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General Introduction 
General Introduction 

Chapter 1 

This chapter briefly introduces the different components that play a role in personalized, dynamic 
selection of learning tasks. It discusses the task features that can be dynamically selected throughout the 
training as well as variables that form the basis for task selection. In addition, it describes approaches to 
the selection of tasks using program control, learner control, and so-called shared control. Finally, it 
presents an overview of the studies that were carried out to investigate under which conditions learner 
control over task selection is most effective. 
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In the field of instructional design, there is a tendency to focus on authentic learning 
tasks based on real-life situations to help learners develop transferable skills 
(Reigeluth, 1999; van Merriënboer & Kirschner, 2001). However, especially for 
less experienced learners in a domain, complex skill acquisition by performing 
authentic tasks can easily cause cognitive overload because of the limited process-
ing capacity of working memory (Baddeley, 1992; Sweller, 1988). To enable the 
use of authentic and complex tasks in education, and yet prevent overloading 
learners’ cognitive system, there is a need to flexibly personalize the training 
program to each individual learner. This shift to personalized instruction is in line 
with current educational approaches which focus on flexible curricula. These 
curricula move from ‘same for all’ education which presents all learners with the 
same sequence of learning tasks, towards ‘just for me’ education which offers each 
learner a unique task sequence dynamically adapted to individual needs and 
preferences. 
 Task sequence can be personalized either by a computer program or by the 
learner herself. At one extreme, program controlled approaches provide each 
individual learner a sequence of suitable tasks, which can be determined at each 
moment in time. This requires systematic and real-time assessments of the learner’s 
progress (e.g., Camp, Paas, Rikers, & van Merriënboer, 2001; Jochems, van 
Merriënboer, & Koper, 2005; Kalyuga & Sweller, 2005; Renkl & Atkinson, 2003; 
Salden, Paas, & van Merriënboer, 2006; van Merriënboer & Kirschner, 2007; van 
Merriënboer, Sluijsmans, Corbalan, Kalyuga, Paas, & Tattersall, 2006). At the other 
extreme, learner controlled approaches provide learners the freedom to choose 
their own learning path according to their own needs and/or interests (Merrill, 1980; 
van Merriënboer, Schuurman, de Croock, & Paas, 2002). Learner control may be 
beneficial for learning even when choices are trivial (Cordova & Lepper, 1996; 
Katz & Assor, 2007; Kinzie, 1990; Lepper, 1985; Morrison, Ross, O’Dell, & 
Schultz, 1988). However, in general, studies report both beneficial and detrimental 
effects of learner control on learning (e.g., Katz & Assor, 2007; Williams, 1996). 
This seems to indicate that learner control functions differently depending on what 
(e.g., pace, display, task features) is selected by whom (i.e., domain novices or more 
experienced learners). 
 The aim of the studies presented in this dissertation is to investigate under 
which conditions learner control over task selection is most effective. In the next 
sections, task features that can be dynamically selected throughout the training as 
well as variables that form the basis for task selection are examined in more detail. 
Next, program control, learner control, and, finally, so-called ‘shared control’ are 
described as alternative approaches to the selection of learning tasks. Finally, an 
outline of the remaining chapters of this dissertation is provided. 
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Task Features in Dynamic Task Selection 

Task features may comprise: the level of difficulty (from simple to complex, or 
from easy to difficult) (Chapters 2 and 3); the level of support (in a completion or 
fading strategy embedded support diminishes from ‘full support’ provided by 
worked examples that must be studied by the learner, to ‘no support’ provided by 
conventional problems that must be solved by the learner) (Chapters 2 and 3); the 
surface or irrelevant task features (Chapters 3, 4 and 5); and the structural or 
relevant task features (Chapters 5 and 6). For each individual learner, it should be 
possible to select at any given point in time a task or a range of tasks containing 
optimal task features. Learning tasks that are suitable for presentation as the learner 
progresses throughout the training are stored in a substantial learning-task database 
which contains enough variability to fit the learners’ needs and interests. 

Variables used as a Basis for Dynamic Task Selection 

In models for dynamic task selection, decisions are based on a continuously updated 
learner portfolio which contains learner variables, such as the combination of 
performance and invested mental effort to attain that performance, and task vari-
ables, such as the surface features and structural features selected in previous tasks, 
that help to select the best (subset of) future task(s) for learning. 
 With regard to learner variables, performance is commonly used as input for 
dynamic task selection and can be defined as the effectiveness in accomplishing a 
particular task (Camp et al., 2001). Cognitive load theorists have proposed that 
performance measures alone are not a sufficient basis for task selection and should 
be enhanced by considering the imposed cognitive load to attain this performance. 
Cognitive load is commonly measured by the mental effort invested in task per-
formance. Invested mental effort thus refers to the cognitive capacity that is 
allocated by the learners to accommodate the demands imposed by the task (Paas, 
Tuovinen, Tabbers, & van Gerven, 2003). A combined measure of performance and 
invested mental effort forms a more comprehensive representation of the learner’s 
level of expertise than performance alone and can be used for dynamic task selec-
tion (e.g., Camp et al., 2001; Kalyuga & Sweller, 2005; Paas et al., 2003; Salden et 
al., 2006). In the pilot study presented in Chapter 2 and in the study described in 
Chapter 3, task difficulty and support of each newly selected task are dynamically 
tailored to the learner variables performance and invested mental effort. 
 The learner portfolio also contains information on previously presented task 
variables to decide which task features should be selected next. In this dissertation 
the focus is on surface features and structural features. Surface features (e.g., 
species and trait in inheritance tasks because Mendel’s laws are the same for 
animals, plants, and humans) refer to task aspects that are not relevant to how the 
problem is solved (i.e., solution steps) and are generally salient for learners. 
Structural features (e.g., the solution steps in inheritance tasks or the underlying 



16 | General Introduction 

 

mathematical procedure in statistical problems) refer to task aspects that are 
relevant to solution steps and are generally not salient for especially novices in a 
particular domain (Chen & Mo, 2004; Cummins, 1992; Gick & Holyoak, 1987; 
Quilici & Mayer, 1996, 2002). In the studies presented in Chapters 4 and 5, surface 
features are taken as a basis for task selection. Additionally, Chapters 5 and 6 
include task selection rules which also take the structural features of previously 
performed tasks into account. 

Program Control and Learner Control over Task Selection 

The issue of the locus of instructional control, that is, either external (program 
control) or internal (learner control), has been a primary concern in the upsurge of 
computer-assisted instruction (Lawless & Brown, 1997; Tennyson & Buttery, 
1980). Program control ensures a suitable sequence of learning tasks according to 
the learners’ needs (e.g., Camp et al., 2001; Kalyuga & Sweller, 2005; Salden et al., 
2006; van Merriënboer & Kirschner, 2007). For example, a task that is too difficult 
or presents not enough support could hamper learning because it may easily 
overload learners. Task selection rules might avoid cognitive overload by adapting 
task difficulty and support levels according to learners’ current capabilities. How-
ever, a high level of program control may negatively affect learners’ motivation. 
Learner control - in contrast to program control - enables learners to make instruc-
tional decisions according to their current knowledge, interests, and preferences 
(Merrill, 1980, 1994; van Merriënboer et al., 2002). This is believed to positively 
influence learning and motivation (Schnackenberg & Sullivan, 2000; Williams, 
1996), provided that learners perceive the control given and use this control to 
select personally relevant tasks (Katz & Assor, 2007). 
 Finally, the program and the learner may share control over task selection. In 
this two-step, dynamic process, a computer program first selects ‘on the spot’ a 
subset of learning tasks with suitable characteristics (e.g., difficulty, support, 
surface and structural features) as the learner progresses throughout the training 
(program control). This makes instruction more effective and efficient. Second, the 
learner selects from this subset one task to work on (learner control). This makes 
the instructional experience more motivating and relevant for learners which 
ultimately will yield more effective and efficient learning. However, the effective-
ness of shared control largely depends on which task features are selected by the 
program and which task features are selected by the learners themselves. For 
example, learners can be given control over task features they are able to perceive 
and to handle, but not over task aspects that are beyond their knowledge and skills 
or which are not salient for them. 
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Structure of this Dissertation 

Chapter 2 introduces a task selection model with shared control, in which first a 
program makes a pre-selection of optimal tasks, from which the learner then makes 
the final selection. It also reports the results of a pilot study testing this model. The 
model forms the basis of the study portrayed in Chapter 3 and is used as the starting 
point of the studies described in Chapters 4 to 6. 
 Chapter 3 builds on the model proposed in Chapter 2 and reports on the effects 
of adaptation (present vs. absent) and control over task selection (program vs. 
shared) on transfer test performance, efficiency, and task involvement. A program 
dynamically adapted the level of difficulty and available support of learning tasks in 
the dietetics domain to the learners’ competence and reported cognitive load. The 
program presented either (a) one task - program control - or (b) three tasks - shared 
control - differing on surface features, from which the learner selected one. 
 The experiments described in Chapters 4, 5, and 6 (domain: genetics) tested the 
effects of program control and learner control over the selection of learning tasks 
with different surface features (Chapters 4 and 5) and different structural features 
(Chapters 5 and 6) on transfer test performance, efficiency, and motivation. Chapter 
4 reports an experimental study in which participants’ perception of control was 
manipulated by task selection rules that limited learners’ choices to three program 
pre-selected tasks containing either similar or dissimilar surface features as com-
pared to each prior task. Learners were expected to benefit from choosing pre-
selected tasks with surface features dissimilar from the surface features of previ-
ously performed tasks. 
 Chapter 5 explores the effects of program control and learner control over the 
selection of tasks with different surface features and different structural features on 
transfer test performance and efficiency. In the program control conditions, one task 
with dissimilar surface features or dissimilar structural features from the preceding 
task was presented each time. In the learner control conditions, learners were 
presented with a subset of four tasks which differed in the level of dissimilarity 
(low to high) of either surface features or structural features from the previous task, 
whereafter learners made the final selection. It was expected that it is better to give 
learners the freedom to select tasks with different surface features, because the 
saliency of those features enables them to select a varied set of personally relevant 
tasks. No beneficial effects on learning were expected from learner controlled 
selection of tasks with different but non-salient structural features. 
 The study described in Chapter 6 investigates the effects of feedback (present 
vs. absent) and control over the selection of tasks with different structural features 
(program control vs. learner control) on transfer test performance, efficiency, and 
motivation. Since feedback helps learners to recognize the structural features, 
learners who had control and were given feedback were expected to be better able 
to perceive the control given to them, and thus to choose more personally relevant 
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tasks, which facilitates learning and motivation. In addition, the sole provision of 
feedback was also expected to yield higher transfer test performance, efficiency, 
and motivation. 
 Finally, Chapter 7 presents an overview and a general discussion of the results 
of the studies presented in Chapters 3 to 6. It closes with a description of limitations 
of the presented studies and practical implications for future research.   
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Towards a Personalized Task Selection Model 
with Shared Instructional Control1 

Shared control over task selection 
Chapter 2 

Modern education emphasizes the need to flexibly personalize learning tasks to individual learners. 
This chapter discusses a personalized task-selection model with shared instructional control based on 
two current tendencies for the dynamic sequencing of learning tasks: (1) personalization by an 
instructional agent which makes sequencing decisions on the basis of a learner’s expertise, and (2) 
personalization by the learner who is given control over – final – task selection. The model combines 
both trends in a model with shared instructional control. From all available learning tasks, an instruc-
tional agent selects a subset of tasks based on the learner’s performance scores and invested mental 
effort (i.e., program-control). Subsequently, this subset is presented to the learner who makes the final 
decision (i.e., learner control). A computer-assisted instructional program has been developed to put the 
model into practice and preliminary results are discussed. The model can be used to increase the 
efficiency and effectiveness of instruction and to make it more appealing by providing the learner an 
optimal level of control over task selection. 

                                                        
1 This chapter is based on: Corbalan, G., Kester, L., & van Merriënboer, J.J.G. (2006). Towards a personalized 
task selection model with shared instructional control. Instructional Science, 34, 399-422. 
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Rapid technological developments in modern society increase students’ need to 
acquire complex cognitive skills and to transfer those skills from formal educational 
settings to work situations (Reigeluth, 1999; van Merriënboer & Kirschner, 2001). 
There is a tendency in the field of instructional design to focus on authentic learning 
tasks based on real-life situations to help learners develop transferable skills. But 
especially for novice learners, the acquisition of complex skills by performing 
authentic learning tasks is heavily constrained by the limited processing capacity of 
working memory because it easily causes cognitive overload. According to cogni-
tive load theory (Sweller, 1988; Sweller, van Merriënboer, & Paas, 1998; van 
Merriënboer & Sweller, 2005), cognitive load is a construct representing the load 
that performing a particular task imposes on the human cognitive system. Learning 
is encouraged if the cognitive system is not overloaded and if available cognitive 
resources are actually allocated to learning processes rather than extraneous 
processes that do not directly contribute to learning. 
 In order to enable the use of authentic tasks in education, and simultaneously 
prevent learners from being overwhelmed by them, there is a need to personalize 
the nature and sequence of learning tasks for each individual learner. Personaliza-
tion of learning materials to individual learners is believed to facilitate learning, 
because (a) the level of difficulty and available support of each task prevents 
cognitive overload, and (b) other task features are varied in such a way that learning 
is promoted. This chapter describes a model of personalized task selection which 
enables the development of personalized education. The model combines two 
approaches to personalization in order to cope with increasingly complex learning 
situations: program-controlled instruction, in which an instructional agent (e.g., 
computer, teacher) makes decisions on learning tasks, and learner-controlled 
instruction, in which the learner him or herself makes such decisions. 
 First, according to models of program-controlled instruction, learning is 
influenced by both characteristics of the learner, such as expertise, abilities, and 
attitudes (Zimmerman, 2002), and characteristics of the tasks that are presented in 
the learning environment, such as task complexity, amount of learner support, and 
other task features (Lawless & Brown, 1997). The use of electronic learning 
environments allows for personalization by dynamically changing the instruction 
(i.e., learning tasks) in response to input from the learner (e.g., performance scores 
and invested mental effort to attain them) or based on previously selected task 
features (e.g., surface or irrelevant task features, and structural or relevant task 
features). Several studies indicate that personalization in response to input from the 
learner leads to a more efficient training program and higher transfer test perform-
ance than the use of a fixed sequence of ready-made learning tasks (e.g., Camp, 
Paas, Rikers, & van Merriënboer, 2001; Kalyuga & Sweller, 2005; Salden, Paas, 
Broers, & van Merriënboer, 2004; van Merriënboer, Schuurman, de Croock, & 
Paas, 2002). 
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 Second, according to models of learner-controlled instruction, complex learning 
should not only aim at developing complex skills but also at promoting self-
regulated learners who are able to effectively select their own learning tasks. Pure 
program-controlled instruction cannot enhance the acquisition of self-regulation 
skills because an instructional agent rather than the learner makes the selection. 
Giving learners – some – control over particular aspects of their learning environ-
ment creates the necessary preconditions for practicing self-regulation skills and is a 
first step towards teaching those skills (Kinzie, 1990). In addition, it is expected to 
make learning more appealing with beneficial effects on learner motivation, which 
in turn may increase learning outcomes (Wolters, 2003; Zimmerman, 2002). Giving 
learners control over task selection assumes that learners are able to select the most 
suitable learning task according to their current state of knowledge, interests, and 
preferences (van Merriënboer et al., 2002). Novices in a particular learning domain 
who are provided with learner control, however, may not be able to pick up essen-
tial information for learning so that there is a decrease in learning and learning 
goals are not reached (Merrill, 2002). More experienced learners have the necessary 
knowledge to make the right selections, and giving them learner control prevents 
that they receive information they already know. 
 Concluding, there should be a gradual transition from program-control to 
learner-control if learners acquire more expertise. But, even experienced learners 
may not profit from full learner control if they are overwhelmed by the amount of 
choice, for instance, if they have to select from hundreds of tasks (Schwartz, 2004). 
Thus, for a novice learner it is best to select one learning task from a small set of 
available tasks; for a more experienced learner it is best to select one learning task 
from a larger set of tasks, but even a highly experienced learner should not select 
one learning task from a very large set of tasks. The personalized task-selection 
model with shared instructional control presented in this chapter combines the 
advantages of both program-controlled and learner-controlled instruction. When a 
learner works on learning tasks, an instructional agent continuously assesses 
performance and invested mental effort to select an optimal subset of following 
learning tasks. This subset is then presented to the learner who makes the final 
selection. Thus, the instructional agent and the learner share control over the whole 
process of learning task selection. Shared control is expected to be more effective 
(i.e., higher learner performance) and more efficient (i.e., higher performance 
combined with lower mental effort invested and/or less instructional time) than both 
complete program and learner control. In addition, it is believed to be more appeal-
ing and to promote the development of self-regulation skills. 
 The structure of this chapter is as follows. First, a description of the model and 
its main components is given. Second, the model is translated into practice and a 
specific learning environment, which is developed on the basis of the model, is 
described. Finally, the results obtained in a pilot study that examined the effects of 
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the learning environment are described and the implications of the results are 
discussed. 

The Model 

The personalized task-selection model with shared instructional control presented in 
this chapter aims at providing each individual learner, after finishing one or more 
learning tasks, the best next task given his or her level of expertise, thus yielding a 
personalized sequence of learning tasks in an environment for complex learning. 
Figure 2.1 depicts the personalized task-selection model with shared instructional 
control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 1. The personalized model for dynamic task selection. 
 
 Figure 2.1 gives a diagram of the model including three components: (a) 
characteristics (component C), (b) personalization (component P), and (c) learning-
task database (component L). 
 Component C includes task characteristics and learner characteristics, which are 
documented in a learner portfolio. Task characteristics include the level of com-
plexity (i.e., from simple to complex, or from easy to difficult), embedded learner 
support (i.e., from full support to no support), and other task features (e.g., the 
surface features, for instance, the context in which the task is performed, display or 
presentation mode, et cetera). The learner portfolio contains, for instance, informa-
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tion about the learner in terms of task performance and invested mental effort on 
already completed learning tasks, combined in a measure of expertise. 
 Component P refers to the personalization mechanism. It combines two appar-
ent opposite tendencies of personalization: program-controlled instruction and 
learner-controlled instruction. Program-controlled instruction includes task-
selection rules used by an instructional agent to base decisions on. Learner-
controlled instruction lets the learner select the learning tasks from a smaller or 
larger subset of – pre-selected – tasks. Both forms complement each other in such a 
manner that when the program has a relatively large control over task selection, the 
learner receives a relatively small amount of control, and vice versa. In that way, 
control is shared by the program and the learner. The relative amount of program 
and learner control over task selection varies based on the contents of the learner 
portfolio. 
 Finally, Component L includes the learning-task database with tasks with 
diverse levels of complexity, embedded support, and other task features. The 
instructional agent pre-selects a subset of learning tasks from this database and 
presents only this subset to the learner, who should make the final selection. 
Theoretically, the size of this subset may range from 1 (i.e., no learner control) to 
all tasks in the database (i.e., full learner control). 

