
Open Universiteit
www.ou.nl

MASTER'S THESIS

Attractiveness to new Contributors of Open Source Software projects on Github

Nieuwhof, B.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

https://research.ou.nl/en/studentTheses/345834a3-3e20-4334-b4dd-7d6071994137

Attractiveness to new Contributors of Open Source Software
projects on Github

by

Ben Nieuwhof

In partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

At the Open University, faculty of Management, Science and Technology
Master Software Engineering

To be defended publicly on 6 July 2021 at 1:00 PM

Student number:
Course code: IM9906
Thesis committee: mrs. dr. ir. Fenia Aivaloglou (chairman), Open University

mr. prof. dr. Marko van Eekelen (supervisor), Open University

Contents
1. Abstract .. 1

2. Introduction .. 2

Research motivation and scope ... 3

3. Background and related work ... 5

Context of research .. 5

Attractiveness of OSS projects to new contributors .. 5

Barriers for newcomers to OSS projects ... 6
3.3.1 Social Interaction ... 6

3.3.2 Newcomers previous knowledge ... 7

3.3.3 Technical hurdles ... 7

3.3.4 Finding a way to start .. 8

3.3.5 Documentation .. 8

Neutralizing barriers for newcomers to OSS projects ... 8

4. Research Questions .. 10

Questions and hypotheses .. 10

5. Methodology .. 11

Data collection ... 11
5.1.1 GHTorrent Dataset .. 11

5.1.2 Github wiki pages .. 11

5.1.3 Data collection from project websites.. 11

Data selection and preparing for analysis .. 12
5.2.1 Import of user data ... 12

5.2.2 Import of project data .. 13

5.2.3 Import of pull-request data .. 14

5.2.4 Filtering out projects without pull requests ... 15

5.2.5 Interim analysis eliminating risk.. 16

5.2.6 Ranking projects successful in attracting new contributors ... 18

5.2.7 Finding successful projects .. 19

5.2.8 Ranking successful projects ... 20

5.2.9 Consolidating result sets contributions .. 22

5.2.10 Compressing pull requests and pull request history ... 23

Data analysis for RQ1: Correlation between accepting first contribution and attractiveness to
newcomers .. 24

Data analysis for RQ2: Qualitative research on project documentation .. 26
5.4.1 Criteria selection for research ... 26

5.4.2 Selection of projects .. 27

6 Research results .. 28

6.1 Result for RQ1: Effect of the acceptance of the first pull requests on the successors 28
6.1.1 The effect of code bots .. 29

6.1.2 Result on hypothesis 1 ... 29

6.2 Results for RQ2: Investigating the project wiki and documentation ... 29

6.2.1 Existence of how to start documentation ... 31
6.2.2 Existence of contact processes ... 31
6.2.3 Existence of a project website and supplementary documentation .. 32
6.2.4 Existence and character of technical documentation ... 32
6.2.5 Availability of installation and deployment instructions ... 32
6.2.6 Provision of guidelines for contributing .. 33
6.2.7 Result on hypothesis 2 ... 33

7 Discussion .. 34

7.1 Discussion on RQ1: Pull request acceptance... 34

7.2 Discussion on RQ2: Documentation ... 34

8 Limitations and threats to validity .. 37

8.1 Limitations of quantitative analysis of pull request acceptance .. 37

8.2 Limitations of qualitative analysis of the documentation .. 37

9 Conclusion .. 38

10 Further research .. 39

11 References .. 40

Appendix A : Relational Schema of GHTorrent dataset ... 42

Appendix B: Programming Languages taken into account ... 43

Appendix C: Java Source Code for import and analysis ... 43

Appendix D: Results of qualitative research on documentation ... 43

1

1. Abstract
The importance of Open Source Software is increasing rapidly. Open
source software projects require newcomers for their continuity.
However attracting newcomers can be challenging. In several papers,
aspects about attractiveness or barriers for newcomers are analyzed.

In this thesis we explore two aspects that can potentially affect the
attractiveness of OSS projects for newcomers, namely, (1) the
acceptance of their first pull request, and (2) the existence of different
kinds of technical and organizational documentation. The research is
done on a snapshot of the Github repository, collected by the ghtorrent
project. This project made it possible to do quantitative research on a
total of 4.442.209 projects as well as to select 66 projects for which
their documentation was manually inspected.

We found out that there was no correlation between the acceptance of
a first pull request and the willingness to contribute more to a project
by a newcomer. This was an unexpected outcome. The existence of
helpful documentation to start contributing, such as ‘how to start’
documents and guidelines appear to be very effective.

2

2. Introduction
The Open Source Software community is continuously growing.
Software development teams are collaborating and sharing their code
via open source project repositories such as Github.com and
Sourceforge.net. In the beginning March 2019 on Github there were
over 30.000.000 registered users and more than 115.000.000 projects.
Github is built as a repository for the Git versioning system. Microsoft
bought Github in 2018. This has led to a situation that anti-Microsoft
OSS-developers move their project to Gitlab or Bitbucket, both based
on Git too.

Open source software has helped in mitigating several problems with
closed source software. For example, in the Netherlands, a chipcard
was introduced for public transport based on the Mifare Chip. The
proprietary security algorithm by NXP could relatively easily be
hacked [22]. While customers assume to have bought a safe payment
system for public transport, the closed source proprietary algorithm is
only tested by a limited number of testers and thus are safety
guarantees restricted.

Another problem with closed software is the lack of transparency. For
example, a customer of some system doesn’t know what information
of his enterprise is shared with others. Especially in SAAS
environments, a customer has limited or no knowledge about data
leaving his ERP system or CRM system. The current discussion about
5G in Europe and the doubt of giving access to the Chinese
manufacturer Huawei to the public tender is an example of this fear.1
However, it’s not only China being a risk. Large companies like
Facebook, Google, Apple and Microsoft get access to so much data
that they have the power to manipulate processes in society, like
elections, or business2. At the same time, software has become that
complex that it is hardly doable to do exhaustive black box testing for
customers on all aspects. For that reason transparency is required, so
software suppliers are requested to prove that their software does not
do anything, that the user doesn’t know. This requirement
demonstrates the importance of Open Source Software.

Developers have also been found to benefit from open source
software. When young developers start to work in a closed source
environment, their contribution is mostly focused on an existing
product. Their job is to extend it and to improve it. The development
process is predefined and coding standards exist. These are often
company standards that are not necessarily common best practices. On
the other hand, when young programmers contribute in Open Source
Software, they come in a situation where there is a need for coding
standards and process standards because collaboration would be
problematic if they are omitted. Ye and Kishida researched the
motivation of Open Source Software Developers [28] and found out
that contributors are attracted because the product solves a problem
for them, but they also signalize that improving developers skills and

1 Volkskrant 5 december 2019, Kabinet besluit Huawei te weren uit kern 5G-netwerk
(Laurens Verhagen en Niels Waarlo)
2 New York 4 april 2018, Times Cambridge Analytica and Facebook: The Scandal
and the Fallout So Far

3

acquiring a good reputation in the developers community motivates
developers to contribute.

Skill transfer is another benefit of the OSS movement. Kuechler [19]
interviewed developers in OSS projects and found out that 80% of the
developers in OSS projects joined the project to develop new skills,
while 68% joined the projects to become a better programmer. The
possibilities that OSS projects offer for developers, could certainly
attract new developers. When contributors contribute to more than one
project, skills they acquired in one project can be passed to another
project. It improves the project quality but participating in other
projects also gives a chance to meet other standards and to work with
more well-crafted software to gain new skills. Both projects and
developers therefor benefit by the mobility that the open source
movement facilitates.

 Research motivation and scope
The open source community depends on programmers willing to
maintain and expand software. To ensure the future of OSS projects, it
is important to attract new, preferably young developers. The
motivation for this project comes from personal experience. In daily
contact with young students in Software Engineering, I noticed that
those young people do not tend to contribute to open source software
but prefer a job in closed source environments. Almost every graduate
starts with a job in a closed source environment. Apparently open
source software projects are not very attractive to them.

Prior research has highlighted the problem of this unattractiveness of
OSS-projects to potential new contributors. Mereille et al. [20]
mentioned structural complexity as a barrier for onboarding. Stol et al.
[26] also mentioned architectural complexity and lack of domain
expertise.

The main purpose of this research is to find out which barriers prevent
new contributors from joining an OSS project and what facilities
attract new contributors. Barriers have a negative impact on
attractiveness to new contributors in open source projects. The
outcome may help to introduce the right projects to students to make
them curious and willing to contribute.

One of the potential barriers that we want to explore is the handling of
newcomers’ pull requests. Van Krogh et al. [10] found that pull
requests from newcomers often are rejected because of existing
duplicates or requirement changes. The inner circle of project
developers communicates project specific developments via private
channels, so the newcomer is not aware of the fact that issues already
are picked up or obsolete. For the newcomer who is eager to co-
operate this is frustrating and it forms a barrier to contribute more. For
that reason, this research a correlation between attractiveness and
acceptance of first pull requests by new contributors will be
researched.

Čubraniç et al. [8] mentioned the absence of documentation, unclear
documentation and outdated documentation as a barrier for
newcomers. Ho-Quang [14] however, did not find a correlation
between the presence of UML and attractiveness. For that reason.
research will be done to find the correlation between different kinds of
documentation and attractiveness to newcomers.

4

This research is done on a snapshot of one of the biggest existing
OSS-repositories and is related to several other research what will be
described in the next chapter.

5

3. Background and related work
The prior chapter emphasized the need of OSS-developers and
declared the motivation for this research. In this chapter the context
and related inspiring research is described.

 Context of research
Prior research on the implicit attractiveness of OSS project is mostly
based on statistical research where qualitative research finding barriers
on this subject is mostly based on a limited number of projects.
Finding reasons why developers don’t contribute is often researched
using interviews with developers or studies on exploring the
communication channels such as email.

