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ARTICLE INFO ABSTRACT

Within the same country, Spain, with the same cultural aspects and containment 
policies (without lockdown), why in the initial moment of the COVID-19 first wave, given 
a significant number of infections, the disease prospered more intensely in some areas 
than in others? The hypothesis is that the meteorological factors, that is, the outbreak 
weather conditions are relevant factors which could be used as early indicators of the 
COVID-19 first wave severity and transmission intensity. This paper presents a model 
that allows predicting COVID-19 first wave severity and transmission intensity in Spain 
based on early weather information. The weather explanatory variables were threshold 
average temperature and threshold average absolute humidity defined as daily average 
temperature and daily average absolute humidity averaged at the moment in which the 
number of infections began to grow exponentially and in its previous 13 days. Socio-
economic factors as independent variables were also employed. The used independent 
variables used are the maximum daily incidence rate and the incidence rate doubling 
speed defined as the speed at which the daily incidence rate when the number of 
infections begins to grow exponentially becomes double. A principal component analysis 
and a linear regression model approach proved the existence of correlation between the 
variables. Temperature is the most important driver followed by absolute humidity and 
the correlation found in both cases is negative. A 0.1ºC/1 g/m3 increase of threshold 
average temperature/absolute humidity is associated with an outbreak incidence rate 
doubling speed natural logarithm reduction of 0.219 and 0.193 respectively. A 0.1ºC/1 
g/m3 increase of threshold average temperature/absolute humidity is associated 
with a maximum daily incidence rate natural logarithm reduction of 0.253 and 0.222 
respectively. The results show that the virus has harder time intensifying and spreading 
in warmer temperature and higher absolute humidity during the first wave.
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Introduction
All of us are immersed in one of the greatest challenges that 

humanity has faced in recent years. At the end of December 2019 in 
Wuhan, Hubei province, China, a new disease appeared to change 
everything. Called COVID-19 by the World Health Organization 
(WHO), this new respiratory infectious disease is the result of 
a novel coronavirus called SARS-CoV-2 that had not previously 
been identified in humans. On March 11th, 2020 the World Health 
Organization declared that COVID-19 can be characterized as 
a pandemic [1,2] and on March 13th, Europe was defined as the  

 
epicenter of the pandemic [3]. Spain was one of the most affected 
countries in the world during the COVID-19 first wave, that is, from 
March to June [4]. The National Center of Microbiology of Carlos III 
Institute of Health declared the first official COVID-19 case in Spain 
on January 31st in La Gomera, Canary Island [5]. At the beginning 
of March the situation worsened with a significant increase in 
infections, so a nationwide lockdown was imposed on March 14th 
[2]. Despite the abundance of articles that try to investigate and 
understand the evolutionary dynamics of the virus, there are still 
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many unknowns. The one that has caught our attention and justifies 
this study is this: within the same country, Spain, with the same 
cultural aspects and containment policies (without lockdown), why 
in the initial moment of the COVID-19 first wave, given a significant 
number of infections, the disease prospered more intensely in some 
areas than in others? The proposed hypothesis is that the outbreak 
weather conditions are relevant factors which could be used as early 
indicators of the COVID-19 first wave severity and transmission 
intensity. This hypothesis agrees with previous studies that point 
out that cities with significant COVID-19 outbreaks have very 
similar climates pattern with relatively cool and dry environment 
[6,7] and other ones which show that other SARS virus outbreaks 
were significantly associated with the temperature and its 
variations [8,9]. 

Therefore, this study is going to focus on the initial moments of 
the disease spread and more specifically on the moment in which 
the infections acquire exponential character; it has happened in 
Spain in pre-lockdown conditions so without active measures 
of social distancing and with a minority masks use. This could 
reinforce the hypothesis of the importance of weather factors in 
this specific moment because at that time these factors have not 
had to compete with other more relevant factors such as policy 
or sanitary measures more significant once the pandemic has 
already started [10]. The initial hypothesis is also supported by 
the proven fact that the COVID-19 spread was favored by 4 causes 
which involve meteorology factors. Low temperatures and absolute 
humidity weak the immune system favoring the proliferation of 
infections [11,12] they also promote the persistence of the virus 
on surfaces and therefore its spread through fomites or direct 
contact [13,14] although this is now considered a minor mode [15]. 
Cold temperatures produce changes in habits towards less healthy 
routines favoring indoor places where COVID-19 transmission rates 
are nearly 20 times higher than outdoors [16-18]. Finally because 
aerosols are one of the main COVID-19 spread modes [16,19] and 
their dispersion in the air is affected by both variables [20]. 

