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Abstract 

Background: There are studies that analyze the role of meteorological variables on the incidence and severity of 
COVID‑19, and others that explore the role played by air pollutants, but currently there are very few studies that 
analyze the impact of both effects together. This is the aim of the current study. We analyzed data corresponding 
to the period from February 1 to May 31, 2020 for the City of Madrid. As meteorological variables, maximum daily 
temperature (Tmax) in ºC and mean daily absolute humidity (AH) in g/m3 were used corresponding to the mean 
values recorded by all Spanish Meteorological Agency (AEMET) observatories in the Madrid region. Atmospheric pol‑
lutant data for  PM10 and  NO2 in µg/m3 for the Madrid region were provided by the Spanish Environmental Ministry 
(MITECO). Daily incidence, daily hospital admissions per 100.000 inhabitants, daily ICU admissions and daily death 
rates per million inhabitants were used as dependent variables. These data were provided by the ISCIII Spanish 
National Epidemiology Center. Generalized linear models with Poisson link were performed between the dependent 
and independent variables, controlling for seasonality, trend and the autoregressive nature of the series.

Results: The results of the single‑variable models showed a negative association between Tmax and all of the 
dependent variables considered, except in the case of deaths, in which lower temperatures were associated with 
higher rates. AH also showed the same behavior with the COVID‑19 variables analyzed and with the lags, similar to 
those obtained with Tmax. In terms of atmospheric pollutants  PM10 and  NO2, both showed a positive association with 
the dependent variables. Only  PM10 was associated with the death rate. Associations were established between lags 
12 and 21 for  PM10 and between 0 and 28 for  NO2, indicating a short‑term association of  NO2 with the disease. In the 
two‑variable models, the role of  NO2 was predominant compared to  PM10.

Conclusions: The results of this study indicate that the environmental variables analyzed are related to the incidence 
and severity of COVID‑19 in the Community of Madrid. In general, low temperatures and low humidity in the atmos‑
phere affect the spread of the virus. Air pollution, especially  NO2, is associated with a higher incidence and severity of 
the disease. The impact that these environmental factors are small (in terms of relative risk) and by themselves cannot 
explain the behavior of the incidence and severity of COVID‑19.
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Introduction
There is currently no clear scientific evidence that envi-
ronmental factors such as temperature and humid-
ity affect the spread of the new SARS-CoV-2 virus or 
the slowing of transmission. What is known is that the 
influence of environmental factors is lesser compared 
to the public health measures implemented to con-
tain the virus [1]. The reasons why many respiratory 
viruses are typical in winter in temperate regions is 
related to different factors that contribute to this sea-
sonal phenomenon: lower humidity conditions during 
the winter period, different human activity (greater use 
of closed spaces in winter) and to the host’s immune 
system (generally more susceptible in winter) [2]. Dif-
ferent epidemiological studies have been published at 
the population level documenting different velocities of 
spread between different geographical zones with vary-
ing climatological factors. The data from one study [3] 
suggest that there is an association between a country’s 
latitude and mortality rates of COVID-19. This gradi-
ent can be observed within a country, such as Italy, in 
which the North of the country is more affected than 
the South [4]. In other countries, this is not the case, 
however. There is no observed association in the United 
States between deaths and cases by latitude of individ-
ual states [5]. Some authors have suggested that there 
could be a pattern determined by temperature and by 
humidity, with a decrease in the intensity of transmis-
sion associated with an increase in temperature and 
relative humidity [6].

On the other hand, studies have analyzed the role of 
local level air pollution, which seems to be an environ-
mental factor that can aggravate the COVID-19 disease 
process and increase its severity. However, the possible 
effect on the spread of the virus is still in question, espe-
cially if particulate matter (PM) pollutants are capable of 
serving as a viable means of transport for the new SARS-
CoV-2 virus [7]. Another more widespread hypothesis is 
focused on the greater cardio-respiratory vulnerability 
presented by those people who are habitually exposed 
to high levels of air pollution in cities. According to the 
World Health Organization (WHO), 1 out of 7 patients 
with COVID-19 suffer from respiratory problems and 
other severe complications [8]. Up until now, the factors 
associated with mortality due to COVID-19 include sex 
(greater risk among men), age (greater risk in those over 
age 65) and the presence of co-morbidities such as hyper-
tension, diabetes, and cardiovascular and cerebrovascular 
diseases. Vascular inflammation, myocarditis and cardiac 
arrhythmias have also been documented in relation to 
this new disease. All of these illnesses overlap in large 
part with the causes of mortality related to the exposure 
to particulate matter and their impact on health.

