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Abstract  

This article presents three empirical studies on the effectiveness of serious 

games for learning and motivation, while it compares the results arising from 

Frequentist (classical) Statistics with those from Bayesian Statistics. For a 

long time it has been technically impracticable to apply Bayesian Statistics 

and benefit from its conceptual superiority, but the emergence of automated 

sampling algorithms and user-friendly tools has radically simplified its usage. 

The three studies include two within-subjects designs and one between-

subjects design. Unpaired t-tests, mixed factorial ANOVAs and multiple linear 

regression are used for the analyses. Overall, the games are found to have 

clear positive effects on learning and motivation, be it that the results from 

Bayesian Statistics are more strict and more informative, and possess several 

conceptual advantages. Accordingly, the paper calls for more emphasis on 

Bayesian Statistics in serious games research and beyond, as to reduce the 

present domination by the Frequentist Paradigm. 

Keywords: Statistics, Methodology, Bayes, Motivation, Learning, Games 

1 Introduction  

For assessing the efficacy of games for learning sound empirical studies are indispensable, 

including rigorous statistical procedures. For a long time, the predominant statistical 

analysis paradigm in serious games research (and educational research at large) has been 

Frequentist Statistics, which is the type of statistics covered by most statistical textbooks, 

statistical software tools and social sciences teaching programmes. However, 

methodologists have severely disqualified Frequentist Statistics as being a deceptive or 

even an “embarrassing and mindless ritual” leading to wrong interpretations and false 

claims [1], for instance unjust claims as simple as “...to accept the null-hypothesis” [2]. In 

contrast, the alternative option of Bayesian Statistics has a logical foundation that allows 

for computing and updating probabilities in a straightforward way after obtaining new data; 

it allows for comparing competing predictions in a superior manner without the risk of 

deception, misconceptions or false claims. Notwithstanding these claimed advantages of 

Bayesian Statistics, Frequentist Statistics still is the prevailing paradigm in psychological 

and educational studies, being presented as the golden standard in lectures, student 

textbooks and scientific journals. This is not just a matter of established tradition, but also 

due to the fact that Bayesian Statistics has been less practical to apply, because it requires 

to obtain its probability distributions in closed form, which is rarely possible. In recent 

years, however, the introduction of the Markov Chain Monte Carlo method (MCMC) [3], 

which is a random-walk-based data sampling technique to generate probability 

distributions, has greatly simplified the practical application of Bayesian Statistics by 

overcoming the need for closed form analytic solutions. Bayesian procedures using MCMC 

are now becoming available as standard utilities in various statistical packages. Hence, it is 

the right moment to explore the opportunities that Bayesian Statistics offers and present 

practical application cases to the wider research community. The principal research 
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question under consideration is ”how the outcomes of Bayesian Statistics compare with 

those obtained from Frequentist Statistics in the serious games’ educational research 

practice”. Although our data originate from serious games, our findings may be of relevance 

for the wider field of educational media research, since the investigated statistical 

procedures remain unaware of the nature of the instructional tools used. 

To exemplify and substantiate the Bayesian claims, this article presents three original 

serious game studies on learning outcomes and motivations, while it compares and 

discusses the outcomes resulting from both statistical methodologies. The focus on serious 

games is motivated by the fact that 1) games are advanced, rich and dynamic learning 

environments that can cover a wide variety of learning scenarios and thus effectively 

represent the wider field of learning and teaching approaches, 2) like any emerging 

instructional tools games require sound effect studies as to provide empirical evidence 

about their effectiveness. 

So far, the ever-growing popularity of games for leisure and entertainment has 

positively influenced the use of games for learning and training purposes. Games have 

successfully been applied in schools to promote media literacy [4,5], to reduce student 

dropout [6,7], and to enhance motivation [8,9], to accommodate flipped classrooms [10], 

and many other things. A large body of evidence has become available corroborating the 

effectiveness of games as instructional tools: many game studies have reported positive 

effects on learning outcomes and motivation. This scientific evidence is crucial to overcome 

existing barriers for adoption, as many teachers have their reservations about replacing their 

traditional materials and exercises with supposed game-based frivolities. Teachers’ 

skepticism is readily fueled by the host of over-enthusiastic game proponents and believers 

[11], who unceasingly present games as the panacea for solving all contemporary problems 

in schools. Therefore, unbiased and scientifically grounded validation studies of games are 

a persistent requirement: the scientific method is the best if not the only form of rational 

inquiry, providing the best possible, objective and unbiased answers to the questions posed. 

But even well-established scientific methodologies, such as Frequentist Statistics, have 

their flaws and should be critically evaluated or eventually be replaced with more reliable 

alternatives.  

This article proposes Bayesian Statistics as favourable alternative to the common 

Classical or Frequentist Statistics, when assessing the effectiveness of serious games, or 

even any instructional approach. It introduces and presents Bayesian Statistics and contrasts 

this with the Frequentist approach. Three original game studies are subjected to both 

Frequentist data analysis and Bayesian data analysis, and the outcomes are compared and 

discussed. The first study investigates the learning outcomes resulting from the “SKILLS” 

game, which is a board game for the training of basic military skills. The second study 

focuses on the motivational effects of a gamified digital workbook that offers spelling 

exercises to schoolchildren. The third study uses a statistics game for psychology students 

to investigate to what extent player personality and in-game player logs can predict the 

player’s learning outcomes. These studies are exemplars of a between-subjects design, a 

pre-test/post-test within-subjects design and a regression predictor model, respectively. The 

statistical calculations in these studies are carried out with JASP (https://jasp-stats.org/), 

which is a free, user-friendly, open source package that accommodates both Frequentist and 

Bayesian analyses. 

Before presenting the three game studies we first introduce and explain the foundations 

of both statistical paradigms. 

