
Open Universiteit
www.ou.nl

MASTER'S THESIS

Convolutional Neural Networks on the Edge

Stremerch, K.J.P.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

https://research.ou.nl/en/studentTheses/4058ee8c-9a61-490e-9421-5edfc7d8dd6f

CONVOLUTIONAL NEURAL NETWORKS
ON THE EDGE

Kurt Stremerch

Student:
Student number:

Kurt Stremerch

Date of presentation: July 9th, 2021

CONVOLUTIONAL NEURAL NETWORKS
ON THE EDGE

A master thesis submitted by

Kurt Stremerch

Open University of the Netherlands, Faculty of Science
Master’s Programme in Software Engineering

Student:
Student number:
Course:

Kurt Stremerch

 IM9906
Date of presentation: July 9th, 2021
Thesis committee: dr. Arjen Hommersom (chairman), Open University

dr. Martijn van Otterlo (supervisor), Open University
dr. Joeri Verbiest (supervisor), Karel De Grote Hogeschool

CONTENTS
1 Introduction . 4
2 Background. 5

2.1 Embedded devices . 5
2.2 Digital sound. 6
2.3 Audio classification . 7
2.3.1 Acoustic datasets . 9
2.3.2 Data feature . 11

2.3.2.1 Short time Fourier transform . 11
2.3.2.2 Constant Q transform . 12
2.3.2.3 Mel transform . 12

3 Convolutional neural network . 14
3.1 Feature learning . 14
3.1.1 Classic convolution layer . 15
3.1.2 Depthwise separable convolution layer 17
3.1.3 Pooling layer . 19
3.2 Classification . 19
3.2.1 Flatten layer . 20
3.2.2 Fully connected network . 20
3.2.3 Softmax layer . 20
3.3 Training process. 21
3.4 Related work . 21

4 Quantization . 24
4.1 Post Quantization . 27
4.2 Training aware quantization . 27
4.3 Quantization frameworks . 28
4.4 Related work . 29

5 Research design . 31
5.1 Research questions . 32
5.2 Research method . 32
5.2.1 Datasets . 37

5.2.1.1 UrbanSound8k dataset . 37
5.2.1.2 DCASE2019 dataset . 37

5.2.2 Baseline models . 38
5.2.2.1 Salamon-Bello model . 38
5.2.2.2 Stride model . 40

5.3 Training . 41
5.4 Evaluation . 41
5.5 Software toolbox . 42

6 Results . 44
6.1 Results RQ1 . 44
6.1.1 Overall accuracy . 44
6.1.2 Detailed accuracy . 46
6.1.3 Memory size . 47
6.1.4 Inference performance . 50
6.1.5 Discussion . 50

1

6.1.6 Conclusion . 52
6.2 Results RQ2 . 53
6.2.1 Overall accuracy . 54
6.2.2 Detailed accuracy . 54
6.2.3 Discussion . 55
6.2.4 Conclusion . 56
6.3 Results RQ3 . 56
6.3.1 STFT . 57
6.3.2 CQT . 57
6.3.3 Mel spectrogram . 59
6.3.4 Overall comparison . 59
6.3.5 Exploratory experiment . 59
6.3.6 Discussion . 60
6.3.7 Conclusion . 61

7 Conclusions . 62
7.1 Future work . 63

8 Appendix . 65
8.1 RQ1 experiments . 65
8.1.1 SB-CNN(-DS) . 65
8.1.2 Stride(-DS) . 66
8.2 RQ2 Experiments . 67
8.2.1 Experiment RQ2-1 . 67
8.2.2 Experiment RQ2-2 . 67
8.2.3 Experiment RQ2-3 . 68
8.2.4 Experiment RQ2-4 . 68
8.2.5 Experiment RQ2-5 . 69
8.2.6 Experiment RQ2-6 . 69
8.2.7 Exploratory test . 70
8.3 RQ3 Experiments . 71
8.3.1 Exploratory test . 71

Bibliography . 73

2

Convolutional Neural Networks

On the edge

Kurt Stremerch

Abstract

The use of machine learning on IoT data has opened up lots of opportunities. Neural
networks are used to analyze the data and make sense of it by converting data into useful
information in real-world applications such as speech recognition or image classification.
Today, optimized neural networks found their way from the cloud to IoT devices. These
high-end embedded devices are much more powerful than tiny embedded devices in wear-
ables or implanted medical devices. This research aims to investigate to which extent con-
volutional neural networks can be used on tiny embedded systems in the context of audio
classification. Three challenges regarding a cochlear implant application have been con-
sidered; hardware resource limitations, the model type versus nature of sounds to classify,
and the impact of subcutaneous MEMS microphone. From a wide range of experiments,
we have learned that post quantization and quantization aware training models can score
equally well on the UrbanSound8k dataset compared to floating point models. Acoustic
event detection models can characterize an acoustic environment where the scene classi-
fication score can be improved by transferring knowledge from an event classification task.
The simulated subcutaneous recordings performed poor on all features still the Mel feature
achieved the highest classification score. This research shows that convolutional neural
networks for audio classification can be effectively reduced in size to make it suitable for
tiny embedded devices, however, the edge hardware specifications must be taken into ac-
count. The frequency-specific output of an embedded microphone can lead to significant
accuracy loss during deployment.

3

1. INTRODUCTION
Over the past years, millions of small embedded devices have been deployed to build the
Internet of Things. The Internet of Things is simply an extension of the current internet,
further into our physical world, into things. These devices typically have a sensor func-
tion and send the acquired data to the cloud for further processing. The use of machine
learning on the collected data has opened up lots of opportunities. Neural networks are
used to analyze the data and make sense of it by converting the data into useful informa-
tion. Deep learning and neural networks represent powerful techniques to support ap-
plications in speech recognition, image classification or other real-world problems (Wang
et al. [2020], Alzubaidi et al. [2020], Saleem and Khattak [2019]). In the past years, open-
source frameworks created an ecosystem for researchers that generalize the coding of neu-
ral networks. Using graphical processor units (GPU) to accelerate the deep learning frame-
works, researchers and data scientists can significantly speed up deep learning training.

An example of a real-world problem can be found with people with profound hearing
loss. These people can not hear anymore with regular hearing aids and require a cochlear
implant. A cochlear implant is a surgically implanted device that bypasses normal acoustic
hearing. It stimulates the auditory nerves electrically based on the audio picked up by a mi-
crophone. A person could be listening to music, having a conversation at home, or walking
through a crowded street. Depending on the acoustic scene, the hearing device optimizes
its acoustic settings to interact better with the environment. It reduced the listening effort
and fatigue associated with hearing loss. Another problem can arise with sounds that are
new to the brain. When the implant is activated after surgery, some sounds are heard for the
first time. During the therapy, the brain learns to adapt to the new stimulations. More spe-
cific sounds, like running water over skin, can be new and uncomfortable for some people.
The detection of particular sound events can help to increase the comfort of people with a
cochlear implant.

The analysis of acoustic sounds is called audio classification. The audio classification
algorithms are usually hand-engineered algorithms that require a high level of audio do-
main knowledge. The computation is mostly handled by a dedicated digital signal proces-
sor (DSP). The program code is small, highly optimized, and parallelized. Adding a new
audio scene to the classification could require a redesign of the algorithm and program
code.

Machine learning and neural networks have also proven to handle audio classification
very well. Instead of coding the algorithm, the neural network learns the algorithm by
providing the audio data and the audio scene label information during the training pro-
cess. Adding a new audio scene would require retraining the network, including the extra
data. Neural networks are more flexible to requirement changes than hand-engineered al-
gorithms and could provide a more generic solution for classification problems.

In the past years, a new trend in machine learning research has focused on neural net-
work efficiency. Today, optimized neural networks found their way from the cloud to IoT
devices. These high-end embedded devices are much more powerful than tiny embedded
devices in wearables or implanted medical devices, for example, cochlear implants (CI).

4

Before neural network models can be deployed on ultra low power devices, like CIs, they
need to be optimized even more to fit the reduced memory size and match the computa-
tional power of the resource-scarce devices. Always-on devices are active for a short time
to execute their task and hibernate back to an ultra low power state. During the active
time, the device executes parts of the application code in volatile memory to prevent exe-
cuting code from slower and more power-consuming non-volatile memories. The volatile
memory is more limited than non-volatile memory on microcontrollers. This research in-
vestigates the impact on accuracy using quantization optimization techniques on already
highly optimized small neural networks in the context of audio classification. Quantization
reduces the arithmetic precision of neural networks to reduce the memory size and com-
putational processing time.

The document is organized as followed: Sections 2, 3 and 4 provide background infor-
mation. The research questions and research method are formulated in Section 5. Section
6 reports the results and discussion. Section 7 concludes the thesis.

2. BACKGROUND
This section provides background information on embedded devices and audio classifica-
tion. Section 2.1 introduces embedded devices and divides them into high-, low- and tiny
end categories based on the resource constraints. Section 2.3 introduces acoustic classifi-
cation tasks together with the publicly available acoustic datasets and three data features
that can be extracted.

2.1. EMBEDDED DEVICES
Embedded devices are small computer systems that are designed to perform a dedicated
function. The hardware is made to measure depending on the application. Embedded de-
vices are everywhere in our daily life, from game consoles to microwaves or from traffic
cameras to wearables.

The core component of an embedded system is a microcontroller unit (MCU) which
consists of a processing unit, memory, and peripheral blocks. The difference with com-
puter processors is that the computational power is an order of magnitude six lower. Mi-
crocontrollers also have onboard hardware interfaces that allow them to interact with other
chips like sensors and actuators. The software that runs on the hardware is called firmware.
The program code is highly optimized due to memory constraints. The firmware functions
can access the hardware or peripherals immediately without help from an operating sys-
tem. The overhead is highly reduced at the cost of flexibility.

Microcontrollers can be divided into roughly three groups. The high-end microcon-
trollers (e.g. Cortex-A) have high computational power and available memory. They are
used for graphical user interface applications like point of sales, cameras, or car entertain-
ment systems. The low-end microcontrollers (e.g. Cortex M4 or higher) are often found
in IoT devices like smart thermostats or home assistants. The memory and computa-
tional power are limited which drives the cost down. Both high and low-end devices are
always considered on systems where an uninterruptable power source is available. The

5

third group are the tiny microcontrollers that target battery-powered devices. Even though
the resources are even more constrained on these devices, the available resources are dis-
abled as much as possible to preserve battery life. A peripheral is only activated when an
action is required and powered off when the device is sleeping until the next action.

One of the drivers for power optimization is the usage of memory. The microcontroller
has two types of memory. The flash memory is non-volatile memory where the firmware is
programmed. The RAM is volatile memory, where the variables are stored during runtime.
The flash memory access latency is slower and more power-consuming than the RAM. To
extend the autonomy of tiny battery-powered devices even further, some firmware applica-
tions will store a part of the program code in the RAM, which is always powered and active.
When the device wakes up, the code execution in RAM memory will be faster which allows
the device to go back to sleep faster. There is also no need to power up the flash memory.
The firmware code instructions in RAM will decide, based on the sensor data, if code exe-
cution in flash is required. Only then the more power-consuming flash memory is activated
and accessed. Even though flash instruction cache logic exists to accelerate flash access on
low-end devices, executing code from flash still consumes more because the flash memory
is powered from a higher voltage than the processor core voltage. The downside is that the
RAM size is much smaller than the flash size on most microcontroller parts. Adding ex-
ternal memory to the microcontroller will drive costs and lead to a considerable increase
in power consumption (Zhang and Kouzani [2019]). Loading a 32bit value from on-chip
SRAM can save 120x the energy required to fetch it from external DRAM according to Han
et al. [2016]. Battery-powered implanted medical devices are tiny embedded devices that
have considerable space and power constraints. The SRAM memory for the tiny microcon-
troller devices is limited to 128kB.

One of the most important differences between high-end and lower-end microcon-
trollers is the presence of a floating-point unit (FPU). This silicon block inside the processor
unit is capable of executing floating-point math in hardware. This means that the compiled
code of a high-end microcontroller will use hardware instructions to command the FPU to
perform floating-point operations. The low-end microcontroller firmware compiler will
need a firmware-based library implementation to generate instructions for the processor
to calculate the floating-point operation using integer values. This firmware based floating-
point calculation comes with a performance penalty for low-end microcontrollers.

2.2. DIGITAL SOUND
Sound is a vibration that travels through a medium as a pressure wave. It can be heard by
humans when the pressure changes vibrate the eardrum and stimulate the auditory nerve.
The wave can be converted from a mechanical wave into an electrical signal by using a
microphone. Next, the continuous analog signal is converted into a set of snapshots or
samples. A sample records the strength indication of the electrical signal. The samples are
taken at regular time intervals which is called the sample rate. An analog to digital converter
converts the sample amplitude information into binary data. Figure 1 illustrates a digital
sound wave. The number of wave repetitions per second is the frequency measured in
Hertz (Hz). A sound can be a combination of multiple waves with different amplitude and

6

frequency information over time. The frequency information (Figure 2) can be extracted by
computing the Fast Fourier Transform (Good [1997]). It is common to analyze the spectral
content over time. The sound is split up into chunks where the frequency spectrum of
each chunk is estimated. This time-frequency representation results in a spectrogram as
illustrated in Figure 4.

Figure 1: Sampled sound wave Figure 2: Frequency spectrum

Frequencies that humans can hear is called audio. The hearable audio range of the hu-
man ear is 20Hz to 20kHz. The amplitude sound pressure level (SPL) ranges from 20uPa
to 20Pa. Therefore the amplitude is usually represented using a logarithmic scale. The
loudness perceived by normal human hearing is most sensitive in the 2kHz-5kHz range
(Eargle [2002]). The sensitivity of a microphone depends on the type and construction of
the transducer element. Nowadays, modern microphones are built on chip level by using
microelectromechanical systems (MEMS) technology that mounts pressure-sensitive ele-
ments on silicon.

2.3. AUDIO CLASSIFICATION
Audio classification is the process of analyzing sound and deciding to which of a set of
classes the sound most probably belongs. The method extracts relevant features from the
audio signal and uses these features to characterize the sound. Generally, audio classifica-
tion tasks can be divided into three subdomains. The first subdomain is the most known
type of audio classification called speech recognition. All modern cars have voice-activated
functions. The driver dictates the destination address to the car GPS system. The system
understands the language and is able to differentiate dialects and intonations. A second
subdomain is music classification. The sounds are generated by instruments and have a
distinct tempo, rhythm, and note patterns. The intention is to classify the music according
to the genre or instruments played. The third subdomain addresses the acoustic scene and
event classification. The latter is the group of interest for this thesis.

Imoto [2018] has reviewed the basics in acoustic event and scene analysis. The acoustic
scene classification (ASC) and acoustic event classification (AEC) are two tasks within the
audio classification. The goal of ASC is to recognize the audio environment based on the
physical or social context. Indoor and outdoor sounds are recognized and consolidated
into a scene like an office room or public place. The goal of AEC is the recognition of in-
dividual sound events. These specific sounds could be running water, scratching hair, or a
siren. For both classification tasks, the sound input is often marked as a clip. In ASC net-
works, the sound clip is relatively long, ranging from seconds to tens of seconds. The clip
contains multiple sound events that contribute to the scene characteristic. For AEC, the in-

7

put audio clip is relatively short, ranging from tens of milliseconds to several seconds. The
clip contains only one event that is classified with a single label output.

Figure 3: Terms used in event and scene anaylsis (Imoto [2018])

Abeßer [2020] has reviewed deep learning-based methods for ASC. A more specific clas-
sification group within ASC is the detection of temporarily found events within the acous-
tic scenes. For example, urban sounds can contain car horns, sirens, pedestrians walking,
etc. ASC is an active research domain stimulated by the Detection and Classification of
Acoustic Scenes and Events (CASE) competition. This annual competition shows the cur-
rent state-of-the-art for ASC. Mesaros et al. [2017b] has shown that humans perform no-
ticeably worse than the deep learning solutions published within the DCASE competition.
The top 10 state-of-the-art publications are convolutional neural network (CNN) based ar-
chitectures. The convolutional aspect of CNNs is explained in section 3. CNN models use
convolution and pooling layers for feature extraction which are typically input into dense
(fully-connected) layers for classification. Sigtia et al. [2016] has demonstrated that fully-
connected layers require the least number of operations and achieve the best performance
when compared to other classification types like vector machines and Gaussian mixture
models.

Although CNN is typically used for image recognition and classification, it can be used
for audio classification by transforming the audio information into an image. This requires
a preprocessing step where the audio pressure wave signal is converted into a different
data format before it is input to the convolutional layer. The review highlights two types
of signal transformations relevant for CNN ASC; learnable signal transformation and fixed
signal transformation. The learnable signal transformation models process the raw data
directly. The audio signal is chopped into a time frame and fed to the neural network. The
frequency information is extracted using learnable filters during the training process. Lee
et al. [2017] presented a raw waveform-based audio classification using sample-level CNN
architectures. Their ReSe2Multi model only performed 2% less compared to the state-of-

8

the-art in the DCASE 2017 challenge. The fixed signal transformation uses a mathematical
transformation independent of the input data. The transformation is first applied to the
audio data before it is presented to the input of the CNN. Hussain et al. [2017] reviewed
the DCASE 2017 submissions and concluded that the research for spectrogram, MFC and
CQT features (section 2.3.2) is the way forward to enhance the accuracy of the DCASE chal-
lenges. The most popular transformations in the DCASE 2019 are the short time Fourier
transform (STFT), the Mel spectrogram and the wavelet spectrogram.

Rank Code Accuracy Model size

1 Zhang IOA task1a 3 85.2 192MB
18 Zeinali BUT task1a 3 79.1 100MB
26 LamPham HCMGroup task1a 1 76.8 48MB
31 McDonnell USA task1a 3 80.4 18MB
40 McDonnell USA task1a 2 80.5 12MB
41 Wilkinghoff FKIE task1a 1 74.6 4MB
48 Liang HUST task1a 2 66.4 1.2MB
70 DCASE2019 baseline 62.5 464kB

Table 1: Selection of DCASE 2019 submissions (appr. 50% model complexity decrease)

Although the state of the art ASC models are mature, Abeßer [2020] discusses two novel
challenges that arise during real-world deployment of audio classification models. The first
challenge refers to audio recording quality. Mobile edge devices have space constraints and
use micro-electro-mechanical devices to capture the audio. The recording conditions are
different from the high-quality recorded scientific datasets. The urban acoustic dataset
of Mesaros et al. [2018], used for the DCASE challenge, was recorded using high-quality
microphones. Since the 2019 DCASE challenge (Mesaros et al. [2019b]) there is a new task
for ASC with mismatched recording devices. The second challenge mentioned is model
complexity. Due to privacy restrictions, audio conversations can not be recorded without
consent. The recorded voice data is considered personal data, which is protected under EU
law. Instead of sending the voice audio to the cloud, the audio is kept at sensor device level
and classified locally. The resulting classification is anonymous and can be used. Local
classification requires a model compression where the size of the model is reduced and
redundant information in the audio data needs to be identified. Table 1 lists a reduced
set of submissions for the DCASE2019 competition based on a 50% model size difference
step, starting from the winning submission. The model sizes are too large to deploy on
tiny embedded devices (128kB memory limit). Hence the 2020 DCASE challenge Heittola
et al. [2020] published a new task in the research world to address this subject in the ’low-
complexity acoustic scene classification task’.

2.3.1. ACOUSTIC DATASETS

Datasets are large collections of data used for machine learning. High quality-labeled train-
ing sets are expensive to produce because it very time consuming to manually label large
amounts of data. Speech and music sounds are relatively easy to collect as human actions
generated them. Collecting environmental sounds is less evident to capture as multiple

9

sound events overlap during the recording. The sound clips are annotated by labels to
indicate which events and scenes are heard. The interpretation of the audio by human lis-
teners can be different for the same sound clip. This has driven the generation of public
datasets. When developing new algorithms for sound classification, a public dataset is es-
sential. A common dataset allows researchers to compare methods because the reference is
identical. The following items list public datasets used in the context of audio classification:

• Imoto [2018] describes the public datasets available for acoustic event and scene
analysis. The RWCP Sound Scene database in Real Acoustic Environments published
by Nakamura et al. [2000] contains dry sound of 105 types of acoustic event such as
’spay’ or ’clapping’, recorded in 0.5 to 2s audio clips. Foster et al. [2015] created the
CHiME-Home dataset for the CHiME corpus challenge by Christensen et al. [2010].
The dataset was created to develop speech separation in a domestic environment
and contains 6100 audio clips of 4s in nine classes such as child speech, adult male
speech, video/tv sounds. Other described datasets like the TUT acoustic scenes and
events DCASE dataset and ESC dataset are mentioned below.

• Gemmeke et al. [2017] created the AudioSet which consists of 632 audio event classes
based on 2.084.320 sound clips. The goal was to create a general-purpose audio
database. The clips are 10 second long sound files originally from YouTube videos.
The events are human-labeled ranging from vehicle sounds, natural sounds, music,
animal sounds, domestic sounds, etc..

• Dekkers et al. [2017] created the SINS dataset of live recordings in a home environ-
ment. The recording was executed using a sensor network spread over different rooms
of a vacation home. One person lived in the environment for a week. The dataset con-
tains 9 audio scenes which are categorized in eating, cooking, watching TV, vacuum
cleaning, etc..

