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Study 

 

Phenomenology of Sprinting and Endurance: Toward a Uniform 

Performance Assessment Model 

by Wim Westera 
 

 

ABSTRACT 

 

According to the IAAF scoring tables, Usain Bolt’s 100m world record of 9.58 sec is worth 

1374 points, whereas Kenenisa Bekele’s 10,000m world record of 26:17.59 yields only 1295 

points. This demonstrates the immanent weakness and unfairness of the current scoring 

methodology. This paper studies the relationship between running distance and running 

speed, and proposes an alternative scoring method. First it presents the personal predictor 

model (PPM). This model uses two personal bests of an athlete for calibration, and then it 

allows predicting an athlete’s hypothetical personal bests for any other distance. The 

accuracy is well below 1% and it thereby greatly outperforms existing models. Second, it 

presents the normalised multi-event scoring model (NMSM). This model overcomes the 

manifest flaws of the current IAAF scoring tables; it demonstrates greater fairness, 

consistency and transparency. The impact of the new model is explained using empirical 

data. It substantiates the need for replacing the existing IAAF scoring tables. Finally, the two 

explained models (PPM and NMSM) are combined for composing personalised scoring 

tables. These tables convert an athlete’s performances for any distance into a single score, 

which allows for a ranking of the athlete’s performances across various distances. 
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Introduction 

 

It is well established that average running velocity decreases with racing distance. In a 

10,000m the average speed of top athletes is 20% lower than what is achieved in an 800m. 

This is not without logic. If this were not the case, the 10,000m runner could do a 9,200m 

race-pace warm-up and still beat the 800m specialists during the last two laps. Apparently, 

for races that require prolonged efforts, the internal physiology of energy and power 

reinforces effort levels that are well below maximum capacity. Naturally the same holds for 

swimming, speed skating and any other sports that involve traversing a certain distance 

within the fastest possible time. 

  

Comparison of performances across different running events is a delicate topic. How would 

one ever be capable of comparing Usain Bolt’s outstanding sprinting performances with the 

likewise outstanding 10,000m world record of Kenenisa Bekele? This would be like 

comparing apples and pears. Yet, in athletics this is common practice, even within the official 

framework of the sport’s governing body, the International Association of Athletics 

Federations (IAAF).  

 

The decathlon would be a good case in point. The IAAF uses a detailed set of tables for 

converting performances in the various events to a single numerical value so that these can 

be added into a result score. For instance a high jump of 2.00m and 400m in 50.0 sec would 

yield a result score of (803 + 815)=1618 points.  

 

WESTERA1 has severely criticised the validity of the decathlon tables. He argues that the 

tables display unacceptable bias since they favour some events over others. Sprinting-based 

performances yield disproportionately higher scores than the throwing events or the 1500m. 

Historical bias and frequent changes seem to demonstrate the arbitrariness of performance 

alignments in the decathlon tables 2.  In fact, comparison to an alternative scoring model 

proposed by the author leads to the conclusion that the official tables have assigned the 

world record to the wrong athlete.  

 

Similar objections hold for the other IAAF tables that are used for comparing different running 

events or for comparing athletes from different age groups. The IAAF Technical Committee, 

which is responsible for the validity of these tables, needs to regularly make modifications 

because of apparent irregularities in the relationship between results and assigned points. 
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But even in the latest version3 inconsistencies and suspect data can easily be tracked. Figure 

1 displays the result scores that the IAAF assigns to the diverse track running world records.  

  

 
Figure 1: IAAF scores for men’s track running world records 
 
 

The large variability of the ratings demonstrates the weakness of the tables. The 100m world 

record is rated up to 80 points higher than the long distance records. The different ratings 

would indicate that Kenenisa Bekele is an amateur when compared with Usain Bolt. It is hard 

to understand why the 5,000m and the 10,000m world records are less valued. The world 

records, indicating the ultimate limits of human power, would be the perfect reference for 

aligning the scoring tables. Therefore each world record should, in principle, receive the 

same score. For unclear reasons, however, sprinting is highly overrated in the IAAF tables. 

Besides this, other unexplained differences are manifest in Figure 1. 