Component C: Characteristics 

Component C refers to learning task characteristics and the learner portfolio. If the 
characteristics of the task presented to an individual learner are not appropriate this 
may either hamper learning because of cognitive overload, if the task is too difficult 
or does not include enough support, or hamper learning because the task features do 
not stimulate the learner to construct new knowledge. The learner portfolio should 
contain the information that helps to select the best task(s) for learning. Relevant 
task characteristics and the learner portfolio are discussed in the next subsections. 
 Learning task characteristics. The four-component instructional design model 
(4C/ID-model; van Merriënboer, 1997; van Merriënboer, Clark, & de Croock, 
2002) provides guidelines that consider the limitations of working memory for the 
design of educational programs, or integrated curricula, to teach complex cognitive 
skills. In an integrated curriculum, learning tasks are ordered in an easy-to-difficult 
sequence, learner support decreases from high to no support, and learning tasks 
vary from each other on external characteristics that also differ in the real world 
(e.g., context, display and presentation mode, input for the task, et cetera). Our 
personalized task-selection model with shared instructional control takes the 4C/ID-
model as a starting point and distinguishes the same three aspects of learning tasks 
for personalization: (a) level of complexity, (b) embedded learner support, and (c) 
other task features. Learner support decreases and task complexity increases as 
learner’s level of expertise increases. Moreover, varying the task features increases 
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the variability of practice, which promotes learners to construct new knowledge 
through abstraction and generalization (van Merriënboer, 1997). 
 First, with regard to the level of complexity it is argued that, due to limited 
processing capacity, providing very difficult learning tasks right from the start of a 
curriculum may have negative influences on learning, performance, and motivation 
(van Merriënboer, Kirschner, & Kester, 2003). In terms of cognitive load theory the 
difficulty of a task yields intrinsic cognitive load, which is a direct result of the 
complex nature of the learning material. That is, intrinsic cognitive load is higher 
when the elements of the learning material are highly interconnected (i.e., high 
element interactivity) and lower when they are less interconnected (i.e., low 
element interactivity; for a review, see Sweller, 1994). A personalized instructional 
design should provide each learner with tasks that are neither too difficult nor too 
easy. By gradually increasing the difficulty of tasks in such a way that the individ-
ual learner’s growing expertise is taken into account, the intrinsic cognitive load 
yielded by these tasks is properly managed. 
 Second, providing learners with tasks with an appropriate amount of embedded 
support is essential for learning because this prevents cognitive overload as well. 
This embedded support is related to the sequence of operators (i.e., the solution 
steps) necessary to reach the goal state. Different types of embedded support take 
different aspects of the problem solving process into account. Product support 
provides the learners with solution steps; process support presents the rationale 
behind the problem-solving process itself (van Merriënboer, 1997). 
 Worked-out examples are learning tasks that provide maximum product-
oriented support. They confront the learners not only with a description of a given 
state (i.e., problem state) and the criterion for an acceptable goal state or solution, 
but also with a description of the solution steps necessary to reach the solution. The 
learners are asked to carefully study the solution or ‘best example’. Worked-out 
examples prevent extraneous cognitive load, that is, load irrelevant for learning 
because learners do not have to bother about the tentative application of mental 
operations but can focus all their attention on learning the relevant solution steps. 
Completion problems provide learners with a partial rather than a complete solu-
tion. Like worked-out examples, they help learners focus on the problem state and 
relevant solution steps. But in addition, learners have to carefully study the partial 
solution because otherwise they will not be able to find the remaining solution 
steps. This directs learners’ attention to processes relevant for learning, hereby 
enhancing so-called germane cognitive load (i.e., load relevant for learning) and 
facilitating problem solving and transfer performance (Renkl & Atkinson, 2003; 
van Merriënboer et al., 2002). Conventional tasks, finally, provide learners with a 
given state and a criterion for an acceptable solution only. No solution is provided. 
For experienced learners, conventional tasks enhance the generation of creative 
solutions because the tasks are authentic and the learners already possess the 
knowledge that is necessary to approach the task. But novice learners lack relevant 
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knowledge and use cognitively demanding strategies to reach the solution, increas-
ing extraneous cognitive load and hampering learning. Thus, a smooth transition 
from worked-out examples, through completion tasks, to conventional tasks takes 
learners growth in expertise into account. 
 In this respect, the ‘expertise reversal effect’ (Kalyuga, Ayres, Chandler, & 
Sweller, 2003) states that successful instructional techniques for novice learners 
(e.g., presenting tasks with high embedded support) often lose their value, or even 
produce opposite effects, when used with more experienced learners. For instance, 
presenting a diagram with integrated textual explanations may be an effective 
technique for novice learners, who need the explanations to understand the diagram, 
but an ineffective technique for experienced learners, who already possess the 
knowledge necessary to understand the diagram. When they are nonetheless forced 
to process the textual information that is redundant with their current knowledge, 
this hinders learning because they must unnecessarily invest cognitive resources 
(i.e., extraneous cognitive load) to find out that the information is redundant. 
 Process-oriented support provides learners with heuristics for problem solving 
that may help them to reach an acceptable solution. Three types of process-oriented 
support are modeling examples, process worksheets, and performance constraints 
(van Merriënboer, 1997). Modeling examples present the learner with an expert or 
professional who is demonstrating the problem solving process and explaining the 
reasoning behind it, thus verbalizing why s/he is doing what s/he is doing. Process 
worksheets, in a paper-based format or as an on-line tool, provide a description of 
helpful phases and rules-of-thumb to guide learners through the problem-solving 
process. Finally, performance constraints force learners to use expert’s approaches 
to problem solving while they are performing the learning tasks. 
 Third, learning tasks should differ from each other on task features that also 
differ in the real world. Examples are surface features, such as the context or setting 
in which the task is performed, the structural features, such as the solution steps in 
inheritance tasks, the way the task is displayed, the interface that is used, and the 
mode of presentation of the task (e.g., video, audio, graphics, or text). By designing 
tasks with varying task features, variability of practice is increased. Variability of 
practice enhances germane cognitive load because it promotes learners to develop 
generalized and abstract knowledge: it increases the probability that similar features 
are identified and that relevant features are distinguished from irrelevant ones (van 
Merriënboer, 1997). Moreover, variability of practice is an effective strategy for 
gaining and keeping a learner’s attention (Paas, Tuovinen, van Merriënboer, & 
Darabi, 2005). If learners can choose between tasks with different features, they 
may select a task according to their interests which makes instruction more person-
ally relevant and therefore positively affects learning. 
 To conclude, the personalized task-selection model with shared instructional 
control presented in this chapter aims at personalizing the level of task difficulty, 
the level of embedded learner support, and the other task features. Personalization 
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takes place in such a way that intrinsic load is optimized, extraneous load de-
creased, and germane load increased – all within the limits of totally available 
cognitive resources. 
 Learner portfolio. Besides learning task characteristics, component C also takes 
learner characteristics, kept in a learner portfolio, into account for task selection 
purposes. Individual differences between learners strongly influence how instruc-
tion must be designed in order to be most effective (Shute & Towle, 2003). Accord-
ing to the personalized task-selection model presented in this chapter, the character-
istics of each learner are represented in the portfolio at each specific moment in 
time, and so provide the basis for the dynamic selection of one or more appropriate 
learning tasks. Three aspects of the learner taken into account for task-selection 
purposes are: (a) task performance, (b) invested mental effort, and (c) level of 
expertise. 
 The first aspect, performance, is commonly used as input for dynamic task 
selection and can be defined as the effectiveness in accomplishing a particular task 
(Camp et al., 2001). Continuous assessment is needed for the dynamic personaliza-
tion of learning tasks. Assessment can either be made by a human or an electronic 
tutor, a peer (peer-assessment), or even the learner himself (self-assessment). The 
Protocol Portfolio Scoring (PPS; Straetmans, Sluijsmans, Bolhuis, & van Merriën-
boer, 2003) argues that to gather reliable and valid information about a learner’s 
performance, complex behaviours must be assessed on multiple aspects, which 
require different embedded assessment methods. According to the PPS, perform-
ance on tasks with support (e.g., worked-out examples, completion tasks) is mainly 
used to decide on the appropriate level of support and the desirable task features of 
subsequent tasks. Performance on conventional tasks without support is mainly 
used to decide whether the learner is ready to advance to a higher difficulty level or 
whether the learner has completed the whole educational program. 
 Three often used measures of performance are time-on-task, process quality, 
and product quality. Assessment of time-on-task is an important measure in learn-
ing tasks where speed plays a crucial role for acceptable performance (e.g., physical 
activities, driving a car, controlling air traffic, et cetera). Time-on-task may indicate 
how easy or difficult a learning task was for a particular learner because it typically 
increases with complexity. Accordingly, if time on task is very high for a learner it 
may also indicate high cognitive load or even overload. Thus, a learner who needs a 
considerable investment of time to perform a specific learning task should not be 
given the same subsequent learning task as another learner who performed the same 
task in considerably less time. 
 The quality of the process indicates learners’ understanding of the principles 
underlying their responses or solutions. Process data include verbal protocols, video 
and audio tapes, and retrospective reports. Observation instruments provide infor-
mation on the accuracy of learners’ actions, errors, misconceptions, and so forth. 
The quality of the available knowledge can also be measured by a variety of 
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traditional assessment tools, such as checklists, multiple-choice questions, open 
questions and so forth. 
 The quality of the finished product indicates if the learner already masters 
required knowledge and skills. Detailed standards of performance in terms of what 
learners should be able to do, according to particular values and exhibiting particu-
lar attitudes, help to assess the quality of the product. Standards must be observable 
and measurable. For instance, one standard of performance in a course on dieting 
could be: “learners have to be able to find a balance between the energy intake and 
the energy expenditure of a person who is on a diet”. 
 The second aspect, invested mental effort, refers to “ . . . the cognitive capacity 
that is actually allocated by the learner to accommodate the demands imposed by 
the task” (Paas, Tuovinen, Tabbers, & van Gerven, 2003, p. 64). Paas et al. (2003) 
describe two classes of methods for measuring mental effort: subjective techniques 
(e.g., rating scales, self reports) and objective techniques (i.e., dual-task reaction 
times, heart-rate variability, pupillary dilation). Cognitive load is commonly 
measured by the mental effort invested in task performance. According to Paas et 
al. (2003) a meaningful interpretation of cognitive load measures can only be given 
in the context of its associated performance and vice versa. 
 This leads to the third aspect, learner expertise, which refers in our model to the 
combination of performance and mental effort. The 4C/ID-model states that 
performance measures alone are not a sufficient basis for task selection and should 
be enhanced by considering the investment of mental effort to attain this perform-
ance. Thus, if two learners reach the same performance but one learner invests a lot 
of mental effort and the other does not, the first learner is best presented with an 
easier new learning task than the second learner. 
 Recent methods for the assessment of expertise focus on the combination of 
measures of performance and cognitive load (van Merriënboer & Sweller, 2005). 
Dynamic task-selection approaches require the just-in-time gathering of learner’s 
data. Thus, the level of expertise is continuously assessed, updated in the portfolio 
after each learning task, and used to determine the optimum level of learner support, 
task complexity, and other task features of the next learning task. It takes the 
expertise reversal effect into account by selecting only the task(s) adapted to the 
learner’s current expertise. 

Component P: Personalization 

The model presented in this chapter combines program-controlled and learner-
controlled approaches to reach a situation in which the instructional agent and the 
learner share responsibility over task selection. To which extent one approach or the 
other approach is emphasized depends on the task characteristics and the learner 
portfolio, described in component C. This subsection describes both approaches as 
well as their combination. 
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 First, program-controlled instruction has become much easier to realize with 
the upsurge of computer-assisted instruction, because it is no longer the teacher who 
has to make decisions for each individual learner. Program-controlled approaches to 
task selection aim at selecting just-in-time the most suitable learning task from an 
existing database with tasks, on the basis of information representing what the 
learner is already able to do or not yet able to do, and/or what the learner already 
knows or does not yet know. Intelligent Tutoring Systems (ITS), which are adaptive 
problem-solving environments, have been recognized by artificial intelligence 
researchers as rich environments that capture some benefits of human tutors. In a 
typical ITS, a distinction is made between a domain model representing the domain 
that must be learned, a student model representing what the learner is already able 
to do or not yet able to do as an “overlay” of the domain model, and an instructional 
agent which makes decisions on the selection of learning tasks, feedback, presenta-
tion modes, and so forth (Corbett, Koedinger, & Hadley, 2001). Originally, ITSs 
focused on part-task approaches teaching the domain piece by piece. Only with the 
introduction of dynamic whole-task approaches to teaching over the last decade, it 
became possible to apply techniques for task selection to learning environments for 
complex cognitive skills (for a review, see Salden, Paas, & van Merriënboer, 2006). 
 An example of an electronic learning environment that allows for personaliza-
tion is the Completion Assignment Constructor (CASCO) described by van Mer-
riënboer and Luursema (1996). It is an ITS for teaching introductory computer 
programming. CASCO’s decisions are based on a student model and made by an 
instructional agent using rules for the construction and selection of learning tasks. 
Fuzzy-logic rules are used to construct completion tasks from worked-out examples 
(ranging from tasks for which the student must add a few lines to a computer 
program, to tasks for which the student must write nearly the whole program) and to 
prioritize those learning tasks from ‘most suitable’ to ‘least suitable’ for presenta-
tion to an individual learner. Van Merriënboer et al. (2002) conducted a study with 
CASCO in which learners received tasks with no support, support, and personalized 
support. For a transfer test that was performed after the learning tasks, the propor-
tion of correctly used programming concepts was higher for the personalized 
support group than for the no-support and support groups. 
 Other studies have found positive results of personalizing the level of difficulty 
of learning tasks on the basis of performance and mental effort scores (combined in 
a measure of expertise). In the domain of Air Traffic Control, Camp et al. (2001) 
and Salden et al. (2004) compared the effectiveness of a fixed easy-to-difficult 
sequence of learning tasks with dynamic task selection aiming at personalized 
difficulty: the higher the level of expertise of the learner, the more difficult the next 
learning task. In both studies, personalized task difficulty yielded more efficient 
transfer test performance than the use of a fixed sequence of easy-to-difficult tasks. 
Finally, Kalyuga and Sweller (2005) conducted a study in the domain of algebra in 
which both the level of difficulty and the given support for the next task were 
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adapted to learner expertise. In their study, learners in the group with personalized 
support and difficulty showed higher gains in algebraic skills from pretest to 
posttest and higher gains in cognitive efficiency than learners in a yoked control 
group. 
 Second, besides program-controlled approaches to task selection, there is an 
increasing tendency to make education student-centered. Learner-controlled 
instruction assumes that learners are able to monitor their own learning and that this 
will accommodate individual differences. From a student-centered perspective, 
personalization seeks to take into account the special needs of individual learners 
(Brna & Cox, 1998). Furthermore, technological advances make it possible to 
implement types of computer-assisted instruction such as simulations and mi-
croworlds, which provide a lot of freedom to learners. These applications allow 
learners to control diverse aspects of the presented learning tasks (Bell & 
Kozlowski, 2002). 
 The provision of learner control has an evident influence on learner’s perform-
ance (Gray, 1987; Kinzie, Sullivan, & Berdel, 1988), since success in performance 
depends, amongst other factors, on the learner’s level of expertise in the domain and 
on the learner’s self-regulation skills to make proper use of the control provided and 
to select appropriate aspects of the learning tasks. Novices in a domain or students 
with poor self-regulation skills lack the ability to make productive use of learner 
control. They may not select the necessary aspects of learning tasks because they 
lack adequate knowledge to make educational decisions relevant for learning. 
Niemiec, Sikorski, and Walberg (1996) conclude that as the level of expertise 
increases, it is appropriate to decrease program control and increase learner control. 
In an old study carried out by Fry (1972), low-expertise learners learned signifi-
cantly less than high-expertise learners in a learner-controlled condition. Gay 
(1986) also found that in a learner-controlled condition, learners with low prior 
understanding achieved significantly lower post-test results than learners with high 
prior understanding. 
 Personalizing the level of learner control according to the level of expertise of 
the learner might help learners to practice their self-regulation skills and further 
develop those skills. According to Merrill (1994), by providing control, learners are 
brought in a position to “learn better how to learn”. Thus, gradually increasing the 
level of learner control might promote self-regulation skills, that is, the learners’ 
ability to properly select learning tasks according to their abilities, interest and 
needs. In addition, both actual learner control and even perceived control may 
positively influence learner motivation. A study carried out by Lahey, Hurlock, and 
McCann (1973) shows that the perception of learner control has a favorable 
influence on learners’ attitudes. Fry’s research (1972) concluded that learners with 
higher degrees of learner control learned the least but had the most favorable 
attitudes toward the method of instruction. In a study carried out by Kinzie and 
Sullivan (1989), 79% of the students in the learner-controlled condition chose to 
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return to the same condition rather than to a program-controlled condition. In 
contrast, only 19% of the students in the program-controlled condition chose to 
return to the program-controlled condition. Lahey et al. (1973) also found that 
learners preferred learner-controlled instruction over program-controlled instruc-
tion, although no differences in performance were found. Thus, giving control to 
learners not always leads to a higher performance but evidently affects motivation 
in a positive way (Judd, 1972; Lahey, 1976). 
 Third, the personalized task-selection model with shared instructional control 
presented in this chapter combines program-controlled and learner-controlled 
approaches to the selection of learning tasks. It aims to cope with the emerging need 
to personalize authentic and complex learning tasks to each individual learner, 
preventing cognitive overload by dynamically adapting the level of task difficulty 
and embedded support. According to this model, an instructional agent first person-
alizes the characteristics (i.e., difficulty, support, other features) of the presented 
learning tasks based on learner’s expertise (as in Camp et al., 2001; Kalyuga & 
Sweller, 2005; Salden et al., 2006), and second encourages learners to make a final 
selection from the subset of tasks pre-selected by the instructional agent. Thus, 
possible negative effects of too much learner control are reduced by limiting the 
amount of tasks to choose from, which will still give learners a sense of control 
without overwhelming them and hampering learning (Kinzie & Sullivan, 1989). 
 The extent to which either the program or the learner have control over task 
characteristics (i.e., level of task difficult, embedded support, and task features) 
mainly depends on the level of expertise of the learner. In other words, personaliza-
tion (component P) is strongly influenced by the task characteristics and the learner 
portfolio (component C). On the continuum from program-controlled instruction to 
learner-controlled instruction, novices who lack the necessary level of knowledge to 
select optimal learning tasks are placed on the program-controlled side, while more 
experienced learners are placed on the learner-controlled side. So, as the level of 
expertise increases, program control will decrease and learner control will increase. 
However, even highly experienced learners should not always be given full learner 
control. If the amount of tasks in the learning-task database is very large (e.g., 
hundreds of tasks), even expert learners may become overwhelmed and demoti-
vated by an excessive amount of freedom (Schwartz, 2004). The learning-task 
database (component L) is further explained in the next section. 

Component L: Learning tasks 

Learning tasks differ from each other with regard to difficulty, embedded support 
and other task features, making it necessary to develop an extensive range of tasks 
that include and combine those characteristics. The tasks are stored in a learning-
task database, which contains tasks with all possible combinations of levels of 
support and complexity as well as enough variability over other task features to 
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allow for generalization and abstraction by the learner. Learning tasks that are 
suitable for presentation according to the instructional agent are selected in real-
time from this database. Table 2.1 shows an example of how task complexity, 
embedded support, and task features might be interrelated to each other in the 
learning-task database. 
 
Table 2.1.  
Learning-task Database with the Combination of Different Levels of Complexity and Different Levels of 
Support 

 
a WOE1= Worked-out example with process and full product support 
b WOE2= Worked-out example with full product support 
c COMP1= Completion task with high product support 
d COMP2= Completion task with low product support 
e CONV= Conventional task without support 
f = Learning task. Each cell contains several (3 in the table) learning tasks with different task features 
that belong to one complexity level and one level of learner support 
 
 Table 2.1 shows three levels of increasing complexity or difficulty (from top to 
bottom). Within each of the three complexity levels, tasks represent five decreasing 
levels of learner support (i.e., from worked-out examples to conventional tasks). 
The faster the increase of expertise of the learner, the faster he or she advances to 
higher complexity levels, and the lower the support he or she will receive in the 
next learning task. In addition, for each specific complexity and support level, 
different tasks are available with different task features (in Table 2.1, for instance, 
there are three tasks for each combination of difficulty and support). After a subset 
of tasks has been pre-selected from the learning-task database, the learner makes a 
final selection of one task to work on. 