• Salamon et al. [2014b] has created the Urbansound8k dataset containing 8732 labeled
recordings of a maximum 4 seconds long. The dataset covers 10 classes like a siren,
children playing, dog bark, etc.. in a street environment. Later, Salamon et al. [2017]
has used Scraper, an open-source python library for soundscape and data augmen-
tation to augment the Urbansound8k dataset to 50.000 recordings. The current state
of the art accuracy is 79% by Salamon and Bello [2016]. on the Urbansound8k is and .

• The Piczak [2015a] ESC50 dataset contains 50 classes in 2000 labeled recordings and
250.000 unlabeled recordings. The high-level categories are animal sounds, natural
soundscapes and water sounds, human (non-speed) sounds, domestic sounds, and
urban sounds. Each high-level category contains 10 subclasses. This dataset is also
classified by human listeners.

10

• Mesaros et al. [2017a] has created the DCASE 2017 dataset where all samples were
recorded using binaural Soundman OKM II Klassik/studio A3 electret in-ear micro-
phones. The dataset consists of three sub-datasets for scene classification, event clas-
sification, and rare sound event detection. The acoustic scene dataset consists of 15
acoustic scene classes like a park, home, or office. Each scene contains 312 recordings
of 10 seconds. The acoustic event dataset consists of 6 classes (car, people speaking,
people walking, large vehicle, and brakes squeaking) with 659 events found in clips of
3 to 5 minutes. This set contains multiple temporally overlapping events. The DCASE
2019 dataset has 40 hours of recording using 10 acoustic scenes. The submission of
Chen et al. [2019] is the current state of the art with 85.2% accuracy on the DCASE
2019 dataset.

• Bach [2020] has created the Hearing Aid Research Data Set for Acoustic Environment
Recognition (HEAR-DS). It contains binaurally recorded clips of speech in different
acoustic environments. It contains scenes with and without speech like inTraffic,
speechInTrafic, wind, speechInWind, etc.. The 14 classes are represented in 10226
audio clips of 10 seconds where the speech is generated according to Chime2018
dataset of Barker et al. [2018]. The HEAR-DS dataset is created for hearing aids to
suppress the noisy acoustic environment of the detected scene.

2.3.2. DATA FEATURE

A data feature is a measurable property of data. A feature can be extracted directly or can
be constructed using a transformation algorithm to represent the original data differently.
Depending on the task, domain knowledge is used to select the features during the feature
engineering phase. In the context of audio classification, the time-frequency information
is extracted from the data. The network model training can focus on the patterns of the
transformation, instead of learning how to do the transformation itself. The architecture
of the raw audio processing model is more complex and increases the training time. The
developers decide which data representation to use based on the network constraints. The
selection is important to achieve an acceptable accuracy, but it also drives the required de-
ployment processing power where the product hardware needs to preprocess the data in
the same way before it can be input into the model. The feature extraction represents the
data in a smaller way without losing essential information. This reduces the required input
size of a model which is beneficial for the memory size and computational complexity of
the network model. Three popular input features in the context of audio classification are
short time Fourier transform, constant Q transformation and Mel transform.

2.3.2.1 Short time Fourier transform

The short time Fourier transformation or STFT (Allen [1977]) converts an audio sig-
nal into time-frequency representation X [k,m] according to (1) using frequency k and
time/sample index m. Every audio time fragment x[n] is transformed into a set of en-
ergy levels for the frequency bands or bins. The bin center frequencies are linearly spaced.
The frequency resolution is defined by the sampling frequency of the signal divided by the

11

number of samples N . Each time fragment is multiplied by a window w[n] to prevent dis-
continuities at the begin/end of the fragment. A large window represents a good frequency
resolution where frequencies close to each other can be detected, but it results in a poor
time resolution where the time where the frequencies change is more difficult to determine.
A short time window has a good time resolution but results in a poor frequency resolution.

X [k,m] =
N−1∑
n=0

x[n]w[n]e− j 2πkn/N (1)

2.3.2.2 Constant Q transform

The constant Q transformation or CQT (Brown [1991]) is a similar transformation com-
pared to STFT but uses logarithmically spaced center frequencies according to (2). The
transformation represents a series of filters fk , where the k-th filter has a spectral width
equal to a multiple of the previous filter width. Because of the varying filter width, the win-
dow length of each bin is function of the bin number.

X [k] = 1

N [k]

N [k]−1∑
n=0

x[n]w[k,n]e
− j 2πQn

N [k] (2)

The Q factor refers to the ratio of the center frequency fk of versus the bin frequency
bandwidth δ fk . The Q factor is kept constant hence the filter bandwidth of low frequency
bins is smaller compared to the high frequency bins. This results in a higher frequency
resolution at low frequencies compared to the STFT transformation. The number of filters
n is defined per octave where the center frequency of the first filter is fmi n according to (4).

Q = fk

δ fk
(3) δ fk = 21/n ·δ fk−1 =

(
21/n)k ·δ fmin (4)

2.3.2.3 Mel transform

The linear frequency spacing is not always desired for audio analysis. Human hear-
ing does not perceive all frequencies in the same way. The difference between 100Hz and
200Hz is not perceived the same way as the difference between 7000Hz and 7100Hz. Al-
though the difference in both cases in 100Hz. The Mel scale (Stevens et al. [1937]) relates
the measured frequency to the perceived frequency. It takes the original frequency outputs
and remaps them as the human ear hears them. Many research teams (Hyeji and Jihwan
[2019] Koutini et al. [2019] Chen et al. [2019]) have achieved state-of-the-art results using a
Mel spectrogram type input feature. The Mel scale (Slaney [1998]) is defined as (5).

k = 2595log10(1+ f

700
) (5)

A derived input feature from the Mel scaled frequency transformation is the Mel fre-
quency cepstrum (MFC). A cepstrum is a spectrum of a log Mel spectrum and captures the
harmonic structures of sound. MFCCs are commonly used as features in speech recogni-
tion systems.

12

Figure 4: Comparison of the STFT, CQT and Mel spectrogram

Figure 4 illustrates the STFT, CQT and Mel transformation of the sound clip 100263-2-0-
126.wav of the UrbanSound8k dataset. The audio belongs to the children playing class and
is resampled to 22050Hz. The STFT shows a low resolution in the low frequencies when
represented on a logarithmic scale. The CQT is converted using 6 bins per octave. The
transformation shows more resolution in the lower frequencies compared to the STFT. The
Mel transformation illustrates the Mel scale frequency warping where the 512Hz to 5kHz
signal information in the signal is more spread out compared to the CQT spectrogram.

13

Figure 5: Convolutional neural netwerk architecture1.

3. CONVOLUTIONAL NEURAL NETWORK
This section provides background information on convolution neural networks with more
detailed sections for every layer of the network architecture. A convolutional neural net-
work (Aloysius and Geetha [2017]) has the ability to extract features from input data via
training. The approach is different from conventional machine learning classifiers, such
as random forests (Ho [1995]) and support vector machines (Cristianini and Schölkopf
[2002]), where the feature extraction is hand-crafted. Figure 5 illustrates the architecture of
a vehicle classifier, made up of a feature learning part and a classification part. The feature
learning part consists of one or more feature extraction blocks, each containing a convo-
lution and pooling block. The first feature extraction block learns to recognize small basic
elements in the input data. These can be lines, angles or curves, for example. The block
scans the entire input image and detects where the basic elements occur. The information
is passed on to the next feature block which in turn learns to combine these basic elements
into visual aspects such as circles or rectangles. The detection of high-level features are as-
sembled by the classifier block into a vehicle and divided into output categories such as car
or truck. Once a feature has been learned, the feature can be detected at any position in the
input data by the convolution algorithm. A classic classifier can also be taught to recognize
a feature, for example at the bottom left of the input data, but should relearn the feature
when it occurs at the top right of the input data. That is why convolutional neural networks
are mainly used for image processing.

3.1. FEATURE LEARNING
Feature learning allows a neural network to discover patterns in the input data which can
be used for classification. Features are extracted automatically during training in contrast
to manual feature engineering (section 2.3.2). The feature learning block consists of two
parts; the convolution layer and the pooling layer (section 3.1.3). The convolution layer is
split up into classic convolution (section 3.1.1) and the mathematical optimized depthwise
separable convolution (section 3.1.2).

1Source https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53

14

3.1.1. CLASSIC CONVOLUTION LAYER

A convolution layer learns to recognize basic elements from the input data by using fil-
ters (Burkov [2019]). A filter is a matrix of numbers representing a specific pattern. Each
filter generates a new image from the input data by convolving the filter with the input
data. High values in the numeric convolution result indicate the locations where the filter
pattern occurs the most in the input data. Figure 6 illustrates the result of horizontal and
vertical edge filtering. The output image of the horizontal filter indicates positions where
horizontal edges are detected but returns no indications for vertical lines and vice versa for
the vertical filter. Both horizontal and vertical filters detect diagonal lines. Convolution is
an operation that indicates to which degree there is an overlap between a function while it
is being shifted over another function. The general formula is defined in (6).

Figure 6: Image filtering. Application of vertical line filter on the left, right horizonal line filter2.

conv(I ,F)x,y =
nH∑
i=1

nW∑
j=1

nD∑
k=1

Fi , j ,k Ix+i−1,y+ j−1,k (6)

The formula consists of a recursive multiply and accumulate (MACC) operation of the
filter matrix F and the input data matrix I . The result is a sum of elementwise products
where nH ,nW and nD represent the height, width and depth of the input data respectively.
The number of MACCs indicates how computationally intensive a convolution operation
is. The convolution is illustrated in figure 8 using a 3x3 filter matrix according to figure
7. The values of the filter, also called weights (white), remain constant during the convo-
lution. The filter in this example represents an intersection of two diagonals. The filter is
convolved with the input image (blue) of 5x5 pixels. The position of the 3x3 filter (dark blue)
shifts in each step. The input data on which the filter is projected is called the receptive field
of the filter. The convolution result is called a feature map. A feature map indicates where
a particular feature occurs in the input data. If a convolution layer consists of multiple fil-
ters, the output will also consist of multiple transformed output images. The output is a
collection of all two-dimensional feature maps making the shape three-dimensional. The
filters of a subsequent convolution layer are therefore also three-dimensional. Due to this
extra dimension, the number of operations increases. As a result, the convolution layers
that follow after the first will also require significantly more processing power. There are
two techniques to reduce processing power; striding and pooling (section 3.1.3).

Striding is a technique to downsample the input data. The stride is the step size of the
moving window. In figure 8 the filter starts on the top left of the data and moves over all

2 Source http://datahacker.rs/edge-detection/

15

F =

1 0 1
0 1 0
1 0 1


Figure 7: Filter

matrix Figure 8: The blue matrix represents the input data with dark blue receptive
field. The cyan matrix represents the output data.3

locations to the bottom right. Each time the filter moves one position, the stride is (1,1).
When a pixel precise location of a feature is not required, the filter can slide faster and the
stride step is increased. A (2,2) stride is illustrated in figure 9 which results in a smaller out-
put map. When the stride step is more than 1, the size of the filter in combination with the
stride step may not match the size of the input data. This means that data cannot be taken
into account and is lost. This can be solved by data padding. Additional data is added to
the input data so that no input data remains unused. The term no padding is used when
the output dimension is smaller than the input dimension. Zero or same padding is used
when the output dimension is the same as the input dimension.

Figure 9: 2x2 Striding of padded 5x5 input data using a 3x3 filter. 3.

The output of the convolution is transformed by an activation function before the data
is passed to the next layer. To learn complex relationships between input and output, a
non-linear function is used as an activation function. In general, the hyperbolic tangent
Tanh or Rectified linear unit (Relu) function are used (Géron [2019]). The Tanh has the
advantage that all values are mapped between 1 and -1, centered around 0. The disad-
vantage is vanishing gradient, which means that for very large positive or negative values,
there is almost no difference in function value anymore. The Tanh function requires a lot
of computational power. The Relu function is computationally more straightforward and
therefore more efficient.

Figure 10: Activation functions Tanh (left), Relu (right). Feng et al. [2019].

16

Figure 11: Classic convolution (left) versus depthwise convolution (right) using 5x5 filter on 12x12x3 input.

3.1.2. DEPTHWISE SEPARABLE CONVOLUTION LAYER

Depthwise separable convolution (Chollet [2016]) is the mathematically optimized version
of classic convolution. It is an important technique to reduce the required computational
power in a convolutional layer by reducing the number of multiplications. On a hardware
level, the multiply operation requires a higher energy budget compared to the add opera-
tion (Vasilyev [2015]). The optimization consists of splitting the convolution into two parts;
depthwise convolution and pointwise convolution. Figure 11 illustrates the default convo-
lution on the left using the blue arrows, as discussed in Section 3.1.1. The depthwise sep-
arable convolution is illustrated on the right with the depthwise convolution using green
arrows, followed by pointwise convolution using red arrows.

In classical convolution (Section 3.1.1), each filter is multiplied by the input data while
the filter is shifted over the input dimensions. For example, a 5x5x3 (kH xkW xM) filter with a
12x12x3 (HxWxM) input image produces an 8x8 (FH xFW) feature map. This requires 5x5x3
or 75 multiplications on each of the 8x8 positions resulting in 75x64 or 4800 multiplica-
tions for the convolution of one filter. When 256 (N) filters exist in a model, this results in
75x64x256 or 1228800 multiplications. The generic number of operations in a classic con-
volution can be given according to (7). If the height and width are the same for the filter
and input image, the number of operations is defined by (8).

OConv = N kH kW MFH FW (7) OConv = N Mk2F 2 (8)

In depthwise separable convolution, the same input image of 12x12x3 (HxWxM) is taken
in the depthwise convolution part, but instead of a 5x5x3 filter, three separate filters with-
out depth of 5x5x1 are used. Each layer of the input data is then convolved with one filter

3Source https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53

17

resulting in three times an 8x8x1 feature map (green arrows). At that point, there is no
relationship whatsoever between the different layers because each layer is processed sep-
arately along the depth direction. The red, green and blue layers are not mixed. The num-
ber of multiplications is then 5x5 for the filter applied to 8x8 positions or 5x5x8x8 or 1600
for each input layer. For the three input layers together, this is 4800 multiplications. The
generic number of operations is defined by (9) or if the height and width are the same for
the filter and input image by (10).

ODepthwise = kH kW MFH FW (9) ODepthwise = Mk2F 2 (10)

The pointwise convolution part ensures that the end result has the same output shape
as the classic convolution. A 1x1x3 (1x1xM) filter is used on the combination of feature
maps. The filter has a 1x1 area of 1 point or pixel but has depth (M) of all layers. Hence the
filter has no spatial relationship but a depth relationship. The 1x1x3 filter moves 64 times
on the 8x8 (FH xFW) output feature map area (red arrows), combining all feature maps. The
number of multiplications is then 3 per filter applied at 8x8 positions or 3x8x8 = 192. When
256 (N) output features maps are required, the number of operations is 192x256 = 49152.
The total number of multiplications required for the depthwise separable convolution is
the sum of 4800 and 49152, which results in 53952 multiplications. The generic number of
operations according to (11) or if the height and width are the same for the filter and input
image follows (12).

OPointwise = N MFH FW (11) OPointwise = N MF 2 (12)

The total number of multiplications for depthwise separable convolution is the sum of
the depthwise and pointwise convolution steps. If the height and width are the same for
the filter and input image, the total number is according to (13).

ODS =ODepthwise +OPointwise = Mk2F 2 +N MF 2 = MF 2(k2 +N) (13)

The ratio between the number of multiplications for depthwise separable convolution
and the classic convolution is then according to (14).

ODS

OConv
= MF 2(k2 +N)

N Mk2F 2
= k2 +N

k2N
= 1

N
+ 1

k2
(14)

The multiplication ratio of a network with 256 filters with a size of 5x5 is 0.044. The
depthwise separable convolution therefore requires 22.78 times less multiplications than
the classic convolution. Classic convolution transforms the input image 256 times at 4800
multiplications per transformation. While with depthwise separable convolution, this only
happens once in the depthwise part and where this data serves as input 256 times in the
pointwise part. The decrease in multiplications directly impacts the time to calculate the
math graph or inference time. In addition, the depthwise separable convolution also has
an impact on the number of parameters that are trained.

The number of learnable parameters for a classic convolution is the number of param-
eters in the filter times the number of filters or NxMxk2 according to (15). The number
of learnable parameters in depthwise separable convolution is the sum of the number of
parameters in the depthwise and pointwise convolution. In depthwise convolution, the

18

number of parameters is the parameters in the filter times the depth of the input data or
Mxk2 according to (16). In pointwise convolution, the number of parameters is 1x1xM pa-
rameters times the number of filters or MxN to be trained according to (17).

PConv = N Mk2 (15) PDepthwise = Mk2 (16) PPointwise = N M (17)

PDS

PConv
= Mk2 +N M

N Mk2
= M(k2 +N)

N Mk2
= k2 +N

k2N
= 1

N
+ 1

k2
(18)

The ratio of the number of learnable parameters between depthwise separable convo-
lution and the classical convolution according to (18) is the same as the ratio of the number
of multiplications between depthwise separable convolution and the classical convolution
according to (14). As a result, the number of learnable parameters will drop by the same ra-
tio and training time for depthwise separable convolution models will be shorter. There is
a trade-off between the number of model parameters and the model flexibility. The model
will be unable to capture the underlying pattern of the data if it has too few parameters.

3.1.3. POOLING LAYER

Pooling layers are besides striding another way to reduce computation power across the
network (Géron [2019]). Then input of a pooling layer is the output of a previous convo-
lution layer. During the pooling, a filter is shifted over the input data. This filter has no
weights but performs an average or maximum function. Figure 12 illustrates a 3x3 max
pooling filter with the input in the green frame and the output in the purple frame. A pool-
ing layer is not only beneficial for computational power. Without the pooling layer, a small
move of the position of a feature in the input would result in a change of the feature map.
With the pooling function, this can lead to the same feature map. This property is called
the translation invariance of a model. In concrete terms, this means that when the input
shifts by a small step, the output is hardly changed.

The pooling layer is the last operation of the feature extraction block. The output can be
processed by another feature extraction block that extracts higher level features from the
features maps of the previous block. When sufficient features are extracted, the informa-
tion is passed onto the classification block via the flatten layer.

3.2. CLASSIFICATION
The classification part of the convolutional neural network is responsible to map the ex-
tracted features to a set of output classes. It consists of a flatten layer, a fully connected
network and an output layer.

Figure 12: Maximum pooling of the 4x4 convolution output results in 3x3 output.

19

3.2.1. FLATTEN LAYER

The flatten layer is the link between the feature extraction block and the classification block
from the model architecture in figure 5. The role of the flatten layer is to reshape the 3D
convolutional tensor data without changing the data content. The flatten layer flattens all
data and removes all but one dimension.

3.2.2. FULLY CONNECTED NETWORK

A fully connected network (Burkov [2019]) is the central part of the classification from the
convolutional neural network architecture in figure 5. A fully connected network or dense
network consists of a series of fully connected layers with neurons where each neuron in
one layer is connected to all neurons of the next layer. Figure 13 illustrates a fully connected
network with four layers. The first and last layers are respectively called input and output
layer. All inner layers are called hidden layers. Each neuron or perceptron is a computa-
tional block that triggers its output when enough stimuli are present on the inputs accord-
ing to figure 14. Each neuron in the input layer takes in a scalar value. The input data comes
from the flatten layer that converted the extracted feature data into a 1-dimensional vector.

output = actFunc

(
n∑

i=1
xi wi +bias

)
(19)

A neuron multiplies each input by a dedicated weight. The sum of all products is con-
verted by an activation function according to (19). The layers are executed sequentially
during classification. All data is applied synchronously to the input layer. Then the output
of all neurons is calculated and used as input for the next layer. Next, the neurons of the
next layer are calculated, etc. The sequence of calculations is called forward propagation.

Figure 13: Fully connected network

Figure 14: Perceptron 4

3.2.3. SOFTMAX LAYER

The output of the classifier is typically a softmax layer. The softmax layer takes the set of
output values from a fully connected layer as input vector and converts the values into real
numbers whose sum is 1. The values can be negative, positive or greater than 1. After the

4 Source: https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html

20

softmax function, the values are between 0 and 1 so that they can be treated as probabilities.
The softmax function is defined according to (20) where z is the input vector and C the
number of output classes.

σ(~z)i = ezi∑C
j=1 ez j

(20)

3.3. TRAINING PROCESS
The training process of a neural network can be divided into three steps; the forward pass,
loss function and backward pass. During the forward pass, input data is presented to the
model and the algorithms of all consecutive layers are executed based on the current pa-
rameters. The output data is used by a loss function to evaluate how far the estimated clas-
sification is from the true classification. The backward pass estimates the amount of error
for which the weights of neurons are responsible and updates the weights accordingly.

