
Open Universiteit
www.ou.nl

MASTER'S THESIS

Formal analysis of the Java Collections Framework

de Boer, M.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

https://research.ou.nl/en/studentTheses/3651d230-0f9a-4f54-b2f1-c0dd7375da3a

FORMAL ANALYSIS OF THE JAVA
COLLECTIONS FRAMEWORK

Martin de Boer

Presentation date
Friday, July 23, 2021 at 11:30 AM

FORMAL ANALYSIS OF THE JAVA
COLLECTIONS FRAMEWORK

by

Martin de Boer

Degree programme
Open University of The Netherlands, Faculty of Management, Science and Technology
Master’s Programme in Software Engineering

Graduation committee
Supervisor: Dr. Stijn de Gouw
Secondary supervisor: Prof. dr. Tanja Vos
Third assessor: Dr. ir. Harald Vranken

Course code
IM9906

Presentation date
Friday, July 23, 2021 at 11:30 AM

i

ACKNOWLEDGEMENTS

I am grateful to a number of individuals who have provided help and support during the
course of my graduation project. First and foremost, I would like to thank my supervisor
Stijn de Gouw for his guidance, patience, valuable feedback, and for being available for
questions at any time. I am grateful for being offered this research project, that I found very
interesting and instructive.

I thank Mattias Ulbrich, researcher at the Karlsruher Institut für Technologie (KIT),
Alexander Weigl, researcher/PhD student at KIT, and Jonas Klamroth, scientific staff mem-
ber at KIT. During our regular Zoom meetings, 1 or 2 times a month, also joined by Stijn
de Gouw, we had many fruitful discussions about my project as well as formal specifica-
tion and verification issues in general. They provided me with useful suggestions to resolve
some of the issues I ran into. Mattias and Alexander, being the experts on KeY, helped me
out with a number of technical issues I encountered. Together with Jonas, being the devel-
oper of the model checking tool JJBMC, I was able to detect some errors in an early version
of my JML contract specifications by processing them with JJBMC. (This has been to our
mutual benefit, I hope.)

I also would like to thank Tanja Vos for providing me with useful feedback on my re-
search proposal, as well as a concept version of my thesis.

Furthermore, I would like to express my gratitude to my employer, New Nexus, for fund-
ing my academic venture.

Finally, I would like to thank the three persons closest to me for their support. My
daughters, Wendy and Sanne, who studied and lived in the UK for a number of years and
master the English language far better than I do; thank you especially for proof reading
my thesis a number of times. And last but not least my wife Wilma, whom I will finally be
spending more time with now I finished my project, for her moral support.

ii

CONTENTS

Acknowledgements ii

List of Figures vi

List of Tables vii

Listings viii

Summary ix

1 Introduction 1
1.1 Rationale . 1

1.1.1 The omnipresence of software and the impact of bugs 1
1.1.2 Example 1: an overflow error in Boeing 787 software. 2
1.1.3 Example 2: an arithmetic error in the Patriot Missile system 2
1.1.4 The special case of Off-The-Shelf software 3
1.1.5 Testing and formal analysis . 3
1.1.6 Formal analysis methods and the case for deductive verification 4
1.1.7 Deductive verification tools: the case for JML and KeY. 7

1.2 Objective . 7
1.3 Related work . 7

2 Method 9
2.1 Research context. 9

2.1.1 Hoare logic . 9
2.1.2 Dynamic logic . 9
2.1.3 Sequent calculus . 10
2.1.4 Contracts . 10
2.1.5 Java Modelling Language (JML) . 11
2.1.6 Symbolic execution . 13
2.1.7 Proof obligations . 15
2.1.8 The KeY tool . 17

2.2 Research questions . 18
2.2.1 RQ1 – The main research question. 18
2.2.2 RQ2 – Which Java classes are suitable candidates for formal analysis? . 18
2.2.3 RQ3 – How can we limit the effort of formal specification? 19
2.2.4 RQ4 – What error(s), if any, can we identify in the class under analysis? 19
2.2.5 RQ5 – Can we provide a fixed version of the class that does stand the

test of formal analysis? . 19
2.2.6 RQ6 – What is the effort ratio when performing a formal analysis? . . . 19

2.3 Research process . 20
2.3.1 Finding a suitable candidate for formal analysis 21
2.3.2 Formal specification . 22

iii

3 Results 31
3.1 Implementation of IdentityHashMap . 31
3.2 JML contracts and KeY proof files . 33

3.2.1 Preparation of the class under analysis . 33
3.2.2 Specified and verified methods. 33
3.2.3 Proof statistics . 34
3.2.4 A detailed example: verification of containsKey. 36

3.3 Unit tests for JML contracts . 41
3.3.1 Testing the class invariant . 41
3.3.2 Testing the method contracts . 45
3.3.3 Block contracts and loop invariants . 47

3.4 A preliminary check of the JML specifications with OpenJML. 47
3.5 A preliminary check of the JML specifications with JJBMC 50

3.5.1 Some limitations of JJBMC . 50
3.5.2 Methods verified with JJBMC . 52
3.5.3 Contract specification error detected with JJBMC 52

3.6 Overflow error in the capacity method . 54
3.6.1 The error explained. 54
3.6.2 The damage caused by the error . 56

3.7 An improved version of the capacity method. 61
3.7.1 An improved version of the readObject method. 62

4 Discussion 64
4.1 RQ2 - Which Java classes are suitable candidates for a formal analysis? 64
4.2 RQ3 – How can we limit the effort of formal specification? 65

4.2.1 Pros and cons of validating JML specifications with JUnit 66
4.2.2 Pros and cons of validating JML specifications with OpenJML 67
4.2.3 Pros and cons of validating JML specifications with JJBMC 68

4.3 RQ4 – What error(s), if any, can we identify in the CUA? 68
4.4 RQ5 – Can we provide a fixed version of the class that does stand the test of

formal analysis? . 69
4.5 RQ6 – What is the effort ratio when performing a formal analysis? 69

5 Conclusions and recommendations 71
5.1 Conclusions . 71
5.2 Lessons learned . 71
5.3 Future work. 72

6 Reflection 73
6.1 The process. 73

6.1.1 Learning JML . 73
6.1.2 Working with KeY . 73
6.1.3 Contact with peers . 74
6.1.4 My progress . 74

6.2 The end result . 75
6.3 Some afterthoughts . 75

iv

Appendices I

A Formal analysis methods I
A.1 Model checking . I

A.1.1 The technique . I
A.1.2 Related work . I

A.2 Abstract interpretation . II
A.2.1 The technique . II
A.2.2 Related work . III

A.3 Deductive methods . IV
A.3.1 The technique . IV
A.3.2 Related work . IV

B Deductive verification tools V
B.1 Isabelle/HOL . V
B.2 Coq. VI
B.3 KeY . X

C Specified, tested and proven methods and inner classes of the IdentityHashMap XI
C.1 Proven methods of the IdentityHashMap . XI
C.2 Specified methods of the inner classes . XII

Bibliography XV

Acronyms XVIII

Glossary XIX

v

LIST OF FIGURES

2.1 Symbolic execution tree of method f . 16
2.2 The KeY framework architecture . 17
2.3 The KeY GUI . 18
2.4 The research process . 20
2.5 A UML diagram of the IdentityHashMap . 24

A.1 Two lattices. On the left, L = 〈P, vL 〉, a representation of the concrete proper-
ties in the concrete domain. On the right L’ = 〈P’, vL’ 〉, a representation of the
abstract properties in the abstract domain. III

B.1 TestAddAssoc.thy in Isabelle/HOL . VI
B.2 TestAddCommut.thy in Isabelle/HOL . VII
B.3 TestAddCommut.thy with one lemma added in Isabelle/HOL VIII
B.4 TestAddAssoc in CoqIDE . VIII
B.5 TestAddAssoc in CoqIDE - 1 unsatisfied subgoal IX
B.6 TestAddAssoc in CoqIDE - no more subgoals . IX

vi

LIST OF TABLES

1.1 Pros and cons of formal analysis methods . 6

3.1 Methods specified with JML and proven with KeY 34
3.2 Lines of code, lines of specification, and KeY statistics per proof 35
3.3 Variant function value table . 39
3.4 Methods for which the JML contracts were tested with JUnit 45
3.5 Lines of test code (not including comment lines and whitelines) 46
3.6 Proven methods of the IdentityHashMap with JJBMC 52
3.7 Actual parameters resulting in erroneous output of the capacity method . . 55

4.1 Effort ratio of the project . 69
4.2 Costs and benefits of the hybrid approach . 70

C.1 Proven methods of the IdentityHashMap per tool XII
C.2 Proven methods of the IdentityHashMap#IdentityHashMapIterator<T> per

tool . XII
C.3 Proven methods of the IdentityHashMap#KeyIterator<T> per tool XII
C.4 Proven methods of the IdentityHashMap#ValueIterator<T> per tool XII
C.5 Proven methods of the IdentityHashMap#EntryIterator<T> per tool XIII
C.6 Proven methods of the IdentityHashMap#EntryIterator#Entry per tool XIII
C.7 Proven methods of the IdentityHashMap#KeySet per tool XIII
C.8 Proven methods of the IdentityHashMap#Values per tool XIII
C.9 Proven methods of the IdentityHashMap#EntrySet per tool XIV

vii

LISTINGS

2.1 The isEmpty method with JML specifications 11
2.2 Class invariant example . 12
2.3 Loop invariant example . 12
2.4 Block contract example . 13
2.5 Simple symbolic execution example method . 14
2.6 Fragment of the IdentityHashMap after stripping generics 22
2.7 Fragment of the IdentityHashMap after correction 22
2.8 Using JUnit to test the JML specifications of isEmpty 25
2.9 Testing if a method is pure, using JUnit . 26
2.10 Testing the assignable clause, using JUnit . 27
3.1 Constant NULL_KEY, a placeholder for an empty key. 32
3.2 Masking and unmasking null keys. 32
3.3 The class invariant (conditional JML for KeY) 36
3.4 The containsKey method (with conditional JML for KeY) 38
3.5 The ClassInvariantTestHelper.assertClassInvariants method 42
3.6 TheClassInvariantTestHelper.assertIdentityHashMapClassInvariant

method . 42
3.7 An example of conditional JML . 48
3.8 Applying spec_public to make DEFAULT_CAPACITY visible to the specifica-

tion of the default constructor of the IdentityHashMap 49
3.9 Original capacity values of the IdentityHashMap 50
3.10 Limited capacity values for verification with JJBMC 50
3.11 Uninterpreted function genHash in method contract of hash method 51
3.12 Source of functions.key, containing the uninterpreted function genHash . 51
3.13 The (erroneous) JML of containsMapping . 53
3.14 The improved JML of containsMapping . 54
3.15 The original capacity method . 54
3.16 The putAll method . 56
3.17 The put method . 57
3.18 A snippet from the resize method . 57
3.19 The constructor IdentityHashMap(int expectedMaxSize) 58
3.20 The resize method . 58
3.21 The readObject method . 59
3.22 The putForCreate method . 60
3.23 The improved version of the capacity method 61
3.24 The version of the capacity method, based on the JDK9 implementation . . 62
3.25 The original version of the readObject method 63
3.26 The improved version of the readObject method 63
A.1 Java + JML example . IV

viii

SUMMARY

We may not be actively aware of it most of the time, but software has become an integral
part of our everyday lives. We take its correctness for granted. Indeed, we put our trust in
software that is essential for our comfort, well-being, safety, or even our survival [1, 2, 3].
It is therefore of the utmost importance that software, particularly library software that is
being re-used in countless applications, contains no serious errors.

One way to detect errors in software is formal analysis. The three principal formal ana-
lysis methods found in literature [4, 5], are model checking, abstract interpretation, and
deductive methods. They all have their strengths and weaknesses, depending on the kind
of software under analysis [4]. To analyse the Java Collections Framework, the deductive
method [6, 7] is the most appropriate method for a complete analysis without restrictions.

We have applied the deductive method, formally specifying theIdentityHashMap class
of the Java Collections Framework (JDK7) using Java Modelling Language (JML) [8, 9], and
formally verifying it with the interactive state-of-the-art theorem prover KeY [10, 11].

To be able to detect mistakes in the JML specifications early in the process, we used
a number of other formal analysis tools and unit tests. The reason for this is that deduc-
tive verification is tedious and time-consuming work, and we wanted to see how we could
speed up the process by detecting errors in the formal specification as early in the process
as possible. This hybrid approach of using multiple tools to detect specification errors in
an early stage enabled us to limit the amount of man hours spent on tedious correction
work, especially considering the extensive JML contracts that are required for a class like
the IdentityHashMap. According to literature, hybrid approaches have been taken be-
fore [12], albeit with the objective to compare the verification tools (KeY and OpenJML, for
example), and learn about their pros and cons.

As a result of our formal analysis of the IdentityHashMap we actually found an over-
flow error in the capacitymethod. Although the consequences of this overflow error affect
the inner workings of the class and its performance, the software does not crash. Neverthe-
less, we wrote an improved version of the capacity method that does not suffer from the
overflow error, tested it with a unit test, and proved its correctness with KeY. Furthermore,
we found a vulnerability in the serialisation of the class, for which we propose an improve-
ment.

Finally, we contributed to the development of a tool that enables a software bounded
model checker for Java (JBMC) to verify contracts written in JML (JJBMC). JJBMC is still in
the development phase, but we nevertheless used it to verify the IdentityHashMap based
on our JML specifications. We detected some bugs in this tool, but we were still able to use
it to point out some errors in an early version of our JML specifications as well. A win-win
situation.

ix

1
INTRODUCTION

1.1. RATIONALE

1.1.1. THE OMNIPRESENCE OF SOFTWARE AND THE IMPACT OF BUGS

Software is ubiquitous nowadays. From games to health care systems, from household de-
vices to financial systems, from cars and airplanes to communication systems. It is obvious
software impacts our daily lives in many ways. We often take working software for granted.
However, quite regularly, the software is failing us, due to errors. The impact of software
failure depends on the application, and may vary from slight inconveniences on one end
of the scale, to life threatening situations on the other end.

Imagine a bug causing a video game to crash. Slightly inconvenient for the player, but
no real harm is done. If this happens too often, however, there might be indirect economic
consequences for the manufacturer of the game. Software bugs can also have serious im-
mediate economic or financial consequences. Think of down-time of a web server hosting
an e-commerce application, affecting the revenue of the company, or bugs in banking soft-
ware.

Moreover, software errors may also seriously affect our safety and well-being. Malfunc-
tioning of medical devices can have direct life-threatening consequences to a patient. So
can have failing communications systems. In June 2019, for example, the Dutch emergency
number 112 could not be reached for more than three hours. At least one death was report-
edly caused by the fact that emergency services could not be reached, and help arrived too
late at the site of the emergency.

Bugs in transportation software are another example that could cause life-threatening
situations, possibly on an even larger scale. As an example, see subsection 1.1.2 (Exam-
ple 1: an overflow error in Boeing 787 software) on the integer overflow bug in the Boeing
Company Model 787 aircraft software, discovered in 2015.

If erroneous software is used in military equipment, the consequences could possibly
exceed the examples mentioned above. An infamous example of failing software in military
equipment is an arithmetic error in the Patriot Missile system in 1991, resulting in 28 deaths
and leaving around 100 people wounded. See subsection 1.1.3 (Example 2: an arithmetic
error in the Patriot Missile system).

1

1.1.2. EXAMPLE 1: AN OVERFLOW ERROR IN BOEING 787 SOFTWARE

On the 1st of May, 2015, the Federal Aviation Administration (FAA) issued an airworthiness
directive (AD) for all the Boeing Company Model 787 aircraft (the Dreamliner) [1]. An inte-
ger overflow was triggered after 248 days of continuous power, causing the general control
units (GCUs) to simultaneously go into failsafe mode, causing the plane to lose all electrical
power, resulting in loss of control of the airplane. The short term ‘solution’ to the problem,
according to the AD, was a repetitive maintenance task: electrical power deactivation at
intervals not to exceed 120 days.

The cause of this integer overflow isn’t hard to guess. According to the FAA “[t]he soft-
ware counter internal to the generator control units (GCUs) will overflow after 248 days of
continuous power”. If a 32-bit counter is incremented once every 10 ms, a signed counter
will overflow in about 248.6 days [13] (231/100/60/60/24 = 248.5513...).

When the problem was discovered, close to 300 planes of this type were in operation.
Boeing 787 variants can seat 242 to 330 passengers, making us shudder at the thought of
the nightmare that might have hit the Dreamliner passengers if the bug was trigged at high
altitude.

1.1.3. EXAMPLE 2: AN ARITHMETIC ERROR IN THE PATRIOT MISSILE SYSTEM

An infamous example of failing software in military equipment is an arithmetic error in
the Patriot missile system. The goal of this system is to detect, target and hit incoming
missiles [2]. On the 25th of February, 1991, in Dhahran, Saudi Arabia, during the Gulf War,
an American Patriot Missile battery failed to intercept an incoming Scud missile, resulting
in 28 deaths and leaving around 100 people wounded.

To determine whether an incoming object is a Scud, the range gate algorithm calculates
the area in the sky where the system should look next (based on Scud characteristics like
velocity, latitude, longitude, and altitude). This is called the range gate prediction. In this
case, the radar system correctly detected an airborne object, but failed to identify the object
as a Scud missile, because the range gate prediction algorithm contained a bug.

To determine the range gate prediction, both the timestamp and the velocity must be
expressed as real numbers. However, the timestamps of two consecutive radar pulses be-
ing compared were converted to real numbers differently. One correctly, but the other
proportionate to the operation time (in tenths of seconds) of the system. In this parti-
cular case, the system had been in operation for 100 consecutive hours, corresponding to
an integer timestamp in tenths of seconds of 100× 60× 60× 10 = 3,600,000. To convert
this integer to a real number in seconds, it was multiplied by 1/10 using a 24-bit regis-
ter. The binary representation of 1/10 is 0.0001100110011001100110011001100..., which
is more than 24 bits, so it had to be truncated. The truncated value differs from the ac-
tual value by 0.0000000000000000000000011001100..., or about 0.00000009536743161842
decimal. This seems like a small number, but when multiplied by 3,600,000, the calcula-
tion is off by approximately 0.3433 seconds. Considering the velocity of a Scud missile is
about 3,750.2563 miles per hour, or 1,676.5146 meters per second, it is obvious the mis-
sile had travelled roughly 575 meters past the predicted range gate (1,676.5146× 0.3433),
undetected by the Patriot Missile battery.

2

1.1.4. THE SPECIAL CASE OF OFF-THE-SHELF SOFTWARE

A special kind of software is software that is used to build other software. Think of software
libraries containing software components for general use, often referred to as Off-The-Shelf
(OTS) software or Commercial Off-The-Shelf (COTS) software. This kind of software might
ultimately be used in a multitude of applications, developed by hundreds or even thou-
sands of companies around the globe. These applications could be used for entertainment
purposes like games, but also in cars, planes, and medical or military devices.

In recent years Java has become one of the most widely used programming languages
across many industries. In July 2021, Java was the second most popular programming lan-
guage, according to the TIOBE Index 1. Obviously, the OpenJDK, the most widely used
implementation of the Java standard library, contains components that are the building
blocks of millions of software applications world-wide. Therefore, bugs in the OpenJDK
have a global impact.

1.1.5. TESTING AND FORMAL ANALYSIS

The necessity of finding and fixing software bugs is obvious from the examples above, and
this is especially the case for OTS software like the OpenJDK. A thorough software process
is, therefore, indispensable, and testing is an essential part of that process. However, testing
is experimental, and although it can show the presence of (some) errors, it cannot prove
the absence of (all) errors. Typically, overflow errors like the ones mentioned above, and
out-of-bounds errors are often overlooked during testing (absence of coverage being the
main problem). Overflow and out-of-bounds errors are typical for collections, especially
when these collections grow very large. It is of course possible to detect overflow errors by
thoroughly testing the software, but it is extremely hard – perhaps virtually impossible – to
design a sufficient test set to cover all the cases in which such errors might occur. This is
especially true in the case of black box testing. This problem is underlined by the problem
of state space explosion (see appendix A, section A.1, Model checking), due to the number
of interacting components that can assume many different values, resulting in a very large
number of possible states of a system. So, there is a need for formal methods to guarantee
reliable software. Formal analysis enables us to formally prove the correctness of software.
In practice, however, formal analysis, especially when it involves the approach of deductive
verification, is perceived as tedious, time-consuming, and inefficient [14, 15]. Some valid
counterarguments can be made against these objections:

• Because OTS software components like classes in the OpenJDK Collections Frame-
work are being used in countless numbers of applications world-wide, it is worth our
while to formally verify them. This makes many of these classes outstanding candi-
dates to formally analyse. A similar observation was made by Polikarpova et al. [16],
concerning containers, libraries of general-purpose data structures.

• Many of the components in the OpenJDK are not prone to regular or rigorous ad-
justments due to ever-changing user requirements. Formal specifications that fully
capture the behaviour of such components will, therefore, be fairly stable and will not
regularly require adjustments involving more tedious and time-consuming work.

1https://www.tiobe.com/tiobe-index/

3

• The impact of software errors, as is demonstrated in the examples above, can have se-
rious financial and even life-threatening consequences. Preventing these is certainly
worth our while.

• The costs of debugging and fixing software errors are already significant [17, 18], and
it is obvious that the more software is being developed, the more time is spent on
debugging and fixing errors in that software. Formally proving the correctness of OTS
software that is reused in countless applications globally, might reduce these costs by
preventing bugs in the first place.

1.1.6. FORMAL ANALYSIS METHODS AND THE CASE FOR DEDUCTIVE VERIFI-
CATION

The principal validation methods mentioned in literature [4, 5], apart from simulation and
testing, are model checking, abstract interpretation, and deductive methods. (A global de-
scription of each of these three methods is provided in appendix A, Formal analysis meth-
ods.) Determining which technique was most suitable for our research and why, depended
on which properties we wanted to analyse. Candidate properties were deadlocks, over-
flows, rounding errors, race conditions, unhandled exceptions, and violations of stated as-
sertions, to name a few. What kind of errors could we suspect to be present in the OpenJDK
Collections Framework library? Recent related work [14, 19, 20] had shown that typical er-
rors that are expected to be found are numerical (overflow or rounding) errors. In fact, some
of the most dramatic examples of software bugs, some of which were mentioned above, are
due to numerical (overflow or rounding) errors [1, 2, 3, 21]. Analysing the OpenJDK Col-
lections Framework library for these kinds of numerical errors was therefore an obvious
choice.

To be able to find errors like these, it was critical to make as few adjustments to the
original code as possible, because any adjustment might have prevented us from finding
the original bug. Furthermore, adjustments might not just unintentionally have hidden
or removed errors, but might also have introduced new ones. The first requirement for
selecting a formal analysis approach was, therefore, to be able to stay as close as possible
to the original syntax and semantics of the Class Under Analysis (CUA).

The second requirement was that we wanted to be able to verify infinite, unbounded
collections. Typically, these are the kinds of objects that are prone to overflow errors, and
constituted our list of CUA candidates. Our formal analysis approach had, therefore, to
support infinite, unbounded collections. (Even if we would subsequently decide to verify a
finite collection, e.g. the java.util.ArrayList class, we would need to be aware of the
maximum size of instances of the class. An ArrayList object can have a maximum length
of MAX_INTEGER (i.e. 2,147,483,647) elements. Elements of such an object can in turn also
be ArrayList objects of the same length, etc. This might have resulted in a tremendously
large state space.) To summarise, the following two requirements had to be met:

R1 : minimal diversion from the original syntax and semantics of the CUA
R2 : support for verifying (virtually) infinite, unbounded collections

Having determined the properties we wanted to analyse, and having derived two major
requirements from them, we were able to argue which approach best suited our purposes
and why.

4

Model checking (see appendix A, section A.1, Model checking) requires the conversion
of the system into a model, an abstraction of the system, complemented with temporal
logic, asserting how the system should behave over time. Typically, such a model, that is
automatically verified by a model checker, lacks irrelevant details to save time and memory.
The technique is especially suitable for finite state concurrent systems, and quite capable
of detecting deadlocks, for example. The first drawback of model checking, in relation to
our research, was the creation of a model of the system. Our first requirement (R1) was
to stay as close as possible to the original syntax and semantics of the CUA. This require-
ment seemed to be violated by creating a model, especially when an abstraction of the
design would have been made to save memory and execution time. Furthermore, and this
is a second, more general drawback in model checking, it suffers from the possibility of a
state space explosion. This clashed with the second requirement (R2), that we wanted to
be able to verify (virtually) infinite, unbounded collections, or collections that might grow
very large in size. Model checking was, therefore, not a suitable approach for our research.

Abstract interpretation is more scalable and does, therefore, not suffer from the prob-
lem of state space explosion. In abstract interpretation a program is described in terms of
abstract properties and abstract operations, abstractions of a program’s concrete semantics,
that make up a so-called abstract domain. Being approximations, the abstract semantics
in the abstract domain are, obviously, less precise. And this lack of precision comes at a
cost. This is illustrated in appendix A (section A.2, Abstract interpretation), with an exam-
ple which shows that overflow errors might go unnoticed. Furthermore, it is obvious that
our first requirement (R1), to stay as close as possible to the original syntax and semantics
of the CUA, would obviously not be met if we had needed to create an abstract approxima-
tion of the program to be analysed. Abstract interpretation was, therefore, also not suitable
for our research.

Deductive methods (see appendix A, section A.3, Deductive methods) are based on the
so-called Hoare triplets [6]. Hoare triplets consist of two assertions, a precondition P and
a postcondition R, as well as a command or program C. To express that if precondition P
holds before the initiation of program C, postcondition R holds after its completion, we can
write the following triplet: P{Q}R. Dwyer et al. [4] have made a comparison between model
checking, abstract interpretation and deductive methods. The most important drawbacks
of deductive methods they mention are:

• they are not suitable for concurrent systems,

• they are difficult to work with, and

• automation is limited.

The first drawback was not relevant for our purpose. When formally analysing a class in
the OpenJDK Collections Framework library, concurrency is not a concern. The second
drawback was partly eliminated by the findings of De Gouw et al. [14, 19], who had shown
that contract-based deductive verification is feasible, when applying the proper tools. JML
[9, 22] was used to formally specify pre- and postconditions and invariants, and the state-
of-the-art Java verification tool KeY [10], a semi-automatic, interactive theorem prover, was
used to find 99% of the proof steps automatically. This also disproved the third drawback
of limited automation.

Based on the requirements stated above, we decided the deductive method was our best
candidate. Requirement R1, minimal diversion from the original syntax and semantics of

5

the CUA, was warranted because, when using JML, the pre- and postconditions as well as
the invariants are specified inside the original Java code [23]. We would not be defining any
model (like with model checking) or any other kind of abstraction (like with abstract inter-
pretation) of the program we wanted to analyse. Requirement R2 could be warranted also,
because we did not need to worry about a state space explosion. We concluded, therefore,
that the deductive method was the preferred method to apply when formally analysing (a)
class(es) from the OpenJDK Collections Framework.

Table 1.1 summarises the most important characteristics (strengths, weaknesses, and
irrelevances) of the above-mentioned formal analysis methods, specifically in relation to
our research.

Model checking Abstract interpretation Deductive methods

⊕ Supports fully auto-
mated verification.
⊕ Does not require sig-
nificant mathematical
expertise to set up a
model, or to specify pro-
perties.

⊕ More scalable than
model checking.
⊕ Suitable for infinite,
unbounded systems (re-
quirement R2).

⊕ Tooling that supports
verification of Java soft-
ware available.
⊕ Minimal diversion from
the original syntax and
semantics: the code is the
model (requirement R1).
⊕ Suitable for infinite,
unbounded systems (re-
quirement R2).