While many publications have addressed the influence 
of environmental factors on the incidence and severity 
of COVID-19, the majority of these studies use differ-
ent methodological approximations. There are studies 
that report simple correlations between the health vari-
ables related to COVID-19 and air pollution [9–11] or in 
the case of meteorological variables, simple correlations 
with temperature and humidity [12]. There are also stud-
ies, though lesser in number, that analyze the two types 
of variables jointly regarding the incidence of COVID-19 
[13]. In terms of modeling, studies have generally been 
published that report the results of single-variable mod-
els for room temperature or absolute humidity [14, 15], 
with similar results in that they reflect the negative rela-
tionship between these two environmental variables and 
those related to COVID-19 [16].

While it is true that the majority of published stud-
ies show methodological deficiencies both terms of the 
time series analyzed and the control variables (in some 
cases nonexistent they do provide plausible results and 
hypotheses that deserve to be considered, especially if the 
development and implementation of plans to decrease 
pollution in cities can be a tool in addressing the spread 
and severity of the SARS-CoV-2 virus.

In this study, we analyze the combination of the asso-
ciation of meteorological variables of temperature and 
absolute humidity and the registered concentrations of 
pollutants such as  PM10 and  NO2 on the incidence rates 
and severity of COVID-19 registered in the Commu-
nity of Madrid during the period of the state of alarm in 
Spain.

Methods
Dependent and independent variables
The dependent variables were calculated based on the 
number of positive cases of COVID-19. Cases diagnosed 
as positive for COVID-19 were defined based on posi-
tive PCR test results in 99.74% of the data. The remaining 
cases were diagnosed based on presentation of symptoms 
compatible with the disease.

Cases defined as such refer to the daily cases that 
occurred in the Community of Madrid during the time 
period between February 1, 2020 and May 31, 2020. The 
state of alarm and subsequent confinement of the popu-
lation was decreed by the Spanish State March 14, with 
the application of measures for restricted movements 
and social interaction [17]. This state of alarm remained 
in place until June 21 [18].

We analyzed data corresponding to the number of 
cases diagnosed as positive for COVID-19 in different 
categories: number of cases, number of emergency hos-
pital admissions, number of intensive care unit (ICU) 
admissions and the number of deaths due to COVID-19. 
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Data were provided by the National Center for Epi-
demiology at the Carlos III Institute. The data for this 
period related to the population of the Community of 
Madrid were supplied by the National Statistics Institute 
(INE). Based on these data, we calculated the following: 
COVID-19 incidence rate per 100,000 inhabitants; rate 
of emergency hospital admissions for COVID-19 per 
100,000 inhabitants; rate of ICU hospital admissions for 
COVID-19 per 1,000,000 inhabitants and COVID-19 
death rate per 1,000,000 inhabitants.

The independent variables consisted of meteorological 
data and air pollution data.

Meteorological data were the values of daily maximum 
temperature (Tmax), minimum temperature (Tmin), and 
average temperature (Tmed) in Celsius and daily average 
relative humidity (RH) in percent.

The values of average absolute daily humidity (AH) in 
g/m3 were obtained based on average relative humidity 
and average daily humidity [19].

These values constitute the average value of the obser-
vations corresponding to the AEMET stations located 
in the Community of Madrid and were provided by the 
State Meteorological Agency (AEMET).

The air pollution data were the average daily values of 
the concentrations of  PM10 and  NO2 in μg/m3, obtained 
by using the average of the values measured in the sta-
tions located in the Community of Madrid. These data 
were provided by the Ministry of Ecological Transition 
and Demographic Change (MITECO).

Fourteen-day average values were calculated based on 
the average daily values for these independent variables.

Methodology of analysis
First, time lags with p-values below 0.05 were detected 
that existed between the different variables for the rates 
of COVID cases described. Cross-correlation functions 
(CCF) were established between the residuals of the pre-
whitened series for these variables. Prewhitening was 
carried out through ARIMA single-variable modeling. 
Knowing time lags was necessary to analyze the tempo-
rality of case detection, hospital admission and admission 
to the ICU, and death.

Generalized linear models with Poisson link (GLM) 
were carried out between the dependent (positive 
COVID rates) and independent (environmental) vari-
ables. In these models we controlled for the series trend 
and seasonality for 120, 90, 60 and 30  days, and the 
autoregressive nature of the series. Also, we have con-
trolled for weekly seasonality.

where y represents each of the dependent variables 
previously commented, a is the intercept. βn represents 

Log
(

y
)

= a+ β1n1i + β2seasi + β3envi + β4lag(X , g)i + εi,

the coefficient of each of the n variables. n1 is trend, 
seas represents each of the variables used to control 
seasonality, env represents each of the environmental 
variables, lag(X, g) represents the lagged variable of 
order g, in which X has been replaced by the depend-
ent variable and environmental variables and ε the rep-
resents residuals of the model; each of them at the i 
observation.