Generally, the training process starts with randomly initialized weights. When a subset
of the training data has been processed, the weights are updated to reduce the error. The
amount of change applied during each iteration is known as the learning rate. The pro-
cessing of a complete training dataset is called an epoch. After a number of epochs, the
training process fits the model to the training data. The model accuracy is evaluated on
data the model did not see during training. Therefore a part of the dataset is hold out for
testing. A model is underfitted when it is unable to predict the labels of the training data
well. Reasons for this might be the model architecture can be too simple or the data fea-
tures do not contain sufficient information. A model is overfitted when the model predicts
the training data very well but poorly predicts the test data. The model can be too complex
for the data or not enough training data might be available.

A trained model can also be the start point of a new training. This method is known as
transfer learning. The idea is to improve learning a new task by reusing knowledge learned
on a related task. In context of convolutional neural networks, the learned filter weights
can be the starting point for training instead of random initialized values.

A training process involves intense matrix multiplications of the network model on
large datasets which can take several days. Graphical processing units (GPU) can signifi-
cantly accelerate the training process due to their massive parallel computing architecture.
In traditional machine learning solutions, the network model is trained and deployed on
GPU-enabled machines. In this research, the embedded system imposes computational
constraints hence the network models are trained on a different platform than where the
model is deployed.

3.4. RELATED WORK
In the past years, much research has been performed on optimizing CNNs (section 3.1.1)
for mobile devices (Alippi et al. [2018]). MobileNet (Howard et al. [2017a]) is one of the first
architectures designed for embedded systems with an efficient trade-off between model
latency and model accuracy. It was one of the first CNNs that used depth separable con-
volution to decrease the number of computations. It refactors the standard convolution
into a depth convolution and a pointwise convolution (section 3.1.2). During the depth
convolution, each input channel is convolved with a separate filter. During pointwise con-
volution, the output is combined using a 1x1 kernel convolution. This significantly reduces

21

the convolution computation.

Zhang et al. [2017] have designed a model called ShuffleNet. Two new operations have
reduced the computational effort; pointwise group convolutional and channel shuffle. The
group convolution used in Alexnet (Krizhevsky et al. [2012]) did not allow information flow
between channel groups. The accuracy of Shufflenet is 7.8% better than MobileNet. The
model is 13x faster than Alexnet with comparable accuracy. The efficiency of the structure.

Piczak [2015b] was one of the first optimized CNN models for ASC. The shallow design
contains two convolutional layers with max-pooling followed by three fully connected lay-
ers. The NN has two input features; a log-Mel spectrogram and the first-order difference (or
sample delta). Each convolution layer has 80 kernels. The kernel sizes are defined as 57x6
for the first layer and 1x3 for the second layer. The solution was validated on three public
datasets; ESC-50, ESC-10, and Urbansound8k. An accuracy of 69% to 73% was achieved us-
ing implementation varying short/long segment analysis and majority/probability voting.

Salamon and Bello [2016] have improved the Piczak [2015b] accuracy on the Urban-
sound8k dataset with a shallow CNN called SB-CNN. The design consists of three convolu-
tional layers with max-pooling and two fully connected layers. The convolution layers have
24 filters for the first layer and 48 filters for the second and third layers. The kernel size is
5x5 over all layers. The kernel sizes are defined as 57x6 for the first layer and 1x3 for the
second layer. The model accuracy of 73% is comparable with Piczak. However, accuracy
reaches 79% using data augmentation. With data augmentation, the limited dataset is ex-
tended by transforming the audio samples and creating new extra samples for the network.
This can be achieved by applying for example time stretching or pitch shifting the audio
signal, similar to rotating or skewing images for an image recognition task.

Nordby [2019] has optimized the SB-CNN model further. The max-pooling is 3x2 in-
stead of 4x2 and batch normalization was added to each convolutional layer for the base-
line model. A strided model is also presented with removed max-pooling in favor of in-
creasing the striding of the filters of the previous convolution layer. When the convolution
layers are implemented using depthwise separable convolutions, a mean accuracy of 70.9%
was reached on the Stride-DS-24 model using data augmentation. The smallest required
parameter size is 55kB RAM and 96kB flash for the Baseline-DS model (477kMAC).

Nossier et al. [2019] present a smart hearing aid enhancement using deep neural net-
works. The feature tries to distinguish between desired and undesired noise types. The
work presents three solutions to detected important noise like a fire alarm or car horn
to and makes it audible to the impaired while discarding other noise. The audio speech
samples were used from the Voicebank dataset, the noise samples were from the Urban-
sound8k dataset and ESC-50 dataset. The CNN used to classify the sounds was based on
Piczak [2015b]. The model uses two channels of Mel spectrograms (plain and delta). The
accuracy of the original Piczak [2015b] model on the Urbansound8k dataset ranged from
69-73%. The dropout was reduced from 50% to 20% in this research. The research does not
mention model deployment nor provides details of any hardware used.

22

Although the interweaving design of Sinha and Ajmera [2018] claims to achieve higher
accuracy on the Urbansound8k dataset than SB-CNN. The model is not optimized for em-
bedded devices.

Previous research has demonstrated the successful application of large convolutional
neural network models in context of audio event classification. Although the models can
run on mobile devices like smartphones, the required computational power and memory
size are still significant. Recent work of Nordby [2019] focused on model efficiency where
the SB-CNN model of Salamon and Bello [2016] was optimized for deployment on low-end
microcontrollers. However, the reported model sizes are too large to fit the 128kB memory
limit of tiny embedded devices.

23

4. QUANTIZATION
This section provides background information on quantization in the context of convolu-
tional neural networks. Quantization refers to conversion techniques that optimizes neural
networks so that they can be used on low end embedded devices. A neural network can be
optimized by reducing its arithmetic precision. A quantized model performs its tensor op-
erations with integers rather than floating point values. The quantization approach in this
research reduces the 32bit floating point parameters to 8bit integer values. Representing
numbers with this precision requires 1 byte of memory space for each network parameter
instead of 4 bytes. The memory storage requirements are reduced by a factor of 4. Because
less bytes are stored in memory, less bytes need to be transferred from memory to the CPU.
The lower memory bandwidth results in lower energy consumption. Integer math is less
complex than floating point math. Therefore integer operations are faster than floating
point operations. The computational processing time required to perform an inference on
neural network will be shorter. This is an advantage for the power constraints where the
battery life can be extended by reducing the awake time. On the other hand, more complex
models can be deployed within the same computational resources.

Another advantage is the portability of an integer based algorithm. Only high end em-
bedded microcontrollers have hardware support for floating point calculations, but all em-
bedded devices support hardware integer operations (section 2.1). Some architectures
have hardware acceleration for integer operations. The single instruction multiple data
or SIMD instruction accelerates integer operations on ARM architectures. It does not re-
quire 8bit values to be stored into separate CPU registers before an operation. Instead, the
instruction allows 8bit integers to be grouped together into one 32bit register and can ap-
ply the same operation on all 8bit integers simultaneously. This significantly improves the
performance.

The disadvantage of quantization is that the parameters can not always be represented
without precision loss. The rounding of the numbers can lead to a drop in the network ac-
curacy. However, convolutional neural networks are by nature robust against noise (War-
den and Situnayake [2019]). Even when the numbers used are rounded, the result is reason-
ably accurate. This is because the input data is full of noise. For image recognition, this is
the noise from the camera chip or shadow elements in the image. Models learn during their
training to distinguish these insignificant differences from the real features. Therefore, the
32bit precision is typically too precise for the calculations and the numerical precision can
be optimized.

In general, quantization is the representation of values from a continuous range to val-
ues in a limited range. In concrete terms, the 32bit floating point numbers are downscaled
and represented by 8bit integer numbers. The reason why quantization is possible on con-
volutional neural networks is because the range of the filter weights is relatively small. Fig-
ure 15 illustrates a histogram of all filter weights from the SB-CNN model (section 5.2.2).
In this example, the values are between -4.451389 and 6.2823944. Almost all weights are
relatively close to zero, so there is no need for a large 32bit floating point range to repre-
sent the weights. During the quantization in figure 16, the values 0 to 255 from the 8bit
range are mapped linearly between -4.451389 and 6.2823944. Each floating point number
is therefore pushed into one of the 256 boxes. As a result, 256 floating point numbers from
the range will get an exact conversion, all others will undergo rounding. The pseudo-code
for the quantization:

24

Figure 15: Histogram of kernel weight values of first convolution layer of SB-CNN model.

quantizedValue = (uint8)(
originalValue−min

max−min
∗255) (21)

reconstructedValue = (
quantizedValue

255.0
∗ (max−min))+min (22)

Figure 16 is an example of asymmetric quantization because the absolute values of min-
imum and maximum are different. The representation of the values is not centered exactly
around zero. The disadvantage is that the value zero requires rounding. As the histogram
in figure 15 indicates, zero is the most common value in kernel weight distribution of the
convolutional layer. If the floating point 0 is not equal to the integer 0, an encoding error
is introduced. The error will be repeated much more for the number 0 compared to the
other values. This can lead to a bias throughout the network, which will decrease accuracy.
The value of 0 is also used for padding around the edges of images in convolution layers
(section 3.1.1).

Figure 16: Asymmetric qantization range 5

Figure 17 is an example of symmetric quantization because the absolute values of min-
imum and maximum are equal. All values are centered around zero on the floating point
side. One integer value has been omitted to make this possible. Signed integer values have

25

a number more on the negative side than for the positive numbers due to the two com-
plement representation. Therefore the number -128 has been omitted to make the floating
point 0 value exactly match the integer 0 value. The disadvantage of the symmetric encod-
ing is that a part of the scaling range is lost. The largest absolute value of the weight distri-
bution is used to encode all possible weight values. In the example of figure 17, the range is
set to -6.3 to +6.3, while there are no weight values below -4.451389 in the histogram.

Figure 17: Symmetric qantization range

Figure 18 illustrates a 5x5 filter from a convolution layer. The 25 floating point weights
are limited to 4 significant numbers for clarity of the example. The shade of gray of each
box is proportional to the value of the weight. The maximum value corresponds to white,
the minimum value corresponds to black. Figure 19 shows the quantized version of the
same 5x5 filter. Each box contains two numbers. The top number is the quantized integer
value calculated according to (21). The bottom number is the reconstructed value in float-
ing point precision calculated according to (22). The white area represents the maximum
number 6.2824 by +127. The maximum number has no rounding error. All other numbers
do have a visible rounding in their reconstructed value. The grayscale pattern is similar but
not the same.

Figure 18: Floating point 5x5 filter SB-CNN. Figure 19: Quantizated 8bit integer 5x5 filter SB-CNN.

The two main techniques for quantizing neural networks are post quantization and
training aware quantization. Post quantization starts from a trained floating point model in

5 Source: Screencast Stanford university course EE282D https://www.youtube.com/watch?v=-jBmqY_aFwE

26

which all weights are converted to a lower precision. To find an efficient scaling and offset,
the process uses example data. During the quantization, it is examined how typical input
data relates in the network. Based on those values, the dynamic range is set. Another tech-
nique is quantization aware training and is already applied during the training. By using
false nodes in the network, the process tries to direct the weights to values close to the final
quantization values. Both techniques are explained in more detail in the next sections.

4.1. POST QUANTIZATION
Post quantization (Krishnamoorthi [2018]) is a conversion technique that is applied after a
model has been fully trained in floating point. Figure 20 illustrates quantization in a basic
step of a filter convolution (section 3.1.1) in which a dot product is made with the input data
and the weights from a filter. The color spectrum indicates the range of a floating point
number. During quantization, a linear transformation is made from a limited color area
within the spectrum to an 8bit integer. When an 8bit weight (step A) and 8bit input (step B)
are multiplied, a maximum 16bit result is obtained. The products of individual inputs and
their filter weight are summed to a dot product. The addition of a 16bit number with a 16bit
number gives a maximum of a 17bit number. Depending on the filter size, this becomes a
number with a larger range according to log 2(m.2n)+1 (step C) for m n-bit numbers. As
with the inputs and weights, this is in a certain range that has to be requantized to 8bit to
go to the next operation (step D).

The quantization of the weights is relatively easy because these are constants. The scal-
ing and offset can be calculated because the minimum and maximum value of all weights
of layer are known. This is more difficult for the activations. Because the activation in-
put depends on the dot product of the input and the weights, it is not known in advance
what the possible minimum and maximum range will be. By taking the theoretical min-
imum and maximum for the inputs, the output range of the dot products becomes very
large compared to the results with real input values. A large part of the quantization range
would not used. This ensures that due to the quantization the values almost all end up in
the middle box (see figure 17). Due to rounding, there is an insufficient distinction between
the values, which is detrimental to the accuracy. That is why the activation functions are
calibrated by running real data through the network during the post quantization process.
The minimum and maximum values can be precisely recorded with real data, resulting in
better scaling.

The disadvantage of post quantization is that an existing model cannot simply be quan-
tized without a real dataset. During the deployment phase, information is needed from the
training phase, which is not always available.

4.2. TRAINING AWARE QUANTIZATION
Training aware quantization (Jacob et al. [2017]) is a technique in which the training of a
model takes into account the lower precision of quantization. Figure 21 depicts the graph of
a normal convolutional flow on the left versus the training aware quantization graph on the
right where two fake quantization nodes are added to the graph. During the forward pass,
the floating point weights are converted into quantized weights before they are used. The
quantized weights are convolved with the input data after which the bias is added. After the

6 Source: https://sahnimanas.github.io/post/quantization-in-tflite/

27

Figure 20: Quantization of inputs, weigths and their dot product6

Figure 21: Left basic flow convolution layer graph, right training aware quantization graph (Source Jacob
et al. [2017])

activation function, the output is first converted into a quantized value before the value is
passed on to a subsequent operation. The backward pass is done in the normal way with
the floating point values of the weights being adjusted with very small gradient updates.
By injecting the rounding errors that occur during quantization, the network can be better
tuned to the rounding errors. This technique does not require a calibration dataset because
the minimum and maximum ranges are maintained by the fake quantization nodes. The
disadvantage is that existing models have to be retrained and the extra steps in the training
process make the training time longer.

4.3. QUANTIZATION FRAMEWORKS
A quantization framework is an ecosystem of tools and libraries that bring neural network
models to mobile, embedded and IoT devices. The development flow consists of multiple
stages; select a model, retrain the model (optional), optimize the model by quantization
and deploy the model onto a device. One of the most popular quantization frameworks is
TensorFlow Lite. Tensorflow is an open source platform for machine learning with a high-
level application interface called Keras to design, train and evaluate network models. The
Tensorflow Lite extension is used to optimize and deploy models on microcontrollers. The
platform offers many pre-trained models from image, speech or gesture recognition to text,
digit or sound classification. Any existing floating point model can be used as a starting
point. In case of post quantization, the model can be converted from 32bit floating point
to 16bit floating point if the hardware target has 16bit floating point support. The memory

28

budget is divided by 2. If a representative dataset is available, the dynamic range of the
data flowing through the network can be measured (section 4.1). The quantization scaling
from 32bit floating point to 8bit integer is calculated per filter to optimize the rounding
for each data channel. In this case the memory budget is divided by 4. In case of training
aware quantization, the model is retrained before the quantization step. At optimization
stage, the model is still in a Keras format, containing all trained parameters, layer archi-
tecture, training information, etc.. In the deployment stage, the model is stripped from all
metadata. The trained parameters are converted into a flat buffer format or a raw collec-
tion of data in a specific format. At this point the interpreter comes in. The interpreter
is the core engine which can load the trained parameters and actually execute the model
algorithm. The interpreter runs on the target platform and is optimized for the hardware
architecture. The TensorFlow Lite for Microcontrollers is a tool that generates the source
code for multiple embedded architectures like ARM Cortex, ESP or ARC. The interpreter is
written in C++ and requires no standard C or C++ libraries. Another tool for deployment
is the X-Cube-AI tool by microcontroller manufacturer STM32. This tool can load keras or
tensorflow lite models and convert them to C code for their STM32 microcontroller fami-
lies. The inference engine is generated by high optimized C code which allows the model
to run on the smallest architectures like ARM Cortex-M0. The tools are deeply integrated
with the embedded devices and allow precise performance measurements using onboard
hardware timers.

4.4. RELATED WORK
This section describes related research on quantization in context of convolutional neural
networks. The proposed solutions have driven semiconductor chip designs.

[Lin et al., 2015] propose a quantization design that identifies the optimal bit-width al-
location for each individual layer. A forward pass in floating point is executed on typical
input data set to collect the statistical data of all layer parameters. Next, the ideal bit-width
fix point formats are determined for each layer. The effect of the quantization can be de-
fined as the signal to quantization noise ratio (SQNR). A higher quantization noise leads to
lower accuracy. [Lin et al., 2015] calculated the SQNR throughout a complex CNN structure
and concluded that the total SQNR is the harmonic mean of the SQNRs of all individual
quantization steps. This means that all quantization steps have the same weight on the to-
tal SQNR and the worst quantization step will dominate the outcome.

Lai et al. [2017] show that floating-point representations for weights are more efficient
than fix point representation for the same bit width. The requirements request three prop-
erties. The network must achieve sufficient accuracy with limited bit-width. The method
should work consistently for different CNNs and it should have an efficient way to imple-
ment it in hardware. The proposed solution shows that the multiplication of one float-
ing point operand and one fixed point operand can be more efficient than two fixed-point
operands. A floating-point number consists of a sign bit, mantissa, and exponent. When
converting a real number to floating-point number, the integer part before the radix point
is converted to binary format and the fractional part is converted to binary format. Next,
the radix is moved until the number is completely fractional. At every position move, the
number is divided by two. To keep the value correct, the number is multiplied by 2 to the

29

power of the number of radix point movements. This is the exponent part. The idea of Lai
et al. is that the mantissa can be multiplied with the fixed point operand which will result
in a fixed point operand. Next, the exponent will be implemented in hardware by binary
shifts. This is faster than a higher bit number multiplication.

Choukroun et al. [2019] proposed a low bit precision linear quantization framework that
converts existing pretrained NN models to run on hardware targets without floating-point
precision. The method minimizes the noise power of the weights and activation functions
via mean squared error analysis to approximate the original model accuracy. The bit width
could go down to 4 bit for popular neural network architectures.

The state-of-the-art quantization research lowers the numeric precision of 32-bit floating-
point models down to 4-bit integer precision for both weight and activations. Choukroun
et al. [2019] evaluated their quantization framework on non-over-parameterized networks,
which are usually not analyzed in NN literature. The loss in accuracy for SqueezeNet ranges
from 5.9%-7.4 and 4.4%-7.6% for Densenet. This allows low-bit inference without the need
for full retraining. The granularity of the quantization depends on the hardware architec-
ture of the target platform.

The overview of Krishnamoorthi [2018] indicates accuracies within 2% for a variety of
CNNs for per-channel quantization and per-layer quantization in 8bit post-training quan-
tization. They demonstrated accuracy can be improved using training aware quantization
within 1% of floating-point using 8bit precision and 2%-10% when using 4-bit precision.
Network models with fewer parameters like Mobilenet are less robust to quantization than
models with more parameters. The compared models MobileNet, NasMobile, Inseption,
and Resnet variants have a model size in the order of MBs.

Jacob et al. [2017] found out that the post-quantization approach works well on large
network models with considerable representational capacity but would lead to a signifi-
cant accuracy drop on smaller models. The failure modes are assigned to two root causes.
The first is the large difference in ranges of weights for different output channels. The sec-
ond cause is the outlier weight values which influence the scaling (Figure 15) and makes
the remaining weights less precise after the quantization.

The experiments of Sheng et al. [2018] have demonstrated that not all existing network
designs are suitable for quantization. The lightweight MobileNetV1 indicates a large ac-
curacy gap after quantization compared to the over-parameterized VGGNet, GoogleNet or
Resnet. They propose a new quantization friendly separable convolution method for Mo-
bileNets.

Many of the proposed solutions uses dedicated hardware multipliers which can not
implemented efficiently in firmware. The work will drive new microcontroller chip designs.
Unfortunately, embedded systems of today have non-configurable hardware multipliers
with fixed bit-witdh length. Therefore the bit-width is fixed to 8, 16 or 32bit. Although 8bit
quantization has been successfully applied to large well parameterized neural networks,
research work also indicates that quantization might not work well on small models.

30

5. RESEARCH DESIGN
Convolutional neural networks achieve near-human performance on audio classification
tasks. The research in this area used to be primarily on gaining the highest accuracy re-
gardless of the required computational power. In recent years, more research was pub-
lished in optimizing neural networks. This allows CNNs to be deployed on low-end IoT
devices. These low-end embedded devices are built on battery-powered microcontrollers.
Implantable medical devices have even more hardware constraints. In order to gain insight
into how efficient audio classification can be performed on implantable hearing devices,
some challenges must be considered.

The first challenge is related to hardware resource constraints. Implanted medical de-
vices are tiny devices that are battery powered. The battery life constrains the available
memory, processing power and processor complexity. Tiny microcontrollers have no sup-
port for energy efficient floating point arithmetic. Many of the shelf models are floating
point models. Quantization is an optimization technique which can reduce the arithmetic
precision from floating point numbers to integers. Integers are smaller which is beneficial
for the memory and can be executed faster. Although quantization has been successfully
applied to well parameterized neural networks, research work also indicates that quanti-
zation might not work well on small models. Jacob et al. [2017] found out that the post-
quantization approach works well on large network models with considerable represen-
tational capacity but would lead to a significant accuracy drop on smaller models. The
highest reported audio classification performance on low-end microcontrollers using small
floating point CNN models was hypothesized by Nordby [2019]. The research evaluated
models with classic and optimized depthwise separable convolution on the UrbanSound8k
dataset. The work of Nordby is used as baseline for this research.