For this research the research context is a snapshot of the Github
repository taken on the 1st of March 2019. This snapshot contained
more than 30.000.000 users, over 115.000.000 projects over
30.000.000.000 commits and more than 47.000.000 pull requests.
GHTorrent is a Github mirror containing Github metadata and has
already been used in several studies, for example by Gousios [11] and
Gousios and Diomidis [12].

The work that is most relevant to the topic of this thesis is a study of
Igor Steinmacher et al. [16] about attracting, onboarding and retaining
newcomer developers. He refers to aspects, what makes project
basically attractive, to former research in 4 papers. These 4 papers are
discussed in paragraph 3.22. He also performed a systematic literature
review on hindering factors that prevent software developers to
contribute. This review was based on 19 other researches and is
discussed in paragraph 3.3. At the and he proposes a developers
joining model. This is discussed in paragraph 3.44.

 Attractiveness of OSS projects to new contributors
There are several studies on attractiveness. In Table 1, OSS project
attractiveness definitions on page 8, an overview is given on the
outcome of these studies.

Carlos Santos et al. [5] defined attraction as popularity amongst users
to use the software and sponsors to spent money in further
development. He also researched the correlation between
attractiveness to sponsors and users and activeness in the contributing
community. The influence on attractiveness in this research is
correlated to the type of license, the type of user, the application
domain and the state of development of the project. He also computed
the correlation between the aspects influencing attractiveness and
activeness, effectiveness, likelihood of task completion and time for
task completion. Because the variety of relationships he used
Structural Equation Modelling to compute these correlations. In this
research Santos concluded that attractiveness certainly influences the
activeness of developers in the project. He also found a confirmation
that attractiveness is influenced by the type of license, the type of user,
the application domain and the state of development of a project.

Mereilles et al. [20] refers to Carlos Santos et al. but defined
attractiveness as the capacity of bringing users and developers to a
project. He adds Structural complexity and Lines of Code as aspects
influencing attractiveness. They researched the influence of

6

complexity and #LOC (number of lines of code) on attractiveness.
They measured attractiveness as the number of downloads for the
project and the number of members. They did a statistical research on
sourceforge.net. For this, they used an analyzing tool to analyze
source code metrics. They started with 11.433 projects but eventually
6.773 projects where analyzed. They concluded that the #LOC has a
significant effect on the number of project users and developers
because a large #LOC indicates a lot of features. The results of their
statistical research indicated that Structural Complexity has a negative
impact on attractiveness to developers. In spite of their expectation,
they haven’t found a correlation between the number of modules and
attractiveness.

Ververs et al.[27] studied the influence of certain events on the
attractiveness of the Debian OSS project. He traced the logfiles from
2000 to 2011 of the Debian project and manually checked the Debian
website for upcoming events. The log-items were categorized and
linked to the kind of upcoming events. The events and log-items were
persisted in a SQL database and he searched for correlation between
the activity in de developers community and the weeks before and
after the event using a linear technique. However, he found in only
10.82% of all measurements a weak, moderate or strong correlation.
Most events didn’t have any influence. Only Cebit, Debian Day and
the introduction of new releases or frozen releases influenced the
activity more or less.

Chengalur-Smith et al. [7] researched the correlation between project
development base size, project age and niches size and its
attractiveness. They defined attractiveness as the ability of the project
to attract and retain developer resources. The project development
base size is the number of active developers in a project, while a niche
size in this research is the base of potential contributors in the used
program language and the used operating system.

They measured the number of new contributors between 2 periods of a
year and the activity of contributors in 2 years to measure
attractiveness. In this situation there are more influence factors
possibly influencing each other. Structural Equation Modelling is used
to compute correlation. His research was based on ~2000 projects in
sourceforge.net. The conclusion of this research was that development
both size, niche size and project age indeed influences a project
capability to attract new developers in the future.

 Barriers for newcomers to OSS projects
Igor Steinmacher et al. [25] published a systematic review on barriers
faced by newcomers. He categorized this in social interaction,
newcomers previous knowledge, technical hurdles, finding a way to
start and documentation.

3.3.1 Social Interaction

Steinmacher references to 7 studies that have been done finding the
correlation between the existence of social interaction between
newcomers and core members and contributions by newcomers.
Steinmacher categorized this as a barrier called Lack of social
interaction with project members.

7

Christian Bird [2] concluded in a linear statistical study that there was
a strong correlation between development behavior and the level of
importance that participants have in the social network. Bird measured
the importance of a newcomer by the number of emails sent and
received. Nicholas Ducheneaut [9] also researched the content of
divers emails. He found out that perseverance is needed to newcomers
to get some status in the community. Bird based his conclusion on a
number of bigger projects in sourceforge.net where Ducheneaut
researched social interaction in ANT and Python.

Another aspect on social interaction is how quick questions by
newcomers are answered. Kuechler et al. [19] found a correlation
between not getting timely answers and loss of motivation by
newcomers, but he also concluded that far out most questions of
newcomers are answered quickly within 1 or 2 days. Kuechler
concluded in the chapter: Joining Free/Open Source Software
Communities: An Analysis of Newbies’ First Interactions on Project
Mailing Lists of their thesis that improper answers, as far as the
answers are public, are rare. However analyzing a survey with almost
60.000 respondents, he concludes that it may be hard to break into the
tight-knit social networks of OSS developers. The conclusion of the
survey seems to be contrary to statistical research, but the statistical
research only considered public interaction while in surveys, private
messages are considered as well.

3.3.2 Newcomers previous knowledge

Out of a survey from Kuechler et al. [19] among contributors in OSS
projects, it appeared that ‘Extending skills’ is an important motivation
to join the OSS community for developers. However, most OSS
projects are not equipped to teach newcomers and to introduce a
technical introduction to newcomers. Zhou and Mockus [21]
concluded that lack of technical experience by the newcomer is a
barrier to become a contributor This research was done on the Gnome
project and the Mozilla project. For the qualitative research they
researched the joining process of 20 successful contributors and 20
unsuccessful attempts.

Stol et al. [26] noticed lack of domain expertise as a hindrance. They
used the input of student research and extend it with interviews. Van
Krogh et al. focused on Freenet [10]. They interviewed core members
and also they concluded the lack of domain expertise as a hurdle to
join the project. Schilling et al. [23] researched the retention of former
Google Summer of Code students and retention in the KDE project.
Students are assessed in this project and from interviews it appeared
that lack of knowledge of project practices was one of the reasons why
newcomers couldn’t join the project.

3.3.3 Technical hurdles

A few studies mention technical hurdles. Stol et al. [26] interviewed
12 students and one of the challenges they met was to setup a
workspace and have the project to work on compiled and running.
Mereilles et al. [20] mentioned source code complexity as unattractive
and in the literature reviews this is mentioned as a technical hurdle
while Stol et al. [26] concluded that the software architecture
complexity can be a hurdle as well, especially when design decisions
aren’t accurate documented.

8

3.3.4 Finding a way to start

Van Krogh et al. [10] investigated the content of a lot of email
communication on Freenet and encountered email exchanges between
members and developers who were eager to contribute but couldn’t
find an appropriate task to start with. It would be preferable if
newcomers could get a mentor. Canfora et al. [4] introduced a
mentoring practice called Yoda. In fact very few of the monitored
OSS projects in all researches have a mentoring system.

3.3.5 Documentation

Čubraniç et al. [8] wrote a paper called Hipikat: a project memory for
software development. He did empirical tests with experienced
software developers in the Eclipse project. Hipikat should be a
solution for documentation problems such as there are: outdated
documentation, unclear code comments and lack of documentation.
Unclear code comments points to comments that are only
understandable for insiders in the project. Čubraniç faces this has to
do with the way developers use to communicate, mutual with a
minimum of effort and a maximum of understanding. That makes
them unwilling to deliver appropriate documentation usable for
newcomers. Ho-Quang et al. [14] found the presence of UML
documentation to be helpful for newcomers. However he couldn’t find
a correlation between hindering factors and absence of UML.

 Neutralizing barriers for newcomers to OSS
projects
Steinmacher et al. [16] proposes a developers joining model to attract,
onboard and retain new contributors. When an outsider is attracted he
should be onboarded and be seduced to contribute and eventually
become a member. The minimization of hindering factors is an
important aspect in attractiveness especially to newcomers in the
world of OSS projects. Therefore Steinmacher proposes an
introduction program to newcomers including mentoring.

Steinmacher et al. [17] declared that barriers don’t have to be a
problem always. They can lead to an improved quality of future
contributions. Some barriers can be used as filters. Moreover, research
conducted in the OSS domain demonstrated that socialization barriers
are useful for maintaining community integration and the quality of
the community’s product.

9

Definition of Attractiveness Influenced by Resulting in #projects Reference
Attractive to users and sponsors Type of License

Type of User
Application Domain
State of development

Activeness
Effectiveness
Likelihood of task
completion
Time for task completion

~4.500 (Carlos Santos 2013)

Attractive to contributors to join Structural complexity Onboarding 6773 (Mereilles 2010)
Capacity of bringing users and
developers to a project

lines of Code Willingness 6773
2772

(Mereilles 2010)
(Chengalur-Smith 2010)

 Upcoming events Willingness 1 (Ververs 2011)
 Project age

Niches Size
Project Base Size

Developer Attraction
User Attraction

2.772 (Chengalur-Smith 2010)

 Contributor’s opportunities Long time contribution 2 (Minhui Zhou 2012)

Attractive to contributors Social Interaction,
Social status in community

Contributing 200-500
2

(Bird 2011)
(Ducheneaut 2005)

Attractive to newcomers Quick email answers
Proper email answers
Access to community

Motivation Unknown
(Survey
60.000
users)

(Kuechler, Jensen en
King 2013)

 Technical experience newcomer Contributing 2 (Minhui Zhou 2012)

 Domain expertise Onboarding Survey

1 (Survey)

(Stol, Avgeriou en
Babar 2010)
(G. von Krogh 2003)

 Knowledge project practices Contributing 1 (Survey) (Schilling, Laumer en
Weitzel 2012)

 Architecture complexity Contributing Survey (Stol, Avgeriou en
Babar 2010)

 Other technical Hurdles Onboarding Survey (Stol, Avgeriou en
Babar 2010)

 Introduction 1st task Contributing 1 (Survey) (G. von Krogh 2003)

 Presence Mentor Contributing - (Canfora, et al. 2012)

 Documentation Items:
Lack, outdated,
incomprehensible

Contributing 1 (Survey) (Čubraniç, et al. 2005)

Table 1 OSS project attractiveness definitions

The barriers mentioned in the bespoken previous research together
with the motivation mentioned in the introduction have led to the
research question in the next section.