WOE1 a WOE2b COMP1c COMP2 d CONVe  

●f ● ● ● ● 
● ● ● ● ● 

 
 

 
Complexity 1 

● ● ● ● ● 
● ● ● ● ● 
● ● ● ● ● 

 
Complexity 2 

● ● ● ● ● 

● ● ● ● ● 
● ● ● ● ● 

 
Complexity 3 

● ● ● ● ● 
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The model into practice 

This section presents an application developed according to our model (see Figure 
2.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Learning environment developed on the basis of the personalized model. The basic 
components are: (a) an electronic learning environment, (b) a learning-task database, (c) an assess-
ment tool, (d) a learner portfolio, and (e) an instructional agent to realize personalization. 
 
 An electronic learning environment has been developed enabling learners to 
work on learning tasks in the domain of dietetics. Learning tasks differ in their level 
of complexity, level of support, and other task features (i.e., surface features), as 
described in Component C. The learning environment is a Web application written 
in the scripting language PHP. Learning tasks are presented in the learning envi-
ronment, and after each learning task multiple-choice questions and a mental effort 
rating scale are presented to measure performance and mental effort and to calculate 
an expertise score. A MySQL database connected to the learning environment 
contains all learning tasks, multiple-choice questions, a personalization table, and 
various kinds of logging information. 
 A simulator called Body-Weight2 is used by the learners to perform all neces-
sary operations needed to answer the multiple-choice questions presented during the 
learning tasks. Its main purpose is to help learners understand how body weight is 
influenced by food intake, physical activity, and several other factors. In the 
simulator, the students can practice the learning tasks presented in the electronic 
                                                        
2 The Body Weight simulator was developed based on the calculation model from Dr. K. Westerterp, 
Rijksuniversiteit Limburg, the Netherlands. 
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learning environment; it is the interface that confronts them with authentic real-life 
situations. The learning tasks, in combination with the simulator, allow learners to 
study the effects on body weight and body composition (e.g., total fat percentage) 
of alterations in energy intake, physical activity, and other factors such as gender 
and smoking. 
 The application contains a learning-task database (Component L) with tasks 
that are representative for the domain of dietetics. The task characteristics as 
described by Component C, that is, level of complexity, embedded support, and 
surface task features are combined in this database. Five levels of complexity are 
distinguished in a simple-to-complex order. Within each complexity level, five 
levels of embedded support are differentiated. Moreover, for each level of support 
within each complexity level, three tasks are available with differing surface 
features that also vary in the real world: different persons with different gender, 
weight, age, energy intake, specific diet, physical exercise, cultural backgrounds, 
different habits, and so forth. 
 An assessment tool assesses performance and invested mental effort after each 
learning task to update the learner portfolio (Component C) and to provide the 
information for the selection of the next learning task. In order to assess perform-
ance, learners must answer multiple-choice questions, based on predefined per-
formance objectives, after each task. Moreover, the assessment tool monitors 
learner’s actions on the simulator in order to assess the accuracy of the problem-
solving process. Such measures make possible the assessment of the learner’s 
performance in real-time after each task is performed, an important requisite for a 
program that dynamically adapts learning tasks. The results of both the multiple-
choice questions and the accuracy of the process are combined in one measure of 
performance. A 7-point subjective rating scale is used to assess the learner’s 
investment of mental effort in the learning task, with values ranging from extremely 
low (1) to extremely high (7). The scale is adapted from the original mental effort 
scale developed by Paas (1993). Performance and mental effort scores are updated 
in the learner portfolio after each learning task. 
 The learner portfolio contains the information collected by the assessment tool. 
The portfolio enables the selection of a subset of suitable learning tasks from which 
the learner can make a final selection. It is updated after each learning task by 
combining new performance and invested mental effort scores with previous scores 
(i.e., the learner’s history). It is important to take the learning history into account 
because this flattens out undesirable effects due to unstable measures, for instance, 
a high performance measure that is not due to acquired knowledge and skills but to 
good luck. The new scores in the learner portfolio are used by the instructional 
agent to personalize the selection of the next learning task(s) in such a way that it 
best suits the individual learner at a particular moment in time. 
 Finally, the personalization (Component P) that is realized by the instructional 
agent is twofold: (a) the updated learner portfolio is used to select a subset of 
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suitable learning tasks from the learning-task database, and (b) the selected tasks are 
presented to the learner who makes the final selection. The program employs a 
simple task-selection algorithm that decides on the “jump size” from one complex-
ity level to another complexity level, and from one level of support to another level 
of support, on the basis of a combination of performance and mental effort scores. 
The algorithm is presented in Table 2.2. 
 
Table 2.2 
Task-selection Algorithm Indicating Jump Sizes Between Learning Tasks 

 
 As can be seen from Table 2.2, the jump size is determined from the combina-
tion of performance and mental effort scores. Basically, mental effort scores (ME) 
are subtracted from performance (P) scores to compute the jump size. Thus, the 
higher the performance and the lower the invested mental effort, the larger the 
positive jump size. For instance, a score of 5 on performance and 2 on mental effort 
yields a jump size of +3 (5 – 2 = 3), meaning that the level of support decreases 3 
levels, or, if there are less than three support levels available at the current complex-
ity level, the learner will move to the lowest support level because the learner is 
only allowed to progress to a next complexity level after successful completion of a 
conventional, non-supported task. Accordingly, the lower the performance and the 
higher the invested mental effort, the larger the negative jump size. For instance, a 
score of 2 on performance and 5 on mental effort yields a backward jump of 3 steps 
(2 – 5 = -3), meaning that either the level of support increases 3 levels, or, if there 
are less than three support levels available at the current complexity level, the 
learner will move back to the highest level of support at the current complexity 
level. The algorithm applies some additional rules to make the instruction encourag-
ing and motivating for the learners. If the performance score is 5 or higher or the 
mental effort score is 2 or lower, the learner will not jump backwards. And if the 
performance score is 3 or lower or the mental effort score is 6 or higher, the learner 
will not jump forward. 

Performance  
Mental effort 1 

 
2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

1 0 0 0 +3 +4 +5 +6 
2 0 0 0 +2 +3 +4 +5 
3 -2 -1 0 +1 +2 +3 +4 
4 -3 -2 -1 0 +1 +2 +3 
5 -4 -3 -2 -1 0 +1 +2 
6 -5 -4 -3 -2 0 0 0 
7 -6 -5 -4 -3 0 0 0 



 Chapter 2 | 35 

 

 

Discussion and conclusions 

This chapter discussed a personalized task-selection model with shared instructional 
control, combining program-controlled and learner-controlled approaches to the 
selection of learning tasks. It has been found that personalization of learning tasks 
yields more efficient and more effective learning than a fixed sequence of learning 
tasks that is identical for all learners. In addition, learner control is believed to make 
learning more appealing and to encourage the development of learners’ self-
regulation skills. The proposed model combines the strong points of both ap-
proaches and was therefore expected to make learning more effective (i.e., higher 
transfer test performance), more efficient (i.e., a more favorable ratio between 
performance and time on task or mental effort), and more appealing (i.e., the learner 
will show more interest in the learning tasks). A higher motivation will also 
positively influence the amount of mental effort learners invest in learning and their 
willingness to become engaged in additional instructional activities. If learners 
attribute the ‘investment of more mental effort’ to ‘better outcomes’ they will 
perceive a higher self-efficacy while implementing the required actions to perform 
such tasks, which in turn will positively affect motivation (Bandura, 1997; Keller, 
1983b; Kinzie, Sullivan, & Berdel, 1988). 
 A pilot study has been conducted in order to examine whether personalized 
selection of learning tasks with shared instructional control led to better results than 
personalized instruction with full program control. Twenty-five nursing students (6 
males and 19 females) from a school for senior vocational education in Eindhoven 
(the Netherlands) participated in this pilot study. Their average age was 18.2 years 
(SD = 3.66). Twelve and thirteen learners were randomly allocated to the program-
controlled condition and the shared-controlled condition, respectively. Results on 
both performance scores and invested mental effort were in the expected direction 
(see Table 2.3). Participants in the shared-controlled condition achieved a higher 
mean performance score (i.e., Cohen’s d = 0.25 which indicates a small effect size) 
and a lower mean mental effort score (d = 0.37 which indicates a small effect size) 
than participants in the program-controlled condition. Instructional efficiency (see 
Paas & van Merriënboer, 1993; Paas et al., 2003) was computed on the basis of 
performance and invested mental effort. When the performance is higher than might 
be expected on the basis of invested mental effort (P > ME) the instruction is 
relatively efficient, and when the performance is lower than might be expected on 
the basis of invested mental effort (P < ME) the instruction is relatively inefficient. 
Results on instructional efficiency are in the expected direction, with a higher mean 
efficiency score for the shared-controlled condition (d = 0.36 which indicates a 
small effect size; see Table 2.3). 
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Table 2.3 
Overview of Test Results and Interest 

*p < .10 
 
 Motivation was measured with items from the interest/enjoyment subscale of 
the Intrinsic Motivation Inventory (IMI; Deci, Eghrari, Patrick, & Leone, 1994), 
which were translated into Dutch by Martens and Kirschner (2004). On a question-
naire with 7-point scales filled out after the course, learners in the shared instruc-
tional control condition reported a slightly significant higher interest in the learning 
tasks than learners in the full program-control condition (p < .10; d = 0.79 which 
indicates a medium effect size; see Table 2.3). The results of the pilot study provide 
some preliminary evidence that the personalized model is a promising approach to 
increase the flexibility and quality of educational programs. Moreover, they support 
the idea that the provision of (limited) learner control may enhance learners’ 
motivation. 
 Some final comments have to be made. With regard to the assessment of 
complex performance, the PPS requires the measurement of many qualitatively 
different aspects with different measurement instruments. Our application only 
employed multiple-choice questions and accuracy scores to assess performance, and 
a rating scale to assess the mental effort invested to reach this performance. Future 
studies need to assess qualitatively different aspects (e.g., problem-solving aspects, 
routine aspects, attitudinal aspects) and use different measurement instruments to 
develop a learner portfolio with valid and reliable information to base the selection 
of learning tasks on. 
 With regard to the level of learner control, future studies may progressively 
increase learner control as the level of learners’ expertise increases. For instance, 
first giving novices only control over selecting task features with a given support 
and complexity (as in the presented pilot study), then giving them, as expertise 
increases, control over task features and the amount of learner support, and finally 
giving them control over task features, support, as well as task complexity. This 
way, the complex relationships between task features, support, and complexity are 
considered together with the level of expertise. If too much control is given to 
novices in the learning domain, or if too little control is given to experienced 
learners, this may hamper their learning, performance and motivation. However, the 

 Method of personalized training 
 Shared instructional control 

n = 13 
Full program control 

n = 12 
 M SD M SD 

Mental effort 3.70 1.08 4.11 1.15 
Performance 59.43 13.70 55.52 17.87 
Mental Efficiency 0.21 1.12 -0.23 1.34 
Interest in training* 2.77 0.95 2.05 0.88 
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question still remains how to combine learner and task characteristics most effec-
tively, and therefore how to balance program and learner control (component P in 
Figure 2.1) for each learner. Giving novices full program control may demotivate 
them, and giving experienced learners full learner control may overwhelm them if 
the amount of tasks to choose from is very large. As Schwartz (2004) argues, “ . . . 
at this point, choice no longer liberates, but debilitates” (p. 2). 
 Another relevant issue is raised by Bell and Kozlowski (2002), who found in 
their study positive effects on the nature of the learners’ study and practice, self-
regulation, knowledge acquired, and performance when students with learner 
control received some form of advice. Specifically, meta-cognitive advisory models 
explicitly help students to apply cognitive strategies for assessing their own per-
formance, and to select new learning tasks based on this assessment, which may 
enhance their cognitive strategies for regulating their own learning (Kicken, Brand-
Gruwel, & van Merriënboer, 2005). Thus, future studies may integrate shared 
instructional control with advisory models that help learners to select appropriate 
tasks. 
 To conclude, the first results of an application built according to our personal-
ized model with shared instructional control are promising. However, this is only a 
first step towards more flexible, demand-driven educational programs. Future 
studies also need to personalize the amount of learner control to the learner’s level 
of expertise, and include advisory models to assist learners with their decisions until 
they eventually become self-regulated high-ability learners. 
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Selecting Learning Tasks: Effects of 
Adaptation and Shared Control on Learning 

Efficiency and Task Involvement3 
Adaptive task selection with shared control  

Chapter 3 

Complex skill acquisition by performing authentic learning tasks is constrained by limited working 
memory capacity (Baddeley, 1992). To prevent cognitive overload, task difficulty and support of each 
newly selected learning task can be adapted to the learner’s competence level and perceived task load, 
either by some external agent, the learner herself, or both. Health sciences students (N = 55) partici-
pated in a study using a 2 x 2 factorial design with the factors adaptation (present or absent) and control 
over task selection (program control or shared control). As hypothesized, adaptation led to more 
efficient learning; that is, higher learning outcomes combined with less effort invested in performing 
the learning tasks. Shared control over task selection led to higher task involvement; that is, higher 
learning outcomes combined with more effort directly invested in learning. Adaptation also produced 
greater task involvement. 

                                                        
3 This chapter is based on: Corbalan, G., Kester, L., & van Merriënboer, J.J.G. (in press). Selecting learning 
tasks: Effects of adaptation and shared control on learning efficiency and task involvement. Contemporary 
Educational Psychology. 
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In addition to incorporating authentic learning tasks, which are based on real-life 
tasks, modern educational approaches often aim at adapting a sequence of learning 
tasks to the needs of each individual learner (Kalyuga & Sweller, 2005; Renkl & 
Atkinson, 2003). Rather than one curriculum for all learners, such approaches allow 
each learner to have her own curriculum. This study addresses the questions how 
adaptation of task selection can be realized, and which agent, that is, human tutor, 
computer program or learner should be responsible for it. 
 Especially for novice learners, the acquisition of complex skills by performing 
authentic or real-life tasks is heavily constrained by the limited processing capacity 
of working memory because such tasks easily cause cognitive overload (Baddeley, 
1992; Sweller, 1988). Within the framework of cognitive load theory, three types of 
cognitive load are identified: intrinsic, extraneous and germane load (Sweller, 1988; 
Sweller, van Merriënboer, & Paas, 1998; van Merriënboer & Sweller, 2005). 
Intrinsic load is inherent to a learning task and depends on the number of interacting 
elements that have to be related, controlled, and kept active in working memory 
during task performance. For example, learning vocabulary and speaking in a 
foreign language cause low and high intrinsic load, respectively. Extraneous and 
germane load are the result of the instructional design. Extraneous load is ineffec-
tive load due to poorly designed instructional material, resulting, for example, from 
the need to combine information from different sources to complete a learning task. 
Germane load occurs when load is imposed by processes that are directly beneficial 
for learning. For instance, a high variability in a set of learning tasks may stimulate 
learners to construct more integrated cognitive schemata. In the current study, task 
load is seen as a combination of intrinsic and extraneous load, that is, all load 
caused by performing the task but not directly caused by learning processes. In 
contrast, germane load is caused by learning to perform the task. 
 Cognitive load can be measured in several ways. Paas, Tuovinen, Tabbers, and 
van Gerven (2003) describe three different techniques including subjective meas-
ures, secondary-task methods, and psychophysiological measures. With regard to 
subjective measures, cognitive load researchers have commonly measured cognitive 
load as perceived mental effort (Paas et al., 2003). Self-ratings of invested mental 
effort have been widely used and quickly accepted amongst cognitive load re-
searchers because they are unintrusive, reliable, relatively easy to use and analyze, 
and provide a good indication of the overall cognitive load a task imposed (Paas & 
van Merriënboer, 1994; Paas et al., 2003). Possible limitations such as socially 
desirable ratings and the tendency to keep answering in the same manner (Richman, 
Kiesler, Weisband, & Drasgow, 1999) are usually overcome through randomized or 
counterbalanced design. 
 In order to enable the use of authentic tasks in education, and yet prevent 
overloading the learners’ cognitive system, task characteristics should be adapted to 
the individual needs of learners (Corno & Snow, 1986; Kalyuga & Sweller, 2005; 
Park & Lee, 2003; Salden, Paas, Broers, & van Merriënboer, 2004; van Merriën-
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boer & Luursema, 1996; van Merriënboer, Schuurman, de Croock, & Paas, 2002). 
Two approaches to individualization that aim to cope with increasingly complex 
learning situations are program control, in which a computer program is responsible 
for the process of selecting new learning tasks, and learner control, in which the 
learner controls the selection of tasks (Corbalan, Kester, & van Merriënboer, 2006). 
 The issue of the locus of instructional control, whether it is external (i.e., 
program control) or internal (i.e., learner control), has been a primary concern in the 
upsurge of computer-assisted instruction (Lawless & Brown, 1997; Tennyson & 
Buttery, 1980). First, according to models of program-controlled instruction, 
learning is influenced by the characteristics of the learners (Zimmerman, 2002) and 
the learning tasks (Lawless & Brown, 1997). Intelligent Tutoring Systems (ITS) are 
adaptive problem-solving environments which make a distinction between: (a) a 
domain model representing the domain that must be learned, (b) a student model 
representing what the learner is already able to do or not yet able to do, and (c) a 
computer program which makes instructional decisions in response to input from 
the learner (Corbett, Koedinger, & Hadley, 2001; Park & Lee, 2003). Using ITS 
may reduce both training time and costs, which is particularly interesting for 
domains in which these aspects are of great importance, as in aviation and industry 
(Camp, Paas, Rikers, & van Merriënboer, 2001). In addition, technology-based 
instruction has the potential to become an important resource to improve learning in 
K-12 classrooms. However, still few ITSs have become successfully implemented 
products to enhance learning, especially in K-12 settings (Wong, Chan, Chou, Heh, 
& Tung, 2003), probably because they are difficult and costly to develop, although 
attempts are being made to address these challenges (e.g., Beal, 2004). 
 Second, besides program-controlled instruction, there is an increasing emphasis 
on providing learners with control over their own learning path. Learner-controlled 
instruction assumes that learners are able to monitor their own learning processes 
and that this will accommodate individual differences. Giving learners some control 
over instructional aspects creates the necessary preconditions for practicing self-
regulation skills and is a first step towards teaching those skills (Kinzie, 1990). 
Technological advances make it possible to implement types of computer-assisted 
instruction such as simulations and microworlds, which are multimedia learning 
tools that provide users with dynamic elements that are under their control. Whereas 
simulations are more aligned with traditional instructional uses of educational 
software and allow learners to run experiments, microworlds take a more construc-
tivist approach and allow learners, for instance, to design their own experiments 
(Rieber, 2005). Both simulations and microworlds provide learners with consider-
able freedom in choosing aspects of learning such as the content, the sequence, and 
the pace of the instruction (Bell & Kozlowski, 2002). 
 This study focuses on adaptive task selection with shared control, in which a 
computer program and the learner share control over the selection of learning tasks. 
In this two-step process, the computer program first selects a subset of learning 
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tasks with characteristics (difficulty, available support) that are adapted to the needs 
of the individual learner (program control). Second, the learner selects from this 
subset one task to work on (learner control). We hypothesize that adaptive task 
selection with shared control will have a positive influence on both learning 
efficiency, due to the task adaptation made by the computer program, and task-
involvement, due to the fact that the learner feels to be in control over her own 
learning. In this introduction, the advantages and disadvantages of program control 
and learner control are described first. Then, adaptive task selection with shared 
control is discussed. 