GLM were carried out between each dependent 
variable and the average daily values of the independ-
ent variables, and later with the 14-day average values. 
This single-variable modeling allowed us to determine 
which of the daily temperatures we worked with pre-
sented better associations with dependent variables. In 
this way, time lags were established that produced asso-
ciations with p-values below 0.05 between the depend-
ent variables and the independent variables (p < 0.005).

The range of lag days considered in the analysis is 
from 0 to 28  days to take into account the time that 
took place between the occurrence of symptoms and 
worsening of symptoms and arrival at the hospital [20, 
21] and the lag times between incidence, admission in 
the ICU and death in Spain [22]. A weekly distributed 
lag model has been used. In a first step, the lags have 
been introduced corresponding to the independent 
variables lagged from 0 to 7 days. In a second step, the 
lags corresponding to 8–14 days have been introduced, 
keeping the variables lagged that were statically signifi-
cant in the first step, and so on up to 28 days to com-
plete the range of lag days considered in the analysis. 
The lagged variables will appear as follows, “short-term" 
for lags between 0 and 7 days; “medium term” for lags 
between 7 and 14 days and "long term” for the remain-
ing lags.

Later, two-variable models were carried out, includ-
ing the air pollution variables and the meteorological 
variables. Finally, all variables models were carried out 
between the entire dependent and independent varia-
bles introducing the control variables described. Based 
on the absolute values of the estimators, relative risks 
(RR) were calculated in the form RR =  eβ with β as the 
absolute value of the estimator obtained in the Pois-
son modeling. A negative coefficient in the estimator 
indicates that an increase in the independent variable 
is associated with a decrease in the dependent variable. 
The RR is calculated by an increase of 1 µg/m3 of  PM10 
and  NO2; 1 ºC in the maximum temperature (Tmax) 
and 1 g/m3 in the absolute humidity (AH) value.

We used a back-stepwise process for variable selec-
tion, and statistical significance was set at a p-value 
of p < 0.05. Over- or under-dispersion have been 
controlled.
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Results
Table 1 shows the descriptive statistics of the dependent 
variables (COVID-19 rates) and independent variables 
analyzed during the study period. It is worth highlighting 
that, in terms of average values, 47.1% of detected cases 
were admitted to the hospital, 2.9% were admitted to the 
ICU, and 11.9% died.

Figure 1 shows the temporal evolution of the depend-
ent variables, and Fig.  2 shows that of the independ-
ent variables. In terms of the dependent variables, we 
observed a time lag between the incidence rate and the 
hospital admission rate, as well as between the ICU 
admission rate and the death rate. The evolution of the 
concentrations of  NO2 and  PM10 in Fig. 2 shows, in both 
cases, a clear trend of decline. Furthermore, in the case 
of  PM10, there are periodic increases in the average daily 
concentrations of the pollutant. In contrast, in the case 
of maximum daily temperatures (Fig. 2b), there is a clear 
trend of increase, which is also the case for absolute aver-
age daily humidity (Fig. 2c).

In order to establish a lag between the series of inci-
dence and that of admissions, and the series of ICU 
admissions and deaths, we carried out crossed correla-
tion functions between the different series, as described 
in the methodology. The lags with p-values below 0.05 
between incidence and admissions were produced for 
lags 0, 6, 7 and 10 (at short and medium term), between 
incidence and ICU admissions for lags 0 and 7 (at short 
term), and between incidence and deaths for lags 7, 11 
and 13 (at medium term). There were associations with 
p-values below 0.05 between admissions and ICU admis-
sions for lags 0 and 9 (at short and medium term), and 
finally, there were associations with p-values below 0.05 
between ICU admissions and deaths for the lags 7, 9, 14 
and 28 (at medium and long term). For example, Fig.  3 
shows some of these crossed correlation functions.

Table  2 shows the Pearson’s correlations coefficients 
between independent variables.

Table 3 shows the principal results in terms of the asso-
ciations found between the different COVID-19 rates and 
the daily values of the independent variables in terms of 
the lags in which there were associations with p-values 
before 0.05, both in the single-variable and two-variable 
models. It also shows the relative risks obtained for the 
all variables models that include Tmax and AH as well as 
 NO2 and  PM10.