2 Background 

2.1 Frequentist versus Bayesian Statistics  

In many scientific studies statistical methods are being used to process data obtained from 

observations and measurements and derive real-world insights from these. A principal 
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controversy in statistical sciences is the one between Classical Statistics (or Frequentist 

Statistics) and Bayesian Statistics. Although both paradigms make inferences from data, 

their approach is more or less opposite. In Classical Statistics truth is considered a fixed 

concept, expressed as fixed models or hypotheses (H0, H1, etcetera), while observations are 

considered random, in fact, conceived as a sample out of many similar samples that could 

have been drawn from the same population distribution. In Bayesian Statistics, it is the other 

way round: the data are fixed (facts as observed), but the models or hypotheses are random 

(e.g. parameterised) [12]. Although both approaches aim to make inferences from data in  

empirical research and seek evidence to support or reject proposed hypotheses, classical 

Statistics is about establishing truth and untruth, while Bayesian statistical inference is 

about belief revision, that is, adjusting one’s initial belief about the world to the evidence 

provided by the data by making probability statements about possible states of the truth. In 

Table 1 both principles are expressed in a Bayesian way as conditional probabilities [13]. 

 

Table 1. Principles of statistical paradigms. 

Paradigm Outcome Explanation 

Frequentist p(D|H) Probability of the data (D), when the (null-)hypothesis (H) 

holds 

Bayesian p(H|D) Probability of the hypothesis (H), given the available data 

(D) 

These principles are further explained in the next sections. 

 

2.2 Frequentist Statistics  

In Frequentist Statistics, also known as Null-Hypothesis Significance Testing (NHST), the 

fit between the data and the hypothesis is checked, by calculating the probability of the data, 

given the hypothesis is true: p(D|H). In the original Fisherian approach to NHST only a 

single hypothesis is considered, the null-hypothesis (H0). In the Neyman-Pearsson tradition 

one would compare two pre-fixed hypotheses (the null hypothesis H0 and the alternative 

hypothesis H1), while assuming that the null-hypothesis is true. The calculated p-value is 

the main criterion for drawing conclusions. Today, a hybrid of both NHST approaches is 

commonly used [14]. 

For decades, NHST has been the dominant statistical paradigm in social sciences. This 

dominance is preserved and continually re-established by the fact that most statistical 

textbooks fully focus on the classical approach, thus acquainting masses of students and 

thereby future researchers and lecturers in this tradition [13,14]. The books sometimes 

briefly mention the basic Bayesian formula of conditional probability, but the resulting 

Bayesian Statistics approach and its consequences are rarely explained. Also, the 

fundamental issues of NHST are often neglected. NHST displays three fundamental 

problems: 

 No hypothesis testing 

As can be seen from Table 1, NHST assumes that the null-hypothesis is true. Inferences 

can be made about the probability of the data only. In principle, NHST cannot tell us 

anything about the probability of the hypothesis, as the hypothesis is treated as a given 

fact. If the Null-hypothesis is not true, no inference can be made. In practice, however, 

obtaining a small p-value (e.g. p<0.05) is used for a reductio ad absurdum to conclude 

and accept the alternative hypothesis as being true, while larger p-values (p>0.05) are 

supposed to confirm the null-hypothesis. This is valid only in case H0 and H1 are fully 

complementary: if H0 does not hold, H1 must be valid. Even so, the evidence against 

the null hypothesis is often misinterpreted as evidence in favour of an alternative 

hypothesis rather than other options such as measurement error or selection bias [15]. 
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 Structural, persistent misconceptions 

Treating p-values as evidence for hypotheses being true is one of many wide-spread 

misconceptions in NHST. Over the years, various studies have revealed shocking 

results about the persistent lack of statistical knowledge and understanding of 

psychology students, lecturers and professors, even of faculty teaching statistics 

[1,13,14,16]. It is often unjustly assumed that the 95% confidence interval of a 

parameter has 95% chance to contain the parameter [13]. Many sustain the illusion of 

certainty (believing that statistical significance proves that an effect exists), mistake p-

values for error states, or suppose that the p-value reflects the probability of a successful 

replication (i.e., 1–p) [14,15]. The latter misconception makes replication studies 

appear to be superfluous. Various authors [21] denounce the so-called Null-ritual, 

which is the mindless application of NHST, being used as a conflicting mix of the 

Fisher approach and the Neyman-Pearson approach, presented in textbooks as an 

objective method magically making statements about truth governed by the sacred 

number (the p-value). Their criticism also concerns the elimination of the researcher’s 

judgment precisely at points where statistical theories demand it, for instance about the 

grain size of the analysis, the grouping or exclusion of data and the tuning of 

coefficients, which all may bias toward finding positive results (negative results are not 

likely to be accepted for publication) or at least producing Type I and Type II statistical 

errors. 

 The significance level debate 

Likewise, the central role of the p-value as the criterion for significance (usually 

p<0.05) has been widely criticised. Not just because the meaning and role of the p-

value are often misunderstood, but also because the threshold value of 0.05 is an 

arbitrary convention, not in agreement with the required reliability of research [15,17-

19]. A comparison of NHST with powerful Bayesian hypothesis testing shows that for 

a valid interpretation of data the levels of significance should be lowered down to the 

0.001 level, or even below [18]. It would explain why so many social sciences studies 

cannot be reproduced appropriately: statistical significance seems to be obtained just 

too easily under the current NHST p-value regime. Acceptance of this huge correction 

of the significance threshold, however, would disqualify the majority of social science 

research as to produce nothing but noise and thus would – worst case - effect a total 

breakdown of the domain.  