Adaptive Task Selection with Program Control 

Good instruction accommodates relevant individual differences among learners 
(Shute & Towle, 2003). A predefined and fixed sequence of learning tasks cannot 
take the different levels of competence, misconceptions, interests, and learning 
styles of a heterogeneous group of learners into account. But with adaptive task 
selection with program control, the program may dynamically adapt the task 
characteristics of each newly selected learning task to the characteristics of the 
individual learner. 
 With regard to learner characteristics, measuring a learner’s competence and 
cognitive load is essential for the adaptive selection of new learning tasks. First, 
competence refers to the combination of knowledge, skills, and attitudes that allows 
for the performance of real-life tasks (Baartman, Bastiaens, Kirschner, & van der 
Leuten, 2007; van Merriënboer, 1997). Eraut (1994) stresses that skills cannot be 
separated from knowledge, as this would exclude the practical know-how to 
perform real-life operations. Hence, the assessment of competence requires a 
combination of assessment methods (Baartman et al., 2007). Second, assessing the 
cognitive load imposed by the performance of a certain task may provide additional 
insight into the learner’s needs. For example, if after one task two learners shows 
the same competence level but one learner reports higher task load than the other, 
the first learner is best supported by presenting her with a new learning task which 
is easier or provides more support than is required by the second learner. The 
combination of performance and task load has been proposed by Paas and van 
Merriënboer (1993) as a reliable estimate of the relative efficiency of learning. 
According to this approach, efficiency is high if performance is higher than might 
be expected on the basis of the invested mental effort required to perform the task. 
Conversely, efficiency is low if performance is lower than might be expected on the 
basis of the invested mental effort to perform the task. 
 With regard to task characteristics, in a well-designed curriculum learning tasks 
are ordered from easy to difficult, and learner support decreases as the learners’ 
competence increases (van Merriënboer, 1997; van Merriënboer, Clark, & de 
Croock, 2002; van Merriënboer & Kirschner, 2007). Accordingly, in this study the 
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difficulty and support of selected learning tasks are adapted to the characteristics of 
each individual learner (i.e., level of competence and perceived task load). In terms 
of cognitive load theory, the difficulty of a task determines the intrinsic cognitive 
load, which is a direct result of the complex nature of the learning material. Tasks 
should be selected that are neither too difficult nor too easy for the learner. Two 
studies in the Air Traffic Control domain which adapted the level of difficulty 
(Camp et al., 2001; Salden et al., 2004) showed that adaptive task selection based 
on competence and cognitive load yielded better learning outcomes than a fixed 
task sequence. 
 Furthermore, the amount of embedded support may determine the extraneous 
load. When novices start working on a range of complex tasks, it is essential to 
provide them with support, which gradually diminishes in a process of ’scaffolding’ 
as their competence increases. The ‘completion strategy’ (van Merriënboer, 1997, 
van Merriënboer & Kirschner, 2007) is a powerful approach to scaffolding. In this 
approach, tasks with a particular level of difficulty are organized from worked-out 
examples, via completion tasks, to conventional tasks. First, worked-out examples 
confront learners not only with a description of a given state and the criterion for an 
acceptable goal state, but also with a description of all solution steps. Then, comple-
tion tasks provide learners not with all solution steps but with a partial solution that 
must be completed by them. Finally, conventional tasks provide learners with a 
given state and a criterion for an acceptable goal state only: learners must independ-
ently generate the whole solution. Experienced learners have relevant knowledge 
that enables them to approach a conventional task. However, when novice learners 
in a domain are confronted with conventional tasks, they use cognitively demanding 
strategies such as means-ends analysis and working backward to reach a solution, 
increasing extraneous cognitive load because those strategies are not efficient ways 
to learn (Renkl, Stark, Gruber, & Mandl, 1998; Sweller, 1988). 
 The ‘expertise reversal effect’ (Kalyuga, Ayres, Chandler, & Sweller, 2003) 
states that successful instructional techniques for novice learners (e.g., presenting 
tasks with high embedded support) often lose their value when used with more 
experienced learners. For instance, presenting a diagram with integrated textual 
explanations may be an effective technique for novice learners who need the 
explanations to understand the diagram. However, experienced learners who 
already possess the knowledge necessary to understand the diagram must invest 
cognitive resources unnecessarily before they can determine that the information is 
redundant. Such redundant cognitive processing constitutes extraneous cognitive 
load, which may hinder learning. In a study carried out by Kalyuga and Sweller 
(2005), both the level of difficulty and the level of support were adapted to learner’s 
competence and cognitive load ratings. Learners in the adaptive group showed 
higher gains in algebraic skills from pretest to posttest, and higher gains in effi-
ciency compared to learners in a control group. The research reported in this article 
also adapts the level of difficulty and the level of support to the individual learner’s 
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competence level and perceived task load. However, we will use another measure 
of competence and another selection table for choosing tasks, and we provide 
learners with some control over the – final – selection of learning tasks. 
 Although adaptive task selection with program control may have positive 
effects on learning efficiency (i.e., higher learning outcomes combined with lower 
task load, that is, less effort invested in performing the tasks), it also has clear 
limitations. Program control over task selection leaves learners with no freedom of 
choice, which may negatively affect their motivation, specifically their task in-
volvement and interest. One way to overcome this problem is to give learners some 
control over the selection of learning tasks, which has positive effects on motivation 
(Kinzie & Sullivan, 1989; Ross, Morrison, & O’Dell, 1989; Schnackenberg & 
Sullivan, 2000). 

Task Selection with Learner Control 

Recent instructional theories advocate on-demand methods of education in which 
learners are given freedom over their own learning path. This is in line with the 
presented study, in which learner control explicitly refers to control over task 
selection. Merrill (1994) suggested that by providing control, learners will acquire 
more effective ways of learning and become better equipped to adapt to diverse 
situations. Learner control is typically perceived as something which will enhance 
motivation, and consequently may increase learning outcomes (Reeves, 1993). 
Motivated learners engage in learning activities and allocate cognitive resources to 
learning because they derive satisfaction from performing the task (Deci, Vallerand, 
Pelletier, & Ryan, 1991). The invested mental effort and its associated learning 
outcomes have been recognized as an indicator of the learners’ involvement in a 
task (Paas, Tuovinen, van Merriënboer, & Darabi, 2005). Accordingly, learner 
control, amongst other elements, is considered as a determinant of intrinsic motiva-
tion to learn (Deci & Ryan, 1985). When intrinsically motivated, learners engage in 
activities out of interest (Deci et al., 1991). 
 First, with regard to the learner’s task involvement, the effort invested in 
learning processes is a direct indicator of motivation (Keller, 1983b). Thus, learner 
control, amongst other factors, may increase learners’ task involvement. Learners 
involved in learning are more inclined to be engaged in learning processes such as 
exploration, abstraction, and generalization (van Merriënboer, 1997), and will 
invest more mental effort in the construction of cognitive schemata (Keller, 1983b; 
Paas et al., 2005). This enhanced engagement may positively influence learning 
outcomes (Greene & Miller, 1996). If learners attribute ‘achieving better outcomes’ 
to ‘higher mental effort invested’, they will perceive a higher self-efficacy in 
implementing the required actions to perform such tasks, affecting motivation 
positively (Bandura, 1997; Keller, 1983b; Kinzie, Sullivan, & Berdel, 1988; 
Zimmerman, 2000). 
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 Until now, cognitive load theorists have typically focused on comparing 
instructional formats in terms of their efficiency. However, the importance of 
motivation for learning has not been sufficiently explored. According to Paas et al. 
(2005), mental effort and performance have both cognitive and motivational 
components. Consistent with the efficiency approach, Paas et al. (2005) proposed a 
complementary approach to calculate the relative task involvement in instructional 
conditions. According to this approach, the higher the learner’s task involvement, 
the higher the mental effort directly invested in learning (i.e., germane load), which 
is likely to enhance learning outcomes. 
 Second, the learner’s level of interest is another important motivational factor 
(Keller, 1983b). When the learning environment gives learners the opportunity to 
explore, interest is more likely to be retained. Educational researchers have identi-
fied two types of interest, namely, personal and situational interest (Alexander & 
Jetton, 1996; Hidi, 2001, 2006; Hidi & Renninger, 2006). Personal interest develops 
slowly over time, is internally oriented, and of enduring personal value. Situational 
interest is transitory, external, and environmentally triggered. Personal interest most 
likely results from repeated experiences and develops over time, whereas situational 
interest can be increased by, for instance, emphasizing learners’ choices (Schraw, 
Flowerday, & Lehman, 2001) as is intended in the current study. Accordingly, 
learner control is expected to make learning more interesting (Fry, 1972; Kinzie & 
Sullivan, 1989; Lahey, Hurlock, & McCann, 1973), with potential benefits for 
learning outcomes (Wolters, 2003; Zimmerman, 2002). A study in the math domain 
carried out by Cordova and Lepper (1996) revealed that participants in the choice 
conditions (i.e., participants who were given control over irrelevant aspects of the 
tasks) reported liking the program significantly more and scored significantly 
higher than those in the no-choice conditions. 
 Despite the apparent beneficial effects of learner control on learning, novices 
generally lack the necessary knowledge to make effective educational decisions and 
may omit essential aspects of learning (Merrill, 2002). It is also apparent that 
learner control may introduce potential problems with cognitive load. Even highly 
experienced task performers with full control may become overwhelmed by a high 
amount of choice, hampering their learning (Iyengar & Lepper, 2000; Schwartz, 
2004). In addition, Niemiec, Sikorski, and Walberg (1996) argue that as the level of 
experience increases, it is appropriate to decrease program control and increase 
learner control. In this respect, several studies (Fry, 1972; Gay, 1986) showed that 
with learner control, learners with low prior knowledge learned significantly less 
than learners with high prior knowledge. Hence, giving (perceived) control to 
learners does not always lead to higher performance, but can positively affect 
motivation (Fry 1972; Judd, 1972; Lahey, 1976; Lahey et al., 1973). Accordingly, 
we discuss an alternative approach that combines the benefits of program control 
and learner control over task selection, namely, adaptive task selection with shared 
control. 
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Adaptive Task Selection with Shared Control 

Both program control and learner control over task selection may have beneficial 
effects on learning. However, a high level of program control may negatively affect 
learners’ task involvement and interest. A high level of learner control may over-
whelm even expert learners if the number of tasks to choose from is (too) large and 
learners may omit essential aspects of learning. The present study combines 
program and learner control into a task-selection approach with shared control. In 
this two-step approach, the program first uses a measure of the individual learner’s 
competence level and task load ratings to select from an existing database with 
learning tasks a subset of tasks with an optimal level of difficulty and an optimal 
level of support. All the tasks in the selected subset have the same difficulty and the 
same level of support. They only differ in surface features, that is, aspects of the 
task that are not related to goal attainment, such as the color of the eyes of a person 
in dietetic problems. In the second step, the learner makes the final selection of one 
task from the pre-selected subset of tasks. Thus, the learner may select one task 
with the surface features she prefers.  
 As an illustration of this two-step process, take a learner who has solved a 
dietetic task with a particular level of difficulty (e.g., difficulty level 4 of a range of 
5 levels) and a particular level of support (e.g., highest support level 1 of a range of 
4 levels). The learner performs reasonably well (e.g., 7 out of 10 points) and reports 
a moderately low task load (e.g., 3 out of 7 points). According to predefined task-
selection rules, the program now first presents the learner three tasks which have 
the same difficulty (e.g., again at difficulty level 4) and the same level of support 
(e.g., now without support, that is, support level 4 rather than support level 1 as for 
the previous task). The three pre-selected tasks in the subset have varying surface 
task features, such as the subject’s age and habits. In the second step of the task-
selection process, the learner then selects the task with her preferred surface 
features from the pre-selected subset. 
 We hypothesize that adapting the difficulty and the embedded support of the 
learning tasks to the level of competence and invested load of the learner will make 
learning more effective (i.e., higher learning outcomes) and more efficient (i.e., 
higher learning outcomes combined with less effort invested in performing the 
learning tasks). Moreover, it is hypothesized that the greater perceived control 
offered by shared control will have positive effects on learners’ motivation, de-
picted by increased task involvement, that is, higher germane load combined with 
higher learning outcomes. This in turn is also expected to positively affect learner’s 
interest in the learning tasks and the training program as a whole. 
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Fifty-five first year students (13 males and 42 females; mean age = 22.40 years, SD 
= 7.27) in Dutch Vocational Education and Training (VET) in the Health Sciences 
domain participated in the experiment. Learners had no prior knowledge in dietetics 
which was the learning domain used in the experiment. All participants were 
entered into a lottery making them eligible to win one of 18 music compact disks. 
Participants were randomly assigned to one of the four experimental conditions in a 
2 x 2 factorial design: adaptation with shared control (n = 15); non-adaptation with 
shared control (n = 12); adaptation with program control (n = 15), and non-
adaptation with program control (n = 13). 
 

Materials and Measurements 
Training Phase 

 Learning-task database. The learning-task database contained tasks of five 
difficulty levels in the dietetics domain. Each difficulty level comprised five levels 
of embedded support. Each level of support contained three different tasks with 
varying irrelevant surface features. 
 There were five levels of difficulty (1 to 5), defined in cooperation with three 
domain experts. Each subsequent, more difficult level included a new element or a 
combination of new elements increasing the difficulty of the task. In level 1, 
participants used their own data to calculate changes in their body weight over time, 
taking energy intake and energy expenditure as input variables. This makes the task 
personally relevant and helps participants to get acquainted with the material. In 
level 2, participants must identify the changes in body weight of a specific person 
over time, based on energy intake and energy expenditure. Subject characteristics 
were predetermined in the learning task. This required learners to transfer the 
learned procedures to an unfamiliar situation. In level 3, participants must investi-
gate the differences in body weight and the factors influencing fat percentage (a 
new element) between a man and a woman of the same age, height, weight and 
pattern of activities. In level 4, participants must simulate three different strategies 
for the treatment of obesity which require more solution steps, and conclude which 
strategy is most appropriate. In addition, participants must infer what happens to 
body weight when a person on a diet returns to her original habits (a new factor - 
body adaptation to the new situation after following a diet - plays a role). In level 5, 
participants must study the effects of smoking on the body weight of a given 
person. This implies taking another additional input variable, the increase of the 
basal metabolism rate, into account. Moreover, learners must simulate the effects 
on body weight when the same person stops smoking, which decreases the basal 
metabolism rate. This requires learners to simulate the same person in the simulator 
taking body changes as well as the decrease of basal metabolism rate into account. 

Method 

Participants 
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 There were also five support levels, differing with regard to the amount of 
embedded support, and diminishing in a process of ’scaffolding’ according to the 
completion strategy described earlier (van Merriënboer, 1997). The five levels, 
ordered from high to low support, are: (1) worked-out examples that included both 
full product support (i.e., all the solution steps and the ‘expert’ solution are given) 
and process support (i.e., the ‘why’ or the rationale behind the solution steps is 
given), (2) worked-out examples or learning tasks that provided full product support 
but no process support, (3) completion problems with high support or learning tasks 
that provided many but not all solution steps, (4) completion problems with low 
support or learning tasks that provide a few solution steps, and (5) conventional 
problems or learning tasks that did not provide any support. 
 Within each level of difficulty (except for difficulty level 1, in which learners 
used their own data), three different tasks with different surface features that did 
not influence the difficulty or support levels (i.e., different persons with different 
characteristics, such as age, habits, appearance and background) were included. 
Figure 3.1 shows a learning-task database that combines different levels of diffi-
culty, five levels of embedded support, and three task features per support and 
difficulty level. 
 

 Task support levels 

 
WOE1 a 

 
WOE2b 

 
COMP1c

 
COMP2 d

 
CONVe

Task 1  f Task 4 Task 7 Task 10 Task 13
Task 2 Task 5 Task 8 Task 11 Task 14

 
 

 
 
Difficulty 1 

Task 3 Task 6 Task 9 Task 12 Task 15

Task 16 Task 19 Task 22 Task 25 Task 28
Task 17 Task 20 Task 23 Task 26 Task 29

 
Difficulty 2 

Task 18 Task 21 Task 24 Task 27 Task 30

Task n Task n Task n Task n Task n 
Task n Task n Task n Task n Task n 

 
Difficulty n 

Task n Task n Task n Task n Task n 
 
a WOE1= Worked-out example with full product and process support 
b WOE2= Worked-out example with full product support 
c COMP1= Completion task with high product support 
d COMP2= Completion task with low product support 
e CONV= Conventional task without support 
f = Learning task. Each cell contains several (3 in the Table) learning tasks with different task features that 
belong to one difficulty level and one level of learner support 
 
Figure 3.1. Learning-task database with the combination of different levels of difficulty, different levels 
of support, and different task features. 
 

Mr. Brown 
-English painter 
-36 years old 
-84 kilos 
-Swims 3 hours per 
week 

Mrs. Van Hout 
-Dutch teacher 
-51 years old 
-67 kilos 
-Plays golf 2 hours 
every Sunday 
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 Electronic learning environment. The learning environment was a Web applica-
tion written in the popular web scripting language PHP and especially developed 
for the current study. A MySQL database connected to the learning environment 
contained all learning tasks, registered competence and cognitive load measures, a 
selection table for making a pre-selection of tasks, and various kinds of logging 
information. In the electronic learning environment participants were presented 
with (a) a Web application in which the learning tasks in the domain of dietetics 
were presented (see Figure 3.2a), and (b) a simulator called “Body Weight” (see 
Figure 3.2b), which allowed learners to retrieve and process the necessary data to 
perform the presented learning tasks. The learning environment was a Web applica-
tion connected to the learning-task database and contained the following instru-
ments to gather information on learner behaviour: (a) practice multiple-choice 
questions, (b) performance measures of operating the simulator (i.e., whether 
learners use the relevant windows in the simulator to reach the solution, such as the 
‘eating meter’ or the ‘physical activity meter’ to calculate the amount of calories 
gathered by energy intake or burned by energy expenditure, respectively), and (c) 
cognitive load measures for task load and germane load. In the Body Weight 
simulator, participants could look up the energy in kilojoules of a specific drink or 
type of food, estimate the energy expenditure of a person, or simulate changes in a 
person’s body weight and body composition using energy intake, energy expendi-
ture, and other parameters as input variables. 

 
Figure 3.2. The learning environment, showing part of a learning task (a) and the simulator used to 
perform the task (b). 
 