The second challenge is associated with the nature of the sounds that need to be clas-
sified. A person could be listening to music, having a conversation at home, or could be
walking through a crowded street. Depending on the acoustic scene, the hearing device
optimizes its acoustic settings to interact better with the environment. This task is referred
as sound scene classification. The external sounds can be interfered with the body sounds
picked up by the subcutaneous microphone. The sound of hair scratching, a mouth mask
rubbing the skin or the sound of water running over the skin are much shorter. These
sounds are detected with sound event classification. Consequently, the neural network
model must be capable of classifying both types of sound.

The third challenge is linked to the microphone signal spectrum. A cochlear implant is
powered by an external sound processor worn on the ear. The external microphone cap-
tures sound air waves from the environment which are communicated wirelessly to the im-
plant to stimulate the auditory nerve. When the sound processor is removed, the cochlear
implant is powered by an internal battery and switches to a subcutaneous microphone. The
construction of an implantable microphone is different compared to a classic microphone
hence the frequency sensitivity is different (Calero et al. [2018]). The implanted device uses
two different microphone signals. When the sound processor is used to recharge the im-
planted battery, the sound signal source switches from the subcutaneous microphone to
the signal provided by the external sound processor microphone. The choice of data fea-
ture is important as the spectral content is different. The Mel transformation and constant
Q transformation dominate audio classification research (Song et al. [2019]). Although the
features have been compared by Huzaifah [2017], the investigation was performed on large

31

models and did not take into account different microphone responses.

5.1. RESEARCH QUESTIONS
The main research question is "To which extent can convolutional neural networks be used
on tiny embedded devices in context of audio classification?". The research is focused
on the accuracy of neural networks when deployed on implantable hearing devices. The
question is divided into three research subquestions related to described challenges of im-
plantable hearing devices. The first research question addresses the hardware resource
constrain challenge and investigates the arithmetic precision reduction of neural networks
designed for audio event classification on microcontrollers. The accuracy of an acoustic
event dataset is evaluated using two quantization techniques. The second research ques-
tion is related to the challenge where a model needs to classify both acoustic events and
acoustic scenes. A sound event model is evaluated using a sound scene dataset together
with accuracy improvement experiments. The last research question investigates the mi-
crophone signal challenge where the frequency sensitivity of the input audio is different
from the frequency sensitivity of the training audio.

RQ1: What is the effect on the accuracy of 8bit post-training quantization and 8bit
quantization-aware training on the SB-CNN(-DS) and Stride(-DS) models on the Urban-
sound8k dataset?

RQ2: What is the effect on the DCASE 2019 dataset classification accuracy when using
an audio event classification model SB-CNN(-DS) and Stride(-DS) instead of an audio
scene classification model (baseline DCASE 2019)?

RQ3: Which input feature representation among Short-Time Fourier Transform, Mel
spectrogram, Constant Q spectrogram achieves the highest Urbansound8k accuracy on
the SB-CNN(-DS) and Stride(-DS) models using an implanted MEMS microphone?

5.2. RESEARCH METHOD
This research builds on the master thesis Environmental sound classification on microcon-
trollers using convolutional neural networks by Nordby [2019]. The work evaluates several
optimized CNNs model architectures using the UrbanSound8k dataset on a low-end micro-
controller (STM32L476). The models Baseline and Stride-DS-24 achieved the two highest
classification scores of respectively 72.3% and 70.9%. The Baseline model is an optimized
version of the original SB-CNN model, introduced by Salamon and Bello [2016]. The Stride-
DS-24 model is a variant which uses striding instead of max pooling. Both models were
evaluated with classic and depthwise separable convolution (-DS suffix) algorithms. These
four models will be used as baseline for this research and will be referred to as SB-CNN(-DS)
and Stride(-DS). The detailed model architecture is described in section 5.2.2. The python
code at https://github.com/jonnor/ESC-CNN-microcontroller was used as starting point.
The TensorFlow Lite for Microcontrollers code base currently supports only a subset of the
Tensorflow operations which limits the model architecture choice to CNN. In order to an-
swer the research questions, a set of experiment were executed.

32

Figure 22: Post quantization experiment flow

RQ1: What is the effect on the accuracy of 8bit post-training quantization and 8bit quan-
tization aware training on the SB-CNN(-DS) and Stride(-DS) models on the Urbansound8k
dataset?

Experiments have been executed to compare the overall and detailed accuracy of the
quantized models to the floating point models. The floating point model scores are repro-
duced and serve as a baseline. The process flow followed the first three steps in Figure 22
where the training and testing is executed on a GPU based computer. During the prepro-
cessing, the same data augmentation has been applied as Nordby [2019] using time stretch-
ing and pitch shifting for 12 different variations of each UrbanSound8k audio clip. The
python framework was extended with post-training quantization and quantization aware
training support using Tensorflow 2.3.0 and the Tensorflow Model Optimization Toolkit.
Each model training and testing is repeated ten times using a 10-fold validation principle.
The overall and detailed accuracy is the averaged result of the ten sessions.

The first part of the experiment post-quantized all baseline floating point models us-
ing the 8bit integer conversion for weights and activations. The post quantization pro-
cess is illustrated in Figure 22. The python framework was extended with two post-training
quantization tools; Tensorflow Lite and stm32ai command line tool (CUBE-AI). The default
evaluation options were be used for 8bit full integer conversion. The detailed optimization
options are out of the scope of this thesis. The representative dataset for scaling of the
quantization (section 4.4) is the validation part of the cross validation folds (Refaeilzadeh
et al. [2009]). The second part of the experiment retrained all baseline floating point models
using quantization aware training. The quantization aware process is illustrated in Figure
23. The python framework was extended with the Tensorflow Model Optimization Toolkit
to build network models with quantization aware layers. After the training, the floating
point models are quantized using the TensorFlow Lite conversion tool. The 8bit integer
models were deployed on an embedded device for evaluation. The X-CUBE-AI software
module of the STM32CubeMx development software converted the quantized models into
optimized source code. The code is compiled and executed on a STM32L476 microcon-
troller to provide statistics about the model performance using hardware timers. The tool
provides the flash and RAM memory usages as well as the model complexity expressed in
multiple and accumulate (MAC) instructions. The model statistics provide validity of ac-
tual model quantization.

RQ2: What is the effect on the DCASE 2019 dataset classification accuracy when using
an audio event classification model SB-CNN(-DS) and Stride(-DS) instead of an audio scene
classification model (baseline DCASE 2019)?

The nature of the sounds that need to be classified on cochlear implant devices overlaps

33

Figure 23: Quantization aware training experiment flow

the acoustic scene classification (ASC) task and acoustic event classification (AEC) task.
Neural network model architectures are designed and optimized for a specific task. The
thesis baseline models are optimized variants of the SB-CNN model, originally designed for
the UrbanSound8k dataset. The model architectures are built for short sound clips ranging
from tens of milliseconds to several seconds with classes like dog bark, car horn and others.
To evaluate whether the thesis models can be used to classify longer acoustic scenes, the
thesis models are trained and evaluted on the DCASE2019 dataset. The DCASE2019 dataset
(Mesaros et al. [2019b]) contains 10s sounds clips recorded in public square, park and other
scenes. The sounds are recorded with in-ear binaural microphones which is similar to how
sound reaches the human auditory system. The dataset is developed for the Detection and
Classification of Acoustic Scenes and Events (DCASE) competition organized by the Tam-
pere University of Technology (TUT).

Experiment RQ2-1:
The SB-CNN, SB-CNN-DS, Stride and Stride-DS floating point models are trained using the
DCASE2019 dataset. The 10s sound clips are cut into smaller parts to match the 0.7s input
width of thesis model. The accuracy results are compared with the baseline model of the
DCASE2019 competition which scans the 10s clip in one part.

Can the UrbanSound8k dataset knowledge of the RQ1 floating point models improve the
accuracy on the DCASE2019 dataset?
The UrbanSound8k and DCASE2019 dataset are relatively small datasets compared to other
machine learning datasets like AudioSet (Gemmeke et al. [2017]). Even when the dataset
is synthetically extended using data augmentation, the training epochs are limited to pre-
vent the models to overfit the training data. The idea is to evaluate if both datasets can be
used to increase the model accuracy on the DCASE2019 dataset. Instead of initializing the
parameters with random values, the parameters are initialized with pretrained values. The
experiment will first train the thesis models on the complete UrbanSound dataset using
100 epochs and use it as a start point for the DCASE2019 training. The process flow is illus-
trated in Figure 24. The transfer of knowledge can only be helpful if the learned features are
general. Therefore the experiment is split up to reuse parameters in function of the num-
ber of consecutive convolution layers. The fully connected layers are not reused as they are
part of the classification for the UrbanSound8k classes.

Experiment RQ2-2:
This experiment will initialize all thesis models with random values and transfer the pa-
rameters of all convolution layers the corresponding thesis models trained for 100 epochs

34

on the complete UrbanSound8k dataset. Next the models are trained for 100 epochs on the
DCASE2019 dataset.

Experiment RQ2-3:
This experiment uses a similar setup as RQ2-2 but will transfer only the first and second
layer weights and activation values. The third convolution layer and fully connected layer
parameters will start from random values.

Experiment RQ2-4:
This experiment transfers the least amount of pretrained parameters. Only the parameters
of the first convolution layer are transferred, all other parameters are randomly initialized.

If the model architecture is not optimal for audio scene classification, how can the model
be improved?
This experiment investigates the effect on accuracy when changing the model architecture.
The input size of the audio window on the thesis models of 0.72s is limited compared to the
10s input size of the DCASE2019 baseline model. The filter size of the thesis models are set
to 5x5. Increasing the filter size to 7x7 will capture more time and frequency information
within one dot product of a filter. The filters of the consecutive convolution layers will cap-
ture more dot products and extend its audio window.

Experiment RQ2-5:
This experiment will increase the 5x5 filter size of the thesis models to 7x7. Due to the
striding or pooling layers in the thesis models, the output tensor size of each convolution
layer decreases. The output tensor of the second convolution layer of the SB-CNN model is
6x7x48. The filter size of the third convolution layer can not be larger than its input tensor
size. Therefore the filter size of the third convolution remains unchanged. The model is
initialized with random values.

Experiment RQ2-6:
The model changes of RQ2-5 allow filters to span more audio data. Each input pixel of the
flatten layer spans a larger part of the input spectrum. Therefore it is interesting to evaluate
if the classification part can improve the classification accuracy by increasing the number
of neurons in the fully connected layer. This experiment will use the model of RQ2-5 and
increase the number of neurons from 64 to 100.

RQ3: Which input feature representation among Short-Time Fourier Transform, Mel spec-
trogram, Constant Q spectrogram achieves the highest Urbansound8k accuracy on the SB-
CNN(-DS) and Stride(-DS) models using an implanted MEMS microphone?

Three different data features are evaluated using the UrbanSound8k dataset. Each fea-
ture is trained with the original sounds and with simulated subcutaneous microphone

Figure 24: Transfer learning experiment flow

35

Figure 25: Training experiment flow

sounds. The process flow is illustrated in Figure 25. The UrbanSound8k sound clips are fil-
tered using a 1th order Butterworth band pass filter (BPF) of 100Hz-8kHz and 200Hz-8kHz
according to the microphone bandwidth requirements of Calero et al. [2018]. In context of
validity a 1th order butterworth high pass filter (HPF) of 100Hz/200Hz and low pass filter
(LPF) of 8kHz have been tested to confirm the band pass filtered results.

The experiment was split up into three parts. The first part evaluated the STFT feature.
The data feature consists of a 1024 point STFT group which sums the bins into 60 output
bins. Next to the unfiltered dataset, the five filters are applied individually to the audio
clips to generate a different feature extraction. The models are trained using the unfiltered
data and tested on all other filtered data. The second part evaluated the CQT feature. Eight
different CQT transformations are generated using different bins per octave configuration
(6 to 13). Next to the unfiltered datasets, the five filters are applied individually to the audio
clips to generate a different feature extraction. The models are trained using the unfiltered
data and tested on all other filtered data. The third part evaluated the Mel feature, where
the Mel feature data is reused from RQ1 together with the floating point models. The five
filters are applied individually to the audio clips to generate a different feature extraction.
The models are tested on the filtered data sets.

Figure 26: Frequency response of 100Hz-8Khz band pass 1th order butterworth filter

36

5.2.1. DATASETS

This research trained network models using the UrbanSound8k and DCASE2019 dataset.
The taxonomy of the UrbanSound8k dataset is built in context of urban noise pollution in
New York City from 2010 to 2013. It contains a collection of short sound events sufficiently
detailed to be unambiguous like ’car horn’ or ’engine idling’. The dataset is used for the
acoustic event classification task. The DCASE2019 dataset consists of sounds that char-
acterize an urban acoustic environment like public square or urban park. The material is
used for the acoustic scene classification task.

5.2.1.1 UrbanSound8k dataset
The UrbanSound8k dataset and taxonomy is published by Salamon et al. [2014a]. The
dataset is free to use for non-commercial purposes according to the terms of the Creative
Commons Attribution Noncommercial License 7. It contains 8732 sound recordings from
freesounds.org with a length between 54ms and 4s. The clips are classified according to 10
classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun
shot, jackhammer, siren, and street music. The data is pre-divided into 10 folds for cross-
validation. In the context of validation, Salamon et al. [2014a] explicitly ask not to dis-
tribute the data randomly but to use the predefined folds for the training as well as results
for each fold. Previous publications can therefore be better compared. Table 2 illustrates
the data distribution across the different classes. The class car horn, engine idling, gun
shot, jackhammer and siren are not evenly distributed among the different folds. The class
car horn, gun shot and siren occur 4.91%, 4.28% and 10.64% respectively compared to the
other classes that each occur 11.45%, hence the dataset is not fully balanced.

fold AC CH CP DB DR EI GS JA SI SM
1 100 36 100 100 100 96 35 120 86 100
2 100 42 100 100 100 100 35 120 91 100
3 100 43 100 100 100 107 36 120 119 100
4 100 59 100 100 100 107 38 120 166 100
5 100 98 100 100 100 107 40 120 71 100
6 100 28 100 100 100 107 46 68 74 100
7 100 28 100 100 100 106 51 76 77 100
8 100 30 100 100 100 88 30 78 80 100
9 100 32 100 100 100 89 31 82 82 100

10 100 33 100 100 100 93 32 96 83 100

Table 2: UrbanSound8k sound clip occurance per class

5.2.1.2 DCASE2019 dataset
The Detection and Classification of Acoustic Scenes and Events or DCASE challenge is or-
ganized by Tampere University of Technology. For the 2019 challenge, Mesaros et al. [2019a]
published the TAU Urban Acoustic Scenes 2019 or DCASE2019 dataset. The dataset con-
tains 14400 sound recordings of 10s recorded in 10 different cities. The clips are classified
according to 10 scene classes: airport, indoor shopping mall, metro station, pedestrian

7Source https://creativecommons.org/licenses/by-nc/3.0/legalcode

37

street, public square, street traffic, traveling by tram, traveling by bus, traveling by an un-
derground metro and urban park. For each scene class, recordings were made at 4 to 7 lo-
cations in each of the 10 cities. The recordings were made with a Soundman OKM II Klassik
/ studio A3 with an electret binaural microphone. The microphone consists of two parts
and is worn in each ear. The recorded audio is received at the same place where sound
waves enter the hearing organ. The dataset is not divided into predefined folds. For this
research, the dataset has been divided into ten folds for cross validation. The user is free to
choose the best cross validation setup. For this study, the 1440 recordings of the ten cities
were randomly distributed over the ten folds for each scene. Each fold has 144 shots for
each scene. Table 3 illustrates the distribution of the number of recordings per city in each
fold for airport scene.

fold B
ar

ce
lo

n
a

H
el

si
n

ki

Li
sb

o
n

Lo
n

d
o

n

Ly
o

n

M
il

an

P
ra

gu
e

Pa
ri

s

St
o

ck
h

o
lm

V
ie

n
n

a

To
ta

l

1 11 14 12 10 23 18 13 13 16 14 144
10 14 15 12 14 12 19 14 15 19 10 144
2 16 15 16 15 14 9 16 19 17 7 144
3 11 14 17 19 12 22 12 11 16 10 144
4 9 19 12 16 15 6 21 17 13 16 144
5 16 14 13 17 13 14 13 16 17 11 144
6 12 14 17 10 11 11 20 14 19 16 144
7 17 11 12 16 15 12 13 21 15 12 144
8 12 15 17 12 17 13 8 17 12 21 144
9 10 18 16 16 12 20 14 13 14 11 144

Table 3: Number of city recording per fold for airport scene

5.2.2. BASELINE MODELS

Previous research of Nordby [2019] has investigated the feasibility of deploying convolu-
tional neural network on low-power microcontrollers. Ten models have been optimized
and trained using the UrbanSound8k dataset in context of environmental sound classifi-
cation. The convolutional neural network model with the highest accuracy and the model
with the highest performance were selected as baseline for this research, together with their
depthwise separable convolution variant. The models are described in more detail in the
following sections. More background information on the convolutional networks can be
found in section 3.1.1.

5.2.2.1 Salamon-Bello model
The Norby-Baseline model is the optimized version of the original SB-CNN model by Sala-
mon and Bello [2016]. The model will be named SB-CNN in this research. The extracted
Mel spectrogram from the sound clips has been reduced from 128 to 60 Mel bands, result-
ing in an input feature size of 60x31x1. As a consequence of this design choice, the pool-
ing layer has been reduced from 4x2 downsampling to 3x2. Batch normalization has been
added after each convolutional layer compared to the original model.

38

Figure 27 depicts the model architecture of the optimized SB-CNN model. The low-
level feature extraction is created by convolution layer 1 with classic convolution layer us-
ing same padding with 24 filters of filter size 5x5. The feature maps (white) are batch nor-
malized (grey), downsampled using a 3x2 max pooling layer (purple) and activated by a
rectified linear unit (yellow). The tensor output at this stage is 20x15x24.

1

31

60

Input
data
layer

24

31

60

Convolution
layer 1

Max pool-
ing layer

24

15

20

48

15

20

Convolution
layer 2

Max
pooling
layer

48

7

6

Convolution
layer 3

48
3

2

28
8

Flatten
layer

64

Dense+Relu
layer

10

Dense+SoftMax
layer

Figure 27: Optimized Salamon-Bello convolutional neural network model.

The higher-level feature extraction is performed by convolution layer 2 with classic con-
volution layer using same padding with 48 filters of filter size 5x5. The feature maps (white)
are batch normalized (grey), downsampled using a 3x2 max pooling layer (purple) and ac-
tivated by a rectified linear unit (yellow). The tensor output at this stage is 6x7x48.

The high-level feature extraction is performed by convolution layer 3 with classic con-
volution layer using valid padding with 48 filters of filter size 5x5. The feature maps (white)
are batch normalized (grey). Due to the padding, the tensor output at this stage is 2x3x48.

Next, the flatten layer converts the 3D feature data of 2x3x48 into a 1D input vector
of 288 parameters in order to feed the data into the classifier. All the input parameters are
connected to the fully connected or dense layer (section 3.2.2) of 64 neurons which consists
of 18496 parameters. Each of 64 neurons is connected to the 10 neurons output layer which
are activated using a softmax function (section 3.2.3) to output to probabilities for the 10
classes of the UrbanSound8k dataset.

The SB-CNN model uses classic convolution in its convolution layers. A SB-CNN-DS
variant is created using the same model architecture but using depthwise separable con-
volution in the second and third convolultion layer. The computational complexity is sig-
nificantly lower due to the reduced number of multiplications and learnable parameters
(section 3.1.2).

39

5.2.2.2 Stride model
The Stride model is based on the previously discussed SB-CNN model. The main difference
is the absence of the max pooling layers. The downsampling is replaced by a striding step in
the convolution layers. The Keras framework does not support the same 3x2 downsampling
as in the SB-CNN model. The stride height and width must be uniform, the max pooling
of 3x2 is replaced by 2x2 downsampling. The number of filters grows 50% per convolution
layer.

Figure 28 depicts the model architecture of the strided SB-CNN model named Stride.
The low level feature extraction is created by convolution layer 1 with classic convolution
layer (section 3.1.1) using same padding with 22 filters of filter size 5x5. The downsam-
pling action is replaced by a stride step of 2x2. The feature maps (white) are batch normal-
ized (grey) and activated by a rectified linear unit (ReLU). The tensor output at this stage is
30x16x22.

31

60

Input
data
layer

24

16

30

Convolution
layer 1

36
8

15

Convolution
layer 2

54

6

Convolution
layer 3

2

6

64
8

Flatten
layer

64

Dense+Relu
layer

10

Dense+SoftMax
layer

Figure 28: Strided-DS Salamon-Bello convolutional neural network model.

The higher-level feature extraction is performed by convolution layer 2 with classic con-
volution layer using same padding with 36 filters of filter size 5x5. The feature maps (white)
are batch normalized (grey) and activated by a rectified linear unit (ReLU). The downsam-
pling is replaced by a stride step of 2x2. The tensor output at this stage is 15x8x33.