2.3 Bayesian Statistics 

Most of the drawbacks of NHST are absent in Bayesian Statistics. It considers the data as 

fixed facts, which is what they are. It uses these data to update prior beliefs about the world, 

in fact, to infer statements about the probability of hypotheses, which is essentially what 

most research studies are about. The focus on probabilities of hypotheses implies that the 

object of analysis is stochastic. This allows to make probability statements on truth, cursed 

with uncertainty, and thereby it stays away from what is called the ”false idol of objectivity” 

associated with the absolute conclusions and absolute truth in NHST [20]. In contrast to 

Frequentist 95% confidence intervals, Bayesian 95% confidence intervals for a parameter 

are what they are supposed to be: the chance that the parameter lies in the interval is 95%. 

To avoid any confusion with the Frequentist confidence intervals, the Bayesian intervals 

are called 95% credible intervals. No disputed p-values are needed to draw conclusions, 

since Bayesian decision criteria are straightforward and more robust than those of NHST. 

Finally, sample size need not be pre-defined to draw valid conclusions, that is, the 

“Stopping Rule Principle”, which is required in NHST (and prone to violation), is irrelevant 

in Bayesian Statistics: data sampling may be stopped any time, without affecting the 

validity of analysis. A comprehensive overview can be found in [22]. 

In Bayesian Statistics our beliefs about the world are updated by the evidence from 

collected data. The approach starts off with a set of candidate hypotheses Hi about the world. 

Beforehand, we may or may not have some beliefs about which hypotheses are most 
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plausible. This belief system, based on prior knowledge and facts available, is then updated 

by the data collected. If the data are consistent with a hypothesis, our belief in that 

hypothesis is strengthened; if the data are inconsistent with the hypothesis, our belief in that 

hypothesis is weakened.  

 

The process of Bayesian hypothesis testing is entirely based on Bayes’ rule: 

 

𝑝(𝐻|𝐷) =
𝑝(𝐷|𝐻).𝑝(𝐻)

𝑝(𝐷)
                 (1) 

     

Here,  

p(D) is the probability of data D 

p(H) is the prior probability of hypothesis H, not yet taking into account the data D 

p(D|H) is the likelihood of the data D, given hypothesis H 

p(H|D) is the posterior probability of hypothesis H, taking into account the data D 

 

Bayes’ rule, being grounded in formal probability theory, is undisputed and can be 

easily derived from p(A,B)=p(A|B).P(A)=p(B,A)=p(B|A).p(B). 

 

Bayes’ rule can be understood as follows: the prior probability p(H), which reflects our 

initial belief that hypothesis H is true, is updated by multiplication with p(D|H)/p(D) to 

obtain the posterior probability p(H|D), which is our revised belief state based on both our 

initial belief and the evidence from the data D. Comparison of two hypotheses H1 and H2 

can be done by using equation(1) to calculate the posterior probabilities for each hypothesis 

separately. The ratio of posterior probabilities can then be written as: 

 

                                       
𝑝(𝐻1|𝐷)

𝑝(𝐻2|𝐷)
=

𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻2)
∙

𝑝(𝐻1)

𝑝(𝐻2)
       (2) 

     
This equation shows that the change from prior odds p(H1)/p(H2) to posterior odds 

p(H1|D)/p(H2|D) is given by the ratio of the likelihoods p(D|H1)/p(D/H2). The latter ratio is 

called the Bayes-factor: it quantifies the evidence that comes from the data in favour of H1 

against H2. A high Bayes factor indicates how much more strongly the data support 

hypothesis H1 over hypothesis H2. The following classification scheme explains the 

interpretation of the Bayes Factor (Table 2). 

 

Table 2. Classification scheme for the interpretation of Bayes factors BF12 [23], 

adjusted from [12]. 

 

Bayes factor BF12 for H1 over H2 Evidence category 

> 100  Extreme evidence for H1 over H2 

30 - 100  Very strong evidence for H1 over H2 

10 - 30  Strong evidence for H1 over H2 

3 - 10  Moderate evidence for H1 over H2 

1 - 3  Anecdotal evidence for H1 over H2 

1  No evidence over H2 

http://journal.seriousgamessociety.org/


pag. 6 

 
International Journal of Serious Games Volume 1, Issue 4, October 2014 

ISSN: 2384-8766 http://dx.doi.org/10.17083/ijsg.v1i4.47 

 

In practice, deriving the Bayes factor was often a difficult task, because posterior 

distributions can seldom be obtained in closed form. Only few combinations of prior 

distribution and likelihood function yield closed form posteriors, which directly allow to 

derive the Bayes factor. But as hypotheses in Bayesian inference are mostly treated 

stochastically, including a parameterised hypothesis model, one readily ends up with 

complex integrals in equation(1), which cannot be solved analytically. As a result, Bayesian 

inference in research remained the exception. Over the last few decades, however, 

computational sampling algorithms have successfully been put in place to remove these 

barriers and enable researchers to fully enjoy the benefits of Bayesian inference.  

 

2.4 Sampling software for Bayesian Inference  

The practical application of Bayesian Statistics has been greatly simplified after the 

introduction of the Markov Chain Monte Carlo method (MCMC) [3]). MCMC allows to 

generate posterior distributions via a step-wise sampling procedure applied to the right hand 

side of equation(1), thus removing the need for closed form analytic solutions. In 1989, 

BUGS (Bayesian inference Using Gibbs Sampling) was the first software programme 

offering MCMC for Bayesian analysis, later on followed by a free version (WinBUGS) and 

quite recently an open source version (OpenBUGS). JAGS (Just Another Gibbs Sampler) 

is an open source MCMC tool that runs natively on Windows, Mac, Linux and several Unix 

versions. In recent years, mainstream commercial statistics programmes (e.g. SPSS, Stata) 

have also included MCMC modules to support Bayesian Inference, while benefitting from 

their well-established user-interface styles. Accessibility to MCMC has been further 

extended by the recently launched JASP software, which is a free, open source tool that 

uses the R-package for Bayesian Adaptive Sampling and MCMC (https://jasp-stats.org/). 