Regarding  PM10 there was an association with 
p-value below 0.05, with positive coefficients for the 
four COVID-19 rates analyzed. These associations were 
established between the lags of 12 and 21 (at medium 

Table 1 Descriptive statistics of the COVID‑19 rate variables and independent variables analyzed during the period 02‑01‑2020 to 
05‑31‑2020

* Cases per 100,000 inhabitants. **Cases per million inhabitants

Maximum Minimum Mean Std. deviation

Incidence rate* 42.53 0.03 8.68 11.12

Hospital admissions rate* 25.71 0.03 4.16 6.45

Intensive care unit admissions rate** 15.76 0.00 2.54 3.98

Mortality rate ** 49.22 0.00 10.30 12.91

Daily maximum temperature (Tmax) (°C) 30.4 8.4 17.6 5.5

Absolute humidity AH (g/m3) 11.9 1.9 7.3 1.7

PM10 (μg/m3) 85.1 5.1 15.8 12.2

NO2 (μg/m3) 57.3 2.5 18.8 13.6

Fig. 1 Temporal evolution of incidence rate; hospital admissions 
rate; intensive care unit admission rate, and mortality rate from 
01 February 2020 to 31 May 2020 (n1). All in cases per 100.000 
inhabitants
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and long term). On the other hand, the average daily 
concentrations of  NO2 also showed an association 
with p-value below 0.05, with positive coefficients for 
the COVID-19 variables, except for the death rate. In 

addition to the similar lags obtained for  PM10,  NO2 
showed a short-term association (lags 0 and 5) that was 
not found for  PM10. Once two-variable models were 
carried out that included average daily concentrations 

a b

c

Fig. 2 Temporal evolution of: a daily mean concentration  NO2 and  PM10 (μg/m3); b daily maximum temperature (°C) and c daily mean absolute 
humidity (g/m3)
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of  PM10 and  NO2 the association of  NO2 was predomi-
nant in all of the models.

In contrast to the pollutant variables, the meteorologi-
cal variables analyzed showed associations with p-values 
below 0.05 with negative coefficients both for maximum 
daily temperature (Tmax) and absolute humidity (AH). 
In general Tmax was associated with all of the COVID 
variables, both in the medium-term (lags 7–14) and in 
the long-term (lag 27), but less so than AH. There was no 
association with the mortality rate. In two-variable mod-
els the impact of AH was predominant over Tmax.

Also Table 3 shows the results of the all variables mod-
els with respect to daily values. The results agree with 
what has already been mentioned: the value of  NO2 was 
predominant over  PM10, except for the admissions rate; 
there was a short-term association of  NO2 on incidence; 
and an association of AH and Tmax.

Finally, Table 4 shows the behavior of the 14-day aver-
age values of the independent variables compared to the 
COVID variables analyzed. These results were very simi-
lar to those described for the daily values, though some 
differences are worth highlighting. First, there was an 
association between average values and mortality, both 
for  PM10 and  NO2, which was not the case for Tmax and 
AH. The models with all variables showed the predomi-
nance of the associations related to  NO2 compared to 
those of  PM10 as well as those of AH compared to Tmax 
already described.

Table 5 shows the relative risks corresponding to final 
models with all the independent variables, both daily val-
ues and averaged values with p-values below 0.05.

Discussion
Given the analysis of many different factors, this section 
is structured into different parts to facilitate reading and 
comprehension.

Variables for COVID‑19 rates and detected temporality
During the time this analysis was carried out, PCR tests 
for detecting positive cases of COVID-19 were only used 
for those people who presented symptoms compatible 
with the disease. According to a later prevalence study, 
SARS-CoV-2 in Spain (ENE-COVID) [23], “One in three 
infections seems to be asymptomatic, while a substan-
tial number of symptomatic cases remained untested”. 
Thus, the confirmation of cases during the study period 
analyzed was carried out in large part among those who 
presented symptoms with a certain level of severity. This 
would explain the high percentage of admissions (47.1 
percent of all detected cases) and of deaths in Madrid 
in relation to the incidence of the disease (11.9%) and in 
relation to data from other European and Spanish cit-
ies [24], which was almost triple that established by the 

a

b

Fig. 3 Cross‑correlation function (CCF): a incidence rate vs hospital 
admissions rate; b intensive care unit admission rate vs mortality rate

Table 2 Pearson’s bivariate correlations between daily mean 
concentrations of  NO2 and  PM10; daily maximum temperature 
(Tmax) and absolute humidity (AH)

**  Significance p < 0.001; * significance p < 0.05

NO2 PM10 Tmax AH

NO2 1 0.519** − 0.143 − 0.527**

PM10 0.519** 1 0.019 − 0.182*

Tmax − 0.143 0.019 1 0.569**

AH − 0.527** − 0.182 0.569** 1
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WHO, which indicated a percentage of around 4% for 
deaths and diagnoses [8].

