to mediate between these WSNs
networks, and more common types like LAN and the internet. Implementing a

86 chapter 11 further work

convergence layer on the OUs would enable a future OU-network to consists
of heterogeneous nodes which are doing different things, while communicate
effectively with a variety of external entities.

12
Conclusion
In this thesis, we have described how a prototype for a Wireless Sensor Network
was designed and implemented. Nodes, or Observational Units, in the system
are designed to generate data about the surronding physical environment, store
this data persistently, generate a report describing its state and activity, and
then propagate this along a path to a suitable sink, which will relay it to an
external server. The nodes can dynamically discover neighboring nodes within
their range, and gossip knowledge about where sinks are in the network. This
enables each OU to send their data outside the local cluster, by relying on other
nodes to forward their data. For this to function, it is presumed that at least
one OU is a sink. While propagating data, the OUs will attempt to combine
multiple pieces into a bundle, up to a certain limit, which will serve to reduce
the total amount of transmissions, in a bid to conserve energy.

Results from running validation shows that the implemented prototype func-
tions as intended, but experiments have revealed apparent weaknesses. The
number of paths which are shared in gossiping shows an exponential growth
when the number of nodes in a cluster grows linearly. The experiments into
bundling andmonitoring-data propagation shows that combining data together
causes a reduction in these types of transmissions by a factor equal to that
of the number of data fragments which are combined, however the Partial
Bundle Policy measure to increase throughput for fringe nodes has unexpected
consequences.

While the prototype system worked as planned in the design, there are several

87

88 chapter 12 conclusion

avenues for improvement which could be explored to tackle the problems
and weaknesses which has been revealed. The most pertinent of which is the
scalability problem,which can potentially be alleviated by imposing restrictions
on how many paths a node can maintain at once, and using additional criteria
in path acceptance which limits how similar paths can be. In addition to
these improvements, a future system could explore how this system may be
implemented as a micro-architecture, as this seems to be the most realistic
choice of hardware given the constraints that are imposed upon deployed
devices on the tundra.

Bibliography
[1] Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson, Robert Durst,

Keith Scott, Kevin Fall, and Howard Weiss. Delay-tolerant networking
architecture. 2007.

[2] COAT. Coat camera traps image. https://coat.no/Research/Data/COAT-
Camera-traps. Accessed: 05.05.2021.

[3] Kevin Fall and Stephen Farrell. Dtn: an architectural retrospective. IEEE
Journal on Selected Areas in Communications, 26(5):828–836, 2008.

[4] Zack ’gizak’ Guo. termui - golang terminal dashboard. https://github.
com/gizak/termui.

[5] Golang. Golang official website. https://golang.org/. Accessed:
05.05.2021.

[6] Golang. Golang profiling tool. https://golang.org/pkg/runtime/pprof/.
Accessed: 13.05.2021.

[7] W.R. Heinzelman,A. Chandrakasan,andH. Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In Proceed-
ings of the 33rd Annual Hawaii International Conference on System Sciences,
pages 10 pp. vol.2–, 2000.

[8] Stien A. Ims R.A., Jepsen J.U. and Yoccoz N.G. Science plan for coat:
Climate-ecological observatory for arctic tundra. Fram Centre Report
Series 1, pages 0–177, 2013.

[9] Sigurd Karlstad. "clock synchronization between observational units
in the arctic tundra". Master’s thesis in computer science, UiT: Arctic
University of Norway, 2021.

[10] Joshua B Leners, HaoWu,Wei-Lun Hung,Marcos K Aguilera, andMichael
Walfish. Detecting failures in distributed systems with the falcon spy

89

https://coat.no/Research/Data/COAT-Camera-traps
https://coat.no/Research/Data/COAT-Camera-traps
https://github.com/gizak/termui
https://github.com/gizak/termui
https://golang.org/
https://golang.org/pkg/runtime/pprof/

90 bibl iography

network. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 279–294, 2011.

[11] S. Lindsey and C.S. Raghavendra. Pegasis: Power-efficient gathering
in sensor informationystems. In Proceedings, IEEE Aerospace Conference,
volume 3, pages 3–3, 2002.

[12] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless sensor networks for habitat monitoring. In Pro-
ceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 88–97, 2002.

[13] NS3. ns-3, network simulator. https://www.nsnam.org/. Accessed:
05.05.2021.

[14] Luís ML Oliveira and Joel JPC Rodrigues. Wireless sensor networks: A
survey on environmental monitoring. JCM, 6(2):143–151, 2011.

[15] Python. Python official website. https://www.python.org/. Accessed:
05.05.2021.