 In the adaptive/program-control condition, the level of difficulty and the level 
of support of selected tasks were based on the learner’s competence and task-load 
scores, and one task with randomly selected surface features was presented to the 
learner. In the adaptive/shared-control condition, the level of difficulty and the level 
of support of selected tasks were again based on the learner’s competence and task-
load scores, but now three tasks with different surface features were presented to 
the learner, so that the learner could make a final selection from these three tasks. In 
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the non-adaptive/program-control condition, each learner was paired (i.e., yoked) to 
one learner in the adaptive/program-control condition and received exactly the same 
sequence of tasks as his or her yoked counterpart. In the non-adaptive/shared-
control condition, each learner was paired to a learner in the adaptive/shared-control 
condition and received the same subset of tasks as his or her yoked counterpart. 
 Competence (C). After each learning task, participants received six multiple-
choice questions (with three answering options) to measure acquired knowledge. 
Each correct answer scored 100 points/6 questions = 16.67 points. Furthermore, an 
assessment tool monitored the relevant windows opened in the simulator to assess 
the accuracy on actual performance. This was calculated by counting the number of 
opened windows proportional to the number of windows that had to be opened to 
correctly complete the learning task. Scores could range from 0% of correct 
windows opened (0 points) to 100% of correct windows opened (100 points). For 
instance, if four windows had to be opened to correctly complete the task and the 
learner opened only two of them, the score would be 100/4 = 25 * 2 = 50% = 50 
points. Competence was measured with the formula ((60 * score on multiple-choice 
questions) + (40 * score on correct windows opened)/100), leading to a minimum 
score of 0 and a maximum score of 100. This measure allows for real-time assess-
ment of a learner’s competence, weighting knowledge measures and actual per-
formance. The weight of the knowledge measure is somewhat higher than the 
weight of the actual performance, because knowledge is seen as a prerequisite for 
the ability to open the correct windows. 
 Task load (L). After each learning task, task load was measured with a one-item 
7-point rating scale as the ‘effort required to perform the task’, ranging from a very 
small amount of effort (1) to a very high amount of effort (7). The internal consis-
tency of the test was .93 (Cronbach’s alpha). The task load is used to make task-
selection decisions in the adaptive conditions and to compute the learning efficiency 
as described in a later section. 
 Selection table. In the two adaptive conditions, the MySQL database connected 
to the learning environment contained a selection table (see Table 3.1). The selec-
tion table indicated the ‘jump size’ or progression from one level of support to 
another level of support, and from one difficulty level to another difficulty level. 
Competence and task load scores are used as a learner variable for dynamic task 
selection. This approach has also been successfully used in other studies (Camp et 
al., 2001; Salden et al., 2004). To correct for extreme values, the mean of the 
competence measure on the last learning task and the previous learning task was 
computed with a higher weight for the last learning task (70%) than for the previous 
learning task (30%), leading to a minimum score of 0 and a maximum of 100. 
 



 Chapter 3 | 51 

 

 

Table 3.1 
Selection Table Indicating Jump Sizes Between Learning Tasks 

aAdjusted jump size = 0 because the computed jump size is negative and the competence score is 5 or 
higher (rule a) 
bAdjusted jump size = 0 because the computed jump size is negative and the task-load score is 2 or 
lower (rule b) 
cAdjusted jump size = 0 because the computed jump size is positive and the competence score is 3 or 
lower (rule c) 
dAdjusted jump size = 0 because the computed jump size is positive and the task-load score is 6 or 
higher (rule d) 
 
 To compute the jump size (J), task load scores (TL) are subtracted from 
competence scores (C). The higher the competence score and the lower the task 
load, the larger the positive jump size. For instance, a score of 5 on competence and 
2 on task load yields a jump size of +3 (i.e., 5 – 2 = 3), meaning that the level of 
support decreases three levels (e.g., from a worked-out example with product 
support to a conventional problem). If there are less than three support levels 
available at the current difficulty level, the learner will move to the lowest support 
level (i.e., a conventional task) because the learner is only allowed to progress to the 
next difficulty level after successful completion of a conventional task (i.e., a task 
without embedded support). That is, only once the learner has successfully solved a 
conventional task at a particular difficulty level, s/he is considered to master the 
required competence level and is allowed to proceed to the next, higher difficulty 
level. Accordingly, the lower the competence level and the higher the task load, the 
larger the negative jump size. For instance, a score of 2 on competence and 5 on 
task load yields a backward jump of 3 steps (i.e., 2 – 5 = -3), meaning that the level 
of support increases three levels. But, if there are less than three support levels 
available at the current difficulty level, the learner will move back to the highest 
level of support (i.e., a worked example with process and product support) at the 
current difficulty level. 
 The selection table also applies some additional rules: if the computed jump 
size is negative and the competence score is 5 or higher (rule a), or if the computed 
jump size is negative and the task-load score is 2 or lower (rule b), the learner will 
not jump backwards (i.e., the adjusted jump size = 0) because an easier task or a 
task with more embedded support may not be challenging enough. Additionally, if 

 Competence 
Task Load 1 2 3 4 5 6 7 

1 0   0 c   0 c +3 +4 +5 +6 
2   0 b  0   0 c +2 +3 +4 +5 
3 -2 -1  0 +1 +2 +3 +4 
4 -3 -2 -1  0 +1 +2 +3 
5 -4 -3 -2 -1 0 +1 +2 
6 -5 -4 -3 -2   0 a  0     0 d 
7 -6 -5 -4 -3   0 a   0 a   0 
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the computed jump size is positive and the competence score is 3 or lower (rule c), 
or if the computed jump size is positive and the task-load score is 6 or higher (rule 
d), the learner will not jump forward (i.e., the adjusted jump size = 0) because a 
more complex task or a task with less embedded support may overwhelm the 
learner. In Table 3.1, these additional rules yield a jump size of 0. 
 Germane load. After each task, germane load was measured with a one-item 7-
point rating scale as the ‘effort invested in gaining understanding of the relation-
ships dealt with in the simulator and the task’, ranging from minimum effort (1) to 
maximum effort (7). The reliability of the germane load measures reported during 
training was .95 (Cronbach’s alpha). Germane load directly reflects the effort a 
participant has invested in learning and is used to compute task involvement (see 
below). 
 Training time. The database connected to the learning environment tracked the 
time (in minutes) participants spent during training. 

Test Phase 

 Learning outcomes. Learning outcomes were measured with a conceptual 
knowledge test consisting of 20 multiple-choice questions, administered to the 
participants after the training. All questions had three alternative answers that were 
presented in a random order. The test assessed participants’ understanding of the 
dietetics domain (i.e., reasoning with effects of alterations in energy intake, physical 
activity, and other factors such as gender and smoking on body weight and body 
composition). An example item is: 
 
 Anouk has started smoking. Will her Basal Metabolism Rate (BMR) be af-
fected? 
 (a) Yes, her BMR will increase. 
 (b) Yes, her BMR will decrease. 
 (c) No, her BMR will remain the same. 
 
 Three items were not included in the analysis, because one item had an item 
difficulty value (p) of 1 and two items had a negative item-test correlation. Item 
difficulty (p) is defined as the proportion of participants who answer an item 
correctly (Crocker & Algina, 1986). A p-value of 1 means that 100% of the partici-
pants answered this item correctly. This means that the correct answer was probably 
too obvious. The maximum test score was thus 17 points. The internal consistency 
of the test was .63. 
 Learning efficiency. The Paas and van Merriënboer procedure (1993; Marcus, 
Cooper, & Sweller, 1996; Paas et al., 2003) was used to calculate the efficiency of 
the instructional conditions. First, learning outcomes (i.e., the score on the concep-
tual knowledge test) and task-load scores for each participant are transformed into 
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z-scores, using the grand mean across conditions. Then, the mean z-scores for every 
condition are represented in a Cartesian coordinate system with task load z-scores 
on the horizontal axis and learning outcomes z-scores on the vertical axis (see 
Figure 3.2). The line LO = TL through the origin indicates a neutral efficiency. The 
efficiency, E, is calculated as the perpendicular distance from a data point in the 
coordinate system to the line LO = TL (Paas & van Merriënboer, 1993). The 
formula for calculating this distance is: 
 

2
LearningOutcomes TaskLoadZ Z

Learning Efficiency
−

=  

 

 
 

Figure 3.2. Efficiency measure in a Cartesian coordinate system. 
 
 Task involvement. The computation of task involvement (Paas et al., 2005) was 
analogous to the computation of learning efficiency. Now, learning outcomes and 
germane load (GL) scores are transformed into z-scores using the grand mean 
across conditions. The task involvement is calculated as the perpendicular distance 
from a data point in the coordinate system to the line LO = – GL. The formula for 
calculating this distance is: 
 

2
LearningOutcomes GermaneLoadZ Z

Task Involvement
+

=  

 
 Interest scale. After each task in the practice session, learners completed a 7-
point rating scale that measured interest-in-task with the statement ‘I found the 
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computer lesson interesting’, ranging from strongly disagree (1) to strongly agree 
(7). In addition, in the test phase participants answered a questionnaire that meas-
ured their interest-in-training. The questionnaire contained 7 items from the 
interest/enjoyment subscale of the Intrinsic Motivation Inventory (IMI; Deci, 
Eghrari, Patrick, & Leone, 1994) (e.g., “I would describe the computer lesson as 
very interesting”, “While I was carrying out the computer lesson, I was thinking 
about how much I enjoyed it”), which was translated from English into Dutch by 
Martens and Kirschner (2004). The interest questionnaire had a reliability of .92 
(Cronbach’s alpha). 

Procedure 

 Introduction. One week before the computer session, all participants partici-
pated in an oral introductory session in which both the learning environment and the 
functioning of the simulator “Body Weight” were presented and explained in a 
Microsoft® PowerPoint® presentation. In addition, participants were given a short 
introduction to the dietetics domain. During this introduction the participants could 
ask questions and the experimenter made sure that the whole procedure was clear to 
all participants before the actual experiment started. 
 Training phase. During the training phase participants worked in the learning 
environment on the learning tasks, using the body weight simulator. Participants 
were not informed on how the tasks were selected or pre-selected (for the program-
control and the shared-control conditions, respectively). The first learning task at 
the first level of difficulty was used as a practice task, in which all participants 
could practice with their own data. Competence and task-load scores for the second 
task (i.e., a conventional task at difficulty level 1) were assessed and used as the 
first input for task selection. After each task, competence measures were taken and 
participants indicated on 7-point rating scales the amount of task load and germane 
load they perceived while working on the learning task. It was emphasized that they 
were not allowed to skip any part of the answer of the competence and cognitive 
load questions. If they did, the program prompted them to answer the questions 
before they could continue. During the training phase the time spent by the partici-
pants was logged. 
 Test phase. One week after the computer session, participants were presented 
with the paper-and-pencil conceptual knowledge test to measure learning outcomes 
and the interest questionnaire to assess their interest in the training phase. During 
the test phase participants were allowed to work at their own pace. 

Results 

A significant main effect of adaptation was found on training time (i.e., the total 
amount of time spent on all learning tasks), F (1, 51) = 39.59, p < .001, MSE = 
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619.42, η2
p = .437. Participants in the adaptive conditions spent more time on 

training (M = 129.68, SD = 23.29) than participants in the non-adaptive conditions 
(M = 87.30, SD = 25.95). No effects on training time were found for control or the 
interaction between adaptation and control. Therefore, ANCOVA’s with total 
training time as a covariate are used in the subsequent analyses and estimated 
marginal means are presented. For all statistical tests a significance level of .05 was 
maintained. Table 3.2 provides an overview of the training results. 
 
Table 3.2 
Overview of Results from the Training Phase 

                        Condition 

 Adaptation 
program control

n = 15 

Adaptation 
shared control 

n = 15 

Non-adaptation 
program control

n = 13 

Non-adaptation 
shared control 

n = 12 

 M SD M SD M SD M SD 
Training Time (min.) 126.70 29.27 132.65 15.76 88.55 28.01 85.95 24.69 

Practice Performance  
(max. = 100) 

71.90 14.86 75.22 16.36 50.08 19.27 45.77 18.99 

Task Load (max. = 7) 3.01 1.20 3.14 1.10 3.61 0.86 4.09 0.97 

Germane Load (max. = 7) 4.40 0.56 4.63 0.94 3.73 0.83 4.35 0.50 

Note: Estimated marginal means are presented with total training time as a covariate. 
 

Training Phase 

 Competence scores. A significant main effect of adaptation was found on the 
competence scores, F (1, 50) = 16.51, MSE = 305.25, p < .001, η2

p = .248. Partici-
pants in the adaptive conditions achieved higher competence scores (M = 73.56, SD 
= 15.46) than participants in the non-adaptive conditions (M = 47.97, SD = 18.87). 
No effects on the competence scores were found for control or the interaction 
between adaptation and control. 
 Task load. Similarly, a significant main effect of adaptation was found on task 
load during training, F(1, 50) = 4.42, MSE = 1.04, p < .05, η2

p = .081. Participants in 
the adaptive conditions experienced a lower task load (M = 3.07, SD = 1.14) than 
participants in the non-adaptive conditions (M = 3.85, SD = .93). No effects on task 
load were found for control or the interaction between adaptation and control. 
 Germane load. A significant main effect of control on germane load during 
training was found, F(1, 50) = 4.46, MSE = 0.55, p < .05, η2

p = .082. Participants in 
the shared-control conditions reported higher mental effort in learning (M = 4.49, 
SD = .77) than participants in the program-control conditions (M = 4.07, SD = .75). 
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No effects on germane load were found for adaptation or the interaction between 
adaptation and control. 

Test Phase 

Not all participants filled out the conceptual knowledge test. Only the data of 
participants who completed the conceptual knowledge test and the interest ques-
tionnaire (n = 50) were used in the analysis. The number of participants that 
dropped out was evenly distributed over the conditions (X2 = .38, p = .95). Table 3.3 
provides an overview of results from the test phase. 
 
Table 3.3 
Overview of Results from the Test Phase 
 Condition 

 Adaptation  
program control

n = 12 

Adaptation  
shared control 

n = 14 

Non-adaptation 
program control 

n = 12 

Non-adaptation 
shared control 

n = 12 

 M SD M SD M SD M SD 

Learning Outcomes (max. = 17) 12.88 2.57 14.21 1.21 11.95 2.67 12.01 1.91 

Learning Efficiency 0.29 1.36 0.60 0.66 -0.32 1.05 -0.67 0.76 

Task Involvement 0.15 0.81 0.68 0.94 -0.75 0.87 -0.19 0.75 

Note: Estimated marginal means are presented with total training time as a covariate. 
 
 Learning outcomes. A significant main effect of adaptation was found on 
learning outcomes, F(1, 45) = 4.28, MSE = 4.06, p < .05, η2

p = .087. Participants in 
the adaptive conditions scored higher (M = 13.55, SD = 2.07) than participants in 
the non-adaptive conditions (M = 11.98, SD = 2.27). No significant effects on the 
test scores were found for control or the interaction between adaptation and control. 
 Learning efficiency. A significant main effect of adaptation was found on 
learning efficiency, F(1, 45) = 6.25, MSE = 0.98, p < .025, η2

p = .122. As hypothe-
sized, participants in the adaptive conditions showed higher efficiency scores (M = 
.44, SD = 1.03) than participants in the non-adaptive conditions (M = -.49, SD = 
.91). No effects on learning efficiency were found for control or the interaction 
between adaptation and control. Figure 3.3a depicts a graphical representation of 
the efficiency based on the standardized scores for learning outcomes and task load. 
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(I = 0.41)

(I = 0.25)

(I = -0.30)

(I = -0.47)

(I = 0.44)

(I = -0.49)

NA

A
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SL

(a) Learning Efficiency (b) Task Involvement  
 
Figure 3.3. Graphical representation of significant effects on learning efficiency (a) and task involve-
ment (b). 
Note. A = Adaptation, NA = Non-adaptation, SL = Shared control, SC = Program control. 
 
 Task involvement. Similarly, a significant main effect of control was found on 
task involvement, F(1, 45) = 5.37, MSE = 0.70, p < .025, η2

p = .107. As hypothe-
sized, participants in the shared-control conditions showed higher task involvement 
(M = .25, SD = 1.05) than participants in the program-control conditions (M = -.30, 
SD = 1.02). Moreover, a significant main effect of adaptation was found on task 
involvement, F (1, 45) = 7.81, p < .025, η2

p = .148. Participants in the adaptive 
conditions showed higher task involvement (M = .41, SD = 0.92) than participants 
in the non-adaptive conditions (M = -.47, SD = .84). No effects on task involvement 
were found for the interaction between adaptation and control. Figure 3.3b depicts a 
graphical representation of task involvement based on the standardized scores for 
learning outcomes and germane load. 
 Interest. Table 3.4 presents the mean scores for interest-in-task (measured for 
each learning task during practice) and the interest-in-training (measured with the 
interest questionnaire in the test phase). No significant differences between condi-
tions were found. 
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Table 3.4 
Mean Interest-in Task and Interest-in-Training (maximum score of 7) 
 Condition 

 Adaptation  
with program 

control 

Adaptation  
with shared  

control 

Non-adaptation 
with program 

control 

Non-adaptation with 
shared  
control 

 
 M SD n M SD n M SD n M SD n 

Interest-in-Task 
 

3.69 1.13 15 3.72 1.30 15 4.0 1 0.59 13 3.98 1.37 12 

Interest-in-training 3.58 1.20 12 3.38 1.33 14 3.75 1.31 12 3.91 1.58 12 

Note: Estimated marginal means are presented with total training time as a covariate. 