¯ Supports verification of
concurrent systems.

¯ Difficult to extend to
concurrent systems.

ª Only suitable for finite
state systems.
ª Suffers from scalability
(state space explosion)
challenges.
ª Verifies an abstraction
(model) of the system.
ª Not tailor-made for
Java.

ª Verifies an over-
approximation of the
program, leading to in-
conclusive error reports
and some error types
going unnoticed.
ª Requires significant
mathematical expertise,
to set up abstractions.
ª Not tailor-made for
Java.

ª Tedious work, automa-
tion is limited.

⊕ = strength, ¯ = irrelevant, ª = weakness

Table 1.1: Pros and cons of formal analysis methods

6

1.1.7. DEDUCTIVE VERIFICATION TOOLS: THE CASE FOR JML AND KEY
There is a wide range of deductive verification tools available, three of which are being
considered in appendix B (Deductive verification tools) on page V. Based on the findings
in appendix B, we concluded that both Isabelle/HOL and Coq suffer from a number of
drawbacks: their learning curves are quite steep, they are not tailor-made for Java, and the
available theories/logics for Java that are available lack the required features. It must be
noted, however, that Coq is able to process proof obligations generated by Krakatoa, a tool
that supports the use of JML. Burdy et al. [23] observe a number of vital advantages of the
use of JML for Java development, for example:

• JML’s syntax and semantics are very close to Java,

• gradual introduction is easy, because no formal model has to be constructed (the
source code is the formal model),

• as mentioned above, there is no discrepancy between the actual code and the formal
model, and

• there is tool support available for JML.

If, however, JML would be the specification language of our choice, there was also the
KeY tool [10, 23] to seriously consider as the verification tool to use for our research. KeY
supports the use of JML and has, reassuringly, been shown to be very effective for formally
verifying Java code in the related work mentioned in section 1.3 (Related work) on page 7.
Thanks to Stijn de Gouw’s ties with peers of the Karlsruher Institut für Technologie (KIT),
where the KeY tool is being developed, we would be able to consult the tool experts during
our research. This would, obviously, be a great advantage. We therefore decided to use JML
as our specification language, and KeY as our verification tool.

1.2. OBJECTIVE
Errors in OTS like Java’s OpenJDK can have far-reaching consequences, because it is used
in countless numbers of applications, globally. As we have argued above, formal analysis,
especially deductive verification, seemed to us the best way to guarantee the correctness
of this kind of software. Based on these considerations, the objective of our research was
to formally analyse a class in the OpenJDK, by formally specifying the code with JML and
verifying it with KeY. The aim of the analysis was to either prove the selected class to be
correct, or, if any error should be found, to correct the error, prove its correctness with KeY
and a unit test, and propose this fix to the community.

As mentioned above, formal analysis is can be time-consuming and tedious. Therefore,
it seemed wise to limit our objective to the analysis of a single class. We decided the ideal
candidate to formally analyse would be the IdentityHashMap in the Collections Frame-
work. This decision was part of the research, and our considerations are described in sec-
tion 2 (Method) on page 9. Furthermore, as a secondary objective, we wanted to find out if
we could limit the effort of formally specifying and verifying that candidate, by considering
and applying other tools as well (in an attempt to quickly detect specification errors).

1.3. RELATED WORK
Similar research has been done by De Gouw et al. on the TimSort algorithm provided by the
Java Standard Library [14, 19]. De Gouw et al. applied the deductive verification approach,

7

using JML to write the formal specifications for the algorithm, and the state-of-the-art Java
formal verification tool KeY [10] to verify the code. Their analysis showed that the TimSort
algorithm contained an error.

Related research was done by Hans-Dieter A. Hiep et al. [20], by formally verifying Java’s
LinkedList with JML and KeY, and by Mostowski et al. [24], who have formally verified
security properties of the Java Card system, also using KeY. Mostowski performed two Java
Card case studies but did not find and eliminate any software bugs. More recent work by
Mostowski on the Java Card API reference implementation [25], however, did result in the
detection of a bug in one of the commercially sold cards.

Pottier et al. [15] formally verified their own implementation of a hash table (written
in OCaml), using Characteristic Formulae for ML, a tool for the interactive verification of
OCaml programs, based on Coq (CFML). Although the subject of their project was not a Java
class, and it was not verified with JML and KeY, there is one similarity to our project: the
formal verification of a hash table. However, this hash table was specifically implemented
as part of their project, and not part of a widely used general purpose utility component.
Also, some errors that typically can occur in unbounded data structures were left out of
scope. For example, one of the assumption made was that the authors “pretend[ed] that
OCaml integers are unbounded, which is not true: they are 31- or 63-bit integers in two’s-
complement representation”.

The novelty of our research was that, to our knowledge, this was the first time a hash
map which is undoubtedly used in many software applications worldwide was formally
verified.

8

2
METHOD

This chapter describes the method we used. In section 2.1 we will provide some back-
ground information on the used technology and explain some of the related terminology.
The research questions for the project will be addressed in section 2.2 (page 18). Finally,
we will describe the research process that we applied to answer these research questions in
section 2.3 (page 20).

2.1. RESEARCH CONTEXT
In this section, some background information on the used technology is provided, and
some of the jargon that is related to the subject of formal analysis, specifically the deductive
approach, is explained.

2.1.1. HOARE LOGIC
In 1969, C.A.R. Hoare published a paper in which he proposed several axioms to help prove
the correctness of a computer program [6], commonly referred to as Hoare logic. Central
to Hoare logic, is the so-called Hoare triplet:

P{Q}R.

In this triplet, the predicates P and R represent the states before and after the execution
of the program Q, respectively. The reading of the triplet is: whenever P is true before the
execution of Q, then the assertion of R will be true afterwards, or Q does not terminate.
Hoare logic lies at the core of formal specification and deductive verification of computer
programs.

2.1.2. DYNAMIC LOGIC
Apart from correctness, other aspects of programs, like termination or determinism, for
example, require an extension to Hoare logic [26]. In modal logic, two modal operators, ä
(necessarily) and ♦ (possibly) are introduced. äp asserts that proposition p is necessarily
true, and ♦p asserts that proposition p is possible true. Dynamic logic, a form of modal
logic, uses a slightly different notation for these modal operators, adding a reference to the
program that is being executed. If it is necessarily the case that, starting from state p, the
execution of the program q results in a state r in which the formula ϕ holds (i.e. r Í ϕ), we
write:

9

p Í [q]ϕ.

If it is possibly the case that, starting from state p, the execution of the program q results in
a state r in which the formula ϕ holds (i.e. r Í ϕ), we write:

p Í 〈q〉ϕ.

Dynamic logic thus enables us not only to express correctness, but also to express deter-
minism, termination and equivalence. See the following examples, where π represents a
program, ϕ represents an input condition, and ψ represents an output condition:

correctness: ϕ→ [π]ψ
determinism: 〈π〉ϕ→ [π]ϕ
termination: 〈π〉TRUE
equivalence: [π1]ϕ↔ [π2]ϕ

2.1.3. SEQUENT CALCULUS

A sequent is an expression of the form ϕ1, ...,ϕn ◦ψ1, ...,ψk . The part left of the ◦ is re-
ferred to as the antecedent, and the right part is referred to as the consequent. Informally,
ϕ1, ...,ϕn ◦ψ1, ...,ψk corresponds to

∧n
i=1ϕi Í ∨k

j=1ψ j . In other words, if all the formulas in
the antecedent are true, then at least one of the consequent formulas must be true.

Using sequent calculus, it can be shown that Σ Í Λ by reducing the formulas in Σ ◦Λ,
where Σ and Λ represent (possibly empty) sequences of formulas. Following a set of re-
duction rules, a sequent can be reduced to one or two other sequents, that can in turn also
be reduced, et cetera, until reduction is no longer possible, resulting in a tree of sequents
[26]. The tree can be considered closed if all its leave sequents close (meaning one of the
formulas in the sequent is in the antecedent as well as in the consequent). If one ore more
leave sequents do not close (none of the formulas in the sequent is in the antecedent as well
as in the consequent, and reduction is not possible), the tree is open. Open sequents are
considered counterexamples. The existence of such a counterexample proves that ΣÕϕ.

2.1.4. CONTRACTS

The use of JML enables us to specify contracts for classes and their clients (design by con-
tract (DBC)) [8]. The contracts are specified in the program code itself. Preconditions de-
fine the obligations of the client, and postconditions define their rights. A precondition
of a method specifies what must be true whenever a client calls it, and its postcondition
specifies what must be true when it terminates. Designing software by using these con-
tracts has several advantages. It prevents building in inefficient defensive checks, for exam-
ple, because clear contracts eliminate their necessity. Also, DBC pre- and postconditions
clearly show who is to blame when an error occurs. Furthermore, it supports modularity of
reasoning, and allows for specifying intent without bothering about performance or other
inessential implementation details.

Some of these characteristics are, of course, especially advantageous when contracts
are designed before or during the design of the software. In our project, we designed the
contracts based on software that was already written.

10

2.1.5. JAVA MODELLING LANGUAGE (JML)
According to Leavens et al., JML is a “formal behavioral interface specification language for
Java” [8]. It allows us to specify contracts in Java code, in the form of invariants, and pre-
and postconditions. To get an impression of how a (simple) contract can be specified in the
Java code using JML, let’s consider a simple example of a method that we actually formally
specified with JML in the IdentityHashMap, the isEmpty method (see listing 2.1). This
method returns true if the IdentityHashMap contains no entries (i.e. its size field equals
0), or false in any other case (see line 7).

1 /*@ also
2 @ public normal_behavior
3 @ \ensures
4 @ \result <==> size == 0;
5 @*/
6 public /*@ strictly_pure @*/ boolean isEmpty() {
7 return size == 0;
8 }

Listing 2.1: The isEmpty method with JML specifications

The JML (placed between the /*@ and @*/ delimiters respectively) specifies a num-
ber of things. Firstly, the specification of a method must start with the keyword also
(see line 1) if the method is already declared in the parent class (or interface), which is
the case here. (The method overrides the isEmpty method implemented in the abstract
java.util.AbstractMap class.) Generally speaking, the keyword also is intended to
specify that a method specification is in addition to some specifications of the method that
are given in the parent class or interface. The keyword also is also used to combine sep-
arate specification cases within a specification. Secondly, the keyword normal_behavior,
on line 2, represents a so-called heavyweight specification case. For this example it suffices
to know that it specifies the behaviour of the method under normal circumstances (i.e. no
exception is expected to be thrown). Thirdly, the \ensures clause specifies a predicate that
represents the postcondition of the method (lines 3 and 4). The \result keyword (line 4)
represents the so-called result expression in JML for non-void methods. Its value is the value
that must be returned, and its type is the return type of the method (in this case a boolean).
This postcondition of the isEmpty method holds when it returns true if size equals 0, or
false otherwise.

A class invariant is a property that must hold in all states of an object, except when con-
trol is inside the methods of its class. In other words, in the case of the aforementioned
example, the class invariant of the IdentityHashMap must hold before and after the exe-
cution of isEmpty. Listing 2.2 shows (part of) a class invariant, stating that the array table
must never be null, and must always have at least MINIMUM_CAPACITY * 2 elements, and
at most MAXIMUM_CAPACITY * 2.

11

1 public class IdentityHashMap
2 extends AbstractMap
3 implements Map, java.io.Serializable , Cloneable {
4

5 /*@ public invariant
6 @ table != null &&
7 @ MINIMUM_CAPACITY == 4 &&
8 @ DEFAULT_CAPACITY == 32 &&
9 @ MAXIMUM_CAPACITY == 536870912 &&

10 @ MINIMUM_CAPACITY * (\bigint)2 <= table.length &&
11 @ MAXIMUM_CAPACITY * (\bigint)2 >= table.length;
12 ...
13 @*/
14

15 ...
16 }

Listing 2.2: Class invariant example

Aside from class invariants, JML also supports loop invariants. Loop invariants apply
to for loops, while loops and do-while loops. They are properties that must hold at the
beginning and at the end of a loop. Listing 2.3 shows an example of a contract for a simple
while loop. The maintaining keyword implies that the following predicate should hold
in every iteration of the loop (see line 1 and line 4). With every iteration, the result of a
so-called variant function, immediately following the decreasing keyword (line 9), must
decrease by at least one (1), and never become negative. This guarantees the termination
of the loop.

1 /*@ maintaining
2 @ result / (\bigint)2 < minCapacity;
3 @
4 @ maintaining
5 @ (\exists \bigint i;
6 @ 0 <= i < result;
7 @ \dl_pow(2,i) == result); // result is a power of two
8 @
9 @ decreasing

10 @ (minCapacity - result);
11 @*/
12 while (result < minCapacity)
13 result <<= 1;

Listing 2.3: Loop invariant example

Finally, it is also possible to write formal specifications for parts of methods, using block
contracts. The basic idea is to divide a method into blocks, and to prove the correctness of
each block independently (‘divide and conquer’). As an example, listing 2.4 shows some
fragments of the put method. On lines 11 – 36 a contract is specified for the block on lines
37 – 41. (The parts of the method that are irrelevant for this example are left out.) The
contract specifies a number of preconditions (\requires). The first one states that tab
and k must not be null, and that i is an even number within the boundaries of tab. The
second precondition states that k does not yet exist in tab on any even position. (Indeed,
on line 39, k will be added, and keys are required to be unique.) The next precondition
states that tab is an array of Objects, and the final precondition specifies that modCount
is within the bounds of the Integer type, and was not changed within the same method
before this block. The two postconditions (\ensures) specify that modCount was updated,

12

and that k and value have been added to tab at positions i and i + 1, respectively.

1 public /*@ nullable @*/ Object put(Object key, Object value) {
2 Object k = maskNull(key);
3 Object[] tab = table;
4 int len = tab.length;
5 int i = hash(k, len);
6

7 Object item;
8

9 ...
10

11 /*@ public normal_behavior
12 @ requires
13 @ tab != null &&
14 @ i >= 0 && i < tab.length - 1 &&
15 @ i % (\bigint)2 == 0 &&
16 @ k != null;
17 @ requires
18 @ // The key does not yet exist in table
19 @ (!(\exists \bigint n;
20 @ 0 <= n < tab.length - 1;
21 @ n % 2 == 0 && tab[n] == k));
22 @ requires
23 @ \typeof(tab) == \type(Object[]);
24 @ requires
25 @ \dl_inInt(modCount) &&
26 @ \old(modCount) == modCount;
27 @ ensures
28 @ tab[i] == k &&
29 @ tab[i + 1] == value;
30 @ ensures
31 @ // modCount has changed (possibly overflowed , but that is not a problem)
32 @ \old(modCount) != modCount &&
33 @ \dl_inInt(modCount);
34 @ assignable
35 @ modCount, tab[i], tab[i+1];
36 @*/
37 {
38 modCount++;
39 tab[i] = k;
40 tab[i + 1] = value;
41 }
42

43 ...
44 }

Listing 2.4: Block contract example

2.1.6. SYMBOLIC EXECUTION
Symbolic execution is a key concept in testing and formal analysis of software, introduced
in the ‘70s of the previous century [27, 28]. Contrary to normal execution of a method,
where the input parameters consist of concrete data, the idea behind symbolic execution
is to use symbolic values rather than concrete data as input parameters. Also, values of
program variables may be represented as symbolic expressions. Symbolic values and ex-
pressions can be regarded as classes of values, instead of single values, and, consequently,
each symbolic execution result may be equivalent to a large number of normal test results.
It can simultaneously explore multiple execution paths of a program, corresponding with
classes of input values, whereas ‘concrete’ execution can only explore one single execution
path at a time, based on the provided concrete input values. In other words, each symbolic

13

run may represent multiple concrete runs.
A symbolic executer maintains a tree of execution states. Every state is comprised of

a 3-tuple (stmt, π, σ). The first element, stmt, represents the next line of code to be exe-
cuted symbolically. The second, π, represents the symbolic path constraint(s) of a state. It
is an accumulation of the constraints on the input that trigger the execution of the associ-
ated path. The value of π is initially true, meaning there is no constraint associated to the
first statement of a program. The third element, σ represents a symbolic store which maps
program variables to symbolic values or expressions.

Consider the example in listing 2.5. It shows a small method f that consists of several
assignments and conditional statements. At the end of the program, there is an assertion
that should hold for all possible runs of the method: the sum of x, y and z is not equal to 3.
If the assertion fails, we can conclude an error occurred. The question is: which values of
a, b and c will make the assertion fail? (Figure 2.1 on page 16 shows the symbolic execution
tree for this example, with all the states labelled with a capital letter, and containing the
values for stmt, π, and σ.)

In a concrete execution, concrete integer values would be assigned to the formal para-
meters a, b and c, when the function is called. But in a symbolic execution we assign the
symbols α, β and γ to the parameters a, b and c, respectively (line 1). Right after this as-
signment, the state of the method is as follows (see also state A in the symbolic tree, shown
in figure 2.1):

the next statement to execute, stmt: 2. int x = 0, y = 0, z = 0
the path constraint(s), π: true
the symbolic store, σ: {a 7→α, b 7→β, c 7→ γ}

The next statement is on line 2, where the value 0 is assigned to x, y and z. This changes
σ to {a 7→α, b 7→ β, c 7→ γ, x 7→ 0, y 7→ 0, z 7→ 0}, and stmt to 3.if (a != 0). Because the
method does not fork on line 2, no constraints need to be added to π. The resulting state is
state B.

1 void f(int a, int b, int c) {
2 int x = 0, y = 0, z = 0;
3 if (a != 0) {
4 x = -2;
5 }
6 if (b < 5) {
7 if (a == 0 && c != 0) {
8 y = 1;
9 }

10 z = 2;
11 }
12 assert(x + y + z != 3);
13 }

Listing 2.5: Simple symbolic execution example method

The next statement (line 3) is conditional, and the flow of the rest of the method de-
pends on the value of a. However, we do not know the concrete value of a, because the
symbolic value α is assigned to it. There are two possibilities: either α != 0, or α == 0 (i.e.
the condition is either true or false). Here, the symbolic execution is forked, and for each
branch an execution state is created, state C and D, each with a different value for π, and a
different value for stmt.

14

Following the path of C, a value of -2 is assigned to x (line 4), resulting in an update
of σ in state E (x 7→ 2). The next statement from state E is, again, an optional statement,
depending on the value assigned to b, which is the symbolic value β. Again, the symbolic
execution is forked. Two states are being created, F (with the constraint β < 5 being added
to π), and G (with the constraint β≥ 5 being added to π).

The next statement to execute from state F is the conditional statement if (a == 0
&& c != 0). Note that, according to the symbolic path constraint π in state F, this condi-
tion can never be true. Indeed,α 6= 0∧α= 0 can never be true. Here, the symbolic execution
has uncovered an infeasible path, depicted by the grey-coloured leave in the symbolic tree.
The alternative branch, however, is feasible and will lead to state H when α 6= 0∨γ = 0 is
true. Note that the path constraint in state H does not differ from the one in state F. This is
because the conjunction of π in state F and α 6= 0∨γ= 0 is equivalent with π in state F (i.e.
(α 6= 0∧β< 5)∧ (α 6= 0∨γ= 0) ⇐⇒ (α 6= 0∧β< 5)).

In the transition from state H to state I, the value 2 is assigned to the variable z (line
10 in listing 2.5, leading to a successful assertion on line 12. The green-coloured leave,
originating from state I, shows that the assertion will not fail, because the sum of x + y + z =
-2 + 0 + 2 is not equal to 3 whenever α 6= 0∧β< 5.

By analysing the all the branches in the symbolic execution tree, it becomes clear that
the execution path {A, B, D, J, L, M, N} leads to a failing assertion on line 12 of the example
method. The path constraints in state N contain the input values that cause an error: if a
is 0, b is less than 5, and c is not 0, the assertion will fail. The symbolic execution has thus
generated a set of test data, that can now be used to test the method.

Although the concept of symbolic execution was already introduced in the ‘70s of the
previous century [27, 28], it did not become popular at the time, due to computer resource
limitations. Programs can have lots of possible paths, and lots of states for every path.
(In the example above, a method consisting of just a few lines of code, there are 16 states,
divided over 6 paths. Imagine the number of possible paths and states a large program
of hundreds or thousands of lines of code, containing (nested) loops as well as (nested)
conditional statements would generate.) Memorizing program states may require a lot of
memory. Computers lacked the processing power and memory in those days. However, in
the 21st century, thanks to Moore’s ‘law’, several symbolic execution tools have been devel-
oped and applied. Examples are SAGE (at Microsoft), Mergepoint (for Linux) and KeY (the
tool we used in our project) for Java.

2.1.7. PROOF OBLIGATIONS
From the contracts, specified in JML (see section 2.1.4, on page 10), proof obligations can be
generated. A proof obligation is a formula stating that certain properties must hold for the
contract of a method to be internally consistent. If a valid proof obligation can be proved,
then the method it refers to is correct. It shows that the precondition in the contract implies
that the postcondition holds after a method’s execution [11].

15

Figure 2.1: Symbolic execution tree of method f

16

Figure 2.2: The KeY framework architecture

2.1.8. THE KEY TOOL

The KeY tool, or KeY system, is a formal verification tool, developed by the KeY project1, that
originally started in 1998 [11]. The tool is suitable for Java (with some limitations), and uses
JML as its formal specification language. It is part of a set of tools, together forming the KeY
framework (see figure 2.2).

The KeY system combines the concepts described above. Based on contracts, specified
with JML (2.1.4), it generates proof obligations (2.1.7), using a translator. These proof obli-
gations are expressed in JavaDL (dynamic logic (2.1.2)). The KeY prover applies sequent
rules (taclets [29]) to generate proof trees. Most of the proof rules in the rule set of the KeY
prover symbolically execute (2.1.6) programs in JavaDL formulae.

Figure 2.3 shows the KeY GUI after automatically proving the correctness of theisEmpty
method (see line 426 – 440 in the source panel on the right). On the left are the proofs panel
(top) and the proof tree (bottom), and at the centre of the screen, the sequent panel is dis-
played.

1https://www.key-project.org/

17

Figure 2.3: The KeY GUI

2.2. RESEARCH QUESTIONS

2.2.1. RQ1 – THE MAIN RESEARCH QUESTION
In our research we focused on formally analysing a class in the OpenJDK library with JML
and KeY). The central research question we aimed to answer was:

RQ1 : How can we formally analyse Java libraries with JML and KeY?

We broke down RQ1 into the following subquestions:

RQ2 : Which Java classes are suitable candidates for formal analysis?
RQ3 : How can we limit the effort of formal specification?
RQ4 : What error(s), if any, can we identify in the CUA?
RQ5 : Can we provide a fixed version of the class that does stand the test of

formal analysis?
RQ6 : What is the effort ratio when performing a formal analysis?

Subquestions RQ2 to RQ5 were technical questions, and were the main part of the research.
RQ6 can be regarded as an evaluation of the research, resulting in a report that is part of
this thesis.

2.2.2. RQ2 – WHICH JAVA CLASSES ARE SUITABLE CANDIDATES FOR FORMAL

ANALYSIS?
The objective of the research was to formally analyse a class in the Collections Framework
in the OpenJDK library. We composed a shortlist of suitable candidate classes, based on a
number of characteristics. What would make a class a suitable candidate?

1. Originality. Ideally, a candidate class should not have been properly formally analy-
sed before.

18

2. Furthermore, it would be interesting to find an error that had not been detected be-
fore. Hence, no bug should be reported for the ideal candidate.

3. Analysability. An important requirement was that the tooling used for specification
and verification of the code, JML and the KeY-tool, had to be up to the task. Therefore,
any candidate had to be suited to be loaded in KeY 2. The first step in the research
method would be to verify this for any of the candidate classes.

2.2.3. RQ3 – HOW CAN WE LIMIT THE EFFORT OF FORMAL SPECIFICATION?
Formal analysis, especially formal specification is tedious work (see table 1.1). During our
research we wanted to explore ways to limit the amount of repetitious work that goes into
formally specifying the CUA. We explored the possibilities of JUnit, JMLUnitNG, OpenJML,
and JJBMC, for example, to perform preliminary sanity checks on our JML specifications.
By sanity checks, we mean a quick way to check if the JML specifications are syntactically
and/or semantically correct, before running a full blown formal verification with KeY.

2.2.4. RQ4 – WHAT ERROR(S), IF ANY, CAN WE IDENTIFY IN THE CLASS UNDER

ANALYSIS?
During the formal analysis procedure we hoped to encounter one or more software errors.
Merely the identification of errors would not be sufficient. Proof had to be provided, as well
as a solid test case for any detected error. Test cases would also have to provide a way of
showing the correctness of a fixed version of the software (see research question RQ5).

2.2.5. RQ5 – CAN WE PROVIDE A FIXED VERSION OF THE CLASS THAT DOES

STAND THE TEST OF FORMAL ANALYSIS?
After detecting any error(s), a fixed version of the software would have to be designed. The
fixed version of the software should be accompanied by a solid test case and should stand
the test of formal analysis.

2.2.6. RQ6 – WHAT IS THE EFFORT RATIO WHEN PERFORMING A FORMAL ANA-
LYSIS?

Answering this question should give us some insight in the amount of effort necessary for
formally analysing software, based on the chosen method and the chosen tooling. As part
of the thesis, an experience report is provided (see section 4.5 (RQ6 – What is the effort ratio
when performing a formal analysis?) on page 69).

2KeY had a few limitations. For example, the latest version of KeY at the start of the project (version 2.7)
supported Java versions up to Java 1.4, so Generics (since J2SE 5.0), lambda expressions (since J2SE 8.0) and
Java Reflection, for instance, were not supported. There was, however, a KeY plugin for Eclipse available that
can ‘strip’ generics from the Java code. So, effectively, it was possible to verify classes up to and including
version 7 of the OpenJDK library

19

2.3. RESEARCH PROCESS

Figure 2.4: The research process

Figure 2.4 shows a flow diagram representing our research process:

• Steps 1/1a represent the iterative steps to find a suitable candidate class to formally
analyse (see section 2.3.1 (Finding a suitable candidate for formal analysis) on page
21).

• Steps 2/2a represent the formal specification of the pre- and postconditions and in-
variants of the class and its methods, as well performing preliminary sanity checks of
these specifications (see section 2.3.2 (Formal specification) on page 22).

• After these preliminary sanity checks, we should have a fairly good feeling about our
specifications, and proceed to step 3, formal verification with KeY. Successful verifi-

20

cation would imply the specification is correct, and the class had been proven to be
correct. Unsuccessful verification, on the other hand, might be due to one or more
errors in the JML-specification (despite our attempts to eliminate those in step 2a).

• If, however the specification would be correct and complete, an error in the code may
have been detected. Before concluding this is the case, it would be of importance to
rule out any limitations or bugs in (or improper use of) KeY. Detection of a bug would
result in steps 4 to 6, followed by another iteration of the process, starting at step 1.

2.3.1. FINDING A SUITABLE CANDIDATE FOR FORMAL ANALYSIS

Stijn de Gouw, project supervisor and author of some of the related research articles [14,
19, 20] (see section 1.3, on page 7) suggested some promising candidate classes to formally
analyse, that fit the preferences mentioned above (see subsection 2.2.2). Furthermore, bugs
reported by the Java community also lead to interesting candidates to consider for formal
analysis. This resulted in the following shortlist:

• IdentityHashMap – At the start of the project, there was no known research available
for the class java.util.IdentityHashMap, and there is no known bug history 3.
This would make for an ideal subject class. Furthermore, KeY’s Map theory supports
the verification of maps, making this class a suitable candidate even more. There was
one downside, however: its size. Formally specifying a class of this size would be a
considerable amount of work.

• CountingSort – A less extensive candidate to formally specify was the sort method
of java.util.DualPivotQuicksort. However, CountingSort was not expected to
contain a bug, which made it a less interesting candidate 4.

