
Faculty of Science and Technology
Department of Computer Science

Particular: A Functional Approach to 3D Particle Simulation

Marius Indreberg
Master Thesis Spring 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Simulating large bodies of entities in various environments is an old science
that traces back decades in computer science. There are existing software
frameworks with well built mathematical models for approximating various en-
vironments. These frameworks are however built on imperative programming
fundamentals often following a object oriented paradigm.

This thesis presents Particular a 3d particle simulator software library for
simulating movements of independent entities on a time dependant three-
dimensional vector field using a functional approach. Particular uses functional
programming paradigms to create a quite customizable, flexible and maintain-
able library based on lambda functions with all relevant parameters encap-
sulated in closures. Particular uses a functional implementation of a Entity
Component System software architecture usually found in game development
to create a highly performant, flexible, data oriented design. Which uncouples
the data with the aforementioned lambda functions that predicate particle
behaviour.

According to evaluations particular shows a significant performance increase
with regards to execution time compared to comparison to other contemporary
trajectory simulation frameworks such as opendrift. With some evaluations
showing a 900% faster execution time under certain conditions.

Acknowledgements
I would like to thank Jonas Juselius and John Markus Bjørndalen for supporting
me with the technical aspects of this thesis, I could not have completed this
thesis without either of you.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Scope and Assumptions . 2
1.3 Context . 2
1.4 Method and Approach . 2
1.5 Contributions . 4
1.6 Outline . 4

2 Background 5
2.1 Vector Fields . 6
2.2 Solving Ordinary Differential Equations 6

2.2.1 Euler’s method . 7
2.2.2 Runga-Kutta . 7
2.2.3 Geographic Projection vs Coordinate projection . . . 8

2.3 NetCDF . 8
2.4 K-D Tree . 8
2.5 Garbage Collection in .Net 10
2.6 Entity Component System 11
2.7 Particle Simulation . 12

2.7.1 Grid Mesh . 12
2.7.2 Time steps . 13
2.7.3 Interpolation . 14
2.7.4 Ocean Drift . 16

2.8 Related works . 18
2.8.1 Opendrift . 18
2.8.2 Garnet . 19

v

vi contents

3 Design 21
3.1 Requirements . 22

3.1.1 Non-Functional Requirements 22
3.1.2 Functional Requirements 23

3.2 Architecture . 23
3.2.1 Overarching approach 23
3.2.2 Splitting the system into components 24

3.3 Particular . 25
3.4 Grid . 26

3.4.1 Elements and Nodes 28
3.4.2 Config . 28

3.5 Particle Manager . 28
3.5.1 Particles . 30
3.5.2 Systems . 30

3.6 Queue . 31
3.7 Writer . 32

3.7.1 Buffer . 32

4 Implementation 33
4.1 Language choice . 34

4.1.1 Choosing F# . 34
4.1.2 Potential drawbacks of functional programming and f# 34

4.2 Setting up the domain specific language 35
4.3 Implementing the Particular components 37

4.3.1 Implementing Nodes And Elements 37
4.3.2 Implementing the Grid 38
4.3.3 Particles . 43
4.3.4 Particle Manager . 44
4.3.5 Systems . 45
4.3.6 Implementing the Queue 46
4.3.7 Implementing the Writer 47
4.3.8 Implementing Simulation 48

4.4 Ocean drift implementation 50
4.4.1 Creating environment readers 50
4.4.2 Particle Lambdas . 50
4.4.3 Setting the queue behaviour 52
4.4.4 Putting it all together 53

5 Alternate Implementations 55
5.1 Alternate Approaches: Particle Update 56

5.1.1 Individual Lambda Approach 56
5.1.2 Grid-Based Particle Approach 56
5.1.3 Using the Garnet framework 56

5.2 Alternate Approach: Queues 57

contents vii

5.2.1 Functional Queue 57
5.3 Alternate Approach: Indexing neighbouring elements 58

5.3.1 Breadth first approach 58
5.4 Alternate Approach: Write Buffers 58

5.4.1 Single Buffer . 58

6 Evaluation 59
6.1 Experimental Setup . 60

6.1.1 Benchmarkdotnet 60
6.1.2 Simulation Data . 61

6.2 Profiling of Particular . 62
6.3 Indexing Neighbouring Elements 63

6.3.1 Performance cost of not indexing 63
6.3.2 Kd-Tree vs Breadth first indexing 64

6.4 Writing Particle Trajectories to Disk 65
6.4.1 Buffer size evaluation 65
6.4.2 Comparisons with alternate buffer approaches 66

6.5 Updating Particles: Alternate approaches 67
6.6 Queues: Functional Queue vs .Net Concurrent Queue 68
6.7 Interpolation . 70

6.7.1 Effects of interpolation 71
6.8 Particular vs Opendrift . 72

6.8.1 Execution time comparison 72
6.8.2 Profiling of opendrift 73
6.8.3 Sanity check . 74

7 Discussion 77
7.1 Opendrift vs Particular . 78

7.1.1 Architecture of Opendrift 78
7.1.2 Particle Tracking . 78
7.1.3 Reader . 80
7.1.4 Advection . 81
7.1.5 Simulation Model 81

7.2 Optimizations . 82
7.2.1 Garnet vs Particular 82
7.2.2 Reading environment data 83
7.2.3 Improving type safety with F# crates 84

7.3 Interpolation . 87

8 Conclusion 89
8.1 Future Work . 90

List of Figures
2.1 Vector Field Example. Arrows signify arbitrary vectors within

the field. 6
2.2 K-d tree in 3 dimensions. (By Btyner - Own work, CC BY-SA

3.0, https://commons.wikimedia.org/w/index.php?curid=37229011)
9

2.3 Visualization of unstructured grid data, dots are nodes creat-
ing triangular cells in the vector field. 12

2.4 Element and its neighbours, Neighbours have green borders. 13
2.5 Particle skipping red element due to time step being too large. 14
2.6 System of equations to find the weights of V1, V2 and V3 in a

barycentric coordinate system and an arbitrary point 15
2.7 Applying values to the calculated weights 15
2.8 Clough-Tocher triangle . 16
2.9 Stokes drift wave after three periods. (By Kraaiennest - Own

work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37229011) 17

3.1 Particular execution flow. 24
3.2 Particular Component Relationships and layers 25
3.3 Search visualization, blue star represents the particle, green

triangle the previously known position, yellow the nearest
neighbouring elements, red the next nearest neighbours . . . 27

3.4 Particle Design: Visualization of a simulation of two particles
types, A and B, with two different arrays of data. Also pic-
tured a list of functions which are mapped onto the correct
array based on the type in each update loop. 29

6.1 Partial view of storholmen in vector field form during parti-
cle simulation. Blue pixels are active particles. Red pixes sig-
nify particles that are stuck. White pixels representing nodes
forming triangular elements. 62

6.2 Indexed (red) vs Not indexed (blue). 64
6.3 Buffer Size Execution Time evaluation. 65
6.4 Buffer execution time comparison. Blue = Double Buffering.

Red = Single Buffer. Green = No Buffer 66

ix

x l ist of figures

6.5 Alternate approaches and current implementation run time
performances . 68

6.6 Alternate approach profiling 69
6.7 Bar plot of queue test. Y-axis shows time taken. Each bar rep-

resent a specific number of messages and test type, i.e func-
tional or concurrent queue test. 70

6.8 Interpolation performance evaluation. X-Axis: Amount of par-
ticles. Y-Axis: Time Taken in seconds. Blue line: No interpola-
tion. Green line: Interpolation. 71

6.9 Displacement of particles with interpolation vs no interpolation 72
6.10 Particular vs Opendrift, Particular represented by blue, open-

drift by green. 73
6.11 Particular vs Opendrift result comparison. Yellow = Particu-

lar, Green = Opendrift . 75

List of Tables
6.1 Hardware specifications for evaluations 60
6.2 Benchmarkdotnet legend 61
6.3 Opendrift Profiling Results 63
6.4 Kd Tree index time comparison of 20 neighbours vs indeing 3

rings (24 neighbours) . 64
6.5 Table of queue benchmark results 69
6.6 Opendrift Profiling Results 74

xi

1
Introduction
In computational oceanography there is often a need to simulate the drift,spread
and fate of physical entities in the ocean. Examples include spreading and
dispersion of pollutants or chemicals, spreading of parasites or viruses and
sedimentation processes. These entities may grow very large in numbers with
varying complexities in calculating their drift within their respective lifecy-
cles.

There already exists numerous software frameworks for modelling trajectories
of objects drifting in the ocean. Popular Lagrangian packages are OpenDrift
[1]and OceanParcels [2], both written in the Python programming language
[3].In the Eulerian space, FABM [6] is an example of a biogeochemical transport
model written in Fortran.

In this thesis we will introduce particular. A functional first 3d particle simulator
prototype. Particular will use a functional approach to particle simulation,
which lends itself very nicely to parallelization. Particular also gets inspiration
from game development software architecture to ensure performance and
maintainability without giving up flexibility. Maximizing the use of the generic
lambdas to ensure a user can create their own simulation withminimal amounts
of code while getting a performant output.

1

2 chapter 1 introduction

1.1 Thesis Statement

This thesis shall investigate the feasibility of developing a fully functional
particle simulator in the functional programming paradigm. Which operates
as performant and extendable as other contemporary libraries developed in
the object oriented programming paradigm, without sacrificing functional
programming cornerstones such as immutability and type safety.

1.2 Scope and Assumptions

This particle simulation will rely entirely on oceanographic mathematics pro-
vided by the opendrift library, and will be focusing on the mathematical aspects
of the particle simulation in the smallest degree possible. The end goal and
scope of this thesis is to create a functioning particle simulator which may ac-
curately approximate oceanographic trajectories to the extent that it is usable
in a real world application.

There will not be any detailed mathematical proofs or test of correctness with
the mathematical advection functions, as it requires a level of mathematical
prowess that we simply do not currently possess.

1.3 Context

This thesis was written in the context of Serit IT partner who is in the process
of developing a technology stack for analyzing oceanographic data. With this
particle simulator being but one layer of the stack.

1.4 Method and Approach

The Task Force on the Core of Computer Science presented in their final report
a way to divide the discipline of Computing into distinct paradigms. The three
major paradigms are:

Theory which is rooted in mathematics and consists of four steps, followed in
the development of a coherent and valid theory:

• First, one characterizes the objects of study, or definition.

1.4 method and approach 3

• Then, hypothesize possible relationships between them, or theorem.

• Further, determine whether the relationships are true, or proof.

• Lastly, interpret the results.

A mathematician expects to iterate on these steps, as they encounter errors or
inconsistencies.

Abstraction which is rooted in the experimental scientific method and follows
four steps when investigating a phenomenon:

• Form a hypothesis on the phenomenon.

• Construct a model to make a prediction.

• Design an experiment to collect data.

• Analyze the results.

A scientist expects to iterate these steps, as they encounter problems such as
when a model’s predictions disagree with experimental evidence. Modeling is
another word for this paradigm.

Design which is rooted in engineering and consists of four steps, followed in
the construction of a system to solve a problem:

• State the requirements.

• State the specifications.

• Design and implement the system.

• Test and evaluate the system.

An engineer expects to iterate on these steps, as they encounter issues such as
the system not upholding requirements to a satisfactory level.

In this thesis, the last paradigm will be worked, design. We state the require-
ments and specifications of the system associated with our conjecture. Further,
we present a design for a system, implement the requirements needed for our
system, and then create a prototype based on the design. We then evaluate
our prototype through a series of evaluations and benchmarks.

4 chapter 1 introduction

1.5 Contributions

This thesis contributes by providing a prototype implementation of a 3d particle
simulator written in the F# programming language, following the functional
programming paradigm. This prototype is open source and may be found at
the owners github account and is also provided as a zipped attachment as a
part of this thesis.

1.6 Outline

The thesis is structured as follows:

Chapter 2: Background Details the technical background of the mathematical
concepts encountered during this thesis as well as other computer science
based concepts and data structures. Background Also contains an overview of
related works.

Chapter 3: Design Describes the architecture and design choices of particu-
lar.

Chapter 4: Implementation Describes the implementation specific details
which were encountered when creating the particular prototype.

Chapter 5: Alternate Approaches Details all the alternate approaches which
could have been used. Which will be referenced in the evaluation chapter as
basis for comparisons.

Chapter 6: Evaluation Details the findings of the experiments, how they were
conducted and what the experiment results may imply.

Chapter 7: Discussion Describes the findings of the evaluations, comparisons
to opendrift and other relevant frame works.

Chapter 8: Conclusion Summarizes the thesis and describes potential avenues
for hfuture work.

2
Background
This chapter will detail all the technical background required to understand
all the concepts provided with this thesis.
Section 2.1 Will explain vector fields.
Section 2.2 will go through various ways of solving ordinary differential equa-
tions.
Section 2.3 will detail the concept of netCDF formatted files.
Section 2.4 describes KD-trees.
Section 2.5 outlines the .net garbage collector.
Section 2.6 will explain the ECS data architecture.
Section 2.7 describes and defines concepts with regards to particle simulation
which will be referred to in the rest of the thesis.
Section 2.8 Will go through related works.

5

6 chapter 2 background

2.1 Vector Fields

Figure 2.1: Vector Field Example. Arrows signify arbitrary vectors within the field.

A vector field is an assignment of a vector to each point in a subset of space. A
vector field can be thought of as a collection of vectors over a set bound, each
vector independent of each other pointing in arbitrary directions. Vector fields
are often used to model speed and direction of a moving fluid through space.
A visualization of an example vector field composed of arbitrary vectors can be
viewed in figure 2.1.

2.2 Solving Ordinary Differential Equations

Both Particular and Opendrift use numerical procedures to solve Ordinary
Differential Equations to calculate advection of particles. In Opendrift and
Particular there are two different approaches of varying order to solve these
differential equations.

2.2 solving ordinary differential equations 7

2.2.1 Euler’s method

. (8 + 1) = .8 + 5 ()8, .8)ΔC (2.1)

Euler’s method[1] is a first order numerical procedure for solving ordinary
differential equations with a given initial value. As the Euler method is a first
order method the error per step is directly proportional to the square of the
step size and the error at any time is proportional to step size.

In the context of vectors the equation 2.1 can be read as the equation 2.2. With
W as the position vector, V the velocity vector and delta t as the time step scalar.

F (=4F) = F (>;3) + (E ∗ ΔC) (2.2)

2.2.2 Runga-Kutta

The Runga-Kutta[2] method attempts to overcome the problem of Euler’s
method namely the choice of a sufficiently small step size to reach a reasonably
accuracy in the problem solution. The drawback being the method is more
complex thus requires more computational power.

. (= + 1) = .= + 1/6(1 + 2 2 + 2 3 + 4)ℎ (2.3)

1/6(1 + 2 2 + 2 3 + 4) (2.4)

 1 = 5 ()=,.=) (2.5)

 2 = 5 ()= + ℎ/2, .= + ℎ/2 ∗ 1) (2.6)

 3 = 5 ()= + ℎ/2, .= + ℎ/2 ∗ 2) (2.7)

 4 = ℎ5 ()= + ℎ,.= + ℎ ∗ 3) (2.8)

Runga-Kutta which is a euler method with a higher order than 1, involves slope
calculation at multiple steps between the current and next discrete time values.
The next dependant variable is calculated by taking a weighted average of
these multiple stages based on a Taylor Series approximation of the solution.
The weights in this weighted average is derived by solving non-linear algebraic
equations which are formed by requiring cancellation of error terms in the
Taylor series. In this thesis it will be focused on Runga-Kutta of order 4 which

8 chapter 2 background

is the most popular method as it is a good compromise of accuracy and cost of
computation.

As can be seen in the equation 2.3, is the equation of the Runga-Kutta. 2.4 Finds
the weighted average slope. Equations between 2.5 and 2.8 are the 4 values of
a 4th order runga kutta equation. With H defining the step size.

