MASTER'S THESIS

Student Interaction Module
Reusable architecture for the front-end of an Intelligent Tutoring System

Zijlstra, C.

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12. Dec. 2021

Open Universiteit

www.ou.nl

https://research.ou.nl/en/studentTheses/43fb9518-00c3-4d6b-8060-8f49cea31546

C. (Cor) Zijlstra

Student Interaction Module

Reusable architecture for the front-end of an Intelligent Tutoring System

Thesis presentation: 26 February 2021

Web

Student Interaction Module

Reusable architecture for the front-end of an Intelligent Tutoring System

by

C. (Cor) Zijistra

in partial fulfiilment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University of the Netherlands, Faculty of Science
Master’s Programme in Software Engineering

to be defended publicly on 26 February 2021

Student number:

Course code: IM9906

Thesis committee: Dr. B. Heeren (supervisor), Open University of the Netherlands
Dr. J. Lodder, Open University of the Netherlands

Dr. Ir. S. Stuurman, Open University of the Netherlands

Contents

AADSTIOICT Lttt et ettt e b e bt s bt sa e et et e bt e sh e s ae e st b e e enbeenaees iii
T INTTOAUCTION et ettt b e s at e st e et e e bt e s bt e sbeesateeabeenbeenbeenaeas 1
2. RESEAICI ettt ettt ettt ettt e st e bt e sa bt e bt e st et e bt e e sabeesabaeesabeeeaeean 2
2.1. RESEAICN QUESTIONS ..ttt et e ettt e e ettt e e e eeate e e e eeataeeeeaseas 2
2.2, RESEANCN METNOQ ..t ettt ettt e s bte e s e e e bee s 3
3. RESEANCN CONTEXT ...ttt ettt et e sab e e bt e e sabe e e sbbeesabeesbaeesabeesabeean 4
3.1. Different architeCtures Of AN ITS ...t 4
3.1.1. Traditional or four-model ArchifeCTUreooiiiiiiiiiiiee e 4
3.1.2. OtNer ArCRITECTUIES ...eiiiiieeee ettt ettt sttt st e bt e sabeeesabeaeas 5
3.1.3. The integration-oriented ArChitECTUIEcoooiiiiiiiiiii e 5
3.2, The function@lity OF AN ITS .ot e e bee e e e bae e e eeees 6
3.2.1. TASKS OF O NUMGON TUTOT ettt sttt e 6
3.2.2. TASKS OF AN TS Lttt ettt sbt e st e e sabeesabeeenbteesbeeesareanas 6
3.2.3. TASKS OFf A HOGIC ITS .ttt e ettt e et e e s ette e e e esttaeesenstaeesansseeessssaeesanes 6

3.3. 1ACAS FTAMEWOIK ..ciiiiiiiiieettet ettt ettt e s bt e e bt e sabe e s beeesabeeebeeas 7
34, REIATEA WOTK ..eiiiiii ittt ettt ettt e bt e st e e sbbe e sabe e sbeeeeabeesabaeas 8
B N Lo 01 (=] 0 a1 0} TR USRI 10
A1 STAKENOIAETS ...ttt ettt ettt e st e st e e bt e e bbe e sbeeesabeesaeee 10
4.2. FUNCHONQAI FEQUINEMENTS ..ottt e eree e e et e e e e bb e e s e bae e e ennaeeeeennens 10
4.2.1. HOW dOES AN ITS WOTKT ...ttt ettt ettt et e s e sanee s s 11
4.2.2. BASEd ON AN INTEIVIEW ..eiiiiiiiiiiiiiieeee ettt ettt 11
4.2.3. TASKS Of AN TS IN TGO i e 12
4.2.4. ATUrTher elabOratiON ..ottt 13

4.3. Non-functional requirements of the Student Intferaction Module.........cccceeevveeveennneen. 16
5. The SIM ATCHITECTUIE L.ttt st st ettt s 19
5.1, ArCHITECTUIAL AIIVETS ..ttt ettt st sttt et e b e sbe e st e e 19
5.2, THOAE-OMTS ettt sttt ettt e b e b et 19
5.2.1. Trade-offs between the reqQUIrEMENTSccuviiiieiiiii e 19
5.2.2. Architecture design frade-0ffS.......uiii i e 20

5.3, ATCHITECTUINE VIBWS ... ittt ettt sttt ettt et st s 25
5.3, 1. ENTIY VIBW ittt e e e et e e et e e e e taae e e e abaee e eeaaraaean 25
5.3.2. OVEIQI VIEW ..ttt ettt b ettt et et e bt e sbeesaeesaee e 27
5.3.3. FUNCHIONGI VIEW ..ttt ettt st sttt ettt st 28
5.3.4. DEVEIOPMENT VIEW ...iiiiiiiiie ettt ettt e ettt e e e eaae e e et e e e eeatae e e eeareae s 35

T o (o)) o) Ge] g Te1=Y o) U SRR 43

6.1. General flow Of The PrograMI....c..eii i e rae e e e 43
6.1.1. STrUCTUre Of the PrOGIOM ... ettt e e e e e e e e 43
6.1.2. Variables and type definitioNSoooiiiiiiiiii e 44
6.1.3. ReEVING AOTQ oo it e e e et e e e e e ette e e e eaaeeaeeaes 44
6.1.4. FeedbACK ONA MESSAGES ...uviieiieeeiiiiiiieeeee e ettt e e e eeerrre e e e e e e eestraaeeeeeeeeesassraseeaaaanas 45

6.2, MOAUIES ...ttt ettt ettt sttt e sa bt e bt e st e e s baeesabeeebee s 46
6.2.1. Overall view of the proof of CONCEPT ..., 46
6.2.2. Type definitions in the Model MOAUIESoooeiiiiiiiiiee e 47
6.2.3. TNE VIEW MOAUIES ...eeiiiiiiiieeette ettt ettt ettt st s bt e st e s bt e ebaeesabaeesabeenas 49
B.2.4. IMHQIIN ettt ettt e bt e e bt e e bt e e s a bt e e bt e e s bt e e be e e baeesbeeenabeeas 50
6.2.5. EXEICISE SEIBCTION .eeeiiiiii ittt ettt ettt ettt sttt e bt e sabaeesabeeeas 51
B.2.6. ANSWET L.ttt ettt ettt ettt ettt s b et bt e e e bt e e bt e e s a bt e e bt e e st e e e bee e baeesbeeenabeena 52
B.2.7. HINT ettt ettt ettt e sne et et e ent e beeseenteeneenaens 53
6.2.8. RUIE ettt ettt ettt ettt ettt ettt et et e eneese et e e st e beene et e eneennenns 54
6.2.9. FEEADOCK ..ottt ettt et st esbee et a 55
6.2.10. COMMUNICOTION Lottt e bt e s bt eebeeesabeesbeeebteesabeeenabeenas 56

6.3. Architecture vs proof Of CONCEPT ..o 57

7. Flexibility of the ArChitECTUrE......ciiiiee e et rae e e e 62
8. DISCUSSION ittt ettt ettt ettt ettt ettt et ettt e sat e e st e e bt e s bt e e bt e e s abe e e bt e e sabeesabteesabeeeabbeebbeesabaeesabeeeatee 66
8.1. LIMiItAtioNs Of The STUAY ..eeiiiiieeeeee e 66
9. Conclusions and reCoOMMENAATIONS ...cccueiriiriiriieeeniente ettt sttt e s 68
D.T. CONCIUSIONS .ttt ettt sttt et e bt e sb e s at e st et et e bt e sbeesaee st e ete e bt e sbeesaeeeaee 68
9.2, FUTUIE WOIK ...ttt ettt sttt ettt e st e bt e st e sanaeesaneesanee s 69
YN o) o L= ol S ROt 72
A. AddiNg OTher TUNCTIONAITY .vviiieeeeeee e et are e e e araee s 72

AT EXEICISE SEIECTION ..ottt sttt e st st s 72

A2, ANSWET Lttt et ettt et e st e bt e s bttt s b et e s e b ee s b et e bbeesabaeenaneenaree 73

ALB. RUIE et ettt st ettt st b bt e sab et e naneesanee 75

S {1 TSR 75

AL FEEADACK . ittt st 77

Al COMMUNICOTON Lottt ettt sb e st st e bt e beesbeesaeesaeeeane 78

Abstract

Although working from home has become increasingly important, since the outbreak of the
COVID-19 virus, aimost the entire world has learned even more the importance of being able
to work from home. Many people had to stay at home because of the lockdowns. This also
applies to schools; teachers and students had to stay at home and schools had to offer
alternatives to teach the students.

Intelligent Tutoring Systems (ITSs), systems with which students can learn learning material from
a computer, already existed before those days but can contribute in those needs. A big
problem with these ITSs is the cost of development and maintenance of the software.

This cost of development can possible be reduced when parts of an ITS can be used by
another ITS. In this study we examine a possible architecture of the front-end of a logic ITS, by
determining the requirements, creating an architecture based on those requirements and
making a proof of concept of the front-end. The studied architecture is based on a product
line architecture, where components are reusable in multiple versions of the front-end, but it is
recommended to add an extra entity related to the connected module. Besides that the
relation between feedback and hints in relation to the SIM architecture needs to be studied.

When the front-end or parts of it are reusable, it would reduce the development costs of an
ITS, which would improve usability for education.

1. Infroduction

An Intelligent Tutoring System (ITS) is a system to support education by teachers (not to
replace them) using Al-technology. There are many ITSs in support of all types of education,
such as mathematics, geography, computer programming, languages and chemistry. Much
research has been done on ITSs and especially their Al part, but ITSs are not often used to
support education. One of the reasons for this is that they are expensive to develop;
according to Murray (1999) the cost of development of 1 hour learning in an ITS is 300 hours.
Although new developments since Murray's publication have resulted in shorter
development times, the cost of development are still high.

ITSs are systems that support tutoring by means of Al-technology. The Al-fechnology is used o
simulate a teacher who knows what, to whom in which way has to be learned (Nwana,
1990). Tutoring systems are also known as Intelligent Computer Aided Instruction (ICAI). ICAl s
a successor of CAl (Computer Aided Instruction) which are systems that offer a standard
learning program according to programmed rules, where each student always has the same
subject matter in the same way (Wenger, 1987). In addition to imparting certain knowledge
to students, researching study processes, such as when are what kind of hints the most
effective, is a goal of an ITS (Anderson, 1987).

Like most computer systems ITSs are divided info modules, each of which provides its
functionality to the ITS. Since there are no real standards for developing an ITS, there are
many different configurations of such modules. Even if the ITSs are composed of similar
modules, the communication between those modules may differ. This makes it difficult to use
modules from other ITSs.

In this study we examine the architecture of a frond-end for ITSs that can communicate with
modules of different ITSs. We concentrate us on a reusable or partly reusable frond-end for a
logic ITS that is part of a traditional or four model architecture. In this study, we call this front-
end the Student Interaction Module (SIM.

The architecture of this SIM can be used to develop front-ends for existing modules of ITSs and
for newly developed modules of ITSs. Due to its reusability, a cost reduction can be achieved.
This cost reduction can contribute in the usage of ITSs.

In chapter 2 we describe the research questions and the research method with the
validations that are used. In chapter 3 we give the context of the SIM and look at some
architectures of ITSs. In this chapter we also look at the functionality of the modules of a
traditional four-model architecture and we briefly describe the IDEAS framework, which we
used for our study. In chapter 4 we look at the stakeholders of the SIM and the requirements
those stakeholders have for the SIM. In chapter 5 we describe the architecture of the SIM, but
before that we first give the architecture drivers and the most important tfrade-offs that were
important in the development of this architecture. To prove that a SIM can be built with the
architecture we have made a proof of concepft. Information about this proof of concept
with the differences from the architecture can be found in chapter é. In chapter 7 we look at
the possibilities to use the architecture for other ITSs. In chapter 8 the conclusions and future
work are described.

2. Research

In this chapter we describe the research questions and the research method we have used.

2.1. Research questions
In this study we concentrate us on the architecture of the SIM

An architecture of a software system depends on functional and non-functional requirements
of the stakeholders of the software system. These requirements can conflict with each other,
and for those situations compromises or trade-offs have to be found, before an architecture
can be proposed.

Goal of the study

Our goal is fo examine an architecture for the SIM. This architecture can be used fo build
reusable parts for SIMs. There are many different ITSs with different purposes and we limit our
goal to: the SIMs should at least be able to support those [TSs that support stepwise logic
exercises and are based on a traditional four model architecture or a combination of
modules from different ITSs with a four module architecture or a Learning Environment (LE).
This study focuses on ITSs that expect answers through formulas: more graphic answers such
as semantic fableaux are not taken into account. The reuse of the SIMs or parts of those SIMs
must reduce the development time and cost of a SIM.

RQ1

The first research question (RQ 1.) is: what are the requirements for the SIM2 Before we can
make an architecture we need to know which functionalifies it should be able to support and
which actions it should take given certain conditfions (the functional requirements) and which
other qualities the SIM should have (the non-functional requirements). These requirements
come from other studies and an interview with a stakeholder.

RQ 2

The second research question (RQ 2.) is: what are the trade-offs for these requirements? The
requirements of the stakeholders can conflict with each other. In those situations we have to
find compromises between them. These compromises are the trade-offs of the SIM.

With the requirements and the trade-offs we can make an architecture of the SIM. During this
step we have to make design decisions, which also can lead to trade-offs.

RQ 3

The third research question (RQ 3.) is: what is the flexibility of the architecture? For this study,
there are foo many ITSs to make an architecture that will fit for every ITS. By looking at the
flexibility of our architecture we want to explore the possibilities to add extra functionality to
our architecture in order to connect modules of [TSs that cannot be connected to our current
architecture.

2.2. Research method
In this paragraph the research method is described with the related chapters in this study.

RQ1.

For the answering of RQ 1 we have done a literature study fo find possible functionalities and
qualities of the SIM for a traditional four model architecture of a stepwise based ITS and we
have had an interview with dr. J. Lodder from the Open University of The Netherlands. She is a
teacher and researcher of logic courses and also a developer of ITSs using the IDEAS
Framework.

The inferview with Dr. J. Lodder was done to validate whether the found functionalities and
qualities were complete. This resulted in some exira points for attention for the SIM.

RQ 1 is handled in chapter 4 of this study.
RQ 2.

For the answering of RQ 2 we determine whether there are conflicts between requirements
for which we have fo make frade-offs. Next we design an architecture for the SIM, during this
we have to make design-decisions that also can result in trade-offs. For the designing of the
architecture we will use literature about how to make an architecture and look at studies
about the architecture of ITSs. RQ 2 is handled in chapter 5 of this study.

To validate if the SIM architecture can be used to build a SIM a prototype of the SIM has
been made. Eimex, an experimental LE, that works with the IDEAS Framework, is used as a
base for this. This proof of concept is described in chapter 6 of this study.

RQ 3.

To answer RQ 3, we look at two [TSs for topics other than logic, which clearly deviate from the
investigated logical ITSs, and describe whether and how the SIM can be implemented for this
purpose with the architecture. We cannot check if it is possible to connect a SIM based on
our architecture fo every logic ITS that is based on a four model architecture, because there
are too many and it is likely that new logic ITSs will be developed. By looking at non-logic ITSs
and describing to what extent the SIM can be developed with our architecture we want to
show the flexibility of our architecture. If the architecture is flexible enough to support non-
logic ITSs it is more likely that it also can support more logic ITSs based on a four model
architecture. RQ 3 is handled in chapter 7 of this study.

3. Research context

In this chapter we describe what an [TS is by looking at the architecture and at the
functionality of it and we also look at the IDEAS framework that we will use for our proof of
concept.

3.1. Different architectures of an ITS
In this paragraph we look at some architectures of ITSs.

3.1.1. Traditional or four-model architecture
There is no set description on how an ITS should be structured, but the most common layout
conisists of the following four parts (see Figure 1) (Nwana, 1990; Padayachee, 2002)

o The expert knowledge module
e The student model module

e The tutoring module

e The userinterface module

Below is a brief summary of the functionality per module. It should be noted that the
communication between the various modules from a software architecture point of view is
not clearly described (Heeren and Jeuring, 2014).

Expert knowledge module

The expert knowledge module (also known as the domain model module or domain reasoner
module) has two tasks: on the one hand it contains the curriculum to be taught to a student,
and on the other hand it contains information about how the student's knowledge should be
assessed in response to given answers and reactions (Goguadze, 2009).

Student model module

The student model module is the heart of an ITS (Nkambou et al., 2010). It contains all
information about the students, the knowledge of the students and their learning progress
(Brusilovskiy, 1994).

Tutoring model module

The tutoring model module is responsible for the pedagogical part of an ITS. It uses
information from the student model module and it determines how the knowledge from the
expert knowledge module should be taught to the student.

User interface module

The user interface module takes care of the communication between the ITS and the student
and is responsible for how the information from the ITS is presented to the student and how
the input of the student is processed.

We think that Student Interaction Module (SIM) is a better term for this module, because it
emphasizes the interaction between the student and the system. A user interface is more a
device connected to the system which receives input from a user by means of an input
device like a keyboard, mouse or a microphone, or produces output through an output
device like a screen or a speaker.

In our study we use the term Student Interaction Module, that is a piece of software that
handles the input from the input devices and transforms those to output for the output
devices and if necessary to the connected modules of the ITS, so that the student can
intferact with the ITS.

Expert knowledge Student model
module module

Tutoring module

[

A
)

User interface
module

— A

Student

FIGURE 1. TRADITIONAL ARCHITECTURE OF AN ITS (NWANA, 1990)

3.1.2. Other architectures
Nwana mentions in her study (1990) several other architectures such as Anderson's Advanced
Computer Tutoring (ACT) ITS architecture (Anderson et al., 1985a, 1985b), the Hartley &
Sleeman architecture (Hartley and Sleeman, 1973), the O'Shea et al. architecture (O’'Shea et
al., 1984) and the self-improving architecture (Kimball, 1982; O'Shea, 1979). These are
architectures that concentrate on a part of the possible functionality of an ITS (Nkambou et
al., 2010; Nwana, 1990).

Padayachee mentions in her study (2002) the three-model architecture. This architecture is
the same as the four-model architecture except for the user-interface, which is not seen as a
part of the ITS system in that architecture. She also mentions the Self architecture (Self, 1998)
which can be seen as an extended version of the three-model architecture and she
mentions the Siemer’s & Angelides’ general intelligent tutoring system architecture which is
the same as the three-model architecture with an extra part called the overall system control
which is responsible for checking the operations of the ITS (it checks what the ITS does versus
what should the ITS do?) (Siemer and Angelides, 1998).

There are also other architectures like for example ActiveMath where there is an exercise
subsystem which communicates with the domain reasoner, the student model, the tutorial
component and the user interface (Goguadze, 2009).

There are also ITSs that only have an expert knowledge module and a user interface module.
Lodder et al. (2016) indicate that most ITSs for propositional logic have such an architecture
and call those Learning environments (LEs). Although there is no tutoring module and no
student module in this architecture, seen from the user interface module or SIM as we call if,
this architecture looks a lot like the traditional or four-module architecture; the user interface
module receives learning material for the student, but the contents of it is not prepared for
that particular student.

3.1.3. The integration-oriented architecture
Originally the technical architecture of an ITS was based on one system which was located at
one location. Brusilovsky (1995) infroduced an integration-oriented architecture in which the
components of an ITS could be replaced by other components of other ITSs with a similar
architecture. Ritter and Koedinger (1996) give with the plug-in architecture an
implementation of that integration-oriented architecture and Ritter et al. (1998) describe a

5

component-based system which is also an implementation of it. Heeren and Jeuring (2014)
did a study on feedback services which is a refinement of the plug-in and the component
based architecture, in which they proposed to use web-services for the communication with
expert knowledge modules.

The ideas of these studies can be combined to an ITS which exists of modules of more ITSs.
Examples of such ITSs are ActiveMath that can communicate with several domain reasoners
(Goguadze, 2009) and the study of Aleven et al. (2017) in which they integrated GIFT
(Sottilare et al., 2012) and CTAT (Aleven et al., 2016) into the edX Massive Open Online Course
(MOOC) platform.