This severity of diagnosed cases would also explain 
the existence of the association in lag 0 between the 

incidence and rates of hospital admission and even ICU 
admission. That is to say, these were people who were 
diagnosed with the disease and were admitted due to its 
severity to the hospital and even the ICU on the same 

Table 3 Lags in which associations are established between the daily values of the independent variables and the analyzed COVID‑19 
variables

PM10
(µg/m3)

NO2
(µg/m3)

Daily maximum 
temperature
Tmax (°C)

Absolute humidity
AH (g/m3)

Incidence rate Single variable 12 0/14/21 7/14 7/16/18/23

Two variables Without effect 0/14/21 14 16/18/23

All variables Without effect 0/14 14 18/23

Hospital admissions rate Single variable 20 5/19 7/14/27 4/16/20/25/29

Two variables Without effect 5/19 7/14 16/20

All variables 18 Without effect 7/14 16/20

Intensive care unit admissions rate Single variable 14/19 0/21/28 11 15/21/23

Two variables Without effect 0/21/28 11 15/21

All variables Without effect 21/28 Without
effect

15/21

Mortality rate Single variable 21 Without effect Without
effect

Without
effect

Table 4 Lags in which associations are established between the averaged over 14 days‑values of the independent variables and the 
analyzed COVID‑19 variables

PM10
(µg/m3)

NO2
(µg/m3)

Daily maximum 
temperature
Tmax (ºC)

Absolute humidity
AH (g/m3)

Incidence rate Single variable 11 13 23 14

Two variables 11 13 Without effect 14

All variables Without effect 13 Without effect 14

Hospital admissions rate Single variable 14 28 7/20 4/20/29

Two variables Without effect 28 Without effect 4/20/29

All variables Without effect 28 Without effect 4/20/29

Intensive care unit admission rate Single variable 20 21/28 21 20

Two variables Without effect 21/28 Without effect 7/20

All variables Without effect 21/28 Without effect Without effect

Mortality rate Single variable 21 28 Without effect Without effect

Table 5 Relative risks corresponding to final models with all the independent variables

The RR is calculated by an increase of 1 µg/m3 of  PM10 and  NO2; 1 °C in the maximum temperature (Tmax) and 1 g/m3 in the absolute humidity (AH) value

Daily values Averaged values (0–14 days)

Incidence rate NO2 RR: 1.02 (1.00, 1.04)
Tmax RR: 1.05 (1.02, 1.07)
AH RR: 1.19 (1.16, 1.22)

NO2 RR: 1.04 (1.02, 1.06)
AH RR: 1.37 (1.16, 1.58)

Hospital admissions rate PM10 RR: 1.01 (1.00, 1.02)
Tmax RR: 1.14 (1.10, 1.17)
AH RR: 1.23 (1.20, 1.27)

NO2 RR: 1.05 (1.02, 1.08)
AH RR: 3.12 (2.09, 4.14)

Intensive care unit admissions rate NO2 RR: 1.02 (1.00, 1.05)
AH RR: 1.20 (1.00, 1.39)

NO2 RR: 1.10 (1.06, 1.14)



Page 8 of 13Linares et al. Environ Sci Eur          (2021) 33:107 

day of diagnosis. The lags found between the incidence 
rate and hospital admissions in lags 6, 7 and 10 (at short 
and medium term) are also compatible with the time 
that took place between the occurrence of symptoms 
and worsening of symptoms and arrival at the hospital 
[20, 21]. On the other hand, the lag times found between 
incidence, admission in the ICU and death were similar 
to those expected in the evolution of COVID-19 in Spain 
[22].

The relationship with air pollution variables
The time evolution of the concentrations of the pollut-
ants analyzed,  PM10 and  NO2, clearly showed a trend of 
decline, which could be explained by the restrictions on 
mobility that took place in Madrid after the declaration 
of the state of alarm on March 14. The decline observed 
in the concentrations of the pollutants in the last week 
of the study, compared to the first, were 34.5% for  PM10 
and 66.8% for  NO2, which shows the marked anthropic 
origin of the  NO2 in Madrid and the important natural 
origin component (including processes of resuspension) 
of  PM10 concentrations [25]. “Peaks” in  PM10 can be 
observed in Fig.  2, related to the advection of particu-
late matter of Saharan origin during these dates [26]. The 
declines in the concentrations of  PM10 and  NO2 are simi-
lar to those found in other cities in Spain during the con-
finement [27, 28].

Table 3 shows the existence of an association between 
average daily concentrations of  PM10 and  NO2 and the 
COVID-19 incidence rate, the rate of hospital admissions 
and ICU admissions. There is even an association with 
p-value below 0.05 detected between  PM10 and the death 
rate.