JASP offers both Frequentist Statistics and Bayesian Statistics procedures in a highly user-

friendly environment. In the following we have used JASP to perform both Frequentist and 

Bayesian analyses and compare the two. 

 

2.5 Barriers to applying Bayesian Statistics 

These recent developments have certainly contributed to an increased interest of 

methodologists and researchers in Bayesian approaches as an attractive replacement of 

Frequentist Statistics. But the perspective on Bayesian Statistics presented above may be 

easily perceived as too optimistic. Severe doubts have been raised about the subjective 

elements assumed in Bayesian Statistics, not just because of the concept of subjective belief 

states, but largely because of the need to specify a prior distribution, which is readily 

regarded a matter of personal taste [24, 25]. Also, the sampling procedures in MCMC can 

become computationally inefficient, the convergence of which is hard to control and to 

understand, in particular when datasets are complex. Default prior distributions are often 

used to simplify the procedure, but defaults may not quite adequately take into account 

available knowledge. Simonsohn [26] explains that default priors are prejudiced against 

small effects, suggesting misleading Bayesian results in particular under the following 

combination of factors: a small sample size, a small effect size and a prior distribution 

assuming a large effect size. Due to the ease of default distributions, users may readily 

regard the Bayesian Sampler as a magical machine that can be thoughtlessly operated to 

produce outputs from any inputs. In the case of large sample sizes Bayesian hypothesis 

testing suffers from the fact that even small and practically meaningless effects will be 

deemed “strongly supported by the data” [22], but this likewise holds for the observation 

of “significance” in Frequentist Statistics. It is important to note that the Bayes factor 

reflects a relative measure of performance rather than an absolute measure: this means that 

overwhelming support in favour of H1 over H0 only indicates that the predictive 

performance of H1 is superior to that of H0, even when the absolute performance of H1 may 

be insignificant. Both Bayesian Statistics and Frequentist Statistics equally rely on the data 
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available and they are equally sensitive to biasing effects of selective reporting, ad-hoc use 

of transformations and outlier removal, which lead to incorrect conclusions. 

Apart from these technical issues, the main barrier to a wide uptake of Bayesian Statistics 

in serious games research (and beyond) is the strong and well-established position of 

Frequentist Statistics as the prevailing paradigm in today’s textbooks and lectures and 

accordingly in the minds of scholars and students. It is a well-recognised phenomenon that 

the social dynamics of scientific communities display an inherent resistance against 

paradigm shifts [27]. Nevertheless, in various domains (e.g. data science, machine learning, 

natural language processing) Bayesian approaches are gaining momentum and new libraries 

and tools for Bayesian processing are becoming available. 

3 Experiments 

3.1 Study 1: Basic military SKILLS game (Independent t-test) 

This study uses data collected from an experiment with the “SKILLS” game, which is a 

game used for the mandatory yearly update of basic military knowledge and skills of 

military personnel [28]. Topics include basic search, survival, explosive devices, and 

ammunition awareness. The game was developed to replace classroom lectures. A quasi-

experimental between-subjects experiment was setup with 102 participants who were 

randomly distributed over an experimental group playing the game (46 subjects) and a 

control group attending the lectures (56 subjects). Group composition did not differ with 

respect to gender, age and years of service. The sessions took typically 2-4 hours. After the 

sessions a 20 minutes post-test (10 multiple choice questions and 15 open questions) was 

administered to assess the learning outcomes. Total performance was expressed as an 

aggregate metric in the [0,1] interval. For analysing the anonymised data we specify two 

complementary hypotheses: 

 

 H0 the null hypothesis: post-test performances do not differ between the two conditions. 

 H1 the alternative hypothesis: post-test performances are different for the two 

conditions. 

The data successfully passed the Shapiro-Wilk normality test (experimental group 

W(46)=0.963, p=0.154; control group W(56)=0.968, p=0.141), and Levene’s test for 

homogeneity of variances (F(1,100)=3.277, p=0.073). The average post-test score of the 

group playing the game was 0.644 (standard deviation SD=0.163); for the control group 

attending the lectures the average post-test score was 0.580 (SD=0.132). Now, the question 

to be answered is what can be concluded about the hypotheses? 

 

3.1.1 Frequentist analysis 

The Frequentist approach starts with the assumption that the null-hypothesis H0 is true. A 

two-sided independent t-test was used to analyse the differences between the two groups. 

The t-statistic was found to be t(100)=2.186, p=0.031, which indicates that the difference 

between groups is significant (because p<0.05). The effect size given by Cohen’s d is 0.435, 

which means a small to medium size effect. The mean difference between groups (δ=0.064) 

is linked to a 95% confidence interval ranging from 0.006 to 0.122. 

The significant t-test technically means, that if H0 is true (viz. no differences between 

groups), the probability of obtaining a result as extreme as the data observed is only 3.1%. 

Although this is generally accepted as a positive outcome in favour H1, the t-test does not 

quantify the evidence in favour of each hypothesis, which hampers a better substantiated 

conclusion about the two hypotheses. The Frequentist 95% confidence interval is often 

mistaken for the chance that the value of the mean difference has a 95% chance to be in 

that interval. However, this is a misconception, because long-run probabilities cannot be 
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assigned to individual events without specifying what the long run practically entails (the 

reference class problem, see e.g. [29,30]). Instead, the confidence intervals represent the 

following: repeatedly drawing samples from the probability distribution (which is the 

premise of Frequentist Statistics) would each time produce a different confidence interval, 

while only 95% of those intervals would contain the population mean [31].  

 

3.1.2 Bayesian analysis 

Next, a Bayesian independent t-test was applied to study the difference between groups. 

The approach entails the assessment of the effect size δ, which is the standardised mean 

difference between the post-test scores of the two groups. A principal difference with the 

Frequentist approach is that Bayesian Statistics does not assume that H0 is correct. Instead, 

it involves the comparison of two competing hypotheses for effect size δ, where H0 in this 

case happens to refer to zero effect size (δ=0) and H1 refers to non-zero effect size (δ≠0). 