3.2. The functionality of an ITS
In this paragraph we look at the required functionality of a user interface of an ITS. In order to
do this, we start by looking at the tasks of a human tutor. Next we compare those tasks with
the ones of an ITS based on a traditional architecture. Because we are interested in a logic ITS
the next step is looking at the tasks of a logic ITS.

3.2.1. Tasks of a human tutor
Ritter et al. (1998) determine the functionality of an ITS by looking at the tasks of a human
tutor. A human tutor explains the material that has to be learned and fells how that
knowledge can be used to solve problems. He also gives examples related to the material
and selects based on experience and knowledge about the learning objectives and
experience of the students about problems to be solved. When the student is solving a
problem, the tutor gives hints and feedback. Feedback is also given after analysing the
answer on a problem. An ITS is complete if it performs all of these tasks (Ritter et al., 1998).

3.2.2. Tasks of an ITS
In his study VanLehn (2006) compares six different ITSs in terms of how they are functioning
and mentions possible tasks of an ITS. Compared to the tasks of the human tutor there are
two differences:

Vanlehn also mentions the possibility that students can choose their own problems fo solve.
This is an extension of the tasks of the human tutor.

VanlLehn states that the ITS determines whether a student needs a hint. This is more precisely
formulated than mentioned by the tasks of a human tutor but in the end the human teacher
decides for himself or herself whether to give a hint about the exercise.

Concluding we can say that the possible tasks VanLehn mentions are the same as those
mentioned by Ritter et al. There is only one exira possible task: offering the students the
possibility fo choose their own problems to solve. This means that the possible tasks of an ITS
that VanLehn mentions can be used to define the functionality of an ITS.

3.2.3. Tasks of a logic ITS
In their research intfo a domain reasoner for propositional logic, Lodder et al. (2016) compare
six Learning Environments for feaching logic and they recognize possible tasks of such a
Learning Environment (see Table 1).

Compared fo the tasks of an ITS from the previous paragraph the tasks are more specific on
the subject of logic and the tasks related to the student module are not mentioned.

Possible tasks of a logic LE (Lodder et al., 2016)

Offer different kind of tasks (determine normal form or prove an equivalence)

Support various types of exercises (a fixed set of exercises, random generated exercises or
user-entered exercises)

Support various types of answers (only a formula, only a rule to apply or both)

Support the possibility to work in two directions when proving an equivalence.

Support several kinds of feedback (only right/wrong, a description of the right answer, a
description of the error-made, Information about how to proceed).

Support several kinds of feedforward (giving a hint for the next step to take, explicitly
indicate next step, global description to use components for a next step. In addition,
feedforward can also be given in one or two directions if it is possible to elaborate two
directions)

Give solutions to problems and/or give examples of solutions.

Support the possibility o change the set of rules, notation mode and strategy which can
be used to solve problem:s.

TABLE 1: POSSIBLE TASKS OF A LOGIC ITS

3.3. ldeas framework
The IDEAS framework is a framework for developing domain reasoners that give intelligent
feedback!. Logic tutors LogEX 2, LogAx3, among others, are developed using this framework.
These ITSs are learning environments.

LogEX (see: Figure 2) has three kind of exercises: convert to disjunctive normal form, convert
to conjunctive normal form and prove logical equivalence. With LogAx (see: Figure 3) you
can practice axiomatic proof. Both have stepwise-exercises where you have to enter a
formula and the rule that has been applied. You can ask for hints in both, part of the solution
or the complete solution, these options can be turned on and off through configuration
seftings. Feedback is provided after entering a solution step in both. In LogEX when proving
logical equivalence there is the possibility to enter steps top-down and boftom up. In LogAx
the formulas can be assigned step numbers, so that other formulas can refer to those step
numbers.

1 https://www.uu.nl/en/research/software-systems/software-technology-for-learming-and-teaching/research-
themes/the-ideas-project

2 http://IDEAS.cs.uu.nl/logex/

3 http://IDEAS.cs.uu.nl/logax/

Convert to disjunctive normal form Convert to conjunctive normal form Prove logical equivalence

pvalrgara(pvgyg)

S pvaagaralpvgyg) Rule.. v m

9 Show step

FIGURE 2: LOGEX

Axiomatic

O O

1000 p—(q—1).q—(—S)Fp—(q—5) Rule Deduction v
Forsy=0Crs0—u)
Lo sy & stepnr
@

ThsQ— W stepnr

©Hint | Nextsiep m

@® Show complete derivation @ Complete my derivation
FIGURE 3: LOGAX

3.4. Related work
In this paragraph some other studies related to our study are mentioned, and the differences
with our study are explained. We have looked for studies about the functionality and
architecture of a frond-end of an ITS and studies about connecting the frond-end to modules
of different ITSs.

The integration-oriented architecture is an architecture in which components of an ITS can be
replaced by similar components of another ITS (Brusilovsky, 1995). This idea is the basis of our
study; it describes an ITS architecture in which components can be replaced by similar ones.
We describe the architecture of the SIM, which is one of the components of a four model ITS
architecture. The SIM should be able to connect to different other components like Brusilovsky
described.

In Ritter and Koedinger (1996) Microsoft Excel is used as a front-end for mathematic exercises
supplied by ITSs and they use a translator between the Excel front-end and the connected
modules. This solution does not use internet, but is installed completely on the user’s device.
Ritter and Koedinger mention some ideas on possible solutions using internet, but these ideas
are not implemented. Excel is in the study of Ritter and Koedinger the front-end that can be
connected to modules of different ITSs, but in this study the functional requirements and the
architecture of the front-end are not examined; they describe an architecture based on the

8

usage of Excel. In our study we start with determining the requirements for the frond-end and
describe an architecture for the frond-end based on those requirements.

Alpert et al. (1999) give in their study some non-functional requirements for a user interface of
an ITS. They state that the user interface should communicate through a web server, in order
to make it possible to work location and time independent, which makes it possible that more
students can make use of the ITS. In order to make this possible it is needed that the complete
system has a short response-time. This study does not describe the functional requirements for
the frond-end, like our study does.

Studies such as Goguadze (2010) and Heeren and Jeuring (2014) mention the front-end as
part of the architecture, but those studies concentrate on the architecture of the complete
ITS and especially the other components within such an ITS.

4. Requirements

In the previous chapter we have described what an ITS is by looking at the architecture and
the functionality of it. In our study we concentrate on the user interface module of a
traditional or four-module architecture that we call the Student Interaction Module (SIM).

In this chapter we will determine the stakeholders of the SIM and the functional and non-
functional requirements for the SIM; the answer on RQ 1 of our study. Normally the
requirements of a system are based on the concerns of the stakeholders, but we have
decided to determine the requirements by using existing studies. Hence, we only describe the
concerns of the stakeholders in broad terms.

4.1. Stakeholders
Before we look af the requirements that the SIM should meet, we look at the stakeholders (the
parties that are involved). These are divided in primary stakeholders, secondary stakeholders
and indirect users, who all have their own concerns for the SIM.

Primary stakeholders

The student is a primary stakeholder of the SIM. The student wanfts to learn the learning
material by making exercises, getting understandable hints and feedback. The student does
not want to be bound to a special place or a specific time to do the learning.

Secondary stakeholders

Teachers are secondary stakeholders. The teachers need a system that can support them
teaching learning material fo the students. The ITS should offer a broad set of tasks and
exercise failored to student needs. For feachers it is needed that the TS supports adjustability
when it comes to whether or not to give hints and feedback and which logic rules may be
used at that time.

Researchers are secondary stakeholders. Researchers need a front-end that can be
connected to modules or scenarios they are researching. Those scenarios can for example
be related to whether or not to give hints and feedback and which logic rules may be used
at that time.

Developers are secondary stakeholders. For developers it is important that the software is
easy to maintain and because other modules have to be added, the software should also be
easy to extend.

System administrators are also secondary stakeholders. System administrators want to have a
high availability of the software and little work needed for running the software. They also
want to have freedom in choosing the platform on which the software is used.

Indirect user

The educational institutes are the other stakeholders. The educational institutions want to
have a good reputation for the education that is offered at the lowest possible cost.

4.2. Functional requirements
In this paragraph we describe the functional requirements of the SIM. First we describe how
an ITS could work, next we give the important points from an interview with dr. J. Lodder,
afterwards we describe the tasks of an ITS based on a literature study and finally we give a
further elaboration on some of the requirements.

4.2.1. How does an ITS work?
Before we look at the functional requirements of a logic ITS we first describe how an ITS could
work.

With the four-module architecture a student gives his credentials in the user interface module.
These credentials are received by the futoring module that forwards those to the student
model module. The student model module has knowledge about the student, it knows the
progress of the student and the learning capabilities of the student. This information is sent
back to the tutoring module. The tutoring module retrieves a list of possible tasks and
exercises from the expert knowledge module and selects an exercise for the student, which is
sent to the user interface module to be solved by the student. In addition to the exercise, the
knowledge expert module may also have options such as giving hints, giving example
exercises, feedback on answers and possible solution strategies. The tutoring module
determines which of the available possibilities of the expert knowledge module are available
in the user interface module. Next the student interacts with the user interface module, he
gives an answer, or, depending of the possibilities, he asks for a hint or an example. The
action of the student is sent fo the futoring module, which forwards it to the expert
knowledge module. The expert knowledge module returns feedback to the tutoring module.
The tutoring module determines next how this reaction is sent back to the user interface
module. Meanwhile the tutoring module also sends information to the student module, so
that this module can update its information about the student. When a student has finished
an exercise the tutoring module selects the next exercise for the student.

There are also other possibilities. For example the logic learning environments LOgEX and
LogAX (see paragraph 3.3) do not have a tutoring and a student model module (Lodder et
al., 2016). In this case the ITS does not have information about the student and there is not a
tutoring module that can control the exercises that are presented to the student (the so
called "outerloop” of an ITS) nor the steps when solving an exercise (the so called “innerloop
of an ITS). In this situation it can be needed that this is done by the SIM.

4.2.2. Based on an interview
On October third 2019 we had an interview with dr. J. Lodder from the Open University of the
Netherlands. She is a feacher and researcher of logic on this university and a developer of
some of the LEs based on the IDEAS framework. Because of her knowledge on the subject of
logic and the concerns of the stakeholders of the front-end of a logic ITS we interviewed her
about the important aspects of a SIM. Below the additional points dr. J. Lodder mentioned, in
paragraph 4.2.3 we discuss the normal tasks of an ITS. LEs without a student module can be
created on the IDEAS Framework. The inner and the outer loop are conftrolled by the user
interface in these LEs.

1. The ITSs within the IDEAS framework can be used as a teaching environment in which
students can solve exercises and use freely the options for feedback, hints and so on, but
it can also be used as a testing environment for the teacher in which the available
options and the exercises are controlled by the teacher. In this case the teacher can
decide which exercises are to be solved by the students and which and when feedback
and hints are given. Because there is not a student module in the ITS all these options
should be conftrolled by the SIM.

2. With the SIM it must be possible fo franslate and transform messages and formulas in
way that is understandable for the students on the one hand, but can also be used by
the connected module. Messages that need to be translated or fransformed are all kinds
of hints and feedback given by the connected module. These may be formulated in a
way that is not understandable to the student, for example in another language or with
incomprehensible codes (like logic.propositional.notnot in the IDEAS framework). Those
should be presented in a way that is recognized by the student, this may differ from the

11

way of communicating with the connected module. (Remark: Translation and
transformation of hints and feedback is, when using a complete TS, a task of the tutoring
module, but in case of an LE there is no tutoring module and there is also the possibility
that the used tutoring module cannot be changed. This option can be used in those
sifuations).

4.2.3. Tasks of an ITS in theory
The responsibility of the SIM is taking care of the communication between the student and
the rest of the ITS. This means that the SIM should support all the possible tasks of a logic ITS
from paragraph 3.2.3 and the tasks related to the tutoring module and the student model
module when those are related to the communication with the student.

Offer different kind of tasks — Different kind of tasks are: a fixed list of exercises, exercises which
are made randomly and exercises entered by the student (Lodder et al., 2016) or a task
selected by the student from a list of tasks (VanLehn, 2006). The SIM should be able to support
all these kinds of exercises.

Support various types of exercises — The SIM should support the types of exercises that are
offered by the connected ITS modules. For example it should be able to support rewriting in
disjunctive normal form (DNF) or conjunctive normal form (CNF) and proving equivalence
(Lodder et al., 2016).

Support various types of answers —The SIM has to support various types of answers. Those
answers can be for example only formulas or only applied rules, or formulas and rules (Lodder
et al., 2016).

Support the possibility to work in two directions when proving an equivalence - The SIM should
support this, when this is supported by the rest of the connected ITS components (Lodder et
al., 2016).

Support several kinds of feedback — The SIM should be able to show feedback as it is
provided by the rest of the ITS. Feedback can be given after a step or after completing the
exercise (VanLehn, 2006). In addition, it should be possible to use special characters like a
check mark and different colours like red for incorrect and green for correct.

Support several kinds of feedforward — Feedforward or hints can be given by the rest of the
ITS. The SIM should be able fo show those. Depending on the connected modules there can
be several kinds of feedforward which the SIM should support.

Feedforward can be given on request of the student (VanLehn, 2006), when this is possible
there must be a possibility for the student to request this. Feedforward can also be given after
a certain time or a defined number of wrong answers (VanLehn, 2006). In case it is possible to
work in two directions feedforward can also be given in two directions, the SIM should support
this (Lodder et al., 2016).

Give solutions to problems and/or give examples of solutions — If the connected modules of
the ITS support these options the SIM should support them as well.

Support the possibility fo change the set of rules, notation mode and sirategy that can be
used to solve problems - [TSs can have different sets of rules, notation models and strategies
to solve problems. The SIM should be able to support those possibilities.

4.2.4. A further elaboration
In this paragraph we look at a couple of items from the last two paragraphs for a further
elaboration.

Feedback and feedforward

Feedback and feedforward are related to each other, that is why we discuss them here
together. We use feedback for the result after checking an answer on an exercise or a step in
the answer and we use feedforward or hints as a response on a request of a student for help.
Feedback can also contain a hint, but we only use hints in our study when it is on request of
the student.

Feedback and feedforward can have the following kinds of types: knowledge of
performance, knowledge of result/response, knowledge of the correct response, answer-
until-correct, multiple-try feedback and elaborated feedback (Narciss, 2008). What types of
feedback and feedforward are available depends on the connected module and the
preferences of the teacher.

Knowledge of performance (KP) is about the performance of the student for a set of tasks.
Knowledge of result/response (KR) is for a step or an exercise; correct or incorrect. Knowledge
of the correct response (KCR) gives the correct answer for an exercise. Answer-until-correct
(AUC) is combined with KR and is given until the answer is correct. Multiple-try feedback (MTF)
is also combined with KR and can be limited to the number of fries the student has.
Elaborated feedback (EF) gives exira information with KR and KCR and is divided in:
Knowledge about Task Constraints (KTC), Knowledge about Concepfts (KC), Knowledge
about Mistakes (KM), Knowledge about How to proceed (KH), and Knowledge about
MetaCognition (KMC) (Narciss, 2008). See Table 2 for the examples of these types of
elaborated feedback.

Knowledge about task constraimts (KTC) Hints/explanations on type of task
Hints/explanations on task-processing rules
Hints/explanations on subtasks
Hints/explanations on task requirements

Knowledge about concepts (KC) Hints/explanations on technical terms
Examples illustrating the concept
Hints/explanations on the concepiual contexi
Hints/explanations on concept attributes
Aurnbute-isolation examples

Knowledge about mistakes (KM} Number of mistakes
Location of mistakes
Hints/explanations on tvpe of errors
Himts/explanations on sources of errors

Knowledge about how to proceed (KH) Bug-related hints for error cormection
Hints/explanations on tsk-specific strategies
Himts/explanations on task-processing steps
Guiding questions
Worked-out examples

Knowledge about metacognition (KMC) Hints/explanations on metacognitive strategies
Metacognitive guiding questions

TABLE 2: TYPES OF ELABORATED FEEDBACK WITH EXAMPLES (NARCIss, 2005)

13

Protocol of communication

The SIM in our study connects with one external module. This can be the expert knowledge
module, but also the tutoring module that has a connection with the expert knowledge
module and optionally the student model module.

The functionality of the connected module determines the possible functionality of the SIM.
For example, if the connected module cannot give hints, the SIM cannot give hints either.

The communication from the SIM with the external modules should be done in a way that is
supported by the external module. The external module can be developed by other parties;
we do not want the SIM to depend on those parties to change their external module to make
it connectable with the SIM. For the communication between the external module and the
SIM are several standard protocols such as QTI4, OpenMaths, MathMLé and OMDoc’.
OpenMath, MathML and OMDoc are markup languages for mathematical documents
(Kohlhase, 2006), QTI stands for IMS Question and Test Interoperability and is used for
communication between systems and conformance testing. We want to support those parts
of the protocols related to logic.

Within a protocol the messages that are send for the different entities are similar (Goguadze,
2009; Goguadze et al., 2006; Heeren and Jeuring, 2014). Heeren and Jeuring (2014) describe
feedback services (see Table 3), which are requests that can be done by entities of the SIM.
These or similar requests must be possible with the communication modules.

The external modules we want to communicate with are: LogAX8 LogEx? and the exercise
subsystem of MathBridge (Sosnovsky ef al., 2012).

The architecture for the SIM should support the mentioned protocols, requests and external
modules, but it should also be possible to add new or other protocols, requests and external
modules.

outer loop

- examples predefined example exercises of a certain difficuloy
- Eenerate makes a mew exercise of a specified difficulty
inner boop

- alifirsts all possible next steps (based on the strategy)

- apply application of a rewrite rule 1o a selected term

- diagnose analyze a student step (details in Fig. 4]

- finished checks whether response i accepted as an answer
- onefirst one possible next step (based on the strategy

- solution waorked-out solution for the current exercise

- stepsremaining number of remaining steps (based on the strategy)
- subtasks refurns a list of subtasks of the current task

meta-informarion

- exerciselist all supporied exercise classes

- rulelist all rules in an exercise class

- rulesinfo detailed information about rules in an exercise class
- strategyinfo information abowt the strategy of an exercise class

TABLE 3: FEEDBACK SERVICES (HEEREN AND JEURING, 2014)

4 http://www.imsglobal.org/question/index.html
5 https://www.openmath.org/

¢ https://www.w3.org/Math/

7 http://www.omdoc.org/

8 hitp://ideas.cs.uu.nl/logax/

? hitp://ideas.cs.uu.nl/logex/

14

Teacher preferences

The selection of exercises that has to be solved by the student, hints and feedback are
educational tools that can be conftrolled by the tutoring module, but in a system without a
futoring module, it may be desirable for the teacher to have conftrol over the provision of
hints and feedback (see 4.2.2). In that situation it should be possible for the teacher to control
this from the SIM. This may be done by settings coded in the software or by loading some kind
of configuration file that holds the settings.

Exercise answer

Answers to exercises can differ between connected modules and different types of logic
exercises. Some external modules only support formulas as an answer, others need to have a
combination of formulas and rules. Answers can be complete derivations but also steps of
those derivations. Answers on logic exercises can be given top-down, but when proving
equations a top-down combined with a bottom-up approach is also possible, and when
answering an induction exercise case-structures can be used. Besides formulas and logic rules
answers can also contain line numbers (used to refer to when rules are applied), and
comparison signs (used with inductive logic) and also fext (can be used with inductive logic
and predicate logic).

Logic rule

Whether logic rules are needed depends on the connected module; not every connected
module uses the logic rules as part of an answer. When logic rules are needed they can be
provided by the connected module if it supports supplying those rules, otherwise the SIM
should be able to supply a list or the student has to enter them as a text. If logic rules are
refrieved from the external module, a transformation can be necessary between the rules
that are understandable for the connected modules and those that are understandable for
the student. Normally this is a task of the futoring module but when this is not part of the ITS this
transformation can be done by the SIM and it is also possible that although there is a tutoring
module present in the ITS it is still wanted that a transformation is done by the SIM.