 

This paper will examine this rating problem. First it will elaborate the relationship between 

running distance and running speed. It will explain the personal prediction model (PPM), an 

analytical model that can be used for determining an athlete’s personal best times at various 

distances, provided that two best times are available for calibration. Next, the paper will 

present the normalised multi-event scoring model (NMSM). This model overcomes the 

manifest flaws of the current IAAF scoring tables. The impact of the new model will 

explained. Finally, the two separate models will be combined for composing personalised 

scoring tables. These tables convert an athlete’s performances for any distance into a single 

score, which allows composing an absolute ranking of the athlete’s performances across 

various distances. 

 

Research Approaches 
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To able to properly compare the quality of performances in different running events, one 

needs insight into the relationship between human performance and the duration of the 

efforts involved. Although quite some research has been devoted to the topic, only very little 

is known at an analytical level. If a formula were available, one might - starting from some 

individual characteristics – be able to predict the athlete’s personal performance limits for a 

range of distances. In the ideal (but unrealistic) case, one would just collect an athlete’s shoe 

size, weight, height, leg length, lung capacity or any other relevant characteristic, and then 

use the formula to calculate the athlete’s anticipated performances on various distances. 

With these predictions one might be able to decide what distances offer the best chances 

and devise personalised training schedules for these. Unfortunately, things aren’t that 

straightforward.  

 

In the studies that have been done three different approaches can be distinguished: 1) 

physiological models, 2) statistical models, 3) phenomenological models. 

 

Physiological models 

These approaches search for explanations based on the underlying physiological processes. 

From various studies it is known that endurance performance is directly related with maximal 

aerobic power4. Measurement of maximum aerobic running speed or speed at maximal 

oxygen uptake can be used for predicting performances in the range from middle distances 

to long distances5, covering the range from say 1500m up to the marathon. At shorter 

distances predictions tend to be greatly unreliable because of disturbing interferences of 

anaerobic metabolisms. Bundle et al.6 proposed a model that combined the physiological 

limits of anaerobic and aerobic power for predicting performances in both the sprinting and 

mid-range distances (ranging from a few seconds to a few minutes). They suggested a 

simple negative exponential relationship between velocity and running duration, and 

incorporated the different time scales that anaerobic and aerobic metabolisms are active. 

The approach isn’t very accurate though: the predictions deviate on average well above 3% 

from realised performances. This may seam a negligible percentage, but for a 15 minute 

effort duration it would mean an uncertainty of plus or minus half a minute. For athletes such 

inaccuracy doesn’t make sense. An additional disadvantage is that tests for assessing the 

athlete’s running velocity at maximal aerobic and anaerobic power are required. In practice, 

such tests are inaccurate as such, and because of the required maximum effort the 

administering of the tests may easily interfere with the pursued training approach. Various 

researchers carried out biomechanical studies of the running start-up process7, but these are 

mostly concerned with the dynamics of body angle, the required metabolic power and the 

techniques for start-up optimisation, neglecting the speed-distance relationship. 
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Statistical models 

Likewise, progressive scoring tables based on statistical processing of large numbers of 

performance data are known to be inaccurate and unreliable. The IAAF provides and uses 

such scoring tables for several purposes: to determine the result score of a performance for 

the World Rankings, to evaluate the competitions, to make the best athlete award in a 

specific competition, and to produce national, club, school, etc. rankings3. HARDER8 tried to 

produce better tables by considering population fractions achieving a certain performance 

level. Calibration of the fractions between different events enables statistical mapping for 

inter-event comparison. Although Harder’s tables deviate from the IAAF-tables, they 

correlate very well with these, and thus unfortunately display the same inaccuracies. The 

statistical approaches have two things in common. First, they reflect a population-based 

average representing a mixture of many different human features and conditions. Such 

general approach may severely affect their applicability for individuals. Second, they are 

phenomenological in kind and do not rely on an underlying theory that would improve our 

understanding of the mechanisms involved.  

