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Abstract 

Background: An area of current study concerns analysis of the possible adaptation of the population to heat, based 
on the temporal evolution of the minimum mortality temperature (MMT). It is important to know how is the evolu‑
tion of the threshold temperatures (Tthreshold) due to these temperatures provide the basis for the activation of 
public health prevention plans against high temperatures. The objective of this study was to analyze the temporal 
evolution of threshold temperatures (Tthreshold) produced in different Spanish regions during the 1983–2018 period 
and to compare this evolution with the evolution of MMT. The dependent variable used was the raw rate of daily 
mortality due to natural causes ICD X: (A00‑R99) for the considered period. The independent variable was maximum 
daily temperature (Tmax) during the summer months registered in the reference observatory of each region. Thresh‑
old values were determined using dispersion diagrams (annual) of the prewhitened series of mortality temperatures 
and Tmax. Later, linear fit models were carried out between the different values of Tthreshold throughout the study 
period, which permitted detecting the annual rate of change in Tthreshold.

Results: The results obtained show that, on average, Tthreshold has increased at a rate of 0.57 ºC/decade in Spain, 
while Tmax temperatures in the summer have increased at a rate of 0.41 ºC/decade, suggesting adaptation to heat. 
This rate of evolution presents important geographic heterogeneity. Also, the rate of evolution of Tthreshold was 
similar to what was detected for MMT.

Conclusions: The temporal evolution of the series of both temperature measures can be used as indicators of popu‑
lation adaptation to heat. The temporal evolution of Tthreshold has important geographic variation, probably related 
to sociodemographic and economic factors, that should be studied at the local level.
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Introduction
In recent years, studies in different countries have 
observed a decrease in the mortality attributable to 
heat waves [2, 3, 9, 27, 28]. This could be interpreted as 
a progressive process of population adaptation to high 
temperatures, due to a variety of factors [19, 31], among 
which the efficiency of heat prevention plans in different 
countries is worth mentioning [12].
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The decrease in the impact of heat is generally meas-
ured in terms of the decrease in the relative risks of daily 
mortality associated with extremely hot temperatures. 
This process can be visualized as an evolution over time 
towards higher values for the temperature thresholds for 
heat waves (Tthreshold) [18, 30] (Díaz et  al. 2019). The 
threshold temperature for a heat wave can be generally 
defined as the epidemiological threshold at which the 
effects of heat begin to provoke excess mortality attrib-
utable to heat. These thresholds also mark the activa-
tion of prevention plans based on public health action 
to respond to high temperatures. These Tthreshold val-
ues are dynamic, they vary in time as the as well as the 
sociodemographic and economic dynamics also makes it. 
The Tthreshold values can be used as an indicator of the 
adaptation to extremely high temperatures [18, 30] (Díaz 
et al. 2019). From the point of view of population adapta-
tion to heat waves, adaptation is complete when the rate 
of increase in maximum daily temperature as a conse-
quence of global warming is less than the rate of increase 
in Tthreshold (Díaz et al. 2019) [15], not including sum-
mer mortality excesses.

In order to analyze whether a process of population 
adaptation is in fact occurring, there is research that 
investigates the evolution of another epidemiological 
indicator that defines the traditional functional relation-
ship that exists, in the “V” form, between daily mortal-
ity and temperature. This indicator is known as minimum 
mortality temperature (MMT) [2, 8, 33].

The evolution of MMT has also been used as an indi-
cator of possible population adaptation to heat [15, 16]. 
From a conceptual point of view, MMT and Tthresh-
old represent two different indicators. In a graphic 

representation (Fig.  1) of the temperature–mortality 
relationship, MMT represents the temperature at which 
mortality reaches its minimum value. Thus, mortality 
attributable to heat is represented to the right of MMT, 
while mortality attributable to cold is represented to the 
left [1]. However, Tthreshold values represent the tem-
perature at which mortality begins to increase due to heat 
waves. It is evident that mortality due to heat includes 
mortality due to heat waves [29], however, the behavior 
and temporal evolution are not necessarily similar.