2.2.3 Geographic Projection vs Coordinate projection

In this thesis when referring to updating particle positions will be in reference to
the Cartesian coordinate system, however when saving the results it is saved in
a geographic projection system (longitude latitude). The main differentiation
between the geographic and coordinate projection is the fact that Coordinate
projection is defined on a flat two-dimensional surface. Geographic coordinate
systems however are based on spheres which is much more appropriate when
handling particle simulations on or around the earth as the curvature of the
earth will significantly change the outcome of the projection when comparing
the two approaches.

2.3 NetCDF

NetCDF1 or network common data form is a data format that contain array
oriented scientific data. NetCDF attempts to be a data formatwhich can package
large sizes of data which can be quickly fetched as arrays in an optimal fashion.
As NetCDF is an array oriented format, the arrays are defined as variables,
(e.g. Water currents or temperature), being able to have different amounts of
dimensions. E.g. A variable of the temperature for a specific area in a vector
field may have dimensions such as the time step, the depth and the actual area.
With each index of the dimension pointing to a different value.

2.4 K-D Tree

A k-d tree is a space partitioning data structure that allows for points to be
organized in a k-dimensional space. K-d trees are generally applied in situations
where searches over an arbitrary geographical range occurs often.

The K-d tree is a binary tree in which each leaf node is a k-dimensional point.

1. https://www.unidata.ucar.edu/software/netcdf/

2.4 k-d tree 9

Figure 2.2: K-d tree in 3 dimensions.
(By Btyner - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=37229011)

Each leaf node can then be thought of as a subset of a larger area in a k-
dimensional plane. These leaf nodes then may contain points on the plane
which are available for searching.

The K-d tree promises a linear worst case for look-ups and insertions/removals
as well as space complexity. A visualization of a K-d tree may be viewed in
figure 2.2.

10 chapter 2 background

2.5 Garbage Collection in .Net

The .net Garbage collector[3], orGC, is the autonomous garbage collectorwhich
runs in the background in managed memory .net space. It allows developers to
refrain from manually allocating and releasing memory, as well as allocating
objects on the heap efficiently. It also provides memory safety by not allowing
an object to use the content of another object.

When a new process is initialized the CLR[4] reserves a contiguous regions of
address sapce for the process. This is referred to as the managed heap. This
managed heap has a pointer which points to the next object in the heap to be
allocated. This is crucially only for referenced types, as value types are kept on
the stack and outside of the managed heap. When the application creates this
next object the GC is tasked with allocating the memory and address space.
The pointer then moves to the next object available for allocation.

When releasing memory the GC determines the optimal time to perform a
collection of objects no longer used by the application. The GC determines
which objects are no longer used by creating a graph from the applications
root and each object that is not reachable from this root that is currently in
managed memory is deemed unreachable and can safely be freed from the
heap.

The GC is typically incurred in three scenarios; The system has low physical
memory, the allocatedmemory on the heap surpasses a set threshold, the collect
method is called. This is done automatically as the GC runs contiously in the
background while the application is running.

The GC also has a concept known as generations. The concept is borne out
of some considerations: Compressing memory is faster for a portion of the
managed heap than the entire heap. Newer objects have shorter lifetimes and
older objects have longer lifetimes. Newer objects tend to be related to each
other thus have temporal locality.

For optimization purposes the managed heap is divided into three generations;
generation 0, 1 and 2. This allows the GC to handle long and short lived objects
separately. Each new object that is allocated starts at generation 0, if the object
"survives" a collection are promoted to further up the generations. This allows
the GC to release the memory in a specific generation rather than the entire
managed heap for every collection.

Thismeans that generation 0 contains objects that are newly created and are the
most likely to be freed, in generation 0 you would find objects such as temporary
variables etc. Generation 1 acts as a buffer between 0 and 1, it prevents the GC

2.6 entity component system 11

from having to reexamine objects in generation 1 when it performs a collection
in generation 0. Generation 2 is where the long lived objects are located, and
example of this is static data in a server application.

2.6 Entity Component System

Entity Component Systems[5] or ECS is an architecture for flexible high per-
formance data computing often used in game development. The main selling
point of an ECS architecure is the data oriented design which promises flexi-
bility and maintainability while also promising good performance due to the
locality of reference of the data which translates to using the CPU cache well.
There are three main aspects to an ECS architecture; Entities, Components
and Systems.

Components

Components in ECS are the pure data, as such components does not have any
methods or behaviour tied to them, only values. These values are what define
entities and what form they actually take in the world.

Entity

An entity is what ties a various component types together as a vertical slice of
data. Thus a component can be as simple as a integer or some other unique
identifier to identify which different component types creates an arbitrary
group of data.

An example from the game development world would be a playable character
entity having a position component, a sprite component and a collision compo-
nent. Another example being an Entity being a foreign key with components
being tables in a regular relational database.

System

The systems are the conduit for the programmer to enact change upon the
world in a ECS architecture. A system is a function which runs a transformation
on a subset of the components within the ECS. These systems are ran every
"frame" usually in the context of game development.

12 chapter 2 background

2.7 Particle Simulation

As Particular is one stage of a larger pipeline of systems for handling simulated
data. This section will detail some of the mathematical background for the
particle simulation as well as defining various characteristics of the generated
grids provided as input for Particular. In addition an example of how to math-
ematically calculate advection of ocean drift of particles will be explained in
this section as it will be used as an example throughout this thesis in both the
design and implementation chapters.

Figure 2.3: Visualization of unstructured grid data, dots are nodes creating triangular
cells in the vector field.

2.7.1 Grid Mesh

Further ahead in the pipeline a grid mesh file is generated which defines
a vector field of positions and values for a unstructured grid mesh of trian-
gles with each triangle having specific discrete properties and values defined
such as temperature as an example. These values are calculated using the
FVCOM[FVCOM] model. A visualization of the grid can be viewed in figure
2.3.

This unstructured grid has two components; nodes and elements.

2.7 particle simulation 13

Figure 2.4: Element and its neighbours, Neighbours have green borders.

Elements

Elements can be thought of as triangular zones or cells in the mesh grid that
define specific values for a specific area of the vector field. The element has a
position that is the centroid of a triangle of nodes, with the nodes acting as
bounds for the triangle. Elements can be viewed in figure 2.4 as the red dots
in the center of every triangle.

Nodes

Nodes are points in the vector field that defines the boundaries of each element
in the mesh. Nodes also contain data of all the elements that it is currently
part of defining the bounds of. This is primarily used when mapping particles
to the correct element for advection. Nodes can be viewed in figure 2.4 as the
white dots which define the borders of the triangles.

2.7.2 Time steps

Time stepping is every advection or state update of a particle. E.g. If there is
ocean current advection with the unit of measure of M/S, then every advection
is one second of real time. The issue with this approach is performance as a
simulation of 24 hours would require 86400 updates, which scales poorly with
the number of particles. Therefore it is not unusual to increase the time step by

14 chapter 2 background

Figure 2.5: Particle skipping red element due to time step being too large.

multiple factors, multiplying the vector advection by whichever factor the time
step is. A timestep of advection every 30 seconds approximates the amount of
distance asomething has traveled within that time period. This also reduces
the amount of updates in a day. E.g using a 30 second time step we go to 2880
which is 1/30th of having the timestep of 1 second.

There are issues with choosing too large time steps however as the larger the
step the higher the probability of simulation inaccuracy. Consider a particle
in a specific element advected by a timestep of 1 minute (60 seconds) which
means the particle jumps across the neighbouring element to the element next
to the immediate neighbour, missing the advection of the skipped element
completely. This changes the trajectory of the particle compared to what it
would have been with a time step of 1 second. A visualization of this can be
seen in figure 2.5. This means setting the time step is often a practice of trial
and error to see if the result is within an acceptable threshold of accuracy and
performance. There are however ways to minimize the potential inaccuracy
such as performing interpolation.

2.7.3 Interpolation

Interpolation in the context of trajectory modelling over a vector field is making
discrete values continuous over a set area bound based upon a set amount of
contributions. These contributions have weights attached to them and are
taken into account as well as the distance from a arbitrary point within the

2.7 particle simulation 15

%- =,E1-E1 +,E2-E2 +,E3-E3 (2.9)

%. =,E1.E1 +,E2.E2 +,E3.E3 (2.10)

,E1 +,E2 +,E3 = 1 (2.11)

Figure 2.6: System of equations to find the weights of V1, V2 and V3 in a barycentric
coordinate system and an arbitrary point

+0;D4? =
,E1+0;D4E1 +,E2+0;D4E2 +,E3+0;D4E3

,E1 +,E2 +,E3
(2.12)

Figure 2.7: Applying values to the calculated weights

bound and the contribution positions. An example of this could be a triangle
with its vertexes having temperature values that acts as weights. If point A is
at position (0,0) and point B is at position (10,0) with A having a temperature
of 10 and B a temperature of 20 then each increment of position from a to
b would increase the temperature by 1. With the mid point (5,0) having the
temperature value of 15.

In the context of oceanography this makes intuitive sense as discrete values
are not very accurate to real world behaviour within fluids. Where there is
an expectation of continuous values not discrete. Thus to achieve a somewhat
realistic simulation result one must interpolate the vector field.

Barycentric Coordinates

Barycentric coordinates is a coordinate system where a point may be located
within a simplex with a specific value. With each vertex of the simplex having
some corresponding weight attached to it. A given points distance from each
vertex in the simplex will then dictate the value of the point.

As can be seen in equation 2.6, barycentric coordinate systems sets up a system
of equations which when solved will give the weights for each vertex and its
effect on a potential tuple of values. The actual numerical value for an arbitrary
point is then calculated by using the equation displayed at 2.7.

16 chapter 2 background

Figure 2.8: Clough-Tocher triangle

Clough-Tocher Interpolation

Another interpolation approach is the Clough-Tocher implementation. The
Clough-Tocher[6] implementation method is a finite element method. Clough-
Tocher initiates with splitting its triangle in 3 smaller micro triangles, a bivi-
rate polynomial is then define for each triangle which forms a bezier surface
patch[7].

These patches are a cubic polynomial defined by twelve control points that acts
as parameters. A visualization of this can be viewed in figure2.8. The function
values of the f and first derivatives 5G and 5~ at each original triangle vertex
and the normal derivatives X 5 at the mid point of each edge in the original
triangle. The first derivatives at the vertices are estimated using the average
slopes of the surrounding triangles. The triangle itself is partitioned into three
micro-triangles along the seams defined by the centroid and the vertices of the
original triangle.

The main selling point of clough tocher is the fact that is a local scheme i.e it
only takes contributes from the vertexes of the triangle and no outside forces
which makes it very performant. An innate weakness to this is the fact that it
is not as accurate as other schemes which also takes non-local contributions,
as the edges of the triangles with regards to neighbours. This means there
is no guarantee of abiding by a completely continuous value range at these
borders.

2.7.4 Ocean Drift

This section will go through the mathematics behind all the forces contributing
to the advection when simulating particles in the ocean. This example will be
used throughout the thesis as a basis of comparison between Particular and

2.7 particle simulation 17

OpenDrift, as these functions are directly ported from OpenDrifts base model
physics methods.

Advect Ocean Currents

This advection function is a matter of advecting the particle based upon the
ocean currents of the particles current position. This means advecting the
particle positionwith either the EulerMethodorRunga-Kuttawhich is described
in detail previously in this chapter.

Advect Wind

When calculating the wind advection of the particles, only particles near a
set threshold of the surface should be affected by the wind, however only the
differential of the wind and the ocean current. As intuitively particles on the
bottom of the ocean is not affected by the winds advection force. The advection
itself is done with the Runga Kutta method.

Stokes Drift

Figure 2.9: Stokes drift wave after three periods.
(By Kraaiennest - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37229011)

Stokes drift[8] velocity is the difference between the average Lagrangian flow
velocity of a fluid parcel and the average Eulerian flow velocity of the fluid.
Specifically used for movements of particles after waves. As a wave will take
the particle in a almost circular motion but will usually displace the particle
somewhat for each wave. This displacement is what stokes drift calculates and
is reliant on data such as wave height and frequency. A visualization of stokes

18 chapter 2 background

drift can be viewed with figure 2.9, with the teal points being the trajectories
affected by stokes drift and the overall displacement for each wave.

Vertical Buoyancy

In fluid dynamics, an object is moving at its terminal velocity if its speed is
constant due to the restraining force exerted by the fluid through which it is
moving. When the buoyancy effects are taken into account, an object falling
through a fluid under its own weight can reach a terminal velocity (settling
velocity) if the net force acting on the object becomes zero. When the terminal
velocity is reached the weight of the object is exactly balanced by the upward
buoyancy force and drag force.

Vertical Advection

Moves the particle vertically based upon the environments velocity, much like
the ocean currents except vertically instead of horizontally.

2.8 Related works

2.8.1 Opendrift

Opendrift2 is a software package for modeling trajectories and fate of objects or
substances in various environments such as oceans or the atmosphere. As such
it promises a flexible, stochastic, robust, modular and fast enough trajectory
model.

Opendrift is implemented in the Python programming language, and is seen
as a framework and provides a core model which may be extended by the
framework user using the classic OOP paradigm of inheritance.

Opendrift also comes with a lot of physics methods out of the box as well
models for various environments pre-built like oceanographic drift of particles.
As well as custom readers of files and writers which outputs to file and various
visualizations of the trajectories simulated. A Lagrangian array is used to track
particles, which is a multi-dimensional numpy3 array describing the particle
type and its properties.

2. https://opendrift.github.io/
3. https://numpy.org/

2.8 related works 19

Particular and Opendrift both share similarities in the sense that both model
trajectories. However implementation wise opendrift and particular does not
share significant similarities with the exception of Particular using most of
the trajectory mathematics with regards to oceanographic simulations from
Opendrift.

2.8.2 Garnet

The garnet framework⁴ is an ECS framework implemented in F#. Garnet
functions as a simplified in-memory database and messaging system.

Garnets aims at being as fast as possible. In this case it means avoiding the .net
garbage collector, (or GC), as much as possible as it may introduce spikes and
inconsistent performance. Garnet avoids the Garbage Collector by using object
pooling to pool objects within a container or on the stack. As well as avoiding
closures.

Entities within garnet are simple 32 bit ids which are generated by re-use
buffers to avoid the Garbage Collection. Components are any arbitrary data
type that is associated with some entity. Components are stored in 64 element
segments with a sparse mask, which provides a CPU-friendly iteration.

Systems are event subscriptions, with .Net event handlers being called every
update which have been subscribed to a specific system. As these systems are
just event subscriptions it is possible to compose smaller systems into larger
systems.

Particular takes inspiration from the ECS architecture when attempting to
model trajectories in a performant manner. While garnet and particular has
significant differences in their respective implementations, (Which will be
discussed in section 7.2). Particular did take inspiration from the garnet API
which the user of the library would interact with to add/modify the entities
and systems.

4. https://github.com/bcarruthers/garnet

3
Design
This chapter will give insight into the requirements, architecture and design
choices of the components of Particular.
section 3.1 will detail the requirements that Particular needs to comply with,
but in a functional and non-functional sense.
Section 3.2 will show the overarching architecture of Particular and define the
system of components that make up Particular as a whole.
Section 3.3-3.7 will go through each defined component and detail their pro-
posed function and how they aim to accomplish this.

21

22 chapter 3 design

3.1 Requirements

Particular has a fair amount of requirements it is expected to fulfill, both
functional and non-functional.

3.1.1 Non-Functional Requirements

• Maintainability

– Must have an easy to use interface to customize simulation

– Should follow functional programming best practice to the best of
its ability

– Should prioritize type safety

• Robustness

– Extensive logging if there is an error

– Keep statistics over potential simulation inaccuracies

– Gracious error handling

– Debugging tools in visualization

• Performance

– Should be able to scale in linear time if the vector field increases

– Able to handle large quantities of particles (1 million+ concurrently)

• Flexibility

– Should be able to run with any vector field

– Choosing what data to read from disk to memory for the simulation
should be determined by the user

– Behaviour of particles should be completely determined by the user
through functions

– Choosing what particle trajectory data written to disk should be

3.2 architecture 23

determined by the user

– Must be able to handle simulations of arbitrary lengths

3.1.2 Functional Requirements

• Must be able to read NetCDF4 formatted files to memory.