Discussion 

The first hypothesis of this study that adapting the difficulty and support of the 
learning tasks to the learners competence scores and perceived task load would 
make learning more effective and efficient was clearly confirmed by the findings. 
The learning outcomes of participants who received adaptive training were higher, 
and they experienced a lower task load during practice than participants who 
received non-adaptive training. In addition, competence scores of participants in the 
adaptive conditions were also superior to competence scores of their yoked coun-
terparts. Adaptive training may have reduced the task load during practice to an 
acceptable level, and therefore, participants may have used their freed-up cognitive 
resources for learning. 
 Some comments should be made with regard to the higher training time for 
participants in the adaptive conditions. These participants may have noticed the 
relationship between their performance and the difficulty and/or embedded support 
of the subsequent tasks, whereas participants in the non-adaptive conditions 
probably lacked this association, which might have negatively influenced their time 
investment. Since total training time could have influenced the results, all reported 
analyses included time as a covariate. In addition, the fact that learner control did 
not yield higher learning outcomes supports the idea that learners with lower levels 
of competence in a domain lack the ability to make productive use of learner 
control. In this study, learners cannot be considered to have a substantive level of 
competence, for which longer exposure to the learning materials (e.g., weeks) than 
provided in this study would be needed. 
 The second hypothesis that shared control has positive effects on learner 
motivation was partially confirmed by the data. Participants in the shared-control 
conditions showed higher task involvement. In other words, the choice provided 
positively influenced the amount of effort invested in learning, combined with 
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higher learning outcomes. An explanation is that these participants perceived that 
their effort was well invested and were thus motivated to invest germane load. 
Furthermore, task variability can be seen as a strategy to gain the learner’s attention 
(Keller, 1983b). Hence, the relative variability provided by the three tasks presented 
in the shared control conditions may have further contributed to the positive effect 
on germane load. However, the absence of a significant effect of shared control on 
learning outcomes may indicate that the variability of the characteristics of the 
presented tasks may not have been large enough. A higher degree of variability 
might have yielded a significant effect on learning outcomes in favor of the shared 
control conditions. 
 Another interesting finding pertained to the positive effect of adaptation on task 
involvement. Providing learners with an appropriate amount of embedded support 
may have a positive influence on their task involvement, because it prevents the 
cognitive load of a learning task from becoming too high to perform the task. If this 
load is too high the learners will lose motivation to continue working on the task (de 
Croock & van Merriënboer, 2003). In addition, learners provided with an optimum 
level of task difficulty might be willing to invest effort in learning, which in 
combination with higher learning outcomes indicates higher task involvement. To 
sum up, our main results are clearly in favor of adaptive instruction with shared 
control as expected. 
 Whereas participants in the shared control conditions showed a higher task 
involvement, they did not report a higher interest in the learning tasks or in the 
training. A possible explanation is again related to the limited amount of learner 
control available. Providing learners with a wider range of tasks to choose from 
could have revealed differences in interest amongst the experimental conditions. 
Another feasible reason may be that interest is evoked when learners are given more 
opportunities for exploration within the learning environment. Participants in the 
shared control condition were presented with three tasks to choose from, but once 
the task was selected, the actual performance of the task involved precisely the 
same activities as the pre-selected task in the program control conditions. Other 
studies (e.g., Overskeid & Svartdal, 1996; Reeve, Hamm & Nix, 2003; Schraw, 
Flowerday, & Reisetter, 1998) reported that when provision of choice is the only 
aspect involved to enhance motivation, this may not positively affect interest in the 
learning tasks. In contrast, a study by Cordova and Lepper (1996) included other 
aspects (such as internal locus of control and volition) and found that participants 
reported liking the training more. Hence, the provision of learner control over task 
selection may be considered as only one aspect to enhance interest, which needs to 
be combined with other aspects to become effective. For example, other factors 
such as the pace of instruction or the learner’s background knowledge may influ-
ence interest. In addition, whereas shared control did not arouse learners’ interest 
and learners did not report liking or enjoying the instruction more, positive results 
on task involvement indicate that learners still persisted in investing effort to learn 
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from the tasks. Furthermore, that shared control was beneficial for task involvement 
but not for interest seems to support Paas et al.’s (2005) argument that combining 
cognitive load and performance measures offers a supplementary approach to 
inventories that collect motivational data and, in addition, yields information that is 
not directly reflected in performance-based data. 
 Our results are consistent with cognitive load theory, which states that an 
optimal instructional design should decrease extraneous and intrinsic cognitive load 
and encourage learners to use their freed-up cognitive resources for learning (that is, 
increase germane cognitive load). From a cognitive load perspective, providing 
learners with tasks that differ on a number of relevant dimensions from previous 
learning tasks may increase germane load and improve the construction of cognitive 
schemata. In our study, extraneous and intrinsic load were successfully reduced by 
adapting the level of difficulty and support to a learner’s competence and task-load 
scores, and task involvement was induced by providing shared control, recognizing 
the important role of motivation in designing instruction. These findings are 
consistent with the results of several studies in other domains that have tailored the 
difficulty level (Camp et al., 2001; Salden et al., 2004) and both the difficulty level 
and the level of support (Kalyuga & Sweller, 2005) based on performance scores 
and cognitive load ratings in the domains of Air Traffic Control and algebra. Hence, 
initial instruction of a complex skill in educational settings can be facilitated by 
designing and adapting instruction according to cognitive load theory. Future 
studies may test the applicability of the adaptive approach in other domains, 
especially in less structured areas, such as language monitoring comprehension in 
online reading tutors (Kalyuga & Sweller, 2005). 
 Assessment of complex performance must include several qualitatively distinct 
aspects (e.g., breadth and depth of an integrated and organized knowledge base, the 
possession and implementation of flexible problem-solving strategies, learners’ 
self-monitoring skills, or categorical diagnosis of problems) to obtain valid and 
reliable information. In our study, learners competence scores were only based on 
answers to multiple-choice questions and performance measures of operating the 
simulator. The use of more advanced process-tracking methods, such as concurrent 
verbal protocols, retrospective reporting, and eye tracking would provide more 
sensitive indicators of a learner’s competence and her understanding of the rationale 
behind the steps performed, and will thus further refine the basis for adaptive task 
selection, which in turn may provide superior learning results. Furthermore, our 
study used task load and competence measures for task selection purposes. In future 
research, germane load might be considered as an additional factor for task selec-
tion. A high germane load indicates that the learner is investing a substantial part of 
her available cognitive resources in learning. A selection table that incorporates this 
type of load should therefore aim to keep it as high as possible. When competence 
is (relatively) high, a learner who reports a high germane load should not receive a 
less difficult task or a task with more support, but an equally difficult or even more 
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difficult task with equal or less support. This guarantees that every subsequent task 
is challenging for the learner. Such a refined selection table including germane load 
might be expected to be superior to the selection table used in the current study, in 
which we tried to keep the subsequent tasks challenging by adding a rule that 
prescribed not to select a less difficult task or a task with more support when the 
competence-score was 5 or higher and the task load was 2 or lower. 
 Concerning the measurement of cognitive load, theorists are faced with the 
challenge to distinguish the different types of cognitive load through self-reporting 
instruments. In this respect, Opfermann, Gerjets, and Scheiter (2005) found pre-
liminary differential effects in a study in which cognitive load was measured with 
six items that assessed the different types of cognitive load on a 9-point Likert 
scale. Our findings may also indicate that learners seem to be able to distinguish 
between task load, which may be seen as a combination of intrinsic and extraneous 
load, and germane load. 
 With regard to the learning outcomes, two remarks should be made. First, the 
multiple-choice questions might have been relatively easy for the participants who 
scored moderately high in all conditions. More complex test questions could have 
increased differences between the experimental conditions. Second, learning 
outcomes were only measured with the conceptual knowledge test. In future 
research, transfer tasks should also be used to measure participants’ learning 
outcomes. 
 To conclude, the results of this study indicate that adapting the difficulty and 
support of selected tasks to the learner’s level of competence and task load and 
providing learners with some control over the process of task selection is advisable. 
Adaptive task selection yielded more effective and efficient learning. In addition, 
shared control enhanced learners’ motivation. Further research is needed to deter-
mine ways to control extraneous and intrinsic cognitive load and to optimize 
germane load, for example, by providing learning tasks that differ on a number of 
relevant dimensions from previously presented learning tasks to ensure a high 
variability which helps learners to construct new schemata, with positive effects on 
learning. 
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Combining Shared Control with Variability 
over Surface Features: Effects on Transfer 

Test Performance and Task Involvement4 
Shared Control and Task Variability 

Chapter 4 

Positive effects of learner control decrease when learners do not perceive the control given to them, 
make suboptimal choices, or are cognitively overloaded by the amount of choice. This study proposes 
shared control (i.e., learners choose from a pre-selection of suitable tasks) over highly variable tasks to 
tackle these problems. Ninety-four students participated in a 2 x 2 factorial experiment with the factors 
control (program, shared) and variability of surface features (low, high). Results show superior effects 
on transfer test performance and task involvement of shared control when learners can choose from pre-
selected tasks with surface features that are different from the surface features of previous tasks. 

                                                        
4 This chapter is based on: Corbalan, G., Kester, L., & van Merriënboer, J.J.G. (in press). Combining shared 
control with variability over surface features: Effects on transfer test performance and task involvement. 
Computers in Human Behavior. 
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Recent instructional theories advocate on-demand methods of education in which 
learners are given freedom to choose their own learning path (Bell & Kozlowski, 
2002; Schnackenberg & Sullivan, 2000; Williams, 1996). In contrast to program 
controlled instruction, learner controlled instruction allows learners to make their 
own decisions on specific elements of instruction. These include, for example, the 
instructional components (e.g., learning tasks, information elements), the compo-
nent characteristics (e.g., task contexts, modality of presented information), as well 
as task sequence and instructional pace. Instructional locus of control can be 
thought of as a continuum ranging from full program control to full learner control, 
involving several forms of shared control (Hannafin, 1984). Learner control is 
believed to positively influence learning and motivation (Kinzie & Sullivan, 1989; 
Ross, Morrison, & O’Dell, 1989; Schnackenberg & Sullivan, 2000; Williams, 
1996). It permits learners to adapt particular characteristics of the learning material 
to their individual preferences and needs (Kinzie, 1990; Merrill, 1994), and has 
been theorized to be a useful alternative to the classical aptitude-treatment interac-
tion approach in that learners can become system independent (Federico, 1980). 
 Although the beneficial effects of learner control are supported from a theoreti-
cal perspective, empirical research shows both beneficial and detrimental effects on 
learning. These inconsistent results suggest that learner control can be either 
motivating or demotivating (Katz & Assor, 2007). According to Skinner (1996), 
there is little consensus on the kinds of control that are beneficial or harmful for 
learning and on how these may interact with certain learner and situational charac-
teristics. In any case, the unconditional use of learner control is not supported 
(Freitag & Sullivan, 1995; Lin & Hsieh, 2001; Skinner, 1996; Williams, 1996). 
Potential threats of learner control include, amongst others: (1) a lack of perception 
of control when learners do not see the choices provided as sufficiently different 
from each other; (2) making suboptimal choices because learners are not aware 
what is best for their learning, and (3) a high cognitive load on learners’ processing 
resources influenced by the amount of choice available. Well-designed education 
should prevent these potential pitfalls and ensure the necessary conditions to 
optimize learner control. 
 First, with regard to perception of control, some authors (Cordova & Lepper, 
1996; Katz & Assor, 2007; Kinzie, 1990; Langer, 1975; Lepper, 1985; Taylor & 
Brown, 1988) argue that the positive effects of learner control remain apparent even 
when the choices provided are irrelevant for learning and the control is merely an 
illusion. In a study carried out by Cordova and Lepper (1996), participants who 
were given control over aspects of the task that were not relevant for learning (e.g., 
the names of the characters of a computer game designed to teach arithmetical and 
problem-solving skills) scored significantly higher on a posttest than participants 
who did not have control at all. In a recent study, Hasler, Kersten, and Sweller 
(2007) found that participants in learner-paced conditions achieved higher learning 
efficiency despite the fact that the control options were rarely used. The mere 
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availability of control had an added value on learning, since the instructional 
content was identical in both program paced and learner paced conditions. In 
addition, when learners do not perceive that they are in control of something this 
decreases performance and increases frustration, especially when they are still 
forced to make a selection (Burger & Cooper, 1979). Accordingly, perception of 
control refers to the individual belief of how much control is available (Skinner, 
1996). In line with this idea, many theorists (Averill, 1973; Burger, 1989; Skinner, 
1996) argue that learner control is only a powerful predictor of functioning and 
positively related to performance if it is actually perceived as control by the learners 
(Savage, Perlmunter, & Monty, 1979). 
 Furthermore, when learners perceive they are in control of something, they will 
most likely be engaged in learning activities, and will actually allocate their 
cognitive resources to learning because of the satisfaction derived from just per-
forming the task (Deci, Vallerand, Pelletier, & Ryan, 1991; Fisher & Ford, 1998; 
Keller, 1983; Salomon, 1983, 1985). When learners are willing to invest mental 
effort in learning, this may in turn positively influence performance (Paas & van 
Gog, 2006; Volet, 1997). In this respect, perceived learner control is believed to 
increase learners’ involvement. An involved learner will most likely invest more 
mental effort in performing the learning tasks, which might result in higher learning 
outcomes (Kinzie, 1990; Paas, Tuovinen, van Merriënboer, & Darabi, 2005). 
Accordingly, lack of perceived control decreases learners’ involvement in learning, 
threatening learning outcomes. 
 Second, novice learners commonly make suboptimal choices due to a lack of 
sufficient or adequate domain knowledge. If learners select what they like rather 
than what they need, learner control may even have negative effects on learning. 
For instance, learners may reduce instructional time by skipping or omitting 
considerable amounts of instructional materials essential for good performance 
(Merrill, 2002; Ross & Morrison, 1989; Snow, 1980; Williams, 1996). Hence, 
learners with insufficient or inadequate knowledge should not be allowed to make 
instructional choices unless they are taught or supported to make the right selections 
first. With shared control, for example, the learner may make the final selection of 
one learning task from a subset of suitable tasks, which are pre-selected from all 
available tasks by an instructional agent (e.g., a teacher or computer system). 
 In addition, learners may opt to select learning tasks with highly similar surface 
features (i.e., irrelevant aspects of the task that are not directly related to goal 
attainment) because those tasks are more familiar to them. In a study by Ross, 
McCormick, and Krisak (1986), college students majoring in nursing or education 
were allowed to select from several alternative themes (e.g., sports, medical, 
educational, abstract) to learn statistics. They found that nursing students tended to 
select the medical theme while education students tended to select the educational 
theme. Hence, when learners exercise contextual control, such as over surface 
features, this may make instruction more personally relevant to them without 
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affecting the basic lesson content (Hannafin, 1984; Kinzie, 1990). However, learner 
control over context may ultimately be detrimental for learning since learners may 
tend to continuously select similar contexts. Increased exposure to a variety of 
contexts is believed to promote transfer (Ross & Morrison, 1989). Variability over 
surface features, which enables learners to distinguish task-relevant from task-
irrelevant information, encourages the adaptation to new tasks. Providing learners 
with learning tasks representing a high variability of surface features has been 
shown to facilitate the construction of more general problem-solving rules. Thus, it 
helps learners to abstract away from the contexts and to focus on those components 
that are shared by the learning tasks, enhancing transfer of learning to new, unfamil-
iar situations (Chen & Mo, 2004; Holyoak & Koh, 1987; Quilici & Mayer, 1996). 
This abstraction process requires the mindful engagement of the learners, increasing 
their “germane” cognitive load (i.e., load caused by cognitive processes that directly 
contribute to learning; Clark, Nguyen, & Sweller, 2005; Paas & van Merriënboer, 
1994; Sweller, van Merriënboer, & Paas, 1998; van Merriënboer, Kester, & Paas, 
2006; van Merriënboer et al., 2002). 
 Surface features (e.g., species in inheritance tasks because the rules for the 
transmission of hereditary characteristics from parent organisms to their offspring 
are the same for animals, plants, and humans) are often more perceptible for 
learners than structural features (e.g., parents’ genes composition) (Cummins, 1992; 
Gick & Holyoak, 1987; Quilici & Mayer, 1996, 2002). Learners who are presented 
a subset of learning tasks that differ in surface features from prior tasks will most 
likely recognize those differences, perceive the choices as being valuable and use 
this information to make tasks more relevant for them when provided with control 
(Katz & Assor, 2007; Kinzie, 1990). Hence, learner control over task selection may 
positively influence their perception of control - as compared to learners who are 
presented with one ‘program selected’ task - and thus their involvement and transfer 
performance. Learners who are presented with a subset of tasks with surface 
features similar to that of prior tasks, in contrast, will recognize the lack of differ-
ences. This may even lead to frustration, especially when they are still forced to 
make a selection (Burger & Cooper, 1979) which may negatively influence their 
perception of control and thus their involvement in learning and performance on 
transfer tasks. Hence, to enhance the perception of control the choices provided to 
learners should be attractive ones (Kinzie, 1990). In this study, the provision of a 
subset of variable tasks is presented to make choices more attractive (Keller, 1983). 
In addition and at least equally important, learners who are given a subset of 
learning tasks differing in surface features from prior tasks are prevented from 
making suboptimal choices because all the tasks they can choose from differ from 
the prior one with regard to their surface features. As argued above, this ensures a 
certain amount of variability which is expected to facilitate transfer of learning. 
 Third, learner control may introduce potential problems with excessive cogni-
tive load (Scheiter & Gerjets, 2007; Schwartz, 2004). Even experienced learners 
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may become overwhelmed and demotivated by an excessive amount of choice, for 
instance, when they are provided with hundreds of tasks to choose from (Iyengar & 
Lepper, 2000; Schwartz, 2004). In this respect, learners may experience difficulties 
in selecting, sequencing, and pacing huge amounts of information because of 
cognitive overload (Scheiter & Gerjets, 2007). However, several studies (Fry, 1972; 
Kinzie & Sullivan, 1989; Lahey, Hurlock, & McCann, 1973) show that the majority 
of learners actually prefer some control. Hence, providing learners with a limited 
amount of choice may avoid the potential pitfalls of a too high amount of choice 
and yet grant a desired amount of learner control. This is realized when an instruc-
tional agent (e.g., a teacher or a computer program) and the learner share control 
over the process of task selection (Corbalan, Kester, van Merriënboer, 2006; 
Tennyson & Buttery, 1980). In this two-step process, a computer program first 
selects a subset of learning tasks with desirable task features (e.g., surface features) 
based on task features of previously selected tasks (program control). Second, the 
learner selects from this subset one task to work on (learner control). This prevents 
overloading the learners’ cognitive resources, while still giving them a sense of 
control and preventing them from making wrong instructional decisions (Kinzie & 
Sullivan, 1989). Hence, this study implements shared control to prevent cognitive 
overload by reducing the amount of choice given to learners. 
 To sum up, for learner control to be effective, learners must both perceive they 
are in control of something and be supported to make optimal choices – otherwise 
learner control may even hamper learning. Variability in the surface features of 
learning tasks helps to meet these requirements since (a) it enhances the perception 
of control and, in combination with shared control, (b) it prevents learners of 
making suboptimal choices because the subset of tasks they may choose from 
ensures a high variability, which is a prerequisite to abstraction and transfer. 
Furthermore, shared control prevents cognitive overload by reducing the amount of 
possible choices given to the learners. The purpose of this study is to investigate 
under which conditions shared control is optimized. Shared control is hypothesized 
to increase learners’ involvement in learning and yield higher performance on 
transfer tasks provided that high variability over surface features of tasks is ensured; 
shared control in combination with low variability may even decrease learners’ 
involvement and yield lower performance on transfer tasks. 

Method 

Participants 

Ninety-four first year students (90 females and 6 males) in the Health Sciences 
domain of a Dutch school for secondary Vocational Education and Training (VET) 
participated in this study. Their mean age was 17.48 years (SD = 2.04). A 2 x 2 
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factorial design was used to study the effects of control (program control vs. shared 
control) and variability of surface features in the learning tasks (low variability vs. 
high variability). All participants received a movie DVD for their participation. 
They were randomly assigned to one of the four experimental groups: program 
control with low variability (n = 22); program control with high variability (n = 25); 
shared control with low variability (n = 23); and shared control with high variability 
(n = 24). 

Materials 

 Electronic learning environment. The learning environment was a web applica-
tion containing a basic introduction to the domain of genetics, a factual knowledge 
test, the learning tasks, the transfer test, and mental effort questions to estimate 
cognitive load. 
 Basic introduction. In the basic introduction, participants studied the main 
concepts in the domain of genetics included in the training (i.e., dominant and 
recessive genes, homozygous or heterozygous gene pairs, genotype and phenotype) 
and a worked-out example containing all the problem-solving steps of a representa-
tive inheritance task. 
 Factual knowledge test. The factual knowledge test contained 16 multiple-
choice questions. Five items were not included in the analysis because those items 
had a negative item-test correlation. The maximum test score was 11 points. The 
reliability of the test was .62 (Cronbach’s alpha). 
 Learning tasks. The learning environment was connected to a database which 
contained the learning tasks. The task database consisted of 162 completion tasks 
about inheritance mechanisms of acquired traits that apply to different species and 
traits (e.g., hair, fur or leaf colour). Completion tasks present a given state, a goal 
state, and a partial solution that learners have to complete. Table 4.1 shows the 
features of the learning tasks in the database: the first column contains species and 
species type (within brackets), and the second column contains traits per species 
type and trait parts (within brackets). These are the surface features of the tasks. In 
addition, depending on the parents’ gene forms for a certain trait, three crossing 
types can be distinguished for each trait in each species, which leads to three 
different types of solutions. Crossing types depend on whether the parents are 
homozygous (i.e., the two gene forms - dominant or recessive - for one trait are 
identical) or heterozygous (i.e., the two gene forms for one gene are different) for a 
trait. These are the structural features of the tasks. 
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Table 4.1. 
Composition of the Database with Learning Tasks 

 
 Each participant completed twelve learning tasks. After each learning task, two 
multiple-choice questions with four answer options were presented to the learners. 
Each correct question scored one point and each wrong question scored zero points, 
leading to a maximum score of twenty-four points. The reliability of the learning-
tasks questions was .95 (Cronbach’s alpha). An example question is: “what are the 
expected genotypes for coat length of the puppies?” 
 Transfer test. The transfer test consisted of 12 transfer tasks, divided in 6 near 
transfer tasks and 6 far transfer tasks. The near transfer tasks were analogous to the 
learning tasks but contained different surface features (i.e., other subjects within the 
species, e.g., a fish, and other traits, e.g., the swimming pattern of a fish) and 
determined whether participants were able to apply the learned procedures. The far 
transfer tasks differed in structural features and were meant to determine whether 
participants were able to apply the learned procedures to new situations. The 
following tasks were used: (a) a dihybrid crossing task which required two different 
traits to be treated separately; (b) a family tree task in which participants had to 
infer the genotype of one of the parents based on the information of one of the 
grandparents; (c) a task in which participants had to infer the genotype of an 
individual from information from the relatives given; (d) a second generation task 
that required learners to determine the offspring of the offspring, (e) a co-dominant 
genes task, that is, genes that are equally strong and both expressed, and (f) a task in 
which participants must apply the acquired knowledge in a bottom-up way, that is, 
using the information of the offspring to find out information of the parents. The 
maximum test score was 12 points. The reliability of the test was .83 (Cronbach’s 
alpha). 