In the report “Heat Health in the WHO European 
Region: Updated Evidence for Effective Prevention” [34], 
the WHO established that the activation of prevention 
plans to address high temperatures should have an epi-
demiological basis. That is to say, they should be based 
on a determination of Tthreshold for each geographic 
and sub-climatic area of study, based on the increase 
in mortality with high temperatures. Also, these plans 
should be revised periodically, given that Tthreshold var-
ies across time. Despite the important role of Tthreshold 
in the process of population adaptation to high tempera-
tures, there are few studies that analyze its temporal 
evolution and that also establish variation in time as an 
indicator of the process of population adaptation to heat 
waves.

The first objective of this study was to analyze the tempo-
ral evolution of Tthreshold temperatures across a period of 
36 years (1983–2018) in Spanish regions that are represent-
ative of the different impacts of heat waves, and to evaluate 
whether Tthreshold constitutes a good indicator of popu-
lation adaptation to high temperatures. Second, this study 
aimed to compare the rate of evolution of Tthreshold with 
the rate of evolution observed in MMT during the same 

Fig. 1 Temperature–mortality relationship in Madrid, 1983–2018 period. Minimum mortality temperature (MMT) and temperature threshold for 
heat waves (Tthreshold)
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time period studied, to analyze the possible relationship 
and possible implications for future adaptation.

Materials and methods
Mortality rates
From among all Spanish provinces, 10 were selected 
as representative of the behavior of Spanish regions in 
terms of thermal extremes, according to previous studies 
[9, 11, 32].

The dependent variable was made up of the rate of 
daily mortality due to natural causes (ICD X: A00-R99) 
in municipalities with over 10,000 inhabitants in selected 
Spanish regions during the 1983–2018 period. These data 
were provided by the National Statistics Institute (INE). 
Based on daily mortality data, and using population 
data also supplied by INE, the rate of daily mortality per 
100,000 inhabitants was calculated.

Temperature data
The data were provided by the State Meteorological 
Agency (AEMET). Maximum daily temperature in the 
summer months (Tmax) was the independent variable, 
registered in the meteorological observatory of reference 
in each region during the analyzed period corresponding 
to 1983–2018.

Tmax was used, because it is the variable that presents 
the best statistical association with daily mortality during 
heat waves [11, 18].

In addition, we used the rate of evolution of maximum 
daily temperature (Tmax) in the summer months for the 
1983–2018 period and for future Tmax foreseen for the 
2051–2100 time horizon under an RCP8.5 emissions sce-
nario. Data were taken from previous papers: [16] and 
Díaz et al. 2019, respectively.

Determination of threshold temperatures (Tthreshold)
In order to eliminate the analogous components of trend, 
seasonality and autoregressive character in the series of 
temperature and mortality, we used a pre-whitening pro-
cedure with the Box–Jenkins’ methodology [4].

These prewhitened series constitute the residuals 
obtained through ARIMA modeling and represent the 
anomalies that correspond to the mortality rate. The 
series was modeled for the entire 1983–2018 period.

Find below the equation of the ARIMA regression 
model in the general form:

where Yt is mortality on day t; b is the intercept; β are the 
coefficient of each variable in each case; ϕ is the non-sea-
sonal autoregressive parameter of order p on day t; θ is 

Yt = b+ β1pϕpt + β2qθqt + β3PsϕPt + β4QsθQt + β5n1t + β6α cos (αt)+ β7αsen(αt)+ εt ,
εt ∼ N (0, σ),

the non-seasonal mobile average of order q on day t; sϕ is 
the seasonal autoregressive parameter of order P on day 
t;sθQt is the seasonal mobile average of order Q on day t; 
n1 is the trend on day t; cos (αt)and sin (αt) are seasonal 
functions of α {365, 180, 120, 90, 60, 30} periods on day t; 
and ε is the residuals which performs a normal distribu-
tion of mean = 0, and σ is the standard deviation of the 
ε . Since trend was included as an independent variable, 
the integrated parameter was I = 0. Lastly, it were fixed a 
period of 7 days for seasonal part of the regression model.