The first thing to do is to decide upon the prior distribution of δ, that is, the probability 

distribution of the effect size before taking into account the data of the experiment. Here, 

we may not have a clear clue whether δ would be positive or negative, so the prior 

distribution should be symmetrical. Also, it is fair to say that very high positive or negative 

effect sizes (e.g. |δ|>2) are not quite likely. Hence, the prior distribution would somehow 

be bell-shaped and centred around δ =0. To this end, JASP proposes as a default a Cauchy 

distribution (also known as Lorentz distribution), which is very similar to the normal 

distribution, but has thicker tails. A default value of the Cauchy width parameter r of ½√2 

(0.707) reflects the reasonable implication that δ is between -2 and 2 (probability of 78%). 

The choice of the prior may seem a bit arbitrary, but the influence of the prior on the Bayes 

factor can be tested afterwards with a separate robustness check.  

Running the Bayesian independent t-test in JASP shows that the Bayes factor is 1.714 

in favour of H1 over H0. This qualifies as anecdotal evidence of H1 over H0, which means 

“weak” (cf. Table 2), “inconclusive” [23,30] or even “worth no more than a bare mention” 

[12]. Figure 1 shows how the posterior distribution of δ differs from the prior.  

 

Figure 1. Prior and posterior distribution of standardised effect size δ. 

 

The dashed curve is the prior distribution as specified by the Cauchy distribution. The 

solid curve is the calculated posterior distribution. Most of the posterior mass is on the 

positive side. The posterior peaks at δ=.064, which is the mean difference between groups. 

The Bayesian 95% credible interval, indicated as the solid interval above the posterior 

curve, ranges from 0.002 to 0.078: in the Bayesian framework this truly means that the 

mean effect size δ has a 95% chance to be in that interval. The two grey dots in figure 1 

mark the prior and posterior densities at δ=0, that is, 0.5 and 0.3 respectively. It shows that 

the data have decreased the support for δ=0 (which is H0) with a factor of about 0.6 (viz. 
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0.3/0.5). This means that the support for H1 over H0 is 1/0.6, which, obviously, corresponds 

with the calculated Bayes factor of 1.714.  

 

3.1.3 Comparison of statistical methodologies 

The clearly significant result from the Frequentist analysis (p=0.031) cannot be fully 

confirmed by the Bayesian analysis (“worth no more than a bare mention”). Put differently, 

regarding ratio of the Bayesian probabilities of H0 and H1 (the Bayes factor) the positive 

Frequentist result confirmed by the low p-value turns out to be less flourishing, if not 

deceptive. The analysis confirms that Bayesian criteria are more strict than p-values to 

reduce Type 1 errors (falsely rejecting the null-hypothesis), which may be the case here. 

 

3.2 Study 2: KPITO game-based spelling workbook (mixed factorial 

ANOVA) 

This case uses data collected in an experimental study on motivational effects of “KPITO”, 

which is a game-based, digital workbook targeting spelling skills for school children [32]. 

The objective of KPITO is to make repetitive spelling exercises more attractive in order to 

raise the children’s motivations. The content and structure of KPITO are fully based on a 

well-established original paper-based workbook, which is not gamified. Game elements in 

the digital version include challenges, direct feedback, adaptivity, animated objects, retrials, 

rewards (coins, permissions) and storytelling. A quasi-experimental pre-test/post-test study 

was arranged with 94 schoolchildren to compare children’s motivation in the KPITO 

condition and the paper-based workbook condition. The experimental group (KPITO) was 

populated with 46 children; the control group (paper-based) with 48 children. Both groups 

performed the spelling exercises 1 hour per week, during a full period of 6 weeks. 

Pre-test and post-test questionnaires for motivation used 20 items of the Intrinsic 

Motivation Inventory [33], representing the interest/enjoyment scale, the perceived 

competence scale, and perceived choice scale. The ordinal data from the 5-point Likert 

scales were combined into an overall motivation score. The study uses two independent 

variables: the within-subjects factor Time and the between subjects factor Group, 

respectively; the dependent variable is Motivation. The statistical analysis requires a mixed 

factorial ANOVA. Three null hypotheses need to be specified: 

 H0,A: there are no within-subjects differences between pre-test and post-test scores 

(ignoring Group). 

 H0,B: there are no between-subject differences between test scores of the two groups 

(ignoring Time). 

 H0,C: there are no interaction effects between Time and Group. 

The associated alternative hypotheses H1,A, H1,B and H1,C are the negations of the 

respective null-hypotheses. Descriptive statistics are in Table 3. 

 

Table 3. Mean motivation scores from the KPITO study 

Time  Group  Motivation SD  N  

Pre-test   Experiment   3.4   0.8   46   

    Control   3.5   0.8   48   

  Overall  3.4  0.8  94  

Post-test   Experiment   3.8   0.6   46   

    Control   3.4   1.0   48   
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  Overall  3.6  0.8  94  

 

Face-value, it seems that motivation goes up in the experimental group, whereas it 

remains at a low level in the control group. The question to be answered is what can be 

concluded from the data about the hypotheses. 

 

3.2.1 Frequentist analysis 

For testing the respective hypotheses, the Frequentist mixed factorial ANOVA produces 

the following results. With respect to H0,A, which assumes that there are no within-subjects 

differences between pre-test and post-test scores (ignoring Group), we find F(1, 92)=5.190, 

p=0.025. This suggests a significant effect in favour of the alternative hypothesis H1,A: 

participants show increased motivation after the lessons. The overall effect size is given by 

partial eta squared ηp
2=0.053, which means it is a medium size effect. As can be seen from 

Table 3 above, this increase can be fully attributed to the experimental condition. 