• Must be able to write NetCDF4 formatted files to disk.

• Must have option to display graphs and visualizations of the particle
trajectory simulation when complete.

• Particles has to be able to have any number of properties tied to them.

• Should produce the same output if the input is equivalent

3.2 Architecture

3.2.1 Overarching approach

The overarching approach to the design is to have a collection of particles
with positions that are mapped onto a provided vector field. Each unit of the
vector field will have its corresponding values within it that may affect the
particles trajectory position in some way. These values have to be decided by
the library user as well as how the particle advects and how a particle reacts
to user defined events.

As the vector field will remain unchanged across the simulation, the elements
and nodes can be read into memory. The elements can also keep a record of
each elements nearest neighbours to aid with computation when particles are
advected away from their current elements onto a new one and needs to be
mapped to the new element correctly.

There is also a time stepping concept, with both advection of the particle
approximated over a specific range of time. As well as another type of time
step which is when the particle trajectories are saved and written to disk. An
example of this is that particles updates every 10 minutes, but every hour the
particle trajectories is appended to a NetCDF formatted file on disk. Thus a
typical simulation cycle would look like the flow diagram at 3.1, with setting up
the grid data and seeding particles before starting the outer loop of reading a list

24 chapter 3 design

Figure 3.1: Particular execution flow.

of environment files containing simulation data. Inside this loop another loop
would go through every time step of the simulation file. (e.g if a simulation file
has 24 hours of data then the time step is also 1 hour, which equals 24 iterations).
Within each time step a third and final loop is ran which advects the particles
with the given amount of time step advection. Where it also maps particles
to their corresponding elements in the provided vector field. Importantly, the
advection step cannot be larger than the overarching time step.

3.2.2 Splitting the system into components

While planning this particle simulation system, there was a fairly intuitive
split of the system into a collection of components, in a layered structure. An
illustration of this is provided with figure 3.2. As the illustration shows the data
will flow only one way with the one exception of an asynchronous call from
particles to the queue which will be described in detail in later sections of this
chapter. This is an optimal data flow for the functional paradigm and overall
this sort of data flow is almost always preferred for maintainability especially
when parallel processing is introduced and it is almost forced upon you due to
immutability.

The proceeding sections will describe each of these components, from the
top-down, starting with the base component of particular.

3.3 particular 25

Figure 3.2: Particular Component Relationships and layers

3.3 Particular

The particular component which is the component on the top layer is mostly
responsible for composing all the lower tier components together in a simulation
loop. The simulation loop would be very similar to the flow diagram provided
3.1 in both program logic and responsibilities. With particular calling all the
proceeding components for each loop at various stages of the update cycle.
This component also takes three lambda functions as input which will govern
how environmental data is read and how trajectory data is written and how
to handle user defined events. Which provides the flexibility required as this is
a library which needs that generality. This will be described in further detail
later on this chapter.

Particular also handles registering new systems to the simulation which is
mathematical functions that are ran every update loop on a specifically designed
sub set of the particles currently being simulated. This will be described in
further detail in the systems sub section.

26 chapter 3 design

3.4 Grid

The grids main responsibility is handling the environment data, such as the
vector field boundaries, positions of elements and nodes and their neighbours.
To do this the grid must be able to parse specific formatted files which detail
the positions of elements and nodes in a vector field.

Initialize Grid Data

When initializing grid data, we assume there to be vector positions for both
elements and nodes, as well as some indexes which connects the given nodes
to a given element or vice versa. From this information one can generate a
nearest neighbour map and use this to generate a list of nearest neighbouring
elements for each element which can be used to help particles map to the
correct element during the simulation in an efficient manner.

The grid also handles the simulation data provided which sets values to each
unit of the vector field. These values are governed by the user of the particular
library thus needs to be generic, and easily accessible, thus the grid has two
behaviours add and get component.

Add Component

The add component behaviour will let the library users add simulation data
from netcdf sources onto memory, which can later be fetched. This data may
have different dimensions, 1d, 2d or 3d, with 1d being a constant array of data
with the index being the node or element the value corresponds to. 2d having
two indexes, one index corresponding to either the current time step or the
depth, and the other index to the node or element the value corresponds to.
With 3d having all three indexes previously mentioned. They are all however,
assumed to be floating point numbers. So add component must be able to take
any dimension of floating point arrays, store them in an efficient way to be
fetched later when particles are being updated. The data itself is stored on
either the nodes or elements depending on which the data is tied to. This will
be described in further detail later on in this chapter.

Get Component

Get component is the opposite operation of the previously mentioned add
component and will fetch a specific value from the grid of elements and nodes
which can then be used by the application developer to influence the particles

3.4 grid 27

mapped onto that specific element in some user-defined way.

Find Element

Figure 3.3: Search visualization, blue star represents the particle, green triangle the
previously known position, yellow the nearest neighbouring elements, red
the next nearest neighbours

After particle advection it is not uncommon for the particle to have moved
away from its previous element to a new one. Thus the find element behaviour
is necessary. Find Element’s function is to search the nearby neighbours of
the a chosen element to see if a particle is within any of those elements. A
visualization of search can be seen at figure 3.3, which illustrates a breadth
first search through the neighbours.

28 chapter 3 design

3.4.1 Elements and Nodes

Elements and nodes within the grid are structures that are designed to primarily
hold data. Such as positions of each element and node, and a list of values for
each element and node. These values may be added or fetched by the get and
add component behaviours previously described. Some of these values may be
set to be interpolated however.

Interpolate

The interpolate behaviour will interpolate a given value when fetched by
applying the barycentric algorithm described in the background chapter section
2.8.3. The position of the vertices will be defined already by the elements and
nodes. Thus all that is needed is a particle position within the triangle to
complete the interpolation which will return a floating point number based on
the weights of each vertices relative to the particles position.

3.4.2 Config

Config is a read-only meta data structure that contains meta data of the
simulation that is not directly applicable to the particle trajectory simulation,
as well as other settings not found in the environmental files. Examples of this
is, advect time step size which sets the amount of time delta approximated for
each advection. Another example include wind drift depth, which sets a given
threshold for how deep the particle has be submerged to avoid being affected
by wind. A given requirement for these values is that they must be globally
applied.

3.5 Particle Manager

The particle manager is the component chiefly responsible for advecting and
keeping track of all particle trajectories during the simulation. In addition the
particle manager is also responsible for advecting the collection of particles
at every time step. Since the requirements of particular promises a degree of
maintainability and flexibility, each particle may have specific characteristics
not shared with other particles. There is also the possibility of a subset of
the particles not being advected by a given update function. The particle
manager should also support dynamic adds during the simulation run. To solve
this an architecture was designed inspired by the ECS architecture described
in the background chapter. With a given characteristic of a particle being

3.5 particle manager 29

Figure 3.4: Particle Design: Visualization of a simulation of two particles types, A and
B, with two different arrays of data. Also pictured a list of functions which
are mapped onto the correct array based on the type in each update loop.

the determinant factor in which advection updates are applied to that set of
particles. A diagram of the proposed architecture may be viewed at figure
3.4. With the systems stored in the particle manager being iterated through
and applied to a corresponding particle set that matches the type of the
function.

The aim of this being flexibility with supporting multiple types of particles
simulated concurrently without sacrificing performance as these arrays ensure
fast iterations due to contiguous memory which is CPU friendly. Another boon
is increased maintainability as this splits the data and behaviour with systems
containing behaviour and the particles containing the data. This makes it easy
for the library user to simply register systems to a corresponding type and if
there are any particles of such type currently being simulated these functions
will be applied to the particles at every update call.

Seed Particle

The particle managers seed particle behaviour will spawn a set of particles of
a given number over a given 3 dimensional area set by the caller of the seed
particle function.

Update

When update is called the particle manager will iterate over all available sys-
tems(functions) and apply them to the particle trajectory data where applicable.
This will be described in further detail in section 3.5.2.

30 chapter 3 design

Set Zone

After all particles have been advected the particle manager will iterate through
every updated particle and check whether the particle is still at its registered
element, or if its has advected beyond the borders of its previous element. If it
has advected away the particle manager will call the find element behaviour
described in section 3.4 to find the new element the advect particle is currently
within and register it for the next update.

3.5.1 Particles

The particles themselves are a collection of pure data with no behaviour
attached to them. All particles contain data such as position in longitude and
latitude, the Z depth and the current element the particle is current within. In
addition since particular has a requirement of flexibility and maintainability
every particle also has some user provided properties. Not all particles in
the simulation may have the same properties as these properties is what
governs which functions are applied to that given particle at each advection
update.

3.5.2 Systems
Listing 3.1: Update Function Signature

Pa r t i c l e <’a> −> Grid −> (’msg −> uni t) −> Pa r t i c l e <’a>

The systems component represents the behaviour portion of the particle man-
ager and contains a collection of lambda functions. All the functions that are
applied to the aforementioned particles during an update. The functions them-
selves follows a set function signature which takes a particle, a reference to
the grid and a dispatch function which asynchronously en-queues a messages
into the queue which will be further described in section 3.6.

Add System

When adding a system it must obey the function signature displayed in listing
3.1, where a particle with a generic property annotated as ′0 will be input with
a reference to the grid which allows the particle to fetch values from their
specific element with the get component behaviour as described in section 3.4.
The dispatch function operates as a way to define your own events. An example
would be if a particle hits the bottom of the ocean a message could be sent
to the queue with a specific bottom hit message which spawns some smaller

3.6 queue 31

particles around the area of the impact or maybe removes the particle that hit
the ocean floor. This is all up to the user and how he defines his message type
and the reducer type which will be further described in section 3.6.

3.6 Queue

Listing 3.2: Queue psuedocode

(∗Message type def ined by the user ∗)
type Msg =

| Sink of i n t

(∗Emptying Queue a f t e r p a r t i c l e update ∗)
f o r each msg in queue :

l e t reduce (msg : Msg) (pm : Part ic leManager) =
match msg with
| Sink pId −>

// P a r t i c l e with the id pId has sunk

//Do some operat ion on the p a r t i c l e manager
// based on t h i s message .

(∗ Funct ion ca l l e d in the p a r t i c l e manager update s tage ∗)
l e t s ink p a r t i c l e g r id d i spa t ch =

// d i spa tch enqueues t h i s message onto the queue which i s emptied
// a f t e r update of a l l p a r t i c l e s .
d i spa tch (Sunk p a r t i c l e . Id)

The queue is a component which is used to facilitate events that occur at the
particle level which has ramifications for components above them. Example
being a particle that emits some event which spawns more particles at its
position. Then an event with a corresponding message is emitted during the
advection asynchronously to the queue. After the particle manager is done
updating, the queue is emptied of messages which are all passed into a given
message reducer. The reducer takes the particle manager as a input and pattern
matches all the messages and performs some operation on the particle manager
based on the message. All these parts can be viewed with the psuedocode at
listing 3.2 which attempts to help illustrate how the user may define the
messages.

32 chapter 3 design

3.7 Writer

The writer component is responsible for transforming the trajectory data in
memory to netcdf formatted data which is written to disk. The particle tra-
jectory variables written to disk is decided by the user through passing in
a function when creating the simulation. The writer also keeps a buffer of
particle trajectory entries which gets written in bulk for performance reasons
as conventional wisdom dictates that its better to rarely write a lot of data
to disk as opposed to writing often small amounts of data. When writing the
data to disk the positions should be recorded in geographic coordinate system
(longitude and latitude), so the positions have to be projected from a Cartesian
coordinate system to a geographic coordinate system.

3.7.1 Buffer

The buffer itself is a list of trajectory data for a single time step, so the total
size of the buffer scales linearly with the amount of particles simulated. When
the buffer is registered as full the entire buffer is flushed and written to disk
in bulk.

4
Implementation
This chapter will detail the implementation of a prototype of Particular follow-
ing the design layed out in the previous chapter.
Section 4.1 will detail the language choice and why it was made.
Section 4.2 will set up the domain specific language for this particular prototype
Section 4.3 will detail the implementation specifics for each individual compo-
nent of particular.
Section 4.4 will show an example of how to set up an ocean drift simulation
with particles using the described prototype.

33

34 chapter 4 implementation

4.1 Language choice

4.1.1 Choosing F#

The implementation of Particular was done in the F# programming language1
using the .Net 5.0 compiler. F# was chosen primarily because its a functional
programming language which is the main selling point of particular. F# a
ML functional language which also defined as a functional first language as
opposed to purely functional. This means F# supports both the functional
language with more of an ML style as well as the OOP paradigm.

With being an ML language it means f# contains features such as static typing,
algebraic data types, pattern matching, garbage collection, call by value and
currying. In addition to this as mentioned, f# also supports the object oriented
paradigm with classes and interfaces so it can interop with other first class
citizens in the .net environment such as the C#2 programming language.

What .Net Provides

The .net environment provides a great infrastructure with multiple libraries
and frameworks which was used for handling simulation data. Which will be
discussed in future sections in this chapter. This in addition to good concurrency
support through asynchronous workflows and message passing. In addition
there is also good parallelism suppport through the task parallel library, which
abstracts the concepts of threads and threadmanagement from the programmer
as well as all the inherent problems with managing threads such as partition
of work, scheduling threads from the thread pool and scaling the degree of
concurrency dynamically to exploit all available processors in the most efficient
way.

4.1.2 Potential drawbacks of functional programming and
f#

While there are a lot of good things about functional programming and f#,
there are also some inherent cons. Firstly functional programming is immutable,
while great for correctness has the unfortunate drawback of performance as
every update creates an entirely new object in memory. This is especially true
in the .net environment which has a garbage collector which the programmer
cannot control in any way, only influenced. While the garbage collector is

1. Fsharp.org
2. csharp.org

4.2 setting up the domain specif ic language 35

efficient and is often preferred rather than the programmermanually allocating
memory, it is still a significant performance hit when the garbage collector is
too busy. So there may be need to discard some immutability during the
simulations to uphold performance and prevent the garbage collector from
being too involved.

Another potential problem is the static type system, while ensuring correctness
it is hard to create a generic librarywhile taking full advantage of the type safety
provided by static typing. Thus there may be need to use the generic object
casting at times to fulfill the requirement of the library being generic. However
ideally this should be done as rarely as possible, and the implementation should
be built on a robust domain specific language.

4.2 Setting up the domain specific language

When setting up a domain specific language (DSL), it is important to mirror
the types with the function of the program as a whole. If done correctly the
types will document the code for the programmer, making the code easy to
read and maintainable.