However, the existence of a correlation between temperature 
and humidity with COVID-19 transmission is not yet clear [21] 
although most studies point towards a negative one [22,23]. Three 
studies carried out in specific regions of Spain obtain different 
results: negative correlation [24,25] and no significant association 
[26] between COVID-19 and temperature. For this reason, the 
objective of the present study is to continue analyzing if there is 
correlations between COVID-19 first wave transmission intensity 
and severity with average temperature and average absolute 
humidity of the early moments of the disease outbreak. The final 
goal is to design a model that allows us to predict the importance 
of a COVID-19 outbreak with early weather information. Some 
socioeconomics elements has been also used as controlling factors, 
in line with other works [27,28] in order to consolidate the results. 
The analysis is focused on the 50 Spanish provinces to investigate 

and summarize what happened in the whole territory of the country 
during COVID-19 first wave.

Data and Methods
The health data were extracted from the National 

Epidemiological Surveillance Network (RENAVE) provided by 
National Center of Microbiology of Carlos III Institute of Health 
from February 1st to May 31st, 2020 for the 50 Spanish provinces. 
Specifically, the used data are the provincial daily incidence rate 
per 100,000 inhabitants, that is, the number of new daily positive 
COVID-19 cases in each province divided by the population at risk 
of the disease and all multiplied by 100,000 inhabitants. COVID-19 
positive cases were defined from the PCR test with a positive result 
in 99.74% of the data. The remainder was diagnosed by symptoms 
compatible with the disease. With these data, the Maximum daily 
Incidence Rate (MIR) reached in each of the 50 provinces during the 
first wave was calculated. This variable, which can be understand 
as a measure of the COVID-19 first wave severity, showed a highly 
differentiated spatial distribution (Figure 1). There were provinces 
with MIR twenty times higher than others, as Soria (127.5) in 
comparison with Huelva (5.4). This graph represented the starting 
point of the study since the variable was our first dependent 
variable. 

The second dependent variable was the speed at which the 
daily incidence rate when the number of infections begins to 
grow exponentially becomes double. This variable, related to 
the COVID-19 first wave transmission intensity, was calculated 
it in each province (Figure 2) and it is called outbreak incidence 
Rate Doubling Speed (RDS). The Spanish Meteorological Agency 
(AEMET) provided daily weather data, daily average temperature 
and daily average relative humidity, in 50 weather stations 
considered as reference of the 50 provinces in which the study 
was established. The outbreak average temperature was calculated 
in each province; this was at the moment in which the number of 
infections began to grow exponentially and it was defined by the 
daily incidence rate per 100,000 inhabitants exceeding the value 
of 5 [29]. The temperature has been averaged in the 13 days 
prior to exceeding that threshold and in this day. In order to take 
into account the longest COVID-19 incubation period [30]. This 
averaged value is called threshold average temperature (TT) and 
it will be the first explanatory weather variable. The overcoming 
of the outbreak threshold happened at different times in each of 
the Spanish provinces: the earliest start was in Álava on February 
28th and the latest in Murcia on March 24th, none of them exceeding 
March 27th (lockdown initial day plus 13 days) guaranteeing that 
our study was carried out in pre-lockdown conditions. The process 
has been repeated with daily average absolute humidity. For this 
purpose, the Clausius Clapeyron equation is used to calculate the 
daily average Absolute Humidity (AH) in g/m3 from both the daily 
average temperature and relative humidity values [31,32].
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Figure 1:
a)	 Spatial distribution and 
b)	 Values of the Maximum daily incidence rate reached in each of the 50 Spanish provinces during the COVID-19 first 
wave.