With respect to H0,B, which assumes that there are no motivation differences between 

the two groups (ignoring Time), we find F(1,92)=0.952, p=0.332. This means corroboration 

for this null hypothesis: overall motivations in the groups do not differ significantly. 

For H0,C, which assumes that there is no interaction effect between the factors Time and 

Group, we find F(1,92)=19.691, p<0.001. This is strong evidence in favour of the KPITO 

case: after the experiment, children in the game condition display significantly higher 

motivations, both in absolute terms and in terms of motivation growth. The effect size 

metric ηp
2=0.176, which indicates a large effect. 

 

3.2.2 Bayesian analysis 

In all comparative studies, which aim at discovering differences of an observed variable 

between groups, prior distributions will inevitably be bell shaped (for instance, the Cauchy 

distribution). For the Bayesian Repeated measures ANOVA (allowing for mixed factors) 

we preserve the default Cauchy priors in JASP, which use a width factor of 0.5 for fixed 

effects, 1.0 for random effects  and ¼√2 (0.354) for interaction effects. The output generated 

by JASP is summarised  in Table 4. 

 

Table 4. Model comparison for the Bayesian mixed factors ANOVA applied to the 

KPITO case.  

Models  (M) P(M)  P(M|data)  BF M  BF 10  error 

%  

Null model   0.200   0.002   0.012   1.000   0   

Time + Group + Time  ✻ 

 Group 

 0.200   0.991   450   321   1.6   

Time   0.200   0.003   0.012   0.9  1.9   

Group   0.200   0.001   0.006   0.4   0.5   

Time + Group  0.200   0.001   0.006   0.4   2.8   

 

The output in Table 4 shows a comparison between 5 models (M). P(M) denotes the 

prior model probability for each of the five candidate models, each equally loaded with the 

same probability. The P(M|D) column shows the posterior model probabilities (cf. the left-
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hand side of Equation(1)). The BFM column displays the change from prior model odds to 

posterior model odds. The Bayes factor BF10 indicates how much more strongly the data 

support each model over the null model (viz. the null hypothesis). A large Bayes factor is 

found only for the model that includes both two main factors (Time and Group) and the 

interaction term (Time*Group). The Bayes factor of 321 provides extreme evidence in 

favour of this model (cf. qualifications in Table 2). 

 

3.2.3 Comparison of statistical methodologies 

Both methodologies reveal strong evidence in favour of the model that includes the 

interaction between both factors Time and Group. The Frequentist model produces a highly 

significant result (p<0.001). The Bayesian model output is more informative showing a 

convincing Bayes factor of 321 and a small error (1.6%). It unambiguously specifies how 

strong the evidence is in favour of the proposed model as compared to the null hypothesis 

as well as compared to the other hypotheses. 

 

3.3 Study 3: Playground game (multiple regression) 

This case uses data collected in a study of the Playground game, which – coincidently - 

deals with misconceptions in statistics, targeting psychology students [34]. In the game the 

player investigates potentially unjust statistical claims from “alleged experts” in a practical 

case about determining the best location for laying out a playground. The game is composed 

of a set of challenges, each requiring well-considered decision taking. Correctness of 

decisions is expressed in a performance rate. The number of participants was 112. A pre-

questionnaire was used to test general prior knowledge in statistics. It included 15 self-

assessment items on statistics and a set of five test questions, which were combined into an 

aggregated metric on a 1-10 scale. Also, the pre-questionnaire used 5x3 items from the Big 

Five Inventory [35] to assess the player’s personality traits. A post-questionnaire included 

a post-test very similar to the prior knowledge test to assess the participants’ post-game 

knowledge. Full sessions of the experiment took typically 1.5 hours. The average time for 

completing the Playground game was 65 minutes with a large spread (SD=54 minutes).  

Anonymised log files of students were available for extracting some key indicators, such 

as success rate and time spent.  

The main question in this study is to what extent player data can provide a predictor 

model for post-test performance. Candidate model variables are the student’s Success rate, 

Playing time and Pre-test score. Also, the Conscientiousness score obtained from the 

personality test is expected to be a relevant factor, as it readily relates to dedication, 

precision and the aim to avoid mistakes. Descriptive statistics of these variables are 

presented in Table 5. 

 

Table 5. Descriptive statistics of the Playground experiment.  

Variable   N  Mean  SD  SE  

Post-test score   112   6.16   1.0   0.10   

Playing time (seconds)   112   3897   3252   307   

Success rate   112   0.64   0.05   0.005   

Conscientiousness score  112   6.99   1.38   0.13   

Pre-test score   112   5.53   0.93   0.09   

 

3.3.1 Frequentist analysis 

First, a paired t-test of pre-test and post-test scores revealed that the observed differences 

(cf. Table 5) are significant (t(111)=7.479, p<0.001). Next, a stepwise multiple regression 

analysis was carried out using Playing time, Success rate, Pre-test score and 

Conscientiousness score as predictors for the Post-test score. In the stepwise approach the 

predictor showing the highest correlation with the outcome variable is entered first into the 
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model. Additional predictors are then added one by one based on their correlations, while 

at every step any redundant predictors are traced and removed. The basic assumptions 

underlying linear regression have been successfully confirmed. These include homogeneity 

of variance (by visual inspection of a residuals-versus-predicted plot), normality and 

linearity (by visual inspection of the Q-Q residuals plot), and minimal multi-collinearity 

(checked with the Variance Inflation Factor VIF<10 and Tolerance>0.1). The JASP 

regression output presents 3 proposed models (Table 6). Model 1 only uses the Pre-test 

score as predictor, model also uses Playing time, while model 3 uses both Pre-test score, 

Playing time and Conscientiousness score. 

 

Table 6. Comparison of candidate regression models from the Frequentist 

analysis. 