Listing 4.1: Particular DSL

type I n t e r po l a t e = bool
type EnvironmentType =

| Element
| Node

type Dimension =
| OneDim of S ing le []
| TwoDim of S ing le [,]
| ThreeDim of S ing le [, ,]

type EnvironmentData = Dic t ionary<Type , Dimension∗ I n t e rpo l a t e>
type F i l ePa th = s t r i n g
type NNeighbours = i n t
type NodePoint = NodePoint of (Vector2 ∗ i n t)
type Seconds = in t
type Hour = in t
type TimeStep = in t
type Node = {

Po s i t i on : Vector2
}

type Element = {
Ve r t i c e s : (Node∗Node∗Node)

36 chapter 4 implementation

Po s i t i on : Vector2
Neighbours : Element []
I n t e r po l a t i on : (Vector2 ∗Vector2 ∗Vector2)
Edge : bool

}
member t h i s . Get In terpo lWeights :

Vector2 −> EnvironmentType −> (f l o a t ∗ f l o a t ∗ f l o a t)

type Config = {
AdvectTimeStep : Seconds
TimeStep : Hour
S imFi le s : F i l ePa th []

}

type Grid = {
CurrentTs : TimeStep
Elements : Element []
Config : Config
EnvironmentData : EnvironmentData

}
member t h i s . I n i t : F i l ePa th −> NNeighbours −> Grid
member t h i s . GetComponent<’a> : ’ a −> s ing l e
member t h i s . AddComponent<’a> : s t r i n g −> In t e r po l a t e −> uni t
member t h i s . F indTr iang le : i n t −> Vector2 −> Vector2 −> in t −> Option<int>

[<Struc t >]
type Pa r t i c l e <’a> = {

Pos i t i on : Vector2
Z : i n t
Props : ’ a

}

type Part i c leManager = {
P a r t i c l e s : D ic t ionary<Type , obj>

}
member t h i s . Seed : Grid −> ’ props −> in t −> Area −> uni t
member t h i s . Update : Grid −> (msg −> uni t) −> uni t
member t h i s . SetZone : Grid −> Vector2 −> Pa r t i c l e <’props>

type ISystem :
−> (Pa r t i c l e <’props
−> Grid
−> (’msg −> uni t)

4.3 implementing the particular components 37

−> Pa r t i c l e <’props>)

type Systems = {
Systems : Dic t ionary<Type , obj>

}
member t h i s . AddSystem<’a> : ISystem −> uni t
member t h i s . GetSystem<’a> : ISystem<’a>
member t h i s . Run<’props ..> : Systems<’props ..> −> Part ic leManager −> Part ic leManager

type Queue<’msg> = Queue of ConcurrentQueue<’msg>()

Wri ter = Wri ter of (Dic t ionary<Type , obj> −> uni t)

type Simulat ion = {
Part ic leManager : Par t i c leManager
Grid : Grid
Queue : Queue
Wri ter : Wri ter
Systems : Systems

}
member t h i s . S t a r t : un i t −> uni t

The DSL showed at 4.1 is a psuedocode representation of the real DSL of
particular in its entirety. In reality some of these objects are f# classes instead
of f# records for performance reasons. However this illustrates the relationships
between each component used in particular as well as the data contained in a
terse way.

4.3 Implementing the Particular components

In design we went through all the components from the top down, to get a
familiarity with their roles and relationships. In this chapter we will start from
the opposite end, going bottom to the top. To ensure that all the functions
have already been defined and described from the lower layer components as
they are used by the upper layer components.

4.3.1 Implementing Nodes And Elements
[<Struc t >]
type Node = {

Po s i t i on : Vector2

38 chapter 4 implementation

}
[<Struc t >]
type Element = {

Ve r t i c e s : (Node∗Node∗Node)
Po s i t i on : Vector2
Neighbours : Element []
I n t e r po l a t i on : (Vector2 ∗Vector2 ∗Vector2)
Edge : bool

}
member t h i s . Get In terpo lWeights :

Vector2 −> EnvironmentType −> (f l o a t ∗ f l o a t ∗ f l o a t)

The nodes and elements types are pure f# record data structures that are
responsible for keeping track of the vector field characteristics. They are defined
as a .net struct value type to lessen the amount of references to increase the
locality of reference when iterating through a collection of elements. Both
node and element have a position in the world. That is the extent of the node
data however. The element data type is a more complex structure as it has a
list of neighbouring element vertices, the positions of its own vertices and the
position of the elements that create its interpolation zone. The edge flag is
set if any of the vertices surrounding the element only has 3 or less elements
surrounding it, meaning this element must be on the edge.

Getting Interpolation Weights

When fetching a value for use in the particle advection that has to be interpo-
lated, this function is called. The purpose of this function is taking in a vector
position within the element where the particle in question is currently residing
as input, then returning the weights of each vertex. There is a complication
however, as values can be tied to both elements and nodes. This means that
there are two different triangles that are interpolated based on whether the
value is an element value or a node value. Thus when calling to get the interpo-
lation weights a union type signifying whether the value is a element or node
value is necessary.

4.3.2 Implementing the Grid
type Grid = {

CurrentTs : TimeStep
Elements : Element []
Config : Config
EnvironmentData : EnvironmentData

4.3 implementing the particular components 39

}
member t h i s . I n i t : F i l ePa th −> NNeighbours −> Grid
member t h i s . Next : F i l ePa th −> (Grid −> Grid) −> Grid −> Grid
member t h i s . GetComponent<’a> : ’ a −> s ing l e
member t h i s . AddComponent<’a> : s t r i n g −> In t e r po l a t e −> uni t
member t h i s . F indTr iang le : i n t −> Vector2 −> Vector2 −> in t −> Option<int>

The grid is a data structure in the form of a f# record that reads grid data
and transforms it to a use-able vector field in memory which can add and fetch
values corresponding to a given element.

Init

The initializing function takes a file path, the number of neighbours each
element should store and returns a new grid with all the nodes and elements
within a specifically formatted grid file.

Listing 4.2: Grid data file format example

Node Number = 3
Element Number = 1
1 1 2 3
1 20.54 18.04
2 18.20 24.52
3 15.13 18.45

When parsing a grid file it is a specific format for the grid file is expected.
Respectively a header of the total amount of nodes and elements. Then a list
of element indexes and the node indexes that surrounds the element. Then
finally a list of node indexes and their x and y positions. A small sample can be
viewed in listing 4.2. This data can then be used to find the nodes surrounding
an element and the elements surrounding a node.

With this info it is possible to traverse the vector field from a given triangle
to another triangle. Which is a necessary feature for when you need to map
a particle to another element after advection. However doing this every time
you need to map a particle to another element when advecting would be costly,
especially if the advection places the particle further away than the current
elements closest neighbours. This would then require a recursive breadth first
search, which has an exponential search time for every "ring" it has to search.
This will be evaluated and investigated in more detail in the evaluation chapter
6.3.

40 chapter 4 implementation

Taking all this into account a kd-tree solution was implemented, where every
element position was inserted as a key with the element index as the value.
After all elements had been added to the tree, the tree was queried for the n
nearest neighbours for every element position an array of indexes would be
returned signifying these elements were the n closest to a given element. This
would result in a nested array of vectors which would be applied to the existing
element array to set the neighbours array for all elements. This would result
in a O(1) lookup time whenever one needed to find the closest neighbours to
a given element.

The kdtree used originated from a library named "kdtree"3 created by github
user "codeandcats" and was implemented in C#, which is obviously mutable.
However as this is ran sequentially and only ran once before the simulation
loop even begins it is not considered an issue.

Add Component

Adding a component is called when the grid needs data from an environmental
file read tomemory. To read the environmental files in netcdf format the SDSLite
library was used, which is a Microsoft developed .net library for handling
scientific data.

SDSLite reads data lazily from disk to memory, which is sometimes considered
good behaviour. Particular however will be expected to run on machines with
massive amounts of memory thus should always sacrifice space complexity for
time or I/O complexity if possible.

The add component function takes a generic type annotation and the environ-
mental type signifying if its an element or node as well as the variable name
stored in the netcdf file on disk and a boolean as an interpolation flag used
when data is fetched. Once this is done it gets the type of the type annotation
and inserts it into the environment data dictionary structure with the type as
key and the array of floating point numbers read from disk as values.

There is a complexity that arises from this however, as the data read from
disk can come in three different formats. The data can be constant, i.e one
dimensional so the index just points to an element or node. It can be two
dimensional where one index points to either the depth of the vector field or
the time step whereas the other index points to the element or node index. It
can also be three dimensional which has a time step index, z depth index and
a node/element index. To solve this a union type was created with cases for

3. https://github.com/codeandcats/KdTree

4.3 implementing the particular components 41

both one dimensional, two dimensional and three dimensional single arrays.
Thus the dictionary stores a union type instead of a specific single array type,
this upholds the type safety with for the price of a bit more branching in the
code as a pattern match is required when fetching the component.

Get Component

The get component function takes a type annotation of the type that the user
wants fetched, uses it as a key in the environmental data dictionary to fetch
the union environmental data type. In addition a particle is also passed in as
get component is a function that is called during particle advection.

match envData with
| OneDim s −> s . [p a r t i c l e . CurrentElem]
| TwoDim (s , tag) −>

match tag with
| Depth −> s . [i n t p a r t i c l e . Z , p a r t i c l e . CurrentElem]
| Time −> s . [t h i s . CurrentTs , p a r t i c l e . CurrentElem]

| ThreeDim s −> s . [t h i s . CurrentTs , i n t p a r t i c l e . Z , p a r t i c l e . CurrentElem]

The data type is pattern matched and indexed accordingly to the dimensions of
the environmental data. An example of this can be seen in listing 4.3.2, where
each case is indexed into based on the particle passed in.

There is a complexity to this however, if the value is marked as interpolated it
must be interpolated by the element the provided particle is currently on. Thus
get component will call get interpolation weights with the particles position
which has been described in subsection 4.3.1. This will return a tuple of three
weights that the corresponding values are multiplied against which results in
a unique value based on the position of the particle in relation to the distance
to each vertex in the interpolated zone.

Next

Listing 4.3: Example of grid binding function called in Grid.Next

l e t bindingFunc (gr id : Grid) =
AddComponent<U, s i n g l e [, ,]> Element " u " t rue gr id
|> AddComponent<V , s i n g l e [, ,]> Element " v " t rue

The next function is responsible for reading environmental netcdf files. Once a
netcdf file is read, a binding function that is user defined is applied to the grid.
An example of such an binding function defined by the user can be viewed with

42 chapter 4 implementation

listing 4.3. This function is then ran after every new environmental file is read
during the simulation loop which results in reading the environmental data to
memory from the new file, essentially resetting the grid with new values.

Find Element

The find element function is responsible for finding a element that the provided
position is currently within, once that element has been found the index of
that element should be returned. If no element is found a none type should be
returned signifying that there is no element that the current position is within
which usually means the vector is out of bounds of the vector field.

Listing 4.4: FindElement psuedocode

l e t rec f indElement =
(ve l : Vector2)
(cur ren t : i n t)
(s t ep s : i n t)
(currentElem : i n t)
(currentPos : Vector2) =

i f currentPos + ve l i s in t r i a n g l e s . [currentElem] then

i f the s t ep s are equal to 1 we can e x i t with the
cur ren t elem .

i f not we r e c u r s i v e l y c a l l innerFn again with a
update po s i t i on of the v e l o c i t y

e l s e

f o r every t r i a n g l e s . [currentElem] . Neighbours
t r y to f ind an element tha t (currentPos + ve l) i s wi th in .

i f none can be found and we are on a r e g i s t e r ed edge re turn none .

i f none can be found otherwise s p l i t the v e l o c i t y in two and double
the s t ep s .

i f a match i s found and the s t ep s i s equal to one re turn
currentElem

i f a match i s found and the s t ep s i s not equal to one
r e c u r s i v e l y c a l l f indElement with a decremented s tep

4.3 implementing the particular components 43

and a incremented (currentPos + ve l) .
f indElement o r i g i n a l V e l 0 1 or ig inElem oldPos

Psuedocode is provided with listing 4.4, where the general idea is to first search
in the current element to see if the particle is still within it, if it is not search
through the neighbours to try to find an element the particle is now currently
within. Usually this is good enough if the time step advection is not too large or
the elements are not too small. However there can be situations where a particle
has advected so far that it is beyond all the nearby neighbours of the previously
recorded particle element position. In this case we have to recursively slash
the velocity provided in half, and double the steps remaining to complete the
velocity advection, until a neighbour or the current element is a match. Once a
match is found you cannot quit yet as there is some velocity to still add which
is kept track of by the steps remaining value. So the particles current element
is temporarily updated to the matched neighbour before adding the remaining
velocity to its position repeating this process until the entire velocity vector has
been advected which is when the remaining steps value is equal to 1.

4.3.3 Particles

[<Struc t >]
type Pa r t i c l e <’a> = {

Pos i t i on : Vector2
Z : i n t
CurrentElem : i n t
Props : ’ a

}

The particles are defined as a .net record value type for locality of reference
reasons as it is more CPU friendly to iterate through which happens frequently
during a simulation. The particle itself has some general values all particles
possess such as position in the x,y and z axis. As well as a index to the current
element the particle was previously registered as being within.

In addition to this there are some properties that are passed in as a generic
annotated type by the library user which differentiates particle types from one
another. Particles themselves have not any behaviour or method attached to
them, this is by design as we want to uncouple data from functions as much
as possible for maintainability as well as performance reasons. Which will be
made clear in the evaluation section 6.5.

44 chapter 4 implementation

4.3.4 Particle Manager
type Part ic leManager = {

P a r t i c l e s : D ic t ionary<Type , obj>
}
member t h i s . Seed : Grid −> ’ props −> in t −> Area −> uni t
member t h i s . Update<’prop> : ISystem −> Grid −> (msg −> uni t) −> uni t
member t h i s . MapGrid : Grid −> Vector2 −> Pa r t i c l e <’props>

The particle manager is represented as a .net class andmanages all the particles
currently being simulated, it keeps particle arrays in a dictionary based on the
props type of the particle defined by the user with a generic annotation. This
ensures a CPU friendly iteration even if there any number of different types of
particles being simulated concurrently. The particles themselves are upcast to
.net objects, the reasoning for this is that the f# type system is limited in the
regards of having differing types in the same collection. Thus upcast it to the
root object is often the most straightforward solution. The downside is that
we are essentially turning off the type system and we open ourselves up to an
unsafe operation which may throw an exception as we have to down cast the
object back to its proper type when it comes time to fetch the particles.

Seed Particles

The seed particle function appends an array of newly spawned particles with
a specific property to other existing particles with the same property in the
particle manager dictionary. These particles have a starting point defined by the
area type where particles are psuedo randomly spawned within this defined 3
dimensional area at a given time frame interval.

MapGrid

Map Grid is called after the main update advection is done for each particle.
Map grid mainly calls the find triangle function described in section 4.3.2.
Which will return an updated index for which signifies which element the
particle is now on.

Update

The update function takes a particle array with a specific property from the
dictionary and dynamically down casts it to the correct particle type. This is
technically an unsafe operation as down casting happens at run time as there

4.3 implementing the particular components 45

is no way for the compiler to anticipate whether the down cast is legitimate or
not. This has an effect of making it possible for the code to throw an exception
as well as a performance overhead as the compiler is now forced to check for
every down cast whether the down cast is legitimate or not.

After the type is resolved the particle array that corresponds to the type is
fetched. Then the array is iterated through in parallel, with the parallelization
being done by the .net thread scheduler which attempts to schedule the threads
in the most optimal manner. The update itself is governed by the ISystem type
which has the function signature of %0AC82;4 <′ ?A>?B > − > �A83− >

(<B6− > D=8C)− > %0AC82;4 <′ ?A>?B >, which is mapped to every particle in
the update.

4.3.5 Systems
type Systems = {

Systems : Dic t ionary<Type , obj>
}
member t h i s . AddSystem<’a> : ISystem −> uni t
member t h i s . GetSystem<’a> : ISystem<’a>
member t h i s . Run<’props ..> :

Systems<’props ..>
−> Part ic leManager
−> Part ic leManager

The systems component is represented as a .net class and contains all the
functions that govern the advection behaviour of the particles stored in the
particle manager. The functions themselves are stored in a dictionary, with the
particle property type they are supposed to apply to at every update, as the
key. The value is then the corresponding function cast to an .net object.

Add System

When adding a system the type annotation provided will decide the key type
for the dictionary and the function itself is cast to an object before being added
to the dictionary.

Get System

When getting the system the dictionary is read for the provided type annotation
to fetch the corresponding value. The value is then down cast from an .net

46 chapter 4 implementation

object type back to the correct ISystem type.

Run

The run function takes a invariant amount of type annotations which is provided
by the library user. This is accomplished by having the systems be a class and
the run function be a static method which has several overrides with varying
amounts of type annotations available. This creates a sort of polymorphism
replacement with type safety. The draw back is that the code must be repeated
for how ever many type annotations you wish to support. (Particular supports
up to 8). Then for however many type annotations provided. The update
function from the particle manager is called for every type annotation which
then in effect updates all the particles with the type annotations provided in
the run function.

4.3.6 Implementing the Queue

The queue component had some differing approaches. Given the queue receives
messages in parallel, one requirement of the queue was that it had to be thread
safe. Another requirement was performance which a queue should be able
to comply with as queues tend to have constant time complexity for both
en-queuing and de-queuing. However when running in parallel with mutexes
there is some overhead involved due to contention of resources.