Figure 2:
a) Spatial distribution and
b) Values of the Outbreak incidence rate doubling speed reached in each of the 50 Spanish provinces during the COVID-19 
first wave.
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where T is daily average temperature in ºC and RH is daily 
average relative humidity in %. Once obtained, the daily average 
absolute humidity has been averaged for 14 days, in the same way 
as the daily average temperature, to end up obtaining the second 
independent weather variable called threshold average Absolute 
Humidity (AH). National Institute of Statistics has provided with 
various socioeconomics factors which were used as independent 
variables: Gross Domestic Product (GDP), Percentage of Population 
equal to or Older than 60 years (AGE), Population Density of most 
Populated Municipality (PD) and pre-lockdown intra-provincial 
Movements (MOV) obtained through mobile phone positioning 
estimates Several simple linear regression models have been 
constructed to explore the individual relationships established 
between the independent weather variables (threshold average 
temperature and threshold average absolute humidity) with 
maximum daily incidence rate and outbreak incidence rate 
doubling speed. The correlation coefficient gave a measure of 
the linear association obtained. Subsequently, a multiple linear 
regression models have been elaborated in which all the factors, 
both meteorological and socioeconomic, are incorporated: A 
backward technique was applied, in which all the variables were 
initially incorporated and regressors were progressively eliminated 
from lower to higher contribution until it was significant enough 
not to be eliminated. In order to corroborate multiple linear 
regression findings, a Principal Component Analysis (PCA) was 
done. This analysis enables to control and avoid multicollinearity 
of the predictors and to drop our least important variables. Finally, 
a linear regression models of the dependent variables against the 

reduced set of principal components was done in order to obtain de 
best and stable final model. All data have been analyzed using the 
statistical program Statgraphics©.

Results
Maximum Daily Incidence Rate

Simple Linear Regression Model: Table 1 shows the 
regression and correlation coefficients of the two proposed simple 
linear regression models with threshold average temperature as 
explanatory variable and two targets: the maximum daily incidence 
rate and its natural logarithm. Both models show a very strong 
negative correlation, that is, higher threshold average temperature 
is associated with lower maximum daily incidence rate and vice 
versa. The best option is the one that results after applying the 
natural logarithm (Figure 3a); this model explains 65.58% of 
the maximum daily incidence rate variability. Threshold average 
temperature above 13.02º C (99% CI, 14.82º to 11.23º C) are 
associated with low maximum daily incidence rate of the pandemic, 
that is with maximum daily incidence rate lower than 20. The 
model with maximum daily incidence rate natural logarithm (Table 
1) was used to determine this threshold value. We repeat the same 
analysis with threshold average absolute humidity as explanatory 
variable. The best model, the natural logarithm of the maximum 
daily incidence rate (Figure 3b), explains 55.53% of its variability 
(Table 1). A strong negative correlation is reestablished between 
the variables. Threshold average absolute humidity above 7.37 g / 
m3 (99% CI, 8.33 to 6.41 g / m3) are associated with low maximum 
daily incidence rate of the pandemic, that is with maximum daily 
incidence rate lower than 20. The model with maximum daily 
incidence rate natural logarithm (Table 1) was used to determine 
this threshold value.

Table 1: Regression coefficients and results of Simple Linear Regression models (99% confidence interval, CI) with threshold average 
temperature (TT) and with threshold average absolute humidity (AH) as explanatory variables, and maximum daily incidence rate 
(MIR) and its natural logarithm as targets. B0 is the slope and B1 is the intercept.

B1 B1(CI) B0 B0(CI) Correlation 
Coefficient R2

MIR = Bo + B1 TT -0.509 (-0.424, -0.595) 92.654 (103.676, 81.632) -0.65 41.06

Ln (MIR) = Bo + B1 TT -0.021 (-0.019, -0.023) 5.731 (6.014, 5.448) -0.814 65.58

MIR = Bo + B1 AH -10.791 (-8.812,12.770) 107.203 (121.762,92.744) -0.618 36.96

Ln (MIR) = Bo + B1 AH -0.441 (-0.385, -0.497) 6.246 (6.658,5.834) -0.751 55.53
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Figure 3: Regression line (blue), prediction interval (purple) and confidence interval (red) of Maximum daily incidence rate as 
a function of
a) Threshold average temperature (in 0,1ºC) and
b) Threshold average absolute humidity (in g/m3) and of the Outbreak incidence Rate Doubling Speed as a function of
c) Threshold average temperature and
d) Threshold average absolute humidity.