There are two biological mechanisms that could explain 
the existence of these associations [29]. On one hand, 
is clear that air pollution affects human health [30]. On 
the other hand, Pothirat et al. [31] investigated the asso-
ciation between daily average seasonal air pollutants and 
daily mortality of hospitalized patients and community 
dwellers, as well as emergency and hospitalization visits 
for serious respiratory, cardiovascular, and cerebrovascu-
lar diseases. It was found that air pollutants were asso-
ciated with higher mortality of the hospitalized patients 
and community dwellers, with varying effects on severe 
acute respiratory, cardiovascular, and cerebrovascular 
diseases. In relation to the age of the individuals who are 
affected by outdoor air pollution—with particular atten-
tion to the respiratory system—those of elderly ages are 
one of the most sensitive groups [32–34]. That is to say 
that air pollution worsens the same type of pathology in 
the same vulnerable age groups impacted more severely 
by SARS-Cov2 [22].

The other mechanism is based on the fact that air pol-
lution weakens the immune system in the short term. 
There is growing evidence that pollution can induce 
oxidative stress, resulting in the production of free radi-
cals, which in turn, may damage the respiratory system, 
reducing the resistance to viral and bacterial infections 
[35]. Air pollutants could influence the immune sys-
tem and affect its ability to limit the spread of infectious 
agents like the Respiratory Syncytial Virus (RSV) [36, 37]. 
On the other hand, Zhao et al. [38] has established that 
short-term exposure to  PM2.5 could act on the balance 
of inflammatory M1 and anti-inflammatory M2 mac-
rophage polarizations, a fact that might be involved in air 
pollution-induced immune disorders and diseases.

Furthermore, in the case of PM concentrations, there is 
another possible mechanism related to the transmission 
of the virus. According to a study carried out in Lom-
bardia [7], traces of RNA of SARS-CoV-2 were found in 
samples of PM measured both in industrial and urban 
settings in Bergamo. The authors suggest that the aerosol 
particles that contain the virus of between 0,1 and 1 µm 
can travel further when they group together with pollut-
ant particles of up to 10 µm  (PM10), given that the result-
ing particle is larger and less dense a respiratory droplet, 
which could increase the time it remains in the atmos-
phere. However, other research also carried out in Italy 
suggests the opposite in terms of the possible transmis-
sion of the virus via material particles [39]. Other studies 
carried out in Spain on days with an increase in PM from 
Saharan dust support this last hypothesis [40].

The lags in which associations were established with 
the different disease indicators in our analysis, both for 
 PM10 and for  NO2, are compatible with both the needed 
incubation times of the virus (of between 2 and 12 days 
[20]) and the different processes of worsening of the 
disease [22]. In all cases a logical offset was observed in 
the lags from the time of case detection to death in the 
case of  PM10. The association with p-value below 0.05 
observed in the short term (lags 0 and 5) for  NO2 with 
the incidence rate, hospital admission rate and ICU 
admission rate, is noteworthy. We understand that such 
a short-term association cannot be justified by the dam-
age of  NO2 to the immunological system in the short-
term and supporting infection mechanisms, as has been 
reported, but rather by the worsening of prior respiratory 
and cardiovascular pathologies. The concentrations of 
 NO2 in Madrid are related to both an increase in mor-
tality due to circulatory causes [41, 42] and respiratory 
causes [41, 42], as well as to hospital admissions [43], 
especially for people over age 75 [32].

The two-variable models that include  PM10 and  NO2 
together with the dependent variables related to COVID-
19 analyzed show more robust associations for  NO2 than 
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for  PM10 in all cases. Prior studies carried out in Madrid 
related to the impact of both  PM10 [44] and to  NO2 [42] 
on all-cause daily mortality, show greater RR for  NO2 
RR: 1.012 (95% CI 1.010, 1.014) compared to  PM10 RR: 
1.009 (95% CI 1.006, 1011). While these RR slightly over-
lap, this greater risks of  NO2 could account for the fact 
that  NO2 shows a more robust association in the two-
variable models that combine both primary pollutants 
with a high collinearity (in the period analyzed the cor-
relation between both pollutants is 0.519 with p < 0.0001) 
(Table 2).

The results of the models of COVID-19 rates concern-
ing the association of the average daily concentrations 
between 0 and 14  days prior (shown in Table  4) show 
behavior that is similar to what was described earlier 
for daily values. It should be noted that the short-term 
association of  NO2 disappeared, which is in accordance 
with the hypothesis of the acute effect of exacerbation of 
circulatory and respiratory symptoms described for the 
daily values. Furthermore, in general, the lags in which 
associations were established for  NO2 and for  PM10 were 
more long-term, which is compatible with less acute 
effects. It should be noted that in this case an associa-
tion did appear between  PM10,  NO2 and mortality due to 
COVID-19.