• Classes containing a reported bug – A third option would be to take a class that had
been reported to contain a bug that had not been fixed. The task, then, would be to
formally prove the reported bug, and provide a fix that had to be be proven correct
and tested successfully.

From this shortlist, a final candidate was picked, as part of the research process (see
section 2.3, on page 20). We made an attempt to load the class in KeY 5. In Eclipse (version
2020-03) we created a new KeY project (to be able do this, the KeY plugin for Eclipse had
to be installed), and chose a project specific JRE: Java SE 7 [1.7.0_80]6. We downloaded a

3https://bugs.openjdk.java.net did not contain any relevant open or closed bug in IdentityHashMap (checked
on Feb. 14th, 2020).

4https://bugs.openjdk.java.net did not contain any open or closed bug in DualPivotQuickSort (checked on
Feb. 14th, 2020).

5Initially, we used the 2.6.3 version of KeY, downloaded from KeY project website, http://key-project.org.
During the project, we were granted access to the GitLab repository of the KeY project, and we cloned the
latest master version from the repository (version 2.7). We also used the KeY plugin for Eclipse for JML syntax
highlighting, KeY-related context menus, et cetera

6We experimented with several newer versions, but ran into problems when removing generic and generating
stubs. KeY does not support generics, so these had to be stripped. The KeY plugin for Eclipse supports this
automatically. Also, to verify a class in isolation, related classes have to be replaced by stubs. This, too, is
supported by the KeY plugin.

21

JDK7 version of the IdentityHashMap 7 (see figure 2.5) and added it to the project, in the
appropriate package. Next, we had to make the following (minor) adjustments:

1. Rename the class – to prevent the class name from clashing with the name of the
original class in the JDK library in the same package, we renamed our class under
analysis to VerifiedIdentityHashMap.

2. Generate stubs – to be able to analyse a class in isolation, all related classes (parent
classes, implemented interfaces, return types, parameter types, et cetera) had to be
stubbed. Stubs contain empty methods with default specifications (i.e. all precondi-
tions as well as postcondition are true). The KeY plugin for eclipse enabled us to gen-
erate stubs automatically. It provides a context menu for the project with the menu
item Generate stubs. Initially this failed, with two errors. Two minor adjustments in
the code were necessary to fix this: two occurrences ofAbstractMap.SimpleEntry<>
(on lines 1148 and 1160) had to be changed toAbstractMap.SimpleEntry<Object,
Object>. After this minor adjustment, the stubs were generated successfully.

3. Strip generics – because KeY does not support generics, we had to strip the generics in
the VerifiedIdentityHashMap. This was also done automatically by choosing the
Strip generics item from the project’s context menu. Stripping the generics resulted
in a trivial problem, that was easily fixed. The resulting code contained the following
on line 504 and 505 (the putAll method):

504 for (Entry e: m.entrySet())
505 put(e.getKey(), e.getValue());

Listing 2.6: Fragment of the IdentityHashMap after stripping generics

Since m.entrySet() now returned an Object instead of an Entry, an explicit cast is
necessary to satisfy the compiler. This resulted in:

504 for (Object o: m.entrySet()) {
505 Entry e = (Entry) o;
506 put(e.getKey(), e.getValue());
507 }

Listing 2.7: Fragment of the IdentityHashMap after correction

After these minor adjustments we were able to load the VerifiedIdentityHashMap in
KeY. This meant we had found a suitable candidate class to analyse, and we could start
formally specifying the class with JML. In the remainder of this thesis, this class will be
referred to as IdentityHashMap, the original name of the class.

2.3.2. FORMAL SPECIFICATION
We based the JML specifications we wrote for the IdentityHashMap on the Javadoc inside
the code, combined with general knowledge of data structures (Map, Set, Iterator, Array

7http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/IdentityHashMap.java

22

et cetera) [30]. This way of working does not instantly guarantee 100% error-free specifi-
cations. Formal analysis is an iterative process, where errors in the specification may not
surface until after time consuming attempts to formally verify the code with KeY. Further-
more, as is clear from the UML diagram in figure 2.5, the IdentityHashMap is quite a large
class to formally specify. Since formal specification takes up the lion’s share of effort in the
process of formal analysis [14, 20], we wanted to detect errors in our JML specification as
early as possible. By detecting errors early on, we aimed to limit the effort spent in the
process. We therefore decided to perform a number of sanity checks. In the sections be-
low we describe how we applied JUnit, as well as some available JML tooling we explored,
JMLUnitNG, OpenJML, and JJBMC, with varying success.

PRELIMINARY VALIDATION OF JML SPECIFICATIONS WITH JUNIT

In subsection 2.1.5 (Java Modelling Language (JML)), on page 11, we already showed an
example of a method we actually formally specified with JML in the IdentityHashMap,
the isEmpty method. Let’s return to that example, as showed in listing 2.1, and see how
we tested the JML specification of that method, using JUnit. The ensures clause (lines 3 –
4) specifies a predicate that represents the postcondition of the method: the return value
must be true if size equals 0, or false otherwise. Furthermore, the method is defined
strictly_pure (see line 6). The JML Reference Manual by Leavens et al. [9] explains
(strictly) pure methods as follows:

A pure method that is not a constructor implicitly has a specification that does
not allow any side effects. That is, its specification has the clauses

diverges false;
assignable \nothing;

added to each specification case;

The first clause (diverges false;) means the method may neither contain an infinite
loop, nor return abnormally (abort). (The diverges clause is seldom used, and its default
value is false). The second clause is more interesting, and can be tested in a unit test. By
specifying assignable \nothing it is stated that no field or variable that is defined out-
side the method may be changed during its execution. According to the The JML Reference
Manual by Leavens et al. [9]:

An assignable clause gives a frame axiom for a specification. It says that, from
the client’s point of view, only the locations named, and locations in the data
groups associated with these locations, can be assigned to during the execution
of the method.

In case of the isEmpty method, this means that no field of the IdentityHashMap or any
field of other objects is allowed to be changed.

Aside from the method’s postcondition (1) and its purity (2), the class invariant of the
IdentityHashMap (as well as its inner classes) must hold before and after the invocation of
the method isEmpty (3). These three aspects of the JML specification, we were able to test
with JUnit. For this particular method, we designed the IdentityHashMapIsEmptyTest8

8The complete set of unit test classes developed during our project is part of the project deliverables, and is
available on GitHub: https://github.com/m4ndeb2r/IM9906-IdentityHashMapSpecTester.

23

Figure 2.5: A UML diagram of the IdentityHashMap

class, containing a test method testIsEmptyNormalBehaviour that tests the aforemen-
tioned aspects. For simplicity, we will leave aside the details regarding class invariant test-
ing (3), and focus on the postcondition (1) and the purity (2) of the method isEmpty here
(see listing 2.1 on page 11 for the isEmpty method including the JML specification, and
listing 2.8 below, for the unit test code).

24

1 import org.junit.Test;
2 import java.util.IdentityHashMap;
3 import static nl.ou.im9906.ClassInvariantTestHelper.assertClassInvariants;
4 import static nl.ou.im9906.MethodTestHelper.assertIsPureMethod;
5 import static nl.ou.im9906.ReflectionUtils.getValueByFieldName;
6 import static org.hamcrest.MatcherAssert.assertThat;
7 import static org.hamcrest.core.Is.is;
8

9 public class IdentityHashMapIsEmptyTest {
10

11 @Test
12 public void testIsEmptyNormalBehaviour()
13 throws NoSuchFieldException , IllegalAccessException ,
14 NoSuchMethodException , NoSuchClassException {
15

16 // Create an empty map, test pre- and postconditions
17 // Precondition: class invariants hold
18 // Postcondition 1: ensures \result <==> size == 0;
19 // Postcondition 2: class invariants hold
20 // Test if the isEmpty method is pure in these circumstances
21 final IdentityHashMap <Object, Object> emptyMap = new IdentityHashMap <>();
22 assertClassInvariants(emptyMap);
23 assertThat((int) getValueByFieldName(emptyMap, "size"), is(0));
24 assertThat(emptyMap.isEmpty(), is(true));
25 assertClassInvariants(emptyMap);
26 assertIsPureMethod(emptyMap , "isEmpty");
27

28 // Create a map, and add an element to the map, and test pre- and
29 // postconditions , and purity again
30 final IdentityHashMap <Object, Object> filledMap = new IdentityHashMap <>();
31 filledMap.put("key1", "value1");
32 assertClassInvariants(filledMap);
33 assertThat((int) getValueByFieldName(filledMap , "size"), is(1));
34 assertThat(filledMap.isEmpty(), is(false));
35 assertClassInvariants(filledMap);
36

37 // Remove the element, and test postcondition again
38 filledMap.remove("key1");
39 assertThat((int) getValueByFieldName(filledMap , "size"), is(0));
40 assertThat(filledMap.isEmpty(), is(true));
41 assertClassInvariants(filledMap);
42 }
43 }

Listing 2.8: Using JUnit to test the JML specifications of isEmpty

On line 21 an IdentityHashMap is declared and instantiated as an empty map. As soon as
the map is instantiated, its class invariant and the class invariants of inner classes should
hold. This is being checked on line 22 by calling the assertClassInvariants method.
(This helper method checks if the class invariant of the IdentityHashMap and its inner
classes hold. Again, for simplicity reasons, the details of this method are ignored here.)

On lines 23 and 24 we assert that the \ensures clause \result <==> size == 0 (see
listing 2.1) holds: if size equals 0 (which should obviously be the case at this point), then
the \result must be true. On line 25, the class invariant of the IdentityHashMap and
its inner classes must hold again, and on line 26 the purity of the method isEmpty is being
tested, by calling the helper method assertIsPureMethod, which is imported on line 4.
On lines 30 – 35 the exercise on lines 21 – 25 is repeated for an IdentityHashMap that is
not empty. Here, we expect a size equal to 1, and the result of the method must, therefore,
be false. Finally, on lines 38 – 41, we remove the entry from filledMap, and check if size
contains the value 0 again, and the result of isEmpty returns false, as expected.

The assertion on line 26 tests the purity of the method, and is worthwhile to take a

25

closer look at. The helper method assertIsPureMethod, which is imported on line 4, is
implemented as follows:

1 protected static void assertIsPureMethod(
2 Object obj,
3 String methodName ,
4 Object... params)
5 throws NoSuchFieldException ,
6 IllegalAccessException ,
7 NoSuchMethodException {
8 assertAssignableNothingClause(obj, methodName , params);
9 }

10

11 ...
12

13 protected static void assertAssignableNothingClause(
14 Object obj,
15 String methodName ,
16 Object[] params)
17 throws NoSuchMethodException ,
18 IllegalAccessException ,
19 NoSuchFieldException {
20 assertAssignableClause(obj, methodName , params, new String[0]);
21 }

Listing 2.9: Testing if a method is pure, using JUnit

The method assertIsPureMethod expects three parameters. The first, obj can be
any kind of object. In our example, the actual parameter will obviously be an instance of
the IdentityHashMap, our CUA. The second one is the name of the method for which
we want to test if it is pure (i.e. it does not change any field of any object not defined
or created locally inside itself). In this example this actual parameter will have the value
“isEmpty” (see listing 2.8, line 26). The third parameter is the list of parameters to pass on
to the isEmpty method (an empty list in this case, because the isEmpty method has no
formal parameters). Listing 2.9 shows that the implementation of assertIsPureMethod
is coherent with the definition in the JML Reference Manual by Leavens et al. [9], where
it is stated that a pure method implicitly has a specification of assignable \nothing;.
In our implementation (line 8) we call the method assertAssignableNothingClause,
which in turn delegates the real work (asserting no field or parameter is being assigned)
to the method assertAssignableClause (line 20). assertAssignableClause is expect-
ing one extra parameter: an array of String values (representing the names of the fields in
the IdentityHashMap that are assignable according to the JML specifications). In case of
a pure method, no field is assignable. Therefore, the fourth actual parameter is an empty
array.

The real testing is done in the method assertAssignableClause (see listing 2.10), that
iterates over all fields in the IdentityHashMap, and stores the original values of all these
fields (lines 10 – 24). Note that final fields are ignored, because they cannot be assigned
anyway (line 19). Also, assignable fields are ignored (lines 20 and 79 – 86), because only the
fields that are not allowed to be changed have to be checked. Next, it invokes the method
under analysis (line 28). Note that, on lines 29 – 34, any InvocationTargetException is
caught and ignored. The reason for this is that we wanted to be able to handle exceptional
behaviour for methods that are not allowed to assign values to any field. (Consider, for ex-
ample, in JML terms: anassignable \nothing clause within anexceptional_behavior

26

heavy weight specification case). Finally, the new values of all the fields that were not
marked as final or assignable are collected, and compared with the original values. The
original values must be unchanged.

1 protected static void assertAssignableClause(
2 final Object obj,
3 final String methodName ,
4 final Object[] params,
5 final String[] assignableFieldNames)
6 throws NoSuchFieldException ,
7 IllegalAccessException ,
8 NoSuchMethodException {
9

10 // Collect the non-assignable fields from the IdentityHashMap , their names,
11 // and their original values, before invoking the method under analysis.
12 final Field[] fields = obj.getClass().getDeclaredFields();
13 final Map<String, Object> oldFieldValues = new HashMap <>();
14 for (int i = 0; i < fields.length; i++) {
15 // Skip final fields (because they cannot be assigned anyway) as
16 // well as the assignable fields (because we do not have to check
17 // these).
18 final String fieldName = fields[i].getName();
19 if (!isFinal(obj, fieldName) &&
20 !arrayContains(assignableFieldNames , fieldName)) {
21 final Object fieldValue = getValueByFieldName(obj, fieldName);
22 oldFieldValues.put(fieldName , fieldValue);
23 }
24 }
25

26 // Now, invoke the method under analysis.
27 try {
28 invokeMethodWithParams(obj, methodName , params);
29 } catch (InvocationTargetException e) {
30 // This might be due to an Exception that is expected in the
31 // exceptional_behavior heavy weight specification case of the JML.
32 // We still want to check the JML assignable clause. So, let’s do
33 // nothing, and resume to check the fields and parameters.
34 }
35

36 // Check if the fields have not been unexpectedly assigned a value.
37 // I.e. (according to our ’loose’ interpretation of the term ’assignable’)
38 // compare the old value with the current value.
39 for (String fieldName : oldFieldValues.keySet()) {
40 final Object newFieldValue = getValueByFieldName(obj, fieldName);
41 final Object oldFieldValue = oldFieldValues.get(fieldName);
42 if (isPrimitive(obj, fieldName)) {
43 // In case of a primitive field, we cannot use the ’==’ operator ,
44 // because getValuesByFieldName returns an object representation
45 // of the actual reference to the respective field. We, therefore ,
46 // use Matchers.is()
47 assertOldEqualsNewPrimitive(fieldName , newFieldValue , oldFieldValue);
48 } else {
49 // In case of a non-primitive field, we can use the ’==’ operator ,
50 // because getValuesByFieldName returns the actual reference to the
51 // respective object.
52 assertOldSameAsNewNonPrimitive(fieldName , newFieldValue , oldFieldValue);
53 }
54 }
55 }
56

57 private static void assertOldSameAsNewNonPrimitive(
58 final String fieldName ,
59 final Object newFieldValue ,
60 final Object oldFieldValue) {
61 final String msg = String.format(
62 "Non-primitive , non-assignable field ’%s’ unexpectedly assigned.",
63 fieldName
64);

27

65 assertThat(msg, newFieldValue == oldFieldValue , is(true));
66 }
67

68 private static void assertOldEqualsNewPrimitive(
69 final String fieldName ,
70 final Object newFieldValue ,
71 final Object oldFieldValue) {
72 final String msg = String.format(
73 "Primitive , non-assignable field ’%s’ unexpectedly changed.",
74 fieldName
75);
76 assertThat(msg, newFieldValue , is(oldFieldValue));
77 }
78

79 private static <T> boolean arrayContains(final T[] array, final T value) {
80 for (final T element : array) {
81 if (element == value || value != null && value.equals(element)) {
82 return true;
83 }
84 }
85 return false;
86 }

Listing 2.10: Testing the assignable clause, using JUnit

Note that, on line 42 (and 48), we made a distinction between primitive fields and non-
primitive fields. We did this for the following reason. When using Java Reflection to ac-
cess private fields (as is done by the helper method getValueByFieldName, that at some
point calls Java Reflection’s Field.get method to retrieve the value of a field), an Object
is returned. If the field is actually a primitive (int, long, boolean, et cetera), it is being
converted to an object, using a wrapper class (Integer, Long, Boolean, et cetera, respec-
tively). Indeed, every call to getValueByFieldName returns a newly created instance of
such a class. As a consequence, we are not able to successfully compare the old value of a
primitive field to the new value of that same primitive field using the ‘==’ operator. It will
always return false. Therefore, we compare primitives using the Matcher.is method (see
line 76, inside the assertOldEqualsNewPrimitivemethod on lines 68 – 77). This is, how-
ever not the case for non-primitive fields: getValueByFieldNamewill return a reference to
the same object every time it is invoked. Therefore, the values of non-primitive fields can
be compared using the ‘==’ operator (see method assertOldSameAsNewNonPrimitive on
lines 57 – 66).

A few questions might arise from reading this implementation, that require to be ad-
dressed here. For example, which fields are included in the assignable test (lines 12 – 24, 39
– 54)? And why aren’t parameters included?

1. Which fields are included in the assignable test? Although, strictly, we should con-
sider the complete heap, for pragmatic reasons we limit the test to fields of the spe-
cific hash map under analysis. On line 12 in listing 2.10 all the declared fields of the
IdentityHashMap are retrieved. This includes static fields. An argument could be
made to skip static fields, but we wanted to make absolutely sure that no side ef-
fects would occur. Indeed, static fields might be assigned a value, and if this would
happen, we would want it to be detected. Therefore, we decided it would be bet-
ter to be blunt, and to include all declared fields of the class in our test. Except,
of course, the fields that are marked assignable (contained in the input parameter
assignableFieldNames on line 5), and that are excluded on line 20. Final fields are

28

also excluded, obviously, because it is not allowed to assign new values to final fields
once they are initialised in Java (see line 19).

2. Why aren’t parameters included? Since Java only supports the copy-in parameter
mechanism [31], there is no need to worry about side effects regarding parameters.
Therefore, we decided not to include them in our test.

The purpose of this section has been to explain our method of using JUnit tests combined
with Java Reflection to check JML specifications. The results of these are addressed in chap-
ter 3 (Results) and further discussed in chapter 4 (Discussion).

PRELIMINARY VALIDATION OF JML SPECIFICATIONS WITH JMLUNITNG
Although JUnit tests combined with Java Reflection had their merits, it must be noted, they
also had some (technical) limitations. For example, JML contracts had to be manually
translated to Java in the JUnit tests. We were, therefore, not able to detect syntax errors
in the original JML specifications, and there was, obviously, the possibility of translation
errors. We will discuss the downsides of the approach taken above with JUnit in detail in
section 4.2.1 (Pros and cons of validating JML specifications with JUnit) on page 66.

In an attempt to tackle the downsides of the approach taken above with JUnit, we de-
cided to also try to use JMLUnitNG [32]. JMLUnitNG is a TestNG-based successor to JML-
Unit, a unit testing framework for JML-annotated Java code [23]. JMLUnit suffers from a
number of shortcomings, like limited test coverage, excessive memory utilisation and the
need to manually write extra code to generate test data objects. JMLUnitNG reduces a num-
ber of these issues.

After installing JMLUnitNG (the latest version dates back to 2014 9), we ran into issues,
however. We were able to resolve these issues, but while resolving them, we discovered
the tool was not supported anymore. Because OpenJML provides similar functionality, we
decided to place our bets on the latter.

PRELIMINARY VALIDATION OF JML SPECIFICATIONS WITH OPENJML
OpenJML [22] is an automatic verification tool for JML annotated Java programs. It trans-
forms a program into a static single assignment form, and from this, it generates first-order
logic conditions, that are the input for a so-called satisfiability modulo theory (SMT) solver.
OpenJML is available as an Eclipse plugin and as a command line tool. We decided to use
the latter.

Whereas OpenJML is an automatic verification tool, KeY is an interactive tool. The for-
mer allows for automatically generated verification conditions (based on the annotated
program) to be sent to a first-order prover. Verification can be done very fast for less com-
plex methods where correct specifications can be given directly. It is, however, less suitable
for incremental development of a specification. KeY, on the other hand, allows the user
to build up more complicated proofs incrementally. As Boerman et al.[12] have observed,
OpenJML is not so much suited for preliminary testing of all the JML specifications, but
because of the aforementioned difference, “[...] there is a high potential to increase verifi-
cation efficiency if a user can smoothly switch between OpenJML and KeY during the veri-
fication process.” And this is how we actually applied OpenJML: by switching between both
tools, and enhancing the JML step by step. The results of using OpenJML are described in
chapter 3 (Results) and are further discussed in chapter 4 (Discussion).

9Available on http://insttech.secretninjaformalmethods.org/software/jmlunitng/

29

PRELIMINARY VALIDATION OF JML SPECIFICATIONS WITH JJBMC
A third tool we used for preliminary checking of our JML specifications was JJBMC. JJBMC
is a tool that is still being developed at both the Forschungszentrum Informatik (FZI) and
the Karlsruher Institut für Technologie (KIT). It enables a software bounded model checker,
JBMC, to verify contracts written in JML, based on OpenJML. We used JJBMC to perform
sanity checks on our JML specifications of the IdentityHashMap.

Because JBMC is a bounded model checker, we expected some adjustments to the code
would be necessary to prevent the typical problem of state space explosion, that is common
with model checking (see 1.1.6, Formal analysis methods and the case for deductive verifi-
cation, and appendix A, section A.1, Model checking). Nevertheless, we wanted to explore
if the tool could help us to speed up the process of formal specification. The results of ap-
plying JJBMC for this purpose can be found in chapter 3 (Results) and are further discussed
in chapter 4 (Discussion).

30

3
RESULTS

In this chapter we will describe the results obtained during our project of formally analysing
the IdentityHashMap of the Java Collections Framework (JDK7). In section 3.1 the im-
plementation of the IdentityHashMap is roughly outlined. Section 3.2 describes how we
prepared the CUA for verification with KeY, and which methods we were eventually able to
verify. It also shows some proof statistics that are briefly elaborated on. Finally, we describe
a specific example of a method we verified, the containsKey method.

Next, in sections 3.3, 3.4 and 3.5 we describe the results of our attempts to speed up
the process of formal analysis. We took a hybrid approach to specify the CUA, and used a
number of tools (as mentioned in chapter 2) to perform some preliminary checks on our
specification, in an attempt to detect any errors or other shortcomings in an early stage of
the process.

The final two sections of this chapter, section 3.6 and 3.7, go into the overflow error we
detected in the capacity method. We explain the error, what triggers it, the damage it
causes when triggered, and how it could be solved.

3.1. IMPLEMENTATION OF IDENTITYHASHMAP
Figure 2.5 on page 24 shows a UML-diagram of the complete IdentityHashMap, including
its inner classes. Here we will describe the main methods and the inner structure of the
main class itself. The purpose of this section is to provide enough insight into the inner
workings of the CUA to grasp the remainder of this chapter.

The IdentityHashMap implements the java.util.Map interface of the Java Collec-
tions Framework, using a hash table. Like in any Map, any entry consists of a key-value pair
(k, v). In the IdentityHashMap implementation, two keys k1 and k2 are considered equal
if and only if k1 == k2 (reference-equality). This is different from normal implementations
(e.g. HashMap) that use object-equality.

The entries are stored in a hash table (a private array field named table). When an en-
try (k, v) is added (using the put method), a hash h is calculated based on the value of k
and the length of table, N, where h ∈ {0,2,4, ...N}. The key k is stored in table at index h,
and the value v is stored at index h+1. However, there is no guarantee that the hash func-
tion produces a unique hash value for any key. In other words, collisions might occur: the
calculated position in the hash table is already taken by a previously added entry with a dif-
ferent key. In that case, the new entry will be stored at the next position in the table. If that

31

position is taken as well, the next position is tried, et cetera, until a free position is found.
The next position in table to store a key is determined by the method nextKeyIndex.
This method returns (i + 2) mod N (where i is the current key index and N is the length of
table). This way of handling collisions is called linear probing [30]. Obviously, when an
entry (kexi st i ng , vnew), with a key kexi st i ng that is already present in the map, is added to
the map, it is not considered a collision as such, and the value of the existing entry will be
overwritten with vnew . This guarantees that all keys in the map are, at all times, unique.

It is allowed to put an entry (k, v) into the IdentityHashMap, where k is null (v can be
any Object value, including null). However, to be able to distinguish such an entry from an
empty entry, and to guarantee the uniqueness of keys, k is mapped to a constant NULL_KEY.
This constant is declared and initialised as follows:

1 private /*@ spec_public @*/ static final Object NULL_KEY = new Object();

Listing 3.1: Constant NULL_KEY, a placeholder for an empty key.

The maskNull and unmaskNull methods map a key (if necessary) from null to NULL_KEY
and vice versa, respectively (see listing 3.2). These methods are typically used when storing
entries (e.g. put), searching entries by their keys (e.g. get, containsKey, containsMapping),
or removing entries (e.g. remove).

1 /**
2 * Use NULL_KEY for key if it is null.
3 */
4 /*@ private normal_behavior
5 @ ensures key == null ==> \result == NULL_KEY;
6 @ ensures key != null ==> \result == key;
7 @*/
8 public static /*@ strictly_pure @*/ Object maskNull(Object key) {
9 return (key == null ? NULL_KEY : key);

10 }
11

12 /**
13 * Returns internal representation of null key back to caller as null.
14 */
15 /*@ private normal_behavior
16 @ ensures key == NULL_KEY ==> \result == null;
17 @ ensures key != NULL_KEY ==> \result == key;
18 @*/
19 private /*@ spec_public @*/ static /*@ pure nullable @*/ Object unmaskNull(Object

key) {
20 return (key == NULL_KEY ? null : key);
21 }

Listing 3.2: Masking and unmasking null keys.

When the get method is called to get an entry from the IdentityHashMap, the hash
method is used again to determine the position of the entry in the array table. If the key
found at this position does not equal the key of the requested entry (reference-equality!),
then the next key index is tried, until the key of the requested entry is found, or an empty el-
ement in the array is encountered. Note that it is crucial that the array, at any time, contains
at least one empty entry. If this would not be the case, it is possible that the get method

32

will go into an infinite loop if the requested entry is not found 1. Indeed, the nextKeyIndex
method, that determines the next key index, returns (i + 2) mod N (see above).

After removal of an entry (method remove) the array should be restored as if the entry
was never added in the first place. If an entry (k, v) with k at index i and v at index i+1 is
removed, then all of the subsequent entries with the same hash have to be shifted down two
positions. The closeDeletion method is responsible for keeping all the entries that have
the same hash for their key, together as a consecutive sequence, without any gaps between
them, just like it would have been when the deleted entry was never added. This is crucial
for methods like get, containsKey, containsMapping, et cetera, to function correctly.
Indeed, these methods search the array table, starting at a position determined by the
requested key’s hash value, and search every subsequent key index until that key is found
or an empty entry is encountered. Unclosed gaps, therefore, would have a fatal impact.

3.2. JML CONTRACTS AND KEY PROOF FILES

3.2.1. PREPARATION OF THE CLASS UNDER ANALYSIS
As described in section 2.3.1 (Finding a suitable candidate for formal analysis) of chapter 2
(see page 21), we started off by preparing the IdentityHashMap to be able to load it in KeY,
which was a prerequisite for a suitable candidate class for formal analysis. The adjustments
to the class were minimal: we renamed it to VerifiedIdentityHashMap to prevent it from
clashing with the original class in the same package, generated stubs for the related classes,
and stripped generics from the class because KeY does not support them. Furthermore,
two minor adjustments were made in the code by hand (having to do with the generation
of stubs, and a casting problem after stripping the generics), and we were ready to start
writing our first JML contract.