Multiple Linear Regression Model: In order to confirm the 
results obtained and to refine them, a multiple linear regression 
model in which we incorporated all the variables is built. The 
dependent variable is the natural logarithm of the maximum daily 
incidence rate. First thing to note is that none of the coefficients for 
the provincial socioeconomic variables were statistically significant; 
so these variables, GDP, % of population equal to or older than 60 
years, population density of most populated municipality and pre-
lockdown intra-provincial movements, were excluded for the final 
model. A second result is the confirmation of a negative correlation 

between the maximum daily incidence rate and threshold average 
temperature and absolute humidity, the only two variables that the 
final model contains. This model explains 68.72% of the maximum 
daily incidence rate variation with a confidence level of 99% since 
the p-value returned by ANOVA is less than 0.01. Table 2 contains 
the regression coefficients of the obtained model. The model 
equation obtained is:

( ) 6,249 0,015 0,178Ln MIR TT TAH= − −

Table 2: Regression coefficients of a Multiple Linear Regression model with threshold average temperature (TT) and threshold 
average absolute humidity (AH) as explanatory variables and natural logarithm of maximum daily incidence rate as target (MIR). 
The equation is Ln (MIR) = B0 + B1 TT + B2 AH.

Independent variables Coefficients Standard error p-value

Intercept B0 = 6.249 0.345 0

Threshold average temperature B1= -0.015 0.003 0

Threshold average absolute humidity B2=-0.178 0.074 0.0197

where MIR is maximum daily incidence rate, TT is threshold 
average temperature in 0,1ºCand TAH is threshold average absolute 
humidity in g / m3. The model obtained represents an advance 
with respect to the simple linear regression models proposal and 
it allows to anticipate, with moderate efficiency, one outbreak 
severity.

Principal Component Analysis: In order to analyze if there 
is multicollinearity between the predictor variables to confirm the 
validity of the model found or to look for an alternative one The 
correlation matrix between the model variables (Table 3) clearly 
indicates the existence of multicollinearity (correlation values 
greater than 0.5). PCA indicates that there are two significant 
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components (eigenvalue greater that 1) and these components 
explain 72.54% of the variability of the data (Table 4). In Figure 4 
the spatial distribution of two principal components is displayed. 
In the first component (Figure 4a), it can be observed two 
areas of different behavior, the north and center of the country 
characterized by low temperature and absolute humidity and the 
south characterized by higher temperature and absolute humidity. 
This component doesn’t indicate any characteristic related with 
socioeconomic variables, meanwhile the second component (Figure 
4b) is related with them showing different behavior in populated 
areas in the center (Madrid and its influence’s area), north east 
(including Barcelona and its influence’s area, Valencia and Balearic 
Islands), north (Guipuzcoa y Bizcaya), and two little centers around 
Sevilla and A Coruña. This explanation about the components can 
be corroborated by the coefficients of the equations that define the 
first and second principal components (Table 5). Here it is important 
to highlight that the components are mathematically orthogonal, so 

the correlation between them are zero, that is, they are absolutely 
independent. PCA demonstrate that meteorological variables are 
almost independent of the socioeconomic variables. Finally, the set 
of 6 initial variables are reduced to 2: the first component is the 
one in which the meteorological factor has the greatest weight and 
divides the peninsula into two differentiated areas, as temperature 
is the most relevant factor, and the second one that support the 
socio-economic factors and therefore, it has greater weight in large 
cities. We explore the relationships with these two new explanatory 
variables with our target. Results indicate that there is a moderately 
strong correlation with first principal component and there is no 
evidence of relation with second principal component (Table 6). 
Our final model, which corrects the effect of multicollinearity and 
explains 60.72% of the maximum daily incidence rate variability, is:

( ) 3,059 0,029 0,08 0,181 0,154 0, 253 0,222Ln MIR PD MOV AGE GDP TT TAH= + + + + − −

Figure 4: Spatial distribution of the principal components extracted in the principal components analysis:
a) First one,
b) Second one.

Table 3: Correlation matrix with the correlation coefficients for our model independent variables.