Later, for each year, a dispersion diagram (scatter plot) 
was constructed such that the X-axis represents maxi-
mum daily temperatures in 2 ºC intervals, and the Y-axis 
represents the value corresponding to these residuals, 
averaged for these intervals, with the corresponding con-
fidence intervals. Using this methodology, it was possible 
to relate statistically significant mortality anomalies that 
were detected at a determined temperature. The value of 
Tmax, the point at which mortality increases in an anom-
alous way, was denominated Tthreshold. This methodol-
ogy has been used in multiple other studies [6, 7, 11, 23, 
30].

By way of example, Fig. 2 shows the process by which 
residuals were obtained and the later determination of 
Tthreshold in the case of Barcelona for the 1983–2018 
period.

Calculation of the rate of temporal evolution of Tthreshold
Once Tthreshold was calculated for each year and 
region, a linear fit process was carried out for the results 
obtained. The values on the X-axis represent the years 
between 1983 and 2018, and the Y-axis show the values 
of Tthreshold for each year, when it was possible to calcu-
late this value. The slope of the line obtained in the linear 
fit model represents the rate of evolution of Tthreshold 
during the period of analysis.

Comparison with the evolution of MMT
In other recent studies in Spain for the same period 
(1983–2018), the rate of evolution of MMT was calcu-
lated [16]. If both rates are compared and bivariate cor-
relations are established between the annual series of 
Tthreshold and MMT during the study period, it is pos-
sible to describe a potential association between them.

Also, cross-correlation functions (CCF) were calcu-

lated between the series, which allowed for the analysis 
of a possible time lag between the values of MMT and 
Tthreshold.



Page 4 of 10López‑Bueno et al. Environ Sci Eur          (2021) 33:101 

Determination of the increase in Tthreshold
Given that we were working with spatial data, the time 
evolution of the results was analyzed using a linear mixed 
model (link = identity). In this model, the Tthreshold 

values were used, calculated as a dependent variable, the 
independent variable of fixed effects was the year, and 
region was used as a factor of random effects, by way of 
the following equation:

Fig. 2 a Temporal evolution of the daily mortality rate for Barcelona during the 1983–2018 period; b temporal evolution of the daily mortality rate 
prewhitened series for this period, and c graphic illustration of the threshold temperature for the 1983–1988 period
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This analysis was carried out using the statistical soft-
ware package SPSS 27. The linear mixed models used 
the geeglm() function of the geepack package of free R 
software.

Results
Figure 3 shows the graphs that correspond to the linear 
fit models for Tthreshold, for the total of the 10 regions 
analyzed. As can be observed, in all of the cases except 
Badajoz, there was an increasing temporal evolution in 
terms of the slopes of all of the fit lines.

Table 1 shows the average values that correspond to 
the daily mortality rate and the maximum daily tem-
perature (Tmax) for the summer months in different 

geeglm
(

formula = d$Tumbral ∼ d$year, data = data, id = d$Provincia
)

.

Spanish regions for the 1983–2018 period. It also shows 
the average values of the rate of change in the minimum 
mortality temperatures (MMT) obtained previously 
[16] and the average values of threshold temperatures 
(Tthreshold) corresponding to the linear fit models 
shown in Fig. 3. The values of the slopes are expressed 
in terms of ºC/decade, both in the case of Tthreshold 
as well as for the values of MMT. Table  1 also shows 
the Pearson correlation coefficients of the bivariate 
correlations obtained between the series of the annual 
values of Tthreshold and MMT. In general, no correla-
tion exists between the series, except in three regions 
(Alicante, Barcelona and Zaragoza), and in three of the 

Fig. 3 Linear fit based on the threshold temperature in the years of the study period in each of the regions considered
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regions (Badajoz, Orense and Valladolid) the correla-
tions have a negative sign.