The association of the meteorological variables 
(temperature and absolute humidity)
Maximum daily temperature (Tmax) showed more 
robust behavior compared to the variables related to 
COVID-19 rates in the modeling process than average 
and minimum daily temperatures, thus it was selected 
as the variable for the analysis. There was a greater num-
ber of associations with p-values below 0.05 and greater 
statistical significance. The finding that Tmax was more 
closely related to COVID-19 rates than Tmin may be 
counter-intuitive. One explanation could be that Tmin 
is usually recorded around 7 a.m., a time when very lit-
tle human activity occurs outdoors, while Tmax is usually 
recorded at around 4 p.m. [45].

The increasing trend in maximum daily temperature 
and the increasing trend in absolute daily humidity (AH) 
shown in Fig.  2b, c is coherent with climate conditions 
that are usually present in Madrid during the period ana-
lyzed [46].

The results shown in Table  3 indicate the existence 
of an association with p-value below 0.05 for both 
Tmax and AH. The relationship was negative for all 
of the all indicators analyzed, except for mortality, for 
which there was no detected association. That is to 
say, low and humid temperatures are related to higher 

incidence rates. In  vitro studies have shown that 
SARS-CoV  is inactivated at both higher temperatures 
and humidities [47], the results founded are in line.

On the other hand, the serological study of the preva-
lence of SARS-CoV-2 in Spain (ENE-COVID) [23] indi-
cates that a lower prevalence of COVID-19 in Spain 
was produced in coastal regions that, during the time 
of the study and in general, are characterized by higher 
temperatures and humidity than the interior areas of 
the Peninsula [47].

Seasonal respiratory viruses are transmitted through 
aerosols, large respiratory droplets, or by direct contact 
with fomites [2]. Lower temperatures could also be an 
important factor that favors the diffusion of the SARS-
CoV-2 in temperate regions [13, 46]; in the same way, 
relatively low humidity could also contribute to greater 
transmission of the new virus [48]. Other studies show 
results that are similar to what we found in our analy-
sis, in terms of humidity and the incidence of COVID-
19 transmission [49–52].

On the other hand, the results of our study show that 
higher temperatures correlates with lower incidence 
and severity of the disease. This may be compatible 
with a protective association of the temperature. Simi-
lar results have been found in other studies carried out 
in different parts of the world, including China [6, 53], 
the United States [54] and Spain [15], even though the 
evidence of the role of temperature on the incidence of 
the virus is still unclear [54]. The results of some stud-
ies are contradictory to what we describe here [55], and 
still other studies carried out in different parts of the 
U.S. are inconclusive.

Extreme temperatures can also affect morbidity and 
mortality due to different causes [56, 57]. However, the 
temperatures registered during the study period are far 
from cold spells or heat wave temperatures [56] for the 
city of Madrid. Thus the expected association of tem-
perature would be to facilitate or make more difficult 
the transmission of the virus. This result agrees with 
the lags in which the associations were found, shown in 
Table 3 for daily values and in Table 4 for 14-day aver-
ages. It can be observed that in neither of the two cases 
are there short-term lags (lag 0), but there are lags in 
the values similar to the incubation period of the virus 
[20] and with the worsening of the disease [22].

The association of AH is predominant in the two-var-
iable models compared to Tmax, both for daily values 
as well as 2-week averages. This result agrees with what 
was found in a study of eight U.S. cities [54] which con-
cluded, “Humidity was observed as the best predictor 
for the coronavirus outbreak followed by temperature“.
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Results of the all variables models (pollution 
and meteorology)
In general, the behavior of the models with all variables 
was similar to that of the two-variable models (Table 4), 
both in terms of daily values and of average values, with 
a predominant association with concentrations of  NO2 
over  PM10 and of AH over Tmax.

The higher RR values obtained for the 14-day average 
values as compared to daily values (Table  5), especially 
for  NO2, show that it is not the higher daily levels of pol-
lution that most correlated the incidence and severity of 
the disease; rather it is the average values. This supports 
that the preventive public health measures related to pol-
lution and COVID-19 must be structural and aimed at 
decreasing the pollution in the city, as opposed to conjec-
tural measures to avoid episodic situations.