Independent variables PD MOV AGE GDP TT AH

PD 1      

MOV 0.59 1     

AGE -0.1 -0.06 1    

GDP 0.36 0.56 0.03 1   

TT 0.08 -0.04 -0.64 -0.36 1  

AH 0.11 -0.01 -0.38 -0.26 0.77 1

Table 4: Eigenvalues with variance percentage and accumulated percentage associated.

Component Eigenvalue Variance percentage Accumulated percentage

1 2.36 39.33 39.33

2 1.99 33.21 72.54

3 0.69 11.59 84.13

4 0.47 7.82 91.95

5 0.34 5.71 97.66

6 0.14 2.33 100
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Table 5: Coefficients of the equations that define the first and second principal components.

PCA 1 PCA 2

PD 0.069 0.575

MOV 0.189 0.593

AGE 0.429 -0.26

GDP 0.366 0.431

TT -0.601 0.172

AH -0.528 0.178

Table 6: Regression coefficients and results of Simple Linear Regression models (99% confidence interval) with maximum daily 
incident rate, MIR, as target and the first component (PCA 1) and the second component (PCA 2) as explanatory variables.

B1 B1(CI) B0 B0(CI) Correlation 
coefficient R2

PCA 1 0.421 (0.469,0.373) 3.059 (3.132,2.986) 0.784 60.72

PCA 2 -0.143 (-0.062, -0.224) 3.059 (3.173,2.945) -0.245 4.03

Where MIR is maximum daily incidence rate, PD is population 
density of most populated municipality, MOV is pre-lockdown intra-
provincial movements, AGE is % of population equal to or older 
than 60 years, TT is threshold average temperature in 0,1ºC and 
TAH is threshold average absolute humidity in g / m3. Most weight 
factors are threshold average temperature and threshold average 
absolute humidity and those with the least are population density 
of most populated municipality and pre-lockdown intra-provincial 
movements. A0.1ºC increase of threshold average temperature is 
associated with a maximum daily incidence rate natural logarithm 
reduction of 0.253 (99% CI, 0.301 to 0.205). A 1 g/m3 rise in 
threshold average absolute humidity is related with a maximum 
daily incidence rate natural logarithm reduction of 0.222 (99% CI, 
0.270 to 0.174).

Outbreak Incidence Rate Doubling Speed

Simple Linear Regression Model: Table 7 shows the regression 
and correlation coefficients obtained with threshold average 

temperature (TT) as explanatory variable and outbreak incidence 
Rate Doubling Speed (RDS) and its natural logarithm as targets. The 
best model (Figure 4a), the one that results after applying natural 
logarithm to the outbreak incidence rate doubling speed, explains 
57.35% of its variability. It indicates a strong negative correlation 
between variables. Threshold average temperature above 13.69 
ºC (99% CI, 15.63º to 11.75ºC), are associated with low outbreak 
incidence rate doubling speed, that is with low outbreak incidence 
rate doubling speed equal or lower than 1. The model with outbreak 
incidence rate doubling speed natural logarithm (Table 7) was 
used to determine this threshold value. When threshold average 
absolute humidity is employed as explanatory variable, the best 
model (Figure 4b) is the one that results after applying the natural 
logarithm to the outbreak incidence rate doubling speed: explains 
32.85% of its variability (Table 7) and a moderately strong negative 
correlation between the variables. It is important to note that this is 
the model with lowest correlation index obtained.

Table 7: Regression coefficients and results of Simple Linear Regression models (99% confidence interval, CI) with threshold average 
temperature (TT) and with threshold average absolute humidity (AH) as explanatory variables, and outbreak incidence rate doubling 
speed (RDS) and its natural logarithm as targets. B0 is the slope and B1 is the intercept.