10

4. Research Questions
Research discussed in the previous chapter has already highlighted
that newcomers face difficulties when they are willing to start
contributing to existing OSS projects. Von Krogh et al.[10] noticed
that the lack in transparency in communication often leads to rejected
pull requests from newcomers. He expected this to be frustrating but
he did not research the effect of this rejection on future project
participation for new coming developers. Čubraniç et al. [8] found that
documentation issues influence attractiveness and Von Krogh et al.
[10] again noticed a problem with newcomers that they don’t know
where to start.

 Questions and hypotheses
Taking into account the indications of prior research on potential
barriers to newcomers to OSS projects, the aim of this thesis is to
answer the following research question:

Is the attractiveness of mature OSS projects for new contributors on
Github significantly affected by the degree of acceptance of their
initial contribution and the existence of technical documentation or a
how-to-start page?

Attractiveness in this research is defined as the ability of the project to
attract and retain developer resources. Attractiveness is in this
research measured as: The number of new contributors on a project
performing a minimum of 2 pull requests. The number of contributors
that perform only one contribution is significant but they don’t bring
sustainability to a project.

This research question is decomposed into 2 sub questions.

Rq1. How strong is the correlation between the degree of acceptance
of newcomers’ first contribution on mature projects on Github and the
attractiveness to newcomers?

Rq2. How strong is the correlation between the existence of technical
documentation or a how-to-start page on mature projects on Github
and the attractiveness to newcomers?

Associated to these research questions there are 2 hypotheses which
we formulate as follows:

H1. A strong correlation is expected between the acceptance of a
newcomers first contribution on a Github project and attractiveness of
this project to newcomers

H2. A strong correlation is expected between the existence of
technical documentation or a how-to-start page on Github and the
attractiveness of this project to newcomers

As described in former research and in observations it is expected that
absence of easy accessible documentation is a hurdle and rejected pull
requests are demotivating.

In the next section the research methodology is described for this
research.

11

5. Methodology
The research question in the previous chapter was divided into 2 sub
questions both needing a different research method.

The quantitative research to answer RQ1 took place on a snapshot of
the GHTorrent [11] database. For the quantitative part of the research
on RQ2 the wiki pages from Github were downloaded to a local
storage. The qualitative research for RQ2 took place directly on
Github itself and the websites of the projects.

 Data collection
For this research the metadata of Github as retrieved by the
GHTorrent Project [11] are used and analyzed along with data from
Github project data from the dataset.

5.1.1 GHTorrent Dataset

The GHTorrent project builds a documented database of Github’s
metadata [12]. The GHTorrent project is supported by TU Delft and
Microsoft. A network of contributors query the Github database and
the results are merged and persisted at ghtorrent.org. The research has
taken place on a snapshot of this GHTorrent database taken from
ghrorrent.org the 1st of March 2019.

The relational model of the GHTorrent is found in Appendix A. Most
tables are related to the User table and the Project table. Further for
each pull request the history is persisted.

5.1.2 Github wiki pages

For RQ2 Github is queried to collect the wiki pages from projects.
The number of wiki pages for each project, part of the investigation in
RQ1, is determined. This resulted in a collection 61.113 project wikis.

Github doesn’t offer a web API to count the number of wiki pages.
Therefore, the wiki pages for each project are cloned and counted.

To clone the wiki, the URL of the project is taken and reformatted.
https://api.github.com/repos/loginid/projectname is reformatted to
https://github.com/loginid/projectname.wiki.git.

A system call to execute the cloning resulted in an error message, in
case there is no wiki present for the project. If a Wiki is present then a
folder named projectname.wiki is created. In this folder 5 subfolders
exist. Some metafiles, having a name starting with a dash, exist. For
the counting, the folders and the meta files were not relevant. The
remaining files contain the wiki pages and the hyperlinks to other wiki
pages. The number of these files plus the number of unique hyperlinks
within these files is equal to the number of wiki pages as part of the
project. This number is persisted with the project.

Then it is evaluated if the number of wiki pages is correlated with the
attractiveness of the project to newcomers. This step gave an
indication about the number of projects that should be reviewed in the
next step.

5.1.3 Data collection from project websites

While most collaborating projects on Github also present themselves
on a project website, those websites are explored manually to find

12

supplementary documentation. The reference to this website is found
on Github.

 Data selection and preparing for analysis
Having gathered all the data, the dataset is cleaned first. For this some
filters are applied on it. Otherwise it would have resulted in too many
projects that aren’t really software projects or projects that are not
created as collaborative OSS work.

The following filters are applied for the selection of projects:

o Language: To ensure that the subjects of research were only
software projects, there is a filter on language. Appendix B
contains a list of program languages that are part of the
research. These are not only popular programming languages
but also less popular used program languages;

o Lifetime: only ‘mature’ projects are investigated, projects are
subject of research from the moment they exist at a minimum of
two years;

o Size: Projects with only 1 contributor are excluded from this
research because these projects are not meant to collaborate;

o Forks: If a project is forked from another project, the original
project starting date is taken in account. After this fork the
project can be split up into an enterprise developed edition and
a Free open edition like Open Office/Libre Office [18];

o Pull requests: Projects not working with pull requests are
excluded.

The results of these imports and filtered lead to the following figures:

Table 2: Results import and filters pull request.

Kind of data # initial import # after filtering

Users 30.600.306 30.600.306

Projects 116.167.204 4.442.209

Pull requests 47.844.942 19.146.023

Pull request history 82.851.530 42.338.628

In the §5.2.1 until §5.2.4 the process of importing and filtering is
described. In §5.2.5 an interim analysis is done to determine if
sufficient data exist for performing the quantitative research. In §5.2.6
until §5.2.10 the projects are ranked on their ability to attract
newcomers.

5.2.1 Import of user data

At first the Users Table is imported. As demonstrated in Appendix A,
this table has no dependencies. The GHTorrent file contains
30.618.798 user lines. During import 18492 lines did not contain valid
user data. The disambiguating algorithm to filter multiple id’s of one
user could not be applied because the structure of the GHTorrent
database in real lacked the name and email address in spite of the
documentation provided. Although Github is an American site,
GHTorrent is situated in Europe and has to respect European privacy
rules as discussed by Engelfriet [29]. So this information is removed
from this data collection for privacy reasons.

13

After import, the following results occur:

Table 3: User Import

Action/Filter Start# Correction#

Initial 0 +30.618.798

Invalid Id 30.618.798 -18.492

Disambiguating 30.600.306 0

Result #users 30.600.306

A qualitative look on the logging showed that the rejected lines had
prosaic text in the id field, that should be numeric. It appeared to be an
overflow from the previous line containing a lot of text.

5.2.2 Import of project data
iFiltering projects before the eventual analysis is done according next
scheme:

Scheme 1: import and filter projects.

During the import of the projects, the first filtering took place. Projects
are filtered on age and program language.

Table 4: Project Import

Action/Filter Start# Correction#

Initial 0 +116.168.027

Wrong format +116.168.027 -823

Younger 2 years +116.167.204 -24.222.685

Wrong language +91.944.519 -64.013.934

Result #projects +27.930.585

Projects from
GHTorrent

usable format
>= 2 years
selected program language

Projects

Using pull requests

Pr_projects

14

Again a qualitative look at the logfiles learned that lines in wrong
format not only were malformed but also contained data not
concerning software projects.

Since Github is not that old it was expected that about 20% of the
projects in Github were too young to meet the requirements of this
research.

More surprising was the fact that more than half of the projects on
Github weren’t written in one of the program languages that are part
of this research, as listed in Appendix B.

The language in which a project is written, is mentioned in the project
file. However sometimes the language mentioned is not equal to the
language actually used. Having reviewed random projects, not one of
those appeared te be in another language. For this research this
satisfies because the programming language itself is not part of the
research.

Investigating the shake out because of this, it appeared that many were
Unix/Linux shell script projects and also HTML and CSS projects.
These projects are out of scope because we aim to focus on software
development project. The popularity of the GO language however,
was not foreseen. Projects written in GO are not part of the research
plan and thus not part of the outcome.

5.2.3 Import of pull-request data

Pull requests and it’s history are imported according next scheme 2.

 Scheme 2: import filter pull requests and pull request history

Pull requests ghtorrent Pullrequest_history ghtorrent

Pull_requests

Imported projects

Imported pull_requests

pullreshis

15

Only pull requests related to the imported projects were imported to
avoid unnecessary data in the dataset:

Table 5: Pull request import

Action/Filter Start# Correction#

Initial 0 +47.844.942

Format error +47.844.942 -252.150

Project.
Unknown

+47.592.792 -28.446.769

Result #pr +19.146.023

The format error was caused by null values in project ids.

The projects unknown are the projects, filtered in the previous step
because they were created less then 2 years ago.

After having imported the pull requests the pullrequest_history table
should be imported.

Table 6: Pullrequest_history import

Action/Filter Start# Correction#

Initial 0 +82.851.530

Format error +82.851.530 -231.649

n.e. pull request +82.619.881 -40.281.253

Result #prhist +42.338.628

The format errors again concern null values in identifying fields.
However the number of them is restricted. The non-existing pull
requests concern the pull requests that aren’t imported in the previous
run.