3.2.2. SPECIFIED AND VERIFIED METHODS
Because the IdentityHashMap is considerably large (see figure 2.5 on page 24) and its se-
mantics intricate, we focused mainly on the methods of the IdentityHashMap itself and
disregarded the inner classes EntryIterator, EntrySet, IdentityHashMapIterator,
KeyIterator, KeySet, ValueIterator and Values. Furthermore, we limited formal veri-
fication to the most typical methods for a map, i.e. isEmpty, size, get, containsKey,
containsValue, containsMapping, et cetera. Table 3.1 shows all methods of the CUA.
The check marks in the columns JML and KeY indicate which methods were specified and
which methods were proven with KeY during our project 2 3. (Some methods were not or
incompletely specified, and also not verified, e.g. closeDeletion, equals, and hashCode.
These methods are nevertheless included in the table, to give an impression of the level of
specification.)

1This is also applies to other methods, like containsKey, containsMapping, and containsValue, that all
search the array in a similar way.

2A complete list of specified, tested and verified methods and inner classes of the IdentityHashMap, subdi-
vided per tool, is included in appendix C.

3All proof files generated by KeY are part of the project deliverables, and are also available in GitHub. See:
https://github.com/m4ndeb2r/IM9906-VerifyingIdentityHashMap

33

Method JML KeY

Class invariant X X
Object maskNull(Object) X X
Object unmaskNull(Object) X X
IdentityHashMap() X
IdentityHashMap(int) X
int capacity(int) X X
void init(int) X X
IdentityHashMap(Map<K,V>) X
int size() X X
boolean isEmpty() X X
int hash(Object, int) X 4

int nextKeyIndex(int, int) X X
V get(Object) X X
boolean containsKey(Object) X X
boolean containsValue(Object) X X
boolean containsMapping(Object, Object) X X
V put(K, V) X X
void resize(int) X X
void putAll(Map<K,V>) X
V remove(Object) X
boolean removeMapping(Object, Object) X
void closeDeletion(int)
void clear() X X
boolean equals(Object)
int hashCode()
Object clone() X
Set<K> keySet() X
Collection<V> values() X
Set<Map.Entry<K,V> > entrySet() X
void writeObject(ObjectOutputStream)
void readObject(ObjectInputStream)
void putForCreate(K, V)

Table 3.1: Methods specified with JML and proven with KeY

3.2.3. PROOF STATISTICS
Although we did not formally verify the IdentityHashMap entirely, we did analyse most
of the typical methods for a map. The project led to an extensive analysis of a map struc-
ture with KeY that had not been done before, resulting in over 652 thousand proof steps
for 17 methods. Table 3.2 shows some statistics about these proofs. For most of the meth-
ods, multiple behaviour specification cases of several contracts had to be proven, resulting
in multiple proof files per method. For example, the put method statistics are an accu-
mulation of the statistics of 6 separate behaviour specification cases: (1) the exceptional
behaviour specification case of the method’s top level contract, (2) the normal behaviour
specification case of the method’s top level contract, (3) the exceptional behaviour specifi-
cation case of one of the block contracts, and (4 – 6) three normal behaviour specification
cases of three block contracts. Table 3.2 contains the accumulated statistics of these proof
files per method.

4Only one of two contracts proven

34

Method Nodes Br. IS SE QI OS OC BC LI TR JML LOC

capacity 67,215 69 0 387 85 0 0 0 4 67,211 37 11
clear 11,801 24 0 179 11 0 0 0 2 11,799 19 7
containsKey 21,734 55 0 197 51 0 6 0 2 21,732 19 14
containsMapping 19,372 43 0 150 64 0 4 0 1 19,371 18 14
containsValue 18,993 26 0 280 15 0 0 0 2 18,991 13 7
get 34,632 82 0 260 114 0 6 0 2 34,630 29 14
init 2,141 12 0 75 2 0 1 0 0 2,140 15 4
isEmpty 150 2 0 30 1 0 0 0 0 148 5 3
maskNull 121 2 0 18 0 0 0 0 0 120 4 3
nextKeyIndex 464 2 0 29 0 0 0 0 0 463 5 3
put 371,106 941 166 963 1,790 24,885 15 1 2 404,582 140 25 5

resize 99,190 78 0 360 110 0 3 0 2 99,188 45 30
size 122 2 0 22 1 0 0 0 0 120 5 3
unmaskNull 131 1 0 24 0 0 0 0 0 130 4 3
EntrySet.clear 1,831 10 0 18 15 0 3 0 0 1,828 11 3
KeySet.clear 1,831 10 0 18 15 0 3 0 0 1,828 11 3
Values.clear 1,282 8 0 13 7 0 2 0 0 1,280 11 3
Total 652,116 1,367 166 3,023 2,281 24,885 43 1 17 685,561 391 150

Br.: Number of branches in the proof tree, IS: Interactive Steps (number of interactively (manually) applied
rules), SE: Symbolic Execution steps, QI: Quantifier Instantiations, OS: One-step Simplification applications,
OC: Operation Contract applications, BC: Block Contract applications, LI: Loop Invariant applications, TR:
Total number of Rule applications, JML: lines of JML spec. (KeY only, and not including comment lines), LOC:
Lines Of Code (Java code excluding whitelines and comment lines).

Table 3.2: Lines of code, lines of specification, and KeY statistics per proof

Notice that most methods did (eventually) not need any interactive (manual) steps (see
column IS). Methods like size, isEmpty, or nextKeyIndex are very small (see column
LOC), and have relatively small specification contracts (column JML), so it is not surprising
that these method were automatically proven. Other methods, however, like get, resize,
containsKey, containsMapping, or containsValue are significantly larger. Neverthe-
less, these were proven automatically as well. This was, however, not immediately the case.

During the analysis, in the incremental process of refining and improving the speci-
fications, these methods needed interactive steps as well. This would regularly result in
substantial improvements of a method contract, block contract, loop invariant, or, in a few
cases, the class invariant. Improving these specifications in some cases required improving
the unit tests as well, and, obviously, running them again. (In cases where the improve-
ments were strictly limited to block contracts or loop invariants, we did not need to re-test,
because we did not write any unit tests for block contracts and loop invariants. The reason
for this is explained in section 3.3.3 (Block contracts and loop invariants) on page 47.) The
final version of the specifications enabled us to prove the methods automatically, except
for the put method.

The putmethod required some interactive steps, e.g. hiding irrelevant parts of the large
JavaDL formulas manually. JavaDL sequent formulas, that are generated by KeY, can be-

5The original code has 21 lines of code. To be able to write two JML block contracts, we divided (part of)
the body of the method into blocks, adding 4 enclosing curly braces (for two new blocks) on four new lines,
resulting in a total of 25 lines.

35

come very large, and sometimes the contain conditions that are irrelevant for a specific
proof. These conditions can be excluded (‘hidden’) manually for that specific proof.

Notice also that the number of specification lines is significantly larger than the lines
of code (see columns JML and LOC, respectively). This doesn’t even take into account the
number of specification lines of the class invariant (being 48 lines, excluding whitelines
and explanatory comment lines).

3.2.4. A DETAILED EXAMPLE: VERIFICATION OF CONTAINSKEY
Here we describe the verification of the containsKey method with KeY. First, we describe
the class invariant in detail. Subsequently, we discuss the top-level contract of the method
and the loop invariant for the while loop inside the method. Finally, the verification with
KeY is addressed. (Note that the Java + JML listings in this section contain so-called condi-
tional JML, recognisable by the /*+KEY@ ... @*/ annotation. It is possible to write JML
specifications specifically for a particular tool, e.g. KeY or OpenJML. To grasp this section,
this can be ignored. For more on conditional JML, see section 3.4 (A preliminary check of
the JML specifications with OpenJML) on page 47.)

THE CLASS INVARIANT

The JML specification of the class invariant is shown in listing 3.3. Here we will clarify some
parts of the class invariant that are particularly interesting in relation to the containsKey
method. Because the method is \strictly_pure (see listing 3.4 on page 38), it should not
break the invariant. But, in order to work correctly, it does rely on a number of conditions
in the class invariant.

It is not allowed for an entry in the map to have an empty key (null). If an empty
element (null) is present on an even position in table, we assume we are dealing with a
vacant entry. This is enforced by the condition on lines 10 – 14: if a key (an element on
an even position in table is null, then the corresponding value (the subsequent element
in table) must also be null, so the key-value pair represents a vacant entry in the map.
Obviously, if a key is not null, it must be unique (see lines 16 – 21). This does, of course,
not apply to empty ‘keys’.

Another important condition is that table must always contain at least one empty en-
try (see lines 38 – 43). Without this invariant condition, methods that search the array for
a certain key (e.g. containsKey, containsMapping, or get), could end up in an infinite
loop. The two conditions on lines 45 – 63 in listing 3.3 are related. They enforce that no
gap (empty entry) exists between any two entries (kn , vn) and (km , vm) where hash(kn ,
table.length) == hash(km , table.length). See also: section 3.1 (Implementation of
IdentityHashMap) on page 31.

1 /*+KEY@ // JML specifically for KeY
2 @ public invariant
3 @ table != null &&
4 @ MINIMUM_CAPACITY == 4 &&
5 @ DEFAULT_CAPACITY == 32 &&
6 @ MAXIMUM_CAPACITY == 536870912 &&
7 @ MINIMUM_CAPACITY * (\bigint)2 <= table.length &&
8 @ MAXIMUM_CAPACITY * (\bigint)2 >= table.length;
9 @

10 @ // For all key-value pairs: if key == null, then value == null
11 @ public invariant
12 @ (\forall \bigint i;

36

13 @ 0 <= i && i < table.length / (\bigint)2;
14 @ (table[i * (\bigint)2] == null ==> table[i * (\bigint)2 + 1] == null));
15 @
16 @ // Non-empty keys are unique
17 @ public invariant
18 @ (\forall \bigint i; 0 <= i && i < table.length / (\bigint)2;
19 @ (\forall \bigint j;
20 @ i <= j && j < table.length / (\bigint)2;
21 @ (table[2 * i] != null && table[2 * i] == table[2 * j]) ==> i == j));
22 @
23 @ public invariant
24 @ threshold < MAXIMUM_CAPACITY;
25 @
26 @ // Size equals the number of non-empty keys in the table
27 @ public invariant
28 @ size == (\num_of \bigint i;
29 @ 0 <= i < table.length / (\bigint)2;
30 @ table[2 * i] != null);
31 @
32 @ // Table length is a power of two
33 @ public invariant
34 @ (\exists \bigint i;
35 @ 0 <= i < table.length;
36 @ \dl_pow(2,i) == table.length);
37 @
38 @ // Table must have at least one empty key-element to prevent
39 @ // infinite loops when a key is not present.
40 @ public invariant
41 @ (\exists \bigint i;
42 @ 0 <= i < table.length / (\bigint)2;
43 @ table[2 * i] == null);
44 @
45 @ // There are no gaps between a key’s hashed index and its actual
46 @ // index (if the key is at a higher index than the hash code)
47 @ public invariant
48 @ (\forall \bigint i;
49 @ 0 <= i < table.length / (\bigint)2;
50 @ table[2 * i] != null && 2 * i > hash(table[2 * i], table.length) ==>
51 @ (\forall \bigint j;
52 @ hash(table[2 * i], table.length) / (\bigint)2 <= j < i;
53 @ table[2 * j] != null));
54 @
55 @ // There are no gaps between a key’s hashed index and its actual
56 @ // index (if the key is at a lower index than the hash code)
57 @ public invariant
58 @ (\forall \bigint i;
59 @ 0 <= i < table.length / (\bigint)2;
60 @ table[2 * i] != null && 2 * i < hash(table[2 * i], table.length) ==>
61 @ (\forall \bigint j;
62 @ hash(table[2 * i], table.length) <= 2 * j < table.length || 0 <= 2 * j <

2 * i;
63 @ table[2 * j] != null));
64 @
65 @ // All keys and values are of type Object
66 @ public invariant
67 @ \typeof(table) == \type(Object[]);
68 @
69 @ // Fields modCount and threshold are of type integer (limits:
70 @ // Integer.MIN_VALUE and Integer.MAX_VALUE)
71 @ public invariant
72 @ \dl_inInt(modCount) && \dl_inInt(threshold);
73 @
74 @*/

Listing 3.3: The class invariant (conditional JML for KeY)

37

THE METHOD CONTRACT

Listing 3.4 shows the containsKey method, including the conditional JML for KeY. The
method contract is shown on lines 1 – 8. This contract has no precondition other than
the conditions in the class variant. The postcondition for this method states that the return
value of the method is true if the result of maskNull(key) exists in table on an even index,
or false otherwise. As explained in section 3.1, keys are stored in table on even positions,
and values are stored on odd positions. Note that the maskNull method is applied to the
actual parameter key. This method replaces key with NULL_KEY if it is null.

1 /*+KEY@
2 @ also
3 @ public normal_behavior
4 @ ensures
5 @ \result <==> (\exists \bigint j;
6 @ 0 <= j < (table.length / (\bigint)2);
7 @ table[j * 2] == maskNull(key));
8 @*/
9 public /*@ strictly_pure @*/ boolean containsKey(Object key) {

10 Object k = maskNull(key);
11 Object[] tab = table;
12 int len = tab.length;
13 int i = hash(k, len);
14

15 //+KEY@ ghost \bigint hash = i;
16

17 /*+KEY@
18 @ // Index i is always an even value within the array bounds
19 @ maintaining
20 @ i >= 0 && i < len && i % (\bigint)2 == 0;
21 @
22 @ // Suppose i > hash. This can only be the case when no key k and no null
23 @ // is present at an even index of tab in the interval [hash..i-2].
24 @ maintaining
25 @ (i > hash) ==>
26 @ (\forall \bigint n;
27 @ hash <= (2*n) < i;
28 @ tab[2*n] != k && tab[2*n] != null);
29 @
30 @ // Suppose i < hash. This can only be the case when no key k and no null
31 @ // is present at an even index of tab in the intervals [0..i-2] and
32 @ // [hash..len-2].
33 @ maintaining
34 @ (i < hash) ==>
35 @ (\forall \bigint n;
36 @ hash <= (2*n) < len;
37 @ tab[2*n] != k && tab[2*n] != null) &&
38 @ (\forall \bigint m;
39 @ 0 <= (2*m) < i;
40 @ tab[2*m] != k && tab[2*m] != null);
41 @
42 @ decreasing (\bigint)len - ((\bigint)len + i - hash) % (\bigint)len;
43 @
44 @ assignable \strictly_nothing;
45 @*/
46 while (true) {
47 Object item = tab[i];
48 if (item == k)
49 return true;
50 if (item == null)
51 return false;
52 i = nextKeyIndex(i, len);
53 }
54 }

Listing 3.4: The containsKey method (with conditional JML for KeY)

38

THE LOOP INVARIANT

The containsKey method contains one while loop (see lines 46 –53 in listing 3.4). The
corresponding loop invariant is on lines 15 – 45. On line 15, a ghost field named hash is
defined and initialised with the calculated hash that was stored in variable i (the first po-
sition in table to look for k). Ghost fields are only present for the purpose of specification
and can, therefore, only be used inside JML annotations. We need the hash value for two
invariant conditions as well as proof that the loop terminates (see below).

The first invariant condition is straightforward: the index variable i is always an even
value within the array bounds. The second and third condition are derived from the class
invariant conditions that no gap exists between entries that have an identical hash (i.e.
their key hash). In the first iteration, i equals hash, and tab[i] might contain k. If is does,
the method returns true, and the loop ends (line 49). If tab[i] is empty, the loop also
ends because it is assumed that k does not exist (line 51). In any other case, we need more
iterations to determine if k exists in table. Depending on the result of nextKeyIndex, that
returns (i + 2) mod table.length, i will be either greater than, or smaller than hash. In
all subsequent iterations where i > hash, we know that no element in table with an even
index n that we tried in previous iteration(s) (hash ≤ n < i) either contains k or null (see
lines 22 – 28). Moreover, in all subsequent iterations where i < hash, we know that also
no element with an even index in the ranges [0..i-2] and [hash..table.length-2] contains
either k or null (see lines 30 – 40).

A variant-function (see line 42) was used to help prove the termination of the while
statement. This (numeric) expression must decrease each iteration (hence the keyword
decreasing) and must be never less than 0. In the formula on line 42, i is the only chang-
ing variable. Initially, it equals the value of hash. With every iteration it is incremented
by 2 unless it reaches or exceeds the value of len. In that case i becomes 0. (Indeed,
nextKeyIndex returns (i + 2) mod len.) From this, we can conclude that (len + i - hash)
mod len increases by 2 with every iteration (unless we go into an infinite loop). This means
that len - (len + i - hash) mod len should decrease by 2 with every iteration. This is
demonstrated in table 3.3, where the values of the variant-function are shown for 5 iter-
ations and an array of 10 elements. Note that, if in the first iteration i equals hash, with
every step the result of the function decreases with 2. Note also that variant-function would
be violated with a 6th iteration. Indeed, i would become 4, resulting in a value of 10 for the
variant-function (like in the first line in the table).

i hash len len - (len + i - hash) mod len

4 4 10 10
6 4 10 8
8 4 10 6
0 4 10 4
2 4 10 2

Table 3.3: Variant function value table

VERIFICATION OF CONTAINSKEY WITH KEY

The memory used by KeY can grow extensively, especially when the number of nodes and/or
branches in the proof go up. We therefore increased the size of the heap space by using the
JVM option -Xmx (denoting the maximum size of the heap in Java). To be able to do so, we

39

first created a jar-file. From the root folder of the KeY project files structure we created this
jar in the following way:

$ cd ./key/key
$./gradlew shadowJar

After this, a jar-file was created in the key.ui folder, that we started as follows:

$ java -Xmx16G -jar ./key.ui/build/libs/key-2.7-exe.jar

To formally verify the containsKey method, two contracts had to be verified: one con-
cerning the normal behaviour of java.util.Map::containsKey and one concerning the
normal behaviour of java.util.IdentityHashMap::containsKey.

Based on the final version of the JML, as depicted in listing 3.4, we were able to verify
both contracts without any manual (intermediate) steps. Firstly, we opened the contract
related to the normal behaviour of java.util.Map::containsKey, and took the follow-
ing steps:

1. We applied the ‘Finish Symbolic Execution’ macro (one of the strategy macros of
KeY). Four open goals remained, one of them related to the loop invariant concerning
the while-loop iterating over all the keys in the map.

2. Next, we applied the loop invariant rule (context menu items ‘Loop Invariant’ > ‘Apply
Rule’).

3. We set the maximum number of rule applications of the ‘Proof Search Strategy’ to
600, and tried to close all provable goals in the proof tree (by applying the strategy
macro ‘Close All Provable Goals Below’ on the root of the proof tree). By keeping the
maximum number of rule applications low, we would only close the easy to close
branches of the tree (i.e. the ‘low hanging fruit’), without wasting too much time.
After this, two goals remained open, labelled ‘Body Preserves Invariant’ and ‘Loop
Invariant Use Case’ respectively.

4. We then tried to close both open goals, one at a time, starting with the one labelled
‘Body Preserves Invariant’. We first set the maximum number of rule applications
of the ‘Proof Search Strategy’ to 10,000. Subsequently, we tried to close the goal us-
ing the strategy macro ‘Close All Provable Goals Below’. KeY applied 6,859 rules and
closed the open goal. We applied the same tactic to the open goal labelled ‘Loop
Invariant Use Case’, which was closed by applying 1,281 rules.

Next, we used the exact same technique to prove the contract related to the normal be-
haviour of java.util.IdentityHashMap::containsKey. The only difference was the
number of rules applied by KeY to close the two open goals labelled ‘Body Preserves Invari-
ant’ and ‘Loop Invariant Use Case’ (9,695 and 1,283, respectively).

40

3.3. UNIT TESTS FOR JML CONTRACTS
In an attempt to limit the effort of formal specification, we wrote unit tests to perform pre-
liminary checks on the JML contracts we designed for the CUA. The method we used for
writing unit tests is described in detail in section 2.3.2 (Preliminary validation of JML speci-
fications with JUnit) on page 23. JUnit, combined with Java Reflection, proved to be a fairly
good tool for creating tests to perform preliminary sanity checks of the JML contracts. San-
ity checks, no more, no less. But beneficial nonetheless. They enabled us to verify if our in-
tentions in the specification matched the actual behaviour of the code in action and helped
to get some thinking flaws out of the way, but also had some limitations, that are discussed
in chapter 4 (Discussion) 6.

3.3.1. TESTING THE CLASS INVARIANT
We benefitted particularly from the unit tests that were written to test the class invariant.
The IdentityHashMap’s class invariant was quite extensive (48 lines of code, not including
comment lines and whitelines), and therefore pretty complex and prone to errors. But, due
to solid test coverage of the class invariant, the number of times we had to improve it during
the verification process was very limited. The conditional JML for KeY is shown in listing
3.3 (page 36).

Besides the class invariant of the main class, we also wrote the class invariants for a
number of the inner classes of the IdentityHashMap. (For the complete structure of the
class, see figure 2.5 on page 24.) The unit tests we wrote cover these class invariants of
inner classes as well. The rationale behind this is that at the start and after execution of any
method of the IdentityHashMap, all these invariants should hold.

We wrote a test class IdentityHashMapClassInvariantTest for testing the class in-
variants. This class tests if all class invariants hold after constructing a map (for every con-
structor in the class), as well as after calling a few of the methods (put, remove, clear, and
clone). In this class we did not test all the methods extensively, because we wrote separate
test classes for most of the methods, in which we also test the class invariant.

At the core of all these class invariant tests is a helper classClassInvariantTestHelper
that does the actual testing. It contains a method assertClassInvariants (see listing 3.5)
that is executed by almost all other test classes before and after testing any method, and af-
ter testing any constructor. This method executes four other methods, testing the class in-
variants of the main class, and the inner classesIdentityHashMapIterator, EntryIterator,
and EntryIterator.Entry, respectively.

6The actual unit test code is part of the project deliverables, and is also available on GitHub. See:
https://github.com/m4ndeb2r/IM9906-IdentityHashMapSpecTester/

41

1 /**
2 * Checks the class invariants of the main class as well as the inner classes.
3 *
4 * @param map an instance of the {@link IdentityHashMap}
5 * @throws NoSuchFieldException if any of the expected private fields does
6 * not exist
7 * @throws IllegalAccessException if it was not possible to get access to a
8 * required private field
9 * @throws NoSuchClassException if any of the expected inner classes does

10 * not exist
11 */
12 protected static void assertClassInvariants(AbstractMap <?, ?> map)
13 throws NoSuchFieldException , IllegalAccessException , NoSuchClassException {
14 // Assert invariant checks on the IdentityHashMap level
15 assertIdentityHashMapClassInvariant(map);
16 // Assert invariant checks on the IdentityHashMap$IdentityHashMapIterator level
17 assertIdentityHashMapIteratorClassInvariant(map);
18 // Assert invariant checks on the IdentityHashMap$EntryIterator level
19 assertEntryIteratorClassInvariant(map);
20 // Assert invariant checks on the IdentityHashMap$EntryIterator$Entry level
21 assertEntryClassInvariant(map);
22 }

Listing 3.5: The ClassInvariantTestHelper.assertClassInvariants method

Here we will zoom in on the first test method, assertIdentityHashMapClassInvariant,
and ignore the other three for clarity reasons. The test method is shown in listing 3.6. When
comparing listing 3.3 (the class invariant of the main class) with listing 3.6 (the test for the
class invariant), it should be easy to see the relation between the two. We made the test
code as self-explanatory as possible and added abundant Javadoc containing references to
the tested JML specification.

1 /**
2 * Checks the class invariant of the main class ({@link IdentityHashMap}).
3 *
4 * @param map an instance of the {@link IdentityHashMap} to test
5 * @throws NoSuchFieldException if any of the expected private fields
6 * does not exist
7 * @throws IllegalAccessException if it was not possible to get access to a
8 * required private field
9 */

10 private static void assertIdentityHashMapClassInvariant(AbstractMap <?, ?> map)
11 throws NoSuchFieldException , IllegalAccessException {
12 final int minimumCapacity = (int) getValueByFieldName(map, "MINIMUM_CAPACITY");
13 final int maximumCapacity = (int) getValueByFieldName(map, "MAXIMUM_CAPACITY");
14 final Object[] table = (Object[]) getValueByFieldName(map, "table");
15

16 // Class invariant for IdentityHashMap:
17 // table != null &&
18 // MINIMUM_CAPACITY == 4 &&
19 // MAXIMUM_CAPACITY == 536870912 &&
20 // MINIMUM_CAPACITY * 2 <= table.length &&
21 // MAXIMUM_CAPACITY * 2 >= table.length
22 // Table.length must be between 4 * 2 and 536870912 * 2 (constants
23 // MINIMUM_CAPACITY * 2 and MAXIMUM_CAPACITY * 2 respectively).
24 assertThat(table, notNullValue());
25 assertThat(table.length, greaterThanOrEqualTo(minimumCapacity * 2));
26 assertThat(table.length, lessThanOrEqualTo(maximumCapacity * 2));
27

28 // Class invariant for IdentityHashMap:
29 // (\forall int i;
30 // 0 <= i && i < table.length - 1;
31 // i % 2 == 0 ==> (table[i] == null ==> table[i + 1] == null));
32 // If the key is null, than the value must also be null
33 for (int i = 0; i < table.length - 1; i += 2) {

42

34 if (table[i] == null) {
35 assertThat(table[i + 1] == null, is(true));
36 }
37 }
38

39 // Class invariant for IdentityHashMap:
40 // (\forall int i; 0 <= i && i < table.length / 2;
41 // (\forall int j;
42 // i <= j && j < table.length / 2;
43 // (table[2*i] != null && table[2*i] == table[2*j]) ==> i == j));
44 // Every none-null key is unique
45 for (int i = 0; i < table.length / 2; i++) {
46 if (table[2 * i] == null) continue; // Performance+
47 for (int j = i; j < table.length / 2; j++) {
48 if (table[2 * i] != null && table[2 * i] == table[2 * j]) {
49 assertThat(i, is(j));
50 }
51 }
52 }
53

54 // Class invariant for IdentityHashMap:
55 // threshold < MAXIMUM_CAPACITY
56 final int threshold = (int) getValueByFieldName(map, "threshold");
57 assertThat(threshold , lessThan(maximumCapacity));
58

59 // Class invariant for IdentityHashMap:
60 // size == (\num_of int i;
61 // 0 <= i < table.length /2;
62 // table[2*i] != null)
63 // Size equals number of none-null keys in table
64 int expectedSize = 0;
65 for (int i = 0; i < table.length / 2; i++) {
66 if (table[2 * i] != null) {
67 expectedSize++;
68 }
69 }
70 assertThat(map.size(), is(expectedSize));
71

72 // Class invariant for IdentityHashMap
73 // (\exists int i;
74 // 0 <= i < table.length;
75 // \dl_pow(2,i) == table.length);
76 // Table length is a power of two
77 assertThat(isPowerOfTwo(table.length), is(true));
78

79 // Class invariant for IdentityHashMap
80 // (\exists int i;
81 // 0 <= i < table.length / 2;
82 // table[2*i] == null);
83 // Table must have at least one empty key-element to prevent
84 // infinite loops when a key is not present.
85 boolean hasEmptyKey = false;
86 for (int i = 0; i < table.length / 2; i++) {
87 if (table[2 * i] == null) {
88 hasEmptyKey = true;
89 break;
90 }
91 }
92 assertThat(hasEmptyKey , is(true));
93

94 // Class invariant for IdentityHashMap
95 // (\forall int i;
96 // 0 <= i < table.length / 2;
97 // table[2*i] != null && 2*i > hash(table[2*i], table.length) ==>
98 // (\forall int j;
99 // hash(table[2*i], table.length) <= 2*j < 2*i;

100 // table[2*j] != null));
101 // There are no gaps between a key’s hashed index and its actual
102 // index (if the key is at a higher index than the hash code)
103 for (int i = 0; i < table.length / 2; i++) {

43

104 final int hash = hash(table[2 * i], table.length);
105 if (table[2 * i] != null && 2 * i > hash) {
106 for (int j = hash / 2; j < i; j++) {
107 assertThat(table[2 * j] != null, is(true));
108 }
109 }
110 }
111

112 // Class invariant for IdentityHashMap
113 // (\forall int i;
114 // 0 <= i < table.length / 2;
115 // table[2*i] != null && 2*i < hash(table[2*i], table.length) ==>
116 // (\forall int j;
117 // hash(table[2*i], table.length) <= 2*j < table.length || 0 <= 2*j < 2*i;
118 // table[2*j] != null));
119 // There are no gaps between a key’s hashed index and its actual
120 // index (if the key is at a lower index than the hash code)
121 for (int i = 0; i < table.length / 2; i++) {
122 final int hash = hash(table[2 * i], table.length);
123 if (table[2 * i] != null && 2 * i < hash) {
124 for (int j = hash / 2; j < table.length / 2; j++) {
125 final String msg = String.format(
126 "Value (key) in table[%d] was not expected to be null.", 2 * j
127);
128 assertThat(msg, table[2 * j] != null, is(true));
129 }
130 for (int j = 0; j < i; j++) {
131 final String msg = String.format(
132 "Key in table[%d] was not expected to be null.", 2 * j
133);
134 assertThat(msg, table[2 * j] != null, is(true));
135 }
136 }
137 }
138 }

Listing 3.6: The ClassInvariantTestHelper.assertIdentityHashMapClassInvariant
method

By running this test code in all our method and constructor unit tests, assuming it is a
correct representation of the actual class invariant, we were able to test if theIdentityHashMap
actually behaved according to our class invariant specifications. This test, therefore, can be
seen as the most crucial one in helping us to test our JML contracts.