B1 B1(CI) B0 B0(CI) Correlation 
coefficient R2

RDS = Bo + B1 TT -0.027 (-0.024, -0.030) 4.996 (5.463,4.529) -0.726 51.69

Ln (RDS) = Bo + B1 TT -0.019 (-0.017, -0.021) 2.601 (2.894,2.408) -0.763 57.35

RDS = Bo + B1 AH -0.46 (-0.363, -0.557) 5.007 (4.292,5.722) -0.563 30.32

Ln (RDS) = Bo + B1 AH -0.319 (-0.255, -0.383) 2.58 (3.050,2.110) -0.585 32.85

Principal Components Regression: As it was demonstrated, 
there is multicollinearity so the relationship was established 
between our target, that is, outbreak incidence rate doubling 
speed, and the two principal components through a simple linear 
regression model. Results obtained were very similar as the 
previous case: there was a moderately strong correlation with 
first principal component and no relation was found with second 

principal component (Table 8). Our final model, which corrects the 
multicollinearity effect and explains 52.55% of outbreak incidence 
rate doubling speed variability is:

( ) 0,276 0,025 0,069 0,157 0,134 0,219 0,193Ln RDS PD MOV AGE GDP TT TAH= + + + + − −

( ) 0,276 0,025 0,069 0,157 0,134 0,219 0,193Ln RDS PD MOV AGE GDP TT TAH= + + + + − −
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Table 8: Regression coefficients and results of Simple Linear Regression models (99% confidence interval) with outbreak incidence 
rate doubling speed (RDS) as target and the first component (PCA 1) and the second component (PCA 2) as explanatory variables.

B1 B1(CI) B0 B0(CI) Correlation 
Coefficient R2

PCA 1 0.365 (0.414,0.316) 0.276 (0.351,0.201) 0.731 52.55

PCA 2 -0.071 (0.007, -0.149) 0.276 (0.384,0.168) -0.132 -0.32

where RDS is outbreak incidence rate doubling speed, PD is 
population density of most populated municipality, MOV is pre-
lockdown intra-provincial movements, AGE is % of population 
equal to or older than 60 years, TT is threshold average temperature 
in 0,1ºC and TAH is threshold average absolute humidity in g / m3. 
A 0.1ºC increase of threshold average temperature is associated 
with an outbreak incidence rate doubling speed natural logarithm 
reduction of 0.219 (99% CI, 0.249 to 0.190). A 1 g/m3 rise in 
threshold average absolute humidity is related with an outbreak 
incidence rate doubling speed natural logarithm reduction of 0.193 
(99% CI, 0.219 to 0.167).

Conclusion
A statistical analysis to evaluate if outbreak average temperature 

and average absolute humidity could be use as early indicators 
of severity and transmission intensity of COVID-19 first wave in 
Spain has been presented in this work. The existence of correlation 
between two dependent variables and both meteorological and 
economic factors has been confirmed. Nevertheless, socioeconomic 
factors employed are less important than weather factors, 
particularly population density of most populated municipality 
and pre-lockdown intra provincial movements. Temperature is 
the most important driver followed by absolute humidity and 
the correlation found in both cases is negative. A 0.1ºC / 1 g/m3 
increase of threshold average temperature / absolute humidity is 
associated with an outbreak incidence rate doubling speed natural 
logarithm reduction of

0.219 (99% CI, 0.249 to 0.190) and 0.193 (99% CI, 0.219 to 
0.167) respectively. A 0.1ºC / 1 g/m3 increase of threshold average 
temperature/absolute humidity is associated with a maximum 
daily incidence rate natural logarithm reduction of 0.253 (99% CI, 
0.301 to 0.205) and 0.222 (99% CI, 0.270 to 0.174) respectively. 
Correlations obtained are in agreement with the majority of studies 
carried out [33]. Correlation does not imply causality but there is 
some evidence that in Spain the virus has harder time intensifying 
and spreading in warmer temperature and higher absolute 
humidity during the first wave. These results could also suggest a 
possible seasonal pattern of the COVID-19 disease. This is the first 
work presenting a model that allows predicting COVID-19 first wave 
severity and transmission intensity in the whole country, Spain, 
based on early average temperature and absolute humidity; but 
this study does not imply that these variables were a primary driver 
of COVID-19 transmission; more factors must be analyzed. This 
methodology can be extrapolated to other mid-latitude countries 

and will serve to show why cert areas compared to others have had 
more intense Covid-19 first wave episodes. The model obtained 
could be used as an useful supplement to help authorities to act 
quickly taking preventive measures and defining theirs COVID-19 
combat strategy but its use is limited to future situations in which 
meteorological factors become relevant again [34,35] that is, when 
the current political and social restriction and health measures 
disappear when the disease becomes endemic and shows clearly 
its seasonal pattern.
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