4.3. Non-functional requirements of the Student Intferaction
Module

To describe the non-functional requirements of the user interface of an ITS we use ISO/IEC
25010:2011 (“ISO/IEC 25010,” 2011), which is a standard to define quality standards for
computer systems and software. These standards consists of two models: product quality and
quality in use which are respectively divided into eight and five quality characteristics, which
all are divided in several sub-characteristics (See Figure 4).

ISO/IEC 25010:2011
] Product quality \ ‘ Quality in use ‘
b ‘ Functional suitability ‘ h I Effectiveness I
b [Performance efﬁciencyl k [Efficiency]

L, ‘Compatibility ‘ L}lsmisfacuon ‘
L. [Usabilit | LblFreedom fomrisk |
| U [Reliabilty | Lblc;omext coverage |
L; ‘Security \
|
|

L} | Maintainability
Lb ‘F’ortability

FIGURE 4: ISO/IEC 25010:201

Because the SIM architecture is a general architecture for SIMs we cannot define concrete,
measurable, values for the quality characteristics, that is why we define them as quality
guidelines, that should be taken into consideration during development of the architecture of
the SIM and the SIM software.

Below we describe each of the quality characteristics with the concerns of the stakeholders
that should be taken into consideration.

Product Quality
Functional suitability

Functional suitability is important to the students and teachers. It is important that the SIM is
complete and correct and that it suits the needs of the student.

Performance efficiency

Performance efficiency is important to the students. In the study of Teeuwen (2016) is
concluded that the response time of the complete system should close to 1 second than to
10 seconds.

16

Compadtibility

Compatibility is important for the teachers, students and educational institutes. The student
needs a broad set of tasks and exercises, that has to be supplied by the teachers who use an
ITS to do this. The educational institutes want that this is done in a cost-effective way; they
want an TS that supports a broad set of tasks and exercises. In order to get a broad set of
tasks and exercises it is important that the SIM is compatible (can connect) with many
different ITSs and export modules.

Usability

Usability is important to the students and the teachers. The student needs an SIM that is easy
to learn and to use. For the teacher it is important that learning settings can be changed
easily.

Reliability

Reliability is important to the students and the system administrators. Students need a system
that is available to do their exercises as much as possible. System administrators are
responsible to keep a system available for the users. Patvarczki et al. (2009) did a study about
robustness which is an important aspect of an ITS.

Security

Security is important to students, teachers and educational institutes. Students want their
personal information and learning progress stored securely, teachers want to have a way to
identify the student that is working on an exercise, and educational institutes have to comply
with laws and regulations on the matter of security of personal data.

Security of the SIM depends on the possibilities of the tutoring module and the student model
module if those are connected.

Maintainability

Maintainability is important for the developers of the SIM and the educational instfitutes.
According to Murray (1999) the cost of development of 1 hour learning in an ITS is 300 hours.
These costs can be reduced if parts of the software code can be reused. Reuse of code can
be improved by creating modules with clear responsibilities. For the developers it is also
important that the software can easily be modified if modules of other ITSs are added.

According to Brusilovsky (1995) the main requirements for an infegration-oriented architecture
are reusability and flexibility of the components. It should be possible to reuse a component
of another ITS, to infegrate a new component info the ITS and to replace an existing
component with a similar one.

Portability

Portability is important to the system administrator. A system administrator wants software that
can easily be installed on different operating systems, because he wants to be able to make
applications available in a cost-effective manner, which also meets the security
requirements. Therefore he wants to install the software easily on a version of an operating
system that suits his needs the best at a given moment. Alpert et al. (1999) pointed out that a
user interface or, in our study, an SIM should work platform independent.

Quality in use
Effectiveness

Effectiveness is important for the students who want to learn all the learning material quickly
and for the teachers who want that the students fo learn the learning material quickly, but
this characteristic is less important for the SIM because it only presents the information
created by the rest of the ITS.

Efficiency

Efficiency is less important because the SIM is only a frond-end application; storage of data,
calculations and other processes that use system resources are done by the connected
modules.

Satisfaction

Satisfaction is important to students. The SIM should have a highly interactive user experience
(Alpert et al., 1999), but the possibilities for this also depend on the connected modules and
the settings of the ITS regarding when what kind of feedback is given.

Freedom of risk
There are no risks in this quality that can be caused by the SIM.
Context coverage

Context coverage is important to students; students should be able to use all the functionality
of the SIM.

5. The SIM Architecture

In the previous chapter the concerns of the stakeholders and the functional and non-
functional requirements of the SIM are described. In this chapter the architectural drivers and
trade-offs between the requirements are described. The architectural drivers are the most
important requirements for the SIM and are used to determine the priority of the requirements
when there is a possible conflict between those. The architectural drivers and trade-offs are
used for the architecture, which is also described in this chapter.

The trade-offs are the answer to RQ. 2 of this study.

5.1, Architectural drivers
In the last two paragraphs we have determined the functional requirements and quality
guidelines for the SIM in this paragraph we identify the most important of those.

A requirement or an quality guideline is important if it contributes to the goal of architecture
of the SIM. The goal of the SIM is to cost-effectively present learning materials to students from
different ITSs based on a four-model architecture. The architecture should be the basis for
developing such SIMs. Other requirements are sfill important, but if there is a trade-off and
one of the requirements of this paragraph is involved, a solution in favour of these
requirements will be chosen.

Cost-effectiveness can be achieved by low development and maintenance cost of an SIM,
by using software of low complexity and the reuse of software components, and by
connecting the SIM to more different modules with different learning materials. Low
complexity and reuse of software components are part of the maintainability characteristic
and connecting the SIM to more different modules with different learning material is part of
the compatibility characteristic.

The functional requirements and especially the optionality of functionality is important for the
SIM. The SIM should connect with different modules of ITSs, those modules can have different
functionality which the SIM should be able to support that functionality.

5.2. Trade-offs
In this paragraph the frade-offs are described. This is the answer to RQ. 2 of our study. The
frade-offs are divided into trade-offs between the requirements and trade-offs related to the
architectural design of the SIM.

5.2.1. Trade-offs between the requirements
The compatibility and maintainability requirements are conflicting with each other.
Compatibility for the SIM means that it can connect to modules of other ITSs and support the
functionality of those modules.

Brooks and Kugler identify complexity as one of the difficulties with maintaining software
(Brooks and Kugler, 1987), but the compatibility of the SIM can lead to complexity because of
the next three reasons:

Firstly the communication between modules is not clearly defined. There are some
communication standards but also other communication protocols can be used and it is
likely that the same kind of modules from different ITSs communicate differently with the SIM.
This means that for almost every module that can be connected separate functions for
communication have to be build.

Secondly the learning material (exercises, feedback and hints) that is offered by the
connected modules is not always the same. The modules offer different forms of logic, where
the answers can be formulas, rules or a combination of both. Answers can be given top-
down but it is also possible that a bottom-up answering is allowed as well. Feedback is

19

optional and can be given every step or only after the complete answer. Hints are also
optional, and can be given in various ways like a sentence with a hint, showing the next step
or showing the complete derivation. All these possibilities can lead to complex software.

Thirdly the opftionality of the tutoring and the student model modules in the complete ITS can
cause complexity for the SIM. The tutoring model or a combination of the tfutoring and the
student model can control the exercises that are presented to the student and this can
influence how the exercises are presented and whether or not hints and feedback is shown
and in which form these are shown. When both models do not exist in the ITS it can be
needed that the SIM provides part of this functionality.

Besides the conflict between compatibility and maintainability there is also a conflict
between the optionality of a parts of the functionality and the maintainability that is also
related to the complexity.

Part of the requirements is that hints and feedback can be turned on and off and the
selection of exercises can be done by the student but can also be done by the teacher or by
a connected module. In addition, not every combination of connected models offers the
same functionality, which also leads to optional functionality. Optional functionality can lead
to complex software because every possibility can have consequences for the working of the
entire software. These consequences can be limited by using a good architecture and
software design.

In addition, once the SIM is build it should be possible to add more connections to other ITSs in
order to provide the students with, for example, more exercises or different exercises or other
student related support from another tutoring model in combination with a student model.
This can lead to changes in the existing SIM. Lehman's second law points out that changes in
software can increase the complexity of it (Lehman, 1980).

5.2.2. Architecture design trade-offs
In this paragraph we discuss some high-level architecture design trade-offs that form the basis
of the architecture of the SIM. We look the following questions:

- Web based or not web based?
- Plug-in architecture or product line architecture?
- Which application architecture?2

For each of these items we look at the product quality characteristics of the non-functional
requirements for the architecture of the SIM these are the most relevant characteristics (see
0).

5.2.2.1. Web based or not web based
We want to investigate an architecture for an SIM that can be connected to modules of
several [TSs and LEs and that can be used by many students. The maximum number of
students using it af the same time should rather be limited by the capacity of the connected
modules than by the capacity of the SIM itself. Table 4 presents a comparison for the product
quality characteristics for a web based and a not web based architecture.

Web based or not web based does not affect the functional suitability; on both it is possible
to make an application that suits the needs of the students.

The performance efficiency of the SIM mainly depends on the number of students using it.
The target audience for the simis large, but the SIM is only a frond-end that can be installed
on the device of the student or can be retrieved from a webserver; so the CPU capacity
needed for running the SIM for the students will be divided over the devices used by those
students. A possible bottleneck can be the performance connection to the external modules.
Ritter and Koedinger (1996) point to the possible delay in the connection when using an

20

internet connection, but this can also be a problem on an internal network of the
organisation. The biggest problem can be the performance of the connected external
modules when many students use a connected external module, but this possible problem is
the same for a web based and a not web based architecture.

The compatibility is the same for both architectures; a web based and a not web based
application can both connect to the same external modules.

The usability of both options can be the same if both can be used from a device of the
student; when it can be used from a device of the student, the student can work time and
place independent. If the SIM only can be used on a device of the organisation this will be
limited. Although it is likely that a web based architecture offers the possibility fo be used on a
device of the student, it is still possible that this is limited fo specific devices.

The reliability of both options can be the same.

Security is not a real issue for the SIM; it mainly depends on the security measures of the
connected modules (see 0), but if the SIM can be used outside the network of the
organisation it can make a point of access for hacking. The security risks of this do not
depend on a web based or not a web based architecture.

The maintainability of both options can be the same.

The portability of the web based architecture is better because this can be used within a
browser installed on the device of the student, whereas the not web based architecture can
only be used if can be used on specific the operating systems or the SIM has to be
developed in such a way that it can run on all operating systems, but that would affect the
maintainability of the SIM.

Alpert et.al. (1999) mention benefits of using the web such as: capable to handle a great
number of students at the same time and the students can work place and time
independent. A web-based architecture also uses infrastructure that is available on every
computer, laptop, tablet and mobile phone, which gives a better portability for the SIM as a
not web based solution would do.

Because the SIM only interacts with the student and communicates with the connected
modules and there are no processes that need much CPU from the computer, we think that
an architecture with a single webpage, hosted on one of more webservers (scalability) will be
enough. This webpage runs within a browser on a device of the student and directly
connects with the connected module on a central place. With this option the number of
users at the same time is limited to the boundaries of the connected modules.

Architecture Web based Not web based

. - + = optimal
Product Quality | +/- = sufficient
Functional suitability + + ? = has attention points
Performance efficiency + +
Compatibility + +
Usability +2 +2
Reliability + +
Security +2 +2
Maintainability + +
Portability + +/-

TABLE 4: COMPARISON PRODUCT QUALITY CHARACTERISTICS FOR A WEB BASED AND A NOT WEB BASED
ARCHITECTURE

21

5.2.2.2. Plug-in or product line architecture
From the functional requirements we know that the SIM has several optional functionalities
that depend on the possibilities of the connected module and on the preferences of the
teacher at a certain moment. Therefore we want to use an architecture that can handle
variability we look at the plug-in architecture and the product line architecture.

The plug-in architecture is characterized by a host application with base functionality to
which plug-ins, that also can be developed by other parties, with variable functionality can
be connected at runtime (Birsan, 2005). Because of this plug-in systems need clearly defined
interfaces that can add functionality to the system (Birsan, 2005). Example of plug-in
architectures are: the development tool Eclipse and the web browser Chrome with its
extensions.

The Product line architecture is an architecture of similar products customized for a particular
market segment or for a particular purpose, where the variable functionality is part of a
product (Northrop et al., 2007). An example of a product line is Windows with its home, pro,
enterprise etc. editions.

Table 5 presents a comparison of the product quality characteristics of ISO 25010 for the plug-
in and the product line architecture. The scores are based on the theory of product line
architectures in Nothrop (2007), Dermeval et al. (2017) and Marcolino and Barbosa (2017)
and the plug-in architecture of Birsan (2005). All these architectures describe a complete ITS
and not only the part that communicates with the student.

Performance efficiency is by both sufficient but because in both architectures the interface
and the base functionality have to be more general, so that several third party and variable
components can be used.

When it comes to reliability the biggest concern is the reliability of the connected modules.
We want to be able to connect to modules developed and maintained by others, thus for
the reliability of the SIM we depend on those other parties. This does not affect the
comparison between a plug-in or a product line architecture, because both architectures
have this problem.

When it comes to security there is arisk with the plug-in architecture when third parties
connect plug-ins; you do not have conftrol over those plug-ins, which makes it possible to
send data from the plug-in elsewhere.

When it comes to maintainability with a plug-in architecture it is possible that the cause of
defects is not always clear; is it a defect in the system oris it a defect in a plug-ine A plug-in
architecture can also make it more difficult fo change the system, especially when this
affects the interface or internal functions used by plug-ins.

If we look at the issues in the comparison we see that the disadvantages of the plug-in
architecture are related to plug-ins created by other parties, but when we develop those
plug-ins ourselves the disadvantages would not exist.

The advantage of a plug-in architecture is that other parties can develop plug-ins. This could
lead to more modules that can be connected to the SIM, which can result in a bigger
variance in learning material that can be studied with it. The advantage of the product line
architecture is that we can develop different products for different target groups of students.
The core of the products will always be the same, but the special features for a product are
only used by that product, which results in fewer lines of code and less complex software. Less
complex software improves the maintainability (Brooks and Kugler, 1987).

For the SIM architecture we choose a product line architecture because we want to have
low complexity since this improves the maintainability. This choice can reduce the

22

compatibility of the SIM, because it is possible that we cannot communicate with every
external module. This can be solved by other parties by creating a connector between the
external module and the SIM, which converts messages from the external module into
messages that can be used by the SIM and vice versa.

Architecture Plug-in Product line

. - + = optimal
Product Quality | +/- = sufficient
Functional suitability + + ? = has attention points
Performance efficiency +/- +/-
Compatibility + +
Usability + +
Reliability +2 +2
Security +2 +2
Maintainability +2 +
Portability + +

TABLE 5: COMPARISON PRODUCT QUALITY CHARACTERISTICS FOR PLUG-IN AND PRODUCT LINE ARCHITECTURE
FOR THE SIM

5.2.2.3. Application architecture
For the application architecture we take three options into consideration: Model-View-
Control (MVC), Blackboard and Flux. There are more options when it comes to architectures
for a web-only client but we think that many other architectures have much in common with
these ones.

The MVC architecture (see Figure 5) has a model in which all the data is stored, a view for
everything that has to presented to the user for which it queries the model when data is
needed and a control for handling user input, updating values in the model and friggering
the update of the view (Krasner and Pope, 1998).

1] Controller View
User input EE'PIW 4
-—+" ser inpu yout an
gevice ’ interaction .
— User interaction iy Display
=———=| input output
=———=2X1 sensors Model
access and
aditing

/ massagas

Dependents
~ changa

Dependants messages
Qepenc ,,__,—"'
messages .
Application
dormain
state and
behavior

FIGURE 5: MODEL-VIEW-CONTROL (KRASNER AND POPE, 1998)

The Blackboard architecture (see Figure 6) has a part called “blackboard” for the user
interaction (input and output), knowledge sources and a confrol component. The knowledge
sources are independent modules needed for the solving of problems that know when they
can contribute to the solution. The control module controls, based on the knowledge sources,
the actions for the complete system (Corkill, 1991).

23

- - - — —
F— - — — -
Blackboard Knowledge
Sources
- - — —
F— — — —
Control
Component

FIGURE é: BLACKBOARD (CORKILL, 1991)

The Flux architecture has a dispatcher that handles all actions and send those to the store
where the data is stored, the stores send the data to the views, and the views can create
new actions and there can be actions connected to the dispatcher, these are helper
methods which the dispatcher can use (Boduch, 2016; “Flux,” 2019).

FIGURE 7: FLUX (“FLUX,” 2019)

Blackboard compared to MVC and Flux is more complex because of the Al knowledge
sources in it. Blackboard is more an architecture to be used with complex systems (Corkill,
1991).

Compared to MVC has Flux a clear view on the flow within the software; the dispatcher
communicates only with one or more stores, stores only communicate with views and views
can have actions, that are send to the dispatcher (Boduch, 2016) and in MVC the confroller
updates the model and triggers the view and the view queries the model for data (Krasner
and Pope, 1998). When doing complex cascading updates Flux can be more easy to
understand (Boduch, 2016).

When we compare MVC with Flux (see: Table 6) we expect both to score optimal on all
product quality characteristics of ISO25010 for the SIM. This expectation is based on that we
did noft find any articles or blogs on internet about attention points, except for attention
points mentioned earlier. The possible complexity with cascading updates in MVC can affect
the maintainability, but we do not expect cascading updates in our SIM architecture.

For the SIM we choose to use an MVC architecture, because we are more familiar with this
kind of architecture.

24

Architecture MVC Flux

—

) + = optimal

Product Quality | +/- = sufficient
Functional suitability + + ? = has attention points
Performance efficiency + +

Compatibility + +

Usability + +

Reliability + +

Security + +

Maintainability + +

Portability + +

TABLE 6: COMPARISON PRODUCT QUALITY CHARACTERISTICS MVC AND FLUX BASED ARCHITECTURE

5.3. Architecture views
In this chapter we look at the architecture of the SIM. The architecture consists of: the entity
view describing the main entities of the SIM using a simplified entity relation diagram
(paragraph 5.3.1), the overall view describing the main flow of the SIM (paragraph 5.3.2), the
functional view describing the possible functionalities of the SIM using a simplified entity
model (paragraph 5.3.3), and the development view describing how the SIM is divided in
technical components and functions within those components (paragraph 5.3.4).

5.3.1. Entity view
In this paragraph the entity view is described, this gives a picture of the most important
entities and the relationships between them.

Based on the functional requirements from paragraph 4.2 we have defined the following
entities: exercises, answers, rules, hints and feedback (see Figure 8 for the entities and the
relations between them.) We have chosen these entities based on the principle of high
cohesion within the entities and low coupling between the entities (Ingeno, 2018), which
means that everything within an entity should have a strong relation, but the entities have a
low relation with another. Below we give a description of each of the entities.

Exercises

belong to

has

RUIeS | can use Answers can be asked for Hints

can be used by 3 can change

progress of

esultin

Feedback

FIGURE 8: ENTITIES OF THE SIM

25

Exercises

Exercises are the logic issues that have to be solved by the student. These can be pre-defined
exercises in the connected modules or randomly generated exercises by the connected
modules or exercises defined by the student. The selection of the exercise can be done by
the module or by the SIM or by the student, depending on the possibilities of the connected
module and the preferences of the teacher.

Exercises can belong to groups of exercises based on education goal or difficulty of the
exercises. This is in our architecture seen as a property of an exercise, but it is possible that
these groups of exercises may be seen as a separate enfity in some situations.

Answers

Answers are the replies given by the students to exercises. The format of an answer depends
on the connected external modules of the SIM. Answers can contain formulas, applied rules,
comparison signs (from induction logic) and line numbers. Answers can be given step-based
or a complete answer on the complete exercise. A step of an answer can be a single line in
the solution of the exercise, or a part of such an answer or a part of a case when solving an
induction exercise. Steps of an answer or the complete answer can be send to the
connected module depending on the possibilities of the connected module and the
preferences of the teacher (see 4.2.2).