 

Phenomenological models 

Phenomenological models use mathematical expressions for describing observed 

phenomena. The models should be consistent with underlying theories, but don’t necessarily 

include these. This reflects both a strength and a weakness. Blankly starting from manifest 

phenomena while neglecting underlying theories may help greatly reduce complexity, which 

makes it more feasible to find solutions. Inevitably, this neglect goes at the expense of 

explanatory power. KATZ & KATZ9 demonstrated that athletics world records can be covered 

by power relationships between distance and exertion time. It should be noted that the IAAF 

scoring tables are all based on power laws that are calibrated via population statistics. 

STANKIEWICZ10 used a power law dependence between velocity an distance for the 

comparison of decays in energy over time in road and track events. In all cases severe 

anomalies were observed. WESTERA11 introduced a phenomenological model for describing 

the dependence of running velocity and duration. Basically, it uses exponential decay rather 

than a power law. The accuracies are claimed to be typically around 1%, which is much 

better than existing models (typically 3% or higher). The model uses a limited set of 

“mechanical” presuppositions and then uses an interpolation technique for predicting an 

athlete’s personal best. It doesn’t use any physiological or biomechanical test data. Instead, 

the model uses two personal bests of an athlete for calibration, and then it allows predicting 

an athlete’s hypothetical personal bests for any other distance. The model is based on a first 

order estimate of the way lap time (which is equivalent with reciprocal speed) increments 

with total distance. Also, the model accounts for delays that occur during start-up. This way 
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the model covers the entire range including endurance and sprinting distances. The model 

was validated with empirical data of four different groups of athletes: world-class male 

athletes, world class female athletes, committed male sub-elite athletes and committed 

female sub-elite athletes. WESTERA3  also proposed a phenomenological model for the 

accurate calculation of scores in the decathlon. The model converts performances for any of 

the events into a numerical result score, so that a total score over the events can be 

calculated by addition. 

 

This paper builds on both the prediction model and the scoring model to improve the overall 

quality of scoring tables (cf. the anomalies in Figure 1). Below we will first briefly explain the 

two models. 

 

The Personal Prediction Model  

 

The personal prediction model (PPM)11 covers two different issues: 1) the general 

relationship between running velocity and running distance, 2) corrective formulas for delays 

that occur during start-up. Such a split has been suggested before in order to explain 

anomalies as a result of the different metabolic processes for sprinting (anaerobic) and 

endurance (aerobic)12.  

 

Connecting average running speed and running distance 

The PPM considers the total time (t) and total distance (s) of a race. But it does not reflect 

the dynamics during the race, for instance intervening accelerations or weakening. We 

introduce the average lap time L (this corresponds with reciprocal running velocity), which is 

given by:  

 

s
t

L =   .      (1) 

 

As a first order estimate the lap time increment dL at fixed t is assumed to be reciprocally 

proportional to the distance s, yielding 

 

s
ds

dL ⋅= α   ,     (2) 

where � is a constant.  
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Integration over s gives a simple logarithmic expression 

 

)ln(
β

α s
L ⋅=   ,     (3) 

 

where � is a constant. The first order approximation reflected in equations (1) - (3) is not only 

theoretically grounded. Empirical evidence of its appropriateness can be found by using 

some existing data. This is done in Figure 2,  which displays a single logarithmic plot of lap 

time L against the log of distance s for men’s track running world records. Although the fit of 

the data is not superior, the (log-)linear relationship comes encouragingly close, even though 

data of different athletes were used. 

 

 
Figure 2: World records lap times against the logarithm of running distance  

 

The straight line in figure 2 representing the world records is a special case defining the 

lower limits of lap time for each distance: humans cannot go any faster, at least for the time 

being. In the upper left part of the graph each individual athlete having its unique talents and 

powers may be represented with its own personal line. For determining this personal line the 

athlete just chooses two separate personal bests and then calculates the two associated 

positions in the graph. Because of the log-linear relationship the two points can then be 

connected with each other and thus reveal predicted personal best lap times (or velocity, or 

total time) for any other distance. Since mathematical formulas are available, this can be 

done analytically and accurately. The greatest accuracy will be obtained when the two 

distances that are used for the calibration span a sufficiently wide interval (interpolation). For 

instance, using someone’s personal records at 800m and 5000m would probably make a 

reliable interpolation basis for forecasting the person’s achievable performance on 1500m, 