44

3.3.2. TESTING THE METHOD CONTRACTS
The method contracts for a fair number of methods were also tested with JUnit. It’s im-
portant to note that our unit tests only cover the class invariant and the method contracts.
There is no test coverage of any block contract or loop invariant inside the method. The rea-
son for this is explained below, in section 3.3.3 (Block contracts and loop invariants). Table
3.4 shows for which methods of the IdentityHashMap the method contracts were tested
with JUnit 7. Note that the closeDeletion method was not specified formally, but we did
test it. In this case, only the class invariant was tested at the start and after the method’s
execution.

Method JML JUnit

Class invariant X X
Object maskNull(Object) X X
Object unmaskNull(Object) X X
IdentityHashMap() X X
IdentityHashMap(int) X X
int capacity(int) X X
void init(int) X X
IdentityHashMap(Map<K,V>) X X
int size() X X
boolean isEmpty() X X
int hash(Object, int)
int nextKeyIndex(int, int) X X
V get(Object) X X
boolean containsKey(Object) X X
boolean containsValue(Object) X X
boolean containsMapping(Object, Object) X X
V put(K, V) X X
void resize(int) X X
void putAll(Map<K,V>) X X
V remove(Object) X X
boolean removeMapping(Object, Object) X X
void closeDeletion(int) X
void clear() X X
boolean equals(Object)
int hashCode()
Object clone() X X
Set<K> keySet() X
Collection<V> values() X
Set<Map.Entry<K,V> > entrySet() X
void writeObject(ObjectOutputStream)
void readObject(ObjectInputStream)
void putForCreate(K, V)

Table 3.4: Methods for which the JML contracts were tested with JUnit

7A complete list of specified, tested and verified methods and inner classes of the IdentityHashMap, subdi-
vided per tool, is included in appendix C.

45

As is clear from table 3.5, a considerable amount of lines of test code were written. Most
unit tests were written to explicitly test the JML, but some had other purposes (e.g. per-
formance, correctness of improved methods). 40,90% of the test code consisted of utility
or helper classes, most of which were used in the JML tests (see, for example, listing 3.5 on
page 42, where theassertClassInvariantsmethod of theClassInvariantTestHelper
class is shown).

Test class Test subject LOC LOC [%]

JML tests
IdentityHashMapCapacityTest.java capacity 223 6.67%
IdentityHashMapClassInvariantTest.java Class invariants 153 4.58%
IdentityHashMapClearTest.java clear 46 1.38%
IdentityHashMapCloneTest.java clone 39 1.17%
IdentityHashMapCloseDeletionTest.java closeDeletion 49 1.47%
IdentityHashMapConstructorsTest.java Constructors 102 3.05%
IdentityHashMapContainsKeyTest.java containsKey 64 1.91%
IdentityHashMapContainsMappingTest.java containsMapping 74 2.21%
IdentityHashMapContainsValueTest.java containsValue 49 1.47%
IdentityHashMapEntrySetSizeTest.java Entry.setSize 22 0.66%
IdentityHashMapEqualsTest.java equals 17 0.51%
IdentityHashMapGetTest.java get 78 2.33%
IdentityHashMapHashCodeTest.java hashCode 16 0.48%
IdentityHashMapHashTest.java hash 32 0.96%
IdentityHashMapInitTest.java init 40 1.20%
IdentityHashMapIsEmptyTest.java isEmpty 31 0.93%
IdentityHashMapKeySetContainsTest.java KeySet.contains 31 0.93%
IdentityHashMapKeySetSizeTest.java KeySet.size 22 0.66%
IdentityHashMapMaskNullTest.java maskNull 22 0.66%
IdentityHashMapNextKeyIndexTest.java nextKeyIndex 56 1.68%
IdentityHashMapPutAllTest.java putAll 45 1.35%
IdentityHashMapPutTest.java put 120 3.59%
IdentityHashMapReadObjectOverflowTest.java readObject 26 0.78%
IdentityHashMapRemoveMappingTest.java removeMapping 89 2.66%
IdentityHashMapRemoveTest.java remove 96 2.87%
IdentityHashMapResizeTest.java resize 99 2.96%
IdentityHashMapSizeTest.java size 24 0.72%
IdentityHashMapUnmaskNullTest.java unmaskNull 22 0.66%
IdentityHashMapValuesContainsTest.java Values.contains 31 0.93%
IdentityHashMapValuesSizeTest.java Values.size 22 0.66%

Performance and regular unit tests
ConstructorBugAndPerformanceTest.java Constructor 68 2.03%
ImprovedReadObjectTest.java readObject 84 2.51%
SmallIdentityHashMapConstructorTest.java Constructors 40 1.20%
SmallIdentityHashMapPutTest.java put 31 0.93%
SmallIdentityHashMapReadObjectOverflowTest.java readObject 28 0.84%

Other
Utility classes and helper classes 1352 40.44%

Total 3343 100.00%

Table 3.5: Lines of test code (not including comment lines and whitelines)

46

3.3.3. BLOCK CONTRACTS AND LOOP INVARIANTS
Java Reflection is a very useful feature in the Java programming language to allow access to
and manipulation of internal (private) properties of a program. It allowed us to verify the
values of fields before and after (but not during) the execution of a method or constructor,
enabling us to test if pre- and postconditions of methods held, as well as the class invari-
ant. We were, however, not able to test if loop invariants and block contracts held during
the execution of methods, due to limitations of JUnit, even when combined with Java Re-
flection.

3.4. A PRELIMINARY CHECK OF THE JML SPECIFICATIONS WITH

OPENJML
Another way in which we attempted to limit the effort of formal analysis, to use a hybrid
approach, as suggested by Boerman et al. [12]. By using the automatic verification tool
OpenJML alongside KeY, we hoped to benefit from advantages of OpenJML for less com-
plex methods. We encountered some other differences between OpenJML and KeY we had
to solve. Firstly, we encountered some syntactical issues. In our JML specifications we used
keywords that are standard JML, known to KeY, but not recognised by OpenJML. For exam-
ple: \min and \num_of. Additionally, to check if a value is a power of 2, we used the keyword
\dl_pow, which is exclusively known to KeY, and not standard JML.

These issues could quite easily be solved by applying conditional JML. By surrounding
an annotation with /*+KEY@ ... @*/, it will be considered by KeY, but not by OpenJML,
which will ignore the annotation. By surrounding an annotation with /*+OPENJML@ ...
@*/, it will be the other way around: OpenJML will consider the annotation, and KeY will
ignore it. By writing JML annotations specifically for KeY and for OpenJML, we were able
to by-pass the aforementioned issues. Listing 3.7 shows an example of how we applied
conditional JML for the clear method of the class IdentityHashMap. Because OpenJML
does not support the type bigint (see line 10), we defined two separate normal behaviour
specification cases, one for KeY (lines 1 – 13) and one for OpenJML (lines 14 – 26). Although
OpenJML does support loop invariants, we defined a loop invariant specifically for KeY
(see lines 30 – 39). We did this because JJBMC, which also parses the OpenJML specific
JML, does not support loop invariants. See section 3.5 on page 50 for more on conditional
JML in relation to JJBMC.

47

1 /*+KEY@
2 @ also
3 @ public normal_behavior
4 @ assignable
5 @ modCount, size, table, table[*];
6 @ ensures
7 @ \old(modCount) != modCount &&
8 @ \old(table.length) == table.length &&
9 @ size == 0 &&

10 @ (\forall \bigint i;
11 @ 0 <= i < table.length;
12 @ table[i] == null);
13 @*/
14 /*+OPENJML@
15 @ also
16 @ public normal_behavior
17 @ assignable
18 @ modCount, size, table, table[*];
19 @ ensures
20 @ \old(modCount) != modCount &&
21 @ \old(table.length) == table.length &&
22 @ size == 0 &&
23 @ (\forall int i;
24 @ 0 <= i < table.length;
25 @ table[i] == null);
26 @*/
27 public void clear() {
28 modCount++;
29 Object[] tab = table;
30 /*+KEY@
31 @ maintaining
32 @ 0 <= i && i <= tab.length;
33 @ maintaining
34 @ (\forall \bigint j; 0 <= j < i; tab[j] == null);
35 @ decreasing
36 @ tab.length - i;
37 @ assignable
38 @ table[*];
39 @*/
40 for (int i = 0; i < tab.length; i++)
41 tab[i] = null;
42 size = 0;
43 }

Listing 3.7: An example of conditional JML

Besides syntactical differences and unsupported keywords, we also encountered some
issues regarding visibility checks. KeY does not complain if a publicly visible specifica-
tion uses a private variable, while OpenJML does [12]. We solved this by simply complying
to the stricter rules of OpenJML regarding visibility and adding /*@ spec_public @*/ to
these variables and methods, making them publicly visible for the specifications address-
ing them. See listing 3.8, where the private constant DEFAULT_CAPACITY is made publicly
visible (line 1) to the specification of the default constructor of the IdentityHashMap (lines
5–18), where it is used to verify the length of the array table after construction.

48

1 private /*@ spec_public @*/ static final int DEFAULT_CAPACITY = 32;
2

3 ...
4

5 /*@ public normal_behavior
6 @ requires
7 @ DEFAULT_CAPACITY == 32;
8 @ ensures
9 @ table != null &&

10 @ table.length == (\bigint)2 * DEFAULT_CAPACITY &&
11 @ keySet == null &&
12 @ values == null &&
13 @ entrySet == null &&
14 @ modCount == 0 &&
15 @ threshold == (DEFAULT_CAPACITY * (\bigint)2) / (\bigint)3 &&
16 @ size == 0 &&
17 @ (\forall \bigint i; 0 <= i && i < table.length; table[i] == null);
18 @*/
19 public IdentityHashMap() {
20 init(DEFAULT_CAPACITY);
21 }

Listing 3.8: Applying spec_public to make DEFAULT_CAPACITY visible to the specification of
the default constructor of the IdentityHashMap

OpenJML also proved to be stricter regarding inheritance. When running the tool we
got a warning that some of the methods in the IdentityHashMap override methods in a
superclass or interface, and require the specification to contain the keyword \also (the
keyword \also makes it possible to combine heavy weight specification cases). This was
easily solved by adding the keyword where it was due.

Finally, OpenJML was able to spot some overflow vulnerabilities in the code. Closer in-
spection of the code showed that these warnings were not a problem. For example, there
is a private integer variable modCount that is used for counting modifications to the map.
With every modification to the map (i.e. adding or removing an entry), the variable is in-
cremented by 1. This will eventually cause the variable to overflow, resulting in a negative
value. However, this is not problematic. The value of modCount is exclusively used to check
for concurrent modifications, i.e. if the modCount changes unexpectedly (regardless if it’s
greater or smaller), a ConcurrentModificationException is thrown.

Although the use of OpenJML proved to be useful for finding small errors like the ones
mentioned above (syntax, visibility and inheritance), we were not able to formally verify
the IdentityHashMap or any of its methods completely. Initially, we used version 0.8.46-
20200505 of OpenJML. Running this version resulted in several errors when verifying the
IdentityHashMap. When running the commandjava -jar openjml/openjml.jar -esc
-progress IdentityHashMap.java, we got a NullPointerException, and when run-
ningjava -jar openjml/openjml.jar -rac -progress IdentityHashMap.java, we
got a “Catastrophic JML internal error”. We approached David Cok, the developer of Open-
JML to report these issues, and he replied shortly after our email. He suggested to use
version 0.8.49 instead of 0.8.46, because several fixes had been made after 0.8.46. Another
suggestion was to use the flag -no-staticInitWarning. Even so, based on the output
we provided, he did see there was a bug for him to fix. Furthermore, Cok did remark that
java collections are “a difficult place to start as their semantics is intricate”. We applied
the suggestions he made and, although there was some improvement (-rac gave less error
messages), we failed to verify the class or any of its methods completely in a successful way.

In short, OpenJML has been useful for spotting syntactical shortcomings in our JML,

49

as well as semantical shortcomings related to visibility and inheritance, but we have not
successfully completed the verification of any method of the class. The shortcomings in
our specification that were detected by OpenJML were nevertheless quite useful, because
another tool we used, JJBMC, is based on OpenJML. By eliminating the shortcomings men-
tioned, we benefitted when running JJBMC, for which the results are discussed in the next
section. Furthermore, most of the conditional JML written for OpenJML also applied when
running JJBMC.

3.5. A PRELIMINARY CHECK OF THE JML SPECIFICATIONS WITH

JJBMC
3.5.1. SOME LIMITATIONS OF JJBMC
JJBMC is currently being developed at the FZI and the KIT. Using it for our project turned
out to be mutually beneficial. The tool brought a significant error to the surface in our
specifications (see section 3.5.3), and was also able to prove the correctness of a number
of methods automatically. At the same time, formally verifying a class with the size and
complexity like that of the IdentityHashMap also turned out to be a challenge.

Before being able to verify the CUA, our contract specifications needed some adjust-
ments. Because the tool is based on OpenJML, it does not recognize a number of KeY-
specific or other keywords (e.g. \dl_pow and \num_of), and is more strict when it comes
to syntax and visibility (scope) checking. We resolved these issues partly by adhering to the
stricter rules of OpenJML, and partly by resorting to conditional JML (see section 3.4).

Also, since JJBMC is a model checker, we ran into the typical problem with model check-
ers, which is state space explosion. As mentioned earlier, collections can grow quite large,
resulting in an enormous number of possible states. To prevent this from happening, we
had to limit the maximum capacity of the IdentityHashMap to a very small value and
adjust our specifications accordingly. In the original code the maximum capacity of the
collection was 536,870,912, which had to be changed to an unrealistic value of 4. As a con-
sequence, also the default capacity of 32 had to be changed to 4 (see listing 3.10).

1 private /*@ spec_public @*/ static final int DEFAULT_CAPACITY = 32;
2 private /*@ spec_public @*/ static final int MINIMUM_CAPACITY = 4;
3 private /*@ spec_public @*/ static final int MAXIMUM_CAPACITY = 1 << 29;

Listing 3.9: Original capacity values of the IdentityHashMap

1 private /*@ spec_public @*/ static final int DEFAULT_CAPACITY = 4;
2 private /*@ spec_public @*/ static final int MINIMUM_CAPACITY = 4;
3 private /*@ spec_public @*/ static final int MAXIMUM_CAPACITY = 4;

Listing 3.10: Limited capacity values for verification with JJBMC

Furthermore, loop invariants and block contracts are not supported by JJBMC. Some
methods in our CUA contained loop invariants, and a few block contracts were needed
to prove methods as well. These were made conditional for KeY. Also, JJBMC does not
support exceptional behaviour specification cases. We were, therefore, unable to prove

50

correct exceptional behaviour (i.e. is the correct exception thrown within the context of a
certain precondition?).

A final shortcoming of JJBMC was that it did not support uninterpreted functions. Our
method contract specification of the IdentityHashMap’s hash method (see listing 3.11,
line 6) contains an uninterpreted method genHash, defined in the file functions.key (see
listing 3.12). This contract was specified exclusively for KeY for that reason.

1 /*+KEY@
2 @ private normal_behavior
3 @ requires
4 @ x != null;
5 @ ensures
6 @ \result == \dl_genHash(x, length) &&
7 @ \result % 2 == 0 &&
8 @ \result < length &&
9 @ \result >= 0;

10 @
11 @ also
12 @ private normal_behavior
13 @ requires
14 @ x == null;
15 @ ensures
16 @ \result == 0;
17 @*/
18 public static /*@ strictly_pure @*/ int hash(Object x, int length) {
19 int h = System.identityHashCode(x);
20 // Multiply by -127, and left-shift to use least bit as part of hash
21 return ((h << 1) - (h << 8)) & (length - 1);
22 }

Listing 3.11: Uninterpreted function genHash in method contract of hash method

1 \functions {
2 int genIdentityHash(any);
3 int genHash(any, int);
4 }

Listing 3.12: Source of functions.key, containing the uninterpreted function genHash

This was a crucial issue, because without being able to use the uninterpreted function
JJBMC did not have an abstraction for the hash method, that was used in the class invari-
ant of our JML specification. Because the class invariant must hold before and after every
method invocation, we could only effectively prove the pure methods (methods that do not
have any side effects).

Due to the aforementioned limitations (syntactical and semantical differences in JML
dialects, the hazard of state space explosion, missing support for loop invariants and block
contracts, and missing support for uninterpreted functions), verification with JJBMC is less
rigorous, and has been useful for verification of a limited number of methods.

51

3.5.2. METHODS VERIFIED WITH JJBMC
Table 3.6 shows the methods of the IdentityHashMap that were proven with JJBMC 8.

Method JML JJBMC

Class invariant X
Object maskNull(Object) X X
Object unmaskNull(Object) X X
IdentityHashMap() X
IdentityHashMap(int) X
int capacity(int) X
void init(int) X X
IdentityHashMap(Map<K,V>) X
int size() X X
boolean isEmpty() X X
int hash(Object, int)
int nextKeyIndex(int, int) X X
V get(Object) X
boolean containsKey(Object) X
boolean containsValue(Object) X X
boolean containsMapping(Object, Object) X
V put(K, V) X
void resize(int) X
void putAll(Map<K,V>) X
V remove(Object) X
boolean removeMapping(Object, Object) X
void closeDeletion(int)
void clear() X X
boolean equals(Object)
int hashCode()
Object clone() X
Set<K> keySet() X
Collection<V> values() X
Set<Map.Entry<K,V> > entrySet() X
void writeObject(ObjectOutputStream)
void readObject(ObjectInputStream)
void putForCreate(K, V)

Table 3.6: Proven methods of the IdentityHashMap with JJBMC

3.5.3. CONTRACT SPECIFICATION ERROR DETECTED WITH JJBMC
Verifying the CUA with JJBMC resulted in the detection of an error in the JML specifications
quite early in the project. JJBMC gave an assertion error for the containsMappingmethod.
Apparently, there was something wrong with the contract, or with the method itself. The
method and its JML contract are shown in listing 3.13 (note that, for clarity reasons, the list-
ing only shows the OpenJML-specific part of the JML used by JJBMC). The contract aimed
to specify the following postcondition (ensures): \result is true if and only if there exist
two subsequent elements in table, equal to the actual parameters key and value respec-
tively, where key is present in table on an even index.

8A complete list of specified, tested and verified methods and inner classes of the IdentityHashMap, subdi-
vided per tool, is included in appendix C.

52

1 /*+OPENJML@
2 @ private normal_behavior
3 @ ensures
4 @ \result <==> (\exists int i;
5 @ 0 <= i < table.length / 2;
6 @ table[i * 2] == key && table[i * 2 + 1] == value);
7 @*/
8 private /*@ spec_public @*/ /*@ strictly_pure @*/ boolean containsMapping(Object

key, Object value) {
9 Object k = maskNull(key);

10 Object[] tab = table;
11 int len = tab.length;
12 int i = hash(k, len);
13

14 while (true) {
15 Object item = tab[i];
16 if (item == k)
17 return tab[i + 1] == value;
18 if (item == null)
19 return false;
20 i = nextKeyIndex(i, len);
21 }
22 }

Listing 3.13: The (erroneous) JML of containsMapping

A closer look at line 9 indicates what was wrong with the contract. The value of key is
converted to NULL_KEY (a constant Object that acts as a placeholder for null keys) when
its value is null (see section 3.1 (Implementation of IdentityHashMap) on page 31). And
this is exactly what was missing in our contract.

This can be demonstrated by a counterexample. Suppose we have anIdentityHashMap,
emptyMap, containing 0 mappings. According to our JML contract listing 3.13, the following
expressions will have the following results:

emptyMap.containsMapping(null, null); // result: true
emptyMap.put(null, null);
emptyMap.containsMapping(null, null); // result: true

However, actual execution of these expressions will have the following results:

emptyMap.containsMapping(null, null); // result: false
emptyMap.put(null, null);
emptyMap.containsMapping(null, null); // result: true

It’s clear that the latter (actual execution of the code) is correct, and the JML contract is
not. Indeed, the result of emptyMap.containsMapping(null, null) on an empty map
should return false, because the map is empty and, obviously, contains no mapping at all.
This error was solved by correcting the contract, as is shown in listing 3.14, by taking into
account the conversion of the actual parameter key, if null, to the placeholder NULL_KEY
(line 6) 9.

9The same error was present in a number of method contracts, and finding it early probably saved us quite
some time. It must also be noted that the verification with JJBMC itself was done by Jonas Klamroth, the
developer of JJBMC and scientific staff member at Karlsruher Institut für Technologie (KIT). This joined
effort was also key to the achievement.

53

1 /*+OPENJML@
2 @ private normal_behavior
3 @ ensures
4 @ \result <==> (\exists int i;
5 @ 0 <= i < table.length / 2;
6 @ table[i * 2] == maskNull(key) && table[i * 2 + 1] == value);
7 @*/

Listing 3.14: The improved JML of containsMapping

This error was not only present in the JML contract of the containsMapping method,
but also in several other methods, like containsKey, get and put.

3.6. OVERFLOW ERROR IN THE CAPACITY METHOD
We detected a number of overflow situations in the code of the IdentityHashMap, most
of which were accounted for. For example, as mentioned above in section 3.4, the map
contains a field called modCount that is incremented every time the map is modified. It
is used for detection of concurrent modification. When this field overflows, its value will
turn negative, but this does not affect its function in any way. However, we detected one
overflow error in the capacitymethod that was not correctly accounted for. This error and
its consequences are discussed in detail in the next paragraphs.

3.6.1. THE ERROR EXPLAINED
During the verification of the capacity method, KeY was unable to close all proof goals,
and closer inspection learned that this had to be due to some error in the code, not the JML
contract we specified. The original code of the method is shown in listing 3.15 (the JML
specification is left out for readability).

1 /**
2 * Returns the appropriate capacity for the specified expected maximum
3 * size. Returns the smallest power of two between MINIMUM_CAPACITY
4 * and MAXIMUM_CAPACITY , inclusive , that is greater than
5 * (3 * expectedMaxSize)/2, if such a number exists. Otherwise
6 * returns MAXIMUM_CAPACITY. If (3 * expectedMaxSize)/2 is negative, it
7 * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
8 */
9 private int capacity(int expectedMaxSize)

10 // Compute min capacity for expectedMaxSize given a load factor of 2/3
11 {
12 int minCapacity = (3 * expectedMaxSize) / 2;
13

14 // Compute the appropriate capacity
15 int result;
16 if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
17 result = MAXIMUM_CAPACITY;
18 } else {
19 result = MINIMUM_CAPACITY;
20 while (result < minCapacity)
21 result <<= 1;
22 }
23 return result;
24 }

Listing 3.15: The original capacity method

54

Looking at the Javadoc on lines 6 – 7, the impression is given that the method is overflow-
proof (“If (3 * expectedMaxSize)/2 is negative, it is assumed that overflow has occurred”).
At first glance, this seems to be confirmed on lines 16 – 17, where MAXIMUM_CAPACITY is
returned when minCapacity (which is initialised with the result of (3 * expectedMaxSize)
/ 2) is negative (see line 12). This assumption, however, is false. This is, perhaps, best ex-
plained by looking at an example.

Suppose we pass a value of 1,431,655,765 to the method capacity, what would we ex-
pect it to return? That would be the smallest power of two between 4 (MINIMUM_CAPACITY)
and 536,870,912 (MAXIMUM_CAPACITY), that is greater than (3 * 1,431,655,765) / 2. If no
overflow occurs, we would expect 536,870,912 (MAXIMUM_CAPACITY) to be returned, be-
cause (3 * 1,431,655,765) / 2 is greater than 536,870,912. If an overflow does occur, we would
also expect 536,870,912 (MAXIMUM_CAPACITY) to be returned, provided the assumption in
the Javadoc is correct that (3 * 1,431,655,765) / 2 results in a negative value. The latter is,
however, not the case: multiplying the integer value of 1,431,655,765 by 3 results in -1 (over-
flow) and dividing an integer -1 by 2 results in 0, which is not a negative value. The smallest
power of two between 4 (MINIMUM_CAPACITY) and 536,870,912 (MAXIMUM_CAPACITY) is 4.
The method will, therefore, unexpectedly return 4. There is a range of input values that
result in an unexpected outcome, due to an (undetected) overflow, as shown in table 3.7.

Range of input values (erroneous) output value

1,431,655,765 – 1,431,655,768 4
1,431,655,769 – 1,431,655,771 8
1,431,655,772 – 1,431,655,776 16
1,431,655,777 – 1,431,655,787 32
1,431,655,788 – 1,431,655,808 64
1,431,655,809 – 1,431,655,851 128
1,431,655,852 – 1,431,655,936 256
1,431,655,937 – 1,431,656,107 512
1,431,656,108 – 1,431,656,448 1,024
1,431,656,449 – 1,431,657,131 2,048
1,431,657,132 – 1,431,658,496 4,096
1,431,658,497 – 1,431,661,227 8,192
1,431,661,228 – 1,431,666,688 16,384
1,431,666,689 – 1,431,677,611 32,768
1,431,677,612 – 1,431,699,456 65,536
1,431,699,457 – 1,431,743,147 131,072
1,431,743,148 – 1,431,830,528 262,144
1,431,830,529 – 1,432,005,291 524,288
1,432,005,292 – 1,432,354,816 1,048,576
1,432,354,817 – 1,433,053,867 2,097,152
1,433,053,868 – 1,434,451,968 4,194,304
1,434,451,969 – 1,437,248,171 8,388,608
1,437,248,172 – 1,442,840,576 16,777,216
1,442,840,577 – 1,454,025,387 33,554,432
1,454,025,388 – 1,476,395,008 67,108,864
1,476,395,009 – 1,521,134,251 134,217,728
1,521,134,252 – 1,610,612,736 268,435,456

Table 3.7: Actual parameters resulting in erroneous output of the capacity method

55

Actual input parameters ranging from 1,431,655,765 to 1,431,655,768 give a result of
4, values ranging from 1,431,655,769 to 1,431,655,771 give a result of 8, et cetera. All val-
ues ranging from 1,431,655,765 to 1,610,612,736 result in some erroneous value (not being
the expected 536,870,912 (MAXIMUM_CAPACITY). When the input value is within the range
1,610,612,737 to 2,147,483,646 (Integer.MAX_VALUE) the overflow is also not detected,
but the capacity method does, nevertheless, return the expected value of 536,870,912
(MAXIMUM_CAPACITY). This happens because the smallest power of two that is greater than
minCapacity is, coincidentally, also 536,870,912.