[16] Wolf-Bastian Pöttner, Felix Büsching, Georg von Zengen, and Lars Wolf.
Data elevators: Applying the bundle protocol in delay tolerant wireless
sensor networks. In 2012 IEEE 9th International Conference on Mobile
Ad-Hoc and Sensor Systems (MASS 2012), pages 218–226, 2012.

[17] Issam Raïs, John Markus Bjørndalen, Phuong Hoai Ha, Ken-Arne Jensen,
Lukasz Sergiusz Michalik, Håvard Mjøen, Øystein Tveito, and Otto An-
shus. Uavs as a leverage to provide energy and network for cyber-physical
observation units on the arctic tundra. In 2019 15th International Confer-
ence on Distributed Computing in Sensor Systems (DCOSS), pages 625–632,
2019.

[18] Keith Scott and Scott Burleigh. Bundle protocol specification. 2007.

[19] Sunil Kumar Singh, Prabhat Kumar, and Jyoti Prakash Singh. A survey
on successors of leach protocol. IEEE Access, 5:4298–4328, 2017.

[20] Camilla Stormoen. "peer observations of observation units". Master’s
thesis in computer science, UiT: Arctic University of Norway, 2018.

[21] Øystein Tveito. "beneath the snow – developing a wireless sensor node
for remote locations in the arctic". Master’s thesis in computer science,
UiT: Arctic University of Norway, 2020.

https://www.nsnam.org/
https://www.python.org/

bibl iography 91

[22] Yik-Chung Wu, Qasim Chaudhari, and Erchin Serpedin. Clock synchro-
nization of wireless sensor networks. IEEE Signal Processing Magazine,
28(1):124–138, 2011.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of definitions
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Author's Contribution:
	1.2.2 Sigurd Karlstad's Contribution:
	1.2.3 Collaboration:

	1.3 Limitations
	1.4 Thesis Outline

	2 Background
	3 Design Principles
	3.1 Power Scarcity
	3.2 Energy-efficiency
	3.3 Unreliable Connectivity - Internal
	3.4 Unreliable Connectivity - External
	3.5 Habitat Non-interference
	3.6 Persistent Data Storage

	4 Related Work
	4.1 Wireless Sensor Networks
	4.2 Delay-Tolerant Networking
	4.3 Environmental Monitoring

	5 Architecture
	5.1 Topology and Communication
	5.2 Duty Cycling
	5.3 Neighbors
	5.4 Sinks
	5.5 Paths
	5.6 Data Generation: Reports
	5.7 Data Propagation
	5.8 Time Synchronization

	6 Design
	6.1 Starting Phase and Operational Phase
	6.2 Generating Paths (How do we find paths?)
	6.3 Path Selection (How do we select paths?)
	6.4 Monitoring Data and Reports
	6.5 Mailboxes
	6.6 Constructing Bundles / Data Combination
	6.7 Sending Partial Bundles

	7 Implementation
	7.1 Introduction Broadcast
	7.2 Topology generation
	7.3 Environmental Readings
	7.4 Battery Drain
	7.5 Simulated Duty Cycling
	7.6 Simulated Skew

	8 Validation
	8.1 Validation Setup
	8.2 Validation Design
	8.2.1 General Network Validation
	8.2.2 Bundling Validation

	8.3 Validation Results
	8.3.1 General Network Results
	8.3.2 Bundling Results

	9 Experiments
	9.1 Experimental Setup
	9.2 Experiment Design
	9.2.1 General Network Experiments
	9.2.2 Bundling Experiments

	9.3 Experiment Results
	9.3.1 General Network Results
	9.3.2 Bundling Results

	10 Discussion
	10.1 Decentralized Architecture
	10.2 Load-Balancing
	10.3 Scalability
	10.3.1 Suggestions for Improvement

	10.4 Node Monitoring
	10.4.1 Fault Inference from Analysis and Trends
	10.4.2 Alternative: Falcon-esque Approach

	10.5 Is Partial Bundle Policy Worth It?
	10.6 Simulator
	10.7 Missing Validations/Experiments
	10.7.1 Sink-paths while varying the number of sinks
	10.7.2 Measuring CPU and memory performance
	10.7.3 Influence of bundle size on delays
	10.7.4 Validating Partial Bundle Policy

	10.8 Improvements for Bundling and Debug Data
	10.8.1 Bundle Timeout
	10.8.2 Flush
	10.8.3 More Extensive Debugging

	11 Further Work
	11.1 Implementation with Micro-controllers
	11.2 Relay Nodes
	11.3 Virtual Nodes
	11.4 Content-Delivery Protocol Adaptation
	11.5 Ideas from DTN: Heterogeneous Support

	12 Conclusion
	Bibliography