3000m or even an arbitrary 3968.7m. However, extrapolation, for instance when forecasting 

marathon performance from these points, is likely to be less accurate.  
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Compensating for start-up losses  

The model described so far is based on cruising velocity and therefore works alright for the 

middle- and long-distances. For sprint distances, say up to 400m, time delays incurred during 

the early phase of the race when the athlete has to accelerate from standstill to cruising 

velocity will greatly confound the outcomes. Errors up 5% are reported by WESTERA11. In 

the model so far described, it was silently assumed that cruising velocity is average velocity, 

but for sprinting this doesn’t quite hold: for sprinting distances cruising velocities are 

considerably higher than average velocities. Obviously, the difference increases at shorter 

distances because of the relatively long time spent on accelerating and the higher cruising 

velocities that the athlete tries to achieve. WESTERA11 used available split times of various 

world-class sprinters13,14.  In the 100m, the data indicate that cruising velocities are reached 

after about 30m. So by using the 30m split time, the cruising velocity over the last 70m can 

easily be calculated. The same could be done for 200m, although only few split time data 

could be found in the literature15. The disturbing effect of start-up losses will gradually 

disappear at longer distances. By assuming exponential decay of this correction with 

distance and using the 100m and 200m cruise speed data for calibration, the start-up losses 

can be accounted for in an analytical way. 

 

In sum, the general prediction procedure now reads as follows: 

1. Establish two sound personal bests: s1, t1, and s2, t2. 

2. To account for start-up losses replace all distances s1 and s2 with s1* and s2*, 

respectively by using 

 

 settsts ⋅−⋅⋅+= δγ)()(*   ,  (4) 

 

with �=21.3 and �=0.00365 (these data come from the 100m and 200m split 

times) 

3. Calculate the personal coefficients � and � through that determine the personal 

line offset and slope, 

 
)

*
*

ln(
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2

1

2

2

1

1

s
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−
=α      (5) 
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and 

 
)
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1(
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21

12

2

1

1

st
st

s
s

s

⋅
⋅−

−=β  .  (6) 

4. Choose a distance s for predicting time t. 

5. Replace distance s with s*, using equation (4). 

6. Calculate predicted time t by using: 

 )
*

ln(**)(
β

α s
sst ⋅⋅=    .  (7) 

 

Application of the PPM 

A sample of cases is given in the tables below. Table 1 presents the calculations of a sample 

of male, middle- and long-distance world-class athletes 16.  

 

Table 1: Performance predictions for male world-class athletes 

 
 

World-class athletes provide an important sample because they are usually well-prepared 

and perform near the limits of human capability. For each of the athletes three or 
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occasionally four official personal bests are listed in the third column. Outer distances 

(shortest and longest) have been used for calibration, viz. the calculation of α  and β  

according to equations (5) and (6). Substituting these parameters in equation (7) produces 

the predictions for the intermediate distance events. The predictions are quite close to the 

official personal bests. The average deviation (minus signs neglected) of the sample is only 

0.3% (0.003, cf. bottom row of Table 1). More supportive evidence is given in WESTERA11
. 

 

Few cases for sprint distances could be elaborated. Because of specialisation only a very 

few world-class sprinters excel in three disciplines (100-200-400). Yet, a few exceptions 6 

could be found and these are presented in Table 2. 

 

Table 2: Performance predictions for world-class sprinters 

 
 

In the sprinting range the results are a bit less accurate, but despite lacking statistics in 200m 

split times they are still better than those of other models.  

 

To make these calculations, a computer programme can be devised, a preliminary version of 

which is available on the web17. Users enter their two personal bests required for calibration 

and enter one or more distances for which they receive their prophesised times.  