The high-level feature extraction is performed by convolution layer 3 with classic con-
volution layer using valid padding with 54 filters of filter size 5x5. The feature maps (white)
are batch normalized (grey) and activated by a rectified linear unit (ReLU). The downsam-
pling is replaced by a stride step of 2x2. The tensor output at this stage is 6x2x49.

Next, the flatten layer converts the 3D feature data of 6x2x49 into a 1D input vector of
588 parameters in order to feed the data into the classifier. All the input parameters are con-
nected to the fully connected or dense layer (section 3.2.2) of 64 neurons which consists of
37696 parameters. Each of 64 neurons are connected to the ten neurons output layer which
are activated using a softmax activation function (section 3.2.3) to output probabilities for
the ten classes of the UrbanSound8k dataset.

The Stride model uses classic convolution in its convolution layers. A Stride-DS variant

40

is created using the same model architecture but using depthwise separable convolution
in the second and third convolution layer. The computational complexity is significantly
lower due to the reducted number of multiplications and learnable parameters (section
3.1.2). The number of filters in the first layer starts from 24 filter instead of 22 filters in the
non-strided variant and grows 50% per convolution layer.

5.3. TRAINING
The training settings used during this research are identical to the research baseline of
Nordby [2019]. The training is performed with a learning rate of 0.005 on mini-batches of
400 audio recordings. The optimizer function is a Stochastic Gradient Decent (SGD) with
0.9 Nesterov momentum. A random audio window is chosen for each recording to apply
the time-shifting data augmentation. Each training run consists of 100 epochs. Each epoch
processes 30000 training samples and 5000 validation samples. Because the training data
is split up in 10 folds using cross validation, a model training session consists of 10 training
runs. The best model for each fold is selected and combined into an average accuracy score
per session. The model accuracy of each experiment is the average result of 10 training ses-
sions unless noted differently.

The training hardware is built on an Intel i7-9700K CPU core using 32GB 3200-16 Vengeance
LPX RAM memory. For the training acceleration, an MSI 8GB D6 RTX 2070 Super GPU was
chosen. An SSD 970 EVO PCIe hard disk drive was directly interfaced by the Asus ROG
STRIX Z390-E Gaming motherboard. On this machine, a ten fold training session from RQ1
takes approximately 3.5h for 1 model with five fold training jobs running in parallel.

5.4. EVALUATION
The evaluation of the network accuracy is performed with the test set of each cross-validation
fold. The test set is a predefined subset of the audio files from the UrbanSound8k or DCASE2019
dataset. An audio file can be up to 4s long and is adapted to the input of the network. The
input tensor has a size of 60x31x1 which corresponds to a spectrogram of 60 bands over 31
frames. Each sound clip is split into windows of 31 frames which corresponds to 730ms au-
dio. When the audio information is shorter than 730ms, padding is applied to fill the data
with zeros.

Figure 29 illustrates the dog bark sound file 100795-3-0-0.wav that is split into 6 win-
dows. The class prediction score of each window is collected and for each audio file the
average of all window prediction scores is made. The highest scoring class is the final pre-
diction. This technique is called mean voting. The prediction outcome of all files is pre-
sented in a confusion matrix. The matrix indicates how many times the correct prediction
is made per class and which class was voted when the prediction was wrong. Figure 30
depicts the confusion matrices where the relationship between the real presented audio
labels on the Y-axis and the predicted labels on the X-axis. Each horizontal line therefore
contains the score distribution of all audio files of a certain class. In Figure 31, the results
are normalized showing the scores relative to 100 percent. The diagonal line represents
the intersection between the real result and the predicted result. The total accuracy score
of a model is the ratio between the sum of the numbers on the diagonal line (the correct
predictions) and all numbers.

software

41

Figure 29: Dog bark sound clip of 4s split into classification windows of 720ms.

5.5. SOFTWARE TOOLBOX
The linux software setup for a machine learning development environment is complex.
The research domain is very active, where the speed of software tool developments and
the pace of releases are high. There are many dependencies between the mutual software
components, hence a detailed description is important to get a working setup. This section
provides an overview of the development environment.

The framework to train, evaluate and test the models is based on the research of Nordby
[2019]. The code is hosted at Git. The Python framework is used to reproduce the results
of baseline network models. Subsequently, the framework was expanded in the context
of quantization and support for other datasets and features. All floating point models are

Figure 30: Confusion matrix Figure 31: Normalized confusion matrix

42

created in Keras (v2.4.0), the quantization aware variants are created with the Tensorflow
Model Optimization toolkit 0.5.0. All models are trained using Tensorflow v2.3.0. The Ten-
sorflow Lite module is used to convert the floating point models to integer models via the
OptimizeForSize option. The representative dataset for the post quantization is the valida-
tion set of each data fold.

The STM32 Cube software (v5.6.1) is used to evaluate the models at the microcontroller
level. The X-CUBE-AI (v5.2.0) extension is a set of libraries and plugins to deploy neural
networks on STM32 microcontrollers. The software cannot train models itself but supports
trained models from Tensorflow, Keras, PyTorch and other machine learning frameworks.
The models are integrated in low-level C code and compiled for an ARM Cortex architec-
ture. The software GUI has functionalities such as performance measurement and valida-
tion. The performance measurement function deploys the network on the microcontroller
and uses internal hardware timers to measure the inference time. The analysis option indi-
cates how much RAM / flash memory is required or what the required computation power
is per network layer. The STM32 software also offers the possibility to perform post quan-
tization. However, the option is marked as deprecated in the latest version. Post quanti-
zation for the STM32 model was performed with the stm32ai Neural Network Tool v1.4.0
command line tool. The calibration data set used on the validation part of each data fold.
The tool does not generate a quantized output model but generates a JSON file with the
scale and offset information that, together with the original floating keras model, is used by
the STM32 software to generate target code directly.

The validation functionality offers the possibility to test the C code model on a PC (x86
architecture) so that the speed is not slowed down by the transfer time between the PC and
the microcontroller. A numpy (v1.17) array with data and labels can be used as input for
the software to measure accuracy. The x86 model is not directly accessible in the current
software version. There is no support for mean voting, which means that all sound win-
dows of a clip must be fed individually into the software using a separate numpy file. For
each run the software recompiles the network model C code, making it not feasible in time
to determine the accuracy in the same way as the baseline. That is why it was decided not
to spend any effort on the accuracy of the post quantization of the STM32 model in context
of mean voting accuracy.

The Python version used is v3.6.9. All python package dependencies are captured in an
environment configuration file and managed by python package management tool Mini-
conda v4.8.2. All tools are installed in docker (v19.03.8) images. The GPU GTX2070 ac-
celeration is activated by the CUDA v10.2 in combination with the nVidea 440.59 driver.
Pycharm v2020.2 professional is used as a Python integrated development environment to
debug python code running on remote docker images. The continuous integration frame-
work Teamcity v2020.1.3.78866 has been used to deploy the command line tasks for train-
ing, testing and reporting. The teamcity server deploys the development work from a ver-
sion control server (Github) to teamcity test agents to execute preconfigured command
lines within the docker image. It has been set up to systematically capture all artifacts gen-
erated by training runs and deploy artifacts as a dependency for a test or report processes.

43

6. RESULTS
All objective evidence generated during the experiments are documented in this section.
Each section relates to a research question. Section 6.1 documents the result of experi-
ments in order to answer RQ1 regarding to the effect on the accuracy of 8bit post-training
quantization and 8bit quantization-aware training on the SB-CNN, SB-CNN-DS, Stride,
and Stride-DS-24 models using the Urbansound8k dataset. Section 6.2 documents the ex-
periments regarding to RQ2 where the floating point models designed for audio event clas-
sification are used in context of audio scene classification using the DCASE2019 dataset.
The section 6.3 handles the experiments regarding to RQ3 where STFT, CQT and Mel fea-
ture are compared using the Urbansound8k dataset.

6.1. RESULTS RQ1
The first challenge in the research design is related to hardware resource constraints. Im-
planted medical devices are tiny devices where the battery life constrains the available
memory, processing power and processor complexity. The challenge can be addressed by
model quantization which reduces the arithmetic precision from 32bit floating point to 8bit
integer calculations. The benefit is that integer calculations are faster. The parameters take
less memory size and the memory bandwidth is reduced. The drawback is the rounding er-
ror which is introduced by quantization. RQ1 investigates two quantization approaches on
small neural networks: ’What is the effect on the accuracy of 8bit post-training quantiza-
tion and 8bit quantization-aware training on the SB-CNN(-DS) and Stride(-DS) models
on the Urbansound8k dataset?.
The experiments evaluate the SB-CNN and Stride floating point models using classic con-
volution and the optimized depthwise separable convolution variant. The models are trained
using TensorFlow (TF) framework on the UrbanSound8k dataset. The first experiment per-
forms post quantization (PQ) of the trained floating point models using the TensorFlow
(TF) model optimization toolkit and the stm32ai command line tool. The representative
dataset used to calibrate the quantization is the validation data fold. The second exper-
iment retrains the models using training aware quantization. The accuracy is evaluated
using TF on computer level and reported using overall comparison with a deeper analy-
sis of the confusion within the predictions. All models are compiled using the X-CUBE-AI
libraries and deployed on the STM32L476 microcontroller to measure the inference perfor-
mance and memory consumption.

6.1.1. OVERALL ACCURACY

Table 4 provides an overview of the accuracy variation for the floating point baseline mod-
els.

44

Model Test Accuracy
SBCNN SBCNN-DS Stride Stride-DS

Session 1 71.0% 71.0% 69.8% 67.8%
Session 2 72.5% 68.9% 71.3% 68.5%
Session 3 71.1% 69.1% 70.0% 68.6%
Session 4 69.6% 70.7% 70.7% 68.8%
Session 5 72.9% 69.0% 69.6% 68.8%
Session 6 71.5% 70.1% 70.3% 69.5%
Session 7 70.3% 70.0% 69.8% 70.9%
Session 8 72.6% 70.6% 68.9% 69.0%
Session 9 71.7% 71.1% 70.7% 68.4%

Session 10 70.8% 70.8% 70.1% 69.5%
Minimum 69.6% 68.9% 68.9% 67.8%

Average 71.4% 70.1% 70.1% 69.0%
Maximum 72.9% 71.1% 71.3% 70.9%
Baseline 72.3% 70.2% 68.3% 70.9%

Table 4: Floating point model test accuracies

The SB-CNN model achieved the highest test accuracy score of 71.4%. The depthwise
separable convolution variant SB-CNN-DS scored 1.3% less and achieves 70.1% test accu-
racy. The stride model achieves the same accuracy 70.1% while its depthwise separable
convolution variant Stride-DS scored 1.1% less and arrived at 69.0% test accuracy. The
positive tolerance ranges between 1 to 1.9%, while the negative tolerance ranges from 1.2
to 1.5%.

Model
Floating

point
TF-PQ TF-QAT

SBCNN 71.4% 71.3% 71.2%
SBCNN-DS 70.1% 70.0% 69.9%

Stride 70.1% 70.1% 70.1%
Stride-DS 69.0% 68.9% 68.7%

Table 5: Test accuracy results using voted prediction.

Table 5 reports the average accuracy results for the floating point and integer models
using mean voting strategy (section 5.4). The test accuracy of the TFLite post quantizated
(TF-PQ) models of SB-CNN, SB-CNN-DS and Stride-DS score 0.1% lower than their keras
floating point models. The Stride TFLite post quantizated model actually scores the same
70.1% test accuracy compared to the floating point variant. The quantization aware mod-
els of SB-CNN and SB-CNN-DS indicate a 0.2% drop in accuracy versus the keras floating
point model. The TFLite quantization aware (TF-QAT) Stride model scores the same accu-
racy of 70.1% while the depthwise separable convolution variant scored 0.3% lower.

The STM32 post quantized model is not reported because it can not be evaluated using
voted prediction strategy out of the box. The STM32 tool creates a post quantized model

45

by exporting a floating point keras model and a JSON file containing the scale and offset
information for the model. The STM32 validation tool can only take in a set of test data
windows with a corresponding class for each window. It does not allow to extract a list of
predictions and apply voting strategy. Therefore the validation score cannot be compared
with the baseline in the overall accuracy results and confusion matrixes. However, for com-
parison, all models were tested using the STM32 tool without mean voting. The STM32 post
quantization test accuracy can be compared relative to the other models.

The keras models score 12.1% to 12.5% less due to the voting strategy. The TFLite post
quantization model scores are 0.1 to 0.2% lower than the keras models. The TFLite quanti-
zation aware model scores are 0.1 to 0.2% lower than the TFLite post quantization models,
except for the Stride model. The STM32 post quantization models are 0.1% to 0.3% lower
than the keras models.

Model
Floating

point
TF-PQ TF-QAT STM32-PQ

SBCNN 59.3% 59.2% 59.0% 59.0%
SBCNN-DS 58.4% 58.2% 58.1% 58.2%

Stride 57.1% 57.1% 57.3% 57.0%
Stride-DS 56.5% 56.4% 56.3% 56.3%

Table 6: Test accuracy results using non-voted prediction.

6.1.2. DETAILED ACCURACY

Table 7 lists the detailed accuracy for all models. The classes with the highest accuracy are
gun shot (91.7-94.1%), car horn (83.9-85.9%) and dog barking (82.1-85.8%). The least scor-
ing class is air conditioning (41.6-47.3%) which is misclassified 18.7-21.2% as engine idling.
Both drilling and engine idling class are respectively 14.9-15.7% and 17.0-20.3% wrongly
classified as jackhammer. The depthwise convolution variants score 3.9-4.8% less on the
children playing class compared to the classic convolution. The street class achieves 76.7&
accuracy on the SBCNN model but drops 4.5 to 6.9% on all models.

Class SBCNN SBCNN-DS Stride Stride-DS

Air conditioner 41.6% 47.3% 43.8% 44.7%
Car horn 85.9% 83.9% 86.3% 84.3%

Children playing 80.0% 75.2% 78.4% 74.5%
Dog bark 85.8% 83.2% 83.8% 82.1%
Drilling 64.4% 62.4% 61.6% 60.5%

Engine idling 59.6% 56.6% 62.0% 60.4%
Gun shot 94.1% 92.6% 94.4% 91.7%

Jack hammer 67.7% 70.5% 62.6% 64.1%
Siren 81.3% 79.5% 81.0% 81.0%

Street music 76.7% 72.2% 71.8% 69.8%

Overall 71.4% 70.1% 70.1% 69.0%

Table 7: Detailed accuracy floating point results using voted prediction.

46

Figure 32 provides detailed accuracy in which the post quantization and quantization
aware variants are compared with the floating point model. The post quantization matrix
only includes TFLite variants and not the STM32 variant as discussed in section 5.5. Each
matrix is the average result of 10 train sessions. The matrix of the floating point model is
depicted with blue background. The matrices of the post quantization and quantization
aware model are relative compared to the floating point accuracy. The green and purple
colors indicate where the model scores better or worse. The scale corresponds to the max-
imum deviation found in the quantized models.
The TF-PQ models lose 0.1% or less using 8bit integer quantization compared to the float-
ing point models. The confusion matrix indicates minimal differences over the 10 classes.
The highest accuracy loss for all TF-PQ models is found on the classification of gun shot
which achieved the highest predicted score in the floating point models. The accuracy drop
for the models SB-CNN, SB-CNN-DS, Stride and Stride-DS is respectively 0.8, 1.2, 0.3 and
1.2%. The TF-QAT models score 0.3% or less on overall accuracy, but there are more indi-
vidual differences compared to floating point models. The differences on the diagonal axis
indicate that the model scores better on some classes and worse on others.

Figure 33 provides a comparison of the confusion matrix of the quantization aware
models of SB-CNN, SB-CNN-DS, Stride and Stride-DS. The summation of all the absolute
deviations are plotted in one confusion matrix with the same true and predicted labels. It is
not a standardized accuracy measurement but provides an indication of where the largest
differences are found. Two groups of deviations are visible. The first group of deviations
are found along the diagonal axis which represents the correct inference where true and
predicted label match. The second group of deviations is found in the predictions for air
conditioner, the overall lowest scoring class.

6.1.3. MEMORY SIZE

This section reports the required parameter memory for flash and RAM storage in context
of quantization. The weights used inside the model are read-only and can be stored in flash
memory. The results of the activations and intermediate results are stored in RAM memory.
On flash perspective, the SB-CNN model requires 415kB of flash size to store the parame-
ters. The depthwise separable variant SB-CNN-DS requires 98.4kB which is 4.2 times less
parameters. The Stride model requires 381.2kB of flash size to store the parameters. The
depthwise separable variant Stride-DS requires 184.6kB which is 2.1 times less parameters.
The post quantized models require 8bit storage for integers instead 32bit storage for float-
ing point numbers. Hence the quantized models SB-CNN, SB-CNN-DS, Stride and Stride-
DS require 3.97, 3.87, 3.97 and 3.97 times less flash memory respectively. By applying the
depthwise separable and convolution, the SB-CNN-DS model is 16.35 times smaller while
the Stride-DS model 8.13 times smaller than the keras floating point variants.

On RAM perspective, the SB-CNN model requires 48.6kB of volatile memory in the
floating point keras model. The TFLite post quantization and quantization aware models
require 25.5kB RAM which is 1.9 times less memory. The STM32 post quantization model
requires even less RAM memory and ends up at 19.7kB which is 2.48 times less RAM mem-
ory than the floating point variant. The depthwise separable variant SB-CNN-DS requires
2.41 times less RAM memory for the TFLite variants than its keras floating point variant.
The STM32 SB-CNN-DS model requires 13.3kB RAM which is 3.6 times less memory than
the original floating point model. The Stride model has 49.7kB of volatile memory in the
floating point keras model. The TFLite post quantization and quantization aware models

47

Figure 32: Confusion matrix results of floating point models versus quantized 8bit integer models.
Top to bottom; SB-CNN, SB-CNN-DS, Stride, Stride-DS

Left to right; keras, post quantization, quantization aware model

48

Figure 33: Quantization aware model confusion differences versus floating point models

require 25.5kB RAM which is 1.95 times less memory. The STM32 post quantization model
requires even less RAM memory and ends up at 19.7kB which is 2.51 times less RAM mem-
ory than the floating point variant. The depthwise separable variant SB-CNN-DS requires
2.55 times less RAM memory for the TFLite variants than its keras floating point variant.
The STM32 SB-CNN-DS model requires 15kB RAM which is 3.52 times less memory than
the original floating point model.

The overall model size illustrates the total amount of memory required, combining flash
and RAM memory. The largest floating point model is the SB-CNN with a model size of
463.75kB while the TFLite integer variant of 129.91kB is 3.57 times smaller. The SB-CNN-
DS model has a total memory size of 146.5kB for the floating point model with a 3.24 smaller
TFLite integer model of 45.31kB. The second largest model is the Stride model with 430.8kB
with a 3.55 times smaller TFLite integer variant of 121.33kB. The Stride-DS floating point
model size is 237.78 with a TFlite integer variant size of 67.65kB which is 3.51 times smaller.
All integer models are below 128kB (red bar), except for the TFLite SB-CNN variants which
are just above the limit with a model size of 129.91kB.

49

Model Variant Acc MACCs
Inference

time
ROM RAM

Total
size

SBCNN

Keras
TF-PQ
TF-QAT
STM32-PQ

71.4%
71.3%
71.2%
-

10.2M
10.2M
10.2M
10.2M

1114ms
425ms
425ms
441ms

415k
104k
104k
104k

48k6
25k6
25k6
19k7

464k6
129k6
129k6
123k7

SBCNN-DS

Keras
TF-PQ
TF-QAT
STM32-PQ

70.1%
70.0%
69.9%
-

1.75M
1.74M
1.76M
1.74M

336ms
127ms
127ms
119ms

98k4
25k4
25k4
25k4

48k1
19k9
19k9
13k3

146k5
45k3
45k3
38k7

Stride

Keras
TF-PQ
TF-QAT
STM32-PQ

70.1%
70.1%
70.1%
-

2.98M
2.97M
2.97M
2.97M

335ms
182ms
182ms
165ms

381k
95k8
95k8
95k8

49k7
25k5
25k5
19k7

430k7
121k3
121k3
115k5

Stride-DS

Keras
TF-PQ
TF-QAT
STM32-PQ

69.0%
68.9%
68.7%
-

557k
554k
554k
540k

105ms
40.1ms
40.1ms
37.4ms

184k
46k9
46k9
46k9

53k1
20k8
20k8
15k1

237k1
67k7
67k7
62k

Table 8: Quantisation results on UrbanSound8k dataset

6.1.4. INFERENCE PERFORMANCE

Table 8 reports two parameters in terms of performance; computational complexity (MACC)
and inference time. On MACC perspective requires the SB-CNN model 10185k MACCs to
run one inference in a keras model. The depthwise separable convolution variant requires
1746k MACC operations which is 5.8 times fewer calculations. The Stride model requires
2980k MACCs to run one inference in a keras model. The depthwise separable convolu-
tion variant requires 556k MACC operations which is 5.4 times fewer calculations. The post
quantization or quantization aware models have a comparable number of operations com-
pared to their floating point model variant. The cost of the computional complexity saving
has an impact on the accuracy. The SB-CNN model drops 1.3% test accuracy when depth-
wise separable convolution is used while the Stride model drops 1.1% in accuracy. The
number of parameters in the model does not change hence the count of convolution and
dense layer operations are the same. However, the storage size of the parameters is differ-
ent in the quantizated model variants.