The RR of these environmental factors are small (in 
terms of relative risk) and, by themselves, cannot explain 
the behavior of the incidence and severity of COVID-19, 
which is explained by social distancing and public health 
measures not considered in our analysis, this assumption 
is similar to the findings founded in the First report of the 
WMO COVID-19 Task team [58]. Only RR related to AH 
are relevant, but the low mean values corresponding to 
AH (as can been observed in Table 1), makes its contri-
bution to the COVID-19 variables not so high.

Strengths and limitations of this study
One of the principal strengths of this study is the lon-
gitude of the series used. Although the series was of 
212  days, or 4  months, it is longer than the majority of 
studies carried out to date. The duration of the series 
allowed for carrying out generalized linear models with 
control variables such as trend, seasonality and the 
autoregressive component. In addition, it also allows for 
models with all the variables that include both meteoro-
logical and pollution-related variables, which is a signifi-
cant improvement compared to the many investigations 
carried out to date in this field, that have used two vari-
ables correlations corresponding to series of 30 days.

Another strength of this study is the robust nature of 
the findings, first between the lags in which associations 
were established, which are coherent with biological 
mechanisms that link the different variables analyzed and 
the incidence and severity of the disease with the period 
of incubation and the course of the disease. This analysis 
was possible thanks to the daily data on COVID-19 vari-
ables as opposed to accumulated data or data averaged 
over time.

In addition, not only was a single association found 
between an indicator and the disease, rather there were 
four indicators with coherent results between them. This 
robustness extends as well to the relationship between 

the two variables and models with all variables and to the 
results obtained for the daily as well as averaged series. 
On the other hand, not only daily values are used but 
also averages of 0–14 days, which eliminates the weekly 
seasonality that exists in the dependent and independent 
variables. The longitude of the series is also, paradoxi-
cally, a weakness. Only a 4-month period was considered, 
without accounting for the complete annual variation.

About the study design, the analysis is a descriptive 
observational study. Specifically, it is a population-based 
ecological study. Generally, in epidemiological studies it 
constitutes a level of basic evidence. This type of study 
does not allow a causal relationship; but it constitutes 
useful exploratory approach [59]. Another limitation of 
the study consist in the lock-down period, this period 
was completely anomalous in terms of the decrease in 
air pollutants levels. This determines people exposure, 
which was different from usual situation. For example, in 
the analysis conducted, the impact of ozone concentra-
tions on health was not included, due to previous analysis 
performed in Madrid city [60] have concluded that the 
threshold for ozone values from which effects on health 
are detected is over 60 µg/m3 (daily average). This value 
was not reached any day in the study period.

On the other hand, the conditions under which the 
data were obtained correspond to a period in which the 
declaration of cases only occurred when people already 
presented important symptoms of the disease.

The study conducted by the authors corresponds to an 
ecological time series design, with all the epidemiologi-
cal limitations inherent in this type of study, especially 
the ecological fallacy. Both of the aforementioned points 
show the need for prudence in extrapolating the results 
to other situations in time other than those correspond-
ing to the time this study was carried out. Nevertheless, 
this study could be evaluated with other methodologies 
that could complement the analysis carried out, a meth-
odology such as propensity score matching [61], even 
a cohort study could help to improve the quality of 
observed findings. However, due to the immediacy of the 
COVID-19, there has not been enough time to carry out 
a follow-up study to guarantee better scientific evidence. 
On the other hand, the time series analysis methodol-
ogy used has been previously implemented in Spain, for 
example, studying the relationship between COVID-19 
and environmental variables such as traffic noise [62] and 
analyzing the effect of particulate matter from Sahara 
dust in the incidence of COVID-19 [40]. In addition, 
there are other examples using time series design to ana-
lyze the association between COVID-19 and air pollution 
carried out in Italy [63], France [64], United Kingdom 
[65], China [66], and Latin America [67]. Finally, ecologi-
cal studies are a very efficient tool for making decisions 
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in public health at the short-term [68] and very useful in 
the context of the current pandemic to identify environ-
mental risks factors. Later studies will carry out a more 
in-depth and joint analysis of the impact of climate vari-
ability, air pollution and other factors that are extrinsic to 
the transmission of COVID-19.

Conclusions
The results of this study indicate that the environmen-
tal variables analyzed are related to the incidence and 
severity of COVID-19 in the Community of Madrid. 
In general, low temperatures and low humidity in the 
atmosphere are associated with increased spread of the 
virus. Air pollution, especially  NO2, is associated with a 
higher incidence and severity of the disease. The 14-day 
average values imply a greater risk than daily values.

However, the RR of these environmental factors are 
small and by themselves cannot explain the behavior 
of the incidence and severity of COVID-19, which is 
explained by social distancing and public health meas-
ures not considered in our analysis.
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