Rules

Rules can be used when answering exercises. Rules can be provided by the connected
module or be determined by the SIM . Rules are only needed if the connected module needs
rules as a part of an answer.

Although rules are used by answer and can depend on the current status of the answer, we
have decided to make a separate entity for rules. This way answer will not be responsible for
retrieving the rules from the external module or for determining what rules may be used with a
step of the answer.

Hints

Hints can be available for the student during answering the exercises. Hints can be a line of
text, an example, the complete derivation, the next step in the solution or completing the
solution of the student. The availability of hints and the kind of hints depend on the
connected module and on the preferences of the teacher.

Although hints are closely related to answers; they use the current status of the answer and
can have an effect on the answer when a next step or completion of the answer is
requested, we have decided to make a separate entity for hints.

Feedback

Feedback can have a KR part; depending on the result of the diagnose done by the externall
module the next action for the SIM is given by the external module or determined by the SIM.
If no KR feedback is given the SIM has to determine the next action based on the input of the
stfudent (a next step or a new exercise).

Feedback is given by the connected module after an answer or an answer-step is checked
by the connected module. Feedback can be only an indicator for correct or incorrect but
can also be an explanation, or a hint, or an update of the overall results of the student, or a
combination of these items.

The kind of feedback that available for the student depends on the connected module and
on the preferences of the teacher.

26

5.3.2. Overall view
Figure 9 presents a functional overall view of the SIM. The program starts with the Exercise
module where an exercise is selected. The selection of an exercise can be done by the
connected external module or by the SIM. Other options are that the student selects the
exercise or the student defines an exercise.

When the exercise is selected, the student can enter the answer in the Answer module. This is
done stepwise. After each step the step is send to the external module, which checks the
step. If the student thinks the answer is complete the complete answer is send to the external
module to check the complete answer.

If supported the student can ask for hints when answering exercises. What kind of hints are
available depends on the connected module and the settings in the SIM. Some hints can
change the current status of the answer, for example when asked for a next step as hint, this
step is added to the already given steps. Other hints are only text and do not change the
answer.

During answering rules can be used. Rules are provided by the Rules module and can be, if
available, retrieved from the connected external module: otherwise the Rules module itself
provides the rules. The possible rules are returned to the Answer module, where the rules can
be used.

The answers on steps and complete exercises are sent to the external module that will check
the step or answer. The external module will return feedback and that is received by the
Feedback module. The Feedback module will display feedback messages if those are
supported by the external module and the teacher has not disabled it. Next the Feedback
module determines the next step to take: back to the Answer module and redo the last step
because it was not correct, back to the Answer module for a next step because the exercise
is not completed or back to the Exercise module because the answer was completed.

The exercise module will select a new exercise or request the external module for a new
exercise. The process will end when there are no more exercises or when the student ends the
program.

Start Legenda

! SIM
| = Siv
‘ . Student Interaction Module

|

A J
Request Exercises - : External External module

i Exercise New exercise Module
Exercises —_— =
Exercise
* EHlanes Mandatory entity
Y
Request Rules 3equest ¢ Current answer | |
External Rules Answer | Hints
Module Rules Rules Answer steps | hlames Optional entity
Answer or step g
Request Hint { Start | Start ofthe program
Hint == =
End)
[| Answer incomplete - End of the program

Feedback » Feedback | or next step o

Description
Data flow with
description

.

p Program flow

FIGURE 9: FUNCTIONAL OVERALL VIEW SIM

27

5.3.3. Functional view
In this paragraph we describe the functional view using a simplified feature model for the SIM.
This model gives a view on the functional options of the SIM. Normally this kind of model can
also be used to define the relationships and exclusions between features; we have omitted
this from our scheme and description; with this architecture we want to describe the possible
features of SIMs in general. The relationships and exclusions are part of a concrete modules
developed for SIMs with this architecture.

This functional view contains many implementation aspects, because it was initially thought
to only use this view. In refrospect, this turned out to be insufficiently clear and a
development view was added.

Whether features exist in a developed SIM depend on the possibilities of the connected
module, the connected module must support those features. Features can, within the
possibilities and limitations of the connected module, also depend on the preferences of the
teacher; a feacher can decide how exercises are selected for the students, how rules are
shown, whether answers have to be given in steps or not, which parts an answer consists of
and whether hints and feedback are shown. The preferences of the teacher can be part of
the developed modules but can also be settings of the SIM, in which case the teacher
preferences are an extra supporting entity that can be used by all other entities. To reduce
the complexity we have omitted this from our schema.

This view on the architecture based on the MVC-model; our first thought was to make only
one view on the architecture and combine the features and the implementation aspectsin
this view. Later on we decided to add the development view, but we left the feature model
as it was.

Every paragraph starts with a schema followed by an explanation of the schema. This
explanation consists of details and can be skipped completely or partly depending on the
interest of the reader.

Below you will find the legend that can be used by every scheme.

Legend:

» b andatory

o Optional

/‘\ Qr Group
Abstract Feature
Concrete Feature

If a feature is not available in every product-line, we have made it optional, all other features
are mandatory.

Abstract is a feature when we expect it will not be mapped to any implementation artefact,
all other features are concrete (ThUm et al., 2011). When programming a version of the SIM it
is still possible that abstract features will become part of the software, because it is needed
by the programming language or needed because of design aspects. For example. it makes
the code better understandable and maintainable.

In the diagrams the features are connected with lines, the features below a feature are the
child-features of that feature. Some diagrams have an or group to indicate an exclusive or,
that means that only one of the options can be chosen in a product of the product line.

28

5.3.3.1. Design decisions
In this paragraph some overall design decisions for the feature model of the SIM are
mentioned.

Communication

All entities may need to communicate with the external module. Communication is preparing
messages fo be send, sending those messages, receiving refurn messages and decoding
those messages, where all these actions use a certain protfocol and communicate with a
configured ip-address. Although every entity has its own messages we think that there are
many similarities between the actions related to communication that has to be done. This is
why we have designed these dedicated features for the communication with external
modules: CommunicationModel, CommunicationControl and CommunicationView.

Exercises

Exercises have to be selected and showed to the student. We have made showing of
exercises part of answer, because with a step-based answer every step can be seen as a
new exercise that has to be answered. The task of exercise in our models is the selection of
new exercises.

5.3.3.2. SIM
S
."’T'w-_
I fl \'._
Mu:u.u:lel "-.-"gw Eu:u:tru:ul

Sim consists of Model, View and Control (the basic parts of an MVC-model architecture).
Model is responsible for all definitions of elements used in the application and it is responsible
for the communication with other modules. View is responsible for the presentation of
everything on the device of the student. Control is responsible for all changes in values of
elements in Model. These changes are caused by input in the View and new values received
from other modules in Model.

5.3.3.3. Model

Communication Model | | Exercizetadel | | Answertdadel | | Hinttadel | | Rulefodel | | FeedbackMadel

Model consists of CommunicationModel, ExerciseModel, AnswerModel, FeedbackModel and
opftional HintModel when hints are available and RuleModel, when rules are used.

5.3.3.3.1. CommunicationModel

Communicationkd odel

A - : —i
CommunicationFormat Communicatiord.ction Communicationkd odule

amil| fani+2] [apenmatr] [Matrvil] [Feedbacksemices)| [Dmersamiess) [DEASLagas| [IDEASICGE] [MathEdge

CommunicationModel contains the definitions of what in which way should be
communicated with which module. It consists of CommunicationFormat,
CommunicationAction and CommunicationModule.

29

CommunicationFormat is responsible for the definitions of the possible communication
formats. These communication formats can in our model be QTI or QTIv2 or OpenMath or
MathML, but other formats should also be possible to add.

CommunicationAction is responsible for the definition of all possible communication actions.
The available actions depend on the possibilities of the attached module. In the theory we
have found the feedback services from Heeren and Jeuring (2014) (see Table 3) those are
handled by FeedbackServices, but we expect there will be other similar actions in other
systems, those are handled by OtherServices.

CommunicationModule is responsible for the definition of how the communication should be
done with which module. This describes the module's URL, the necessary credentials, the
communication format it uses and the type of communication action it uses. In our model
IDEASLogax, IDEASLogEX and Mathbridge are mentioned, but also other ITSs or modules from
ITSs should be possible to add.

5.3.3.3.2. ExerciseModel

Ewercizetdodel

"

E :-:eruI:TéeList IdzeiDr efiﬁEIdE WEICiSE

ExerciseModel is responsible for the definition of Exerciselist and for storing the values of a list
of exercises received from a connected module and for storing the user-defined exercises.
The features in ExerciseModel are optional and only needed if the user or the SIM can select
an exercise (Exerciselist) or if the user can define an exercise (UserDefinedExercise).

5.3.3.3.3. AnswerModel
.-'-‘-.nswe_rM odel

e — -
.-i'-.nswergt-ructure AnzwerLine

Anzwerlist | | AnswerMultiplelists || AnswerDoublelist | | Formula | | Bole | | LineMumber | | CompanzonSign | | Test

AnswerModel is responsible for the definition of an answer and for storing given answers. The
definition of an answer consists of two parts: the structure of an answer (AnswerStructure) and
the content of a line within a used answer structure (Answerline). Both depend on the answer
format expected by the external module. The storing of the given answers is done within the
variables defined by this structure.

An answer structure can be a list of answer lines (Answerlist), or a list with multiple lists of
answer lines (case structure) (AnswerMultiplelLists) or a list in which answer lines can be added
top-down and bottom-up (AnswerDoublelist). An answer line can be a line number, a rule, a
formula, a comparison sign (inductive logic) or text or any combination of those.

30

5.3.3.3.4. HintModel

Hintkd adel
e

o | T
. — F i =) =
HindText | | HintEzample | | HintSalution | | MexStep | | Completion

HintModel is responsible for the definition of hints and storing received hints. Hints are divided
in: textual hints (HintText), example solutions (HintExample), the solution of the exercise
(HintSolution), the next step in solving the exercise (NextStep) and completion of the entered
solution (Completion). Availability of each of these options depends on the possibilities of the
connected module.

5.3.3.3.5. RuleModel
Fulekd odel

The RuleModel is responsible for storing the logic rules that can be used by answering
exercises. Rulemodel is optional, while it is only needed if logic rules are part of the answer.
RuleModel has no child-features.

5.3.3.3.6. FeedbackModel

FeedbackModel
- 3 ..-"""f;_.
kR | | FeedbackMessage | | Feedbackfction
)T- e
KF | | KCR

.--"'/

" {7} 7y

ke ke | [km | [k | KHC

FeedbackModel is responsible for storing the feedback returned by the connected external
module. This can be only a result (KR-feedback) but also a combination of a result and
messages of other types of feedback (KP and KCR feedback and the EF feedback
messages) or it can be only an action that has to be done next (FeedbackAction move to
next step or go to the next exercise). Availability of the messages and actions depend on the
possibilities of the connected external module and the preferences of the teacher, but there
should be always one indication for the SIM to determine the next step in the program (go to
the same step in the answer, go to the next step in the answer, go to the next exercise).

5.3.3.4. View

Wi

- o —
i - —

o ” 5 =0 »
Exercizetieow | | Answertfiew | | Hintiew | | FeedbackWiew | | Communicationt/iew

View consists of ExerciseView, AnswerView, FeedbackView, CommunicationView and
optional HintView when hints are available.

31

5.3.3.4.1. ExerciseView

Erercizetiew

ShowEsercizes | | UserSelectExercize | | UserDefinesk sercize

ExerciseView is responsible for the presentation of available exercises (ShowExercises) that
can be selected by the student (UserSelectExercise) and for the presentation of an option in
which the student can define an exercise.

5.3.3.4.2. AnswerView

Anzwerdiew
IrputénsuierF ormat AswerT ypelnput SRR TR
I EL v P y Textlnput - AN
nputLine S — e e I Step
. Al armulas p__;' ComparizanSignlnput - | Delete
CaseStucture Rl LineNumberlnput Complefednswer Feda
Llln'dn

AnswerView is responsible for presenting the part in which the student answers exercises.
AnswerView consists of the way the input of an answer is presented (InputAnswerFormat), one
or more answer types that together form an answer (AnswerTypelnput) and controls for
changing the status of an answer or changing the answer (AnswerConftrols).

The format of the input of an answer (InputAnswerFormat) can be an input line (Inputline) or
a case structure with input lines (CaseStructure) or a block in which the answer is given in
parts, depending on the used rule (PartialFormulas). The way the input for an answer is
presented (AnswerTypelnput) can contain multiple items from: a rule that is used, a formula,
one or more line numbers and a comparison sign.

The controls for an answer (AnswerControls) are: Step to indicate that the answer is for one
step, Complete Answer o indicate that the exercise is completed, Undo to delete the last
step, Redo to undo the deletion of the last action and Delete to delete all steps from the
point the delete button is pressed.

5.3.3.4.3. HintView

HintWiew
— =
HintContralz H'ntSE':'WEf
HintR equest CompleteE xerciseR equest _ §
ExamplsRequest /[SolutionB equest AhTest | \ Hiritln clutionB ox
NEHtStEIp_h equest HintTestBar | | HintNewwindow

HintView is responsible for showing the options to request hints and showing hints after they
have been received from the connected module and stored in HintModel. HintView consists
of HintControls, for showing the controls with which the student can ask for hints and
HintShower for showing the hints.

HintConftrols have several optional options HintRequest for asking a hint, ExampleRequest to
ask for an example solution, NextStepRequest to ask to give the next step in the solution,

32

SolutionRequest to ask for the complete solution of the exercise, CompleteExerciseRequest to
ask for the completion of the answer, but depending on the connected module other
options are possible too.

HintShower offers the following options to show the hints: AliText to show the hint in a pop-up
balloon above the answer, HintTextBar to show the hint in a line in the answering window,
HintNewWindow to show the hint in a new window, HintInSolutionBox to show a hint in the
part of the window where partial answers are given. This should not be seen as a limited seft; it
should be possible to add other options.

5.3.3.4.4. FeedbackView
Feedbackiew

Feedl:naln::'iliM ark.er Feedl:-léiI:kT et

FeedbackView is responsible for the presentation of feedback results. Available options are a
marker or a text or a combination of both. Feedback is only shown if the teacher has allowed
this. FeedbackMarker depends on KR feedback (correct / incorrect), FeedbackText can
show all kinds of feedback text messages.

5.3.3.4.5. CommunicationView

Communication'isw

CommunicationView is responsible for showing error messages occurred during
communication with the connected module and that has to be shown to the student (i.e.
message that the connected module is not available). CommunicationView has no child-
features.

5.3.3.5. Conftrol

Control

o

—- . e | ey) —
CommunicationControl | | ExerciseContral | | AnswerContral | | HintCantral | | BuleCantral | | FeedbackControl

Control consists of CommunicationConftrol, ExerciseConftrol, AnswerConfrol, FeedbackConfrol
and opftional HintControl if hints are available in the connected module and allowed by the
teacher and RuleControl if rules are used with answering the exercises.

5.3.3.5.1. CommunicationConftrol

CommunicationControl

Prepareﬁessage ProceszRevenvedteaasge
CommunicationControl is responsible for preparing messages for communication with a

module and for handling messages received from a module. It consists of PrepareMessage
and ProcessReceivedMessage.

33

5.3.3.5.2. ExerciseControl

E sercizeCantral

i e

-

i — i _r"' ."'.'__n ==}
UzerSelectEgercizeContral | | SIMSelectE sercizeContral | | ModSelectE sercizeContral | | UserDefinedE zerciseCantral

ExerciseConfrol is responsible for the confrol functions related to the selection of an exercise.
A task can be selected by a student (UserSelectExerciseControl), by the SIM
(SIMSelectsExerciseControl), by the connected Modules (ModSelectExerciseConftrole) or it
can be defined by the student (UserDefinedExerciseControl) and combinations of these
opftions are also possible, only combinations with SIMSelectsExerciseControl and
ModSelectExerciseConfrole, because both are automatic selections and this has to be done
or by the SIM or by the connected module.

5.3.3.5.3. AnswerControl

AnswerControl

Newl_ll'r:e_TDp NewLirI%’éattam Handler'\TirawEase Hanl:llﬁ';Step HandIeEDnlwﬁllete.-’-'mswer Hanc?l'e'IUndD Han-cil'e'lF!eda Han;jiébelete

Answer conftrol is responsible for handling all actions in AnswerView. NewlineTop is used to
add a new input line at the top part of an answer. NewlineBottom is used to add a new input
line at the bottom part of an answer. HandleNewCase is used to add an new case with
answer lines to the answer. HandleStep is used to indicate that a step of the answer can be
send by the communication model (CommunicationModel) to the attached module.
HandleCompleteAnswer is used to indicate that the complete answer can be sent by the
communication model (CommunicationModel) to the attached module. HandleUndo is
used to undo the last entered step. HandleRedo is used to redo the last entered step.
HandleDelete is used to delete all steps starting with the selected answering line, the direction
of deleting depends on the direction of the answer.

5.3.3.5.4. HintControl

HintCamtral

Han;:ﬂi;Hint Hanu:lle:E'I:-:ample Handlei‘q':a:-:tﬁtep Handleglculutinn Handlelialmpleticun

HintControl is responsible for handling all actions related to hints. These actions are the result
of requests by the student in HintModel. These requests are: a request for a hint (HandleHint),
areqguest for an example solution (HandleExample), a request for the next step of the solution
(HandleNextStep), a request for the complete solution (HandleSolution) and a request for the
completion of the answer (HandleCompletion).

5.3.3.5.5. RuleControl

RuleCantral

e

RequestRules || HandleReceivedRules Prnvigﬂules D eterminetariableRules

RuleControl is responsible for providing the SIM with rules (ProvideRules). These rules can be
retrieved from the connected module via the communication modules (RequestRules and
HandleReceeivedRules) or be queried from the values in RuleModel and RuleControl can, if
needed, fransform the rules (DetermineVariableRules). When rules are used in the SIM,
ProvideRules is mandatory, RequestRules and HandleReceivedRules are both needed if the

34

rules need fo be retrieved from an external module. DetermineVariableRules is only needed if
rules has to be transformed for a student or for parts of the exercise.

5.3.3.5.6. FeedbackControl

FeedbackCantral

- ..."""f-_l
H andleFeeﬁ:uack.ﬁ.ctiDn HandleFeedbackieszage

FeedbackControl is responsible for handling feedback returned by the connected module
after a student has given a step in the answer or a complete answer to an exercise.
Feedback actions are handled by HandleFeedbackAction and feedback messages are
handled by HanldeFeedbackMessage. Feedback of types AUC and MTF are also handled by
HandleFeedbackAction they react on KR feedback given by the connected module.
HanldeFeedbackMessage can also be used to fransform feedback messages from codes
used by the connected module into understandable messages for the student.

5.3.4. Development view
In the feature model we have shown options for features of the SIM. The entities hints and
rules are optional, and all the entities have several optional features, depending on the SIM
that is needed for a specific external module or a combination of external modules. In this
paragraph we present another view: the development view to show how the features can
be modelled in modules developed. We use a product line architecture for the modules,
which means that from every module there can be more than one version of that module.
The SIM for a specific external module or combination of modules can be built by combining
those reusable modules.

In the next paragraphs we describe the development view using several diagrams. In the
overall view we describe the complete SIM with entities and the main data streams between
them.

In the other diagrams we show how the entities are divided info modules, the functions and
components of these modules, the data flows and triggers between the modules, functions
and components and the student and modules responsible for the input and output of an
entity on the top and bottom side of each diagram. To keep our diagrams clear, we only
show the most important items.

In the overall and the entity diagrams the symbols from Figure 10 are used.

<Name> | Mandatory entity SIM SiM Desciption Data flow with
description
Desciption : ”
: 2 —_— Trigger with
<Name= | Optional entity Exterrial External module > description
Module

Component or
function with student

Mandatory module e action

‘ <Name> ’ Start of the program

Start
<Name> Optional module e
End End of the program
‘ Mandatory function /
<Name> component
Optional function /
<Name> component

FIGURE 10: USED SYMBOLS

35

5.3.4.1. Design decision: Program
To control the specific versions of modules and the optionality of modules we use an exira
entity: Program that consists of ProgramControl, ProgramModel and ProgramView. Program is
responsible for controlling the flow of the SIM and therefore it needs to know the used
modules within a specific product of our product line for the SIM. By using Program, modules
do not need to have knowledge about the other connected modules. This makes modules
independent from each other and there is not a need for special modules for combinations
of models.