On inference time perspective, requires the SB-CNN model more than 1 second to per-
form one inference while the depthwise separable variant runs 3.32 times faster. The inte-
ger variants of the SB-CNN floating point model 2.62 times faster and executes in 336ms.
The integer variants of the SB-CNN-DS floating point model 2.64 times faster. The Stride
model performs one inference in 335ms while the depthwise separable variant runs 3.19
times faster. The integer variants of the Stride floating point model 1.84 times faster. The
integer variants of the Stride-DS floating point model 2.63 times faster. The inference time
results are proportional to the number of MACC operations of the models.

6.1.5. DISCUSSION

The test accuracy scores for the baseline floating point models SB-CNN, SB-CNN-DS, Stride
and Stride-DS are comparable with the research results published by Nordby [2019]. In

50

context of reliability, the training sessions were repeated 10 times. The test accuracy is
slightly different for each train session as differs per test session. This is because the net-
work starts with random values and because time shifting augmentation is applied to the
dataset during training. The average accuracy results converge to a point where the depth-
wise separable convolution variants score 1.3% lower for SB-CNN and 1.1% lower for the
Stride model. This is a consequence of the number of MACCs being 5.8 and 5.4 times
lower respectively, compared to the classic convolution models. In the baseline research
of Nordby [2019], the depthwise separable variants score 2.1% lower and 2.6% higher re-
spectively. Although these scores were reproduced in this research, the overall 10 session
mean provides a more precise result on the actual accuracy. This underlines the impor-
tance of repeating the experiments.

The TFLite post quantization technique resulted in a maximum 0.1% accuracy loss. The
confusion matrix for each model after post quantization shows minimal differences from
the floating point variant. The number of class accuracy deviations above 0.5% for SBCNN,
SB-CNN-DS, Stride-DS are 1, 4 and 3 respectively. The Stride model had no deviation above
0.5%. It is worth noting that the greatest deviation after post quantization occurs at the
place where the floating point model scores highest. The gun shot class achieves the high-
est score with more than 90% for all models. Exactly at the real-predicted intersection of
the gun shot class, each post quantization model has the greatest loss. The accuracy loss
for correct predictions from the gun shot class for the models SB-CNN, SB-CNN-DS, Stride
and Stride-DS is 0.8, 1.2, 0.3 and 1.2%, respectively. Next to the gun shot class, only the
SB-CNN model has an accuracy loss for the jackhammer of 0.9%. The other losses are neg-
ligible.

The quantization aware technique has 0.1% overall accuracy loss more than post quan-
tization on the SBCNN models. For Stride model there is no loss for both techniques. For
the Stride-DS model, there is 0.2% more loss than post quantization. It is noteworthy that
the confusion matrix indicates much more accuracy differences on the diagnosis where the
correct predictions are located. Figure 33 gives an absolute summation of all deviations of
the quantization aware models from the floating point models.

The theoretical computational complexity does not change by applying post quantiza-
tion or quantization aware training. The number of MACCS operations remains the same
for each model variant. The number of weights also remains the same but the size of each
weight is smaller. The 8bit integers take up 4 times less space than the floating point num-
bers. Therefore, the flash memory usage for each model drops by a factor of 4. The RAM for
activations also shrinks 4 times but is less affected due to the internal scratchpad working
memory that the interference engine needs to store intermediate results. The RAM for the
STM32 post quantization models is smaller than the required TFLite memory because the
input tensor is in integer format instead of floating point. The disadvantage is that the scal-
ing parameters must be known outside the model logic, but it can be more efficient if the
preprocessing is already running in integer format. Depending on the type of network, the
overall memory size of the 8b integer model is 3.23 to 3.57 times smaller for the TFlite mod-
els. All quantized models are 6.67kB to 89.4kB below the 128kB memory limit except for
the SB-CNN TFLite model which is 1.19kB larger. The models are eligible for deployment

51

on tiny embedded devices and meet the research model size goal. The smallest model is
the SB-CNN-DS model with a total memory size of 38.6kB when the inputs are 8bit integer
or 45.3kB with floating point inputs. The headroom provides an opportunity to grow the
model accuracy by for example increase the number of filters.

The fastest model is the quantized Stride-DS model with 37.4ms for a model with inte-
ger inputs and 40ms with floating point inputs. The inference time is different between the
floating point and integer models while the number of MACC operations remains the same.
This is because integer operations are much faster and more efficient. Despite the fact that
the STM32476 microcontroller used a dedicated floating point hardware unit during the
measurements to accelerate these operations, the integer models remain faster. The SB-
CNN and Stride integer models run 3.19 to 3.32 times faster than the floating point variant.
The depthwise separable integer models run 2.63 times faster. An integer Stride-DS model
can do 10.6 times more inferences than an integer SBCNN model. The accuracy loss of the
Stride-DS model could be improved by analyzing more audio in the same amount of time.
The downside is that the audio preprocessing needs to be faster hence will consume more
power.

6.1.6. CONCLUSION

The network models SB-CNN, SB-CNN-DS, Stride and Stride-DS have been quantized from
32bit floating point precision to 8bit integer precision and evaluated using the UrbanSound8k
dataset. The effect on classification accuracy of 8bit post quantization and 8bit quanti-
zation aware training is negligibly small compared to the floating point models. TP-PQ
models score equal or slightly better than TP-QAT models. It has been suggested by Jacob
et al. [2017] that the post-quantization approach works well on large network models with
considerable representational capacity but would lead to a significant accuracy drop on
smaller models. The model sizes of referenced large networks are 98MB for ResNet-50 (He
et al. [2016]), 92MB for Inceptionv3 (Szegedy et al. [2015]) versus the MobileNet 16.8MB
Howard et al. [2017b] and MobileNet SSD 23MB. However, this is not the case for the base-
line models of this thesis with models ranging from 0.15MB to 0.44MB where post quanti-
zation performs better of equal. There is no significant effect on accuracy comparing the
classic convolution models to the depthwise separable convolution regardless of having 5.3
to 5.8 fewer MACC operations. The accuracy loss for QAT models is comparable with the
results reported by Krishnamoorthi [2018].

The experiments have demonstrated a substantial 3.24 to 3.57 model size reduction,
bringing three models far below the 128kB memory limit of resource scarce devices while
keeping the accuracy loss within 0 to 0.2%. Because the models perform the same inference
1.84 to 3.32 times faster, the battery powered devices can go back to sleep earlier which is
beneficial for power consumption. Post quantization performed overall better or equal
than training aware quantization and does not require model retraining. Quantization is
a feasible optimization technique to bring highly optimized networks to tiny embedded
devices like wearables or implanted medical devices in context of audio classification.

In context of model deployment, the three important criteria are accuracy, power con-
sumption and memory size. For applications where accuracy is preferenced, the SB-CNN
model is the best choice. The model achieves an accuracy of 71.3% for a model size of
129.88kB. The most energy-efficient model is the Stride-DS model with the smallest infer-
ence time of 40.0ms. The model also achieves the lowest accuracy of 68.9% among all mod-

52

els. Because the model is fast and output ten times more inferences in the same amount
of time than the model with the most accuracy. The Stride-DS model can therefore poten-
tially achieve higher accuracy by processing greater audio overlap. The extra consumption
for the audio preprocessing must then be taken into account. When memory size is the
most important constraint, the SB-CNN-DS model takes up the least space with 45.31kB
with an accuracy of 70.0%. Due to the combination of speed and memory size gain, it is
possible to deploy the models on a smaller hardware class. Because the integer model no
longer requires a floating point unit, the used CortexM4 microcontroller architecture can
be exchanged for a CortexM3 architecture, which is advantageous for the cost price.

6.2. RESULTS RQ2
The second question is related to the nature of the sounds the model needs to classify in
context of implantable hearing devices. The classification overlaps the acoustic event clas-
sification and acoustic scene classification tasks. The thesis models are originally designed
for the UrbanSound8k dataset which contains short individual sound events. Acoustic
scenes are longer audio recordings which are built up from multiple sound events that
characterize the environment. The DCASE2019 dataset contains audio scenes like public
square, park or others. RQ2 investigates scene classification accuracy of the thesis mod-
els using the DCASE2019 dataset. Two subquestions explore potential accuracy improve-
ments.

What is the effect on the DCASE 2019 dataset classification accuracy when using an
audio event classification model SB-CNN(-DS) and Stride(-DS) instead of an audio scene
classification model (baseline DCASE 2019)?
Experiment RQ2-1 evaluates the floating point thesis models on the DCASE2019 dataset
and compares the results with the DCASE2019 baseline competition model.

Can the UrbanSound8k dataset knowledge of the RQ1 floating point models improve the
accuracy on the DCASE2019 dataset? Three experiments are executed to combine both
datasets for the training of the thesis models. First, the models are trained on the com-
plete UrbanSound8k dataset. Next, the learned features are transferred into a new random
initialized model which is used as starting point for the training with DCASE2019 dataset.
Experiment RQ2-2 reuses the weights of 3 convolution layers and only retrains the dense
layer. Experiment RQ2-3 reuses the weights of 2 convolution layers and retrains the last
convolution layer and the dense layer. Experiment RQ2-4 reuses the weights of 1 convolu-
tion layer and retrains the last two convolution layer and the dense layer.

If the model architecture is not optimal for audio scene classification, how can the model
be improved? The thesis model architectures are improved in two experiments. The first ex-
periment RQ2-5 increases the filter size from 5x5 to 7x7 for the first two convolution layers.
This increases the input data span for each deeper layered pixel. The second experiment
RQ2-6 improves the dense layer classification capability by increasing the number of neu-
rons from 64 neurons to 100 neurons together with 7x7 filters.

53

6.2.1. OVERALL ACCURACY

Table 15 reports the overall model accuracies on the DCASE2019 dataset. The floating
point models SB-CNN, SB-CNN-DS, Stride and Stride-DS model scores respectively +6.7%,
+1.6%, +2.1% and -0.7% compared to the DCASE2019 baseline model while having respec-
tively 91.8%, 22.0%, 82.5% and 39.5% of the parameters. Experiment RQ2-2 scores 5.9 to
7.4% lower than the DCASE2019 baseline model. The RQ2-3 results are poor and below the
floating point reference variants. Experiment RQ2-4 yields a higher accuracy where the SB-
CNN, SB-CNN-DS, Stride and Stride-DS model score respectively +0.7%, +0.5%, +1.4% and
1.1% higher when compared to no pretrained parameters. Due to the increased filter size of
the models in RQ2-5, the number of weigths of the SB-CNN, SB-CNN-DS, Stride and Stride-
DS model are respectively 1.3x, 1.0x, 1.4x and 0.5x the number of parameters of the baseline
models. The SB-CNN, SB-CNN-DS, Stride and Stride-DS model scores respectively +2.7%,
+1.6%, +2.5% and +0.5% higher than the baseline model variants. In experiment RQ2-6,
the number of weigths of the SB-CNN, SB-CNN-DS, Stride and Stride-DS model are re-
spectively 1.4x, 1.5x, 1.5x and 0.7x the number of parameters of the baseline models. The
SB-CNN, SB-CNN-DS, Stride and Stride-DS model scores respectively +3.7%, +2.8%, +4.2%
and +1.8% higher than the baseline model variants.

Experiment RQ2-1 RQ2-2 RQ2-3 RQ2-4 RQ2-5 RQ2-6

Model
floating

point
3 conv
frozen

2 conv
frozen

1 conv
frozen

filter 7x7
filter 7x7

D100
SBCNN 69.2% ±0.3 55.1% ±0.3 66.8% ±0.5 69.9% ±0.2 71.9% ±0.7 72.9% ±0.3

SBCNN-DS 64.1% ±0.1 54.4% ±0.4 61.1% ±0.5 64.6% ±0.3 65.7% ±0.9 66.9% ±0.7
Stride 64.6% ±0.2 56.6% ±0.3 64.2% ±0.5 66.0% ±0.3 67.1% ±0.4 68.8% ±0.4

Stride-DS 61.8% ±0.3 56.6% ±0.5 61.4% ±0.2 62.9% ±0.2 62.3% ±0.8 63.6% ±0.5

Table 9: Overall accuracy results for DCASE 2019 development data set

6.2.2. DETAILED ACCURACY

Table 10 illustrates the detailed accuracy per class for the highest scoring models using the
baseline models. The highest accuracy increases are found in the airport (+17 to 23%),
shopping mail (+10 to +16%) and bus (+9 to +23%) scene. The street pedestrian and metro
scene scores overall lower. The latter two scenes also perform poorly on the 7x7 filter model
variant and the model with extended dense layer. The detailed results of all experiments
can be found in the appendix (section 8.2).

54

Model Test Accuracy - First convolution layer frozen
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 72.0% 72.7% 69.0% 65.5%
shopping mall 59.4% 69.1% 67.2% 70.1% 67.7%
metro station 54.5% 56.3% 51.4% 51.3% 46.9%

pedestrian street 60.9% 53.2% 49.1% 53.4% 51.9%
public square 40.7% 47.6% 41.0% 43.5% 38.0%
street traffic 86.7% 87.8% 85.2% 84.6% 84.4%

tram 64.0% 70.0% 59.3% 63.2% 60.7%
bus 62.3% 85.3% 75.5% 77.1% 72.5%

metro 65.1% 64.0% 52.5% 54.9% 51.0%
park 83.1% 93.4% 91.9% 93.3% 90.0%

Overall 62.5% 69.9% 64.6% 66.0% 62.9%

Table 10: RQ2-3 Accuracy results for DCASE 2019 development data set

6.2.3. DISCUSSION

The RQ2 experiments investigate the effect on accuracy when networks designed for audio
event classification are used in the context of audio scene classification. The reference is
the DCASE2019 baseline model with 62.5% accuracy on the DCASE2019 evaluation dataset.
The results of the experiments in context of RQ2 are reported in section 6.2. The experi-
ments RQ2-1 to RQ2-3 evaluate the partial reuse of learned parameters of models trained
on the UrbanSound8k dataset. Experiment RQ2-4 starts completely with random values.
In experiment RQ2-5 and RQ2-6, the models inherit some properties from the DCASE2019
baseline model.

Experiment RQ2-1 is based on random parameters and achieves a higher score for the
model models SBCNN, SBCNN-DS and Stride than the DCASE2019 baseline model. The
reuse of convolution layers trained on the UrbanSound8k dataset is not always benefi-
cial for accuracy. The worst result is achieved in RQ2-2 where three convolution layers are
reused. All models fluctuate between around 55%. The RQ2-3 experiment uses two con-
volution layers. The SBCNN (-DS) models score 2.4% and 3% less than RQ2-1, respectively.
The Stride and Stride-DS both score 0.4% lower than RQ2-1. The reuse of only the first con-
volution layer is advantageous for accuracy. The Stride models score 1.1 to 1.4% more than
double SBCNN models with 0.5 to 0.7% accuracy gain.

Experiment RQ2-5 uses a 7x7 filter instead of a 5x5 filter for the first two convolution
layers. The third convolution layer can not use a 7x7 filter as it would be larger than its in-
put tensor. The depthwise separable convolution models achieve less gain from the filter
size with 0.5-1.6% compared to the standard convolution models with 2.5-2.7% higher ac-
curacy. In addition to the filter, experiment RQ2-6 also increased the dense layer from 64
neurons to 100 neurons. The depthwise separable convolution models again achieve less
gain from the filter size with 1.8-2.8% compared to the standard convolution models with
3.7-4.2% higher accuracy. Remarkable is the SBCNN-DS model, which achieves 4.4% more
accuracy than the DCASE2019 baseline model while having 3.1x fewer parameters.

The training hyperparameters (section 5.3) are identical for all reported results. Small
experiments on the SB-CNN model have indicated that lower learning rates achieved a
slightly higher accuracy on the DCASE2019 dataset. This might indicate that the models

55

could capture the characteristics of the audio scene sounds better by smaller weight up-
dates. However, a learning rate of 0.001 increased the training time to 20h which makes it
not computationally not feasible within the timeframe of the research.

6.2.4. CONCLUSION

The acoustic event models can classify audio scenes with an acceptable accuracy. The
event models are capable of extracting useful features using a limited 0.72s audio input
window compared to the 10s input window of the DCASE2019 baseline model. Experiment
RQ2-1 has shown that the AEC networks SB-CNN, SB-CNN-DS, Stride achieve higher accu-
racy than the ASC DCASE2019 baseline model. The transferred parameters of the Urban-
Sound8k trained models are not beneficial when more than one layer is transferred. This
might indicate that the features extracted by the first layer are general while the features
of the middle and last convolution layer are specific for the UrbanSound8k dataset. Even
though the UrbanSound8k is 10.1 times smaller than the DCASE2019 dataset, the weight
transfer still provides an accuracy gain of 0.5 to 1.4%. The accuracy gain for depthwise sep-
arable convolution models was twice the gain of classic convolution. The model improve-
ment using the 7x7 filter size and increased dense layer are beneficial for the DCASE2019
scene classification.

The overall effect on the DCASE2019 accuracy is positive for the SB-CNN, SB-CNN-DS
and Stride model in experiments RQ2-1, 4, 5 and 6. The Stride-DS model does not score
significantly better in any experiment. However, all thesis models score very poorly on the
pedestrian street and metro classes compared to the DCASE2019 baseline model accuracy
(appendix). This indicates that the input size remains critical for these audio scenes. An ex-
plorative test of doubling the input size of the thesis models to 60x62 achieves an increased
overall accuracy of 75.8%, 70.2%, 73.5% and 69.3% respectively for the SB-CNN, SB-CNN-
DS, Stride and Stride-DS model. In this configuration, the SB-CNN model scores 0.5% and
7.1% better on the pedestrian street and metro class compared to the DCASE2019 baseline
model (appendix section 8.2.7).

6.3. RESULTS RQ3
The third research question is related to the impact of an implantable MEMS microphone.
Depending on the hardware and user application, the recording characteristics of the au-
dio for deployed network models can be different than the audio used during training. RQ3
investigates three different input features in this condition: Which input feature represen-
tation among Short-Time Fourier Transform, Mel spectrogram, Constant Q spectrogram
achieves the highest Urbansound8k accuracy on the SB-CNN(-DS) and Stride(-DS) mod-
els using an implanted MEMS microphone?

The RQ3 experiments investigate the effect on accuracy when the UrbanSound8k dataset
is represented using data features STFT, CQT and Mel. The thesis models are trained using
the original UrbanSound8k sound clips with augmentation. Next, the models are tested
with the same sound clips but recorded through a subcutaneous microphone according to
Calero et al. [2018]. The clips are filtered using a 1th order Butterworth BPF 100Hz-8kHz
and 200Hz-8kHz band pass filter to simulate the frequency sensitivity of the microphone.
The attenuation on the cut-off frequency is 3dB. The audio information outside the pass
band will be reduced with 6dB per octave. Because the amplitude information is reduced
below and above the pass band, the accuracy loss cannot be clearly assigned to the lower

56

or higher frequency information loss. Therefore the HPF 100Hz, HPF 200Hz and LPF 8kHz
are tested as well.

6.3.1. STFT
The short-term Fourier transformation is extracted using the librosa python library using
the librosa.core.stft function. The phase output of the 1024 point FFT has been discarded.
The magnitude output has been grouped by the numpy function split_array() to divide 513
bins into 60 groups to match the model input tensor. The function returns length modulo n
sub-arrays of size length/n+1 and the rest of size length/n. This results in the first 33 groups
having nine bins and the rest containing eight bins. All bins are summed into a final group
result. Four train sessions have been executed per models. Table 11 reports the results
using the 95% confidence interval.

Experiment STFT
BPF

100-8kHz
BPF

200-8kHz
LPF

8kHz
HPF

100Hz
HPF

200Hz
SBCNN 66.7 ±0.5 48.6 ±1.0 46.2 ±0.8 51.7 ±1.0 64.8 ±0.7 61.3 ±0.7

SBCNN-DS 65.8 ±0.5 44.2 ±1.1 41.5 ±1.0 46.6 ±1.0 63.8 ±0.7 60.3 ±0.5
Stride 66.6 ±0.3 50.6 ±0.9 47.3 ±0.7 53.6 ±1.0 64.3 ±0.4 60.6 ±0.5

Stride-DS 65.0 ±0.6 46.7 ±0.7 43.9 ±0.8 50.0 ±0.7 63.1 ±0.8 60.0 ±0.6

Table 11: Overall accuracy results for Urbansound8k STFT based feature

The SBCNN, SBCNN-DS, Stride, and Stride-DS-24 score respectively 4.7%, 4.3%, 3.5%
and 4% lower using the STFT feature compared to the Mel spectrogram. The band pass
filtered signal between 200Hz and 8kHz scores the lowest of the audio signals with respec-
tively 20.5%, 24.3%, 19.3% and 21.1% less accuracy than the audio signals used during train-
ing. The average accuracy drop for the HPF 100Hz, HPF 200Hz and LPF 8kHz is respectively
2.3%, 5.5% and 15.6%.