Model  Factors Sum of Squares  df  F  p  

1 Pre-test score  39.021  1  59.252  < .001  

 Residual  72.443  110      

 Total  111.464  111      

      

2 
Pre-test score  

Playing time (s) 
42.747  2  33.903  < .001  

 Residual  68.717  109      

 Total  111.464  111      

      

3 

Pre-test score  

Playing time (s) 

Conscientiousness 

score 

45.232  3  24.585  < .001  

 Residual  66.233  108    

 Total  111.464 111   

 

This table shows that all three models are highly significant (p<0.001), that is, the 

models are a better predictor than the null-models, which use the mean values of the 

predictors. Note that Success rate although declared as an input is not preserved in the 

model, due to an apparent lack of predictive power. The highest Sum of Squares is in model 

3: this model accounts for 45/111*100%= 40.6% of the variance in post-test scores. Table 

7 lists the (unstandardized) regression coefficients (intercept and slopes) for the 3 models.  

 

Table 7. Regression coefficients of three models (M) obtained from the Frequentist 

analysis. Also, the Standard Errors (SE), t statistics, p-values and the bounds 

of the 95% confidence interval (CI) are given. 
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      95% Confidence Interval 

M Factors Coefficient SE t p Lower  Upper  

1 Intercept 2.633 0.464 5.674 < .001 1.713 3.552 

 Pre-test score 0.636 0.083 7.698 < .001 0.472 0.800 

        

2 Intercept 2.913 0.468 6.219 < .001 1.985 3.841 

 Pre-test score 0.625 0.081 7.720 < .001 0.465 0.786 

 Playing time (s) -5.642*10-5 2.321*10-5 -2.431 0.017 -1.024*10-4 -1.042*10-5 

        

3 Intercept 2.203 0.581 3.790 < .001 1.051 3.355 

 Pre-test score 0.616 0.080 7.691 < .001 0.457 0.774 

 Playing time (s) -5.555*10-5 2.289*10-5 -2.427 0.017 -1.009*10-4 -1.017*10-5 

 Conscientiousness 

score 

0.109 0.054 2.013 0.047 0.002 0.216 

 
 

In sum, Model 3 produces a highly significant result (F(1,101)= 24.585, p<0.001) and 

a Frequentist regression equation given by 

 

                 𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 = 2.203 + 0.616 ∙ 𝑃𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 −                              

                                +5.555 ∙ 𝑒𝑥𝑝−5 ∙ 𝑃𝑙𝑎𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +          (3) 

                                                                           +0.109 ∙ 𝐶𝑜𝑛𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒                               

3.3.2 Bayesian analysis 

A Bayesian paired t-test produces a large Bayes factor of BF10=4.5*108, which indicates 

extreme evidence for post-test scores being larger than pre-test scores. The Bayesian 

regression analysis does not require a specific predictor entry mechanism, as it simply 

allows for a comparison between multiple models. In contrast with Frequentist Statistics, 

the model parameters, that is, the intercept and coefficients of the regression equation, are 

not estimated by a single value but are drawn from probability distributions and optimised 

step by step. In JASP, we used a multivariate Cauchy distribution and default prior scale 

(width ¼ Ѵ2) [36]. Table 8 shows the most relevant models. 

 

Table 8. Bayesian model comparison of the Playground case. 

Model Factors P(M)  P(M|data)  BF M  BF 10 R²  

1 Null model  0.200  3.624*10-10  1.449*10-9  1.000  0.000  
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2 

Pre-test score 

Playing time (s) 

Conscientiousness 

score 

Success rate  

0.200  0.317  1.859  8.756*10+8  0.411  

3 

Pre-test score 

Playing time (s) 

Conscientiousness 

score 

0.050  0.257  6.583  2.840*10-9 0.406  

4 
Pre-test score 

Playing time (s) 
0.033  0.145  4.925  2.404*10-9 0.384  

5 Pre-test score 0.050  0.093  1.953  1.029*10-9 0.350  

6 

Pre-test score 

Conscientiousness 

score 

0.033  0.062  1.921  1.028*10-9   0.373  

 

From the Bayes factors (BF10) in Table 8 it can be concluded that there is extreme 

evidence against the null model for models that include the Pre-test score. Models that do 

not include the Pre-test score are excluded from the Table, as they turned out to display 

low Bayes factors indicating anecdotal evidence. Model 3, which is based on Pre-test score, 

Playing time and Conscientiousness score, has the largest Bayes factor (2.840*109). 

Although it has a slightly lower explanatory power than model 2 (R2=.406 versus R2=.411), 

model 3 is three times more likely than model 2. Apparently, the inclusion of the Success 

rate as a factor slightly inflates the model. Therefore, and for reasons of parsimony 

(Ockham’s razor), we select Model 3 as the best option. The decision is supported by the 

Marginal Inclusion Probability of the Access rate variable being lower than 50% (not 

displayed in Table 8; in fact it is 44%). Table 9 shows the coefficients of the favoured 

Bayesian regression model as well as their credible intervals. 

 

Table 9. Bayesian regression coefficients of Model 3, including the standard 

errors (SE) and the bounds of the Credible Intervals. 

 95% Credible Interval  

Coefficient  Mean  SE  Lower  Upper  

Intercept  2.384  0.074  2.237 2.531 

Pre-test score  0.587  0.078  0.432  0.742  

Playing time (s) -5.295*10-5 2.235*10-5   -9.724*10-5  -8.661*10-6  

Conscientiousness score 0.104  0.053  -8.751*10-4  0.208  

 

The regression equation of Model 3 can thus be written as: 
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𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 = 2.384 + 0.587 ∙ 𝑃𝑟𝑒𝑡𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 − 

+5.295 ∙ 𝑒𝑥𝑝−5 ∙ 𝑃𝑙𝑎𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +                 (4) 

                                                                              +0.104 ∙ 𝐶𝑜𝑛𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒                             

The result turns out to be insensitive to the prior’s width: changing from narrow prior 

(width ¼Ѵ2) to a wide prior (width 1.0), produces similar results for all models, be it that 

the narrow prior provides larger Bayes Factors. As a side remark, it is noted that JASP uses 

the Bayesian Adaptive Sampling (BAS) Package from R, which uses centralised scales for 

all predictors in order to make sure that the resulting Bayes factors are location-scale 

invariant, and to disconnect interaction effects from main effects. As a consequence, a 

reversed transformation is needed to obtain the original intercept scale.  