5.2.4 Filtering out projects without pull requests

A lot of projects on Github are not suitable for this research. Since the
research is restricted to projects working with pull requests, an extra
filter on this is applied on the project table. To keep this traceable a
new table, pr_projects, is created with only the projects with pull
requests. This is simply done with a SQL Query:

Query 1 : Removing irrelevant projects

select * into pr_projects
from projects
where id in

(select base_repo_id
 from pull_requests)
 or id in
 (select head_repo_id
 from pull_requests)

(4442209 rows affected)

16

This filter doesn’t affect the outcome of the research but it offers a
significant increase on the performance since the number of projects is
reduced to 4.442.209. During this filter, an additional check is
performed on the consideration in the Import of project paragraph that
Linux Shell projects are not considered to be software projects.
Therefore, an additional import has been performed to import those
projects. However for none of them exists a single pull request. This
confirms that this consideration was acceptable and has no effect on
the research results.

In paragraph 5.2 it was mentioned that from forked projects the age of
the original project should be taken in account. To ensure this a program
is executed that investigates these chains of projects. In the pull request
the base_repo_id is set to the oldest project id in the chain, so this
project will be taken in account to find the maturity of the project.

5.2.5 Interim analysis eliminating risk

The number of projects, subject of this research decreased so quickly
during filtering that some interim analysis was requested to ensure that
the risk of a too small number of projects wouldn’t occur.

At this moment in the research all out of scope data is removed. In the
research proposal, the risk was mentioned that, because of the relative
short existence of Github, maybe not enough data would be present
for the research. If the amount of data is reduced to a number that
doesn’t meet the demands of statistical research, the minimum age of
the projects should be reduced.

For this reason a quick analysis on the filtered imported data is
performed.

Before proceeding it should be clear how many pull requests are
opened for mature projects by different potential contributors.

The chosen number of different users (> 1, > 2 ..etc.) have no special
meaning. This analysis is only done to find out if there are sufficient
objects to perform a valuable research.

Table 7 shows the number the result of this analysis. The first column
shows the number of different users, having opened a pull request
from the moment the project is older than 24 months. The second
column shows the number of projects meeting this number of different
users. A third column contains the number of follow up pull request
actions for the projects on the second column. This might give an
indication if there is any correlation between the number of
contributors and the number of users involved with the follow up on a
pull request.

Table 7: Users active on mature projects
Different users Projects Follow Up

>1 119.473 85.235

>2 78.811 94.636

>3 71.027 50.253

>4 60.316 51.416

≥10 36.129 32.872

≥20 21.246 22.290

17

≥30 15.162 17.367

≥40 11.773 14.369

≥100 4.661 7.750

≥200 2.069 4.263

≥300 1.185 2.891

≥400 785 2.150

≥1000 209 644

Table 7 shows a percentual increase of users involved with the follow
up when the number of different contributors increases. The tables
also indicates that the number of projects, having many contributors
involved, is sufficient for the planned research.

Not shown in Table 7 is that on 88.047 projects only 1 user opened 1
or more pull requests that didn’t result in any follow up.

So a rough analysis is done on the number of newcomers. The
analysis is rough, because it doesn’t take account of the passed time
meanwhile newcomers are welcomed. So the number of newcomers
could be welcomed in a period of 2 weeks but also within 4 years. It is
also rough because newcomers in a project are considered to be new
on Github could be active on other project since the researched project
became mature.

However the outcome, not being part of the research itself give an
indication towards the expected number of projects becoming part of
the statistical part of this research.

Two queries have been performed on the current dataset. The first
query detects the number of newcomers on projects that haven’t
performed any pull request on Github before the date the researched
project became mature; the second yields in the number of newcomers
in a project, independent if they contributed in some other project
before.

Table 8: New Contributors on Github

#Newcomers #Projects

≥1 23.441

≥100 112

As we can see in table 6 the number of brand-new contributors on
Github is restricted in mature projects. If we only look at newcomers
in the project itself we get other results:

Table 9: New contributors for project

#New Contributors #Projects

≥1 119.274

≥100 1.656

The numbers exposed here are officially not part of the research.
However the research focusses on the figures in Table 9. With more

18

than 1.500 projects attracting more than 100 new contributors it’s
clearly indicated that sufficient data exist for the statistical part of this
research.

5.2.6 Ranking projects successful in attracting new contributors

To find an answer on both research questions, projects should be
ranked by their success on attracting new contributors. To achieve
this, all pull requests, having a request date 2 years or more after the
project creation date, are evaluated using this criterion:

Is this the first pull request by this user for this project?

o When Yes : Is the pull request eventually merged;
o When No : Is there another pull request from this user in this

project that was his first pull request.

Scheme 3: Filter projects succeeding in attracting newcomers

prprojects Pull_requests Pullreshis

Action = ‘opened’
#pull request per user > 1

Success_projects

prprojects Pull_requests Pullreshis

Action = ‘opened’
#pull request per user = 1

Incidental_projects

19

After this evaluation, a ranking is made of projects that attract most
newcomers per 6 months having performed more than 1 pull request.
The successive pull requests do not have to be within the same 6
months but it should be performed once. When no successive pull
request is found and the date of the first pull request is less than 9
months before the snapshot date we consider this situation as
unknown.

In this research projects are considered to be successful if they manage
to attract recurring contributors. The next step now is to find those
projects and after that ranking them in the number of attracted
recurring contributors per half year.

Paragraph §5.2.7 describes the process illustrated by scheme 3 while
§5.2.8 describes the process how the ranking on the outcome is
created.

5.2.7 Finding successful projects

The more recurring contributors the more successful a project is.
Because the total number of new contributors is depended on the age
of the project, the average number of newcomers per 6 months is
determined. The choice for 6 months is arbitrarily but intentionally
chosen because a shorter period will result in very small numbers and
a longer period would possibly result in unreliable figures for projects
that only shortly have the status ‘mature’.

To find out the average number of new contributors per 6 month, a
view is created that finds the projects being successful in attracting
more at least 1 new recurring contributor after 2 years. Contributors
are considered as new if the have not contributed within the first 2
years.

The view is defined as follows:
Query 2 : Create view successful projects

CREATE VIEW success_projects as

SELECT p1.id projectid, prh1.actor_id actorid,

count(prh1.pullrequest_id) nrofpullreqs

FROM pullrequest_history prh1

INNER JOIN pull_requests pr1 ON prh1.pullrequest_id = pr1.id

INNER JOIN pr_projects p1 ON pr1.base_repo_id = p1.id

 AND prh1.action = 'opened'

 AND DATEDIFF(Month, p1.created_at, prh1.created) >=24

 AND prh1.actor_id NOT IN

 (SELECT prh.actor_id FROM pullrequest_history prh

 INNER JOIN pull_requests pr on prh.pullrequest_id = pr.id
 INNER JOIN pr_projects p ON pr.base_repo_id = p.id

 WHERE p.id = p1.id

 AND DATEDIFF (Month, p.created_at, prh.created) < 24)

GROUP BY p1.id, prh1.actor_id

HAVING COUNT(prh1.pullrequest_id) > 1

20

This view creates a virtual table with all actors that performed more
than 1 pull request on a project older than 24 months that did not
perform this during the first 24 months of existence of this project on
this project. From the 4.442.209 projects only 94.491 projects
succeeded in attracting 1 or more new contributors performing more
than 1 pull request after 2 years of its creation. Totally 329.690 new
contributors were attracted. Those are not all unique contributors.
Contributors are counted for every project they contribute on.

With this outcome, there should be a lot of contributors/project
combinations having opened only one pull request and thus no
successors. To find out, Query 2 is slightly modified. The last line of it
is changed to ‘HAVING COUNT(prh1.pullrequest_id) = 1’. This view
is also created and called incidental_projects.

This results in 185.256 projects with 745.766 incidental contributors.
If we exclude the projects that, apart from incidental contributors, also
attract recurring contributors, 126.289 projects remain only attracting
incidental contributors so far since they exist for two years or longer.

On projects not occurring in one of these 2 views there have been no
pull requests 2 years after the creation date

5.2.8 Ranking successful projects

To generate a ranking in the successful projects some calculations in
querying this view are performed:

Recurring contributors are contributors having contributed more than
once. To ensure this, this query is executed on the ‘success_projects’
view, so only recurring contributors are part of the result.

Query 3 : Number of attracted recurring contributors per project per half year

This Query resulted in a list of 94.491 mature projects attracting a
minimum of 1 recurring contributor varying from 128,63 to 0.05 new
recurring contributors per half year

On the second view, a query is performed sorting the result
descending on the number of actors opening only 1 pull request.

Query 4 : Find projects successful in attracting incidental contributors

SELECT p1.id, p1.name, p1.owner_id, p1.created_at,
 COUNT(sp.actorid) nrOfNewComers,
 (DATEDIFF(quarter,p1.created_at,'2019-03-01')/2) 'Half Years',
 Cast(Cast(COUNT(sp.actorid) as float) /

Cast((DATEDIFF(quarter, p1.created_at, '2019-03-01')/2) as float) as float)
 Gemiddeld

FROM success_projects sp
INNER JOIN pr_projects p1 ON sp.projectid = p1.id
 GROUP BY p1.id, p1.name, p1.created_at, p1.owner_id
 ORDER BY CAST (count(sp.actorid) as float) /
 CAST((DATEDIFF(quarter, p1.created_at, '2019-03-01')/2) as float) DESC;

SELECT projectid, p.name, p.created_at, COUNT(actorid) FROM incidental_projects
 INNER JOIN pr_projects p ON projectid = id
 GROUP BY projectid, p.name, p.created_at
 ORDER BY COUNT(actorid) desc

21

This Query resulted in 185.256 projects. Matching the results from
Query 3 and Query 4 showed 58.967 projects occurring in both result
sets and 4.221.429 projects not occurring in one of those 2 result sets..