6.3.2. CQT
Next to the sample rate (22050Hz) and the number of output bins (60), the function also
requires the bins per octave information. The output bins are grouped into a set of oc-
taves relative to the minimum frequency. By defining the number of bins per octave (BPO),
the frequency of the latest bin is defined. When the number of bins per octave is high,
the number of octaves decreases and the frequency range of the transformation might not
capture the available frequency range of the signal. Therefore a set of CQT transformations
has been generated to maximize the overlap with the available signal information up until
the nyquist frequency (11025Hz) using different frequency spacings. Eight CQT configura-
tions have been created by changing the bins per octave from 6 to 13 using start frequencies
11Hz, 28Hz, 60Hz, 107Hz, 169Hz, 250Hz, 341Hz and 444Hz respectively. Four train sessions
have been executed per model for all BPO configurations. Table 12 reports the results using
the 95% confidence interval.

57

Model Test Accuracy CQT
Model BPO6 BPO7 BPO8 BPO9 BPO10 BPO11 BPO12 BPO13

SbCnn 65.4±1.4 67.5±1.0 67.3±1.7 68.7±0.7 68.6±1.0 67.4±1.5 67.8±1.1 66.4±0.9
SbCnnDs 63.4±1.9 65.6±2.0 66.4±0.6 68.2±0.7 67.9±1.0 66.7±1.8 66.5±2.4 64.4±0.2

Stride 65.2±1.2 66.1±0.8 67.1±1.1 68.3±1.7 68.0±1.1 67.3±1.3 67.0±1.1 65.0±1.1
StrideDs24 63.5±0.7 64.6±0.4 66.0±1.1 66.8±1.4 66.1±0.8 64.5±1.6 64.5±0.7 62.7±1.3

Table 12: Accuracy results for CQT on Urbansound8k data set

The best scoring configuration uses nine bins per octave. The difference between the
classic convolution and depthwise separable convolution ranges from 0.5% (BPO9) to 2%
for SBCNN and 1.1% (BPO8) to 2.8% for the Stride model. The SBCNN, SBCNN-DS, Stride,
and Stride-DS-24 score respectively 2.7%, 1.9%, 1.8% and 2.2% lower using the CQT feature
compared to the Mel spectrogram.

5 6 7 8 9 10 11 12 13 14

50

55

60

65

70

Bins per octave

A
cc

u
ra

cy
(%

)

noFilter band-100-8k band-200-8k
hpf-100 hpf-200 lpf-8k

Figure 34: SB-CNN model CQT accuracy

5 6 7 8 9 10 11 12 13 14

50

55

60

65

70

Bins per octave

A
cc

u
ra

cy
(%

)

noFilter band-100-8k band-200-8k
hpf-100 hpf-200 lpf-8k

Figure 35: SB-CNN-DS model CQT accuracy

5 6 7 8 9 10 11 12 13 14

50

55

60

65

70

Bins per octave

A
cc

u
ra

cy
(%

)

noFilter band-100-8k band-200-8k
hpf-100 hpf-200 lpf-8k

Figure 36: Stride model CQT accuracy

5 6 7 8 9 10 11 12 13 14

50

55

60

65

70

Bins per octave

A
cc

u
ra

cy
(%

)

noFilter band-100-8k band-200-8k
hpf-100 hpf-200 lpf-8k

Figure 37: Stride-DS model CQT accuracy

The SBCNN, SBCNN-DS, Stride, and Stride-DS-24 is tested band pass filtered audio be-
tween 200Hz and 8kHz, the accuracy drop is respectively 7.46%, 8.42%, 7.72% and 7.44% for
BPO9, 4.8%, 6.3%, 4.1% and 4.5% for BPO10 and 4.32%, 6.15%, 4.11% and 4.52% for BPO11.

58

The average accuracy drop for the HPF 100Hz, HPF 200Hz and LPF 8kHz is respectively
for BPO9 1.29%, 5.74%, 2.20% for BPO10 0.48%, 2.35%, 3.08% and 0.26%, 0.89%, 2.93% for
BPO11.

6.3.3. MEL SPECTROGRAM

The results with non-filtered audio are the floating point results of RQ1. Ten train sessions
have been executed per model. Table 13 reports the results using the 95% confidence in-
terval.

Experiment Mel
BPF

100-8kHz
BPF

200-8kHz
LPF 8k HPF 100 HPF 200

SBCNN 71.4 ±0.8 68.6 ±0.7 65.0 ±0.6 70.6 ±0.8 69.5 ±0.6 65.5 ±0.6
SBCNN-DS 70.1 ±0.6 67.3 ±0.7 63.1 ±0.5 69.3 ±0.9 68.3 ±0.8 63.9 ±0.8

Stride 70.1 ±0.5 66.6 ±0.5 63.2 ±0.6 68.8 ±0.5 68.5 ±0.4 64.8 ±0.7
Stride-DS 69.0 ±0.6 65.7 ±0.5 61.9 ±0.7 67.9 ±0.4 67.1 ±0.6 63.4 ±0.6

Table 13: Overall accuracy results for Urbansound8k Mel based feature

The SBCNN, SBCNN-DS, Stride, and Stride-DS-24 score respectively 6.4%, 7%, 6.9% and
7.1% lower using band pass filtered audio between 200Hz and 8kHz. The average accuracy
drop for the HPF 100Hz, HPF 200Hz and LPF 8kHz is respectively 3.05%, 7% and 2.25%.

6.3.4. OVERALL COMPARISON

Table 14 reports the average accuracy score of the SBCNN, SBCNN-DS, Stride, and Stride-
DS-24 models of the STFT, CQT and Mel feature.

Experiment No filter
BPF

100-8kHz
BPF

200-8kHz
LPF 8k HPF 100 HPF 200

STFT 66.0% 47.5% 44.7% 50.5% 63.8% 60.6%
CQT BPO6 64.4% 56.6% 50.3% 63.7% 56.7% 50.1%

Mel 70.2% 67.1% 63.3% 69.2% 68.4% 64.4%

Table 14: Overall accuracy results for Urbansound8k

6.3.5. EXPLORATORY EXPERIMENT

In previous experiments, the thesis models were trained using original UrbanSound8k sounds
and tested using band pass filtered sounds. This exploratory experiment trained the SB-
CNN model on band pass filtered sounds and tested the accuracy using non-filtered sounds.
The experiment was executed only once.

Trained BPF 100-8kHz Trained BPF 200-8kHz

Feature
Tested

BPF 100-8kHz
Tested

No filter
Tested

BPF 200-8kHz
Tested

No filter
STFT 68.2% 53.4% 67.7% 50.3%

CQT BPO6 67.3% 56.6% 66.9% 50.6%
Mel 73.1% 68.4% 72.1% 60.9%

Table 15: Urbansound8k accuracy results for SB-CNN model trained on BPF data

59

Figure 38: Bin Frequency relation of STFT, CQT and Mel data feature

6.3.6. DISCUSSION

The average model accuracy of the STFT feature scores 4.1% lower compared to the average
model accuracy of the Mel feature. The accuracy drops significantly when the models are
tested with band pass filtered signal. The average model accuracy loss is 18.5 and 21.5% for
respectively 100Hz-8kHz and 200Hz-8kHz. Most accuracy is lost on the high-end side of
the BPF with an average model accuracy loss of 15.5% for frequencies above 8kHz.

The best CQT scoring configuration is the BPO10 with an average model loss of 2.46%
compared to Mel. However a more fair comparison with STFT and Mel is configuration
BPO6. The center frequency of the first filter in the BPO6 configuration is 11Hz which
comes closest to the spectral coverage of the STFT and Mel features. The average CQT
BPO6 feature score is 5.7% lower compared to the Mel feature. The band pass filtered au-
dio drops the average model accuracy with 7.9 and 14.1% for respectively 100Hz-8kHz and
200Hz-8kHz. Most accuracy loss is found at the low-end side of the BPF with 7.7% and
14.3% for HPF 100Hz and HPF 200Hz respectively. The least model average accuracy loss
of 0.6% is at the high frequencies above 8kHz.

The Mel feature score shows an accuracy drop of 3.1 to 6.9% on the band pass 100Hz-
8kHz and 200Hz-8kHz respectively. Most average model accuracy loss is located in the low-
frequency information with 1.8% and 5.8% for HPF 100Hz and HPF 200Hz respectively. The
least average model accuracy loss of 0.95% is found at the high frequencies above 8kHz.

The Mel feature representation achieves the highest accuracy on the original Urban-
Sound8k sounds. The STFT scores 4.2% less using an equal amount of bins over the fre-
quency range. The CQT BPO6 scores 5.8% less using much more low-frequency resolution
with 41 bins below 1kHz (compared to 18 bins for Mel and six bins for STFT). When the
number of bins increases, fewer octaves are used to cover the 60 input bins. When the end
frequency is fixed, the start frequency needs to increase. The consequence is that the oc-
taves will grow faster in frequency. The shape of the CQT becomes less steep and matches
more with the Mel shape (Figure 38). Even though the BPO13 is similar to the Mel shape,
the CQT feature scores less because the start frequency is already at 444Hz. The Mel feature
does not miss the low-frequency information and captures more information as it starts
from 0Hz and is linear until 1kHz.

When the UrbanSound8k sounds are band pass filtered, the accuracy drops for all data

60

features. The high-end attenuation above 8kHz affects the STFT feature more as it drops
15.5% over 18 STFT bins while the CQT and Mel drop only 0.7 to 1% spanning respectively 3
and 6 bins above 8kHz. The low-end attenuation below 200Hz affects the CQT feature more
as it spans 27 CQT bins with an accuracy loss of 14.3%. Even though less bins are affected
in the low-end attenuation for STFT (2 bins) and Mel (5 bins) the loss of respectively 5.4%
and 5.8% is larger than the loss at the high-end attenuation. This might indicate that the
low frequency information is more important in the Urbansound8k classification. The Mel
feature has the best of both worlds with almost no accuracy loss at the high-end attenuation
and a relative low accuracy loss at the low-end attenuation.

6.3.7. CONCLUSION

The Mel feature representation achieves the highest UrbanSound8k accuracy using simu-
lated MEMS microphone audio. It outperforms the CQT and STFT data feature on filtered
data as well the original data. The experiments have indicates that the CQT can perform
better by optimizing the start frequency and the number of bins per octave. However, the
frequency range of the STFT and Mel should cover the same range for fair comparison.

The accuracy of all models dropped significantly when the test sounds were filtered
using a 200Hz-8kHz band pass of 6dB attenuation per octave. An exploratory experiment
has indicated that a similar effect exists in a reversed scenario as well. When the SB-CNN
model was trained on band filtered data, the accuracy score drops significantly when tested
on the original audio. Therefore it is recommended to consider the microphone frequency
sensitivity of the target device during the training process to avoid accuracy loss during the
deployment phase.

61

7. CONCLUSIONS
This thesis has investigated to which extend CNNs can be used on tiny embedded devices
in context of audio classification. The research was focused on the accuracy of CNNs when
deployed on implantable hearing devices, facing three challenges.

The first challenge was related to the hardware resource constraints. The research in-
vestigated the effect of quantization on four convolutional neural networks, designed for
the low power microcontroller STM32L476 using the UrbanSound8k dataset. The arith-
metic precision has been reduced from 32bit floating point to 8bit integer precision us-
ing post quantization and training aware quantization techniques. The accuracy loss was
limited from 0 to 0.3% while reducing the model memory size 3.5 times. The models per-
formed inferences 2.6 times faster. Although quantization has been successfully applied to
well parameterized neural networks, research work (Jacob et al. [2017]) also indicated that
post quantization might not work well on small models. The experiments have demon-
strated that post-quantization performs better or equal than quantization aware training
on the UrbanSound8k dataset. Therefore post quantization method might be worth con-
sidering as the first quantization option as it does not require model retraining and allow
reuse of existing models without the original dataset.

The second challenge was associated with network model type and the nature of the
sounds that need to be classified. This research indicated that it is feasible to use an acous-
tic event classification model on an acoustic scene classification task. Experiments using
transfer learning have increased the accuracy of all thesis models above the DCASE2019
baseline accuracy. Model architecture improvements regarding filter size and dense layer
increased the overall accuracy. However, all experiments performed poorly on the street
pedestrian and metro class, demonstrating a trade-off between minimum input size and
accuracy.

The last challenge was linked to the microphone frequency response of the application
hardware. Experiments evaluated the STFT, CQT and Mel data feature when presented
with simulated sounds of the implanted microphone (Calero et al. [2018]). The Mel feature
achieved the highest accuracy on the thesis models among the STFT and CQT features.
The results have shown significant accuracy loss on all models and feature combinations
when the test audio is not recorded with the same frequency sensitivity as the training data.
Further investigations on the impact of deployment versus training recording conditions
are required.

The depthwise separable convolution algorithm is preferred over the classic convolu-
tion algorithm in terms of inference speed. The mathematical optimization reduced the
number of multiply and accumulate operations by a factor of five which demonstrated
three times faster models. If the models are already small, decreasing the number of learn-
able parameters might result in too few parameters to properly learn during training. The
accuracy loss depends on the task or dataset at hand. On all UrbanSound8k experiments,
the accuracy loss was up to 2% while the DCASE2019 scene classification lost up to 5%
accuracy.

The 8bit quantization has a negligible accuracy impact on the UrbanSound8k classifica-
tion using depthwise separable convolution. The combination of quantization and depth-
wise separable convolution resulted in a model size reductions up to 10 times with only
1.5% accuracy loss. This creates opportunities to drive quantization further to lower bit-
width representations. However, it is unknown at which point the depthwise separable

62

convolution will be impacted nor if this is the right convolution type going forward in au-
dio classification.

The Stride-DS model is the most advantageous model for an implantable hearing ap-
plication. The model is suitable for event and scene classification requiring only 40ms in-
ference time. The gain of battery autonomy is more beneficial versus the accuracy loss
compared to the other models. The model memory of 68kB, including both RAM and flash
parameters, provides space for application and audio preprocessing code with the prede-
fined 128kB limit.

The models have not been tested on real-world audio. Although the classification ac-
curacy has been measured on the dataset, it does not indicate what will be the prediction
output for sounds that do not belong to any of the classification classes. More research
is required to evaluate the models in a realistic scenario using open set classification or
another algorithm that can distinguish between the known and unknown data.

From a wide range of experiments, this research shows that convolutional neural net-
works for audio classification can be effectively reduced in size to make it suitable for tiny
embedded devices. However, the edge hardware specifications must be taken into account.
The frequency-specific output of an embedded microphone can lead to significant accu-
racy loss during deployment.

7.1. FUTURE WORK
The experiments of RQ3 have indicated a significant drop in accuracy when a model is
trained with original data and tested with bandpass filtered data using three different data
features. When less information becomes available, the network might miss key informa-
tion. An exploratory test has suggested that the opposite is also true. If the network is
trained with filtered data, the accuracy also drops significantly when more information is
provided to the network. More research is required to understand this phenomenon and
keep an acceptable application accuracy in deployment stage. The spectrum data augmen-
tation techniques for audio classification compared by Wei et al. [2020] might be a good
starting point.

The power consumption can be further improved by quantizing to lower bit widths. Re-
cently a new quantization technique, called Quantization Guided Training, was introduced
by (Ghamari et al. [2021]). The technique can be applied to hybrid models with mixed bit
precision down to 2-bit. Nowdays semiconductor manufacturers (Syntiant [2020], ARM
[2020]) are producing neural processing units (NPU) with dedicated arithmetic logic to ex-
ecute neural network algorithms faster and more energy-efficient. The hardware provides
a platform to evaluate more aggressive quantization using bit widths of 1-, 2-, 4- and 8bit
weights.

The literature does not provide a clear answer on how the representative dataset affects
the quantization quality. The post quantization process uses a representative dataset to cal-
ibrate the post quantization scaling. The representative dataset is a set of input data values
that are large enough to represent typical values. If the data is too small, the scaling might
clip the model during deployment. If the data is too large, the scaling will generate large
rounding errors. In both cases, the accuracy is affected negatively. Another optimization
for quantization quality is the removal of outliers in the weight value distribution which
can improve the quantization precision for all weight values.

The models have not been evaluated with data from unknown classes. More research is

63

required to test the models in a realistic scenario using open set classification (Geng et al.
[2018]) or another algorithm that can distinguish between the known and unknown data.
The algorithm could be tested on SONYC Urban Sound Tagging dataset of Mark Cartwright
and Bello [2019] which contains sounds related to UrbanSound8k classes and unknown
classes.

64

8. APPENDIX

8.1. RQ1 EXPERIMENTS

8.1.1. SB-CNN(-DS)

Figure 39: Test accuracy SB-CNN float model Figure 40: Test accuracy SB-CNN-DS float model

Figure 41: Test accuracy SB-CNN post quantiza-
tion model

Figure 42: Test accuracy SB-CNN-DS post quan-
tization model

Figure 43: Test accuracy SB-CNN quantization
aware model

Figure 44: Test accuracy SB-CNN-DS quantiza-
tion aware model

65

8.1.2. STRIDE(-DS)

Figure 45: Test accuracy Stride float model Figure 46: Test accuracy Stride-DS float model

Figure 47: Test accuracy Stride post quantization
model

Figure 48: Test accuracy Stride-DS post quantiza-
tion model

Figure 49: Test accuracy Stride quantization
aware model

Figure 50: Test accuracy Stride-DS quantization
aware model

66

8.2. RQ2 EXPERIMENTS

8.2.1. EXPERIMENT RQ2-1

Model Test Accuracy - Full retrain
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 69.3% 67.9% 63.9% 62.5%
shopping mall 59.4% 70.2% 64.6% 70.5% 67.5%
metro station 54.5% 57.8% 51.2% 50.5% 44.5%

street pedestrian 60.9% 54.4% 49.8% 51.7% 49.1%
public square 40.7% 45.9% 41.4% 38.4% 37.0%
street traffic 86.7% 87.3% 84.8% 84.2% 83.1%

tram 64.0% 67.5% 62.2% 66.6% 60.9%
bus 62.3% 85.1% 76.5% 79.7% 76.5%

metro 65.1% 61.4% 51.6% 48.9% 46.9%
park 83.1% 93.3% 90.9% 91.8% 89.7%

Overall 62.5% 69.2% 64.1% 64.6% 61.8%

Table 16: Accuracy results for DCASE 2019 development data set

8.2.2. EXPERIMENT RQ2-2

Model Test Accuracy - 3 conv layers frozen
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 54.0% 54.1% 57.6% 57.1%
shopping mall 59.4% 58.6% 56.3% 59.8% 61.6%
metro station 54.5% 34.8% 39.3% 38.6% 35.8%

street pedestrian 60.9% 48.6% 44.5% 48.2% 48.7%
public square 40.7% 29.4% 30.3% 32.5% 33.3%
street traffic 86.7% 83.3% 81.2% 81.0% 81.4%

tram 64.0% 48.9% 47.3% 48.1% 47.9%
bus 62.3% 70.1% 67.0% 69.2% 68.6%

metro 65.1% 37.8% 37.0% 43.1% 46.5%
park 83.1% 85.7% 86.6% 87.7% 85.3%

Overall 62.5% 55.1% 54.4% 56.6% 56.6%

Table 17: Accuracy results for DCASE 2019 development data set

67

8.2.3. EXPERIMENT RQ2-3

Model Test Accuracy - 2 conv layers frozen
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 68.2% 62.2% 64.5% 63.1%
shopping mall 59.4% 68.9% 65.4% 69.2% 63.6%
metro station 54.5% 51.4% 43.8% 47.5% 43.7%

street pedestrian 60.9% 51.4% 51.5% 52.7% 53.2%
public square 40.7% 45.1% 37.6% 40.1% 36.3%
street traffic 86.7% 85.9% 83.5% 85.1% 82.4%

tram 64.0% 64.1% 53.0% 59.7% 62.2%
bus 62.3% 82.1% 71.8% 77.0% 70.0%

metro 65.1% 57.5% 50.6% 54.3% 50.1%
park 83.1% 93.4% 92.0% 91.8% 89.6%

Overall 62.5% 66.8% 61.1% 64.2% 61.4%

Table 18: Accuracy results for DCASE 2019 development data set

8.2.4. EXPERIMENT RQ2-4

Model Test Accuracy - 1 conv layers frozen
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 72.0% 72.7% 69.0% 65.5%
shopping mall 59.4% 69.1% 67.2% 70.1% 67.7%
metro station 54.5% 56.3% 51.4% 51.3% 46.9%

street pedestrian 60.9% 53.2% 49.1% 53.4% 51.9%
public square 40.7% 47.6% 41.0% 43.5% 38.0%
street traffic 86.7% 87.8% 85.2% 84.6% 84.4%

tram 64.0% 70.0% 59.3% 63.2% 60.7%
bus 62.3% 85.3% 75.5% 77.1% 72.5%

metro 65.1% 64.0% 52.5% 54.9% 51.0%
park 83.1% 93.4% 91.9% 93.3% 90.0%

Overall 62.5% 69.9% 64.6% 66.0% 62.9%

Table 19: Accuracy results for DCASE 2019 development data set

68

8.2.5. EXPERIMENT RQ2-5

Model Test Accuracy - 7x7 filter
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 71.8% 68.5% 70.1% 62.2%
shopping mall 59.4% 72.3% 68.7% 72.7% 71.1%
metro station 54.5% 64.4% 53.1% 53.6% 45.9%

street pedestrian 60.9% 55.8% 51.8% 52.8% 51.7%
public square 40.7% 48.1% 40.8% 41.7% 37.3%
street traffic 86.7% 88.6% 87.1% 84.8% 83.1%

tram 64.0% 73.4% 60.7% 67.6% 60.4%
bus 62.3% 85.9% 78.3% 81.0% 75.8%

metro 65.1% 65.3% 57.2% 53.8% 46.2%
park 83.1% 93.5% 91.2% 93.3% 89.2%

Overall 62.5% 71.9% 65.7% 67.1% 62.3%

Table 20: Accuracy results for DCASE 2019 development data set

8.2.6. EXPERIMENT RQ2-6

Model Test Accuracy - 7x7 filter - Dense 100
Scene label DCase Baseline SB-CNN SB-CNN-DS Stride Stride-DS

airport 48.4% 75.1% 71.9% 71.5% 66.4%
shopping mall 59.4% 74.2% 69.4% 73.0% 71.0%
metro station 54.5% 64.6% 55.7% 55.6% 48.1%

street pedestrian 60.9% 54.1% 51.0% 55.9% 49.9%
public square 40.7% 50.4% 42.6% 45.3% 39.7%
street traffic 86.7% 87.5% 86.4% 85.5% 84.4%

tram 64.0% 74.8% 63.1% 68.1% 59.4%
bus 62.3% 85.6% 81.4% 83.0% 77.8%

metro 65.1% 68.7% 55.2% 56.1% 48.9%
park 83.1% 94.5% 91.8% 93.5% 89.9%

Overall 62.5% 72.9% 66.9% 68.8% 63.6%

Table 21: Accuracy results for DCASE 2019 development data set

69

8.2.7. EXPLORATORY TEST

This section reports the exploratory testing using the thesis model architecture with in-
creased input size of 60x62.