Program can also be used to reduce the number of versions of a component. When we look
at the relation between Answer and the optional component Hints, there can be several
versions of answer and several versions of hints and there can be a product in the product
line without hints. When Hints is available, Answer always has to send the current status of the
answer to Hints, but when Hints is not available, Answer does not have to send the current
status of the answer. This would double the number of versions of Answer (for every version of
Answer there has to be one with and one without sending the current answer to hints). By
using Program it is possible to make versions of Answer that always sent the current status of
answer and lef Program decide what to do with it (ignore when Hints is not available or sent
to Hint if Hint is available).

5.3.4.2. Overall view
Below you find the overall view of the SIM (see Figure 11), with the entities from paragraph
Fout! Verwijzingsbron niet gevonden. and the entity Communication from paragraph 5.3.3.1
and the entity Program from paragraph 5.3.4.1. The overall view gives a global overview of
the entities and the communication between them and the communication with the
connected module.

Each of the entities have a Model, a Control and a View component (see Model-View-
Control Architecture in paragraph 5.2.2.3) except for Rules, which does not have a view,
because it only supplies rules to Answer, that are presented in Answer; Rules does not present
any information to the student.

In the next paragraphs we will describe the responsibilities of the components and the
important differences with the features of each of the entities.

36

Student Interaction Module
New exercise
Exercise

No more exercises

_ Request Exercises

Answer or step
External &
Module A
Regquest Hint
Hint
Feedback

a

FIGURE 11: OVERALL VIEW (LEGEND SEE FIGURE 10)

5.3.4.3. Program
Program (see Figure 12) is responsible for the control and the general functions of the SIM and
consists of ProgramConftrol, ProgramModel and ProgramView. The SIM starts with
ProgramControl that conftrols the flow of the program. Except for CommunicationControl all
control modules are connected with ProgramControl. The Forwarder of ProgramControl
chooses the next step in the program that has to be done.

ProgramModel holds variables that are needed for the control of the program and can be
queried by ProgramControl and ProgramView.

ProgramView is used for showing main page in which the information from the other views is
shown and for general information that is not related to the other entities.

v v

RuleControl HintControl

Various data

FIGURE 12: PROGRAM DIAGRAM

37

5.3.4.4. Exercise
Exercise (see Figure 13) consists of ExerciseControl, ExerciseModel and ExerciseView and is
responsible for the selection of an exercise that has to be solved by the student.

In ExerciseControl the functions ReceiveExercise and ReceiveExerciselist are added to
handle exercises and list of exercises retrieved by the communication modules from the
external module.

In ExerciseView the function ExerciseView handles the presentation from the features
ShowExercise, UserSelectExerciseControl and UserDefinedExerciseControl from the feature
model and ExerciseConftrols supplies the controls (buttons, menus etc.) for those features.

Of No-exercise

FIGURE 13 : EXERCISE DIAGRAM

38

E 3
ngtamConttoli
Requested c P
; ommunication
Action: Action » Control
next exercise
Exercise E);termse
e N e e = RN SIS = =SS CR =St R s e S
Exercise UserDefined
ExerciseControl A / Exercise 2 ExerciseView
*| ExerciseModel Query
) I I |) v Uddate exercise list e ExerciseView
1S 2 . 2 . A
UserSelects || SIMSelects H MOD Selects ‘ UserDefined 'ReceiveExercise ReceiveExercise SHxemisshist Response
ExerciseControl| ExerciseControliiExerciseControI ;’ExerciseControl | List Elsdebieibxarcisos B - Exercise
l | = l l a— [77; Controls ‘
Ex;e‘icuse - i Update view

~]
|
|
|

5.3.4.5. Answer
Answer (see Figure 14) consists of AnswerConfrol, AnswerModel and AnswerView and is
responsible for handling the answer of the student, storing it and presenting it.

In AnswerControl the functions RetrieveRules, HandleNextAction and HandleExercise are
added. RetrieveRules is used to retrieve a set of rules that can be used when giving an
answer. HandleNextAction is used to handle a next action from Hint or from Feedback. From
Hint can this be a next step or the completion of the solution. From Feedback this can be
storing the last step as a correct step or staying on the current answer because it was an
incorrect step. HandleExercise is responsible for handling the current exercise which is
presented within Answer.

In AnswerView the function AnswerView is responsible for the presentation of elements from
the features InputAnswerFormat and AnswerTypelnput from the feature model. The function
AnswerControls is responsible for the presentation of the controls from the feature
AnswerControls from the feature model.

In AnswerModel the storage of the text of the exercise (ExerciseText), a list of rules that can be
used when answering (CurrentRules), an input for the answer (Answerlnput) and the storage
of the answer steps given by the student (CurrentAnswer), are added. AnswerFormat is also
added to AnswerModel, this stores the definition how the answer can be given (input line or
separate input box with parts of the answer, or case structure) this is missing in the feature
model.

Currentanswer ~ ProgramControl

Rules

rAnswer

" |AnswerControl

Next action Exercise

RetrieveRules NewLineTop | NewlLineBottom HandleNewCase

L I

2 Y

HandleRedo HandleDelete HandleUndo HandleStep Hand::](;vc:lr:rplete N::b:?:{ieon

| Update view Update|answer
\J

rls;nswe View AnswerModel

HandleExercise

Update exercise

Update input

; <Exercise Text>

i AnswerView <AnswerStructure>
<AnswerLine>

Query <AnswerFormat>

<CurrentAnswer>

£ Response A A <Answerlnput>

<CurrentRules>

AnswerControls

Step answer Exercise answer

\J \

Communication
Control

FIGURE 14: ANSWER DIAGRAM

39

5.3.4.6. Rule
Rule (see Figure 15) consists of RuleConfrol and RuleModel. Rule is responsible for providing
the logic rules to answer, so that the logic rules can be used when answering exercises.

RuleControl in this model is the same as in the feature model.

In RuleModel RuleDefinition is added for the definition of one single rule and Rulelist is added
to store a set of rules using for every rule the definition of the rule.

| i
—>‘EProgta mControl

Rules Current Answer Communication
> Control
Request for Rules
rules
Rule ¥
RuleControl Update rules RuleModel
v [[<RuleList>
: \ ‘ <RuleDefinition=
ProvideRules RequestRules HandleRules [TransformRules

Received ‘ |

l — Qu ery. o

Rules

FIGURE 15: RULE DIAGRAM

5.3.4.7. Hint
Hint (see Figure 16) consists HinfControl, HintModel and HintView and is responsible for
providing hints on request of a student.

In HintConftrol functions are added to process the hints received from the external module;
ReceiveNextStep for a next step as hint, ReceiveCompletion for the completion of the
exercise as hint, ReceiveHint for a textual hint, ReceiveExample for an example as a hint and
ReceiveSolution for the complete solution of the exercise as a hint.

In HintView both functions are the same as the features from HintView in the feature model,
only the options mentioned in the feature model are here part of the functions.

In HintModel NextStep and Completion from the feature model are missing; these contain
steps that have to be added to the answer and are forwarded by ReceiveNextStep and
ReceiveCompletion from HintControl to AnswerControl.

40

Action and
current
Cument|{answver answer
IH_'m EER T T E T s T T e T s e T
| HintControl HintView
@ I @ | (@) I ® | @ HintControls
I - . Handle
HandleNextStep | HandleHint | HandleExample| HandleSolution Completion
| HintShower
| Y v v v Y
Receive Receive 3 Receive Receive A
NextStep Completion | | ReceiveHint Example Solution
I Next step | | | |
| Exercise completion *Update--
! HintModel Gulney
| <Hint>
<Example> Response
I <Solution=

FIGURE 16: HINT DIAGRAM

5.3.4.8. Feedback
Feedback (see Figure 17) consists of FeedbackControl and optional FeedbackModel and
FeedbackView and is responsible for handling received feedback from the communication
modules.

FeedbackControl is the same as FeedbackControl from the feature model.

In FeedbackModel KR and FeedbackAction are missing; these two have affect the conftrol of
an answer and are forwarded by HandleFeedbackAction from FeedbackControl to
AnswerControl.

In FeedbackView the options FeedbackMarker and FeedbackText from the feature model
are part of the function FeedbackView.

Feedback
action
Feedback on step or

complete answer

. - e T —— e

FeedbackModel RN FeedbackView
<KP> T Foedback | |1
<KCR> View

<EF> e o LR I

FIGURE 17: FEEDBACK DIAGRAM

41

5.3.4.9. Communication
Communication (see Figure 18) consists of CommunicationControl, CommunicationModel
and CommunicationView and is responsible for handling all communication from SIM
modules with an external connected module.

CommunicationControl and CommunicationView are the same as in the feature model.

In CommunicationModel ErrorMessages is added to store error messages during
communication. The options of CommunicationFormat, CommunicationAction and
CommunicationModule from the feature model are part of CommunicationFormat,
CommunicationAction and CommunicationModule in this model.

v v
HintControl RuleControl
]

Decoded
messages

Action and messages

Request

Messages

FIGURE 18: COMMUNICATION DIAGRAM

42

6. Proof of Concept
To prove that the designed architecture can be used to make the SIM a proof of concept of
the SIM is built. ELMEX19, an experimental frontend for IDEAS written in an older version of ELM
version, is used as a base for this.

ELMEX is written to see and experiment how a front-end can be built with ELM. Is consists of
five modules: Main for the start and initialisation of the program, Model to define the types
that are used in the program, View for everything that is displayed to the user of the program,
Controller for the overall contfrol and the updates in the program and Ideas for everything
that is related to the communication with the Ideas framework. The functionality of ELMEX is
comparable to a part of the functionality of LogEx'! and is limited to getfting a random
exercise from the IDEAS framework, which is presented to the user, the user can get hints and
stepwise solve the derivation, whereby every step is checked by the IDEAS framework.

For our proof of concept we have updated this version to ELM version 0.19, done a redesign
on the code to fit it in our architecture and added functionality to retrieve example exercises
from the IDEAS framework and we have made it possible to offer more than one exercise to
the student.

ELM is a functional programming language that compiles to JavaScript!2. Because JavaScript
can only be used in front-ends, ELM can only be used to program front-end application. For
the proof of concept of SIM this is not a problem, because it is only a frond-end application.

Our proof of concept consists of ELM modules that are compiled to one JavaScript program.
This JavaScript program is embedded in an index.html, to load it into the browser of a user. In
the index.html bootstrap and font-awesome, both tools for web-layout, are made available
for the JavaScript program.

In the technical reference we describe the program in detail. In the following subsections, we
outline some aspects related to the general flow of the program and the modules of the
program.

6.1. General flow of the program
This paragraph describes the general flow of our proof of concept. We describe the structure
of the program, the usage of type definitions and variables and the way data from the
external module is refrieved.

6.1.1. Structure of the program
An ELM-program has a specific structure. It starts with a main-function, this main-function
holds the definition of the program, and it defines the initialisation function that should be
executed once at start, the update function that should be executed after each update
and a view function that should be executed after each update. The update and view
function are executed automatically every time an update takes place. The updates are
triggered by messages, and the loop of the execution of update and view is done until alll
messages are handled. The messages are generated by user actions and by functions in the
program (see Figure 19). For example the student clicks on a button for the next exercise, this
will result in a message, this message is handled by the update function and the function to
retrieve the exercise from the external module is executed. The result of this call is send back
with a message to the update function. Next a function that updates the variable that holds
the exercise is executed and automatically the view function is executed, this view function

10 hitps://ideastest.science.uu.nl/elmex/
1 hitp://ideas.cs.uu.nl/logex/
12 hitps://elm-lang.org/

43

has a part in which the exercise is shown. After this there are no more messages and the
program will wait till the student gives input.

init

update
Wait for
input

L view

FIGURE 19 : FLOW DIAGRAM OF AN ELM PROGRAM

6.1.2. Variables and type definitions
Every variable in a ELM program is bound to a type definition, which defines the possible
values of that type. A variable can hold a simple value or a list of values or a structure of
different types of values or a list of such a structure. ELM is a functional language, so functions
have no side effects. In relation to variables this means that a function cannoft store the value
of a variable, it can only calculate the return value of the function.

As far as we could see it is in an ELM program only possible to define two variables in the Main
module: one to hold the values used in the program and one that is used for messages that
are used to control the flow of the program. Other variables are only visible in the function in
which those are defined.

The variable to hold the values is called model and is of the Model-type, which is a structure
of variables. This model variable is initialized in init of the Main module and used in the update
function of the MainConftrol module where the values are updated by the functions called by
the update function.

The variable to hold the messages is called msg of the Msg-type. This variable is used in the
update function of the MainControl module for the conftrol of the flow of the program. If a
function returns values that have to be handled by another function, the function returns a
message with those values and the update function of MainConftrol calls the next function
with the values as parameters.

6.1.3. Retrieving data
The IDEAS framework provides our proof of concept with exercises, hints and diagnoses. To
retrieve data from the IDEAS framework our proof of concept every fime uses the same
construction (see Figure 20);

44

MainControl

update BRI y
1.Call + SR — 12. Optional
Optional i : message

parameters 10 Message 11 Call +data

Control module of entity 3

y | tdata +data y
Data Data
Regquesting processing
function function

| CommunicationControl 2. Call+ 9. Message

parameters +data
Encoder 3. uses_ [Y age
! i Pre paration
. function
4. Call+ l

Decoder
Send message 8. Message

+ decoder

'CommunicationModel

l ,+ ,d,al,a - = 7

sendRequest =

[=hu==

7. uses

5. Send 6. data
message
IDEAS |
framework

FIGURE 20: POC: DATA RETRIEVAL

0o N O

12.

A function belonging to an entity is called by the update function of MainControl.
The function of the entity calls a function in the CommunicationControl module.
The function in the CommunicatfionControl module encodes a message that has to
be send to the IDEAS framework

The function in CommunicationControl calls the function sendRequest from the
CommunicationModel module with as parameters the encoded message and a
decoder.

The function sendRequest sends the request to the IDEAS framework

The function sendRequest receives data from it.

The datais decoded by the function sendRequest using the provided decoder,
The data is retfurned to the calling function in CommunicationControl.

The function in CommunicationConftrol returns the data with a message from the Msg-
type to the calling function belonging to the entity.

. The message and the data are returned o the update function of MainConfrol.
11.

The update function uses the message to call the function that processes the data
and uses the data as parameter. The function that processes the date can be of the
same entity as the one that request the data from step 2 but can also be from a
different entity.

After this the next step in the program is taken, which can be sending another request
for data or waiting for input from the student (as shown in Figure 19).

6.1.4. Feedback and messages

In our proof of concept the modules related to Feedback; FeedbackModel and
FeedbackControl are strongly related to the module for Messages; MessagesView because
of a design error.

When programming the proof of concept in ELM we experienced that it was easier 1o
combine messages related to hints, feedback and communication (communication error
messages). In ELM everything related to the presentation is friggered by the defined view
function in the Main module, which is executed automatically after the update function has
been executed. ELM creates JavaScript that results in a HTML-page for the user, this HTML-

45

page is divided info divisions (<DIV> sections). We wanted fo show the messages related to
Hints, Feedback and Communication in the same division, because of this we defined one
view module for the showing of messages and called it aft first FeedbackView. Functions
related to the control of this view we added to FeedbackControl and we defined a type
Feedback in the module FeedbackModel for the messages. Afterwards we realized that
MessagesView was a better name for FeedbackView, because it shows all kind of messages
and not only feedback messages, but we did not extract the functions and the types related
to messages from FeedbackControl and FeedbackModel.

6.2. Modules
In the next paragraphs we describe the modules of our proof of concept. We concentrate us
on the most important modules and the most important functions of those; most of the
internal functions and cleaning and initialisation functions are skipped.

We start with an overall view of the complete proof of concept (see 6.2.1), next we describe
the structure of the type definitions (see 6.2.2). After that we describe the structure of the
views (see 6.2.3). Finally, we describe the other modules (see 6.2.4 t0 6.2.10).

6.2.1. Overall view of the proof of concept
Our proof of concept starts with calling the main module, a base module in which the
structure of the program is defined and initialization of the variables msg and model is done.
In this module the functions update from the MainControl module and view from the
MainView module are defined. These two functions will be executed in a loop afterwards
(see Figure 19). In the diagram of the overall view of the proof of concept (see Figure 21) the
modules Main and MainControl are combined because we do not know exactly how ELM
communicates between the Main module and the defined update and view function and it
was not important to examine this more.

The function view of the MainView module uses the modules ExerciseSelectionView,
AnswerView and MessagesView to present the view to the student (see the left-side of Figure
21).

The MainControl module calls functions in the modules ExerciseSelectionControl, RuleConfrol,
AnswerControl, HintfControl and FeedbackControl and functions in these modules except for
AnswerControl can call functions in the module CommunicationControl (see Figure 21 centre
and right-side). CommunicationControl calls functions in the module CommunicationModel
to request all wanted data from the external module (see Figure 21 lower left corner).

46

Student Interaction Module k&
i ——iT retrieveRandomExercise
I ge:erat;l;and?mExercnse = e s T
retrieveExample Selecti '« ChangeSelectedLeve .
| Updated model + command .| Control | _ retrieveExampleExercise —Umiv
U@ated model + command r o ~ Update view
: : e _ requestRules V.
felnevsh uiais Rule < handleRulesReceived Exercise
Updated model + command Control Updated model + commang Se\l;:z:]von
setinput Mvi‘e’w %
l handleUndo Update view
* handleStep g
Answer selectRule Mai Answer |
! ain
C(_)'?tf(’l setState View Mew
Communication T —f_ addStep Updated ‘liew
Control initAnswer Man .
Updated model + command + '—Mliw
getNextHint — MainControl
retrieveCompletingSteps handleHint Message
retrieveHint Hint . showHint e
Updated model + command Control = handleSolution Updated|view
receiveSolution)
+ -
e Updated view
clearFeedback Legenda
l setFeedback S
checkStep * handleAnswerStep < N) Start/end
< checkComplete Feedback | handleFeedback —
u Control = SIM
pdated model + command handleAnswerComplete
send 2equé‘§t{ 1data t Q handleRe adyAction
+ — resetFeedback ESZLT:I
External Re: ;‘::e Communication Updated model + command o —
Module P ! Model | Component/
—l Entity
== Trigger/
N _—
End) {Updated) value

FIGURE 21: OVERALL DIAGRAM OF OUR PROOF OF CONCEPT

6.2.2. Type definitions in the Model modules
The Model modules in our proof of concept can have three functions:

o Defining types
e Defining constants and providing them to functions from other modules
¢ Communication with the external module

In this paragraph we look at first of these options; defining types. The other options are part of
the description in paragraphs 6.2.4 10 6.2.10)

Our proof of concept is programmed in ELM, a functional language. Regarding types this
means that all variables are from a pre-defined type or a type defined in the program.

Correct usage of a type is checked at compile-time. Figure 22 presents the Model modules
and the relations between them.

There is one issue with this model; for the type definitions we have looked at the types
needed to communicate with the IDEAS Framework, we are noft sure if the type definitions
also can be used when another module is connected to our proof of concept. Maybe it was
a better solution to make a special IDEAS-model module with the definition of all types and
inherit those types in the other modules. Advantage of that solution would be that when
another module is connected to our proof of concept there would be a higher chance that
only the special IDEAS-model module has to be replaced by another module.

47

GenericModel

<State>
<Environment>

<User=
|

f

HintModel RuleModel
<Hint> <Rule>
<HintState>

«<Solution>

<SolutionStep>

I
vy

ExerciseSelectionModel’ | AnswerlModel

<Step=

<ExampleExercise> <AnswerStructure>

Y

FeedbackModel

<Feedback>
<Diagnosis>

Figure 22: PoC: Type definitions in the model modules

A
CommunicationModel

<Config=
<ldeasResult>
<ldeasRule>
<SendRequestType>
<GenerateFields>
<RuleListFields>
<SolutionFields>
<OneFirsttextFeilds=
<DiagnoseFields>
<ReadyFields>
<GetExampleFields>

MainModel contains the definitions of the types that are used in the entire program. Model is
used to store values from and to supply values to all modules and Msg is used to control the
flow of program. Both use definitions of types defined in the modules FeedbackModel,

HintModel, RuleModel, ExerciseSelectionModel and AnswerModel. The real type definitions

are encapsulated in those models and are hided for the MainModel.