The results of these queries are presented in the next table:

Table 9: Summarizing results

Projects working with pull requests 4.442.209

Projects attracting new recurring contributors after 2 years 94.491

Projects only attracting incidental contributors after 2 years 185.256

Projects without any pull request after 2 years 4.221.429

Projects with incidental AND recurring contributors after 2 years 58.967

Performing a checksum 4.442.209 -/- 94.491 -/- 185.256 -/- 4.221.429
resulted in 58.967. So apparently no errors are in these Queries.

The #projects without any pull request after 2 years, are the projects
working with pull requests but not occurring in the 2 queries
mentioned above.

The complete result set of this is to be found in Appendix A
(RankingWith2OrMorePullrequests.xlsx). The list with projects
having incidental contributors (only performed 1 pull request) is to be
found in Appendix B (ProjectsSinglePullRequest.xlsx)

A top 30 shows some particular characteristics. A top 15 is very
successful in attracting new contributors, from 16 to 26 the difference
between the following ranks is small, making a jump from 22,67 to
18,80.

22

Table 10: 30 most successful projects

5.2.9 Consolidating result sets contributions

The 2 result sets created here are the base input of the next research
step to find a correlation between the acceptance of the first pull
request and the attractiveness of the project to new contributors. For
convenience of further research a new table is created (Requesters)
with a Primary Key projectid and actorid in which the output of both
views (success_projects and incidental_projects) is imported grouped
by projectid and actorid. In fact this offers an extra check on the
queries before, because it’s not allowed that duplicate keys occur. If a
combination actorid-projectid would occur in both views there would
be an error.

Rank Project_ID Project Name Owner ID
Original

Creation Date
#New

Contributors

#demi-
years
passed Avg

1 6866209 homebrew 27039 20-5-2009 19:38 2444 19 128,63

2 9570147 homebrew-cask 2876023 5-3-2012 02:05 1382 14 98,71

3 4230805 DefinitelyTyped 1597482 25-6-2013 02:37 986 11 89,64

4 1334 rails 8137 11-4-2008 02:19 1694 21 80,67

5 5520 Specs 19222 11-9-2011 11:47 1028 15 68,53

6 7301975 patchwork 2016667 10-1-2014 00:00 677 10 67,70

7 9808223 cgm-remote-monitor 3999983 22-5-2014 00:32 540 9 60,00

8 1229 homebrew 7165 20-5-2009 17:38 1121 19 59,00

9 1142 salt 6936 20-2-2011 20:16 907 16 56,69

10 1992097 framework 20944 10-1-2013 21:27 648 12 54,00

11 1486 ansible 8571 6-3-2012 14:58 657 14 46,93

12 11250 package_control_channel 4009 5-8-2011 03:56 693 15 46,20

13 634 symfony 4808 4-1-2010 14:21 785 18 43,61

14 37 angular.js 159 6-1-2010 00:34 709 18 39,39

15 992 Spoon-Knife 6321 27-1-2011 19:30 551 16 34,44

16 1226 django 7161 28-4-2012 00:47 414 13 31,85

17 1321133 DefinitelyTyped 83128 5-10-2012 16:39 375 12 31,25

18 6824363 spacemacs 1086156 17-12-2012 21:34 351 12 29,25

19 6 cocos2d-x 31 18-11-2010 23:17 467 16 29,19

20 4708601 bootstrap 1106238 29-7-2011 21:19 427 15 28,47

21 20096 yii2 12139 13-2-2012 15:32 395 14 28,21

22 1920 three.js 2532 23-3-2010 18:58 453 18 25,17

23 17694 ceph 22729 1-9-2011 21:41 374 15 24,93

24 5219 scikit-learn 23655 17-8-2010 09:43 407 17 23,94

25 34896252 home-assistant 11394549 17-9-2013 07:29 255 11 23,18

26 202 gaia 1653 3-9-2011 01:38 340 15 22,67

27 8196280 spark 13369 25-2-2014 08:00 188 10 18,80

28 27329 pandas 85274 24-8-2010 01:37 319 17 18,76

29 13294 zeroclickinfo-goodies 6732 6-8-2011 13:26 276 15 18,40

30 3905191 react 2156 24-5-2013 16:15 202 11 18,36

23

It results in a table:

Table 11: #contributors

new incidental contributors 745.766

#new recurring contributors 329.690

#total new contributors 1.075.456

New Contributors in this case means that the contributor started to
contribute after the project is mature. Contributors can occur in all
lines of this table and even in 1 line a contributor counts for every
project he contributes on.

Having found out all new contributors, in next paragraph the aim is tot
restrict the research data to only new contributors.

5.2.10 Compressing pull requests and pull request history

In the pull request history, there are still al lot of data not being
relevant for this research. We only want to search the pull request of
new contributors but in the current tables all contributors are present.

The main benefit of this is an increased performance because Table 8
shows that it eliminates over 90% of the complete pull request history.

To do so this new table is populated in 2 steps. The first step is to
insert all the ‘opened’ pull requests by new contributors and the
second step is to add all other actions on those pull requests.

Query 5 : Adding all relevant open actions from pull requests

Query 5 filters all pull requests from actors on a mature project who
did not open any pull request during the first 2 year of existence of
this project. The found requests, with action is ‘open’ are written into
a new file pullreshis. With this action, all pull request that are not
relevant for this research are eliminated. For reason of leaving a trail
this history is copied into a new table, pullreshis, so this action is easy
to reproduce afterwards.

SELECT prh1.* INTO pullreshis

FROM pull_requests pr1

INNER JOIN pullrequest_history prh1 ON pr1.id = prh1.pullrequest_id

INNER JOIN projects p1 ON pr1.head_repo_id = p1.id

AND prh1.action = 'opened'

AND DATEDIFF(Month, p1.created_at, prh1.created) >=24

AND prh1.actor_id NOT IN (

 SELECT prh.actor_id FROM pullrequest_history prh

 INNER JOIN pull_requests pr ON prh.pullrequest_id = pr.id

 INNER JOIN projects p ON pr.head_repo_id = p.id

 WHERE p.id = p1.id

 AND DATEDIFF(Month, p.created_at, prh.created) < 24)

24

When all open requests for pull requests are inserted, all other actions
on these pull requests are inserted in the same pullreshis table.

Query 6 : Adding other actions on opened pull request

After executing these queries the number of pull request history rows
in the pullreshis table is 2.998.231. The original pullrequest_history
table contained 42.338.628 records. This means a significant reduction
of the number of records, so an far quicker performance is expected in
the next steps.

The next step, to make analysis more simple, is to extract all unique
new contributors who have opened a pull request. Therefor a table is
created named new contributors.

Query 7 : Filtering only new contributors

At this moment all data, not relevant for the research en RQ1 is
filtered out. In the next paragraph is explained how the analysis on
this data is executed.

 Data analysis for RQ1: Correlation between
accepting first contribution and attractiveness
to newcomers

For each new contributor is investigated for each project on which he
contributed if his first pull request eventually is merged and how many
successive contributions are opened after the moment the merging took
place. This moment is chosen for causality reasons. If a contributor
opens a new pull request before his first one is accepted, the acceptance
of the first pull request has no influence on the existence of this new
pull request.

INSERT INTO pullreshis
 SELECT DISTINCT prh1.*
 FROM pullrequest_history prh1

INNER JOIN pullreshis ph1
 ON ph1.pullrequest_id = prh1.pullrequest_id
WHERE prh1.action <> 'opened'

INSERT INTO newcontributors
 SELECT distinct actor_id
 FROM pullreshis
 WHERE action = 'opened'

25

To facilitate data analysis, we built a Java program to analyze the
contributions per newcomer on a project. The basic algorithm is
shown in Append C. A new table is created, called
firstcontributionsalt. This new table is designed as follows:

Table 12: firstcontributionsalt

Field Name Type

Actorid Int (pk)

Projectid Int (pk)

Pullrequestid Int

Merged Boolean

successors Int

Successorsmerged Int

For each newcomer it is persisted if his first pull request eventually is
merged and the number of successive pull requests. Also is persisted
the number of successors that is merged eventually.

The first attempt to contribute in a Github project is when a new
coming developer submits a pull request.

Correlation between acceptance of the first pull request and
attractiveness can only be done on projects where newcomers have
performed at least 1 pull request. All other projects aren’t ranked at
all. Those projects will be out of scope for the rest of the research.
When nobody has ever done one attempt, the project was probably not
meant for open collaboration.

The linear correlation is distilled between the acceptance of the first
pull request and whether this user performs a second pull request. In
this case we have five options:

1. The first pull request is merged and successors exist;
2. The first pull request is merged but no successor exists;
3. The first pull request is rejected but successors exist;
4. The first pull request is rejected and no successor exists;
5. The first pull request is performed the 1st of July 2018 or later and

no successor exists.

If a correlation must be presented between A and B then A B
must be true and implicitly ¬A ¬B.

So, if 1 or 4 is true, it confirms this correlation. If 2 or 3 is true, the
correlation is denied. If 5 is true, the outcome is unsure so it will be
ignored. That means the this pull request is removed from the
firstcontributionsalt table during execution of the analyzing software

This is implemented is following Query:
Query 8 : Examen Relationship

There should have been significantly more confirmations than denials
to conclude that there is a serious correlation between de degree of

select count(*) Pros from firstcontributionsalt where (merged = 0 and successors =
0) or (merged = 1 and successors > 0);
select count(*) Cons from firstcontributionsalt where (merged = 1 and successors = 0)
or (merged = 0 and successors > 0);

26

acceptance of a first pull request and attractiveness. If the outcome is
purely co-incidental, there would be as much instances confirming the
hypothesis as instances denying the hypothesis for this research
question.

Because the existence of other reasons the number of confirmations
should be at a minimum 3 times the number of denials to come to this
conclusion.

For linking the result to individual projects another additional request
is provided:
Query 9 : Query answering RQ1 per project

The results of this research are demonstrated in section 6, analyzed
and discussed.