 

3.3.3 Comparison of statistical methodologies 

Both statistical methodologies propose a regression model with Pre-test score, Playing time 

and Conscientiousness score as predictors. However, the intercepts and coefficients of the 

two models are slightly different. To decide which is the best model, is not a straightforward 

task. One may naively want to compare the mean squared errors of the predictions. The 

mean squared error of the Frequentist model is 0.66 (mean error 0.83). It is smaller than the 

mean squared error of the Bayesian model, which is 1.19 (mean error 1.09). Therefore it 

may be tempting to prefer the Frequentist solution. However, when we would use the mean 

squared error as the decisive criterion, the Frequentist regression will always win the game, 

exactly because the Frequentist fitting procedure is based on minimising the mean squared 

error (ordinary least squares). It would still be a mistake to conclude that given the lower 

error the Frequentist model provides the best fit to the data, because the mean squared error 

is no more than an arbitrary utility function or loss function. This arbitrariness was even 

recognised by Carl Friedrich Gauss, when he proposed the mean squared error as an 

accuracy metric. Because of the squares the mean squared error has the disadvantage of 

disproportionately weighting outliers. As can be read from Tables 7 and 9, respectively the 

standard errors of the predictor coefficients are slightly lower for the Bayesian case, for the 

intercept even substantially lower. Therefore, propagation of the predictor errors produces 

systematically lower standard errors in the predicted Post-test scores. When, we use the 

predictors’ mean value coordinates provided by Table 5, we find a standard error of 0.83 

for the Frequentist regression and a standard error of 0.58 for the Bayesian regression, This 

means that the Bayesian regression model is more accurate than the Frequentist regression 

model. The Bayesian credible intervals are very similar to the Frequentist confidence 

intervals, be it that the Frequentist intercept range is much wider. As explained before, 

however, the two interval types represent different things and thereby cannot be easily 

compared.  

4 Discussion and conclusion 

The comparison of Frequentist Statistics and Bayesian Statistics in three separate studies 

has revealed some interesting differences. In study 1 (the SKILLS board game) the 

Frequentist analysis yields a significant result in favour of the game group, showing a 

significantly higher score on the post-test than the lecture group (p=0.031). The Bayes 

factor of 1.714, however, indicates that the evidence is “weak” or even “worth no more than 

a bare mention”. This difference between the two approaches confirms conclusions from 

existing research [18] that the Bayesian criteria are more strict than p-values and reduce 

Type 1 errors: the Frequentist result may be deceptive. In study 2 (the KPITO gamified 

work book) both the Frequentist and the Bayesian approach to a mixed factors ANOVA 

both show strong evidence in favour of the KPITO case: after the experiment, children in 
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the game condition display significantly higher motivations, both in absolute terms and in 

terms of motivation growth. In study 3, it was established that playing the Playground game 

leads to higher test scores. The Frequentist regression coefficients for predicting the post-

test scores were found to be different and less accurate than the Bayesian regression model. 

Although the outcomes of two competing approaches should ideally be projected on a fixed 

reference standard in order to decide on the “winner”, our three studies have demonstrated 

that Bayesian Statistics is more informative about the hypotheses under study as compared 

to Frequentist Statistics. In particular, Bayesian Statistics allows to directly compare 

different models or hypotheses given the data available and attaches relative probabilities 

to these, rather than enforcing a yes-or-no decision about a single hypothesis being true. 

From a theoretical perspective it is worthwhile to mention decisions theory’s complete class 

theorem, which states that theoretically the Bayesian procedure performs at least as well as 

the non-Bayesian procedure in all cases with certainty [37]. Still, in some practical 

conditions Frequentist Statistics might be preferred, e.g. because of computational 

efficiency. With the emergence of statistical packages, such as JASP, that provide Bayesian 

approaches through simple user-interfaces, principal barriers to applying Bayesian 

Statistics have vanished. This opens up new opportunities to amplify the discourse about 

the Frequentist dominance and propagate the Bayesian case. It seems that given its 

conceptual superiority, its straightforward interpretation and its capacity to make 

probability statements about the truth, the Bayesian paradigm may gradually take the upper 

hand at the expense of Frequentist paradigm. Nonetheless, this will take quite some time 

considering current firm and established position of Frequentist Statistics both in textbooks, 

educational programmes and scientific articles. The importance of user-friendly packages 

such as JASP in this transition can hardly be underestimated, as they greatly simplify the 

application of Bayesian Statistics. In JASP as well as other packages, default functions 

suffice in most cases. Nevertheless, sufficient understanding of the principles and 

procedures in Bayesian Statistics are a precondition for its appropriate application. For 

further reading we recommend the excellent introduction to the Bayesian background from 

Wagenmakers and colleagues [22] and their practical example cases with JASP [38]. 

Increasingly, textbooks, tutorials and examples on Bayesian analysis are becoming 

available to be included into educational programmes. Also, a growing community of 

adopters can be witnessed along with a growing volume of articles exposing the Bayesian 

paradigm. It has been the aim of current article to contribute to this transition by developing 

and exposing representative Bayesian application cases and discussing the underlying 

concepts, mechanisms and arguments. Although confined to the distinct and well-

delineated domain of serious games, the cases are relevant for the wider field of learning 

and teaching, and beyond. 
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