FeedbackModel uses the type definitions of HintModel and RuleModel for the definition of the

definition of the Diagnosis-type; the outcome of a diagnosis can contain hints and rules.

The genericModel contains types that are not related to one of the other entfities, but are

needed in definitions of types of other modules.

48

6.2.3. The view modules
The main view function, the function view from the MainView module is defined in the Main
module. Figure 23 presents the relation between the view modules of our proof of concept.

Main:
[}
Model
Type definitions
‘Exercise e = i
 Selecti Generic Rule Feedback

Update Selection GRS

View Model Model Model Model
Update Type I —
vig\?v Definitions Type definitions
\ Levels Type

Y \J Yy ¥ YExercises y ¥ ydefinitions L / L

MainView ExerciseSelectionView| AnswerView MessagesView
<AnswerLineElement>
Updated
view
A A A ‘ A
\.
Updated
view Button ViewStep
Definitions

FIGURE 23: POC: RELATION BETWEEN THE VIEW MODULES

The function view of the MainView module calls every fime it is executed the functions
exerciseMenu from the ExerciseSelectionView module, answerView from the AnswerView
module and viewMessages from the MessagesView module.

The function exerciseMenu presents the menu that is used by the student to select the
exercise level for randomly generated exercises and to select the example exercise.

The function answerView presents the answering part of the page, which contains the inputs
for the answer and all the control buttons provided by the Buttons module.

The function viewMessages presents all messages related to hints, feedback and
communication o the student.

The HelperFunctions module is a supporting module and is used by AnswerView and
MessagesView. It only has one function: viewStep that is used to present steps in the answer
and to present steps in hints when asked for the completing steps.

The module AnswerView contains the datatype AnswerlLineElement, this datatype is
responsible for the definition of an answer line that is presented on the page and could not
be added to the AnswerModel module because it would result in a Cycle Reference Error.
Because this datatype is only used in AnswerView we have added this to the AnswerView
module.

49

6.2.4. Main
Main (see Figure 24, use Figure 25 as legend) consists of the Main, the MainControl, the
MainView and the MainModel module. The MainModel module is discussed in paragraph
6.2.2 and the MainView module is discussed in paragraph 6.2.3.

We are not sure whether Main or MainControl conftrols the loop between the update function
of MainConftrol and the view function of MainView. In our diagram we have connected both
fo the Main module, but this can also be controlled by the MainControl module.

Random
Exercise

FIGURE 24: POC: MAIN DIAGRAM

Initial
State

Type definitions
Type definitions
Main Messages + updated model
Messages + model
- - Updated
view
Update
view ,
[} MainView MainControl
Request Request
Random Initial
Exercise State

function calls

Messages & updated model

Legend
Modile name Group of functions Type definitions
~——————— Function call / program flow|
name Highlighted Module
—®» R dat
name External module S
External call
- Function <name> Data type

Each figure represents an entity, those are the highlighted modules in the middle of the figure. These modules can
contain functions, groups of functions (a group of similar functions) and data types. Above and below the
highlighted modules you find the connected modules. In some cases modules are mentioned more than once in
a diagram to improve he readability of the diagram. The arrows represent the connections between the modules
and sometimes the functions of the modules. These are divided in type definitions, function calls and program flow
(the return after a function without data) and the return data. The external module and the external call are used
to show the communication with the external module.

FIGURE 25 : LEGEND PROGRAM DIAGRAMS

50

Main and MainControl

The main function of the Main module is responsible for the definition of the program. The init

function of the Main module is responsible for the inifialisation of the variables model and msg
that are used in the entire program. The update function of the MainControl module controls
the flow of the program.

6.2.5. Exercise selection
Exercise Selection (see Figure 26, use Figure 25 as legend) consists of the modules
ExerciseSelectionControl, ExerciseSelectionView and ExerciseSelectionModel.
ExerciseSelectionView has been discussed in 6.2.3 and is left out of the diagram.

Function call| 4 Retrieve | 4 .
model Random Main
Exercise Model
Type definiti g
AR Request Example Exercises /
Available levels
Example Exercises / Available levels
messages Random i
Updated exercise Type definitions ;
¥ model 1‘ Y
ExerciseSeilaction | ExerciseSelection
Control Model
Selected Random Example.
Level Exercise Exercise _
A A

Random Example
Exercise

Generat] Retrieve

Communication’

Random Example
Exercise

FIGURE 26: POC: EXERCISE SELECTION DIAGRAM
ExerciseSelectionControl

The retrieveRandomeExercise function is responsible for the refrieval of random exercises, it
uses functionality from the CommunicationControl module to actually retrieve the exercise
(see 6.2.10). The refrieveExampleExercise function is responsible for the retrieval of a specific
example exercise, it also uses functionality of the CommunicationControl module (see 6.2.10).

The changeSelectedLevel function is used to update the selected level for a next random
exercise that is retrieved.

51

ExerciseSelectionModel

The functions getExampleExercises and getAvailablelLevels are responsible for the retrieval of
the possible example exercises and available levels of the proof of concept.

6.2.6. Answer
Answer (see Figure 27, use Figure 25 as legend) consists of the modules AnswerControl,
AnswerModel and AnswerView. AnswerView is discussed in paragraph 6.2.3 and not shown in
the diagram. AnswerModel is discussed in paragraph 6.2.2 and only shown a used module for
used datatypes.

Function-call| 4 Request |+
model InitialState
Messages Initial
¥ Updated model ki State yType definitions
AnswerControl

FIGURE 27: POC: ANSWER DIAGRAM

AnswerControl

The answer process starts with initialisation of some fields of the model variable and adding
the exercise as first step of the answer.

Every step in an answer starts with retrieveRules, which friggers a process in Rules to make
rules available for Answer. The student gives input which is handled by setinput or selects a
rule which is handled by selectRule.

After a step the student can click a button to check a step of the answer, this is handled by
the buttons module this triggers handleStep which checks whether the answer is complete
and if it is complete forwards it to feedback for a diagnose.

The student can also click a button to have the complete answer checked, in which case
feedback is friggered directly for a diagnose.

Depending on the result of the diagnose the process will return, if the step or the complete
answer was incorrect, to the current answer line or, if the step was correct setState will add
the values of the step to the list of given steps.

52

6.2.7. Hint
Hint (see Figure 28, use Figure 25 as legend) consists of the modules HintControl and
HintModel. HintModel is discussed in paragraph 6.2.2 and is in this diagram only shown as
source of input for datatype definitions. Everything related to the presentation of hints is part
of the MessagesView module (see 6.2.3).

Function-call
model
Messages
Updated model y Type definitions
HintControl

retrieve retrieve
Completing Hint
Steps

Completing Hint

Steps

FIGURE 28: POC: HINT DIAGRAM
HintControl

After the hint button is pressed by the student the function handleHint is executed. This
function uses functionality in the CommunicationControl module to refrieve a hint. The
retrieved hint is send to getNextHint which determines the hint that has to be shown to the
student.

After the completion button is pressed by the student the function handleCompletion is
executed. This function uses functionality of the CommunicationControl module to retrieve
the completion of an exercise as a hint. The retrieved hint is send to receiveCompletion to
store the hint in the model variable.

53

6.2.8. Rule
Rule (see Figure 29, use Figure 25 as legend) consists of the modules RuleControl and
RuleModel. RuleModel is already discussed in 6.2.2 and is in the diagram only shown as input
for type definitions.

Function-call
model
Messages Type definitions
Updated model w
I Y
RuleControl
RetrieveRulelist Rulelist

FIGURE 29: POC: RULE DIAGRAM
RuleControl

When rules are needed the function getRulelist is executed. This function retrieves a list of rules
by calling a function in the CommunicationControl module. The requestRules function uses
the getRulelist function but is needed because of a different return set of parameters. After
both functions the handleRulesReceived function is used to store the list of rules in the model
variable.

54

6.2.9. Feedback

Feedback (see Figure 30, use Figure 25 as legend) consists of the modules FeedbackConfrol
and FeedbackModel. FeedbackModel is discussed in 6.2.2 and is in the diagram only shown
as input for type definitions. There is not a view related to feedback; all the feedback
messages are part of MessagesView (see 6.2.3).

Function-call
model
Messages
v Updated model VType definitions
FeedbackControl

checkStep | Check

Feedback
Complete

Feedback
Step

FIGURE 30: POC: FEEDBACK DIAGRAM
FeedbackControl

handleAnswerStep and handleAnswerComplete are both used to start the diagnosis by the
connected module by calling CommunicationControl; handleAnswerStep is used for a step in
the answer and handleAnswerComplete is used to check whether the derivation is complete.
Both functions refurn a message with the result of the diagnose. The processing of the
received data is done by the functions handleFeedback and handleReadyAction.

setFeedback and setError are used to put text messages in the feedback variable of model,
setFeedback for a positive result and setError for a negative result.

55

6.2.10. Communication
Communication (see Figure 31, use Figure 25 as legend) consists of the modules
CommunicationControl and CommunicationModel. The type definitions of the
CommunicationModel are discussed in 6.2.2, in this paragraph we only discuss the functions
of both modules.

Reguest hequest Request ‘ Regquest + Request 4 Reques’t‘ 4 Request 1 % :
Random Example Rulelist Completing| | Hint Analysis| | Analysis R
Exercise Exercise Steps Step Completq l

.

Type definitions

4

e 'CommunicationModel
ommunicationControl
Random Example Rulelist Completing in Anaiysns Analysis
Exercise Exercise v Steps Ste p Complete
4
|
Encoders Decoders
F] K
| Request
Function call
Results Data Eiomal
=5 Module ‘

FIGURE 31: POC: COMMUNICATION DIAGRAM

CommunicationControl and CommunicationModel

The functions generateRandomeExercise, retrieveExample, retrieveRulelist,
retrieveCompletingSteps, refrieveHint, checkStep and checkComplete are called to retrieve
data from and to have results checked by the connected module. These functions use the
encoders to encode the messages and send those encoded messages to the sendRequest
function of CommunicationModel that communicates with the connected module. The result
of the communication with the external module is decoded with the decoders of
CommunicationControl.

The module CommunicationModel has one issue that we could noft solve; it exposes all the
types and functions defined in it, although the function formatError is meant fo be used only in
CommunicationModel. For an unclear reason we could not do anything else than make
everything visible.

56

6.3. Architecture vs proof of concept

In this p
the pro

D.1.
D.2.
D.3.

D.4.

D.5.
D.6.
D.7.
D.8.
D.9.

aragraph the most important differences between the architecture of the SIM and
of of concept is discussed. These differences are:

Features from the architecture missing in the proof of concept.

Functions of the proof of concept not mentioned in the architecture.

Features from the architecture split up in more than one function in the proof of
concept.

Difference between the MVC-pattern in the architecture and the one in the proof of
concept.

The function of the model modules in the architecture and in the proof of concept

The view modules related to messages to the student.

The presentation of buttons.

Differences in the communication modules.

The connection with the Communication modules.

These differences will be discussed in the sections below, in summary, they have the following

causes

and consequences:

CC.1. The architecture has more functionality than the proof of concept, because it must

encompass multiple ITSs (D.1). In appendix A we describe in detail how the other
features could be added to the proof of concept.

CC.2. The level of the architecture is too high to describe every possible functionality of

an [TS (D.2). Since the differences between the proof of concept and the architecture
are small, there is not a need for a change in the architecture.

CC.3. The connected module does not only affects the communication between the SIM

and the connected module, but also the way how characteristics of entities are
presented, asked for and checked by the SIM (D.6 and D.8). In our proof of concept
this can be solved by adding extra modules with the elements related to the
connected module (type definitions, format, checks on input etc.), that can be used
by the other modules. In the architecture this kind of modules are part of
Communication, this can be made part of an exira entity: ExternalModule that
consists of modules with variables and functions that can be used by other modules.

CC.4. Some differences are related to implementation aspects (D.2, D.3, D.4, D.5 and

D.7). Nothing has to be done with these differences; these are expected differences
caused by programming in a specific programming language.

CC.5. Some differences are caused by errors made during programming (D.6 and D.9).

These situations only affect the proof of concept and have no consequences for the
architecture.

Only point CC.3 can have consequences for the architecture. This can improve
encapsulation and data-hiding, which makes the entities Exercise, Answer, Hint, Feedback
and Communication less related fo the connected module. This improves the reusability of
those modules.

57

Features from the architecture missing in the proof of concept.

Because the idea behind our architecture is that it should hold for more connected modules
and our proof of concept is only build for one specific situation, not all the features of the
architecture were needed in the proof of concept. In appendix A we describe in detail the
missing features and how these can be added to our proof of concept if needed. Adding
the features as functions to our proof of concept is not a problem.

Functions in the proof of concept not mentioned in the architecture

Our proof of concept has functions that are not mentioned in the architecture. These are
functions related to implementation aspects such as getters, initialisation and clear functions.
This was expected because the architecture is of a higher level than the proof of concepf. It
was expected that this kind of functions had to be added to our proof of concept.

There are also functions related to functionalities from the connected module that were not
taken into consideration when making the architecture. In our proof of concept this applies
for exercise level. Exercise level is in our architecture a characteristic of an exercise.

Features from the architecture split up in more than one function in the proof of concept.

In some cases it was needed to split up features from the architecture info more than one
function in the proof of concept. An example of this are the view functions; in the
architecture only one view function is defined, but in the proof of concept this has been split
up in several functions. This is an implementation aspect caused by the higher level
architecture as proof of concept. It was expected that this would happen.

Difference between the MVC-pattern in the architecture and the one in the proof of concept.

The architecture is based on an MVC-pattern in which the views are triggered by functions
from the corresponding control modules. Our proof of concept is based on ELM where the
main view function is automatically updated after the main update function has been
executed. To update the separate views they have to be called from the main view function.
Compared to programming in a traditional language in which every action has to be
programmed separately, the ELM code is easier to program because there are no
commands needed to update the views.

The function of the model modules in the architecture and in the proof of concept

The functions of the model modules in the architecture are: to store data and provide that
data to other functions within the same entity and to communicate with connected modules
outside the SIM. The functions of the model modules in the proof of concept are: to define
the types, to store constants and provide the values to other functions within the enfity and to
communicate with connected modules outside the SIM. The model modules in the proof of
concept do noft store data from variables other than constants, which is part of the
functionality in the architecture.

In our proof of concept we use the variables model of the Model-type and msg of the Msg-
type to store the data; model is used to store values and msg is used to store messages with
optional data belonging to those messages. These are variables of which the types are build
up from types defined with the entities and can be used by the entire program (see 6.1.2). As
far as we could see we could not use more variables in ELM, except for variables that are
only available within functions. The usage of types of the entities in the Model-type can be
improved by defining interfaces in the entity models; this way there will be less coupling
between the MainModel module and the other model modules. The messages in the Msg-
type can maybe be grouped in messages groups per entity, which would make them
interfaces as well. This would also lead to less coupling between the model modules and it

58

would lead to less coupling between the MainControl module and the other control modules,
but we have not done enough research to know if this will work.

Many definitions of the used types in our proof of concept are related to the IDEAS
Framework. In paragraph 6.2.2 we suggest to add an exira model module with all the
definitions that are related to the IDEAS-framework. This extra model module can be used as
a facade for incapsulated definitions of the IDEAS types by the other model modules. This
would make the coupling between the modules higher, but it would hide the details of how
everything is stored in IDEAS for the other modules. IDEAS is one of the possible connected
modules a better name for this extra module is: ExtenalModule.

The view modules related to messages to the student

The HintView, FeedbackView and CommunicationView modules from the architecture are in
the proof of concept combined in the MessagesView module (see 6.1.4). The problem here is
that the functions and the types related to the messages are combined in FeedbackControl
and FeedbackModel of the proof of concept. This error causes a lower cohesion within the
two modules. Below we describe how the presentation of the messages in our proof of
concept works and which changes need fo be made to correct our error.

Feedback type; type used to store values of the messages. NoFeedback; show no
message, ErrorFeedback; show an error message from Communication or Feedback,
ReadyFeedback; show a message that a derivation is complete, HintfFeedback; show
a hint message of one line, SolutionFeedback; show a hint that consists of answer
steps. This type definition should be part of MessageModel and called Message.

The functions clearFeedback and resetFeedback of the FeedbackControl module;
are both functions to clean the messages, resetFeedback Is the function that cleans
the feedback, in our proof of concepft this function is used when a new exercise is
loaded or by the clearFeedback function. The clearFeedback function is used when
the student wants to remove the message. The difference between the two functions
are the return parameters, resetFeedback only returns a model, whereas
clearFeedback returns a model and a message. resetFeedback turns the value of the
Feedback to NoFeedback. These two functions should be moved to MessageControl.

Messages are set to be shown by functions of HintControl, FeedbackControl and
Communication control by a command feedback = flowed by a type of the
Feedback type and variable that holds the message that has to be shown (this could
also be a value), for example: feedback = FM.ReadyFeedback feedbacktext.

The function viewMessages of the MessagesModule is used to show the messages. For
every type of the Feedback type it calls a function that presents the feedback.

The functions called by viewMessage of the MessagesModule have duplicate code. This can
be optimized by defining two functions: one for presenting single-line messages and one for
presenting formulas and rules, that both have the class as a parameter (the class is used to
determine the colour used to present the message).

Another improvement is to change the types of the Feedback type intfo types of messages
that have to be presented (NoMessage, SingleLineMessage and StepMessage); this would
make the types generic.

Making a separate HintView, FeedbackView and CommunicationView is a small step after
the above improvements are made; all three would use the generic types and functions to
present messages and the presentation could be done in separate <DIV> tags within the
current <DIV> tag.

59

The presentation of buttons

In our proof of concept the buttons are presented as one line of buttons within AnswerView.
In the architecture the buttons are part of the ExerciseSelectionView, AnswerView and
HintView. The operation of the buttons is described below.

All functions to present the buttons use the function actionButton from the module
buttons. actionButton is a factory to make buttons.

The buttons are first grouped per entity in the functions getAnswerButtons,
getHintButtons and getExerciseSelectionButtons. These functions are combined in the
getAllButtons function that is called from AnswerView to show the buttons.

Advantage of this solution is that all functions related to buttons are concentrated in one
module with only a relation to MainModel for the definition of the types, but this is also a
disadvantage; it makes it harder to delete optional functionality and the buttons module is
more related to a specific implementation of the SIM.

We have chosen for this solution because adding the buttons to the model modules of the
entities gave Cycle Reference Errors (the MainModel module uses the model modules, but
the button functions need the types form the MainModel module).

Another option is o make entity-related modules for the buttons with an extra module for the
generic actionButton function (it is not possible to combine this function with the getAllButtons
function, because that will result in a Cycle Reference Error). In our proof of concept this
option would result in 5 small modules.

In our proof of concept with all buttons in one line our solution is good to handle, but if the
presentation would be divided into sections per entity with the related buttons the other
opftion can be easier.

Differences in the communication modules

The features SendMessage and ReceiveMessage from the architecture are in our proof of
concept combined in the function sendRequest. The functions generateRandomExercise,
refrieveExample, refrieveRulelist, retrieveHint, checkStep and checkCompletion of our proof
of concept are each a combination of the features PrepareMessage and
ProcessReceiveMessage from the architecture and they use the Encoders and Decoders.

Because the functions generateRandomExercise, retrieveExample, retrieveRulelist,
retrieveHint, checkStep and checkCompletion have the same construction; they all use a
encoder to make a message that is send to sendRequest and they all use a decoder fo
transform the received data to usable data for the proof of concept. The only differences are
the encoders, the decoders and the return messages. We expect for these functions a
factory patftern can be used. This would result in one function that is responsible for preparing
the message that is send by sendRequest to the external module and transforming the data
that is received to data that can be used by the SIM.