 Data analysis for RQ2: Qualitative research on
project documentation

To answer RQ2, the project wikis had to be qualitatively evaluated.
The technical documentation stored in WIKI pages is investigated.
Technical documentation and the quality of an introduction paper (like
readme.txt) is subject of manual research because the kind of
documentation supplied cannot be retrieved from the metadata. It was
the intention to restrict the research to the contents of the wiki pages
on Github but many projects have their own project website with more
documentation then supplied on Github. This information was
therefore also taken in account.

5.4.1 Criteria selection for research

For this research the following criteria are formulated:

 Does a ‘How to Start’- document exist?
 Are contact data for newcomers supplied?
 Does a project website exist?
 Is supplementary documentation provided on the project

website?
 Is technical documentation present?
 How is technical documentation characterized?
 Do installation instructions exist?
 Do deployment instructions exist?
 Are development guidelines provided?

The comparison in this aspect is linear. For each group (attractive,
medium and unattractive) the results are cumulated because the
answer on the questions are binary. The answers are collected in an
Excel spreadsheet together with the references to the answers.

select a.projectid [Project], p.name, a.actors [Accepted Successors],
b.actors [Accepted None],
c.actors [Refused Successors], d.actors [Refused None] ,

a.actors + d.actors [Confirmation], b.actors + c.actors [Denial],
(a.actors + d.actors) - (b.actors + c.actors) [Difference]
from acceptednext a
 inner join acceptednot b on a.projectid = b.projectid
 inner join refusednext c on a.projectid = c.projectid
 inner join refusednot d on a.projectid = d.projectid
 inner join projects p on a.projectid = p.id
order by 9 desc

27

5.4.2 Selection of projects

Bird et al. [3] selected projects for qualitative research from
Sourceforge.net based on ranking in Stars [1]. Projects on Sourceforge
earn their stars based on reviews. In this research for RQ2 the most
successful projects in attracting new contributors are selected. This
has led to another set of projects being subject of this qualitative
research. This qualitative research is done on the 22 most attractive
projects. They are compared with the same number of projects that are
most unsuccessful in attracting newcomers. A third control group with
the same size is selected for demonstrating a causal link. So 66
projects are examined. Originally it was meant to do the qualitative
research on the top 26 attractors from the ranking. This cut was made
because the between the number 26 and 27 there was a serious gap in
attractiveness from 22 newcomers to 18 newcomers per half year.
From there further downward the sorted list didn’t contain a serious
gap.

From this top 26, investigating the contents, it appeared that 2 projects
were deleted or ended years ago. Two project weren’t meant for
development but only to learn working with Github and to learn
working with pull requests. This makes the project very popular in
terms of number of pull request but these pull request have nothing to
do with contributing to the project. So only 22 top attractors remain.

These top 22 attractors are researched. The 26 worst attractors are
selected but three of those projects were deprecated. These three
projects are not taken in account. From the control group of the same
size there was 1 project deprecated and 1 was archived. This control-
group is selected splitting up the ranking in equal parts and select a
project from every part.

Having gathered all this information, an analysis is done to conclude
what aspects, or combination of aspects, cause attractiveness.

28

6 Research results
Executing the research plan, described in the previous section, the
results are described for each research question.

6.1 Result for RQ1: Effect of the acceptance of the
first pull requests on the successors

The hypothesis in this was:

A strong correlation is expected between the acceptance of a
newcomers first contribution on a Github project and attractiveness of
this project to newcomers.

The following rules should confirm this hypothesis:

The first pull request is merged and successors exist;

The first pull request is rejected and no successor exists;

The following rules should reject this hypothesis:

The first pull request is merged but no successor exists;

The first pull request is rejected but successors exist;

The results on this are :

Table 13: Correlation

Rq1. How strong is the correlation between the degree of acceptance
of newcomers first contribution on mature projects on Github and the
attractiveness to newcomers?

The linear correlation between these factors is approximately +0,017.
So the exact answer on this question is a clearly no.

If we take a closer look to the figures and look at the partial results,
there are some more significant differences.

Table 14: Detailed overview

Accepted Successors #Newcomers

Yes Yes 54.432

Yes No 81.575

No Yes 35.031

No No 65.407

Attractiveness is also affected by the number of contributions a
newcomer is willing to do. This is examined too with the following
result:

Table 15: Successors and acceptance

Accepted # avg Successors #avg Accepted successors

Yes 8,5 6,6

No 11,6 6,1

Confirmations 120.172

Denials 116.255

29

No correlation was therefore be found between the acceptance of a
first pull request and the existence of successors. There is also no
positive correlation between the number of successive contributions
and the acceptance of the first pull request.

6.1.1 The effect of code bots

The results so far where unexpected and some more detailed analysis
where performed on the data. It appeared that a few users where
responsible for thousands of incidental contributions.

The top 4 of them lead to over 3000 projects. To find out who those
contributors were, the user information was requested. It appeared that
a number of codebots generate pull requests. They were identified by
their name and the behavior of generating many pull requests for
different projects. So they are not really developers.

To finetune the statistical results all results generated by obvious
codebot users should be removed from the research population. For
this, contributions from users having a username starting or ending
with ‘bot’ will be removed from the population. After this the results
will still be affected by some bots but for statistical purpose it isn’t too
relevant.

After repeating the analysis on the remaining data it yields in a result
of 117.735 confirming the hypothesis and 114.076 denying this
hypothesis. So this did not lead to significant difference. The effect of
codebots appeared to be very restricted.

6.1.2 Result on hypothesis 1

For this research question a hypothesis was formulated:

H1. A strong correlation is expected between the acceptance of a
newcomers first contribution on a Github project and attractiveness of
this project to newcomers

The correlation coefficient was calculated. This resulted in 0.08. So,
there is no correlation. Even the detailed views do not lead to more
then a very week correlation. We must conclude that this hypothesis is
not true.

6.2 Results for RQ2: Investigating the project wiki
and documentation

The second part of this research includes qualitative research on a
selection of projects. The results are separated int three categories:
Best Attractors. Worst Attractors and a Control group.

The research took place on aspects that could help to start contributing
for newcomers like the existence of a “How to start” document,
technical documentation and guidelines. However, a lot of projects do
not offer this information on GitHub itself but use their own project
website for this. So those websites are visited and information on it is
researched.

30

Table 17: Number of projects meeting the aspects to help newcomers
to get started

Aspect Best
Attractors

(22)

Worst
Attractors

(22)

Control
(23)

Existence of a ‘How to
start contributing’-
document

22 1 7

Presence of contact data
for new contributors

16 1 4

Existence of a project
website

22 8 5

Supplementary
documentation on project
website

15 0 4

Existence of technical
documentation

17 0 4

Installation instructions 21 12 10

Deployment instructions 21 4 11

Existence of
programming guidelines

21 1 4

Each aspect is described below. In the table you can see that the
results in the control group are near to the worst attractors. For this it’s
good to know that the top attractors attract 23,18 to 128,63 new
contributors per 6 months in average. The control group attracts 0.06
to 1.00 new contributors in average per 6 months and the worst
scoring group comes to 0.05 new contributors per 6 month. So the
attractiveness of the control groups is more near to the bad attractors
then to the top attractors. For this reason, while calculating the
correlation between attractiveness and aspects, the control group is
considered to be a bad attractor. The results are presented in Table 18.
They are restricted to 2 decimals without rounding. The interpretation
of these results are considered to be weak positive when > 0,30,
moderate positive when > 0.50 and strong positive when > 0.70.

31

Table 18: Correlation between aspects to help newcomers and
attractiveness of projects

Table 18 demonstrates moderate to strong correlation between a
number of helping aspects and the attractiveness of projects.

6.2.1 Existence of how to start documentation

All best attractors contain a ‘How to start’ document. In these
documents potential contributors are stimulated to start on all levels
such as submitting issues, translating documentation and picking up
issues.

In the worst attracting projects only 1 project (Selenium) has a how to
start document.

In the Control group there were only 7 projects with such a document.
Not all documents in this control group were inviting. Most of them
only described the process on how to contribute and those processes
are often complex and thus not very inviting, especially when a
relative small community of developers want to keep control. A
typical example for this is the embed project. If one wants to add new
functionality, he should first discuss this in the community and when
he at least does a pull request a small core group decides whether this
contribution is acceptable. There are several criteria mentioned on the
site but none of them is described in a way that a potential contributor
is able to find out if his contribution meets those criteria.

As demonstrated in Table 18 out we can say, there is a strong positive
correlation between the existence of a helpful ‘How to Start’
document and attractiveness to new contributors.

6.2.2 Existence of contact processes

16 of the 22 most attractive projects share contact data for new
contributors. The contact data aren’t supplied via Github but via a
project website. Contact data are mostly discussion groups via
Google, Discord, Slack and some other platforms. The projects, not
supplying contact data, have a discussion possibility within the Github
project itself. An email address is rarely supplied.

Aspect Best vs.
Worst

Best vs Worst &
Control group

Existence of a ‘How to start
contributing’-document

0.95 0.76

Presence of contact data for
new contributors

0.68 0.67

Existence of a project website 0.63 0.61

Supplementary documentation
on project website

0.68 0.67

Existence of technical
documentation

0.84 0.73

Installation instructions 0.40 0.31

Deployment instructions 0.77 0.52

Existence of programming
guidelines

0.90 0.82

32

In the worst performing group again Selenium is the only project
supplying contact data. In the control group there are 4 discussion
platforms from which 2 are marked as private.

Table 18 demonstrates a moderate correlation between the presence of
contact data and attractiveness to new contributors.

6.2.3 Existence of a project website and supplementary
documentation

Not all information for new contributors can be found on Github.
Many projects have their own website with supplementary
documentation. This can be about the way they are organized, a list of
desired contributions and information on how to contribute but also
some personal profiles of the contributing crew.

Every project classified as part of the best attractors have its own
website. All those 22 projects have websites that contain information
for potential contributors including supplementary documentation.