Species 
(species type) 

Traits 
(part traits) 

Crossing type I Crossing type II Crossing type III 

  Homozygous 
parent 

x 
Homozygous 

parent 

Homozygous 
parent 

x 
Heterozygous 

parent 

Heterozygous 
parent 

x 
Heterozygous 

parent 

Humans 
(European/African/Asian) 

Colour (hair/eyes) 
Shape (eyelashes/nose) 

Length (hair/thumb finger)

 
18 Tasks 

 
18 Tasks 

 
18 Tasks 

Animals 
(dog/cat/guinea pig) 

Colour (hair/eyes) 
Shape (ear/hair) 
Length (tail/fur) 

 
18 Tasks 

 
18 Tasks 

 
18 Tasks 

Plants 
(pea/corn/bean) 

Colour (flower/leaf) 
Shape (fruit/pod) 
Length (axis/fruit) 

 
18 Tasks 

 
18 Tasks 

 
18 Tasks 
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 Mental effort. After each learning task and transfer test task, participants’ 
perceived mental effort was measured as the ‘effort required to complete the task’ 
with a one-item 7-point rating scale (Paas, 1992; Paas, Tuovinen, Tabbers, & van 
Gerven, 2003). Reliability of the mental effort measures reported during the training 
was .97 and during the transfer test .95 (Cronbach’s alpha). 
 Motivation questionnaires. After the 12 learning tasks, participants completed 
five 7-point rating scales (i.e., perceived ability, effort, interest, usefulness, and 
intrinsic motivation) of the Intrinsic Motivation Inventory (IMI; Deci, Eghrari, 
Patrick, & Leone, 1994). The scales contained, in order, five, five, seven, four, and 
nine items. Reliability analysis (Cronbach’s alpha) of the IMI scales yielded 
internal consistencies of .76, .70, .90, .83, and .67, respectively. In addition, 
participants completed two 7-point rating scales (i.e., control beliefs - 4 items - and 
self-efficacy - 8 items -) of the Motivated Strategies for Learning Questionnaire 
(MSLQ; Garcia & Pintrich, 1994). Reliability analysis of the MSLQ scales yielded, 
in order, Cronbach’s alphas of .76 and .91. 
 Time logging. The learning environment kept track of the time (in minutes) 
participants needed to complete each learning task and transfer test task. 
 Learners’ involvement. In this study, task involvement (Paas et al., 2005) was 
used as an indicator of learners’ involvement. Based on the assumption that motiva-
tion, mental effort and performance are positively related, task involvement is 
computed by combining transfer test performance and mental effort invested during 
training. According to Paas et al. (2005), low mental effort combined with low test 
performance can be considered indicative of low task involvement, whereas high 
mental effort combined with a high test performance is indicative of a high task 
involvement. To calculate task involvement, transfer test scores and mental effort 
scores are first standardized and the z-scores are entered into the formula (Paas et 
al., 2005): 
 

 
In the formula, task involvement is computed for each learner as the perpendicular 
distance between a dot in the cross of axes (i.e., the z value for mental effort on the 
x-axis and the z value for transfer score on the y-axis) and the diagonal, T = 0, 
where mental effort and transfer scores are proportionally related to each other. 

Procedure 

 Training phase. Prior to the training phase, participants received the basic 
introduction and the factual knowledge test. After that, participants received the 12 
learning tasks (i.e., completion tasks) and the associated mental effort measures. 

2
Transfer Score Mental EffortZ Z

Task Involvement
+

=
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 During the training phase, the 12 tasks were dynamically selected as follows: in 
the program control conditions, the program selected and presented each time only 
one task to the participant. In the shared control conditions, the program randomly 
pre-selected three tasks from six possible tasks resulting from the combination of 
species types (x3) and part traits (x2) and presented these three tasks to the partici-
pant, from which the participant selected one task to perform. In the low variability 
conditions, the species (i.e., human, animal or plant) and trait (i.e., colour, shape or 
length) of the first (range of) learning task(s) was randomly selected and counter-
balanced over the participants. Each next (range of) task(s) was selected from all 
available tasks featuring the same species and trait as the prior task, thus species 
and trait remained invariable throughout the training. In the high variability condi-
tions, the species and trait of the first (range of) learning task(s) were randomly 
selected. Each next (range of) task(s) was selected from tasks featuring a different 
species and a different trait than the previously performed task. Figure 4.1 shows an 
example of a possible sequence of three learning tasks performed in the low and 
high variability conditions. 
 

Task 1 Task 2 Task 3

Species: Animal (dog)
Trait:    Shape (round ears)

Species: Animal (guinea-pig)
Trait:    Shape (straight fur)

Species: Animal (cat)
Trait:    Shape (pointed ears)

Task 1 Task 2 Task 3

Species: Animal (guinea-pig)
Trait:    Length (short fur)

Species: Human (African)
Trait:    Colour (black hair)

Species: Plant (bean plant)
Trait:    Shape (round bean

    seed)

Lo
w

 v
ar
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lit
y

Hi
gh
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ar
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bi
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y

 
Figure 4.1. Example of a sequence of three learning tasks in the low variability condition (upper row) 
and the high variability condition (lower row). 
 
 Moreover, each of the three crossing types (i.e., homozygous x homozygous, 
homozygous x heterozygous, and heterozygous x heterozygous) was randomly 
selected to avoid a practice bias. Once the learner performed a learning task with a 
certain crossing type four times, remaining tasks with this crossing type were 
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deleted from the database, leading to a total of twelve learning tasks (four learning 
tasks for each of the three crossing types). This assured that every learner practiced 
all the solution-relevant aspects. 
 Test phase. Directly after the training, participants filled out the scales corre-
sponding to the IMI and the MSLQ. One week after the first session, the partici-
pants performed the transfer test. After each test item, mental effort measures were 
taken. 

Results 

An ANOVA on the factual knowledge test filled out by the participants prior to the 
training revealed no difference between conditions (F (1, 90) < 1). Therefore, all 
subsequent analyses are performed using ANOVAs with between-subjects factors 
variability and control. For all statistical tests a significance level of .05 was 
maintained. Table 4.2 provides an overview of the mean scores and standard 
deviations for the dependent variables during training and transfer. 
 
Table 4.2 
Results of the Training Phase and the Test Phase  

 

 

  
Low Variability 

 
High Variability 

 Program  
control 

Shared  
control 

Program  
control 

Shared  
control 

 M SD M SD M SD M SD 

Factual knowledge test 6.05 2.50 5.60 2.57 5.65 2.29 5.79 2.05 

Training         

Time (min.) 17.92 3.48 16.92 4.17 18.15 5.45 16.51 2.82 

Performance (max. = 24) 17.73 5.87 15.64 6.73 15.39 6.75 18.75 5.34 

Mental Effort (max. = 7) 3.35 1.41 3.22 1.41 3.36 1.36 3.44 1.05 

Test         

Time (min.) 36.24 9.42 38.15 13.35 37.93 11.55 39.62 10.74 

Performance (max. = 12 ) 6.43 2.86 5.26 2.46 5.70 3.04 7.04 2.80 

Mental Effort (max. = 7) 4.35 1.14 4.60 1.23 4.30 1.40 4.24 1.07 

Task Involvement 0.14 0.79 -0.27 0.79 -0.10 0.81 0.24 0.68 
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Training Results 

Due to technical difficulties, there were seven system-missing values corresponding 
to seven participants on one of the mental effort values measured across the 12 
learning tasks. Each missing value was replaced by the mean mental effort on the 
remaining 11 tasks of that particular participant during the training phase. 
 An ANOVA revealed no main effects for control (F (1, 90) = .25, MSE = 9.48, 
ns) and variability (F (1, 90) = .091, MSE = 3.51, ns) on training performance, but 
there was a significant interaction effect (F (1, 90) = 4.51, MSE = 173.85, p < .05, 
η2

p = .05). As Figure 4.2 shows, with high variability shared control yields better 
training performance than program control, but with low variability program control 
yields better performance than shared control. Post-hoc multiple comparisons using 
Bonferroni’s adjustment shows no significant differences between the different 
conditions. 
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Figure 4.2. Interaction of variability and control on training performance. 
 
 No effects on training time were found for control (F (1, 90) = 2.24, MSE = 
147410.44, ns), variability (F (1, 90) = .012, MSE = 716.34, ns), and their interac-
tion (F (1, 90) = .14, MSE = 8690.87, ns). Also no effects on mean mental effort 
invested during training were found for control (F (1, 90) = .009, MSE = .016, ns), 
variability (F (1, 90) = .16, MSE = .275, ns), and their interaction (F (1, 90) = .155, 
MSE = .270, ns). 
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Test Results 

Only the data of participants who attended the second session of the experiment (N 
= 86) could be included in the analysis of test results. The number of participants 
that dropped out (n = 8) was evenly distributed over the conditions (X2 = .29, p = 
.96). This resulted in the following group composition: program control with low 
variability (n = 22); program control with high variability (n = 21); shared control 
with low variability (n = 22); and shared control with high variability (n = 21). 
 No main effects were found for control (F (1, 82) = .018, MSE = .143, ns) and 
variability (F (1, 82) = .751, MSE = .5.865, ns) on transfer test performance, but 
there was a significant interaction effect (F (1, 82) = 4.310, MSE = 33.68, p < .05, 
η2

p = .05). As Figure 4.3a shows, with high variability shared control yields better 
transfer test performance than program control, but with low variability this pattern 
is reversed. Post-hoc multiple comparisons were conducted using Bonferroni’s 
adjustment. These comparisons revealed that participants in the shared control with 
high variability condition outperformed participants in the shared control with low 
variability condition (F (1, 82) = 4.33, p < .05). Thus, as hypothesized, shared 
control yields highest transfer test results provided that high variability over surface 
features is ensured. The other comparisons revealed no differences. 
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Figure 4.3. Graphical representation of the interaction of variability and control on transfer test 
performance (a) and task involvement (b). 
 
 No main effects were found for control (F (1, 82) = .829, MSE = .047, ns) and 
variability (F (1, 82) = .690, MSE = .405, ns) on task involvement, but again an 
interaction effect occurred (F (1, 82) = 5.043, MSE = 2.992, p < .05, η2

p = .06). As 
Figure 4.3b shows, with high variability shared control yields higher task involve-

Figure 4.3a Figure 4.3b 
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ment than program control, whereas with low variability this pattern is reversed. 
Post-hoc multiple comparisons were conducted using Bonferroni’s adjustment. 
These comparisons revealed that participants in the shared control with high 
variability condition were more involved in the tasks than participants in the shared 
control with low variability condition (F (1, 82) = 4.719, p < .05). The other 
comparisons revealed no differences. 
 Analyses revealed no significant main effects for control (F (1, 82) = .538, MSE 
= 249827.26, ns), variability (F (1, 82) = .418, MSE = 194348.13, ns), and their 
interaction (F (1, 82) = .02, MSE = 918.80, ns) on the time spent on the transfer test. 
Also no effects on mean mental effort invested during the transfer tests were found 
for control (F (1, 82) = .003, MSE = .006, ns), variability (F (1, 82) = .056, MSE = 
.120, ns), and their interaction (F (1, 82) = .717, MSE = 1.524, ns). 

Motivation questionnaire 

Table 4.3 provides an overview of the mean scores and standard deviations for the 
scales of the motivation questionnaire. 
 
Table 4.3 
Results of the Motivation Questionnaire 

  
A main effect of variability on participants’ reported self-efficacy was found, F (1, 
90) = 4.294, MSE = 5.675, p < .05, η2

p = .05). Participants in the program control 
conditions reported higher self-efficacy (M = 4.98, SD = 1.11) than participants in 
the shared control conditions (M = 4.49, SD = 1.17). No effects were found on any 
of the other scales. 

  
Low Variability 

 
High Variability 

 Program  
control 

Shared  
control 

Program  
control 

Shared  
control 

 M SD M SD M SD M SD 

Perceived ability 4.03 1.03 4.27 1.18 4.32 1.25 4.12 1.10 

Effort 4.58 1.04 4.85 1.26 4.48 1.19 4.46 1.01 

Interest 3.85 1.24 3.71 1.49 4.01 1.56 1.48 1.31 

Use  4.25 1.26 3.80 1.27 4.07 1.57 3.58 1.32 

Intrinsic Motivation 4.43 .73 4.59 1.02 4.56 .96 4.37 .86 

Control Beliefs 5.60 1.10 4.85 1.47 5.38 1.18 5.15 1.04 

Self-Efficacy  5.12 1.07 4.5 1.34 4.84 1.15 4.48 1.08 
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Discussion 

This study investigated whether shared control over the selection of learning tasks, 
in which a computer program first makes a pre-selection of tasks and the learner 
makes the final selection, might be optimized by ensuring variability of the surface 
features of the learning tasks (i.e., species and traits in inheritance tasks). Learners 
who made a selection from learning tasks with surface features different from the 
previous task were expected to reach higher transfer test performance, and be more 
involved in learning than learners who made a selection from learning tasks with 
surface features very similar to the previous task. We found support for this hy-
pothesis. The observed interactions show that the shared control groups were 
influenced by the low/high variability provided whereas the program control groups 
did not. In addition, participants in the group with shared control and high variabil-
ity of surface features achieved higher transfer test performance, and were more 
involved in learning than participants in the group with shared control and low 
variability of surface features. 
 These findings are in line with the explanation for the effect of control and 
variability on transfer suggested by Gay (1986). According to this author, learner 
control is more efficient under conditions in which learners have a well established 
conceptual understanding of the content domain. In our study, participants in the 
shared control with high variability condition – in which schema construction is 
believed to be promoted by the successive presentation of varied instances – may 
have quickly achieved superior understanding of the genetic content. Therefore, 
they might have profited more from shared control than participants in the shared 
control with low variability condition, in which schema construction was not 
facilitated because the tasks to choose from were very similar to the previous tasks. 
 Moreover, despite the fact that in the shared control conditions the available 
choice concerned task aspects irrelevant for goal attainment (i.e., surface features 
which were more perceptible or more salient for the learners than the structural 
features), participants profited more from the given control when the surface 
features of the tasks to choose from were different from the surface features of the 
previous task. If participants have control but can only choose from tasks similar to 
the previous task, they may not see the meaning of making a selection, possibly 
leading to frustration (Burger & Cooper, 1979), less involvement in learning, and 
lower performance. Accordingly, when choices are provided, the degree to which 
individuals perceive they are in control seems to be related to the level of attrac-
tiveness of the choices available (Kehoe, 1979). Choosing from tasks that are 
different from the previous one appears to be more attractive than choosing from 
tasks that are very similar to the previous one. This may have made participants in 
the shared control with high variability condition be more receptive to the instruc-
tional material than participants in the shared control with low variability condition, 
who probably perceived less control. This supports the idea that perception of 
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control is a condition sine qua non. Without the perception of control, which may 
be optimized by task variability, learners’ involvement in learning is low and shared 
control does not work. 
 Nevertheless, participants in the shared control with high variability condition 
performed not higher than participants in the two program-controlled conditions on 
any of the variables. A plausible reason could be that the choices provided to the 
learners, including learners in the high variability conditions, were rather restricted 
(i.e., including a different species and trait than the prior task, but still limited to one 
species and trait) and learners may have seen the provided choices as not suffi-
ciently different from each other. Consequently, although our results on the transfer 
test and on involvement supported our hypothesis, conclusions based on these 
interaction effects should be drawn with caution. Future studies should include 
direct measures of perceived control to uncover whether learners’ perception of 
control in a shared control with high variability condition is indeed higher than in 
other conditions. 
 With regard to the learners’ performance during training, the found interaction 
of control and variability is not surprising and further supports the added value of 
shared control, provided that the perception of control is enhanced by high variabil-
ity of the surface features of the learning tasks. Whereas the value of shared control 
was enhanced when the tasks to choose from were different from the previous task 
(high variability), program control could have been influenced by such a higher 
variability. For the program control groups, repeatedly presenting a task with 
similar surface features might have made surface features more salient to learners 
than repeatedly presenting a task with new surface features, which could have 
benefited performance. 
 Participants in the program control conditions reported higher self-efficacy than 
participants in the shared control conditions. In the MLSQ, the definition of self-
efficacy involves the expectancy for success and judgments of one’s ability to 
accomplish a task and confidence to perform a task (Garcia & Pintrich, 1994). The 
results of this study seem to indicate that when the sequence of tasks is program-
controlled, learners have more confidence that they will be able to perform the task. 
Selecting own tasks may thus cause learners to become more insecure. As in other 
studies on learner control (e.g., Williams, 1996), no differences on the other scales 
of the motivation questionnaire were found. This could be a typical disadvantage of 
short laboratory experiments. Future studies may investigate the effects of shared 
control in more authentic learning environments and may also study the effects of 
giving learners a higher amount of control than in the current study, where it was 
limited to choosing between three tasks. A higher level of control could be 
achieved, for instance, by allowing learners to choose between more learning tasks 
that differ in their - similar and dissimilar - surface features and possibly also their 
strufctural features. 
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 Another possible explanation for the lack of effects on measures of motivation 
is that after twelve learning tasks participants were used to the mode of task 
selection, which might have reduced possible differences at the end of the training. 
For instance, measuring motivation after three or four tasks, instead of after the 
whole training, could have been a more sensitive measure of the effects of variabil-
ity of surface features of tasks on motivation. Future studies may also investigate 
learners’ perception of control over task selection. The ‘perceived autonomy’ scale 
included in the IMI, which was included in this study, turned out to be not very 
valuable because it was highly unreliable (α = .28) and only partially measured the 
perception of control as applied in this study. 
 Regarding the results on the mean mental effort, no significant effects were 
found but the observed pattern is in accordance with cognitive load theory (CLT; 
Sweller, 1988; Sweller, van Merriënboer, & Paas, 1998; van Merriënboer & 
Sweller, 2005). According to CLT, mental effort during training would be higher 
when variability is high, as a result of the germane load associated with the con-
struction of more general rules, which in turn leads to lower mental effort during 
transfer test performance. In this study, overall cognitive load was reduced by using 
completion tasks, by limiting the choice available, and by randomizing variability 
on structural features (the mean mental effort invested during training lies below the 
neutral score of 4 in all conditions). Nevertheless, in the low variability conditions 
the mean mental effort during training was slightly lower than in the high variability 
conditions, and the mean mental effort invested on transfer test performance 
showed the reverse pattern. Moreover, shared control with low and high variability 
led, in order, to the lowest and the highest mean mental effort during training, and, 
again in order, to the highest and the lowest mean mental effort during transfer test 
performance. Future studies should further investigate the relationship between 
variability over surface features and mean mental effort. Furthermore, more 
sensitive cognitive load measures that make a distinction between germane and 
overall load may reveal more powerful results, especially when the amount of 
learning tasks to choose from is increased. 
 In this study it has been assumed that learners in the shared control with high 
variability condition would recognize the differences between learning tasks and 
that this would increase their perceived control. However, none of these two 
variables was directly measured. In general, future studies may also investigate the 
effects of providing learners with shared control over the selection of more complex 
tasks or the selection of tasks in other learning domains. Another route for future 
research pertains to the effects of further increasing the variability of surface 
features of learning tasks. Increasing variability, for instance, by including other 
groups of humans, animals, and plants, and by broadening the number of inherited 
traits, such as diseases or physical variations (e.g., being right or left handed in 
humans, ears that stand up or hang down in animals, or position of the flower in 
some plants), may have revealed more powerful effects of variability as a result of 
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stronger schema formation. In addition, in our study variability on the structural 
features was randomized across all conditions. Whereas in the low variability 
conditions the variability was limited to one species and one trait, in the high 
variability conditions the surface features varied from each precedent task. Varying 
both structural and surface features could have masked any positive effect of the 
variability in surface features. Future studies should study the effects of providing 
learners with variability over the surface features when variability on structural 
features is predetermined. 
 Besides, the maximum amount of learner control that may be provided, espe-
cially when both surface and structural features vary highly, requires further 
investigation since they may easily overwhelm learners when provided together. 
Besides, completion tasks integrate the presentation of new information (in the 
given part of the solution) and the practice of problem-solving steps that have 
already been introduced (in the to-be-completed part of the solution). In our study, 
variability only referred to the presentation of surface features in the given part of 
the solution. Futures studies may investigate next to the effects of presentation 
variability, the effects of “practice variability” (i.e., practicing problem-solving 
steps that have not been practiced in the previous task) on transfer test performance 
and cognitive load. A final observation concerns the fact that 93,75 % of the 
participants in our study was female. Future research is needed to determine 
whether the results can also be found in other domains and with another population 
of learners (e.g., with mostly males or with a similar proportion of males and 
females). 
 To conclude, this study shows that when learners are provided with shared 
control, transfer test performance and involvement in learning are enhanced if 
learners can choose from learning tasks with surface features that are distinctly 
different from surface features of previously performed tasks. In this respect, this 
study complements the attempts of other authors to determine guidelines for 
implementing learner control (Hannafin, 1984; Scheiter & Gerjets, 2007). Our 
findings are particularly important for instructional designers because more and 
more educational curricula use forms of on-demand education, in which learners 
can plan their own learning trajectory by choosing from authentic, real-life tasks. 
Our study shows that those curricula should ensure that available learning tasks are 
sufficiently different from each other and, most importantly, teachers should 
provide learners with selection options that ensure an optimal selection. 
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Learner Controlled Selection of Tasks with 
Different Surface and Structural Features: 