The logarithmic linearity of equation (7) also offers the opportunity of a simple graphical 

representation of the model. This is displayed below in Figure 3. Since the vertical axis 

denotes lap time and the horizontal axis covers the (logarithmic) scale of distance, the 

performances of an individual athlete are given by a unique straight line. For reasons of 

convenience, performance times (derived from the product of lap time and distance) for each 

event are projected at the appropriate coordinates. 
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Figure 3: Graphical representation of the logarithmic model 

 

Any individual could basically mark two different personal bests in the figure and then 

connect the two points with a straight line. This is illustrated by the yellow line (labelled 

“Example”) where two calibration points are indicated with yellow squares (0:55 at 400m and 

40:00 at 10,000m, respectively). The intersections with the ordinates provide predicted 

outcomes at the various distances (10.89 at 100m, 24.08 at 200m, 2:06.57 at 800m, 4:27.57 

at 1500m, 10:02.65 at 3000m, 18:07,40 at 5,000m, 1:32:55 at the half marathon and 3:21:41 

at the marathon, respectively).  

 

The dark lines in Figure 3 are the performance curves of selected world-class athletes who 

cover multiple distances: Kenenisa Bekele (K.B.), Hicham El Guerrouj (H.E.G.), and Paula 

Radcliffe (P.R.), respectively. According to the model, Bekele is supposed to break the 

marathon world record (2:00:07). Also, he will be able to run 400m in 52.20 sec, which is only 

slightly below times recorded for his final laps in 10,000m races. Radcliffe seems to have a 

“weak” 10,000m best: the prognosis is 29:49 (against 30:01.09 personal best). Note that the 

curves of these two athletes display about the same slope, indicating the same type of decay 

that is probably distinctive for long distance runners. The curve of El Guerrouj shows a 

steeper slope, which can be attributed to the higher cruise speeds that he is capable of in the 

mid-range distances. One of the things that turns out is that El Guerrouj would be capable of 

running 10,000m in 27:17. His marathon of 2:09:10 would be respectable, but not world-class 

level.  
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The performance curve of Usain Bolt (U.B.) is also displayed in Figure 3. Here, his personal 

bests at 100m and 400m are used, although the latter (45.28) dates back to 2007, which is 

well before his breakthrough as a world class sprinter; indeed the predicted 200m time of 

20.41 sec is far behind his actual best. Nevertheless, using the 100m and 200m events for 

calibration does not make much sense exactly because of the inaccuracies due to reinforced 

extrapolation. For the same reason the predictions for the longer distances (e.g. 30:39 at 

10,000m) do not seem to make much sense here. 

 

The Normalised Multi-event Scoring Model  

 

For comparing the performances in different competitions, the IAAF uses pre-fixed scoring 

tables3. The tables are based on a power law formula of the type: 

 

  CPBAS )( −⋅=      (8) 

 

The formula converts a performance P into a result score S. Here A is a scaling constant, 

performance P is exertion time, B is a lower limit threshold performance (i.e. time above 

which no score is assigned), and C is a power slightly larger than 1 for obtaining progressive 

scoring curves. For each event different coefficients A, B and C are prescribed by IAAF18. For 

instance, for the 100m it is compulsory to use A= 25.43470, B= 18.0, C=1.810.  

 

For decathlon scoring tables WESTERA1 proposed three alternative models that produce 

better alignment. The models are all based on the idea of normalisation, that is, all 

performances are reduced to performance rates and than equally treated in a progressive 

scoring formula, e.g. a power law. The power law solution for the result score S reads1 : 

 

  
C

LH

L

PP
PP

AS �
�

�
�
�

�

−
−⋅=

)(
)(

     (9) 

 

Here A is a scaling constant, P is performance (reciprocal time rather than time), PL is a 

lower limit threshold performance (i.e. reciprocal time below which no score is assigned), PH 

is a high level performance reference for calibration, and C is a power coefficient that is 

larger than 1 for obtaining slightly progressive scoring curves. Using empirical data of the 

world’s top 100 decathletes the parameters A, C, PH and PL could be determined. Rather 

than 30 parameters in the existing IAAF power law model of equation (8) (viz. A, PL and C 10 

times each), the alternative model according to equation (9) requires only 22 (A, C, and 10 
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times PL and PH). It was established that the alternative model offers a balanced, transparent, 

uniform approach, uses less coefficients, and eliminates bias, arbitrariness and unfairness. 

The overrating of sprinting-based events in decathlon was eliminated. With the proposed 

tables decathletes would be able to collect their scores to the same extent from any of the 10 

disciplines. 