The chosen approach was to use the built-in .NET concurrent queue object
developed by Microsoft. This object was originally developed in C# and is thus
mutable by default. The internal logic uses mutex locks instead of immutability
to achieve thread safety. The main reasoning for choosing this approach was
due to the performance which was significantly better than other functional
approaches, thus it was chosen. A direct comparison between the differing
approaches can be viewed in the evaluation chapter section 6.6.

Reducers and Message types

As mentioned in the design chapter, the queues main function is to receive
emitted messages from particles when they update and apply them to the
simulation after the particle advection is finished for a specific time step.

As the messages emitted and the reaction to these messages had to be com-
pletely customizable by the user. A solution heavily inspired from Elmish
architecture was chosen where the user passes in a reducer function.

4.3 implementing the particular components 47

The reducer function takes in a message type with an optional value bound
to it and a model value which gets transforms based on the message passed
in. The transformable model in this case is the particle manager object nd the
message type is defined by the user as a type parameter when declaring the
simulation.

Enqueue

The en-queue behaviour is the behaviour which allows particles to emit mes-
sages to the queue. By passing in a partially applied en-queue function into
the particle update function the particles may pass in a message to finish the
en-queue function when an event occurs which will place the message inside
the queue.

Listing 4.5: Currying example with F#

l e t twoParamFunc a b =
a + b

l e t twoParamCompilerView a =
l e t innerFn b =

a + b
innerFn

Partial application is something innate to functional programming as all func-
tions within F# are actually single parameter functions. When creating a
multi-parameter function what occurs is the function is curried into various
steps, returning partially applied functions based on the amount of parameters
passed in to keep the constraint of single parameter functions. An example of
this can be viewed in listing 4.5.

Empty Queue

When emptying the queue, the built in dequeue function is applied to empty
the concurrent .NET queue and each message dequeued in passed into the
given reducer function with the particle manager, transforming the particle
manager object based upon the message passed in. An example of this can be
seen in the ocean drift implementation section further down the chapter.

4.3.7 Implementing the Writer

The writer components main function is after every time step is done the to
receive particle data contained within the particle manager that gets flushed

48 chapter 4 implementation

to the writer. The writer is then tasked of writing said data to disk.

Setting up a buffer

As writing to disk takes a large amount of the total execution as can be observed
in the evaluation chapter 6.2. Efforts to minimize this was developed. An idea
of creating a buffer was attempted as it would mean less, but larger, writes to
disk which is expected to give a boost to execution time.

In addition to this asynchronous workflows were applied which would let
the disk writes happen in parallel with the next particle advection updates.
However to take advantage of this, a double buffering scheme was developed
which would let one buffer write to disk concurrently while another buffer
was reading incoming trajectory data. This would in theory let buffers write
continuously without a need to stop as buffers are full. There is some danger
here though as the writes have to happen in order as the trajectory data is
dependant on order. The evalation of the effect of this can be seen in chapter
6.4.

4.3.8 Implementing Simulation

The simulation component pictured in figure 4.1 is the top layered component
which is also illustrated with figure 3.2, which means it is composed of all
the other components of the lower layers. The simulation components main
responsibility is initializing every component as it is responsible for linking
lambda functions defining behavior of the simulation to the underlying com-
ponents. In addition to creating the run loop where the simulation is actually
executed.

Intializing Simulation

When initializing simulation, the class takes in three arguments, a config type.
An lambda function that describes which variables in the netcdf file will be
read. This lambda is described in the next function in section 4.3.4 which is
where it gets passed into. In addition there is a reducer function that defines
user created events which are dispatched when advecting particles. There is
also a writer lambda which describes the particle types that will be written to
disk.

Listing 4.6: Sample of user adding two environmental variables

type Pa r t i c l eA = in t

4.3 implementing the particular components 49

type Pa r t i c l eB = f l o a t
type U = U
type V = V

l e t envData (g r id : Grid) =
Grid . AddComponent<U> "u " g r id
|> Grid . AddComponent<V> " v "

l e t con f i g =
Config .New 300 3600

Simulat ion (conf ig , envData , Writer<Par t i c l eA , Pa r t i c l eB >())

A sample of how a user would set up a simulation object can be seen in listing
4.6.

Run

Listing 4.7: Simulation run loop psuedocode

foreach f i l e in s imF i l e s :
Grid <− ReadEnvironmentData f i l e
f o r t s in 0 . . TimeStep :

f o r advectTs in 0 . . (AdvectTS/TimeStep) :
Systems . Run Part ic leManager Grid Queue . Enqueue
P a r t i c l e s <− Queue . Empty P a r t i c l e s

Wri ter . Write P a r t i c l e s
Grid . CurrentTs += 1

The run function is responsible for running the simulation. Psuedocode of
the run function is provided in listing 4.7. Where each file path of simulation
files provided is iterated over. Each iteration of this will iterate through the
given time steps where particles are advected for that period of time. E.g
having a time step of 1 hour and a advection time step of 10 minutes will
mean (600/3600) = 6 iterations. After these advection iterations the particle
trajectory is appended to the netcdf file to disk and the time step of the grid is
incremented.

50 chapter 4 implementation

4.4 Ocean drift implementation

In this section a overview of how Particular could be applied to model a
simulation of particles drifting in an ocean will be described.

4.4.1 Creating environment readers

type U = U
type V = V
type UW = UW
type VW = VW
type WW = WW
l e t reader (g r id : Grid) =

|> AddComponent<U> Element " u " t rue
|> AddComponent<V> Element " v " t rue
|> AddComponent<UW> Element "uw" t rue
|> AddComponent<VW> Element "vw" t rue
|> AddComponent<WW> Element "ww" t rue

First step to model is to get the environmental data from a provided netcdf
formatted simulation file. In this case of ocean drift we care about two main
factors; ocean currents and wind speed. Thus we can apply the add and get
component API described previously this chapter as can be seen in listing 3.10.
First defining the types for the environment data then creating a function with
a (Grid -> Grid) signature that gets passed into the simulation model and is
invoked every time a new simulation file is opened.

4.4.2 Particle Lambdas

Creating the particle lambda is the next step after defining the environment
data. First we must create some functions which can be chained together to
simulate particles drifting in the ocean. The theory behind these functions
are described in section 2.7.4, this will be a description the implementation of
these concepts in a programming sense using Particular and F#.

Advecting ocean horizonally and vertically

Psuedocode of the advect ocean function can be seen in listing 3.7, the reader
fetches the ocean currents from the environment and indexes into the current
time step as well as the depth of the current particle and the element the particle

4.4 ocean drift implementation 51

is currently on. The particle is then advected by a euler method algorithm.
Advecting the particle vertically follows the same procedure with different
advect velocity values.

Advecting Wind

advectWind (p a r t i c l e : P a r t i c l e) g r id d i spa tch =
windVelX = gr id . GetComponent<WV>(p a r t i c l e)
windVelY = gr id . GetComponent<VV>(p a r t i c l e)
currentVe lX = gr id . GetComponent<U> pa r t i c l e
currentVe lY = gr id . GetComponent<V> pa r t i c l e
p a r t i c l e . Pos . X += (windVelX − currentVe lX)
p a r t i c l e . Pos . Y += (windVelY − currentVe lY)

When advecting the wind each particle over a given depth in the ocean gets
advected by the differential of the wind drift and ocean current. Psuedocode
for implementing such a function can be seen in listing 3.11.

Stokes Drift

c a l c u l a t e S t o k e sD r i f t (s tokesVe l , waveHeight , wavePeriod , Z) =
surfaceSpeed = sq r t (s tokesVe l . X̂ 2 + s tokesVe l . Y^2)
fm02 = 1.0 / wavePeriod
to t a lT r an spo r t = 2 PI /16 fm02waveHeight ^
2k = surfaceSpeed / 2 totalTransport
stokesSpeed = s u r f a c e S p e e d (k z)^2
s tokes . X = s t o k e s S p e e d stokes . X/ surfaceSpeed
s tokes . Y = s t o k e s S p e e d stokes . Y/ surfaceSpeed
re turn stokes , stokesSpeed

s t o k e s _ d r i f t (p a r t i c l e) =
waveHeight = getWaveHeight ()
wavePeriod = getWavePeriod ()
s tokesVe l = ge tS toke sVe lo c i t y ()
s tokesVe l , stokesSpeed = ca l c u l a t e S t o k e sD r i f t

(s tokesVe l , waveHeight , wavePeriod , p a r t i c l e . Z)
re turn s tokesVe l

When implementing the stokes drift, which is not mathematically trivial, the
math itself was ported directly from OpenDrift to Particular. Psuedocode of the
stokes drift calculation can be viewed in listing 3.12.

52 chapter 4 implementation

Advecting Buoyancy

ca lcu la teBuoyancy p a r t i c l e =
i f p a r t i c l e . Z < 0 then

p a r t i c l e . Z += pa r t i c l e . Termina lVe loc i t y
i f p a r t i c l e . Z = 0 then

d i spa tch (BottomHit p a r t i c l e)
re turn p a r t i c l e

e l s e
re turn p a r t i c l e

When calculating the buoyancy if the particle is not at the bottom of the sea
the particle is advected with its given terminal velocity as well as a side effect
is emitted if the particle hits the bottom after advecting emitting a message to
the queue component to handle the particle hitting the bottom.

4.4.3 Setting the queue behaviour
bottomHit po s i t i on p a r t i c l e s =

(∗ c rea t e p a r t i c l e s ∗)
newPar t i c l e s = c r e a t e P a r t i c l e s po s i t i on 20
Array . append newPar t i c l e s p a r t i c l e s

coa s tH i t p a r t i c l e oldPos p a r t i c l e s =
p a r t i c l e s
|> Array . f i nd p a r t i c l e
|> { p a r t i c l e with Po s i t i on = oldPos }

reducer (msg : Msg) (p a r t i c l e s : P a r t i c l e s) =
match msg with
| BottomHit po s i t i on −>

bottomHit po s i t i on p a r t i c l e s
| CoastHi t (p a r t i c l e s , oldPos) −>

coas tH i t p a r t i c l e oldPos p a r t i c l e s

type Msg =
| BottomHit of Po s i t i on
| CoastHi t of P a r t i c l e ∗OldPos i t ion

Finally, the queue is set by ocean drift to handle two specific scenarios; when
particles hit the bottom of the ocean and the coast. When particles hit the
bottom of the ocean floor it may spawn a multitude of smaller particles around
the area of the impact. When particles hit the coast the particle is "thrown

4.4 ocean drift implementation 53

back" in the water of to its previous position and tries to advect again with
different environmental characteristics as the time step has increased.

To set this up a message enum type had to be defined,with two respective cases.
In listing 3.15, an example of a reducer function and message type has been
implemented. The program flow in this case after each particle has updated
all the messages received in the queue will be empties and piped through the
reducer function provided which updates the particles object.

To dispatch messages the user can introduce them as side effects in the particle
update lambda, as a dispatch function will be provided which is capable of
emitting these events to the queue as they happen. In the case of ocean drift a
natural place to introduce these side effects would be in the buoyancy function
when hitting the sea floor and when advecting the ocean currents to dispatch
a coast hit if no elements are found.

4.4.4 Putting it all together

Listing 4.8: Oceandrift example

(∗ Set amount of p a r t i c l e s seeded ∗)
l e t n = 10000
(∗ ge t t i ng reader data from di sk ∗)
type U = U
type V = V
type UW = UW
type VW = VW
type WW = WW
l e t reader (g r id : Grid) =

|> AddComponent<U> Element " u " t rue
|> AddComponent<V> Element " v " t rue
|> AddComponent<UW> Element "uw" t rue
|> AddComponent<VW> Element "vw" t rue
|> AddComponent<WW> Element "ww" t rue

(∗ Def in ing the messages ∗)
type Msg =

| BottomHit of Po s i t i on
| CoastHi t of P a r t i c l e ∗OldPos i t ion

(∗ de f in ing the reducer as seen in prev ious l i s t i n g ∗)
l e t reducer = reducer

// s e t t i n g up the unique p a r t i c l e proper ty

54 chapter 4 implementation

type Pa r t i c l e P rop = Termina lVe loc i t y of f l o a t

// s e t t i n g up the con f i g with a time s tep of 300 seconds
//and a 1 hour time de l t a .
l e t con f i g = Config .New Seconds 300 Hours 1

(∗ de f in ing the system ∗)
l e t system =

advectOceanCurrents
|> advectWind
|> advec tS toke sDr i f t
|> advectBuoyancy
|> adv e c t V e r t i c a l l y
|> ISystem

SimulationModel<Msg>(
conf ig ,
reader ,
Writer<Prop , B>()

)
|> fun x −> // adding the system

x . AddSystem<Par t i c l eP rop> (system)
|> fun x −> // seeding N p a r t i c l e s

x . SeedPar t i c l e s<Par t i c l eP rop> { Termina lVe loc i t y = 0.2 } n
|> fun x −> // s t a r t i n g the s imula t ion

x . S t a r t (Systems . Run<Par t i c l eP rop >)

Taking all the mentioned implementations the code to define a simulation of
particles drifting in the ocean would look like the psuedo code in listing 4.8.
This illustrates the conciseness and flexibility of the library where the code
the library user has to provide is strictly their own mathematical functions and
data/behaviour that only pertains to the specifics of their simulation. All the
general boiler plate is abstracted away and the user will simply get trajectory
data written to disk in a performant manner without really needing to know
how the system is designed.

5
Alternate Implementations
This chapter will detail some alternate implementations of various components
of Particular and their perceived pros and cons. This will serve as preparation
and background for the evaluation chapter whichwill evaluate these mentioned
approaches with the aforementioned implementation.
Section 5.1 will go through alternate approaches regarding how to iterate and
store particles
Section 5.2 will go through alternate queue approaches
Section 5.3 will go through alternate ways to index and map neighbouring
elements to each other
Section 5.4 will go through alternate ways to store trajectory data in buffers
for writing

55

56 chapter 5 alternate implementations

5.1 Alternate Approaches: Particle Update

5.1.1 Individual Lambda Approach

The current implementation groups particle types into various groups of arrays
with specific functions mapped onto these arrays for each time step. The
individual lambda approach can be thought of as a simpler approach to this
problem where the update lambda is put into the particle update itself thus
there is only one array with all the particle data.

Themain advantage of this approach is that it is possible tomake this completely
type safe, as the lambda will have a specific function signature defined by a F#
record type which is called for each individual particle when updated. With a
custom defined union property type that contains the custom data for a given
lambda.

5.1.2 Grid-Based Particle Approach

Unlike the aforementioned other approaches, the grid-based approach lets each
element in the grid keep a list of particles currently inhabiting it in addition
to the usual data tied to an element in the grid. Particular would then be
structured as a large 2D array with the elements populating one dimension
and the particles populating the second dimension. The expected result of this
is a slightly better locality of reference as all the data for updating the particle
trajectory would be contained within 1 index of the array. With the expected
drawback being updates not as easily ran in parallel in an efficient manner as
most elements would probably have no particles stored within them.

5.1.3 Using the Garnet framework

The final alternate approach was to use a ready made Entity Component
System library named Garnet. As described in the background chapter, garnet
is a Entity Component System architecture framework designed for game
development.

The main advantage of this is that Garnet promises a specific set of functionality
which fits the needs of Particular quite well and would execute the simulation
in a relatively performant manner. While also providing a very maintainable
API for the library user.

An innate issue with the garnet approach is for the most part its generality.
While generality is usually a strength it can also be a weakness. In this case

5.2 alternate approach: queues 57

as game development usually requires more data types and the data itself
changes types repeatedly Garnet is more tailored to entities adding and re-
moving components constantly. Particular on the other hand would usually
not have these behavioural properties ranked as highly, as particles are not
expected to add/remove components at run-time that often. Thus a sparse-set
implementation, (which garnet uses), has a trade-off of expected worse itera-
tion performance vs better performance when changing entity types compared
to a non sparse-set approach. Which is not ideal, garnet also does not support
multi-threading out of the box which is also a potential issue.