The encoders and decoders are in our proof of concept part of CommunicationControl. Our
encoders and decoders are functions that transform messages to and from the IDEAS
framework format. In the architecture the encode and decode functions are part of
PrepareMessage and ProcessReceivedMessage and they use a communication format that
is stored in the CommunicationModel Module. We did not have enough knowledge of ELM to
program it this way. Our proof of concept communicates with the IDEAS Framework, which
does not use a standard communication protocol. We think that the encoders and decoders
should be moved to a IDEAS related module, that is used by the CommunicationModel
module. Doing this gives the possibility to use other similar external Modules without changing

60

the CommunicationModel and CommunicationControl modules. For a good implementation
of the communication using standard protocols (see 5.3.3.3.1) more study has to be done on
this subject.

The connection with the Communication modules

Our proof of concept has two differences with the architecture related to the connection
with the Communication modules; the ExerciseSelection modules do not handle the result
that is returned from the Communication modules, this is done by the setState function of
AnswerControl and the Answer modules do not send the answer or a step of the answer for
diagnosis to CommunicationControl, this is done by the functions handleAnswerStep and
handleAnswerComplete.

The difference with ExerciseSelection is made because the exercise is used as the first step of
the answer. We could also receive the exercise and first store it into a field of model in an
extra function of ExerciseSelectionControl and retrieve the exercise from that field in
AnswerControl, this would have made the ExerciseSelection part more independent from
Answer,

The difference with the diagnose of an Answer is made to concentrate the send and receive
functions into one control module, with the intention to combine these two functions into one
function, to reduce the number of messages handled by the update function in the
MainControl module. The problem with this solution is that FeedbackControl has knowledge
about an answer in this consfruction, which was not the case in the architecture.

61

/. Flexibility of the architecture

In this paragraph the flexibility of the SIM architecture is examined, which is RQ. 3 of this study.
The SIM architecture should be able to support all kinds of Logic ITSs based on a four
component architecture. It is impossible to check if every existing Logic ITS can use the SIM
architecture, and even if this was possible there will be new [TSs developed. That is why we
look at the flexibility of the SIM architecture; if it is flexible, it is more likely that the SIM
architecture can be used for other Logic ITSs as well. This is done by looking at other kind of
ITSs and discussing how the SIM architecture can be used fo support those [TSs. The SIM
architecture is developed for supporting Logic ITSs, but if it is flexible enough to support
another kind of TS, it probably can also support other Logic ITSs. Two kind of other ITSs are
discussed: ITSs for mathematic exercises and ITSs for programming languages.

ITSs for mathematic exercises

Mathtutor (“Mathtutor,” 2020) is an ITS for mathematics. The SIM concentrates on logic, by
looking at a mathematic ITS we think that if an ITS can support most of the mathematic
exercises it also can support most of the logic exercises.

Mathtutor contains multiple tutors in various categories. Because of the many options we only
describe three of those, as far as we could see, all tutors have a similar approach. We use
7.52 Solving Linear Equations with Parentheses of the category solving equations (see Figure
32), 6.16 Area of Polygons of the category Area, Perimeter, Circumference (see Figure 33)
and 8.26 Interpreting Box-and-Whisker Graphs of the category Box and Whisker Plots (see
Figure 34).

7.52 Solving Linear Equations with Parentheses: Activity 1 of 8

Please solve for x:

N

L

FIGURE 32: 7.52 SOLVING LINEAR EQUATIONS WITH PARENTHESES

62

6.16 Area of Polygons: Activity 3 of 28

You are designing a walkway from the garage to your back
porch. You have enough cement to cover 8.25 square meters.
To the right are some possible widths for the walkway. What
width would give you the longest walkway?

£ A walkway Area of the Width of the Length of the
walkway walkway walkway
. Longest
/:‘ Unit sq. meters (sq m) meters (m) meters (m) walkway?
(._‘!. Diagram
z crnes | 1 01
7V B.25sq. m -
D C 2 02
3 03

(1) The width of the walkway 0.75 meters, how long will the
walkway be?

{2) The width is 0.6 m, what will the length be?

(2) You want a skinny walkway at only 0.2 m wide, how long
could the walkway be?

Decimal Division

? Decimal Multiplication

Hint Identify expression for the perimeter
Identify expression for a segment
Find perimeter of a parallelogram

J Identify base segment

Done segmentsdacet 10 e base

FIGURE 33: 6.16 AREA OF POLYGONS

8.26 Interpreting Box-and-Whisker Graphs: Activity 1 of 8

An environmentalist was studying how geese gather together in flocks to
migrate south for the winter. Over the period of a week, she counted how
many geese were in each flock that flew by overhead and created this graph:

Please use the box-and-whisker plot to answer the questions below.
The largest flock had

geese.

Number of Geese in Each Flock
25% of the flocks had at least

Lower
Quartile

Upper
Quartile
Maximum

_{

Median geese

Minimum

50% of the flocks had at least
geese.

75% of the flocks had at least

geese,

The smallest flock had

10 15 20 25 30 35 40 45 50 55 60 [Joeese.
2 Identify value given a quartile

! Identify value for maximum or minimum
Hint Identify value given an end of a range

FIGURE 34: 8.26 INTERPRETING BOX-AND-WHISKER GRAPHS

The exercises in Solving linear equations with parentheses are divided in two parts. The first
part, in which the formulas and the rules have to be given, looks like the exercises in our proof
of concepft; the input is a formula that has to be entered until the answer is complete. the
second part, in which only the final answer must be given, is different from what we had in
the proof of concept, but could be solved as a formula without a rule. The exercises in Area
of Polygons use a table in which the answers have to be entered, this is different to our proof
of concept because the proof of concept does not have any support of tables at this
moment. The exercises in Interpreting Box-and-Whisker Graphs use graphics in the text of the
exercise, this is not supported in our proof of concept at this moment.

All three have a part in which the exercises and the answers are given, a part in which help
and text feedback is given and they all three have a part in which the KP feedback is given.
The KP feedback is not part of our proof of concept.

The part in which the exercises and the answers are given fits within our architecture. The
showing of the exercise and input of answers is part of the answer modules in our
architecture. The showing of images can also be done in AnswerView, but probably a
supporting module for showing the images that is used by AnswerView is wanted.

Mathtutor has two separate areas in which hints and feedback are shown. In the SIM
architecture there are two separate view modules for these messages, but because the two

63

areas are presented next to each other, they can also be combined in one module like we
did in our proof of concept.

Mathtutor uses the jQuery ajax method. This method send data to a specified URL and
decodes the return data with a specified decoder. This is basically the same as the
construction we use in our proof of concept in the Communication modules.

Our conclusion is that the parts of Mathtutor we have seen fit in our architecture, but can
lead to some specific extra supporting modules.

ITSs for Learning a programming language

Ask-Elle (Gerdes et al., 2017, p.) is an ITS for learning Haskell that uses the same IDEAS
framework as we did for our proof of concept. We look at Ask-Elle because the learning
material is not related to mathematics, if Ask-Elle can be supported by our architecture as
well, there is a bigger chance that our architecture can support all kind of logic exercises.

Ask-Elle (see Figure 35) has an exercise selection, a part in which the current exercise is shown,
an editor part for entering the answer and a Help part to ask for help and to give feedback
(see Figure 35). The exercise selection fits in the ExerciseSelection modules we have in our
architecture. The current exercise is in our architecture part of the Answer module; but in our
proof of concept this line is shown as part of the answers given by the student.

Ask-Elle =

All Exercises 4| | Description #| Help s
= haskell))))) You can follow one of the following strategies:
(=3 encoding Write a function that converts a list of bits to the corresponding integer
= frombin value: fromBin :: [Int] - Int. For example: Implement fromBin using the foldl Prelude function. -
=T list > fromein [1,0,1,0,1,0] Explanation
=] compress 42
=] dropevery Define the fromBin function using foldl. The operator should
= IJ. I') = fromBin [1,0,1] multiply the intermediate result with two and add the value
= dupli 5 of the bit. This solution therefore multiplies every bit in the
=] elementat list n-times by two while summing the individual bits.
=] encode "
Hint
=] identity
=] myconcat —— Use the higher-order function foldl,
= myfilter K
= m:r‘art FromBin = 3 More Help S
= = where . R
:_:;Imy\enqth i ebnb=2%n+hb > Refine the current term to
=] myreverse FromBin =
=] pack foldl # ?
= pali where
5 ua.llndrume R
=] primes 2%n+b
=] range
:_::I removeat
=] repli
:_::I rotate
=] slice
=] split
:_:;I transpose
=3 tuple
=] allpairs

FIGURE 35 : Ask-ELLE

The editor part is in the architecture part of the Answer modules, but in this situation the
answers that are already given by the student and the import lines are the same. This fits
within the architecture, but the implementation is different from the one we have chosen for
our proof of concept.

The answers in Ask-Elle are the program that is developed. Ask-Elle uses a special editor for
this and the complete program is send to the connected module for diagnose and hints. In
our proof of concept we used a step-wise answer, where every step consists of one enftry line.

64

Our architecture also supports constructions in which more than one entry line is part of an
answer. Therefore it has the possibility fo use an answer-structure in which entry lines can be
defined. This is meant to define case-constructions that are used with inductive logic, but this
can also be used for the definition of a program with lines of code. The special code editor
can be a separate module that is used within the Answer modules.

Ask-Elle has a part that presents hint and feedback messages, both are supported by the SIM
architecture. The hint messages can have several layers, the SIM architecture does not show
such a detail about hints; it only shows that hints can be used and it offers the possibility to
retrieve more hints, how the hints are shown and if a hint consists of more than one level is
seen as an implementation aspect.

Our conclusion is that Ask-Elle can probably be built based on our architecture, but the
response part uses the answer structure in a way that is not intended, this is not a real
problem.

65

8. Discussion

In this chapter the proof of concept of the SIM is compared with the SIM architecture and the
differences between both is discussed. Also the flexibility of the SIM architecture is discussed
by looking at two non-logic ITSs and describing to which extent the interaction part of those
ITSs can be designed with the SIM architecture and in the last paragraph this study is
discussed.

8.1. Limitations of the study

A narrow basis for this study

This study is based on just a few studies in which requirements and quality guidelines for the
front-end of an ITS were mentioned and only one interview with a stakeholder. This is a narrow
basis for the study on the architecture.

It is possible that this basis was too narrow and there are more stakeholders for some of the
requirements and quality guidelines. It is also possible that requirements and quality guidelines
have more attention points then mentioned in this study. Nevertheless. it is expected that the
architectural drivers on which the architecture are examined remain the same, because
these are valid for reusable systems in general.

The depth of the study

The depth of the study is limited. A deeper study of the relation between Hints and Feedback
can lead to an outcome in which both are combined into one entity or an exfra messages
entity that is related to both.

In the study the communication between the SIM and the connected modules and the
effect of the connected modules for the SIM, which can lead to the need of an extra entity
related to the connected module, is already mentioned. A deeper study on this can also
lead to the need for more than one extra module; one for the connected module and one
or more related to the communication of the connected module with the SIM.

Proof of concept is very limited

The proof of concept is very limited; the developed SIM only contains a small part of the
possible functionality, it does not follow the architecture completely, the architectural drivers
maintainability and compatibility are not proven by the proof of concept and it connects
only fo a knowledge module and is therefore only a part of an LE and not on an ITS.

For all these arguments a written explanation has been provided with possible solutions. For
the missing functionality, it is described how this can be added to the proof of concept. For
the deviations from the architecture, it is described how this could have been built differently.
Maintainability is covered by using proven architectural concepts that improve the
maintainability. The difference between an LE and an ITS is seen from the SIM only another
module that is used for communication. Only the evidence for compatibility is poor; during
the construction of the proof of concept it appeared that the connected module had more
effect than just communication with this module. Probably the SIM architecture has to be
extended with model modules containing types that are related to the connected external
module.

The programming language of the proof of concept

The programming language ELM caused some differences with the architecture. One
difference is the control of the view functions. As far as we could see it was only possible to

66

define one view function that has to control the other view functions. The update of the views
is done automatically, but the views are not called from the control modules of the entities.

Another big difference are the model modules. Our architecture is based on a fraditional
MVC-model architecture in which the module modules are used to store values of variables
and used to supply those values to functions that need them. In ELM only variables that are
defined in the main module are available to functions of other modules. We have used the
model modules to define the types belonging to the variables and used those in the
definition of the variables in the main module. The effect of this is a lower maintainability
when an optional functionality has to be deleted completely from the SIM.

67

9. Conclusions and recommendations

9.1. Conclusions
The goal of our study was to examine a Student Interaction Module that can be used as part
of an ITS that supports stepwise Logic exercises and is based on a fraditional or four model
architecture, a combination of modules from different ITSs with a four module architecture or
a learning environment. To do this we have examined three research questions, that are
mentioned below.

RQ 1. what are the requirements for the Student Interaction Module?

We have determined the functional and non-functional quality guidelines and the most
important ones of those by doing a literature study and an interview. The most important
requirements and quality guidelines are:

- Compadatibility; the ability to connect to different ITSs from the SIM.

- Maintainability; how easy can the SIM be maintained, because of the many possible
connected ITS there are a lot of possible configurations that have to be maintained.

- Ogpftionality; not every ITS has the same functionality, so the SIM has several optional
functions.

RQ 2. what are the trade-offs with these requirements?

The most important tfrade-off between the requirements is compatibility versus maintainability;
the SIM should be able to connect to different ITSs, but not every ITS offers the same
functionality and the connection to every ITS can be different. This could lead to complex
software with many specific parts for specific ITSs, but SIM also has to be maintainable,
otherwise it will be too expensive to maintain and has possible more errors.

For the architecture of the SIM we have also looked at the frade-offs and concluded that a
web-based, product line architecture based on an MVC-model will fit the best with the
determined requirements. Web-based because this gives the possibility to make the SIM
available for more students. A product-line architecture because this gives the possibility to
use different modules for different connected ITSs if there is a difference in functionality
between those, but it gives also the possibility to re-use modules for functionality that is the
same in different ITSs. A plug-in architecture whereby other developers can add functionality
to our SIM is, based on the requirements, not needed, but an extra complex solution because
this kind of software has to be prepared for all kind of extensions in functionality. The MVC-
model and the Flux architecture both fit our requirements. We have chosen to use the MVC-
model because we have more experience with this one, but we think the Flux architecture
could be used too.

To describe the architecture of the SIM we have used a view with a feature-model. This is a
model that is focused on defining the fixed and the optional functionality. We also used a
functional view that is focused on showing the complete functionality of the system. These
combined views give a good picture of the architecture and the mandatory and optional
functionalities.

To prove that the architecture can be used we have built a proof of concept based on a
part of LogEx that connects with the IDEAS framework. Because this part only uses a part of
the complete architecture we also described how other parts of the architecture can be
implemented in the proof of concept.

68

The proof of concept shows that not only the communication of the SIM is related to the
connected module, but the connected module effects also the type definitions of the other
entities. An extra entity in the architecture related to the connected module is suggested. This
module can be used by the variables of the entities in the program as a facade for the
definitions of the variables related to the connected module.

RQ 3. what is the flexibility of our architecture?

Because there are many logic ITSs based on a four model architecture, It is almost impossible
to prove that the architecture is suitable for each of these ITSs, furthermore new ITSs can be
developed and for those it is impossible to prove that they can use the SIM architecture.
Therefor we have examined two other ITSs that are non-logic ITSs and looked if those ITSs
could use the SIM architecture. If those non-logic ITSs can use the SIM architecture, there is a
bigger chance that other logic ITSs also can use the SIM architecture. We have described
how those two [TSs can use the SIM architecture.

Conclusion

Our conclusion is that the described SIM architecture can be used for implementing a
student inferaction module, but the adding of an exira entity related to the connected
module is advised. Besides that the relation between feedback and hints in relation to the
SIM architecture needs to be studied.

9.2. Future work
The suggested extra module related to a connected module has to be studied deeper. In our
study this is only suggested, but a full study of the effects of the effect of the connected
module for the SIM sfill has to be done.

Connect another ITS to the proof of concept, to show that the architecture is still usable. Until
now it is only a paper prove.

Connect two other ITSs both with the same standard communication interface like QTI,
OpenMath or MathML. According to our study this should result in one set of generic
communication modules that can be used for both ITSs, whereby there will not be special
parts of code related to a specific one of the ITSs.

A closer study on the relation between hints and feedback related to the SIM architecture. In
our architecture we have separated these entities, but in our proof of concept we have
combined them and we also see that in other ITSs these seem to be combined. There are
more studies on hints and feedback, those can be combined with this study on the SIM
architecture to determine if another structure of feedback and hints is better.

69

Bibliography

Aleven, V., Baker, R., Blomberg, N., Andres, J.M., Sewall, J., Wang, Y., Popescu, O., 2017.
Integrating MOOCs and Intelligent Tutoring Systems: edX, GIFT, and CTAT, in:
Proceedings of the 5th Annual Generalized Intelligent Framework for Tutoring Users
Symposium, Orlando, FL, USA. p. 11.

Aleven, V., MclLaren, B.M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S., Ringenberg, M.,
Koedinger, K.R., 2016. Example-tracing tutors: Intelligent tutor development for non-
programmers. Int. J. Artif. Intell. Educ. 26, 224-269.

Alpert, S.R., Singley, M.K., Fairweather, P.G., 1999. Deploying intelligent tutors on the web: An
architecture and an example. Int. J. Artif. Intell. Educ. 10, 183-197.

Anderson, J., 1987. Production systems, learning and tutoring., in: Klahr, D., Langley, P.,
Neches, R. (Eds.), Production System Models of Learning and Development. MIT Press,
Cambridge, MA, USA, pp. 437-458.

Anderson, J.R., Boyle, C.F., Reiser, B.J., 1985a. Intelligent tutoring systems. Science 228, 456—
462.

Anderson, J.R., Boyle, C.F., Yost, G., 1985b. The geometry tutor., in: IJCAI pp. 1-7.

Birsan, D., 2005. On plug-ins and extensible architectures. Queue 3, 40-46.

Boduch, A., 2016. Flux architecture. Packt Publishing Ltd.

Brooks, F., Kugler, H., 1987. No silver bullet. April.

Brusilovskiy, P.L., 1994. The construction and application of student models in intelligent
tutoring systems. J. Comput. Syst. Sci. Int. 32, 70-89.

Brusilovsky, P., 1995. Intelligent learning environments for programming: The case for
infegration and adaptation, in: Proc. of AI-ED. pp. 1-8.

Corkill, D.D., 1991. Blackboard systems. Al Expert 6, 40-47.

Dermeval, D., Leite, G., Almeida, J., Alouguerque, J., Bittencourt, I.l., Siqueira, S.W., Isotani, S.,
Silva, A.P.D., 2017. An ontology-driven software product line architecture for
developing gamified intelligent tutoring systems. Int. J. Knowl. Learn. 12, 27-48.

Flux [WWW Document], 2019. . Flux - Appl. Archit. Build. User Interfaces. URL
https://facebook.github.io/flux/ (accessed 1.23.20).

Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T., 2017. Ask-Elle: an Adaptable
Programming Tutor for Haskell Giving Automated Feedback. Int. J. Artif. Intell. Educ.
27, 65-100. https://doi.org/10.1007/540593-015-0080-x

Goguadze, G., 2010. ActiveMath-generation and reuse of inferactive exercises using domain
reasoners and automated tutorial strategies.

Goguadze, G., 2009. Representation for Interactive Exercises, in: Carette, J., Dixon, L., Coen,
C.S., Waftt, S.M. (Eds.), Intelligent Computer Mathematics. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 294-309.

Goguadze, G., Mavrikis, M., éalez Palomo, A.G., 2006. Interoperability Issues between Markup
formats for Mathematical Exercises. WebALT 2006 Proc. 69.

Hartley, J., Sleeman, D.H., 1973. Towards more infelligent teaching systems. Int. J. Man-Mach.
Stud.