 

Redefining IAAF scoring tables 

With the normalised multi-event scoring model (NMSM) we are able to devise a set of 

scoring tables that are free of the existing anomalies and iniquities. The results are basically 

given by equation (9), provided that we have available the two calibration levels PL and PH 

and the parameters A and C. These parameters can than be used in equation (9), which 

yields the result score S for any performance P at any distance s.  

 

-The high-level performances calibration PH 

The choice of these parameters is not critical, if only they correspond with high 

performances. Since it is a basic requirement of the scoring model that world records in 

different distances receive the same (high) result score, we will use the world record data for 

each distance as the high-level reference points.  

 

-The low-level performances calibration PL 

These parameters refer to the threshold performances below which no score is assigned. 

The procedure we follow here is to conform to the IAAF tables and use the official threshold 

values B. For practical reasons we used the performances of result score S=1, because 

performances of result score S=0 are not listed in the IAAF tables. Table 3 lists the threshold 

performances on various distances. For comparison also 1/PH is  listed. 

 

Table 3: Performance thresholds and calibration values for various distances 
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The fourth column 1/(B*PH) lists the ratio of threshold performance and top performance. The 

ratios in this column reveal substantial irregularities indicating arbitrariness in the official 

IAAF threshold values B. It is hard to understand why this ratio is not a constant so that each 

distance uses the same relative scale. For better coherence, it is proposed here to use the 

average ratio (which is 0.523) as the fixed ratio for PL/PH. The resulting thresholds 1/PL 

replacing the IAAF thresholds B are listed in the column at the right. One might still wonder 

why such threshold should be exactly 0.523 or any other figure.  

 

-Power C 

The power C is responsible for progression of scores with distance. It should be larger than 1 

to make sure that equal improvements of performance receive higher scores in the high 

performance range1. The underlying idea is that, for instance, improving your 5000m 

performance from 28 minutes to 26 minutes is less impressive than improving it from 14 

minutes to 13 minutes. The IAAF tables use different values for C at different distances. We 

will use a uniform value of C=1.832, being the average of six values used for different 

distances by the IAAF18.  

 

-Scaling factor A 

The scaling factor A represents the score we want to assign to the high level performance 

references PH, which we have chosen to be the same as the current world records. So A 

(more or less) corresponds with the maximum score an athlete can get. As a scaling factor 

its value is a bit arbitrary, it could be 1000 to make a neat figure. But we may also want to 

link the new score system with the existing one. Therefore we have chosen that A equals the 

average of the scores that world records receive in the existing regime. The data used are 

the same as represented in figure 1. The average result score of world records is 1311 points 

(we only used the distances displayed in the figure). So A is set to 1311. 

 

Having all parameters defined, we are now ready to evaluate the impact of the new scoring 

model. In Table 4 we have listed an excerpt of the tables. 
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Table 4. Performance times (m:s) required for different scores and distances according to the 

new model (NMSM) and the current model (IAAF) 

 
 

From the calculations it follows that over almost the whole range the new scoring system 

differs significantly from the existing one. In most cases, the athlete has to run faster to 

obtain the same score the existing model would give. Differences may be up to 25% in the 

mid-range of performances, for instance, receiving 700 points at 5000m requires being one 

full minute faster in the new model, which is a difference of 7%. Receiving 700 points in the 

marathon requires 18%, 1000 points still requires doing more than 3% better. Because world 

records are used for calibration the differences go down in the high-end range. For instance, 

at 5000m world record level the difference between the two scoring tables is only three 

seconds. Although this is only 0.4%, it still makes a big absolute difference: up to 20m. It 

demonstrates that the impact of (unjust) scoring tables is substantial over the whole range. 