5.2 Alternate Approach: Queues

5.2.1 Functional Queue

The chosen queue implementation as mentioned in the previous chapter was
the built-in Microsoft Concurrent Queue. This is a mutable data structure which
promises thread safety with the use of mutexes, not immutability. As such this
locking nature naturally incurs a degree of overhead when ran in parallel as
threads compete for a specific resource, a lock in this case which may cause
stalling. However in the case of this system and the context the queue is used,
there is no heavy operations tied to the mutex as the queue simply adds a
message and exits as such the resource contention should not be too heavy of
a penalty.

However a lock free approach was also designed and implemented from the
bottom up in F#. The reasoning for making a functional queue type with a
tuple of lists was to achieve amortized O(1) access time. When en-queuing
append the message to the front list which is a O(1) time complexity operation
as we are simply appending to the head of a linked list. When de-queuing if
the back list is empty. Take the front list, reverse it and place it in the back
list and return the head. if not empty simply fetch the next item in the back
list until the back list is empty and repeat the process. The main reasoning for
going with this approach is the functional nature of it, which promises type
safety and thread safety innately. However a issue which became apparent was
one of performance which will be further described in section 6.7.

58 chapter 5 alternate implementations

5.3 Alternate Approach: Indexing neighbouring
elements

5.3.1 Breadth first approach

Listing 5.1: Breadth first search psuedocode

l e t rec innerFn (cur ren t : i n t) (currentElem : CurrentElem) (n : i n t) =
l e t nodeIdxs = GetSurrounding Nodes currentElem
nodeIdxs
|> Array . c o l l e c t (fun nodeIdx −>

l e t i x = GetSurroundingElements nodeIdx
i f (cur ren t + 1) = n then

i x
e l s e

i x
|> Array . c o l l e c t (fun index −>

innerFn (cur ren t + 1) index
)

)
innerFn 0 elemIdx

A breadth first approach was another approach attempted when indexing ele-
ment neighbours to corresponding elements in the element array. Psuedocode
of the algorithm can be viewed in listing 5.1. Where each node surrounding a
given element was fetched and for each of these nodes the elements surround-
ing them would be fetched and collected. This would be recursively repeated
n times depending on how many "rings" of neighbours one wanted to store as
neighbours for each element.

5.4 Alternate Approach: Write Buffers

5.4.1 Single Buffer

A single buffer approach was attempted as well as the current implementations
double buffer approach described in chapter 4.3.7. The single buffer was a array
of trajectory data which was continuously added to until it was registered as
full, then it would write the entire buffer in bulk to disk. This was faster than
writing every time step, the comparison to the double buffer approach may be
seen at section 6.4.2.

6
Evaluation
This chapter will detail the evaluation of Particular and its various components
compared to alternate approaches, as well as direct comparisons to the Open-
drift framework.
Section 6.1 will detail the experimental setup in regards to hardware and
software used to conduct the evaluations. In addition further explanation on
how the benchmarking library for .net functions and how to interpret its result
will be explained in section 6.1.1.
Section 6.2 will show the profiling of particular as a whole to display which
parts of the system is the most expensive performance wise. Section 6.3 will
detail the evaluate indexing neighbours, the cost of indexing and a straight
comparison between Kd-trees vs breadth first searches when mapping particles
to the correct area in the vector field.
Section 6.4 will evaluate buffers when writing particle trajectory to disk to
ascertain the optimal buffer size and compare it with alternate approaches.
Section 6.5 will evaluate the chosen Particular particle update implementation
described in chapter 4 with other alternate approaches described in chapter 5.
Section 6.6 will evaluate queues
Section 6.7 will evaluate the cost of interpolation and the real effects of it. (Is
it worth the performance hit?).
Section 6.7 will compare opendrift and particular with a profile of opendrift
and a execution time comparison.

59

60 chapter 6 evaluation

Cpu Intel Core i7-4770K CPU 3.50GHz (Haswell), 1 CPU, 8 logical and 4 physical cores
RAM 32GB 1600MHZ DDR3 RAM
HD Samsung 256GB SSD with 500 MB/s read and 200MB/s write speed
GPU Geforce 780GTX GPU
OS Windows 10.0.19041.985

Table 6.1: Hardware specifications for evaluations

6.1 Experimental Setup

Hardware specifications used for all evaluations are listed in table 6.1. Fur-
thermore all examples are evaluated with the .Net 5.0 compiler with the F#
programming language with regards to Particular or Python 3.9 if evaluating
the Opendrift framework. The benchmarkdotnet1 library was used for all evalu-
ations with the exception of the direct opendrift vs particular evaluation.

6.1.1 Benchmarkdotnet

The benchmarkdotnet library is, as the name implies, created for profiling .net
code. Benchmarkdotnet is capable ofmeasuring various low level characteristics
such as cache hits, branch mispredictions, memory allocated etc.

Benchmarkdotnet when ran will generate an isolated project for each runtime
setting and run it in the dotnet release mode. Each method and parameter
combination provided for benchmarking will be launched as a benchmarking
process multiple times. An invocation of the workload method is defined as
an operation. An operation will be important for interpreting the results later
on. A collection of operations is known as an iteration, an each benchmark has
multiple forms of iterations.

These iteration types include; overhead warmup and overhead workload where
the benchmarking library overhead is evaluated. Actualwarmup; warmup of the
workload method. Actual workload; the actual measurements. This means that
the final result is the actual workload - the median of the overhead. The actual
number of each iteration is set by default by the library for maximum perceived
accuracy, this may be changed manually however for these evaluations they
were not.

1. https://benchmarkdotnet.org/articles/overview.html

6.1 experimental setup 61

Method Name of method profiled
N The number parameter for the specific run

Mean The mean run time of the profiling
Gen (X) The amount of GC gen X collections per 1000 operations.
Allocated Size of allocated managed memory, per single invocation.

CacheMisses/Op Cache misses (L1, L2 and L3) per operation in an invocation
BranchMispredictions/Op branch mis-predictions per operation in an invocation.

Table 6.2: Benchmarkdotnet legend

Benchmarkdotnet Profiling Interpretation

As stated previously, benchmark dotnet collects numerous characteristics of
the program benchmarked, however it is not always clear what the numbers
mean in the context of the characteristic. Thus a legend of the benchmarking
results which will be used numerous times this chapter was created and may
be viewed at table 6.2.

For the gen(X) profiling data as stated it counts GC collections per 1000
operations. An example being; if the value of Gen(x) is equal to 1 then that
means the GC collects memory once per one thousand of benchmark invocations
in generation X. The .Net GC has been explained in detail in section 2.6 in this
thesis.

For the allocated profiling data, it only collects the amount of managed mem-
ory allocated. Thus any stack allocations or native heap allocations are not
included.

6.1.2 Simulation Data

All evaluations will be done with a 3 dimensional vector field that represents the
sea surrounding storholmen island. This simulation will be done over 24 hours
with changing currents every hour. The vector field consists of 92073 elements
composed of 40762 unique nodes. A picture of the vector field representing
storholmen mid simulation can be viewed in figure 6.1. When the particles are
seeded they will be dispersed uniformly across the vector field. All particles
are also advected with the oceanographic forces previously described in the
background and implementation chapters.

62 chapter 6 evaluation

Figure 6.1: Partial view of storholmen in vector field form during particle simulation.
Blue pixels are active particles. Red pixes signify particles that are stuck.
White pixels representing nodes forming triangular elements.

6.2 Profiling of Particular

When profiling particular as a system of components. A simulation was ran as
normal with two defined stages of the simulation which is preparing main loop
and main loop. The reasoning for this is to keep it as close to the opendrift
profiling tool as possible, which outputs the data in this format, as a basis of
comparison.

The simulation used the aforementioned storholmen vector field with 120000
particles initially seeded over a 24 hour simulation time. With a time delta of
1 hour and a time step of 10 minutes. Which equals to a total of 144 updates
for the simulation. The time was taken using the .net stopwatch2 at various
key points in the simulations execution path. The stopwatch class uses a high
resolution performance counter if the operating system supports it, which in
this case it does.

2. https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-
5.0

6.3 indexing neighbouring elements 63

Time (sec) Name

19.7 Preparing Main Loop
0.26 Reading Grid files from Disk
19.3 Indexing Neighbouring Elements
0.1 Seeding Initial Particles

48.55 Main Loop
0.8 Reading Environmental Data
15.0 Updating Particles
6.0 Advecting Particles
2.7 Interpolation
9.0 Mapping Particles
1.0 Emptying Queue
25.7 Writing Particles to File
68.25 Total Time

Table 6.3: Opendrift Profiling Results

With this we can see there are three main steps during the simulation which
takes most of the execution time, namely indexing neighbouring elements,
updating particles and writing particles to file. These three steps taking 93%
of the total execution time (64 seconds out of 68.25).

6.3 Indexing Neighbouring Elements

6.3.1 Performance cost of not indexing

Intially the implementation did not index data and simply queried the kd-tree
every time a list of neighbours for an arbitrary element was needed. Which
would happen frequently and would scale linearly with the amount of particles
simulated.

Thus an evaluation of the execution time comparing a non indexed kd-tree
solution with an indexed kd-tree solution was carried out. The evaluation itself
ran a simulation with the aforementioned provided vector field over a 24 hour
period. The execution time was recorded with the .net stopwatch. The result
can be viewed at figure 6.2 where indexing will give a 320.29% execution time
speed up (221 seconds vs 69 seconds). This is within expectation as queries to
a Kd-tree is O(n), indexed into arrays like the current implementation is a O(1)
operation.

64 chapter 6 evaluation

Figure 6.2: Indexed (red) vs Not indexed (blue).

Name Time (Seconds)

Kd-Tree 19.1
Breadth First 26.2

Table 6.4: Kd Tree index time comparison of 20 neighbours vs indeing 3 rings (24
neighbours)

6.3.2 Kd-Tree vs Breadth first indexing

The goal of this evaluation is to uncover the performance differences between
a breadth first search indexing or kd-tree indexing to find the list of nearest
neighbours for a specific element. As both are indexing they are ran before the
main simulation loop thus do not scale with the number of particles, only the
number of elements in the vector field.

However breadth first may come out ahead for the nearest 2 rings. It will scale
very poorly once you start going above 3 rings. Ring 4 was recorded to take
30 minutes which would give roughly 32 neighbours for each element, (each
ring contains 8 neighbours). A result overview can be seen with the graph 6.4,

6.4 writ ing particle trajectories to disk 65

where the kd-tree outperforms breadth first at 20 and will scale better as the
neighbours increase.

6.4 Writing Particle Trajectories to Disk

This section will detail the evaluation of the process of writing particle tra-
jectories to disk. Current implementation uses a double buffering scheme as
described in the implementation chapter. A comparison will be run for the
execution time for the double buffering scheme with varying buffer sizes to
ascertain the optimal buffer size for a set amount of particles. A comparison
will also be made with other implementations such as single buffer and no
buffer.

6.4.1 Buffer size evaluation

Figure 6.3: Buffer Size Execution Time evaluation.

The current evaluation runs the particular simulation on the aforementioned
vector field with 120000 particles initially seeded uniformly across the grid. If
the vector field provided has 24 time steps it means the maximum amount of
writes which can happen is 24.

66 chapter 6 evaluation

It can be observed from 6.3 that a buffer size of 8 for environmental data with
24 total time steps seems to be optimal. This would likely change if the amount
of time steps changes, however this result is not surprising as this means a
clean 3 writes. It is a bit surprising that a buffer size of 12 is not superior as that
is 2 clean writes. It is possible that SDS lite has problems handling large writes
to that extent or the amount of memory needed that may hit performance
negatively.

6.4.2 Comparisons with alternate buffer approaches

Figure 6.4: Buffer execution time comparison. Blue = Double Buffering. Red = Single
Buffer. Green = No Buffer

The comparison evaluation was done by running a particular simulation with
all buffers on the aforementioned vector field with a varying number particles
initially seeded across the grid. Each buffer had a size of 8 where available
which was found to be the best for both single and double buffering size
wise.

Figure6.4 displays the total execution time for these particle numbers. It can
be observed that double buffering wins out consistently with single buffers
being a constant number two and no buffering lagging behind. All have close
to linear scaling from particle array sizes of 20000 - 120000. Which is within

6.5 updating particles : alternate approaches 67

expectation.

6.5 Updating Particles: Alternate approaches

This section will detail the evaluation of the alternate approaches mentioned
in section 5.1 (individual lambda) and 5.2 (garnet) compared to the current
implementation (ECS) discussed in greater detail in the entirety of chapter
4. The experiment was conducted by isolating the particle iteration process
within particular to only focus on how particles were stored and how they were
iterated through when advected.

The experiment itself tested the capability of each approach to seed a set of
N amounts of particles from 20000 - 120000. Then proceed to iterate through
24 hours of simulation data. A timestep of 10 was used which adds up to 144
iterations in total,(there are 144 10 minute chunks in 24 hours), of N particles.
The benchmarkdotnet library was used to get run time performance as well as
other data such as memory overhead, cache misses etc.

As can be viewed in figure 6.5 the three approaches are grouped with garnet
being the fastest implementation followed by the current implementation
with the individual lambda approach trailing significantly behind. With garnet
at 120000 particles being 70.66% faster than the current implementation
(22.217<B vs 75.421<B), and a sizeable 4200% speedup compared to the
individual lambda approach 22.217<B vs 917.24<B.

A profile of memory usage and other characteristics was also done with the
benchmarkdotnet library and the result can be viewed in figure 6.6. This figure
gives results within expectation and again illustrates the cost of immutability
when it comes to performance. Since garnet does a lot of optimizations to avoid
garbage collection and forgoes immutability as a result. Without immutability
you get less memory allocated, less cache misses and less garbage collection.
This makes intuitive sense as when you have an immutable collection every
mapping will create an entirely new collection, rendering the previous refer-
ences stale which will trigger the garbage collector. This means you constantly
have new references this also means the cache will miss quite a bit as well and
more memory is allocated as you are constantly creating new objects for every
iteration. Further details on how Garnet avoids the GC and what costs it may
come with will be discussed further in section 7.2.

68 chapter 6 evaluation

Figure 6.5: Alternate approaches and current implementation run time performances

6.6 Queues: Functional Queue vs .Net
Concurrent Queue

The goal of this evaluation is to discern the differences in performance and
attempting to discover the underlying reasoning for the differences between a
purely functional queue created in F# described in section 5.5 and the built-in
Microsoft developed concurrent queue.

The experiment would be accomplished with each respective queue filled with
N amount of messages, before being emptied and passed into a reducer. The
reducer would take the message emptied from the queue and do a simple
increment operation on a dummy model object.

6.6 queues: functional queue vs .net concurrent queue 69

Figure 6.6: Alternate approach profiling

Method N Mean Gen 0 Allocated CacheMisses

Concurrent 1000 24.97` s 5.73 23.48KB 8
Functional 1000 24.97` s 23.01 94.02KB 12
Concurrent 10000 302.67` s 58.12 234.48KB 91
Functional 10000 368.34` s 188.96 937.02KB 423
Concurrent 50000 1498.97` s 285.15 1171.48KB 561
Functional 50000 3121.34` s 800.78 4687.02KB 3,742
Concurrent 100000 2981.12` s 570.73 2343.48KB 1,700
Functional 100000 9788.81` s 1562.50 9375.02KB 17,224
Concurrent 500000 15220` s 2859.35 11718.48KB 16,892
Functional 500000 98172` s 8200.01 46875.02KB 239,702
Concurrent 1000000 32082` s 5687.5 23437.48KB 29,039
Functional 1000000 241302` s 16000 93756.02KB 769,602

Table 6.5: Table of queue benchmark results

This would aim to test the throughput of the queue both when adding and
emptying, as well as other characteristics such as memory overhead.

To evaluate this experiment, the benchmark dotnet library was used to bench-
mark the experiments.