Figure 51: Confusion matrix SB-CNN model with
60x62 input

Figure 52: Confusion matrix SB-CNN-DS model
with 60x62 input

Figure 53: Confusion matrix Stride model with
60x62 input

Figure 54: Confusion matrix Stride-DS model
with 60x62 input

70

8.3. RQ3 EXPERIMENTS

8.3.1. EXPLORATORY TEST

This section reports the exploratory test by training the SB-CNN model on band pass fil-
tered data while testing the model on non-filtered data.

Figure 55: SB-CNN model trained and tested on
STFT BPF 100Hz-8kHz

Figure 56: SB-CNN model trained on STFT BPF
100Hz-8kHz and tested on non-filtered data

Figure 57: SB-CNN model trained and tested on
STFT BPF 200Hz-8kHz

Figure 58: SB-CNN model trained on STFT BPF
200Hz-8kHz and tested on non-filtered data

71

Figure 59: SB-CNN model trained and tested on
CQT BPF 100Hz-8kHz

Figure 60: SB-CNN model trained on CQT BPF
100Hz-8kHz and tested on non-filtered data

Figure 61: SB-CNN model trained and tested on
CQT BPF 200Hz-8kHz

Figure 62: SB-CNN model trained on CQT BPF
200Hz-8kHz and tested on non-filtered data

Figure 63: SB-CNN model trained and tested on
Mel BPF 100Hz-8kHz

Figure 64: SB-CNN model trained on Mel BPF
100Hz-8kHz and tested on non-filtered data

72

Figure 65: SB-CNN model trained and tested on
Mel BPF 200Hz-8kHz

Figure 66: SB-CNN model trained on Mel BPF
200Hz-8kHz and tested on non-filtered data

BIBLIOGRAPHY
Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016

on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec (general data pro-
tection regulation). URL http://data.europa.eu/eli/reg/2016/679/2016-05-04.
9

Github nordby jonnor. URL https://github.com/jonnor/ESC-CNN-microcontroller\
commitf7a02189e18cc845dd4e912654a2509215475410. 42

Arm ai platform neural processor unit, 2020. URL https://www.arm.com/company/news/
2020/10/latest-npu-adds-to-arm-ai-platform-performance. 63

Jakob Abeßer. A review of deep learning based methods for acoustic scene classification.
Applied Sciences, 10(6), 2020. 8, 9

Cesare Alippi, Simone Disabato, and Manuel Roveri. Moving convolutional neural net-
works to embedded systems: The alexnet and vgg-16 case. pages 212–223, 04 2018. doi:
10.1109/IPSN.2018.00049. 21

J. Allen. Short term spectral analysis, synthesis, and modification by discrete fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3):235–238, 1977.
doi: 10.1109/TASSP.1977.1162950. 11

N. Aloysius and M. Geetha. A review on deep convolutional neural networks. In 2017 Inter-
national Conference on Communication and Signal Processing (ICCSP), pages 0588–0592,
2017. doi: 10.1109/ICCSP.2017.8286426. 14

Laith Alzubaidi, Omran Al-Shamma, Mohammed Fadhel, and Laith Farhan. Optimizing
the performance of breast cancer classification by employing the same domain transfer
learning from hybrid deep convolutional neural network model. Electronics, 9:445, 03
2020. doi: 10.3390/electronics9030445. 4

73

http://data.europa.eu/eli/reg/2016/679/2016-05-04
https://github.com/jonnor/ESC-CNN-microcontroller\ commit f7a02189e18cc845dd4e912654a2509215475410
https://github.com/jonnor/ESC-CNN-microcontroller\ commit f7a02189e18cc845dd4e912654a2509215475410
https://www.arm.com/company/news/2020/10/latest-npu-adds-to-arm-ai-platform-performance
https://www.arm.com/company/news/2020/10/latest-npu-adds-to-arm-ai-platform-performance

Kamil Adiloglu; Jorg-Hendrik Bach. Hearing aid research data set for acoustic environment
recognition (hear-ds). 2020. URL http://sigport.org/5392. 11

Jon Barker, Shinji Watanabe, Emmanuel Vincent, and Jan Trmal. The fifth ’chime’ speech
separation and recognition challenge: Dataset, task and baselines. 03 2018. 11

Judith C. Brown. Calculation of a constant q spectral transform. The Journal of the Acousti-
cal Society of America, 89(1):425–434, 1991. doi: 10.1121/1.400476. 12

A. Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019. ISBN
9781999579517. URL https://books.google.be/books?id=0jbxwQEACAAJ. 15, 20

Diego Calero, Stephan Paul, André Gesing, Fabio Alves, and Júlio A. Cordioli. A technical re-
view and evaluation of implantable sensors for hearing devices. Biomedical engineering
online, 17(1):23–26, 2018. 31, 36, 56, 62

Hangting Chen, Zuozhen Liu, Zongming Liu, Pengyuan Zhang, and Yonghong Yan. Inte-
grating the data augmentation scheme with various classifiers for acoustic scene model-
ing. Technical report, DCASE2019 Challenge, June 2019. 11, 12

François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016. URL http://arxiv.org/abs/1610.02357. 17

Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-bit quantization of neural networks
for efficient inference. CoRR, abs/1902.06822, 2019. URL http://arxiv.org/abs/
1902.06822. 30

Heidi Christensen, Jon Barker, Ning Ma, and Phil Green. The chime corpus: a resource
and a challenge for computational hearing in multisource environments. In in Proc.
Interspeech’10, Makuhari, 2010. 10

N. Cristianini and B. Schölkopf. Support vector machines and kernel methods: The new
generation of learning machines. AI Mag., 23:31–42, 2002. 14

Gert Dekkers, Steven Lauwereins, Bart Thoen, Mulu Weldegebreal Adhana, Henk Brouck-
xon, Bertold Van den Bergh, Toon van Waterschoot, Bart Vanrumste, Marian Verhelst,
and Peter Karsmakers. The sins database for detection of daily activities in a home envi-
ronment using an acoustic sensor network. 2017. URL $$Uhttps://lirias.kuleuven.
be/retrieve/525662$$D18-151.pdf[freelyavailable]. 10

John M. Eargle. Robinson-Dadson Equal Loudness Contours, pages 278–279. Springer US,
Boston, MA, 2002. ISBN 978-1-4615-2027-6. doi: 10.1007/978-1-4615-2027-6_134. URL
https://doi.org/10.1007/978-1-4615-2027-6_134. 7

Junxi Feng, Xiaohai He, Qizhi Teng, Chao Ren, Honggang Chen, and Yang Li. Reconstruc-
tion of porous media from extremely limited information using conditional generative
adversarial networks. Physical Review E, 100, 09 2019. doi: 10.1103/PhysRevE.100.
033308. 16

74

http://sigport.org/5392
https://books.google.be/books?id=0jbxwQEACAAJ
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1902.06822
http://arxiv.org/abs/1902.06822
$$Uhttps://lirias.kuleuven.be/retrieve/525662$$D18-151.pdf [freely available]
$$Uhttps://lirias.kuleuven.be/retrieve/525662$$D18-151.pdf [freely available]
https://doi.org/10.1007/978-1-4615-2027-6_134

P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumbley. Chime-home: A dataset
for sound source recognition in a domestic environment. In 2015 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 1–5, 2015. doi:
10.1109/WASPAA.2015.7336899. 10

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Chan-
ning Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled
dataset for audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017. 10, 34

Chuanxing Geng, Sheng Jun Huang, and Songcan Chen. Recent advances in open set recog-
nition: A survey. CoRR, abs/1811.08581, 2018. URL http://arxiv.org/abs/1811.
08581. 64

A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019. ISBN
9781492032618. URL https://books.google.be/books?id=HHetDwAAQBAJ. 16, 19

Sedigh Ghamari, Koray Ozcan, Thu Dinh, Andrey Melnikov, Juan Carvajal, Jan Ernst, and
Sek Chai. Quantization-guided training for compact tinyml models, 2021. 63

I. J. Good. Introduction to Cooley and Tukey (1965) An Algorithm for the Machine Calcula-
tion of Complex Fourier Series, pages 201–216. Springer New York, New York, NY, 1997.
ISBN 978-1-4612-0667-5. doi: 10.1007/978-1-4612-0667-5_9. URL https://doi.org/
10.1007/978-1-4612-0667-5_9. 7

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and
William J. Dally. EIE: efficient inference engine on compressed deep neural network.
CoRR, abs/1602.01528, 2016. URL http://arxiv.org/abs/1602.01528. 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 52

Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen. Acoustic scene classification in
dcase 2020 challenge: generalization across devices and low complexity solutions. pages
56–60, 2020. 9

Tin Kam Ho. Random decision forests. Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, QC, 14–16 August 1995., page 278–282,
1995. 14

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017a. URL
http://arxiv.org/abs/1704.04861. 21

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017b. URL
http://arxiv.org/abs/1704.04861. 52

75

http://arxiv.org/abs/1811.08581
http://arxiv.org/abs/1811.08581
https://books.google.be/books?id=HHetDwAAQBAJ
https://doi.org/10.1007/978-1-4612-0667-5_9
https://doi.org/10.1007/978-1-4612-0667-5_9
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

Khalid Hussain, Mazhar Hussain, and Muhammad Gufran Khan. Improved acoustic scene
classification with dnn and cnn. IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE), 2017. 9

Muhammad Huzaifah. Comparison of time-frequency representations for environmental
sound classification using convolutional neural networks. CoRR, abs/1706.07156, 2017.
31

Seo Hyeji and Park Jihwan. Acoustic scene classification using various pre-processed fea-
tures and convolutional neural networks. Technical report, DCASE2019 Challenge, June
2019. 12

Keisuke Imoto. Introduction to acoustic event and scene analysis. Acoustical Science and
Technology, 39, 05 2018. doi: 10.1250/ast.39.182. 7, 8, 10

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. CoRR, abs/1712.05877, 2017.
URL http://arxiv.org/abs/1712.05877. 27, 28, 30, 31, 52, 62

Khaled Koutini, Hamid Eghbal-zadeh, and Gerhard Widmer. Acoustic scene classification
and audio tagging with receptive-field-regularized CNNs. Technical report, DCASE2019
Challenge, June 2019. 12

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper. CoRR, abs/1806.08342, 2018. URL http://arxiv.org/abs/1806.
08342. 27, 30, 52

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012. 22

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural network in-
ference with floating-point weights and fixed-point activations. CoRR, abs/1703.03073,
2017. URL http://arxiv.org/abs/1703.03073. 29

Jongpil Lee, Taejun Kim, Jiyoung Park, and Juhan Nam. Raw waveform-based audio clas-
sification using sample-level CNN architectures. CoRR, abs/1712.00866, 2017. URL
http://arxiv.org/abs/1712.00866. 8

Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point quantization
of deep convolutional networks. CoRR, abs/1511.06393, 2015. URL http://arxiv.org/
abs/1511.06393. 29

Graham Dove Jason Cramer Vincent Lostanlen Ho-Hsiang Wu Justin Salamon Oded Nov
Mark Cartwright, Ana Elisa Mendez Mendez and Juan Pablo Bello. Sonyc urban sound
tagging (sonyc-ust): a multilabel dataset from an urban acoustic sensor network, May
2019. URL https://doi.org/10.5281/zenodo.3233082. 64

76

http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1703.03073
http://arxiv.org/abs/1712.00866
http://arxiv.org/abs/1511.06393
http://arxiv.org/abs/1511.06393
https://doi.org/10.5281/zenodo.3233082

Annamaria Mesaros, Toni Heittola, Aleksandr Diment, Benjamin Elizalde, Ankit Shah, Em-
manuel Vincent, Bhiksha Raj, and Tuomas Virtanen. Dcase 2017 challenge setup: Tasks,
datasets and baseline system. 11 2017a. 11

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Assessment of human and ma-
chine performance in acoustic scene classification: Dcase 2016 case study. pages 319–
323, 10 2017b. doi: 10.1109/WASPAA.2017.8170047. 8

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. A multi-device dataset for urban
acoustic scene classification. arXiv preprint arXiv:1807.09840, 2018. 9

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Acoustic scene classification
in dcase 2019 challenge: Closed and open set classification and data mismatch setups.
2019a. 37

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Acoustic scene classification
in dcase 2019 challenge: Closed and open set classification and data mismatch setups.
pages 164–168, 01 2019b. doi: 10.33682/m5kp-fa97. 9, 34

Satoshi Nakamura, K. Hiyane, F. Asano, Takanobu Nishiura, and T. Yamada. Acoustical
sound database in real environments for sound scene understanding and hands-free
speech recognition. Proc. ICLRE, pages 965–968, 01 2000. 10

Jon Nordby. Environmental sound classification on microcontrollers using convolutional
neural networks, 2019. 22, 23, 31, 32, 33, 38, 41, 42, 50, 51

Soha Nossier, n Diaa, and Saleh Shehaby. Enhanced smart hearing aid using deep neural
networks. Alexandria Engineering Journal, 58, 06 2019. doi: 10.1016/j.aej.2019.05.006. 22

Karol Piczak. Esc: Dataset for environmental sound classification. pages 1015–1018, 10
2015a. doi: 10.1145/2733373.2806390. 10

Karol Piczak. Environmental sound classification with convolutional neural networks.
pages 1–6, 09 2015b. doi: 10.1109/MLSP.2015.7324337. 22

Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages 532–538. Springer
US, Boston, MA, 2009. ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_565.
URL https://doi.org/10.1007/978-0-387-39940-9_565. 33

J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound research.
In 22nd ACM International Conference on Multimedia (ACM-MM’14), pages 1041–1044,
Orlando, FL, USA, Nov. 2014a. 37

Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data aug-
mentation for environmental sound classification. CoRR, abs/1608.04363, 2016. URL
http://arxiv.org/abs/1608.04363. 10, 22, 23, 32, 38

Justin Salamon, Christopher Jacoby, and Juan Bello. A dataset and taxonomy for urban
sound research. Proceedings - 22nd ACM International Conference on Multimedia, 11
2014b. doi: 10.1145/2647868.2655045. 10

77

https://doi.org/10.1007/978-0-387-39940-9_565
http://arxiv.org/abs/1608.04363

Justin Salamon, Duncan Macconnell, Mark Cartwright, Peter Li, and Juan Bello. Scaper:
A library for soundscape synthesis and augmentation. 10 2017. doi: 10.1109/WASPAA.
2017.8170052. 10

Nasir Saleem and Muhammad Khattak. Deep neural networks for speech enhancement
in complex-noisy environments. International Journal of Interactive Multimedia and
Artificial Intelligence, InPress:1, 01 2019. doi: 10.9781/ijimai.2019.06.001. 4

Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey Aleksic. A
quantization-friendly separable convolution for mobilenets. 03 2018. 30

Siddharth Sigtia, Adam M Stark, Sacha Krstulović, and Mark D Plumbley. Automatic en-
vironmental sound recognition: Performance versus computational cost. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24(11):2096–2107, 2016. 8

Harsh Sinha and Pawan K. Ajmera. Interweaving convolutions : An application to audio
classification harsh. In 2018 ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD). 2018., 2018. 23

Malcolm Slaney. Auditory toolbox: A matlab toolbox for auditory modeling work. technical
report, version 2, interval research corporation, 1998. 1998. 12

Hongwei Song, Jiqing Han, and Shiwen Deng. A compact and discriminative feature based
on auditory summary statistics for acoustic scene classification. CoRR, abs/1904.05243,
2019. URL http://arxiv.org/abs/1904.05243. 31

S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the psycho-
logical magnitude pitch. Journal of the Acoustical Society of America, 8:185–190, 1937.
12

Syntiant. Syntiant introduces second generation ndp120 deep learn-
ing processor for audio and sensor apps, 2020. URL https://
www.syntiant.com/post/syntiant-introduces-second-generation\
-ndp120-deep-learning-processor-for-audio-and-sensor-apps. 63

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision, 2015. 52

Artem Vasilyev. Cnn optimizations for embedded systems and fft. Standford
http://cs231n.stanford.edu/reports/2015/pdfs/tema8final.pdf, 2015. 17

Haoren Wang, Haotian Shi, Xiaojun Chen, Liqun Zhao, Yixiang Huang, and Chengliang Liu.
An improved convolutional neural network based approach for automated heartbeat
classification. Journal of Medical Systems, 44, 02 2020. doi: 10.1007/s10916-019-1511-2.
4

P. Warden and D. Situnayake. TinyML: Machine Learning with TensorFlow Lite on Ar-
duino and Ultra-low-power Microcontrollers. O’Reilly Media, Incorporated, 2019. ISBN
9781492052043. URL https://books.google.be/books?id=sB3mxQEACAAJ. 24

78

http://arxiv.org/abs/1904.05243
https://www.syntiant.com/post/syntiant-introduces-second-generation\-ndp120-deep-learning-processor-for-audio-and-sensor-apps
https://www.syntiant.com/post/syntiant-introduces-second-generation\-ndp120-deep-learning-processor-for-audio-and-sensor-apps
https://www.syntiant.com/post/syntiant-introduces-second-generation\-ndp120-deep-learning-processor-for-audio-and-sensor-apps
https://books.google.be/books?id=sB3mxQEACAAJ

Shengyun Wei, Shun Zou, Feifan Liao, and Weimin Lang. A comparison on data augmen-
tation methods based on deep learning for audio classification. Journal of Physics: Con-
ference Series, 1453:012085, 01 2020. doi: 10.1088/1742-6596/1453/1/012085. 63

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017. URL
http://arxiv.org/abs/1707.01083. 22

Zhichao Zhang and Abbas Kouzani. Implementation of dnns on iot devices, volume = 32,
journal = Neural Computing and Applications, doi = 10.1007/s00521-019-04550-w. 10
2019. 6

79

http://arxiv.org/abs/1707.01083

	Introduction
	Background
	Embedded devices
	Digital sound
	Audio classification
	Acoustic datasets
	Data feature
	Short time Fourier transform
	Constant Q transform
	Mel transform

	Convolutional neural network
	Feature learning
	Classic convolution layer
	Depthwise separable convolution layer
	Pooling layer

	Classification
	Flatten layer
	Fully connected network
	Softmax layer

	Training process
	Related work

	Quantization
	Post Quantization
	Training aware quantization
	Quantization frameworks
	Related work

	Research design
	Research questions
	Research method
	Datasets
	UrbanSound8k dataset
	DCASE2019 dataset

	Baseline models
	Salamon-Bello model
	Stride model

	Training
	Evaluation
	Software toolbox

	Results
	Results RQ1
	Overall accuracy
	Detailed accuracy
	Memory size
	Inference performance
	Discussion
	Conclusion

	Results RQ2
	Overall accuracy
	Detailed accuracy
	Discussion
	Conclusion

	Results RQ3
	STFT
	CQT
	Mel spectrogram
	Overall comparison
	Exploratory experiment
	Discussion
	Conclusion

	Conclusions
	Future work

	Appendix
	RQ1 experiments
	SB-CNN(-DS)
	Stride(-DS)

	RQ2 Experiments
	Experiment RQ2-1
	Experiment RQ2-2
	Experiment RQ2-3
	Experiment RQ2-4
	Experiment RQ2-5
	Experiment RQ2-6
	Exploratory test

	RQ3 Experiments
	Exploratory test

	Bibliography