From the worst attractors there are 8 projects with a website but 3 of
them lead to erroneous results. The others don’t supply information on
how to contribute.

The control group only has 5 projects with a project website although
4 of them supply supplementary information. So in Table 18 a trend is
visible that the correlation between the existence of this website and
attractiveness to new contributors is moderate positive but increases
when this website contains supplementary documentation for potential
contributors.

6.2.4 Existence and character of technical documentation

The next aspect is the existence and character of technical
documentation. From the best attractors in 17 projects exists technical
documentation while none of the worst attractors supply technical
documentation and in the control group only 4 projects supply this.

From the top attractors this documentation is in 11 cases mostly
explaining text and API documentation. Only Ceph supplies UML
diagrams with examples. Cocos2d and home-assistant supply an
architectural drawing and examples. The other projects only
supply API documentation.

In the control group 3 of 4 projects only supply API documentation.
Only buildbot supplies written documentation, examples together with
API documentation.

As Table 18 demonstrates there is a strong correlation between the
existence of technical documentation and the attractiveness to new
contributors. The effect of the kind of this technical documentation
could not be measured.

6.2.5 Availability of installation and deployment instructions

Most projects supply installation and deployment instructions. The
difference between de best attractors and others is not as big as on the
other aspects while there is hardly a difference between the worst
attractors and the control group. The installation and deployment
instructions mostly offer information for an administrator on how to
install and deploy. Information on how to setup a development
environment is rare.

33

The character of this documentation and the small differences between
the groups of research show that these instructions do not significantly
contribute to attractiveness.

6.2.6 Provision of guidelines for contributing

Most attractive projects (21) supply guidelines for programming while
only 1 bad attractor an 4 from projects the control group offer these.
From the worst attractors, only Selenium offers guidelines.

The guidelines in the control group are mostly poor and in one case
(buildbot) they only tell what you should not do.

Guidelines for contributing are often an extension on a ‘how to start’
document and technical documentation. In Table 18 you can see that
the correlation between the existence of these guidelines and the
attractiveness for new contributors is very strong.

6.2.7 Result on hypothesis 2

For this research question the following hypothesis was formulated:

H2. A strong correlation is expected between the existence of
technical documentation or a how-to-start page on Github and the
attractiveness of this project to newcomers

The research results make clear that this correlation is very strong.
The top attractors all have a how to start document while from the
worst attractors only 1 has such a document and the controlgroup
indeed has a number in between. Almost the same you can say about
technical documentation and guidelines. Since guidelines are an
extension on the mentioned documents, they are taken in account here.
A correlation on a how-to-start document is 0.95, on technical
documentation it is 0.74 and on guidelines it is 0.80.

This research didn’t only consider the existence of the documentation
or guidelines but as well the kind and usefulness of it. The
documentation of attractive projects was far more usefull than the
documentation of worse performing projects.

So the conclusion is that this hypothesis is true.

34

7 Discussion
As demonstrated in the research results there is no significant
correlation between the acceptance of the first pull request of a
newcomer and attractiveness to new contributors. However between
helpful startup documentation and attractiveness for new contributors
there is a moderate to strong positive correlation. Especially a ‘How to
start’-document, technical documentation and contribution guidelines
are strongly correlated to this attractiveness.

7.1 Discussion on RQ1: Pull request acceptance
Van Krogh et al. [10] suggested that the refusal of a first pull request
for a new contributor has a negative impact on his willingness to get
involved further. They found out that project members have their
private communication channels that made the project less accessible
for newcomers. However in this research there is no serious
correlation found between the refusal of this first pull request and the
fact if this contributor gives it a second try. On the other hand the
acceptance of this first pull request does not seem to be an important
motivation to do more. Perhaps this is to be explained by Igor
Steinmacher et al. [15] in his study about quasi contributors.
Apparently there are a lot of people scanning projects and performing
a small contribution. It would be interesting when those quasi
contributors will be eliminated from the statistical research.

The question remaining is why do so many contributors, restrict
themselves to 1 pull request, when this request is merged eventually.
Pinto et al. [13] performed an in-depth study of casual contributors.
There are many contributions that only correct typos. A pull request
with corrected typos is mostly accepted and eventually merged, but is
not the best starting point for becoming a recurring contributor.

Some other contributors are discussed by Steinmacher et al.[15].
Those are contributors performing pull requests over and over without
having one merged.

To filter out those contributors, a more qualitative research is
necessary on a selection of projects.

After all it’s still important to evaluate the behavior of the core
developers in a project according to newcomers. It’s not a part of this
research but it could be interesting to find out what outcome this
research will have if the focus is moved to the projects themselves.

7.2 Discussion on RQ2: Documentation
In this research the number of wiki pages on Github is determined.
However, a lot of projects have wiki pages on their own website. The
most successful project (homebrew) doesn’t have any wiki pages at all
but has exhaustive documentation on it’s own site (brew.sh). Some of
the successful projects have wiki pages but they are not editable for
everybody. The number of wiki pages was no indication at all for
attractiveness for mentioned reasons.

Steinmacher et al. [17] described social barriers for new contributors.
They mention a task to start with as an aspect to start contributing as
well as a clear ‘how to contribute’ document. It’s clear that successful
projects all have such a document and the worst attractors don’t. So

35

this is confirmed by this research and thus it needs no further
discussion.

In the same paper, Steinmacher et al. [17], mentioned lack of a mentor
and email contact as a barrier for newcomers. In this research I can not
find anything of this. In this research all kind of contact data is
collected, but email addresses are rare in this. It’s not always wise to
publish email addresses on public boards because, if easily accessible,
it will be part of a spam database very quickly.

Despite the importance that Canfora et al. [4] grants to a mentor,
successful projects do not explicitly offer mentoring to new
contributors. So this research can’t confirm if this really contributes to
attractiveness.

Kuechler et al. [19] mention the need of quick and proper email
answers as an aspect of motivation. However, in common, contact
takes place via discussion groups and Slack nowadays. Answers on
questions there are given most of the time by different project
members and not by a specific mentoring member. What we have
found is that in the control group those discussion groups more often
are private while the discussion platforms of the successful attractors
are accessible for anyone.

Communication among developers nowadays does not takes place on
individual basis via email but via media like Discord, Slack. Discord
is a popular social network for gamers while Slack is a secure chat
solution mostly in use by companies. This research does not contradict
the need for quick and proper answers. Only the contact data for the
projects are on another platform.

Čubraniç et al. [8] mention the importance of actual documentation.
This research confirms this. The worst attractive projects have an
absolute lack on documentation. Succesfull projects are well
documented. However, the kind of documentation is not as expected.
One would expect architectural design in a formal language, but most
supplied documentation appears to be informal prozaic language
supplemented with API documentation and source code comments.
Čubraniç also mentioned in his research that too much documentation,
often incomprehensive, works as a barrier as well as lack of
documentation. It’s the same as the development in closed software
projects since agile development is more common then waterfall
projects where documentation was part of the process because every
phase had to be accepted by a principal. The agile manifest considers
working software more important than exhaustive documentation.
Because of agile software development is far more transparant to the
customer, this customer gets knowledge about the costs of good
conserved design documents, so the customer can accept to have less
technical documentation. So, in a community of developers the most
important documentation should help a new contributor find a way to
start. This confirms the conclusion of von Krogh et al.[10] that an
introduction to the first task is an important aspect for onboarding new
contributors.

However, Ho-Quang [14] concluded that it’s not the absence of UML
that forms a barrier for contributing. In daily practice I observed that
developers need documentation to start, but don’t feel the need of
formal documentation and certainly don’t like to produce this.

36

The existence of guidelines is common in successful projects.
Schilling et al. [23] mentioned the influence of knowledge about
project practices as an aspect for contributing. Because all successful
projects have these guidelines seriously described, it might also be
very helpful in onboarding new contributors. After all it can be very
demotivating not to know if ones contribution meets project
requirements. You can say that guidelines are an extension on a ‘how
to start’ document.

37

8 Limitations and threats to validity
There are some limitations and vulnerabilities in this research. A part
of them are in the quantitative analysis of pull request acceptance and
some of them in the qualitative analysis of the documentation.

8.1 Limitations of quantitative analysis of pull
request acceptance

One of the limitations is the aspect that the contribution done by
contributors doesn’t have to be a software contribution. With products
containing content the contribution can also be content. After manual
inspection we found that the contributions to the most successful
project, homebrew, are in fact installation scripts used by homebrew.
It would be an idea to eliminate this project but in that case all 94491
projects should be inspected by hand which is beyond the time limits
for this research.

As already mentioned in section 7, the research on attractiveness in
case of accepting the first pull request is influenced by quasi
contributors. It is possible to eliminate this influence, but in that case a
study to the behavior of quasi contributors is required.

The number of wiki pages on Github is not always precisely
calculated. This is because of not all projects follow the same
standards for it. For example, some projects don’t have their index in
an outline file but repeat the complete index on every page. This leads
to a much higher number of wiki pages in this algorithm. Very few of
the projects that were part of the qualitative research, use the Github
wiki facility.

8.2 Limitations of qualitative analysis of the
documentation

67 projects were selected for qualitative analysis which means that
94424 projects aren’t inspected. It could be, if the research would be
finer grained, the results change. To ensure a reliable outcome, apart
from the best attractors and the worse attractors a control group was
selected. All selected projects were inspected on their value for this
research. Projects without value for the research were removed as
described in section 6. There was a consequent development that the
best attractors scored far out the best on these aspects, the worst
attractors scored worst on these aspects and the control group in
between as expected. A bigger population however could give a better
view on the way the technique is documented.

A part of the qualitative research was subjective. The usefulness of a
how to start document is a personal judgement based on inspection if
the document would provide sufficient information for me to pick up
an item. However, this did not affect the conclusion that RQ2 can be
confirmed.