Figure 6.7 and table 6.5 displays the results of the experiment. It can be
observed at first glance that the built-in Microsoft queue vastly outperforms
the purely functional queue in these specific tests.

Table 6.5 displays the amount of memory allocated and amount of cache misses
performed by each test, with the Concurrent queue handily outperforming in
all metrics.

This is within expectation as mutability, while mutability may introduce erro-
neous behaviours, it does also provide more efficient computing as a natural
trade-off. This is especially true when dealing with the .net garbage collector

70 chapter 6 evaluation

Figure 6.7: Bar plot of queue test. Y-axis shows time taken. Each bar represent a
specific number of messages and test type, i.e functional or concurrent
queue test.

as each update of the queue incurs the garbage collector innately as the pre-
vious queue reference is abandoned as the structure is immutable, which is a
significant performance hit over time.

6.7 Interpolation

The goal of this evaluation is to discern the costs of interpolation, both in
run-time performance and potential memory overhead. The actual experiment
was conducted with running particular with the provided simulation data
with both interpolation and no interpolation. Which yielded the result which

6.7 interpolation 71

Figure 6.8: Interpolation performance evaluation. X-Axis: Amount of particles. Y-
Axis: Time Taken in seconds. Blue line: No interpolation. Green line:
Interpolation.

can be observed in figure 6.8. Interpolation scales in a similar manner of no
interpolation but has a hit on the execution time, with up to a 3.8% slow down
with 120000 particles initially seeded.

6.7.1 Effects of interpolation

This subsection will detail an experiment to ascertain what the real effect
of interpolation is in terms of the final trajectory result. This experiment
was conducted by setting a specific initial positional seed of ten particles and
let it simulate a complete 24 hour trajectory with and without interpolation.
This would yield 10 vectors of the particles final position with and without
interpolation which would illustrate the potential change in results by applying
the Pythagoran (

√
(02 + 12)) formula to calculate the distance between these

two vectors.

As the vector field provided for testing did not have the strongest currents
(average of 0.09 m/s currents in the vector field provided), or other forces
which enact upon the particles trajectory. However despite this there was an

72 chapter 6 evaluation

Figure 6.9: Displacement of particles with interpolation vs no interpolation

average displacement of 450 meters.

6.8 Particular vs Opendrift

6.8.1 Execution time comparison

The goal of this evaluation is to detail the difference in performance at runtime
between Particular and Opendrift. The experiment was conducted by having
both opendrift and particular seed N amount of particles into a specific vector
field of data. The simulation data lasted for 24 hours with a time step of 10 min-
utes for each particle advection. A total of 10 runs were done for both opendrift
and particular and the mean of these 10 runs were taken as the final result to
avoid potential random hiccups with the hardware while benchmarking.

The time taking for particular was done with the .net stopwatch3 class which
uses a high resolution performance counter if the operating system supports
it, which in this case it does. Opendrift uses the timeit⁴ python library to time
its experiments, like the .net stopwatch uses a high resolution performance

3. https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-
5.0

4. https://docs.python.org/3/library/timeit.html

6.8 particular vs opendrift 73

counter if available.

Figure 6.10: Particular vs Opendrift, Particular represented by blue,opendrift by green.

As can be viewed in figure 6.10, particular outperforms opendrift in this specific
experiment under the conditions described above. With the x-axis representing
the amount of particles initially seeded and the y-axis the time taken for the
simulation to complete in seconds. Opendrift at 120000 particles has 1128.99%
less execution time (69 seconds vs 779 seconds), and will in all likelihood
increase as opendrift scales worse than particular as the number of initial
particles increases.

6.8.2 Profiling of opendrift

As can be seen in the profiling in table 6.6, particular outperforms opendrift
at most stages even if the profiling stages are not exactly the same due to
architecture differences. With the biggest difference happening when reading
data from the environment which can be seen in the "storholmen2.nc" entry
which is the file name of the simulation data. As opendrift does not really cache
its data in memory, rather fetch it lazily from disk which has the pro of less
memory overhead, but the con of a major performance hit when needing the

74 chapter 6 evaluation

Time Name

1.1 Configuration
8.6 Preparing Main Loop
3.8 Making Dynamic Landmask
4.7 Moving Elements to Ocean
9.28 Readers
14.3 Global Landmask
55.5 Post Processing

11:37.8 Main Loop
7:20.9 storholmen2.nc
1:33.4 Updating Elements
1.0 Clean up

11:48.6 Total Time

Table 6.6: Opendrift Profiling Results

data.

6.8.3 Sanity check

A sanity check was also ran to see what the difference in the final result would
be if two identical vector fields were provided to both particular and opendrift
with a particle set at an identical starting location. The difference would be
measured in the final trajectory position for each respective library. Important
to note that this is not intended as a form of verification, simply a sanity check
to ascertain whether the results for both frameworks are approximately the
same.

The evaluation results for this was a displacement of 233.5 meters over a
total distance travelled of 6.904:< for opendrift and 6.737:< for particular.
A possible explanation for this discrepancy can be explained by opendrift
using the 4th degree runga kutta advection whereas particular only supports
euler’s method of advection which is slightly less accurate approximation and
will sometimes give different advection results. A visualization of these two
particle vectors can be viewed at figure 6.11, which shows both vectors and the
difference at the end of their simulated trajectories.

6.8 particular vs opendrift 75

Figure 6.11: Particular vs Opendrift result comparison. Yellow = Particular, Green =
Opendrift

7
Discussion
This chapter will contain discussions around Particular and what potential pros
and cons there are to the prototype and why certain design choices were made.
Section 7.1 will discuss the key differences between Opendrift and Particular,
with the perceived pros and cons of both being discussed.
Section 7.2 will discuss various possible optimizations that could be done to
the current implementation of Particular and what costs it would potentially
have. In addition a look at how Garnet was implemented and what pros and
cons it may have will also b done.
Section 7.3 will discuss interpolation techniques in detail.

77

78 chapter 7 discussion

7.1 Opendrift vs Particular

As opendrift is implemented in python, an object oriented language compared
to Particular which was implemented in F#, a functional programming lan-
guage. It follows that there are some key differences in the implementation of
both frameworks. This section will discuss the most significant of these and
their design choices and what trade-offs these decisions result in.

7.1.1 Architecture of Opendrift

As previously mentioned opendrift is implemented with the OOP paradigm
primarily and uses cornerstone OOP concepts such as inheritance and polymor-
phism as a way to introduce extendibility to their framework. This is in directly
opposed to Particular which relies on purely on functional composition.

Opendrift has some base abstract objects which through inheritance and poly-
morphism allows a user to extend this framework with their own defined
behaviour. Theses abstract classes include, the particle array which keeps track
of the particle trajectory of the simulation. The model of the simulation which
has methods such as update which must be overridden to define which func-
tions are applied to the particles for each time step update. A reader class
which is responsible for reading environmental data from disk for use in the
simulation. Particular on the other uses lambda functions as described in the
implementation chapter to define behaviours in events, particle updates and
how to write data to disk. Which requires significantly less code and is just
as extendable or even more so in comparison to opendrift. Even if opendrift
has more readily made models and mathematical tools available, adding these
models and tools is much easier in particular and requires almost none of the
boiler plate code which OOP requires.

7.1.2 Particle Tracking

Opendrift uses a generic array class which is referred to as a lagrangian array
which is tasked with keeping track of particles. The particles themselves are a
collection of variables stored as an ordered python dictionary. So in the context
of oceandrift the lagrangian array would have 1 ordered dictionary with Z,
latitude and longitude values set in arrays with the keys being a simple "z",
"lon" or "lat" string. In addition to the base variables such as id, status and age.
This approach does allow for an easy and maintainable way for the user of the
framework to customize the particles that are ran in the simulation.

Particular on the other hand uses the ECS inspired architecture. The main

7.1 opendrift vs particular 79

advantage is the ease of having separate particle types within a single simu-
lation and being able to iterate through them in a CPU friendly manner. As it
is essentially a dictionary with a type as a key and a corresponding array as
value. Which means no matter how many particle types there are iterations
are guaranteed to be contiguous sequential memory of particle data when
iterating. While it is possible to have separate particle types in opendrift this
leads to having branched data in the python dictionary which means for some
entries in the dictionary behaviour for particle A will be executed and for other
entries particle B behaviour will be executed. This is both not ideal in a main-
tainable sense nor in a performance sense as this sort of data handling leads
to branching code which in turn is not CPU friendly. Which is backed up by
the evaluation and profiling in the previous chapter where updating particles
took particular 15 seconds whereas opendrift spent 40 seconds updating its
particles.

As opendrift uses numpy[9] arrays for particle data it allows for very fast itera-
tions. As numpy arrays in python are thin bindings for optimized pre-compiled
C code. In addition to this Numpy arrays are also vectorized[10]. This means
when faced with SIMD situations such as an array of particles having a specific
vector mapped onto it it can provide great speed up as the CPU may process
multiple operands on a single operation instruction making for more efficient
computing. This as opposed to non-vectorized code where each instruction
only operates on one operand at a time. This counteracts the drawback of
opendrift not providing multiprocessing or multi-threading.1.

Particular on the other hand does not have access to the numpy library as it
is built in the .net environment. .Net recently has created intrinsic and vec-
torization hardware instructions within the .net environment for their RyuJit2
compiler to allow for vectorization with the use of a built in vector type 3. While
Particular as of right now does not have this implemented and would require
some redesign it is something to consider implementing in the future for even
faster iterations when mapping data onto a particle array.

The redesign would have to change the way particles are stored, as they
cannot be set in algebraic data types and must be purely primitive value types.
So particles would be a collection of primitive value arrays such as floats
and integers. However as seen in the particular profiling results, the particle
updating was not the bottle neck of the simulation execution time thus was
not prioritized.

1. https://wiki.python.org/moin/GlobalInterpreterLock
2. https://devblogs.microsoft.com/dotnet/ryujit-the-next-generation-jit-compiler-for-net/
3. https://docs.microsoft.com/en-us/dotnet/api/system.numerics.vector?view=net-5.0

80 chapter 7 discussion

7.1.3 Reader

Opendrift have several reader types derived from a base reader type which
allows for extendability for reading from different sources of files, not just
netCDF which Particular at his point only supports. The readers main job is to
make environmental data available as well as manage the vector field mesh
that particles are mapped to. A focus will be on a reader of unstructured grids
which is what has been evaluated and is what Particular supports.

Setting Up Boundary For the Vector Field

Opendrift uses landmasking to set up the boundaries of its unstructured vector
field. It does this by building a boundary polygon of a provided mesh to find
the boundaries of the given field. It does this by running an algorithm which
checks for boundary edges, which are defined as edges that are referenced by
only a single triangle. These triangles are then given a special flag to indicate
that the triangle is an edge triangle in the mesh.

The particular implementation does not currently have such a robust solution
and relies on a specific format of the data grid data. The grid data will provide
the amount of elements surrounding a node, and if an element’s surrounding
node has less than 4 neighbouring elements it intuitively means that the current
element is a edge element and is flagged as such. The differences between the
two approaches are not all that significant performance wise as can be seen in
the evaluation.

A major difference however is the time spent reading from simulation data at
the disk, opendrift spends almost 80% of its execution time reading from disk,
whereas particular spends a fraction of the time reading from disk. Opting
instead reading the data into memory, whereas opendrift lazily fetches the
data when needed. This is good for memory efficency however hurts opendrift
when it comes to performance massively having to keep fetching data from the
hardrive for every particle update.

Mapping Particles to Vector Field

When mapping particles to the mesh after advection Opendrift uses a KdTree⁴
from the scipy library to find the closest neighbours. Initially this tree is indexed
by triangle positions and may be queried by particle positions to receive N
amount of neighbours.

4. https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html

7.1 opendrift vs particular 81

Particular on the other hand uses a KdTree to index all elements of the grid
and their nearest neighbours. However, unlike opendrift it puts this neighbour
data into a nested array for ease when looking up the neighbours of a specific
element by the index. As opposed to keeping it in the tree, this allows for a O(1)
+ O(m) look up time with the M being the number of neighbours recorded for
each element.

Interpolation

Opendrift uses linear interpolation which the scipy library provides interpo-
lation⁵. Opendrift, unlike particular, currently supports 2d interpolation in
addition to 1d interpolation. The main difference between the dimensions is
that in 2d interpolation the depth of is also interpolated, so a particle at depth
5 will also interpolate with the values on depth 6 and 4 in addition to the usual
immediate neighbours.

The trade-offs here are a more accurate approximation with 2d interpolation
for performance which 1d provides as there is less look ups and operations
required.

7.1.4 Advection

Opendrift lets the user choose between to advection methods, 4th order runga
kutta and eulers method. Both of these methods are described in the back-
ground chapter earlier in this thesis. Particular on the other hand currently
only supports eulers method, runga kutta will in theory give a more accurate
advection at the cost of performance as there are simply more computations
necessary.

7.1.5 Simulation Model

The opendrift simulation model is designed as a base model which contains a
lagrangian array of particles. An update method is provided with the functions
called for particle advection which may be overridden and is called every time
step. Other helper methods are also available which may be overridden by the
user such as behaviour when particles hit the bottom or when particles hit the
edge of the vector field etc.

Particular rather than specific overridden methods for events such as hitting

5. https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html

82 chapter 7 discussion

the bottom of the ocean of the coast uses messages and queues which are
described in both the design and implementation chapters. This provides a
more generic way for the user to define the events and the result of these events
themselves.

7.2 Optimizations

7.2.1 Garnet vs Particular

As can be seen in the benchmarking in figure 6.6, managed heap allocations,
garbage collection and cache hits are increased by magnitudes between the
garnet implementation and the current particular implementation.

The way garnet manages this is by using various techniques to minimize the
GC impact. These techniques are; allocating on the stack, object pooling and
avoiding closures.

Garnet allocates most of its objects on the stack by the use of the .net struct
type, which turns objects to value types as opposed to regular reference type
which a default F# record type is. When on the stack all variables declared are
managed automatically by being destroyed when returning from a function.
As a bonus all memory fragmentation is also avoided. The drawback is if the
value type is large the copy may be expensive as a copy is performed whenever
a value type is passed into a function.

Particular also lets the user define its types and it is up to them to make it
a value or reference type, with value types usually outperforming reference
types unless the value types become very large in size.

Garnet also avoids all sort of closures in F#, with closures being defined as
a block of code which may be executed at a later time, but maintain the
environment it was first created. So it can use local variables of the method it
was created within, even after said method has returned. Garnet avoids this,
particular however does not. The reasoning is that closures are not evil by
themselves, while there is a performance penalty in using them sometimes
closures are the correct answer for maintainable code. An example of closure
usage is the partially applicated interpolation function in the particular reader,
which keeps the reference of local variables when the interpolation function is
declared for later use.

The biggest advantage garnet has over particular however is object pooling and
overall allocation of objects. Garnet handles this by having a lot of pre-allocated

7.2 optimizations 83

buffers which are continuously re-used and never de-referenced so the GC never
gets triggered. These buffers are also mutable so garnet, while implemented in
F#, uses mostly mutable structures. These buffers take the shape of a sparse
set data structure with entity indexes being the sparse set and components
being in the corresponding dense set. This works as entities are simply integer
indexes that points to an index in a corresponding dense set with components.
This is also very performant as sparse sets has a O(1) for retrieving, inserting,
removing and clearing data. On top of this components are also stored in
a 64 element segments which provides a CPU-friendly iteration for caching
purposes.

Particular on the other hand only has a collection of basic arrays, moreover
these arrays are mapped and replaced each iteration as the values within them
are immutable. This is by design as one of the key goals of particular was to
create a 3d particle simulator using the functional paradigm. Thus foregoing
immutability for performance would directly counter this goal, thus was not
chosen. Immutability does have positive aspects such as being thread safe,
(garnet does not have multithreading functionality), which particular takes
advantage of. The cost of this is as can be seen in the memory evaluation, and
somewhat intuitively, with increased allocations, increased use of the GC and
cache misses.