3.6.2. THE DAMAGE CAUSED BY THE ERROR
What happens when the overflow error in the capacity method occurs? The capacity
method is a private method that is only called from within the IdentityHashMap itself, by
three public methods:

• the putAll(Map m) method, that adds all the entries from the Map m to the current
map, and reserves enough space by invoking resize(capacity(n)) (where n is the
size of m), if necessary,

• the overloaded constructor IdentityHashMap(int expectedMaxSize), that ini-
tialises a newly created instance by invoking init(capacity(expectedMaxSize)),

• the readObject(java.io.ObjectInputStream s) method, that is called during
deserialisation of an IdentityHashMap instance. It reserves space for the entries in
the map + 33% for growth, by invoking init(capacity((size * 4) / 3) (where
size is the size of the serialised map).

1 public void putAll(Map m) {
2 int n = m.size();
3 if (n == 0)
4 return;
5 if (n > threshold) // conservatively pre-expand
6 resize(capacity(n));
7

8 for (Object o: m.entrySet()) {
9 Entry e = (Entry) o;

10 put(e.getKey(), e.getValue());
11 }
12 }

Listing 3.16: The putAll method

In the putAll(Map m) method (see listing 3.16) the error will only occur when the size
of m is within the range 1,431,655,765 – 1,610,612,736 (see table 3.7). On line 2 the size of
m is stored in an integer n, that is passed as an actual parameter to the capacity method
on line 6. If the overflow error occurs, the private field table10 of the IdentityHashMap
will possibly be resized to a smaller size than was expected. (Note that the resize method
never shrinks the array table, but only makes it larger if necessary, or keeps it the same
size.) This would suggest there might not be enough space reserved for all the entries of m

10The IdentityHashMap stores its entries (key-value pairs) in an array field table, with two elements for
every entry in the map: one for the key and one for the value (see section 3.1).

56

to be added to the array. This is, however, not a problem, because the put(Object key,
Object value) method, invoked for every separate entry to be added (see line 10, listing
3.16), also resizes the array table if necessary (see line 22, listing 3.17). Furthermore, the
IdentityHashMap always reserves a threshold number of empty elements. In short: if the
putAll method does not resize the IdentityHashMap correctly, due to the overflow error
in the capacity method, the put method will correct this. The IdentityHashMap will
therefore not crash if the overflow error occured in the putAll(Map m) method.

There is, however, a different problem when the size ofm is within the range 1,431,655,765
– 1,610,612,736. The capacity of the IdentityHashMap will be exhausted a soon as the
number of added entries surpasses 536,870,912 (MAXIMUM_CAPACITY). This will occur when
the resizemethod, called from the putmethod (see line 22 in listing 3.17), pushes its luck.
It will then throw an IllegalStateException (see the code snippet from the resize
method in listing 3.18).

1 public Object put(Object key, Object value) {
2 Object k = maskNull(key);
3 Object[] tab = table;
4 int len = tab.length;
5 int i = hash(k, len);
6

7 Object item;
8

9 while ((item = tab[i]) != null) {
10 if (item == k) {
11 Object oldValue = (Object) tab[i + 1];
12 tab[i + 1] = value;
13 return oldValue;
14 }
15 i = nextKeyIndex(i, len);
16 }
17

18 modCount++;
19 tab[i] = k;
20 tab[i + 1] = value;
21 if (++size >= threshold)
22 resize(len); // len == 2 * current capacity.
23 return null;
24 }

Listing 3.17: The put method

1 if (oldLength == 2 * MAXIMUM_CAPACITY) { // can’t expand any further
2 if (threshold == MAXIMUM_CAPACITY - 1)
3 throw new IllegalStateException("Capacity exhausted.");
4 threshold = MAXIMUM_CAPACITY - 1; // Gigantic map!
5 return;
6 }

Listing 3.18: A snippet from the resize method

The constructor IdentityHashMap(int expectedMaxSize) also calls the capacity
method in order to initialise the newly constructed instance of the class. The input para-
meter of the constructor is directly passed to the capacitymethod (see line 5, listing 3.19),
meaning that the initial size of the array field table (in case of an overflow error) will have
a smaller size than required. This will, like in the putAll(Map m) method, not have severe

57

consequences. Yes, the array field table will have less elements than initially required, but
every time the put(Object key, Object value) method is invoked to add an entry, it
will be resized if necessary. Like with the putAll(Map m) method, the overflow error is
concealed, and the IdentityHashMap will not crash.

1 public IdentityHashMap(int expectedMaxSize) {
2 if (expectedMaxSize < 0)
3 throw new IllegalArgumentException("expectedMaxSize is negative: "
4 + expectedMaxSize);
5 init(capacity(expectedMaxSize));
6 }

Listing 3.19: The constructor IdentityHashMap(int expectedMaxSize)

The overflow error can, however, be classified as a performance bug. If, indeed, the
constructor is called with an actual parameter causing the error (see table 3.7 on page 55),
putting entries in the map will result in an unanticipated number of calls to the resize
method (see listing 3.20). When the resize method is executed, a new hash is calculated
for the keys of all the entries in the map (line 29), and the entries are put in a different posi-
tion in a new table (newTable, see lines 32 – 33) that will replace the original one. Especially
in a large table, this involves quite some reshuffling of entries.

1 /**
2 * Resize the table to hold given capacity.
3 *
4 * @param newCapacity the new capacity, must be a power of two.
5 */
6 private void resize(int newCapacity) {
7 int newLength = newCapacity * 2;
8

9 Object[] oldTable = table;
10 int oldLength = oldTable.length;
11 if (oldLength == 2*MAXIMUM_CAPACITY) { // can’t expand any further
12 if (threshold == MAXIMUM_CAPACITY -1)
13 throw new IllegalStateException("Capacity exhausted.");
14 threshold = MAXIMUM_CAPACITY -1; // Gigantic map!
15 return;
16 }
17 if (oldLength >= newLength)
18 return;
19

20 Object[] newTable = new Object[newLength];
21 threshold = newLength / 3;
22

23 for (int j = 0; j < oldLength; j += 2) {
24 Object key = oldTable[j];
25 if (key != null) {
26 Object value = oldTable[j+1];
27 oldTable[j] = null;
28 oldTable[j+1] = null;
29 int i = hash(key, newLength);
30 while (newTable[i] != null)
31 i = nextKeyIndex(i, newLength);
32 newTable[i] = key;
33 newTable[i + 1] = value;
34 }
35 }
36 table = newTable;
37 }

Listing 3.20: The resize method

58

To get an impression of the decline in performance, we wrote a unit test that adds a
lot of entries to two maps. One map was initialised with an expectedMaxSize that did
not cause the constructor to suffer from the overflow error. The other one was initialised
with an expectedMaxSize of 1,431,655,765, triggering the error and causing the construc-
tor to initially create a map with a capacity of 4. Then, we put as many entries in both
maps a possible. This process was repeated quite a number of times in the same run
to get a fair comparison between the elapsed time for both maps, while averaging out
any disturbance from other processes like the garbage collector, for example. We found
that, in a typical test run, the elapsed time for a map with an initially (too) small capac-
ity, showed a decline in performance of about 45%, which is significant. Indeed, we can
assume the IdentityHashMap(int expectedMaxSize) was designed for a reason, being
performance.

1 /**
2 * Reconstitute the <tt>IdentityHashMap </tt> instance from a stream (i.e.,
3 * deserialize it).
4 */
5 private void readObject(java.io.ObjectInputStream s)
6 throws java.io.IOException , ClassNotFoundException {
7 // Read in any hidden stuff
8 s.defaultReadObject();
9

10 // Read in size (number of Mappings)
11 int size = s.readInt();
12

13 // Allow for 33% growth (i.e., capacity is >= 2* size()).
14 init(capacity((size * 4) / 3));
15

16 // Read the keys and values, and put the mappings in the table
17 for (int i = 0; i < size; i++) {
18 java.lang.Object key = (java.lang.Object) s.readObject();
19 java.lang.Object value = (java.lang.Object) s.readObject();
20 putForCreate(key, value);
21 }
22 }

Listing 3.21: The readObject method

The readObject method (see listing 3.21) is invoked when an IdentityHashMap is
deserialised (after serialisation). In any normal situation, a valid instance of the class is
read from an external memory. The size of the serialised map (see line 11 in listing 3.21)
is extended by 33% to allow for some growth, and the result is passed to the capacity
method (line 14). The calculation (size * 4) / 3 will not overflow because (unless the
previously serialised IdentityHashMap has been tampered with) we can safely assume the
size is smaller than MAXIMUM_CAPACITY. In that case, the calculate method will also not
overflow (indeed 536,870,912 (MAXIMUM_CAPACITY) is not within the range 1,431,655,765 –
1,610,612,736 (see table 3.7)).

If, however, the serialised map is tampered with, the readObject method can easily
be made to crash. If, for example, a hacker would use a hex editor to set the number of
mappings the serialised map to 1,200,000,000. Then s.readInt() would return this num-
ber, and the calculation of the actual parameter that is passed to capacity should result in
1,600,000,000 (4/3 times 1,200,000,000). However, due to an overflow error in the calcula-
tion (size * 4) / 3, the result would return 168,344,234 as a result of an overflow error.
There would not be enough elements in the array field table to store all the mappings,

59

and the putForCreate(key, value) call on line 20 would crash, because this method,
unlike the put method, does not resize the map if necessary. In listing 3.22 we can see why.
Because the array field table is too small, the variable len will be too small (line 10). This
will lead to a smaller set of possible hashes (calculated on line 11), resulting inevitably in
more clashes. In case of a clash, an attempt is made to store the entry in the next free loca-
tion. Eventually the array table will be completely filled. This will cause an infinite loop
on lines 14 – 18: there is no element in tab equal to null and the nextKeyIndex method
will infinitely circularly traverse table looking for the next key index. The while condition
will always be true, resulting in another call to nextKeyIndex, et cetera, et cetera.

In short, the overflow error in the capacity method is concealed here also. This time
by an overflow error in the readObject itself, one that can only occur when the serialised
IdentityHashMap has been tampered with. This would result in an infinite loop.

1 /**
2 * The put method for readObject. It does not resize the table,
3 * update modCount, etc.
4 */
5 private void putForCreate(java.lang.Object key, java.lang.Object value)
6 throws IOException
7 {
8 java.lang.Object k = (java.lang.Object)maskNull(key);
9 Object[] tab = table;

10 int len = tab.length;
11 int i = hash(k, len);
12

13 Object item;
14 while ((item = tab[i]) != null) {
15 if (item == k)
16 throw new java.io.StreamCorruptedException();
17 i = nextKeyIndex(i, len);
18 }
19 tab[i] = k;
20 tab[i + 1] = value;
21 }

Listing 3.22: The putForCreate method

60

3.7. AN IMPROVED VERSION OF THE CAPACITY METHOD
Although the IdentityHashMap does not seem to crash as a result of the overflow error
in the capacity method, it can be classified as a performance bug. Therefore, we consid-
ered a fix for the error. This fix we implemented was fairly simple. Our improved version
(without the JML specification for readability) is shown in listing 3.23. The actual improve-
ment is on line 8. This expression might still overflow, but will, in that case, always return a
negative value, resulting in the execution of line 13, where MAXIMUM_CAPACITY is returned.

1 private int capacity(int expectedMaxSize)
2 // Compute min capacity for expectedMaxSize given a load factor of 2/3
3 {
4 // Original calculation
5 // int minCapacity = (3 * expectedMaxSize) / 2;
6

7 // Improved calculation
8 int minCapacity = expectedMaxSize % 2 + (expectedMaxSize / 2) * 3;
9

10 // Compute the appropriate capacity
11 int result;
12 if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
13 result = MAXIMUM_CAPACITY;
14 } else {
15 result = MINIMUM_CAPACITY;
16 while (result < minCapacity)
17 result <<= 1;
18 }
19 return result;
20 }

Listing 3.23: The improved version of the capacity method

Our fixed version of the capacity method has been tested, and verified with KeY. It
passed the test and was formally proven to be correct. We did not propose this improve-
ment to the Java community because, as of the JDK9 version of the IdentityHashMap, the
capacity method has a new implementation 11, that does not suffer from the overflow
error we detected.

Since we were, of course, curious if the JDK9 version of the capacity method would
stand the test, we wrote a unit test to test it, and verified it formally with KeY. We replaced
the body of the method in the JDK7 version with the body of the JDK9 version. We left the
signature and the JML contract unchanged, except for the loop invariant that we removed,
since the new body does not contain a loop anymore. We were able to prove the correctness
of the method automatically, without any interactive steps needed. (Listing 3.24 shows the
method with the original signature and JML contract, and the replaced method body (lines
35 – 38) – just like we loaded it in KeY.)

11http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/847d7a6aef45/src/java.base/share/classes/java/util/IdentityHashMap.java

61

1 /*+KEY@
2 @ private normal_behavior
3 @ requires
4 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 < 0 ||
5 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 > MAXIMUM_CAPACITY;
6 @ ensures
7 @ \result == MAXIMUM_CAPACITY;
8 @
9 @ also

10 @ private normal_behavior
11 @ requires
12 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 >= MINIMUM_CAPACITY &&
13 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 <= MAXIMUM_CAPACITY;
14 @ ensures
15 @ \result >= (expectedMaxSize * (\bigint)3) / (\bigint)2 &&
16 @ \result < (expectedMaxSize * (\bigint)3);
17 @
18 @ also
19 @ private normal_behavior
20 @ requires
21 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 >= 0 &&
22 @ (expectedMaxSize * (\bigint)3) / (\bigint)2 < MINIMUM_CAPACITY;
23 @ ensures
24 @ \result >= MINIMUM_CAPACITY &&
25 @ \result < MINIMUM_CAPACITY * (\bigint)2;
26 @
27 @ also
28 @ private normal_behavior
29 @ ensures
30 @ (\exists \bigint i;
31 @ 0 <= i < \result;
32 @ \dl_pow(2,i) == \result); // result is a power of two
33 @*/
34 private int capacity(int expectedMaxSize) {
35 return
36 (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
37 (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
38 Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
39 }

Listing 3.24: The version of the capacity method, based on the JDK9 implementation

3.7.1. AN IMPROVED VERSION OF THE READOBJECT METHOD
Although not in scope of the formal analysis, we provided an improved version of the readObject
as well, as a part of the project deliverables. Listing 3.25 shows the original version of the
method.

In this version, on line 14, an overflow error will occur if size multiplied by 4 is larger
than Integer.MAX_VALUE (regardless of whether the original version or the improved ver-
sion of capacity is invoked). This overflow error is fixed by the check on lines 14 – 16 of
the improved version, shown in listing 3.26. Unless the serialised object is tampered with,
it is impossible for size to be larger than MAXIMUM_CAPACITY. If this is detected to be the
case, a StreamCorruptedException is thrown. Otherwise, we can rest assured that no
overflow will occur when the capacity of the map is calculated (again, regardless whether
the original or the improved version of capacity is invoked).

62

1 /**
2 * Reconstitute the <tt>IdentityHashMap </tt> instance from a stream (i.e.,
3 * deserialize it).
4 */
5 private void readObject(java.io.ObjectInputStream s)
6 throws java.io.IOException , ClassNotFoundException {
7 // Read in any hidden stuff
8 s.defaultReadObject();
9

10 // Read in size (number of Mappings)
11 int size = s.readInt();
12

13 // Allow for 33% growth (i.e., capacity is >= 2* size()).
14 init(capacity((size * 4) / 3));
15

16 // Read the keys and values, and put the mappings in the table
17 for (int i = 0; i < size; i++) {
18 java.lang.Object key = (java.lang.Object) s.readObject();
19 java.lang.Object value = (java.lang.Object) s.readObject();
20 putForCreate(key, value);
21 }
22 }

Listing 3.25: The original version of the readObject method

1 /**
2 * Reconstitute the <tt>IdentityHashMap </tt> instance from a stream (i.e.,
3 * deserialize it). This is an improved version of the original readObject method.
4 * It is extended with extra input validation.
5 */
6 private void readObject(java.io.ObjectInputStream s)
7 throws java.io.IOException , ClassNotFoundException {
8 // Read in any hidden stuff
9 s.defaultReadObject();

10

11 // Read in size (number of Mappings)
12 int size = s.readInt();
13

14 if (size > MAXIMUM_CAPACITY) {
15 throw new java.io.StreamCorruptedException();
16 }
17

18 // Allow for 33% growth (i.e., capacity is >= 2* size()).
19 init(capacity((size * 4) / 3));
20

21 // Read the keys and values, and put the mappings in the table
22 for (int i = 0; i < size; i++) {
23 java.lang.Object key = (java.lang.Object) s.readObject();
24 java.lang.Object value = (java.lang.Object) s.readObject();
25 putForCreate(key, value);
26 }
27 }

Listing 3.26: The improved version of the readObject method

63

4
DISCUSSION

In chapter 2 (Method) the main research question and a number of subquestions were de-
fined. In this chapter we will connect the results from chapter 3 (Results) to these research
questions.

The main research question:

RQ1 : How can we formally analyse Java libraries with JML and KeY?

RQ1 was broken down into the following subquestions:

RQ2 : Which Java classes are suitable candidates for formal analysis?
RQ3 : How can we limit the effort of formal specification?
RQ4 : What error(s), if any, can we identify in the CUA?
RQ5 : Can we provide a fixed version of the class that does stand the test of

formal analysis?
RQ6 : What is the effort ratio when performing a formal analysis?

4.1. RQ2 - WHICH JAVA CLASSES ARE SUITABLE CANDIDATES FOR

A FORMAL ANALYSIS?
Subquestion RQ2 was already answered in section 2.3.1 (Finding a suitable candidate for
formal analysis) of chapter 2 (see page 21). The IdentityHashMapwas the class we decided
to formally specify with JML and verify with KeY. During the project there was no need to
reverse this decision, although the class has not been verified completely, due to its size and
complexity (see 3.2 (JML contracts and KeY proof files) on page 33). Also, some methods
(the putmethod in particular) turned out to require an extensive amount of memory. In an
attempt to solve these performance issues (we initially used an iMac with a 3,4 GHz Quad-
Core Intel Core i5 processor, and 16GB 1600 MHz DDR3 internal memory), we switched to
a High Performance Computing (HPC) cloud supercomputer at SURF 1. On the HPC cloud

1“SURF is a cooperative association of Dutch educational and research institutions in which the members
combine their strengths. Within SURF, we work together to acquire or develop the best possible digital ser-

64

computer the amount of memory was twice as big:

$ free -h
total used free shared buff/cache available

Mem: 31G 1.2G 28G 688K 2.0G 29G
Swap: 0B 0B 0B

This, however, did not improve the performance (indeed, the performance on the HPC
cloud computer turned out to be even worse). What did improve the performance was a
number of changes in the formal specifications of the CUA. We improved the class invariant
and added a number of block contracts to the put method that could be proven separately
(‘divide and conquer’). The result of this approach was that we had to prove more distinct
contracts for the put method (6 instead of 2), but the size of the distinct proof trees was
significantly reduced. This had a beneficial effect on the memory used by KeY. Eventually,
the put method (like all other methods) was proven on the iMac computer.

Complexity and performance issues aside, the IdentityHashMap was certainly a suit-
able candidate for (partial) formal analysis with JML and KeY. In fact, we successfully used
KeY to actually find the kind of bug we had anticipated to find in a collection, although its
consequences were limited (see 1.1.6 (Formal analysis methods and the case for deductive
verification) on page 4, requirement R2).

4.2. RQ3 – HOW CAN WE LIMIT THE EFFORT OF FORMAL SPECI-
FICATION?

As mentioned in section 2.2.3, formal analysis is tedious work. When, during formal verifi-
cation, an error in a JML contract surfaces, the specification must be corrected, and verified
all over again. This can be very time consuming, especially when verification requires in-
teraction with the analyst. Indeed, KeY is an interactive tool, and not all methods can be
verified automatically. Typically, the more complex methods are, the more complex the
contracts they require, the bigger the chance KeY is not able to automatically prove these
methods and interaction is required. Exactly these complex contracts are susceptible for
errors and omissions, making the analyst’s work more tedious and more time-consuming.

An even bigger issue arises when errors are detected in the class invariant. Changing the
class invariant has great consequences. Indeed, the class invariant must hold after each
constructor’s execution, and at the beginning and end of each method (except construc-
tors and methods that are declared with the helper modifier). So, if the class invariant is
changed, all these constructors and methods need to be verified all over again.

Therefore, we tried three different approaches to limit the number of errors in our JML
as early in the process as possible. We wrote unit tests to test our JML (see section 3.3 (Unit
tests for JML contracts) on page 41), we checked our JML specifications using the automatic
verification tool OpenJML (see section 3.4 (A preliminary check of the JML specifications
with OpenJML) on page 47), and we did the same by using the model checker JJBMC (see
section 3.5 (A preliminary check of the JML specifications with JJBMC) on page 50). Each
approach had its pros and cons, as will be discussed below.

vices, and to encourage knowledge sharing through continuous innovation.” (http://surf.nl)

65

4.2.1. PROS AND CONS OF VALIDATING JML SPECIFICATIONS WITH JUNIT
Unit tests have proven to be fairly good sanity checks for the correctness of the JML con-
tracts. By preparing the execution of a method (initialising the state of the class to meet
the preconditions of the method as well as the class invariant), executing the method, and
validating the state of the class after its execution (postcondition and class invariant), we
were able to detect several errors in some of our JML contracts early. Especially regard-
ing the class invariant, as well as the more complex methods, this approach definitely had
benefits. There are, however, some pitfalls to be aware of.

• First of all, we encountered some technical limitations of unit tests in Java in general.
For example, it is not possible to write unit tests to verify loop invariants or block
contracts in JML. Although it is possible to have access to (part of) the inner work-
ings of a class or a method by using Java Reflection, this does not enable us to easily
check the state of the program inside a while or for loop, for example (see section
3.3.3 (Block contracts and loop invariants) on page 47). The put method deserves
special mention here, because it contains a loop invariant as well as several block
contracts that we were not able to test. Formally verifying this method required a
considerable amount of time (54.94% of all formal verification effort was spent on
the put method).

• Moreover, as explained in chapters 2 and 3, we also had to take some shortcuts for
pragmatic reasons, regarding checking the heap before and after calling a method.

• Furthermore, the unit tests did not directly test the actual JML contracts. We trans-
lated the intended contracts into unit test code and tested if the method complied to
this translation of the contract, when executing it. Translating a contract into a unit
test manually, however, is obviously prone to errors. It requires rigour to write unit
tests that are consistent with the actual JML contract, because this is not automati-
cally verified. In other words, the unit tests only represent the intended specification.
This may result in false positives (the actual JML contract is correct, but the transla-
tion into unit test code contains an error) or false negatives (the actual JML contract
is incorrect, but the translation into unit test code is somehow correcting or camou-
flaging this error).

• Also, it requires discipline (and extra effort) to keep the unit tests consistent with the
JML specifications, especially when these are subject to change.

• Even when a unit test is semantically consistent with the JML contract specification
of a method, misconceptions may still persist. When the author of the contract is the
same person writing the unit test, this is an obvious pitfall, as we have experienced
during the project 2.

• Finally, writing unit tests only helps to detect semantical errors. Syntactical errors are
not detected by translating the intended contract design into a unit test. Fortunately,
there are other tools to provide syntax checking, like OpenJML, JJBMC, or KeY.

2 One such error was discovered when running the JJBMC tool for a version of the IdentityHashMap con-
taining several similar erroneous postconditions (see section 3.5.3) for which the corresponding unit tests
contained the same error. The unit tests failed to notice this error, which was, of course, also a flaw.

66

Although writing unit tests for the purpose of detecting errors in the specifications early in
the process can be useful, this approach must not be overrated. As stated above, this ap-
proach does have several limitations to keep in mind. Surely, it did speed up the process by
detecting errors in the specification early (especially with regard to the class invariant), but
it also required extra effort to write and maintain the unit tests. This is definitely something
to keep in mind.

It is not trivial to quantify how much we benefitted, on balance, from testing our JML in
a preliminary phase of formal specification. It is obvious that being able to eliminate errors
in the class invariant as early as possible is crucial, and unit tests certainly proved to be a
useful instrument to accomplish this. We did find several small errors that could have had
major consequences should we have to detect them later by running into unclosable goals
during verification with KeY. To name one example regarding the class invariant, it was
challenging to correctly specify that there can be no gaps (vacant entries) between a key’s
hashed index and its actual index (see section 3.1 (Implementation of IdentityHashMap)
on page 31). Testing these specifications proved to be helpful in the sense that unit tests
could help confirm the correctness and accuracy of this part of the class invariant.

Finding an error in a class variant later in the process would have meant that all meth-
ods that were affected by any required improvements in the class invariant, would have
to be verified all over again. Considering these consequences, it is very likely this would
have cost us days, if not weeks to detect, fix and formally verify again. Also, writing unit
tests considerably improved our understanding of the code as well as the specifications.
This, obviously, improved the quality of the specifications, resulting in less errors later in
the process. We are confident that, although we spent a significant amount of time writing
the tests (see table 4.1 on page 69), this effort was outweighed by the benefits. In section
4.5 a crude cost-benefit analysis is provided.

4.2.2. PROS AND CONS OF VALIDATING JML SPECIFICATIONS WITH OPENJML
Some of the disadvantages of validating JML specifications by means of unit tests are elimi-
nated when using OpenJML. While the unit tests we wrote did not test the actual contracts,
but a manually translated version of it, OpenJML loads the original Java class (containing
the JML contracts) and verifies it automatically. This way we were able to detect syntax
errors and invalid visibility modifiers, which wasn’t possible with unit tests. The added ad-
vantage was limited, however. Indeed, KeY is also perfectly able to detect syntax errors,
when the class is loaded, so we do not need a separate tool for that purpose. Furthermore,
conforming to OpenJML’s stricter validation rules concerning visibility/accessibility modi-
fiers is good, of course. But since KeY imposes less strict rules, these improvements are not
essential.

The syntactical differences between OpenJML and KeY were dealt with by applying con-
ditional JML. This required some extra effort (see section 3.4 (A preliminary check of the
JML specifications with OpenJML) on page 47). But there is another downside to using
conditional JML. Because it inherently introduces redundancy, there is a danger that both
versions of a contract (in our case, the KeY version and the OpenJML version) become in-
consistent. This could lead to a situation where, for example, OpenJML does not detect
an error because the error only exists in a KeY-specific JML annotation. Consistency is
something one should constantly stay aware of when using two or more tools that require
conditional JML contracts.

67

As described in section 3.4, we were unable to automatically verify theIdentityHashMap
with OpenJML. Therefore, (contrary to the aforementioned findings by Boerman et al. [12])
the use of OpenJML has not significantly limited the effort of formal analysis of the CUA in
our project. Furthermore, because we did not spend much time using the tool OpenJML,
the benefits or costs, in terms of time and effort, were negligible (see table 4.1 on page 69).
In short, the use of OpenJML resulted in cleaner contracts (visibility/accessibility modi-
fiers, syntax errors), but also required extra effort (conditional JML). On the positive side,
because JJBMC is based on OpenJML, the conditional JML contracts we used with Open-
JML were also of use when verifying the code with JJBMC.