38

9 Conclusion
For this research the following research question was formulated:

Is the attractiveness of mature OSS projects for new contributors on
Github significantly affected by the degree of acceptance of their
initial contribution and the existence of technical documentation or a
how-to-start page?

This question was divided into two sub questions:

Rq1. How strong is the correlation between the degree of acceptance
of newcomers first contribution on mature projects on Github and the
attractiveness to newcomers

Rq2. How strong is the correlation between the existence of technical
documentation or a how-to-start page on mature projects on Github
and the attractiveness to newcomers

For Rq1 a hypothesis was formulated:

H1. A strong correlation is expected between the acceptance of a
newcomers first contribution on a Github project and attractiveness of
this project to newcomers

This hypothesis is concluded not to be true.

For Rq2 the following hypothesis was formulated:

H2. A strong correlation is expected between the existence of
technical documentation or a how-to-start page on Github and the
attractiveness of this project to newcomers

This hypothesis is concluded to be true.

Returning to the main research question, we can not conclude that the
answer on is an undoubtable confirmation. The confirmation on H2
however is very convincing while the negative outcome on H1 is less
convincing because some questions are left open for further research
on this.

39

10 Further research
This research highlights several direction for future work. The aspect
of the quasi contributors should be researched further. It would be
interesting to research their behaviour, so they can be filtered out.
Quasi contributors should not be mixed with casual contributors. The
same other view on data could exist if we not only consider
newcomers on a project but newcomers on Github.

 experienced project members and newcomers in successful projects.
In many papers, bad habits in communication are considered a barrier.
How is this communication initiated since email is not the standard on
this anymore? Has this led to better communication between new
contributors and experienced project members? Is there a difference
between Free Open Source Software Projects and Enterprise Managed
Open Source Projects? Does a proper way of communication affect
attractiveness?

The third potential research direction is the level and the character of
documentation that is required for onboarding newcomers. We would
expect some clear component diagrams and class diagrams to
document the structure of the software, so that an engineer can more
quickly find his way. In the researched OSS projects these are hardly
present and most technical documentation is in prosaic text, and it
would be interesting to research how do newcomers experience this
way of documenting.

40

11 References
[1] B Ray, D Possnett, V. Filkov, and P. Devanbu. “A large scale study of

programming languages and code quality in github.” Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engeneering FSE. 2014. 155-165.

[2] Bird, Christian. “Sociotechnical Coordination and Collaboration in Open
Source Software.” Proceedings of the 2011 27th IEEE International
Conference on Software Maintenance. Washington DC USA: IEEE, 2011.
568-573.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan. “Mining email
social networks.” Proceedings of the 2006 International Workshop on Mining
Software Repositories. 2006. 137-143.

[4] Canfora, Gerardo, Massilimilliano Di Penta, Rocco Oliveto, en Sebastiano
Panichella. “Who is going to Mentor Newcomers in Open Source Projects.”
Proceedings of the ACM SIGSOFT 20th International Symposium on the
foundations of Software Engeineering. New York: ACM, 2012. 44:1-44:11.

[5] Carlos Santos Jr., J Michael Pearson, Fabio Kon. “Attractiveness Of Free And
Open Source SoftwareProjects.” ECIS 2010 Proceedings.105. 2010. 1-12.

[6] Carlos Santos, George Kuk, Fabio Kon, John Pearson. “The attraction of
contributors in free and open source software projects.” Journal of Strategic
Information Systems, 2013: 26-45.

[7] Chengalur-Smith, IN. Sidorova, A. and Daniel, S.L. “Sustainability of
Free/Libre Open Source Projects: A longitudina Study.” JAIS Vol. 11, 2010:
657-683.

[8] Čubraniç, Davor, Gail C. Murphy, Janice Singer, en Kellogg S. Booth.
“Hipikat: A Project Memory for Software Development.” Transactions on
Software Engineering, 2005: 446-465.

[9] Ducheneaut, Nicolas. “Socialization in an Open Source Software
Community: A Socio-Technical Analysis.” Computer Supported
Cooperative Work (Springer), 2005: 323–368.

[10] G. von Krogh, S. Spaeth, K. Lakhani. “Community, joining, and
specialization in open source software innovation: a case study .”
Sciencedirect, 2003: 1217-1241.

[11] Gousios, Georgios. “The GHTorrent dataset and tool suite.” Proceedings of
the 10th Working Conference on Mining Software. San Francisco, CA, USA:
IEEE Press, 2013. 233-236.

[12] Gousios, Georgios, en Diomidis Spinellis. “GHTorrent: Github's data from a
firehose.” Working Conference on Mining Software Repositories (MSR).
Zurich, Switzerland: IEEE, 2012.

[13] Gustavo Pinto, Igor Steinmacher, Marco Aurélio Gerosa. “More common
than you think: An in-depth study of casual contributors.” 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER).
Osaka: IEEE, 2016. 112-123.

[14] Ho-Quang, Truong, Regina Hebig, Gregorio Robles, Michel R.V. Chaudron,
en Miguel Angel Fernandez. “Practices and Perceptions of UML Use in Open
Source Projects.” ICSE SEIP, 2017: 203-2015.

[15] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, Marco Aurélio
Gerosa. “Almost there: A study on quasi-contributors in open-source
software projects.” IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018. 256-266.

[16] Igor Steinmacher, Marco Aurélio Gerosa, David Redmiles. “Attracting,
onboarding, and retaining newcomer developers in open source software
projects.” Workshop on Global Software Development in a CSCW
Perspective, 2014.

[17] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, David Redmiles.
“Social Barriers Faced by Newcomers Placing Their First Contribution in
Open Source Software Projects.” Proceedings of the 18th ACM conference

41

on Computer supported cooperative work & social computing. Hong Kong:
ACM, 2015. 1379-1392.

[18] Jonas Gamalielsson, Björn Lundell. “Sustainability of Open Source software
communities beyond a fork: How and why has the Libre Office project
evolved?” The Journal of Systems and Software, 2014: 128-145.

[19] Kuechler, J. Victor, Carlos Jensen, en Scott King. The Emergent Qualities of
Diversity in Free and Open Source Software Communities: A Critical Review
and Theoretical Discussion. Thesis, Oregon State University, 2013.

[20] Mereilles, P.,Santos, C., Mranda, J. Kon, F.,Terceiro, A. and Chavez, C. “A
study of the relationship between source code metrics and attractiveness is
free software projects.” Brazilian Symposium on Software Engineering. 2010.
11-20.

[21] Minhui Zhou, Audris Mockus. “What make long term contributors:
Willingness and opportunity in OSS community.” International Conference
on Software Engineering. 2012. 518–528.

[22] Morbitzer, M. (2012). The Mifare Hack. Visited on 06 10, 2020, from
http://proxmark.nl/files/Documents/13.56%20MHz%20-
%20MIFARE%20Classic/The_MIFARE_Hack.pdf

[23] Schilling, Andreas, Sven Laumer, en Tim Weitzel. “Who Will Remain? - An
Evaluation of Actual Person-Job and Person-Team Fit to Predict Developer
Retention in FLOSS Projects.” 45th Hawaii Internationa Conference on
System Sciences. IEEE, 2012. 3446-3455.

[24] Shah, Sonali K. “Motivation, Governance, and the Viability of Hybrid Forms
in Open Source Software Development.” Management Science, 2007: 1000-
1014.

[25] Steinmacher, I., Graciotto Silva, M.A., Gerosa, M.A. Redmiles, D.F. “A
systematic literature review on the barriers faced by newcomers to open
source software projects.” Information and Software Technology, 2015: 67-
85.

[26] Stol, Klaas-Jan, Paris Avgeriou, en Ali Muhammed Babar. “Identifying
Architectural Patterns Used in Open Source Software: Approaches and
Challenges.” Proceedings of the 14th International Conference on
Evaluation and Assessment in Software Engineering. Swintin UK: British
Computer Society, 2010. 91-100.

[27] Ververs, E., Bommel, R., and Jansen, S. “Influences on developer
participation in the Debian software ecosystem.” Intl. Conference on
management of Emergent Digital Ecosystems. San Francisco(California):
ACM, 2011. 89-93.

[28] Yunwen Ye, Kouichi Kishida. “Toward an understanding of the motivation
Open Source Software developers.” ICSE '03 Proceedings of the 25th
International Conference on Software Engineering . Portland: IEEE
Computer Society Washington, DC, USA ©2003, 2003. 419-429.

[29] Engelfriet, Arnout. Is it legal for GHTorrent to aggregate Github user data?
28 February 2016. https://legalict.com/2016/02/28/is-it-legal-for-ghtorrent-
to-aggregate-github-user-data/ (visited december 12, 2020).

42

Appendix A : Relational Schema of GHTorrent dataset

43

Appendix B: Programming Languages taken into account

Smalltalk
UnrealScript
Yacc
YAML
BlitzBasic
Brightscript
F#
HyPhy
JFlex
Objective-J
Pascal
PHP
REALbasic
TypeScript

Bison
COBOL
CoffeeScript
Delphi
Elixir
Elm
Objective-C
Perl
Perl6
Prolog
Scala
C++
PureBasic
Python

PowerBuilder
Assembly
JavaScript
Kotlin
Lex
Processing
Ruby
C
C#
Swift
Visual Basic
Ada
ActionScript
Lisp

Clojure
Haskell
Logos
NewLisp
Objective-C++
AppleScript
FORTRAN
Rascal
Java
LiveScript
Lua
Groovy
ABAP

Appendix C: Java Source Code for import and analysis
ImportUsers.java

ImportProjects.java

ImportPullRequests.java

ImportPullRequestHistory.java

ImportWiki.java

FirstPRAnalyzer.java (Program to analyse the existence results of first pull requests and successors)

Additionally needed JPA-files and utilities

This Appendix is to be found in the file Appendix_C_Java Source_Code.zip

Appendix D: Results of qualitative research on documentation

Spreadsheet with outcome and references research on websites for RQ2.

This Appendix is to be found in the file Appendix_D_qualitative_research.ods