7.2.2 Reading environment data

The current particular implementation currently fetches the environment data
from a buffer in memory which has initially been read from disk. This is a
valid approach, however for every fetch a copy has to be created, this strains
the GC. To avoid this instead of using basic arrays to keep the data one could
use the .net span type ⁶ type and .net readonly memory⁷. This would set up
a virtual view of the data allowing particles to read the array data without
copying, leading to a larger speedup and absolutely no GC involvement.

Another potential optimization is to create sub groups of environmental data
and particles based upon their geographic positions. This would allow for more
cache friendly iteration in theory, with spans getting a specific range of data
within a larger array would also come at no extra cost performance wise.

6. https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=net-5.0
7. https://docs.microsoft.com/en-us/dotnet/api/system.readonlymemory-1?view=net-5.0

84 chapter 7 discussion

7.2.3 Improving type safety with F# crates

Across the implementation there was a recurring issue with a limitation of the
F# type system. Namely as soon as a value is passed as an argument into a
generic function, it will no longer be recognized as customisable to any generic
type and is restricted to one application of type parameter.

The lone exception to this is that one may preserve polymorphism if locked
within the local scope. This is due to the difference between a lambda bound
and let bound polymorphism, with let bound polymorphism being predicative.
The reasoning for it being this way is that predicativity and other limitations
makes the type system simple enough that full type inference is always possible.
Which is the trade off being made for limited polymorphism which is a feature
of all ML dialect languages which includes f#.

Listing 7.1: function example

f o r a l l a . [a] x [a] −> [a]

An example of this can be viewed in listing7.1, in order to apply the 5 >A0;;
function to a pair of lists the 0 type must be substituted for the value a in
the function typing such that the resulting function type and the type of
the parameters matches up. For an impredicative system on the other hand
the type substituted may be of any type including a type that is recursively
polymorphic which means the 5 >A0;; function may be applied to any type
of list containing elements of any generic type. As mentioned impredicative
systems trade stronger polymorphism for not quite as robust type systems and
type inference as it is no way for the compiler to 100% infer types when types
can be anything (including recursive) as previously mentioned.

Listing 7.2: Optimal system function signature

System : Pa r t i c l e <’a> −> Grid −> (msg −> uni t) −> Pa r t i c l e <’a>

Listing 7.3: Systems list with different lambda types

[
System (pa r t i c l e <int> −> . . −>pa r t i c l e <int >)
System (pa r t i c l e <f l o a t> −> . . −> pa r t i c l e <f l o a t >)

]

These limitations were approached when implementing particular especially
when implementing the systems portion of the particle iteration who’s function
signature can be seen at listing 7.2. The ideal implementation was to have the
system lambda be completely generic and stored in a collection, then simply
iterated through all systems at advection through that one collection. This

7.2 optimizations 85

however is not allowed by the F# type system due to the predicativity and
meant that a circumvention had to be made casting the ?0AC82;4 type to the
.net >1 9 type, as was described in the implementation chapter. As well as
storing the system functions in a dictionary with a corresponding particle type
it would transform. This then meant that the library user had to provide type
parameters for every particle type in the simulation when defining particular,
which is not ideal. This also meant that n amount of static overrides for running
particular had to be coded with n signifying the amount of unique particle
types there were in a given simulation. Particular currently supports 8 unique
types.

Another way to get around this limitation of the f# type system is to use a
pattern unqiue to f# known as crates. The crates job is to simulate existensials.
The exisistensial concept may be found in languages such as haskell⁸ innately.
What existential types essentially does is infer a value as a type which is
unknown statically either because it was intentionally hidden in a way which
was known, or because the type was chosen at run time. At runtime it is
possible to inspect the existential to find the value and type within. The
problem still remains on how to extract this value when the type is unknown
in a predicative polymorphic language. The solution is to provide a universally
quantified function, which is a function that can handle values of any type.
Thus existentials are values whereupon universals are the only construct able
to operate on them.

Listing 7.4: Base crate example in F#

type Crate =
ab s t r a c t member Apply : CrateEvaluator <’ re t> −> ’ r e t

and CrateEvaluator <’ re t> =
ab t r a c t member Eval <’a> : ’ a −> ’ r e t

In f# an example implementation of the base crate may be viewed in 7.4. The
method �E0; takes a type parameter of ′0 and CrateEvaluator takes a type
parameter ′A4C . This brings two different sources into scope at the same time
to build our existential, this is also known as rank-2 polymorphism[11].

Listing 7.5: Crate sample for system in particular

type Pa r t i c l e <’a> = {
Data : ’ a

} with
s t a t i c member New d = {

Data = d
}

8. ℎCC?B : //F8:8.ℎ0B:4;; .>A6/�G8BC4=C80;C~?4

86 chapter 7 discussion

type System<’a> =
System of
(P a r t i c l e <’a> −> Pa r t i c l e <’a>)∗
Pa r t i c l e <’a> []

with
member t h i s . Add (p) =

l e t (System (q , pa)) = t h i s
System (q , Array . append [|p|] pa)

type SystemsCrate =
ab s t r a c t member Apply : SystemsCrateEvaluator <’ re t> −> ’ r e t

and SystemsCrateEvaluator <’ re t> =
ab s t r a c t member Eval <’a> : System<’a> −> ’ r e t

[<AutoOpen>]
module SystemCrateOps =

l e t make (s : System<’a>) : SystemsCrate =
{ new SystemsCrate with

member __ . Apply e = e . Eval s
}

l e t i n l i n e run (s : SystemsCrate) =
s . Apply { new SystemsCrateEvaluator<_> with

member __ . Eval (l : System<’a>) =
l e t (System (f , pa)) = l
pa
|> Array .map (fun x −> f x)
|> fun x −> make (System (f , x))

}

l e t p r i n t (s : SystemsCrate) =
s . Apply { new SystemsCrateEvaluator<_> with

member __ . Eval (l : System<’a>) =
l e t (System (q , p)) = l
p
|> Array . i t e r (fun s −> pr i n t f n "%A" s)
make l

}
l e t system = (

fun p −>
{ p with Data = p . Data + 1 }) ,
[| P a r t i c l e <int >.New 6 ; Pa r t i c l e <int >.New 9|]

7.3 interpolation 87

l e t system2 = (
fun p −>
{ p with Data = p . Data + 1.0 }) ,
[| P a r t i c l e <int >.New 6.2 ; P a r t i c l e <int >.New 9.2|]

l e t m = [
make (System system)
make (System system2)

]
m
|> L i s t .map (fun c −> run c)

We can thus apply this to our systems example by creating a systems type with
a function and a list of particles which the function is ran on every update.
By observing the code listing at 7.5, we can see how we could apply these
existensial concepts in f# to get type safety and removing the much maligned
>1 9 use. With the systems crate having three operations:<0:4 which creates a
crate, AD= which updates the particle within a crate with the provided lambda
function and ?A8=C which prints the content of a crate. The end result of this is
that we have allowed a list systems with different type parameters to exist. Thus
when advecting in particular, we could simply just iterate through the one list,
instead of using dictionaries and objects and variadic type parameters.

7.3 Interpolation

Particular currently uses barycentric coordinates which is an linear interpola-
tion technique. The barycentric approach is also purely local which means it
only takes weight contributions from the local points of the triangle and no out-
side sources. This approach is among the fastest ways to perform interpolation,
however it comes at the cost of potential accuracy.

The inaccuracy will most likely appear on the border of the triangles. If triangle
A borders triangle B, and both triangles have opposite mappings you will see
a non-continuous value function between the triangles which is not derivable.
This is an inaccuracy, which while not massive in scope does exist.

A possible solution to this if one needed more perceived accuracy would be
to adopt a clough-tocher approach described in section 2.8.3. Clough-tocher
derives conditions to ensure triangle continuity across edges of two triangles.
These conditions are similar to bernstein polynomials[12] across the edge.
Clough-tocher is also a cubic interpolation technique so there is also a higher

88 chapter 7 discussion

fidelity of values available as opposed to the linear solution as an added bonus,
however at the cost of extra computation.

This approach while more accurate would both be a performance hit as there
are more computations with a more complex algorithm handling clough-tocher,
as well as having to access triangle neighbours. This extra accuracy was not
perceived worth it for the drop in performance as most triangles and their
neighbours in the provided vector fields are likely to have similar mapping
making the potential inaccuracies small to nonexistent. It is important to
note that opendrift also uses a purely local interpolation scheme, thus the
developers of opendrift also thought it good enough running a purely local
interpolation.

8
Conclusion
This thesis has detailed the design and implementation Particular, a 3D trajec-
tory simulator implemented in F#. The goal of Particular was to provide an
alternative solution to other state of the art 3d trajectory simulators available
today like opendrift by using the functional programming paradigm and the
.net environment.

Compared to opendrift, particular allows for more performance and customiz-
ability of simulations with different types of particles without introducing
complexity for the user of the library, by using an ECS-like architecture usually
found in game development. Opendrift on the other hand is more mature
framework and has more available models set up and a more generic imple-
mentation of reading environmental data. As opposed to particular which can
only handle one specific format of data in its current implementation

An evaluation was also done on all particular components and potential al-
ternate approaches with both profiling memory overhead and other program
characteristics and benchmarking execution time. A direct comparison of open-
drift vs particular was also done with particular having up to 1128.99% less
execution time in the evaluation in equivalent simulation environments.

89

90 chapter 8 conclusion

8.1 Future Work

While Particular currently functions for particle trajectory simulations with
a high degree of customizability, there is a lack of generality when reading
environmental data and vector field properties to particular. As of right now
there is no ability for a reader to read from multiple files and there is only two
readers available for the simulation corresponding to element and node points
in the vector field. A way to implement a system that promises this generality
would probably be a worthwhile endeavour.

In addition support for runga kutta advection and vertical interpolation is
also a needed implementation to achieve the same accuracy as opendrift
currently has. This will be at the cost of some performance, however is unlikely
to be as significant as making particular on par execution time wise with
opendrift.

In addition it is also possible to improve the implementation performance wise
by implementing the optimizations discussed in section 7.2. Such as adding
support for vectorization, lessening the load on the GC by using .net spans
or a more CPU friendly iteration method. The question then becomes if the
optimizations will lead to the code no longer being recognizable as functional.
Thus limiting or removing the main benefits of going functional such as thread
safety. For type safety implementing crates for all objects may be a worthwhile
endavour for more type safety and less boiler plate code as well keeping the
one of the corner stones of F#.

Bibliography
[1] Linda R. Ascher Uri M.; Petzold. “Computer Methods for Ordinary Differ-

ential Equations and Differential-Algebraic Equations.” In: Philadelphia:
Society for Industrial and Applied Mathematics (1998).

[2] P. J. Dormand J. R.; Prince. “New Runge–Kutta Algorithms for Numerical
Simulation in Dynamical Astronomy.” In: Celestial Mechanics 18 (Oct.
1978).

[3] Fundamentals of garbage collection. Retrieved 17.May 2021. 2016. url:
https : / / docs . microsoft . com / en - us / dotnet / standard / garbage -
collection/fundamentals.

[4] Common Language Runtime (CLR) overview. Retrieved 17.May 2021. 2020.
url: https://docs.microsoft.com/en-us/dotnet/standard/clr.

[5] Scott. Bilas. ECS: A Data-Driven Game Object System. [Retrieved 01.May
2021.

[6] Tocher Clough. Clough Tocher, Triangular 2d Interpolation. 1965.
[7] Micheal E Mortenson. “Mathematics for Computer Graphics Applica-

tions.” In: Industrial Press Inc. (1999), p. 264.
[8] Jean-Raymond Bidlot Øyvind Breivik Peter A. E. M. Janssen. “Approx-

imate Stokes Drift Profiles in Deep Water.” In: (2014), pp. 2433–2445.
doi: https://doi.org/10.1175/JPO-D-14-0020.1.

[9] What is NumPy? Retrieved 17.May 2021. 2017. url: https://numpy.org/
doc/stable/user/whatisnumpy.html.

[10] J. Shin. “Introducing Control Flow into Vectorized Code.” In: Proceed-
ings of the 16th International Conference on Parallel Architecture and
Compilation Techniques (2017). doi: 10.1109/PACT.2007.41.

[11] Benjamin C. Pierce. “Types and Programming Languages.” In: MIT press
(2002).

[12] Richard R. Goldberg. “Methods of real analysis.” In: John Wiley Sons
(1964), pp. 263–265.

91

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://doi.org/https://doi.org/10.1175/JPO-D-14-0020.1
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://doi.org/10.1109/PACT.2007.41

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope and Assumptions
	1.3 Context
	1.4 Method and Approach
	1.5 Contributions
	1.6 Outline

	2 Background
	2.1 Vector Fields
	2.2 Solving Ordinary Differential Equations
	2.2.1 Euler's method
	2.2.2 Runga-Kutta
	2.2.3 Geographic Projection vs Coordinate projection

	2.3 NetCDF
	2.4 K-D Tree
	2.5 Garbage Collection in .Net
	2.6 Entity Component System
	2.7 Particle Simulation
	2.7.1 Grid Mesh
	2.7.2 Time steps
	2.7.3 Interpolation
	2.7.4 Ocean Drift

	2.8 Related works
	2.8.1 Opendrift
	2.8.2 Garnet

	3 Design
	3.1 Requirements
	3.1.1 Non-Functional Requirements
	3.1.2 Functional Requirements

	3.2 Architecture
	3.2.1 Overarching approach
	3.2.2 Splitting the system into components

	3.3 Particular
	3.4 Grid
	3.4.1 Elements and Nodes
	3.4.2 Config

	3.5 Particle Manager
	3.5.1 Particles
	3.5.2 Systems

	3.6 Queue
	3.7 Writer
	3.7.1 Buffer

	4 Implementation
	4.1 Language choice
	4.1.1 Choosing F#
	4.1.2 Potential drawbacks of functional programming and f#

	4.2 Setting up the domain specific language
	4.3 Implementing the Particular components
	4.3.1 Implementing Nodes And Elements
	4.3.2 Implementing the Grid
	4.3.3 Particles
	4.3.4 Particle Manager
	4.3.5 Systems
	4.3.6 Implementing the Queue
	4.3.7 Implementing the Writer
	4.3.8 Implementing Simulation

	4.4 Ocean drift implementation
	4.4.1 Creating environment readers
	4.4.2 Particle Lambdas
	4.4.3 Setting the queue behaviour
	4.4.4 Putting it all together

	5 Alternate Implementations
	5.1 Alternate Approaches: Particle Update
	5.1.1 Individual Lambda Approach
	5.1.2 Grid-Based Particle Approach
	5.1.3 Using the Garnet framework

	5.2 Alternate Approach: Queues
	5.2.1 Functional Queue

	5.3 Alternate Approach: Indexing neighbouring elements
	5.3.1 Breadth first approach

	5.4 Alternate Approach: Write Buffers
	5.4.1 Single Buffer

	6 Evaluation
	6.1 Experimental Setup
	6.1.1 Benchmarkdotnet
	6.1.2 Simulation Data

	6.2 Profiling of Particular
	6.3 Indexing Neighbouring Elements
	6.3.1 Performance cost of not indexing
	6.3.2 Kd-Tree vs Breadth first indexing

	6.4 Writing Particle Trajectories to Disk
	6.4.1 Buffer size evaluation
	6.4.2 Comparisons with alternate buffer approaches

	6.5 Updating Particles: Alternate approaches
	6.6 Queues: Functional Queue vs .Net Concurrent Queue
	6.7 Interpolation
	6.7.1 Effects of interpolation

	6.8 Particular vs Opendrift
	6.8.1 Execution time comparison
	6.8.2 Profiling of opendrift
	6.8.3 Sanity check

	7 Discussion
	7.1 Opendrift vs Particular
	7.1.1 Architecture of Opendrift
	7.1.2 Particle Tracking
	7.1.3 Reader
	7.1.4 Advection
	7.1.5 Simulation Model

	7.2 Optimizations
	7.2.1 Garnet vs Particular
	7.2.2 Reading environment data
	7.2.3 Improving type safety with F# crates

	7.3 Interpolation

	8 Conclusion
	8.1 Future Work