4.2.3. PROS AND CONS OF VALIDATING JML SPECIFICATIONS WITH JJBMC

For verification of the IdentityHashMap with JJBMC we could, for a large part, re-use the
conditional JML specifications mentioned above. To prevent the typical model checking
problem of state space explosion, we also had to make some minor adjustments in the
code as well as the JML, for which the extra effort was negligible, however.

JJBMC was not capable of verifying all methods, unfortunately. This was largely be-
cause the tool did not have an abstraction for the hash method, that is used in the class
invariant of our JML specification. This issue was described in detail in section 3.5.1 (Some
limitations of JJBMC) on page 50.

We were able to detect a crucial error in our JML specifications using JJBMC quite early
in the project. The tool gave an assertion error for the containsMapping method (see
section 3.5.3 (Contract specification error detected with JJBMC) on page 52). It is diffi-
cult to quantify the amount of time that was saved by discovering this specification error
with JJBMC. We would absolutely have encountered the error with KeY while verifying the
containsMapping method, or any of the other methods that suffered from the error, for
that matter. We would definitely not have been able to close open goals interactively, which
could have been time consuming. It is fair to assume that finding this specification error
with JJBMC saved us two or three days of work. See section 4.5 for a crude cost-benefit
analysis.

In short, although JJBMC does have some shortcomings when it comes to verifying a
class as complex as the IdentityHashMap (or any (virtually) unbounded class in the Col-
lections Framework for that matter), it did tackle a blocking error in the JML at an early
stage. Furthermore, since JJBMC is based on OpenJML it would also have detected the
syntax, visibility/accessibility issues, had we not found them already by using OpenJML
separately (see section 4.2.2). Obviously, all shortcomings of writing conditional JML that
were mentioned in the context of using OpenJML (see above) apply here also.

4.3. RQ4 – WHAT ERROR(S), IF ANY, CAN WE IDENTIFY IN THE

CUA?
In chapter 3, section 3.6, we described the overflow error that was identified in thecapacity
method, how it can be triggered, and what the consequences are whenever the overflow oc-
curs. Indirectly, we’ve also concluded that the readObject method can be improved to be
more robust, and detect invalid input.

68

4.4. RQ5 – CAN WE PROVIDE A FIXED VERSION OF THE CLASS

THAT DOES STAND THE TEST OF FORMAL ANALYSIS?
We provided a fixed version of the capacity method, as well as the readObject method
in the deliverables. The improvements were not provided to the community, because an
improved version of the capacity method was already present in the JDK9 version of the
IdentityHashMap. The improved JDK7 version of the capacity method, as well as its
JDK9 counterpart were formally verified with KeY and proven correct. We also wrote unit
tests for both methods, that were successfully executed.

4.5. RQ6 – WHAT IS THE EFFORT RATIO WHEN PERFORMING A

FORMAL ANALYSIS?
During the project, we kept track of the effort that was put into the several tasks. Table 4.1
contains an overview of the effort ratio during the project. This is probably not the typical
effort ratio for an average formal analysis project, because of the hybrid approach we took.

As is clear from the figures in the table, most effort went into formal verification with
KeY (closely followed by work on the thesis). Note that there are no hard boundaries be-
tween the effort that went into formal specification and formal verification. The 10.0%
effort ratio for formal specification (JML) relate to the specifications that were written be-
fore we actually started verifying. The effort ratio for formal verification (with OpenJML,
JJBMC, and KeY) also involved making improvements to existing JML contracts.

Task effort ratio

Formal specification (JML) 10.0 %
Testing JML specs with JUnit 11.2 %
Formal verification with JMLUnit/JMLUnitNG 0.1 %
Formal verification with OpenJML 3.2 %
Formal verification with JJBMC 3.3 %
Formal verification with KeY 26.6 %
Writing (thesis) 26.2 %
Presentations 4.2 %
Software installation 2.2 %
Research (literature) 7.8 %
Meetings 5.2 %

Total 100.0 %

Table 4.1: Effort ratio of the project

As discussed in section 4.2, it is difficult to quantify the effects of the hybrid approach we
took during the project (i.e. measure the benefits and costs and compare them on the same
basis). Nevertheless, we are confident that the testing and verification effort with JUnit,
JMLUnit/JMLUnitNG, OpenJML, and JJBMC combined (17.8%) would easily be exceeded
by the extra effort needed for formal verification with KeY, had we not taken the hybrid
approach. Table 4.2 is a rough estimate of the costs and benefits of this approach.

69

Task RE (hrs.) CE (hrs.) EB (hrs.) NR (hrs.)

Testing JML specs with JUnit 77 51 100 +49
Formal verification with JMLUnit/JMLUnitNG 1 1 0 -1
Formal verification with OpenJML 22 22 0 -22
Formal verification with JJBMC 23 10 20 +10

Total 123 84 120 36

RE: Raw Effort (the number of hours from a time table of the project), CE: Corrected Effort (effort
after correcting for fair comparison), EB: Estimated Benefit, NR: Net Result.

Table 4.2: Costs and benefits of the hybrid approach

The second column (RE) contains the ‘raw effort’ in hours, i.e. the hours that were taken
straight from the time table we recorded during the project. To make a fair comparison, we
should correct some of values in this column. Firstly, not all methods were verified with
KeY during the project. We should correct the testing effort by estimating how much time
we spent on methods we in fact also verified. We estimate that about 33% of the testing
effort was spent on methods we did not verify. Therefore, we downgraded the number of
testing hours from 77 to 51 in the third column (CE). Secondly, the time spent on JJBMC
was partly spent on testing and improving the tool itself. We corrected the number of 23
hours to 10 (column CE). Column EB contains the estimated benefit, i.e. the time gained,
due to performing preliminary sanity checks on the JML specifications. The column on the
right (NR) contains the net result (EB - CE).

We estimate that, due to our hybrid approach, we spent roughly 36 hours less on (partly)
formally verifying the IdentityHashMap. Compared to the total amount of hours spent on
specification with JML and verification with KeY, 69 hrs. and 182 hrs. respectively, accord-
ing to our time table, this comes down to a ≈12.54% increase of efficiency (36 / (36 + 69 +
182) * 100%). Again, we stress that this is a rough estimate.

70

5
CONCLUSIONS AND RECOMMENDATIONS

5.1. CONCLUSIONS
We showed that, with JML and KeY, the most important methods of the IdentityHashMap
can be formally specified and verified and, in doing so, demonstrated that an overflow error
exists in the capacity method of the JDK7 version of the class. We implemented a fixed
version of this method and proved its correctness by testing and formally verifying it. We
also did this for the JDK9 version of the capacity method, which is a completely rewritten
version.

We also demonstrated three ways to limit the effort of formally specifying contracts,
each having its own advantages and disadvantages. In general, we feel this hybrid approach
to formally analysing software proved to be beneficial in tackling specification errors in an
early stage of the process. Of the tools we used to validate early versions of our specifica-
tion, JUnit and JJBMC turned out to be the most beneficial. This does not mean, however,
that, in general, it can be stated that OpenJML is not a useful tool for this purpose. (Boer-
man et al. [12] have shown results to the contrary.)

5.2. LESSONS LEARNED
We used JUnit and Java Reflection to test our JML contracts. The approach we have taken
could, with hindsight, be improved. After we formally specified the bigger part of the
IdentityHashMap, we wrote unit tests for every specified method, and tested them. We
now think we would have been more efficient when limiting the number of tests to the
somewhat more complex methods and the class invariant. There are several very simple
pure methods (e.g. isEmpty, size, maskNull, unmaskNull, et cetera) that have very sim-
ple contracts that are, due to their simplicity, less prone to errors. Writing and maintaining
unit tests for these methods might not be worthwhile, and should perhaps be considered
only if problems during verification occur.

A similar remark could be made with regard to writing JML contracts. We started off
with writing formal specifications for almost all methods, including those of the inner classes
of the IdentityHashMap, as well as the class invariants of the inner classes. Again, with
hindsight, we would have been more efficient by focussing on the specification of the class
invariant of the main class and the most relevant methods of the CUA first. After testing
and verifying them, time permitting, we could have extended our focus to the rest of the

71

CUA. When finishing our project, there were several specified methods and class invariants
we did not formally verify because of a lack of time.

The KeY version we used (2.7) did not support certain modern Java features like, for
example, generics or lambda expressions 1. Generics are available since Java 7, but can be
stripped by a KeY plugin for Eclipse. Lambda expressions were introduced in Java 8, and
could not be stripped. We therefore decided to formally analyse the JDK7 version of the
IdentityHashMap, and strip the generics 2. When looking for a suitable candidate class
for formal analysis, we did not check if later versions of the class had been improved or
(partly) rewritten. If a candidate for formal analysis turns out to be significantly changed
in later Java versions, that would be a valid argument to look for a better candidate 3. It
is, therefore, recommendable to check later versions of any formal analysis candidate class
beforehand, in cases like these.

5.3. FUTURE WORK
Contrary to data on the performance of software processes in general [33], as well as data
on the costs of bugs in software [17, 18], there seems to be no statistical data available
in literature on the effort and benefits of formal analysis specifically. It would have been
interesting to have such information to see if formal analysis ‘pays off’. Also, it would be
interesting to see if a hybrid approach, where several tools are used in an attempt to limit
the effort that goes into specification, like we did in this project, is beneficial, and to what
extend. Indeed, we think it is beneficial, but it is, obviously, good (if not indispensable) to
have more empirical data available to back this up. These data should take into account
several factors, like the formal analysis method (model checking, abstract interpretation or
deductive reasoning), tooling, complexity of the software, skills and experience, automatic
versus interactive verification, et cetera.

Currently, KeY supports most JML features 4, but the supported features of Java 7 and
later are limited 5. A version of KeY supporting more recent features of Java would be a great
improvement to the tool. Furthermore, we have not attempted to formally analyse the
readObject and writeObject methods, because serialisation is not supported by KeY.
We would welcome a future version of the tool that does. In our project this would have
been a much appreciated feature, because the readObject method might probably have
suffered from the overflow error we found in the capacity method, and was also not im-
mune to some tampering with the serialised IdentityHashMap (see also: section 3.7.1 (An
improved version of the readObject method) on page 62).

1At the time of writing this thesis, newer releases of KeY still did not support these features.
2We did make an attempt to prepare the JDK15 version of the IdentityHashMap, but the KeY plugin did not

allow libraries and source code incompatible with Java7.
3Later versions of the IdentityHashMap have mainly been extended, while existing methods remained un-

altered. Unfortunately (or fortunately, depending on one’s perspective) the capacity method, containing
the overflow error we detected, was rewritten in JDK9. The JDK9 version did no longer contain the error.

4See: https://www.key-project.org/jml-support-in-key/
5See: https://www.key-project.org/applications/program-verification/

72

6
REFLECTION

In this chapter, I will briefly reflect on the process (section 6.1) and the delivered end prod-
uct (section 6.2). I will conclude this chapter with some afterthoughts (section 6.3).

6.1. THE PROCESS

6.1.1. LEARNING JML
Formal analysis by deductive reasoning was new to me, until I started this project. I had
to get acquainted with JML as well as the verification tools (KeY, OpenJML and JJBMC).
Learning JML was not extremely difficult. Fortunately, I had some good tutorials at my
disposal. Chapter 7 of the KeY Book [11] was a good introduction to JML, and the JML
reference by Leavens et al. [9] proved to be a good and complete reference that I used
a lot. Using the KeY plugin for Eclipse was also convenient, because it supports syntax
highlighting for JML. (Unfortunately, the plugin does not support syntax highlighting for
conditional JML 1. As soon as the +KEY or +OPENJML tags are added, the JML annotations
are interpreted as regular comments. Furthermore, during my regular Zoom meetings with
Mattias Ulbrich, Alexander Weigl, Jonas Klamroth at KIT and my supervisor Stijn de Gouw,
any issue I had with JML could be discussed and resolved. Nevertheless, even with all the
good advice and help, it’s not always straightforward to get your JML contracts right the
first time. It usually takes a (verification) tool to detect the errors in the contracts, and this
is where JUnit, OpenJML, JJBMC, and ultimately KeY came into play.

6.1.2. WORKING WITH KEY
As mentioned before (see table 1.1: Pros and cons of formal analysis methods on page 6)
formal analysis using the deductive method is tedious and time consuming work. This is
also confirmed in some literature [4, 14, 15, 19]. It is one thing to be told so, but quite
another thing to actually experience it. Despite heeding the warning given to me by my
supervisor, and seeing it being repeated in the literature I studied, I was still unpleasantly
surprised by the amount of work involved.

Learning to work with KeY was a lot harder than learning JML, in my experience. I used
the KeY Book [11] as the main tutorial, but one does not learn to work with KeY from a
book. It takes a lot of experience, making mistakes, and ‘getting your hands dirty’. Simple

1See section 3.4 (A preliminary check of the JML specifications with OpenJML) on page 47.

73

methods with simple contracts can be automatically proven, but as soon as contracts get
more complex, the tool requires interaction to prove the code’s correctness or to find the
errors in the specification. KeY has a lot of options and configuration settings, and without
the dedicated meetings with Stijn, I would not have been able to separate the essential and
useful ones from the less important ones. At the same time, for Stijn to know what I had
already found out myself and what not, must also not have been obvious. For example,
during the project it turned out I missed an essential setting in the so-called taclet options
to guarantee that a proof is sound. This meant I had to repeat the proof for a number
of methods. In short, the learning curve of KeY was a lot steeper than I estimated, and,
although my skills seemed to improve throughout the project, I still would not dare to claim
I ‘master’ it.

6.1.3. CONTACT WITH PEERS

Besides the regular one-on-one meetings with my supervisor, Stijn de Gouw, I’ve had sev-
eral Zoom meetings with our German peers Mattias Ulbrich, Alexander Weigl and Jonas
Klamroth, at KIT. I found these meetings very fruitful. They were pleasant, educational and
motivational. Alexander was a great help at setting up KeY and helping me out with some
technical issues. Mattias provided me with useful suggestions on JML, in some cases by live
programming (‘ruining’ my specs with insightful ideas, which I later worked out), but also
involved others like Jonas Klamroth and Bachelor student Christian Jung (who worked on
a similar project), and sent me articles and theses on related subjects. Jonas wrote part of
the OpenJML-specific (conditional) JML, based on my KeY specific contracts, to use with
JJBMC. One Friday afternoon, together we detected a specification error that was repeated
in several method contracts. I am happy I could (to some extend) return the favour by
doing some tests with JJBMC on my computer. Late in the project, Christian Jung was in-
troduced to the meetings by Mattias. A companion with similar struggles, which was, in a
way, comforting. Especially at times when I felt I made too little progress.

I also had contact with David Cok, the developer of OpenJML. In my attempts to put
the tool to use, I ran into some issues like, for example, a bug in the tool itself. I emailed
David to report this, and to share some of the other issues I ran into. I got a quick reply with
useful suggestions. Although my use of OpenJML was somewhat limited, I nevertheless
appreciated his engagement.

6.1.4. MY PROGRESS

At the start of the project, I was warned that my planning was quite optimistic. So I took
into account that the project would probably take longer than originally estimated. How-
ever, even my readjusted expectations were exceeded. Indeed, progress was sometimes
sluggish. And this, from time to time, made me feel somewhat embarrassed during the
progress meetings I had with my supervisor and our German peers in Karlsruhe. They, on
the other side, emphasized that formal analysis of a class like the IdentityHashMap isn’t
trivial, which was, to some extend, reassuring. David Cok wrote in an email to me: “I will
say that java collections are a difficult place to start as their semantics is intricate.” With
hindsight I would have done some things more efficiently, as I addressed in section 5.2
(Lessons learned) on page 71.

74

6.2. THE END RESULT
The KeY tool, I think, is rightfully called a state-of-the-art tool. It is quite a challenge to de-
velop a formal verification tool in general, and once one gets to know KeY and has acquired
the skills to work with it interactively, this shows. Notwithstanding my deepest respect for
the people who developed (and still develop) the KeY tool, I think it is a pity that it does
not support a number of Java features. I was, therefore, not able to formally analyse a re-
cent version of the IdentityHashMap. Instead, I was forced to stick with the JDK7 version,
which contained an error that had (unfortunately for me) been fixed since JDK9. The work
would have been more gratifying if I had found an error that is still present, and provide a
fix for that error. However, to be fair, the error found in the capacity method is not serious
enough to make the IdentityHashMap actually crash.

Appendix C shows which methods have been formally verified with KeY. Although most
of the methods of the main class have been specified with JML, I did not succeed to verify all
methods. This implicitly means that the JML contracts of these methods may still contain
errors (due to the incremental way of working). I think it’s a pity this wasn’t accomplished.
Although, on the upside, the number of methods (and, implicitly, class invariants) proven
with KeY surpass those proven with OpenJML and JJBMC, and among the proven methods
there are several that are typical for a map. I was particularly pleased I was able to prove
the put method, which wasn’t trivial and took quite an effort to complete. Indeed, I was on
the verge of giving up on this one. I’m glad I did not.

6.3. SOME AFTERTHOUGHTS
In the introduction of this thesis, I substantiated my decision to cover the subject of formal
analysis. In short, I reasoned that, however formal analysis (especially by deductive rea-
soning) can be tedious work, it can be worthwhile, especially in case of software libraries
used in countless applications. Although I still stand by this viewpoint, part of me wonders
whether or not, in practice, formal analysis has predominantly been an academic exercise
so far. For that reason I suspect that, in my daily profession as software developer, chances
are slim I will be applying much of the newly acquired knowledge during this project. On
the upside, performing formal analysis of a ‘real-life’ class in the Java Collections Frame-
work does affect one’s level of awareness of (possible) software bugs, and (on a personal
level) builds perseverance and character.

75

A
FORMAL ANALYSIS METHODS

The three principal formal validation methods mentioned in literature [4, 5] are model
checking, abstract interpretation, and deductive methods. This appendix provides a global
description of each of three methods.

A.1. MODEL CHECKING

A.1.1. THE TECHNIQUE
Model checking is an automatic technique for specifying finite state concurrent systems
[34]. In model checking the design of the system is converted into a model, that is accepted
by a model checking tool. Conversion into a model is sometimes an automated compila-
tion task 1, but in other cases an abstraction of the design is made, leaving out irrelevant
details to save time and memory. The properties that have to be verified by the model
checker then need to be specified. Commonly, this is done by applying temporal logic, as-
serting how the system should behave over time. The main challenge in model checking is
that it suffers from the possibility of a state space explosion, a problem that can occur when
modelling a system under test, containing many interacting components that can assume
many different values, resulting in an enormous amount of different possible states of that
system. [34, 36].

A.1.2. RELATED WORK
Klaus Havelund et al. [35] have published work on the model checking approach while for-
mally analysing and verifying Java software. They describe a translator JPF, that translates
Java code into Promela, a modelling language of the model checker Spin. The Spin model
checker is able to systematically check possible execution states for deadlocks, race condi-
tions, unhandled exceptions and violations of any stated assertions. In their paper Klaus
Havelund et al. describe how an example Java program has been translated automatically
by JPF, and verified automatically by the model checker. This program, a bounded buffer,
represents a finite structure that is being verified. Although the article presents a valuable
insight in the workings of JPF and Spin, no open source or commercially sold software is
being verified.

1Java Path Finder (JPF), for example, is a tool that translates Java into Promela, a modelling language for the
model checker tool Spin [35]. (See section A.1.2.)

I

A.2. ABSTRACT INTERPRETATION

A.2.1. THE TECHNIQUE
Abstract interpretation was invented in the seventies of the previous century by Cousot et
al. [37]. It is more scalable than model checking [4] and does, therefore, not suffer from
the problem of state space explosion. The basic idea behind abstract interpretation is to
describe a program’s computation in terms of abstract properties and abstract operations.
These abstractions of a program’s concrete semantics make up the so-called abstract do-
main. Execution of the abstract operations in the abstract domain gives useful information
on the actual program. The abstract semantics in the abstract domain are approximations,
and therefore less precise [5]. This is not necessarily a bad thing, as is illustrated by the
following simple example. Suppose we want to verify a simple multiplication function.
Instead of running the actual function with many different variables (increasing the state
space), we could also decide to focus on one aspect of the function, and just verify the sign
of the product of the function. In the concrete domain the parameters are two integers
consisting of an actual value and a sign. In the abstract domain we might choose to disre-
gard the actual values of the parameters, and only consider their signs (+, – or 0). This kind
of abstraction (sign abstraction) may lose some precision, but not for our purpose: here,
it is sufficient to know the sign of the parameters2. Next, an abstract interpreter has to be
designed to perform the computation in the abstract domain. This abstract function takes
two parameters in the abstract domain, both being one of the three signs, +, – or 0, and
returns the resulting sign. Some example invocations and results of the concrete function
mult and its counterpart in the abstract domain, mult’:

mult(3, 4) = 12 mult’(+, +) = +
mult(0, 4) = 0 mult’(0, +) = 0
mult(3, 0) = 0 mult’(+, 0) = 0
mult(-3, 4) = -12 mult’(�, +) = �
mult(3, -4) = -12 mult’(+, �) = �

mult(-3, -4) = 12 mult’(�, �) = +

Abstract interpretation is a ‘lattice-theoretic framework’ [4, 37], meaning abstract proper-
ties are modelled by a complete semi-lattice. To understand how this works, recall the mul-
tiplication example above. More specifically, the sign abstraction performed on the integer
input parameters. Abstraction means: mapping a set of properties in the concrete domain
to a property in the abstract domain. This is referred to as the abstraction function, denoted
as α. Just as finding an abstract approximation for a concrete property requires an abstrac-
tion function, finding a corresponding concrete set for any property in the abstract domain
requires a concretisation function, denoted as γ. The concrete domain as well as the ab-
stract domain can be represented by a lattice. Figure A.1 shows two lattices. To the left,
a representation of the concrete properties in the concrete domain of the multiplication
function L = 〈P, vL 〉 is shown, with P as the set of tokens containing zero or more concrete
properties, and v as the semi-lattice operation. The right lattice L’ = 〈P’, vL’ 〉 similarly rep-
resents the abstract domain, containing the abstract properties (stored in the tokens in P’).

2Note, however, that for additions and subtractions this abstraction will lose too much precision, because it
is impossible to know the sign of a these operations when the parameters are positive and negative, respec-
tively.

II

⊥ { }

{ 0 } { 1, ..., ∞ }{ -∞, ..., -1 }

> { -∞, ..., ∞ }

{ – } { 0 } { + }

⊥ { }

> { –, 0, + }

Figure A.1: Two lattices. On the left, L = 〈P, vL 〉, a representation of the concrete properties in the concrete
domain. On the right L’ = 〈P’, vL’ 〉, a representation of the abstract properties in the abstract domain.

The abstraction function α maps concrete values (integers) associated with tokens in P
to an abstract token in P’. The concretisation function γ is, in a sense, the inverse of α, and
maps a token from P’ to a set of concrete properties in L. For example:

α({3, 4}) = + γ(>) = { -∞, ..., ∞ }
α({0, 3, 4}) = > γ(–) = { -∞, ..., -1 }
α({-3, -4}) = – γ(+) = { 1, ..., ∞ }

α({ }) = ⊥ γ(⊥) = { }

The abstract function mult’ is abstracted from the function mult and takes its parame-
ters from the abstract domain. Applying γ to these parameters results in the correspond-
ing concrete set, taken by the concrete function. Applying α to the result of the concrete
function results in a corresponding value in the abstract domain. Therefore, if mult’ is a
correct abstraction of mult, we can conclude: mult’ = α ◦ mult ◦ γ. During the verification
process, a verification tool iteratively performs the abstract function, starting with each
variable bound to ⊥ in L’, and working its way up the lattice until a fixpoint (fixed point or
invariant point) is reached.

Dwyer et al. [4] mention a number of drawbacks of abstract interpretation. For exam-
ple, the over-approximating nature of abstract interpretation resulting in inconclusive error
reports, and the significant mathematical expertise that is required. To illustrate a down-
side of the over-approximating nature, consider the mult example once more. Note that
a verification tool will run the abstract function mult’, not the concrete function mult,
and will therefore never detect that mult(Integer.MAX_VALUE, 2) returns -2 (an over-
flow error). In the abstract domain mult’(+, +) is always +, and the overflow error will go
unnoticed. Based on these drawbacks, abstract interpretation, like model checking, is, not
a suitable approach for our research.

Furthermore, Polikarpova et al. [16] remark that “full functional verification of realistic
software still largely relies on interactive theorem provers, which require massive amounts
of effort from highly-trained experts”.

A.2.2. RELATED WORK
The abstract interpretation method was successfully applied by Lacan et al. [38] to analyse
the Ariane 5 software (flight 502 and later). The challenge was to regain confidence in the
software of onboard equipment after the dramatic crash of flight 501 on June 4, 1996 [3, 21].

III

A.3. DEDUCTIVE METHODS

A.3.1. THE TECHNIQUE
In deductive verification so-called Hoare triples play a central role. According to Hoare [6],
the validity of the result R of a program Q depends on the state of the system before Q is
initiated (precondition P). Hoare introduces the notation

P{Q}R,

meaning “if the assertion P is true before initiation of a program Q, then the assertion R
is true on its completion”. To support several constructs of an imperative programming
language, Hoare provides a number of axioms and inference rules. Two examples are the
rule of composition and the rule of iteration, respectively:

Rule of composition: if `P{Q1}R1 and `R1{Q2}R then `P{Q1;Q2}R
Rule of iteration: if `P

∧
B {S}P then `P{while B do S} ¬B

∧
P

In the rule of iteration, P is called the loop invariant, because it holds before and after every
loop iteration.

1 class C {
2 /*@ Invariant I @*/
3

4 /*@ requires P
5 @ ensures R
6 @*/
7 void m(Object o) {
8 ...
9 // method body

10 ...
11 /*@ loop_invariant L @*/
12 while (B) {
13 ...
14 // Loop body
15 ...
16 }
17 ...
18 }
19 }

Listing A.1: Java + JML example

In JML, a precondition of a method is denoted by the keyword requires (see line 4 in
listing A.1). The postcondition is denoted by the keyword ensures (line 5). When (in the
example above) P holds before method m is called, then R must hold on its completion. The
class invariant I (line 2) must hold before and after method m is called. Loop invariant I
(line 11) should hold before and after every iteration of the while loop.

As is clear from this simple example, with deductive verification we can stay close to
the original syntax and semantics, when formally specifying its behaviour. A complete
overview of the design of JML is written by Leavens et al. in their JML reference manual
[9].

A.3.2. RELATED WORK
See: section 1.3 (Related work) on page 7.

IV

B
DEDUCTIVE VERIFICATION TOOLS

This appendix provides a brief description of three deductive verification tools: Isabelle/HOL,
Coq and KeY.

B.1. ISABELLE/HOL
Isabelle/HOL is an interactive general purpose theorem prover. HOL stands for higher-
order logic. The tool allows for the definition of deductive systems for different logics [39].
Defining a logic in Isabelle constitutes the creation of a so-called theory. Theories are stored
in files with the extension .thy. Any newly defined logic is called an object-logic, and is
derived from Isabelle’s meta-logic called Pure.

To get a sense of how Isabelle works, we will give a simple example in which we prove
that an add function adding two natural numbers is associative. Figure B.1 shows the editor
window of the Isabelle tool (Isabelle 2019 for Mac OS X)1, with the theory fileTestAddAssoc.thy
open.