The CCF calculated between the series of MMT and 
Tthreshold values did not show statistically significant 
lags, except in Barcelona, Alicante and Zaragoza, in 
which case the significant associations were established 
in lag zero, as shown in Fig. 4.

On the other hand, Table 2 shows the results obtained 
in the linear mixed model, where for all of the regions 
analyzed, there was a statistically significant, increasing 
trend in Tthreshold values.

Table 3 shows the rate of increase in Tmax in the sum-
mer months in each of the regions analyzed during the 
1983–2018 period and the future rate of increase in Tmax 
values foreseen for the 2051–2100 time horizon under an 
RCP8.5 emissions scenario.

Discussion
The primary result of this study is that, at the global 
level, Tthreshold has increased in Spain over the 36-year 
period of analysis (1983–2018), which indicates a gradual 
process of population adaptation to heat waves. These 
results agree with those of studies of relative attributable 
risks that analyze the impact of heat waves in Spain [9] 
and with the results obtained from studies in other loca-
tions both in Europe and in the United States [2, 3, 27, 
28].

The rate of evolution of Tthreshold observed here is 
around 0.57 ºC/decade and is similar to the rate of evo-
lution of MMT for all of Spain, established at 0.64  ºC/
decade [16]. Despite this, the rate of increase in Tthresh-
old is greater than that of MMT in 8 of the 10 consid-
ered regions, which indicates that the population adapts 
more rapidly to the more extreme values of Tthreshold 

than to the lower temperature values that correspond 
to MMT. This could be related to the measures put into 
place specifically related to heat waves (prevention plans 
to address high temperatures, air conditioning, health 
alerts) [31].

Similar to the evolution of MMT [16], there are great 
geographic differences in the evolution of Tthreshold 
values. Table  1 shows a contrast between the rate of 
increase of up to 1.32 ºC/decade, such as occurs in Biz-
kaia, and other regions which may even show a decline, 
such as in the case of Badajoz (−0.25 ºC/decade). There 
are diverse factors, as the mean age of the popula-
tion per each region, that could help to explain these 
variations between regions with different climatic and 
demographic contexts, some of which could potentially 
be influenced, such as health spending [20] or the level 
of income [22]. Others, such as demographic structure 
[25] or the rural/urban character, also influence the dif-
ferent impacts of heat [23], but would be difficult to 
modify.

However, there are other factors that operate at a sub-
regional level that are probably important in explaining 
the different behavior of heat with respect to mortality; 
for example, the age of built structures [21], their qual-
ity and insulation [24] and even the access to air condi-
tioning [14]. The existence of green roofs and walls [5] 
and the accessibility of green zones could also influence 
mortality due to heat [26] and, therefore, could change 
the relationship between temperature and mortal-
ity. Explanations of the differences in the evolution of 
MMT should also take place at the sub-provincial level 
considered here.

The average maximum temperatures in the summer 
months in Spain have increased at a rate of 0.41  ºC/

Table 1 Average values of daily mortality, daily maximum temperature (Tmax) of the summer months; rate of change in minimum 
mortality temperatures (MMT) and threshold temperatures (Tthreshold) by region during the 1983–2018 period

Pearson correlation coefficients of the bivariate correlations obtained from the series of annual values of Tthreshold and MMT. *Significance p < 0.05; ** Significance 
p < 0.01

Region (capital of region) Mortality rate 
1983–2018

Tmax (℃) summer 
1983–2018

MMT trend (ºC/
decade)

Tthreshold trend (℃/
decade)