 

Toward Personalised Scoring Tables 

 

The NMSM approach offers a normalised, uniform scoring model for a variety of distances. A 

disadvantage of the approach is that low-level and high level calibration values must be 

determined for every single distance. One might consider linking the NMSM with the 

personal prediction model (PPM) in order to arrive at a single analytical expression for 

scoring with distance as the independent variable. The basic idea would be to assume a 

fictitious super athlete that holds all world records. Then equation (7) of PPM could be used 

to calculate the high-level calibration performances for any distance s* (note that 

performance =1/t). We would need only two world records for calibration so that � and � can 

be determined. Since PL/PH=constant and while maintaining C and A, equation (9) would then 

provide a result score S for any distance s*. 
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Unfortunately, world records are not owned by one single individual but by diverse 

individuals, each of them specialised in a discipline and displaying the characteristics for 

excelling in that discipline. Although the overall fit in Figure 2 was encouraging, it isn’t good 

enough for accurately describing the world records. Errors add up to over 7%, which is 

unacceptable. It is concluded that the PPM as a personal predictor does not hold for 

combining performances of different individuals.  

 

As a replacement for equation (7), one might use a power law relationship between distance 

s and exertion time t. KATZ & KATZ9 explained that a power relationship holds for world 

records. However, also in this case best-fit solutions fall short, displaying errors up to 9%, 

which is even worse than the PPM. So with these equations it is not possible to derive an 

analytical scoring formula using distance as the independent variable. 

 

Nevertheless, at the individual level, the PPM and the NMSM still can be used to produce 

personalised scoring tables. Such scoring tables assign scores to individual performances for 

any distance: the personal score (not to be confused with the official IAAF result score) 

expresses the quality of the performance of the athlete, measured against other 

performances of the same athlete. Table 5 presents an example: it lists a ranking of 

Kenenisa Bekele’s best performances16. 

 

Table 5: Kenenisa Bekele’s personal performance rankings using PPM and NMSM 
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The table shows the ranking of 24 of Bekele’s race performances. Note that such ranking 

can be made for any athlete. Personal calibration - determining � and � in equation (7) - was 

done with Bekele’s 3000m and 10,000m personal best times (cf. Table 1). Table 5 shows the 

calculated score S, the same score expressed as a ratio normalised to 1000 points, the IAAF 

result score3, and the associated ranking based on IAAF score. Differences are striking. 

From the perspective of Bekele, neither the 5,000m nor the 10,000m world records are at the 

top, but instead are two 1500m races. Although the 1500m times are not anywhere near the 

word record, the performances are of exceptional level taking into account the fact that 

Bekele is a long-distance runner specialised at 5000 and 10,000m. In fact, this is exactly 

what the PPM approach takes into account.  

 

Conclusion 

 

This paper explained the personal predictor model (PPM) and the normalised multi-event 

scoring model (NMSM) and presented a variety of empirical evidence for their validity.  

 

The PPM produces valid and reliable predictions of personal performance limits. The 

accuracy is well below 1% and thereby greatly outperforms existing models that typically 

achieve accuracies of 3% or higher. Besides its unchallenged accuracy, the model has some 

additional advantages. Importantly, the model is transparent, since it is based on theoretical 

principles rather than arbitrariness and negotiation. Furthermore it is self-contained, easy to 

use and affordable, because it does not require any physiological or biomechanical tests to 

be carried out: it just uses two personal bests for individual self–calibration. Since the model 

compensates for start-up delays it is valid across a wide range of events, including sprinting, 

middle- and long-distance running. Finally, it can be demonstrated that the model displays a 

universal validity covering any velocity and distance related sports event, including running, 

speed skating and swimming11.  

 

The NMSM was developed to address anomalies of the IAAF scoring tables. The NMSM 

demonstrates greater fairness, consistency and transparency. Over the whole midrange of 

performances the new scoring system differs significantly from the existing one, requiring 

higher performances for obtaining the same score as the current scoring method. Differences 

are up to 25%, but even small relative differences at world top level translate to appreciable 

absolute differences. It was demonstrated that the impact of (unjust) scoring tables is 

substantial over the whole range. This substantiates the need for a new model. Combining 

the PPM and NMSM for deriving a generic scoring formula that would cover any distance 

and any performance was not feasible because poor fits of the world record performances to 
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either the PPM or existing power law models. Yet, a personalised scoring table was 

presented, converting individual performances at various distances into a unified personal 

score.  

 

Please send al correspondence to: 

Prof. dr. Wim Westera 

CELSTEC - Centre for Learning Sciences and Technologies 

Open University of the Netherlands 

Wim.westera@ou.nl  
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