Heeren, B., Jeuring, J., 2014. Feedback services for stepwise exercises. Sci. Comput. Program.
88, 110-129.

Ingeno, J., 2018. Software Architect’s Handbook: Become a successful software architect by
implementing effective architecture concepfts. Packt Publishing Ltd.

ISO/IEC 25010:2011 [WWW Document], 2011. . 1SO. URL
https://www.iso.org/standard/35733.html (accessed 3.11.19).

Kimball, R., 1982. A self-improving tutor for symbolic integration, in: Intelligent Tutoring Systems.
Academic Press.

Kohlhase, M., 2006. OMDoc-An Open Markup Format for Mathematical Documents [version
1.2]: Foreword by Alan Bundy. Springer.

Krasner, G., Pope, S., 1998. A cookbook for using the model - view conftroller user interface
paradigm in Smalltalk - 80. J. Object-Oriented Program. - JOOP 1.

Lehman, M.M., 1980. Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 1060-
1076.

70

Lodder, J., Heeren, B., Jeuring, J., 2016. A Domain Reasoner for Propositional Logic. J. Univers.
Comput. Sci. 22, 1097-1122.

Mathtutor [WWW Document], 2020. URL https://mathtutor.web.cmu.edu/home (accessed
8.18.20).

Murray, T., 1999. Authoring intelligent tutoring systems: An analysis of the state of the art.

Narciss, S., 2008. Feedback strategies for interactive learning tasks. Handb. Res. Educ.
Commun. Technol. 3, 125-144.

Narciss, S., 2005. Informatives tutorielles Feedback: Ableitung und empirische Uberprifung von
Entwicklungs-und Evaluationsprinzipien auf der Basis instruktionspsychologischer
Erkenntnisse. Waxmann Verlag.

Nkambou, R., Bourdeau, J., Mizoguchi, R., 2010. Advances in Intelligent Tutoring Systems,
Studies in Computational Intelligence. Springer, Heidelberg.

Northrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G., Cohen, S., Donohoe, P.,
Jones, L., Krut, R., Little, R., others, 2007. A framework for software product line
practice, version 5.0. SEI-2007-httpwww Sei Cmu Eduproductlinesindex Html.

Nwana, H.S., 1990. Intelligent tutoring systems: an overview. Artif. Intell. Rev. 4, 251-277.

O’'Sheaq, T., 1979. A self-improving quadratic tutor. Int. J. Man-Mach. Stud. 11, 97-124.

O’'Sheq, T., Bornat, R., du Boulay, B., Eisenstadt, M., Page, I., 1984. Tools for creating intelligent
computer tutors, in: Proc. of the Intfernational NATO Symposium on Arfificial and
Human Intelligence. Elsevier North-Holland, Inc., pp. 181-199.

Padayachee, 1., 2002. Intelligent tutoring systems: Architecture and characteristics, in:
Proceedings of the 32nd Annual SACLA Conference. Citeseer, pp. 1-8.

Patvarczki, J., Politz, J., Heffernan, N.T., 2009. Scalability and Robustness in the Domain of
Web-Based Tutoring, in: Scalability Issues in AIED Workshop at the 14th International
Conference on Atrtificial Intelligence in Education.

Ritter, S., Brusilovsky, P., Medvedeva, O., 1998. Creating More Versatile Intelligent Learning
Environments with a Component-Based Architecture. pp. 554-563.
https://doi.org/10.1007/3-540-68716-5_61

Ritter, S., Koedinger, K.R., 1996. An architecture for plug-in tutor agents. J. Arfif. Intell. Educ. 7,
315-348.

Self, J., 1998. The defining characteristics of intelligent tutoring systems research: [TSs care,
precisely.

Siemer, J., Angelides, M.C., 1998. A comprehensive method for the evaluation of complete
intelligent tutoring systems. Decis. Support Syst. 22, 85-102.

Silva Marcolino, A., Francine Barbosa, E., 2017. Towards a software product line architecture
to build m-learning applications for the teaching of programming, in: Proceedings of
the 50th Hawaii International Conference on System Sciences.

Sosnovsky, S., Dietrich, M., Andrés, E., Goguadze, G., Winterstein, S., 2012. Math-Bridge:
Adaptive platform for multiingual mathematics courses, in: European Conference on
Technology Enhanced Learning. Springer, pp. 495-500.

Softtilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, HK., 2012. The generalized intelligent
framework for tutoring (GIFT). Orlando FL US Army Res. Lab. Res. Eng. Dir. ARL-HRED.

Teeuwen, G., 2016. Comparing architectural styles for distributed expert knowledge modules
in intelligent tutoring systems.

Thim, T., Kastner, C., Erdweg, S., Siegmund, N., 2011. Abstract Features in Feature Modeling,
in: Proceedings - 15th International Software Product Line Conference, SPLC 2011.
https://doi.org/10.1109/SPLC.2011.53

VanLehn, K., 2006. The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16, 227-265.

Wenger, E., 1987. Artificial Inteligence and Tutoring Systems: Computational Approaches to
the Communication of Knowledge. Morgan Kaufmann Publ.

71

Appendix
A.Adding other functionality

In this appendix we discuss functionality that is part of the designed architecture but is not
included in our proof of concept. Per entity we roughly describe how the missing functionality
can be added to our proof of concept and what functionality the external module should
support.

A.l. Exercise selection
SIM selects exercise

For SIM selects exercise the external module should have a list of exercises that can be
retrieved, or our proof of concept should have a hardcoded list of exercises. When a list of
exercises can be retrieved from the external module, there should be a function in
CommunicationControl to control the retfrieval of the exercises, this function will need a
SendRequestType that describes the encoded message that is send to the external module.
This SendRequestType should be added to the function methodCall of
CommunicationControl and maybe new encoders are needed to encode parts of the new
message. Also an extra decoder is needed to decode the new messages from the external
module. The new function in CommunicationConftrol uses the encoder and the decoder to
call the existing sendRequest function of CommunicationModel. To start the retrieval of the
exercises a new function in ExerciseSelectionConftrol is needed, this function calls the new
function in CommunicationConftrol. The list of exercises can be added to the model (an
addition to the Model type) by another new function in ExerciseSelectionControl. To trigger
both new functions in ExerciseSelectionControl new messages of type Msg are needed.

A hardcoded list can be added to ExerciseSelectionModel. This list can be read by a new
function in ExerciseSelectionControl and stored into a field of the variable of the Model type.

The selection of a new exercise can be done for both options in the same way. At this
moment our proof of concept only holds the current exercise as part of the steps taken, it is
easier to change to Model type and add an extra field for the current exercise. This extra field
can be used by a new function in ExerciseSelectionConfrol to determine the next exercise.
After an exercise is completed a new message of type Msg can be given. This will be
handled by the update function of MainControl and the new function for selecting the
exercise in ExerciseSelectionConftrol is called.

The external module selects the new exercise

For this option the external module should support the selection of new exercises. When using
a stateless external module like the Ideas framework this means that the external module
does not keep track of which exercise is presented to the student, thus the SIM has to send
that information to the external module. When using an external module that stores this
information the SIM does not have to provide this information.

The functionality that has to be added to the SIM can look like the function
generateRandomeExercise from CommunicationConftrol for an external module that holds the
state and like the function retrieveExample from CommunicationControl for a stateless
external module. In both cases these functions can be triggered by new messages of the
type Msg, that are handled by the update function of MainControl.

72

User defined exercises

For user defined exercises the external module should support exercises defined by the
student. In SIM there should be an input field for the user defined exercise. This exercise can
be stored in the current state in the Model type. The exercise can be send to the external
module with a function that looks like the checkStep function of CommunicationControl.. This
canresult in an error message when the exercise is not good. That message can be handled
by FeedbackControl and FeedbackView functions. When the exercise is correct it can be
added as a normal exercise like the exercises returned by the functions
generateRandomeExercise and retrieveExample from CommunicationControl using a SetState
message from the type Msg.

A.2. Answer
Delete

The delete functionality deletes all steps starting with a selected step. In order to make this
functionality it should be possible to select a step from the list of taken steps, this should be
added to the answerView functionality in AnswerView. With a new message of type Msg it is
possible to send the selected step to a new function in AnswerControl that deletes alll
involved steps. This new function can also be used to support the current undo functionality;
undo is the deletion of the last entered step.

Redo

The redo functionality can be used with the undo and the delete functionality. The undo and
delete functionality could store the steps that are deleted in an exira field with an list of
deleted steps in the type Model. The redo functionality can be called by pressing a new
button that uses a new message of type Msg. That message is send by the update function of
MainControl to a new function in AnswerControl and that new function adds the step by
using the existing addStep function from AnswerControl and afterwards it removes the added
step from the list of deleted steps. The button for redo can be active as long as there are
steps in the list of deleted steps.

Complete answer

Our proof of concept only supports step based exercises. An easy way to change this to
exercises that are only check after completing the exercise is to change the functionality
after pressing the submit button in such a way that the step is added to the steps taken
without checking the step and add an extra button for checking the complete answer
whereby the steps taken are send to the external module in the same way as done in the
proof of concept. When one of the checks of a step result in an error, the complete exercise
is answered wrongly.

Another way in which the complete answer is send to the external module depends on the
possibilities of the external module. If the external module supports complete answers the
current functionality after pressing the submit button can still be changed in only adding the
step without checking it and adding an extra button to check the complete answer. This
extra button should than call a new function in CommunicationControl that can handle a
complete list of steps. For this there will be a new message of the SendRequestType needed,
that can be handled by the function methodCall of CommunicationControl. Also there will
be also a new encoder needed that can transform a list of steps intfo a message and the new
message can be send with the sendRequest function to the external module. The return
message can be the same as the one from the checkComplete function of

73

CommunicationControl and stored in the ApplyReady type that can be handled by the
MessagesView functionality of MessagesView.

Answer in two directions

An answer in two directions can be used by exercises that prove logical equivalence. For this
a second list of steps taken in the Model type can be used. In AnswerView this second list of
taken steps should also be shown to the student. There should also be a way for the student
to indicate whether the answer should be added to the top steps or the bottom steps. The
current submit button can be used to indicate that the step should be added to the top
steps, and an extra button can be added to indicate that the step should be added to the
bottom steps.

How the checking of the steps is done depends on the possibilities of the external module. It is
possible that the bottom steps are checked in the same way as the steps in the proof of
concept are checked with an addition that the direction of the step also should be send to
the external module. Another completely different approach is also possible, for example all
the steps taken are send to the external module. Both options look like other options we have
described.

Line numbers

With axiomatic logic exercises line numbers can be used to refer to lines on which a rule is
applied. Line numbers can be added answerView as an input field. In AnswerModel a type
for the line numbers can be defined and in AnswerControl a function to check the validity of
the line number (i.e. when given, a line number must be an integer between 1 and 1000) .
Rules can be applied on one or more line numbers, thus in AnswerView there also should be a
possibility fo add the line numbers to which a rule is applied; a list of line numbers with a type
definition in AnswerModel.

Formula in parts

LogAx'3 has the possibility to add a formula in parts based on the rule that is applied. With the
entity Rule we look at how the rules can be added, for Answer it should be possible to split up
the formula in several parts. This can be done by adding multiple input fields for the formula in
pieces and concatenate those pieces at the moment the submit button is pressed and send
that complete formula fo the external module with a function alike checkStep from
CommunicationControl. It is also possible to send the individual pieces to the external module
if that is needed. In that case the formula can be concatenated after it is successfully
checked.

Case structures

Logind'4 is used for inductive logic exercises and uses case structures for answering. Those
case structures are of specific types and every type can hold one of more cases, and each
case has one or more steps. This structure can be defined in the Model type. AnswerView will
need some extra buttons for adding and removing cases and It will need a way to select the
type of case that is used. The rules that can be used in a case depend on the case, which
means that for every case that is shown the rules has to be determined (also see variable
rules).

13 hitp://ideas.cs.uu.nl/logax/
14 hitps://ideastest.science.uu.nl/logind/

74

A.3. Rule

Rules as optional functionality

Rules are optional in the architecture; the Ideas framework asks for steps and formulas when
solving an exercise, but other external modules do not need to have this functionality. An
easy way to remove the rules from the proof of concept is to delete the part inputType =
rulesSelector model in the function answerline in AnswerView, this way the rule input for the
student will not be shown. The function handleStep of AnswerControl has to be changed in a
way that it does no longer check on a selected rule. The function getRulelist from RuleControl
has to be changed in a way that it does not call the function retrieveRulelist from
CommunicationControl, this will prevent that rules will be retrieved from the external module
and the checkStep function of CommunicationControl has to be changed in a way that it
does not send the rule to the external module. Problems with this solution are that hints will still
show rules and there will be lots of dead code in the software. For a complete solution
everything related to rules has to be deleted. This means changes in MainConftrol (all calls to
the Rule modules has to be deleted), MainModel (the types Model and Msg have items
related to rules), the Answer modules have to be changed, the Rule modules have to be
deleted, the Hint modules have to be changed (hints contain rules) , the Feedback modules
have to be changed (these show the rules as part of messages) and the Communication
modules has to be changed (rules are part of the messages send to and received from the
external module).

Hardcoded rules

In our proof of concept the available rules are determined by the external module. If the
external module does not have an option to retrieve the rules, the rules can be hardcoded in
the SIM. This would mean that RuleModel holds a list of rules, that can be read by a function
like requestRules that returns a message AddRules with a list of rules. This list will be put in the
Model type variable by handleRulesReceived.

Transformation of rules

In our proof of concept we use the rule ids from the Ideas framework. These rules can be
transformed to other text fields by adding a franslation function, that franslates the ids into
more readable text. This can be done by adding a translation table to RuleModel in which for
every id from the Ideas framework a text translation is given. Problem with this solution is that
allids of the Ideas framework should be in the franslation table and if something changes to
arule id in the Ideas framework, this change should also be done in the franslation table.

Variable rules

Variable rules are needed when the set of available rules depends on the answer line.
Variable rules are for example used in Logind where depending on the case that is filled, the
rules differ. The set of the available rules can be determined by the external module, but if
the external module does not provide them, they can be determined in the SIM in a similar
way as described with transformation of rules.

A4, Hint

Hints as an optional functionality

In the architecture hints are an optional functionality. The easiest way to implement this in our
proof of concept is by disabling the hint related buttons or remove those buttons from the
getAllButtons function in the Buttons module. Another easy to implement option is fo change
the getNextHint function of HintControl and return an unchanged model with Cmd.none or
change the following lines in getNextHint

75

({ model | hint = HM.RuleName, feedback = FM.HintFeedback ("Hint 1: Apply the rule " ++
hint.rule) }, Cmd.none)

Info

({ model | hint = HM.NoHint, feedback = FM.HintFeedback ("No hint available”) }, Cmd.none)

This will cause that the text “No hint available” is shown to the student and the next hints will
never be reached. Using this option will need some clear comments in the code otherwise
this could lead to unclear code. Both of these options lead to dead code in the software.

A complete solution is fo remove everything that is related to hints. In order to do this the next
changes has to be done:

e The modules HintfControl and HintModel

e The hint field in the type model

o Delete the following messages from type Msg: FetchHint, AddHint, FetfchCompletion
and SetCompletion.

e Delete the lines of code using the above messages from type Msg from the update
function of MainControl

¢ Remove the following functions from CommunicationControl:
retrieveCompletingSteps, refrieveHint, decodeHint, decodeSolution and
decodeSolutionStep

¢ Remove SendOnefirsttext and SendSolution from the type SendRequestType in
CommunicationModel

o Delete the types SolutionFields and OnefirsttextFields in CommunicationModel

¢ Remove the options SendOnefirsttext and SendSolution from the function methodCall
in CommunicationConfrol

An example as hint

This is an option that should be supported by the external module before it can be
implemented in the SIM. Implementation looks like the completion of an answer as a hint and
can possibly use the same functions.

The complete solution as a hint

In our proof of concept this can be added by getting the original exercise from the list of
steps taken and then refrieve the complete solution with the completion of an answer
functionality.

Transforming hints
The text of the hints can be transformed in the way as mentioned with rules.
Retrieving more than one hint

In our proof of concept only one hint is retrieved from the Ideas framework and that one is
copied into the second and third hint. If the external module would return all three hints at
the same time this would mean a change in the Hint type (the other types of hints should
have their own fields), the decoder decodeHint (should decode all the fields) and a change
in the function getNextHint (the values from the new fields should be used). Another option
could be that the external module returns only one hint at the time depending on the last hint
given. With a stateless external module this would mean that the external module should
have a way to inform it about the given hints and the SIM has to supply that information when
asking for a next hint. With a stateful external module SIM only has to ask for a next hint and
the external module will know which hints are already given and gives the next hint without
additional information.

76

Separate function for applying the next step

In our proof of concept the next step will be applied after three hints are given and the
student asks for a next hint. By adding an extra button and a separate function in HintConftrol
this applying of the next step can be made separate from the giving of next hints.

A.S. Feedback

Optional feedback

In our architecture the feedback messages are opftional, these are the messages for the
student that are received from the external module after diagnoses of a step or a complete
answer. In our proof of concept the Feedback modules also show hints and system error-
messages.

To remove only the feedback messages that are results of the diagnoses the function
handleFeedback has to be changed. Although this function does not give a message, it stays
on the same input line when a false answer is given. This can also be seen as a notification to
the user that the answer was incorrect. This has to be changed; the function should always
add the answer line to the list of steps taken. The function handleReadyAction only gives a
message whether the answer is complete or not. This functionality can be deleted by
deleting the ready button, changing the update function in MainControl and deleting this
function. This will not affect the functionality of the rest of the program.

Step feedback messages

In our proof of concept the submitted answer line is only added to the list of steps taken when
the result of the diagnose is Expected, all other possible outcomes are ignored. In order to
change this the function decodeDiagnose of CommunicationControl and handleFeedback
of FeedbackControl have to be changed. decodeDiagnose has to have means to decode
the other kind of results and handleFeedback has to be able to show these results.

Transformation of feedback

Feedback messages that come from the external module can be transformed by using a
hardcoded fransformation table in FeedbackModel in a same way as described with rules.

Different kinds of feedback

In our architecture we have given the possibility to use different kinds of feedback. In our
proof of concept there is no difference made between the types of feedback. AUC
combined with KR feedback is given after diagnosis of a step; the given answer is only added
to the list of steps taken when the step was correct, in all other cases the step was incorrect
but there is no EF feedback given, thus the student does not get any information about that
was wrong with the step. After diagnoses of a complete answer only KR feedback is given;
the answer is complete or the answer is not complete.

Because the Ideas framework we use is stateless it does not hold any information about
performance of a student for a set of exercises. In order to give that KP feedback the SIM
should store information about the results of every exercise. This can be done by adding a
result table to the Model type in which is the result for every started exercise is stored.

KRC feedback can be added if the external module supports this and returns the right answer
after giving a wrong answer. This could be shown as a message.

MTF feedback can be implemented in the proof of concept by adding a counter that holds
the number of tries for a step to the Model type. When the maximum number of tries is

77

reached the correct step can be refrieved like is done with hints and added to the list of
steps taken or the next exercise can be refrieved.

EF feedback has to be supplied by the external module; when the external module supplies
that information it can be added to the program. Maybe an exira feedback message part is
needed in the page that is shown to the student, this can be added in a similar way as
feedback is added to it.

A.6. Communication

Communicate with other external modules

In our architecture there is a clear difference between the communication protocols, the
communication actions and the communication modules. In our proof of concept the
communication protocols are defined in the encoding and decoding functions, the
communication actions are the functions that are available for the outside world of the
CommunicationControl module checkComplete, checkStep, generateRandomeExercise,
retrieveCompletingSteps, refrieveExample, refrieveHint and retrieveRulelist and the
communication module is defined in the function getConfig from CommunicationModel that
uses the type Config that can be used when information about the connected external
module is needed.

The decoding and encoding functions are part of the other communication format possibility.
When the external module uses one of the other formats the decoding and encoding
functions has to be changed to that format. The feedback services can be implemented like
the ones we already have. The communication module will be a change of the definition in
getConfig and probably the sendRequest function of CommunicationModel has to be
changed because this combines the communication format with a specific communication
module.

78