Pearson 
correlation

Alicante 2.09 29.6 0.69** 0.51 0.629*

Asturias (Oviedo) 2.89 22.4 0.33 1.01* 0.018

Barcelona 2.14 27.1 0.45* 0.87** 0.628**

Badajoz 2.49 33.0 0.65* −0.25 −0.142

Bizkaia (Bilbao) 2.23 25.0 0.20 1.32* 0.342

Madrid 1.76 29.9 0.60* 1.08** 0.406

Orense 3.22 29.3 0.66* 1.05 −0.330

Sevilla 2.06 34.1 1.14** 0.93** 0.419

Valladolid 2.09 27.0 −0.80 0.98 −0.476

Zaragoza 2.50 30.5 0.62* 1.29* 0.573*
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decade [16]. Therefore, at the global level it can be said 
that a process of adaptation to heat waves exists in 
Spain, in accordance with the hypothesis that adapta-
tion to heat waves exists when the rate of increase in 

Tthreshold is greater than the rate of growth in Tmax 
[10, 17]. However, the regional differences mean 
that this is not the case for the regions as a whole. 
Table  3 shows a comparison of the rate of increase in 

Fig. 4 Cross‑correlation functions (CCF) between the annual series of minimum mortality temperatures (MMT) and the threshold temperatures 
(Tthreshold) for the 1983–2018 period for the regions of Barcelona, Alicante and Zaragoza, respectively
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Tthreshold (Table 1) with the increase in Tmax for the 
summer months during the 1983–2018 period. These 
findings show that adaptation can be said to be taking 
place in the regions as a whole, except in Badajoz.

Table  3 also shows the potential future increase in 
Tmax for the summer months for the 2051–2100 time 
horizon, considering a high emissions scenario RCP8.5 
(Díaz et  al. 2019). A similar process to that described 
here would suggest that if the rate of increase in Tthresh-
old is sustained, there will be a process of adaptation in 
the future to temperatures in all regions, with the excep-
tion of Alicante and Badajoz.

Despite the fact that there is similar behavior in the 
evolution of the MMT series and Tthreshold series, they 
represent different conceptualizations. This highlights 
that a statistically significant correlation exists between 
both annual series in only three of the regions analyzed. 
In the cases in which this association exists, both series 
are in sync, that is, MMT changes in the same year as 
does Tthreshold.

One of the limitations of this study is that it considered, 
at most, a 36-year series. Given that there was only one 
Tthreshold value per year, only 36 values of Tthreshold 
were included. This precluded carrying out the sensitivity 

analyses that are typical of time series methodologies, 
such as Jack-Knife [13]. The use of a relatively short data 
series (36 years, 36 values) could provide uncertainty in 
the determinations of the slopes of the linear fits. This 
uncertainty is inherent in this type of estimations with 
such scarce number of data. In addition, in some of the 
regions considered, there were years without a heat wave, 
therefore it was not possible to determine a Tthresh-
old value, which also removed data from the series of 
Tthreshold values.

A representative observatory was used as a reference 
for an entire region, which could give rise to bias in the 
assignment of exposure temperatures of the population 
[7]. The possible bias due to not controlling for air pol-
lution variables was minimized through the use of pre-
whitened series of mortality rates and through directly 
relating mortality anomalies with temperature anomalies 
to determine Tthreshold values.

Conclusions
The temporal evolution of the series of both, MMT and 
Tthreshold temperatures, can be used as indicators of the 
population adaptation to heat. The temporal evolution 
of Tthreshold has important geographic variation, prob-
ably related to sociodemographic and economic factors 
that should be studied at the local level. It is important to 
keep in mind that the activation of heat prevention plans 
should take place based on these heat wave definition 
threshold temperatures, and should be implemented at 
the local level [34]. An analysis of the temporal evolution 
of Tthreshold is key not only in updating these threshold 
levels periodically, as suggested by the WHO [34], but 
also as an indicator of the population adaptation to heat. 
Knowing which variables influence changes in Tthreshold 
levels and modifying them to favor adaptation processes 
could be a key tool in adaptation to climate change. If this 
population adaptation to heat is achieved, attributable 
mortality could be dramatically reduced [18, 30] (Díaz 
et al. 2019).

Abbreviations
MMT: Minimum mortality temperature; Tthreshold: Threshold temperature; 
Tmax: Maximum daily temperature; ICD: International Classification of Dis‑
eases; CCF: Cross‑correlation functions.
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