The theory defined in the file is (also) called TestAddAssoc (line 1), and imports the
Main library of Isabelle. On line 5, a function add is defined. The functional programming
language used here is Meta Language (ML), which is the default language in Isabelle.

To run the function, the keyword value can be used, as can be seen on line 10. When-
ever the cursor is positioned at this line, the expression “add 1 (add 2 3)” is executed,
resulting in the following output:

"6"
:: "nat"

This is, of course what is to be expected: 1 + 2 + 3 = 6.
Next comes the part where the associativity of the function is proven. The function

should be associative, just as the mathematical + operator is. We do this by defining a theo-
rem, in this example called add_assoc (line 12 in figure B.1). In this example add_assoc is
defined as a simplification goal, as can be seen by the postfix [simp], enabling us to re-use
the goal in other theorems. Right of the semicolon, we define what we want to prove: “add
n (add m p) = add(add n m) p” (associativity). Next, we apply the induction tactic on
n (line 13 and 14). With every step in the symbolic run of the function, a different instance

1Isabelle 2019 for Mac OS X was downloaded from https://isabelle.in.tum.de/index.html

V

Figure B.1: TestAddAssoc.thy in Isabelle/HOL

of n will be used to determine the correctness of the function. By positioning the cursor on
line 15, the output in the output panel of Isabelle (the lower half of the screen) in figure B.1
is displayed, indicating the theorem has been proven.

This, however, is not always the case right away. In most cases the goal of a theorem is
not satisfied, and one or more subgoals have to be satisfied first. This can be done by writ-
ing one or more lemmas. Figure B.2 shows another theory file, called TestAddCommut.thy,
containing a theory called TestAddCommut in which an attempt is made to prove the com-
mutative character of the function add. Here, the theorem add_commut fails to finish, be-
cause Isabelle needs us to satisfy two other subgoals. This means we have at least two
lemmas to define. In figure B.3 one lemma is added, partly satisfying Isabelle. When, even-
tually there are no more subgoals left to satisfy, the theorem can be proven, like in the first
example in figure B.1.

Being able to write one’s own logics is not intuitive, and requires some training. As an
alternative one might use predefined logics, assuming that these are sufficient. Klein et al.
[40] provide a listing of the Isabelle sources forµJava. µJava is a reduced model of Java Card.
The model presented is quite extensive, hard to grasp, and does not cover all the Java fea-
tures. In short, applying Isabelle/HOL for the purpose of our research project has a number
of shortcomings: its learning curve is quite steep, Isabelle/HOL isn’t tailor-made for Java,
and the available theories/logics for Java that are available lack the required features. Du-
ring our exploratory research into Isabelle/HOL we have not been able to successfully parse
and verify a small example Java class, within the limited time available.

B.2. COQ
Like Isabelle/HOL, Coq is an interactive theorem prover. The CoqIDE enables the user to
interactively write theorems and definitions for Coq to prove. Both tools are, to a certain

VI

Figure B.2: TestAddCommut.thy in Isabelle/HOL

extend, quite similar. There are, however some small differences. To demonstrate some of
the similarities and differences, the example of proving the associativity of a function add
is repeated, using CoqIDE (CoqIde_8.4pl5 for Mac OS X)2.

Figure B.4 shows the CoqIDE, containing this example. Lines 1 to 5 contain the defi-
nition of the function add, accepting two natural numbers as input, and returning a nat-
ural number as output. Although the language used in CoqIDE is (like in Isabelle/HOL) a
functional language, the syntax is somewhat different. This is because Coq uses a different
specification language, called Gallina, whereas Isabelle/HOL uses ML.

Below the function, a theorem add_assoc is defined, on lines 7 and 8. Again, this is
quite similar to the way it is being done in Isabelle/HOL. Syntactically, there are similarities,
but also the interactive way of working with Coq is reminiscent of what we have seen with
Isabelle/HOL. Proving the theorem is done on lines 9 to 13 by introduction variables a, b
and c, and applying induction on a. With every step of the proof, CoqIDE will indicate
whether there are any subgoals to satisfy. For example, after running the code lines 1 to 10
(displayed in green), the output panel of the tool indicates there is one subgoal that needs
to be satisfied (see figure B.5).

By completing the necessary steps, CoqIDE will eventually indicate that there are no
more subgoals, and that the proof is complete. We can conclude our proof with the Qed.
statement, indicating the proof is complete (see figure B.6).

Like, Isabelle/HOL, Coq is not tailor-made for Java, and suffers from similar drawbacks.

2CoqIDE_8.4pl5 for Mac OS X was downloaded from https://coq.inria.fr/coq-84

VII

Figure B.3: TestAddCommut.thy with one lemma added in Isabelle/HOL

Figure B.4: TestAddAssoc in CoqIDE

VIII

Figure B.5: TestAddAssoc in CoqIDE - 1 unsatisfied subgoal

Figure B.6: TestAddAssoc in CoqIDE - no more subgoals

IX

However, as Burdy et al. [23] and Filliâtre et al. [41] indicate, it is possible to generate proof
obligations for Coq using Krakatoa, a tool that supports the use of JML. However, this would
require extra learning efforts to acquire the skills and knowledge to work with yet another
tool.

B.3. KEY
The KeY tool is developed by the KeY project3, and is part of the KeY framework. The KeY
tool is an interactive theorem prover, and is suitable for JML and Java. A description of KeY
can be found in section 2.1.8 (The KeY tool), on page 17.

3https://www.key-project.org/

X

C
SPECIFIED, TESTED AND PROVEN METHODS

AND INNER CLASSES OF THE

IDENTITYHASHMAP

During the project we kept track of the methods and inner classes we specified, which specs
were tested with JUnit, and which contracts were successfully verified with OpenJML, KeY
and/or JJBMC.

C.1. PROVEN METHODS OF THE IDENTITYHASHMAP
The methods of the IdentityHashMap (main class) that were specified with JML, proven
and for which the specifications were tested are shown in the table below. None of the
methods were fully successfully verified with OpenJML, and most of the methods are veri-
fied with KeY and JJBMC.

Method JML JUnit OpenJML KeY JJBMC

Class invariant X X X
Object maskNull(Object) X X X X
Object unmaskNull(Object) X X X X
IdentityHashMap() X X
IdentityHashMap(int) X X
int capacity(int) X X X
void init(int) X X X X
IdentityHashMap(Map<K,V>) X X
int size() X X X X
boolean isEmpty() X X X X
int hash(Object, int) X 1

int nextKeyIndex(int, int) X X X X
V get(Object) X X X
boolean containsKey(Object) X X X
boolean containsValue(Object) X X X X
boolean containsMapping(Object, Object) X X X
V put(K, V) X X X
void resize(int) X X X

1Only one of two contracts proven

XI

void putAll(Map<K,V>) X X
V remove(Object) X X
boolean removeMapping(Object, Object) X X
void closeDeletion(int) X
void clear() X X X X
boolean equals(Object)
int hashCode()
Object clone() X X
Set<K> keySet() X
Collection<V> values() X
Set<Map.Entry<K,V> > entrySet() X
void writeObject(ObjectOutputStream)
void readObject(ObjectInputStream)
void putForCreate(K, V)

Table C.1: Proven methods of the IdentityHashMap per tool

C.2. SPECIFIED METHODS OF THE INNER CLASSES
The tables below show the methods of the inner classes that were specified, and for which
the specifications were tested. Note that most of the methods were not verified with KeY.
None of the methods were verified with JJBMC.

Method JML JUnit OpenJML KeY JJBMC

Class invariant X X
boolean hasNext() X
int nextIndex()
void remove() X

Table C.2: Proven methods of the IdentityHashMap#IdentityHashMapIterator<T> per tool

Method JML JUnit OpenJML KeY JJBMC

Class invariant X X
K next()

Table C.3: Proven methods of the IdentityHashMap#KeyIterator<T> per tool

Method JML JUnit OpenJML KeY JJBMC

Class invariant X X
V next()

Table C.4: Proven methods of the IdentityHashMap#ValueIterator<T> per tool

XII

Method JML JUnit OpenJML KeY JJBMC

Class invariant X X
Map.Entry<K,V> next()
void remove()

Table C.5: Proven methods of the IdentityHashMap#EntryIterator<T> per tool

Method JML JUnit OpenJML KeY JJBMC

Class invariant X
Entry(int index)
K getKey() X
V getValue() X
V setValue(V)
boolean equals(Object)
int hashCode()
String toString()
void checkIndexForEntryUse() X

Table C.6: Proven methods of the IdentityHashMap#EntryIterator#Entry per tool

Method JML JUnit OpenJML KeY JJBMC

Class invariant
Iterator<K> iterator()
int size() X X
boolean contains(Object) X X
boolean remove(Object) X
boolean removeAll(Collection<?>)
void clear() X X
int hashCode()

Table C.7: Proven methods of the IdentityHashMap#KeySet per tool

Method JML JUnit OpenJML KeY JJBMC

Class invariant
Iterator<V> iterator()
int size() X X
boolean contains(Object) X X
boolean remove(Object) X
void clear() X X

Table C.8: Proven methods of the IdentityHashMap#Values per tool

XIII

Method JML JUnit OpenJML KeY JJBMC

Class invariant
Iterator<Map.Entry<K,V» iterator()
void clear() X X
boolean contains(Object) X
boolean remove(Object) X
int size() X X
boolean removeAll(Collection<?>)
Object[] toArray()
<T> T[] toArray(T[])

Table C.9: Proven methods of the IdentityHashMap#EntrySet per tool

XIV

BIBLIOGRAPHY

[1] Federal Aviation Administration (FAA), “80 FR 24789 - Airworthiness Directives; The
Boeing Company Airplanes,” May 2015. ix, 2, 4

[2] M. Blair, S. Obenski, and P. Bridickas, “Patriot missile defense: Software problem led
to system failure at Dhahran,” Report GAO/IMTEC-92–26, 1992. ix, 2, 4

[3] B. Nuseibeh, “Ariane 5: who dunnit?,” IEEE Software, no. 3, pp. 15–16, 1997. ix, 4, III

[4] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, and W. Visser, “Formal software
analysis emerging trends in software model checking,” in 2007 Future of Software En-
gineering, pp. 120–136, IEEE Computer Society, 2007. ix, 4, 5, 73, I, II, III

[5] P. Cousot, “Abstract interpretation based formal methods and future challenges,” in
Informatics, pp. 138–156, Springer, 2001. ix, 4, I, II

[6] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of
the ACM, vol. 12, no. 10, pp. 576–580, 1969. ix, 5, 9, IV

[7] R. W. Floyd, “Assigning meanings to programs,” in Program Verification, pp. 65–81,
Springer, 1993. ix

[8] G. T. Leavens and Y. Cheon, “Design by Contract with JML,” 2006. ix, 10, 11

[9] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, P. Chalin,
D. M. Zimmerman, et al., “JML reference manual,” 2008. ix, 5, 23, 26, 73, IV

[10] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt, “The KeY tool,” Software & Sys-
tems Modeling, vol. 4, pp. 32–54, Feb 2005. ix, 5, 7, 8

[11] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, “Deductive
Software Verification - The KeY Book. LNCS, vol. 10001,” 2016. ix, 15, 17, 73

[12] J. Boerman, M. Huisman, and S. Joosten, “Reasoning about JML: Differences between
KeY and OpenJML,” in International Conference on Integrated Formal Methods, pp. 30–
46, Springer, 2018. ix, 29, 47, 48, 68, 71

[13] G. J. Holzmann, “Out of bounds,” IEEE Software, vol. 32, no. 6, pp. 24–26, 2015. 2

[14] S. de Gouw, F. S. de Boer, R. Bubel, R. Hähnle, J. Rot, and D. Steinhöfel, “Verifying
OpenJDK’s Sort Method for Generic Collections,” Journal of Automated Reasoning,
vol. 62, pp. 93–126, Jan 2019. 3, 4, 5, 7, 21, 23, 73

XV

[15] F. Pottier, “Verifying a Hash Table and Its Iterators in Higher-Order Separation Logic,”
in Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2017, (New York, NY, USA), p. 3–16, Association for Computing Machinery, 2017.
3, 8, 73

[16] N. Polikarpova, J. Tschannen, and C. A. Furia, “A fully verified container library,” For-
mal Aspects of Computing, vol. 30, pp. 495–523, Sep 2018. 3, III

[17] M. Zhivich and R. K. Cunningham, “The real cost of software errors,” IEEE Security &
Privacy, vol. 7, no. 2, pp. 87–90, 2009. 4, 72

[18] Cambridge University, “Cambridge University Study States Software Bugs Cost Eco-
nomy $ 312 Billion Per Year.,” 2013. 4, 72

[19] S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Hähnle, “OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case,” in Com-
puter Aided Verification (D. Kroening and Păsăreanu, eds.), pp. 273–289, Springer In-
ternational Publishing, 2015. 4, 5, 7, 21, 73

[20] H.-D. A. Hiep, O. Maathuis, J. Bian, F. S. de Boer, M. van Eekelen, and S. de Gouw, “Veri-
fying OpenJDK’s LinkedList using KeY,” in Tools and Algorithms for the Construction
and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, to appear, 2020. 4, 8, 21, 23

[21] G. Le Lann, “An analysis of the Ariane 5 flight 501 failure-a system engineering per-
spective,” in Proceedings International Conference and Workshop on Engineering of
Computer-Based Systems, pp. 339–346, IEEE, 1997. 4, III

[22] D. Cok, “OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse,”
Electronic Proceedings in Theoretical Computer Science, vol. 149, Apr 2014. 5, 29

[23] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll, “An overview of JML tools and applications,” International journal on software
tools for technology transfer, vol. 7, no. 3, pp. 212–232, 2005. 6, 7, 29, X

[24] W. Mostowski, “Formalisation and Verification of Java Card Security Properties in Dy-
namic Logic,” in Fundamental Approaches to Software Engineering (M. Cerioli, ed.),
(Berlin, Heidelberg), pp. 357–371, Springer Berlin Heidelberg, 2005. 8

[25] Mostowski, Wojciech, “Fully verified Java Card API reference implementation,” Verify,
vol. 259, pp. 136–151, 2007. 8

[26] J. van Benthem, Logica voor informatica. Pearson Education, 2003. 9, 10

[27] King, James C., “Symbolic Execution and Program Testing,” Commun. ACM, vol. 19,
p. 385–394, jul 1976. 13, 15

[28] L. A. Clarke, “A system to generate test data and symbolically execute programs,” IEEE
Transactions on software engineering, no. 3, pp. 215–222, 1976. 13, 15

XVI

[29] M. Giese, “Taclets and the KeY prover,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 103, pp. 67–79, 2004. 17

[30] M. T. Goodrich and R. Tamassia, Data structures and algorithms in Java. John Wiley &
Sons, 2001. 23, 32

[31] D. A. Watt, Programming language design concepts. John Wiley & Sons, 2004. 29

[32] D. M. Zimmerman and R. Nagmoti, “JMLUnit: The Next Generation,” in Formal Veri-
fication of Object-Oriented Software (B. Beckert and C. Marché, eds.), (Berlin, Heidel-
berg), pp. 183–197, Springer Berlin Heidelberg, 2011. 29

[33] A. Fuggetta and E. Di Nitto, “Software process,” in Future of Software Engineering Pro-
ceedings, pp. 1–12, 2014. 72

[34] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model Checking. MIT
press, 2018. I

[35] K. Havelund and T. Pressburger, “Model checking java programs using java
pathfinder,” International Journal on Software Tools for Technology Transfer, vol. 2,
no. 4, pp. 366–381, 2000. I

[36] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for
model checking and testing,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 553–568, Springer, 2003. I

[37] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 238–252, ACM, 1977. II

[38] P. Lacan, J. N. Monfort, L. Ribal, A. Deutsch, and G. Gonthier, “Ariane 5-the software re-
liability verification process,” in DASIA 98-Data Systems in Aerospace, vol. 422, p. 201,
1998. III

[39] F. M. Dionısio, P. Gouveia, and J. Marcos, “Defining and using deductive systems with
Isabelle,” Computing, Philosophy, and Cognition, pp. 271–293, 2005. V

[40] G. Klein, T. Nipkow, D. von Oheimb, C. Pusch, and M. Strecker, “Java Source and Byte-
code Formalizations in Isabelle: µJava,” 2019. VI

[41] J.-C. Filliâtre and C. Marché, “The Why/Krakatoa/Caduceus platform for deductive
program verification,” in International Conference on Computer Aided Verification,
pp. 173–177, Springer, 2007. X

XVII

ACRONYMS

AD airworthiness directive. XIX, 2

CFML Characteristic Formulae for ML, a tool for the interactive verification of OCaml pro-
grams, based on Coq. 8

COTS Commercial Off-The-Shelf. 3

CUA Class Under Analysis. 4–6, 18, 19, 26, 31, 33, 41, 50, 52, 64, 65, 68, 71

DBC design by contract. 10

FAA Federal Aviation Administration. XIX, 2

FZI Forschungszentrum Informatik. 30, 50

GCU general control unit. 2

HOL Higher-Order Logic. XX

HPC High Performance Computing. 64, 65

JBMC a software bounded model checker for Java. ix, XVIII, 30

JJBMC a tool that enables JBMC to verify contracts written in JML. ix, XI–XIV, 19, 23, 30,
47, 50–53, 65, 66, 68–71, 73–75

JML Java Modelling Language. ix, IV, X–XIV, XVIII, XX, XXI, 5–8, 10–12, 15, 17–19, 21–24,
26, 29, 30, 33–36, 38–42, 44–47, 49–54, 61, 64–75

JPF Java Path Finder. I

KIT Karlsruher Institut für Technologie. 30, 50, 73, 74

ML Meta Language. V, VII

OTS Off-The-Shelf. 3, 4, 7

SMT satisfiability modulo theory. 29

XVIII

GLOSSARY

abstract interpretation An approach to formal analysis. An abstract approximation of the
program to be analysed is designed to verify its correctness. ix, I–III, XIX, XX, 4–6, 72

abstract interpreter An abstract interpreter is an abstraction of a concrete function that is
formally verified with abstract interpretation. It is a function in the abstract domain,
and an approximation of its concrete counterpart. Its input are parameters in the
abstract domain, and its output is the abstract state after execution. II

airworthiness directive An Airworthiness Directive is a notification to owners and opera-
tors of certified aircraft that a known safety deficiency exists and must be corrected.
The FAA defines ADs as “legally enforceable regulations issued by the FAA in accor-
dance with 14 CFR part 39 to correct an unsafe condition in a product”. XVIII, 2

axiom An axiom is a formula that can be used anywhere in a mathematical proof. XIX

Coq An interactive, general purpose theorem prover, similar to Isabelle/HOL. V–VII, X,
XVIII, XX, 7, 8

deductive method See deductive verification. ix, I, 4–6, 73

deductive reasoning See deductive verification. 72, 73, 75

deductive verification An approach to formal analysis. The term refers to a proof tech-
nique that uses propositional and first-order logic to deduce a conclusion from some-
thing that is known, using axioms and deduction rules (Modus Ponens). ix, IV, XIX,
XX, 3, 5, 7, 9

dynamic logic A form of modal logic, and an extension to Hoare logic, that, besides cor-
rectness, supports program characteristics like termination, equivalence, and deter-
minism. XX, 9, 10, 17

first-order logic Predicate logic. XIX, XXI

formal analysis A formal software analysis is a mathematically based, and therefore un-
ambiguous, automated technique for reasoning about software semantics. It uses
precise mathematical specifications of the intended behaviour of the software. For-
mal specification, testing and formal verification are part of the process of formal
analysis. ix, XIX, XXI, 3, 4, 6, 7, 9, 13, 18, 19, 21, 23, 33, 64, 65, 68, 72–75

formal specification A formal specification of a system is written in a language whose se-
mantics are unambiguous, because they are mathematically defined. ix, XIX, XX, 3,
8, 9, 17–20, 23, 64

XIX

formal verification Formal verification is the process of mathematically proving whether
(the formal model of) a system behaves according to the formal specifications. De-
ductive verification is a specific form of formal software verification. Two other ap-
proaches are model checking and abstract interpretation. XIX, XX, 8, 17, 19, 20, 65,
66

Gallina A functional language, used as the specification language by Coq. VII

High Performance Computing High Performance Computing is aggregated computing power
in which the whole is much more than the sum of a number of PCs. Systems that are
at least 10,000 to 100,000 times faster than a regular desktop computer are referred to
with the term supercomputer. XVIII, 64

higher-order logic Higher-Order Logic (HOL) is an extension of second-order logic. It can
be regarded as a union of first-, second-, third-, ... n-th order logics. V

Hoare logic A formal system of logical rules for reasoning about the correctness of a com-
puter program. XIX, XXI, 9

Isabelle/HOL An interactive, general purpose theorem-proving tool that supports the de-
finition and use of deductive systems for many different logics. V–VII, XIX, 7

Java Card Java Card is a technology designed to incorporate Java in smart card program-
ming. The Java Card programming language is a stripped down version of the Java
language. VI, 8

Java Reflection A Java feature to access private components (fields, methods and con-
stants) of Java classes and objects. This feature is exclusive to Java, and does not exist
in other programming languages like C or Pascal, for example. It opens the possibility
to inspect, or even manipulate, internal properties of a program. 19, 28, 29, 41, 47,
66, 71

JavaDL JavaDL is KeY’s dynamic logic language for Java. It introduces formal formulas,
based on JML contracts, that encode the correctness of Java methods, and function
as proof obligations. 17, 35

JMLUnit JMLUnit is a unit testing framework for JML-annotated Java code. XX, 29, 69, 70

JMLUnitNG JMLUnit Next Generation. 19, 23, 29, 69, 70

JUnit JUnit is a unit testing framework for Java code. XI–XIV, 19, 23, 29, 41, 45, 47, 69–71,
73

KeY A state-of-the-art tool that provides facilities for formal specification with and formal
verification of software. The target language of KeY-driven software development is
Java. ix, V, X–XIV, XX, XXI, 5, 7, 8, 15, 17–23, 29, 31, 33–36, 38–41, 47, 48, 50, 51, 54, 61,
64–75

XX

KeY plugin A plugin for Eclipse that provides support for creating KeY projects, JML sytax
highlighting, generating stubs for related classes, stripping generics (which are not
supported by KeY) automatically from classes, et cetera. 21

lattice See semi-lattice. II, III, XXI

modal logic Modal logic is an extension to other logics, like Hoare logic. Two new unary
operators are introduced that represent so-called ‘modalities’. These modal operators
express necessity and possibility. For example, äp asserts that p is necessarily true,
and ♦p asserts that p is possible true. 9

model checking A specific technique of formal analysis. It is an automated technique for
checking a formal model to assess whether it adheres to formal specifications. It veri-
fies the formally specified properties by exhaustively checking all possible states that
a (software) system could enter during execution. In model checking the formal veri-
fication is a good as the model. Model-based testing is used to assess whether the
model is an accurate representation of the actual system. ix, I, III, XX, XXII, 4–6, 72

Modus Ponens Modus Ponens, also Modus Ponendo Ponens (Latin for “mode that by af-
firming affirms”), is a rule of inference. From ϕ and (ϕ→ψ) we can deduce ψ. XIX

OCaml A hybrid programming language, that supports functional, imperative and object-
oriented programming. XVIII, 8

OpenJDK Open Java Development Kit, an open-source implementation of the Java Plat-
form, Standard Edition. 3–7, 18, 19

OpenJML OpenJML is a formal verification tool for Java programs, based on formal speci-
fications annotated in JML. ix, XI–XIV, 19, 23, 29, 30, 36, 47–50, 52, 65–71, 73–75

proof obligation A proof obligation is a logical formula associated with a correctness claim
for a verification property. XX, 7, 15, 17

second-order logic First-order logic, extended with additional quantifiers over second-
order objects (sets, predicates, functions). XX

semi-lattice A semi-lattice is a mathematical structure S of the form 〈S, · 〉, where S is a set
of partially ordered tokens, and · represents the semi-lattice operation, defining the
binary relation between the tokens in S. II, XXI

semi-lattice operation An associative, commutative and idempotent binary operation, de-
fining the binary relation between the tokens in a lattice. II, XXI

sequent A conditional assertion of the form ϕ1, ...,ϕn ◦ψ1, ...,ψk . The part left of the ◦ is
referred to as the antecedent, and the right part is referred to as the consequent. It
asserts that, if all of the formulas in the antecedent are true, then at least one of the
consequent formulas must be true as well. XXI, 10, 17

sequent calculus A style of formal logical argumentation, based on sequents. 10

XXI

state space explosion State space explosion, or state explosion, is the main challenge to be
dealt with in model checking. It is a problem that can occur when modelling a system
with many interacting components that can assume many different values, resulting
in an enormous amount of different possible states of that system. I, 3, 5

symbolic execution A testing and formal analysis technique where, contrary to normal
execution of a program, where the input parameters consist of concrete values, exe-
cution is done with symbolic expressions. 13–15

XXII

	Acknowledgements
	List of Figures
	List of Tables
	Listings
	Summary
	Introduction
	Rationale
	The omnipresence of software and the impact of bugs
	Example 1: an overflow error in Boeing 787 software
	Example 2: an arithmetic error in the Patriot Missile system
	The special case of Off-The-Shelf software
	Testing and formal analysis
	Formal analysis methods and the case for deductive verification
	Deductive verification tools: the case for JML and KeY

	Objective
	Related work

	Method
	Research context
	Hoare logic
	Dynamic logic
	Sequent calculus
	Contracts
	Java Modelling Language (JML)
	Symbolic execution
	Proof obligations
	The KeY tool

	Research questions
	RQ1 – The main research question
	RQ2 – Which Java classes are suitable candidates for formal analysis?
	RQ3 – How can we limit the effort of formal specification?
	RQ4 – What error(s), if any, can we identify in the class under analysis?
	RQ5 – Can we provide a fixed version of the class that does stand the test of formal analysis?
	RQ6 – What is the effort ratio when performing a formal analysis?

	Research process
	Finding a suitable candidate for formal analysis
	Formal specification

	Results
	Implementation of IdentityHashMap
	JML contracts and KeY proof files
	Preparation of the class under analysis
	Specified and verified methods
	Proof statistics
	A detailed example: verification of containsKey

	Unit tests for JML contracts
	Testing the class invariant
	Testing the method contracts
	Block contracts and loop invariants

	A preliminary check of the JML specifications with OpenJML
	A preliminary check of the JML specifications with JJBMC
	Some limitations of JJBMC
	Methods verified with JJBMC
	Contract specification error detected with JJBMC

	Overflow error in the capacity method
	The error explained
	The damage caused by the error

	An improved version of the capacity method
	An improved version of the readObject method

	Discussion
	RQ2 - Which Java classes are suitable candidates for a formal analysis?
	RQ3 – How can we limit the effort of formal specification?
	Pros and cons of validating JML specifications with JUnit
	Pros and cons of validating JML specifications with OpenJML
	Pros and cons of validating JML specifications with JJBMC

	RQ4 – What error(s), if any, can we identify in the CUA?
	RQ5 – Can we provide a fixed version of the class that does stand the test of formal analysis?
	RQ6 – What is the effort ratio when performing a formal analysis?

	Conclusions and recommendations
	Conclusions
	Lessons learned
	Future work

	Reflection
	The process
	Learning JML
	Working with KeY
	Contact with peers
	My progress

	The end result
	Some afterthoughts

	Appendices
	Formal analysis methods
	Model checking
	The technique
	Related work

	Abstract interpretation
	The technique
	Related work

	Deductive methods
	The technique
	Related work

	Deductive verification tools
	Isabelle/HOL
	Coq
	KeY

	Specified, tested and proven methods and inner classes of the IdentityHashMap
	Proven methods of the IdentityHashMap
	Specified methods of the inner classes

	Bibliography
	Acronyms
	Glossary