Effects on Transfer and Efficiency5 
Learner Controlled Task Selection 

Chapter 5 

Surface task features are more salient than structural task features and thus easier to recognize for 
novice learners. The more salient the task features the better learners can choose personally relevant 
and varied tasks, which enhances transfer of learning. A 2 x 2 factorial experiment with 72 participants 
studied the effects of control over tasks with different surface features (learner control, program 
control) and different structural features (learner control, program control). Learner control over the 
selection of tasks with salient surface features enables learners to select personally relevant and varied 
tasks. This is believed to yield higher effectiveness (i.e., higher near and far transfer test performance) 
as well as higher efficiency (i.e., higher transfer test performance combined with lower associated 
mental effort). Learner control over the selection of tasks with non-salient structural features does not 
enable learners to select personally relevant and varied tasks and is therefore not expected to yield 
beneficial effects on learning. The results confirm the expected positive effects of learner control over 
the selection of tasks with salient surface features for efficiency on the far transfer test but not for 
effectiveness. Theoretical and practical implications are discussed. 

                                                        
5 This chapter is based on: Corbalan, G., Kester, L., & van Merriënboer, J.J.G. (2007). Learner controlled 
selection of tasks with different surface and structural features: Effects on transfer and efficiency. Manuscript 
submitted for publication. 
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Learner controlled instruction gives learners the opportunity to make selections 
according to their current knowledge, interests, and preferences (Merrill, 1980; van 
Merriënboer, Schuurman, de Croock, & Paas, 2002). This is believed to positively 
influence learning and motivation (Flowerday & Schraw, 2000; Schnackenberg & 
Sullivan, 2000). Research shows that learner control is beneficial for learning even 
when choices are trivial, such as choosing the context in which the task is presented 
or the density of the text in which it is written (Cordova & Lepper, 1996; Kinzie, 
1990; Lepper, 1985). So, merely the perception of control might be enough for 
learner control to work (Savage, Perlmunter, & Monty, 1979; Skinner, 1996). 
However, studies report both beneficial and detrimental effects of learner control on 
learning (e.g., Katz & Assor, 2007; Kopcha & Sullivan, in press; Williams, 1996). 
It seems that learner control functions differently depending on what (e.g., pace, 
display, task features) is being controlled by whom (e.g., novice or experienced 
learners), and only works if learners recognize the control that is given to them 
(Morrison, Ross, O’Dell, & Schultz, 1988; Scheiter & Gerjets, 2007). 
 The aim of this study is to investigate under which conditions the effects of 
learner control over the selection of learning tasks are optimized. More specifically, 
it investigates whether learner control is more effective and efficient when learners 
select tasks on the basis of their surface features or on the basis of their structural 
features. In this introduction, first the potential effects of providing learners with 
control over the selection of tasks with different surface and structural features are 
described, and second the potential overloading effects of an excessive amount of 
control over task selection are discussed. 

Learner Controlled Selection of Tasks with Different Surface Features 

Surface task features refer to task aspects that are not relevant to reach a solution 
(e.g., species in inheritance tasks because Mendel’s laws are the same for animals, 
plants, and humans). They generally are salient even for domain novices (Chi, 
Feltovich, & Glaser, 1981; Cummins, 1992; Gick & Holyoak, 1987; Quilici & 
Mayer, 1996, 2002). For example, in inheritance tasks, novice learners will distin-
guish tasks dealing with a cat’s eye colour from tasks dealing with a pea plant’s 
flower shape (i.e., surface task features). The saliency of the surface task features 
makes it easier to perceive control over the selection of tasks that differ from each 
other on these features (Corbalan, Kester, & van Merriënboer, in press-b). In other 
words, learners who are aware of the different surface features of the tasks they may 
select to perform, will probably be more aware of their motives for choosing 
between them. 
 Since learner control over the selection of tasks with different surface features 
is likely to be perceived by the learners, they may use it to make instruction more 
personally relevant for them (Katz & Assor, 2007). The chosen tasks facilitate them 
to connect new information to their prior knowledge without affecting the way the 
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task is solved (Hanaffin, 1984; Kinzie, 1990; Ross & Morrison, 1989; Wouters, 
Tabbers, & Paas, 2007). This promotes elaboration, a process in which existing 
knowledge is used as an assimilative context (or ‘schema’) to integrate new infor-
mation in (van Merriënboer, Kirschner, & Kester, 2003). In a study carried out by 
Ross, Morrison, and O’Dell (1989), students in a learner control group who could 
choose between four task themes (i.e., sports, medical, educational, abstract) to 
learn statistics performed better than students in a control group who were given 
standard themes. In another study carried out by Cordova and Lepper (1996), 
participants who could generate the names of their spacecraft and their opponent in 
a computer game designed to teach arithmetical and problem solving skills outper-
formed participants who received predetermined names. The authors argued that 
this control over surface features probably increased the personal relevance of the 
task. 
 In addition, learners who recognize the different surface features of the tasks 
they perform may use these features to select a varied set of tasks. Variations in 
surface features of tasks that share the same solution steps help learners see beneath 
surface features and recognize the solution steps of a task, enhancing schema 
induction and thus fostering transfer of learning (Chen & Mo, 2004; Shute & 
Gawlick, 1995; Quilici & Mayer, 1996). So, learner controlled selection of tasks 
with different surface features facilitates learning if learners vary their choice of 
surface task features (Morrison, Ross, & Baldwin, 1992; Ross & Morrison, 1989; 
Tennyson & Buttery, 1980). A study in which learners could choose between 
pedagogical agents with five different ethnicities showed that students who chose to 
learn with agents of different ethnicities had higher transfer test scores than those 
who chose to learn with agents of the same ethnicity (Moreno & Flowerday, 2006). 
 To sum up, learner controlled selection of tasks that differ in surface features 
fosters learning because it enables learners to select a varied set of personally 
relevant tasks which enhances, in order, induction and elaboration and, eventually, 
transfer of learning. In this study, we characterize surface features as the contexts 
(i.e., different species and traits) in which a series of inheritance tasks is presented. 

Learner Controlled Selection of Tasks with Different Structural Features 

Structural task features refer to task aspects that are directly relevant to reach a 
solution (e.g., a solution step such as ‘determine the genotype of a parent’ in an 
inheritance task) (Chen & Mo, 2004; Cummins, 1992; Gick & Holyoak, 1987; 
Holyoak & Koh, 1987; Novick, 1988; Quilici & Mayer, 1996, 2002; Ross, 1989). In 
contrast to surface task features, structural task features are often less salient, or not 
salient at all, for novice learners. In inheritance tasks, for example, it is difficult for 
novice learners to distinguish tasks in which they are required to ‘determine the 
genotype of a parent’ from tasks in which they are required to ‘determine the 
phenotype of a parent’. Consequently, it is difficult for novice learners to perceive 
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the control they are given over the selection of tasks with different structural 
features. Learners who do not recognize the non-salient structural task features, will 
not be aware of any valid motives for choosing between tasks that differ in these 
features and are thus unable to distinguish between tasks that are necessary for 
learning and tasks that could just as well be omitted (Ross & Morrison, 1989). This 
could negatively influence the learning process (Chung & Reigeluth, 1992; Tenny-
son & Buttery, 1980; Williams, 1996) and even enlarge individual differences 
between low and high ability learners (Kopcha & Sullivan, in press; Merrill, 2002; 
Snow, 1980). 
 Since learner control over the selection of tasks with different structural features 
will not be perceived as such by the learners, it is practically impossible for them to 
select a varied set of personally relevant tasks. Consequently, they are not likely to 
profit from the effects of elaboration and induction on transfer of learning. More-
over, they are also not likely to profit from variation in practicing tasks with 
different structural features which is also considered to have positive effects on 
learning (e.g., Holladay & Quiñones, 2003). When - in a sequence of practiced 
tasks - the structural task features vary, repetition of specific structural task features 
occurs at longer intervals and learners have to retrieve the appropriate schema each 
time a feature (e.g., a specific solution step) needs to be performed. This variation 
in the practice of structural task features may result in reconstructive activities that 
will eventually yield more accessible representations in memory, with beneficial 
effects on learning (Lee & Magill, 1985; Reder & Klatzky, 1994; van Merriënboer, 
Kester, & Paas, 2006). 
 To sum up, learner controlled selection of tasks with different structural 
features does not foster learning because learners do not recognize the structural 
task features and therefore are not able to select a varied set of personally relevant 
tasks. Consequently, this type of control is not expected to enhance elaboration, 
induction and, eventually, transfer of learning. In this study, we characterize 
structural task features as the procedural solution steps learners must complete to 
solve inheritance tasks. 

Learner Control over Task Selection and Cognitive Overload 

The effectiveness of learner control is influenced by the amount of choice learners 
have. A too high amount of choice may cause cognitive overload (Borsook & 
Higginbotham-Wheat, 1991; Scheiter & Gerjets, 2007; Schwartz, 2004). Even 
expert learners experience difficulties in selecting, sequencing, and pacing huge 
amounts of information (Scheiter & Gerjets, 2007). This problem could be solved 
when an instructional agent (e.g., a teacher or a computer program) and the learner 
share control over the process of task selection. In this two-step process, a computer 
program first selects a subset of learning tasks with desirable task features (e.g., 
surface and structural features) based on task features of previously selected tasks 
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(program control). Second, the learner selects from this subset one task to work on 
(learner control). This avoids the potential pitfall of a too high amount of choice and 
yet grants some learner control (Corbalan et al., 2006, in press-a; Tennyson & 
Buttery, 1980). This study implements shared control to prevent cognitive overload 
by reducing the amount of choice given to learners. 
 The purpose of the present study is to investigate the effects of learner con-
trolled selection of tasks with different surface features (i.e., the context) and 
structural features (i.e., the to-be-completed solution steps) on learning effective-
ness (i.e., transfer test performance) and efficiency (i.e., transfer test performance in 
relation to the mental effort invested to reach this performance). It is hypothesized 
that learners profit from learner controlled selection of tasks that differ in their 
surface features, because the saliency of those task features enables learners to 
select a varied set of personally relevant tasks which fosters learning and transfer. 
In contrast, learners will not profit from learner controlled selection of tasks that 
differ in structural features, because the non-saliency of those features impedes 
learners to select a varied set of personally relevant tasks. Therefore, learners who 
control the selection of tasks that differ in surface features are expected to achieve a 
higher transfer test performance and to show higher efficiency than learners who 
receive tasks which are selected by the program on the basis of the surface features. 
In addition, with regard to structural features we expect no differences between 
learner and program control over the selection of tasks with different structural 
features. 

Method 

Participants 

Seventy-two first year students (61 females and 11 males; mean age = 17.33 years; 
SD = 1.07) in the Health Sciences domain of a Dutch school for secondary voca-
tional education participated in this study. They received €20 (approximately $27) 
for their participation. A 2 x 2 factorial design was used to study the effects of 
control over the selection of learning tasks in the genetics domain that differ in 
surface features (program control vs. learner control) and structural features 
(program control vs. learner control). The students were randomly assigned to one 
of the four experimental groups: in the ‘program surface, program structural’ 
condition (n = 18) the program fully controlled task selection based on both surface 
task features and structural task features; in the ‘program surface, learner structural’ 
condition (n = 17) the program controlled task selection based on surface task 
features and the learners controlled task selection based on structural task features; 
in the ‘learner surface, program structural’ condition (n = 17) the learners controlled 
task selection based on surface task features and the program controlled task 
selection based on structural task features; and in the ‘learner surface, learner 
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structural’ condition (n = 20) the learners fully controlled task selection based on 
both the surface task features and the structural task features. 

Materials 

 Electronic learning environment. The learning environment especially devel-
oped for this study was a web application written in the web scripting language 
PHP. A MySQL database connected to the learning environment contained a basic 
introduction to the domain of genetics, a prior factual knowledge test, all learning 
tasks, a perceived control questionnaire, a transfer test, and mental effort measure-
ments. 
 Basic introduction. The basic introduction included the main concepts of the 
domain of genetics necessary to begin the training (i.e., dominant and recessive 
genes, homozygous and heterozygous gene pairs, genotype and phenotype) and a 
worked-out example containing all the solution steps of a representative inheritance 
task. 
 Prior factual knowledge test. This test contained eight multiple-choice ques-
tions and assessed participants’ prior factual knowledge. The maximum test score 
was eight points. 
 Learning tasks. The learning environment was connected to a database which 
contained 54 completion tasks in the genetics domain, more specifically inheritance 
tasks (e.g., inheritance of the hair, the fur, or the leaf colour). Completion tasks 
present a given state, a goal state, and a partial solution that learners must complete 
by adding the missing solution steps (van Merriënboer, 1997; van Merriënboer & 
Kirschner, 2007). The learning tasks varied in: (a) the contextual features species 
and traits, which were the surface task features, and (b) the to-be-completed 
solution steps, which were the structural task features. Table 5.1 shows the surface 
features and structural features of the learning tasks. The first and second columns 
contain species (e.g., animal, plant) with species types (e.g., cat, pea) and traits 
(e.g., colour, shape) with trait parts (e.g., fur, tail). In addition, the third column 
describes the seven solution steps that are necessary to reach the solution for an 
inheritance problem. Steps five, six and seven appeared two times in each task. 
Each completion task contained three to-be-completed solution steps and four steps 
that were already completed. For instance, if steps one, three, and four had to be 
completed by the learner, the right solution of the four remaining solution steps, that 
is, steps two, five, six, and seven was presented on the computer screen. 
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Table 5.1 
Composition of the Database with Learning Tasks 

 
 Each participant completed twelve learning tasks. Each correctly completed 
step scored one point, except for steps five, six and seven, which appeared twice in 
each task. For these steps each correct answer scored a half point, leading to a total 
of one point per step. This led to a maximum score of 3 points per learning task and 
of 36 points for the whole training phase. The reliability of the scores for the 
learning tasks was .92 (Cronbach’s alpha). 
 Task selection. The first (subset of) task(s) was/were randomly selected by the 
program. Subsequently, each (set of) learning task(s) presented to the learners 
was/were dynamically selected from the learning-tasks database and differed on the 
surface and the structural task features, selected either by the learner or by the 
program. Tasks varied depending on how dissimilar surface task features and 
structural task features were as compared to the previous task. Regarding the 
surface task features, two levels of dissimilarity were distinguished: (1) low 
dissimilarity, which contained tasks with either (a) same species, species type, trait, 
and trait part, or (b) same species and trait but different species type and trait part, 
and (2) high dissimilarity, which contained tasks with either (a) different species or 
trait, and different species type and trait part, or (b) different species and trait and 
different species type and trait part. Regarding the structural task features, also two 
levels of dissimilarity were distinguished: (1) low dissimilarity, which contained 
tasks with either (a) zero, or (b) one to-be-completed solution steps different from 
the previous task, and (2) high dissimilarity, which contained tasks with (a) two, or 

Surface Task Features Structural Task Features 

Species (species type) Traits (part traits) Solution Steps To-be-Completed 

 
Humans 

(European/African/Asian) 
 

 
Colour (hair/eyes) 
Shape (hair/nose) 
Length (nose/lips) 

 
Animals 

(dog/cat/guinea pig) 

 
Colour (fur/eyes) 
Shape (ear/fur) 
Length (tail/fur) 

 

 
Plants 

(pea/corn/bean) 

 
Colour (flower/leaf)

Shape (fruit/pod) 
Length (axis/fruit) 

 

Determine the genotype of one parent based on  
information of the individual given 
 
Determine the genotype of one parent based 
on the given percentage in his/her generation 
 
Determine the genotype of one of the 
offspring of the first generation 
 
Determine the genotype based on the information 
of the prior partner and related offspring 
 
Draw a Punnett’s square by combining 
the genotype of the parents 
 
Determine the genotype of the offspring and 
calculate their percentage 
 
Determine the phenotype of the offspring and 
calculate their percentage 
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(b) three to-be-completed solution steps different from the previous task. When the 
surface task features were selected by the program, one task with high dissimilarity 
was presented. When the surface task features were selected by the learner, four 
tasks including each combination of low and high dissimilarity levels were pre-
sented, from which the learner selected one. When the structural task features were 
selected by the program, one task with high dissimilarity was presented. When the 
structural task features were selected by the learner, four tasks including each 
combination of the low and high dissimilarity levels were presented, from which the 
participant selected one. 
 Transfer test. The transfer test consisted of eight transfer tasks, divided in four 
near transfer tasks and four far transfer tasks. The near transfer tasks were structur-
ally similar to the learning tasks but contained different surface features (i.e., other 
subjects within the species, for example, fruit flies, and other traits, for example, 
position of the wings) and determined whether participants were able to apply the 
learned procedures in the same way as in the training tasks. The far transfer tasks 
required participants to flexibly use the learned solution procedures during training 
to structurally different tasks. More specifically, the following far transfer tasks 
were used: (a) a dihybrid crossing task which required two different traits to be 
treated separately; (b) a family tree task in which participants had to infer the 
genotype of several of the individuals based on the information given in the tree; (c) 
a task in which participants had to infer the genotype of an individual from informa-
tion of the father; and (d) a task with co-dominant genes, that is, genes that are 
equally strong and both expressed. The maximum score on the near transfer test and 
on the far transfer test was four points each. The reliability of the tests were, in 
order, .88 and .74 (Cronbach’s alpha) for the near and far transfer test. 
 Mental effort. Mental effort was used as an index for cognitive load, which 
refers to the amount of cognitive capacity that is allocated to problem solving. 
Mental effort was measured after each learning task and after each transfer test task 
with a one-item 7-point rating scale (Paas, 1992; Paas, Tuovinen, Tabbers, & van 
Gerven, 2003). Reliability of the mental effort measures reported during the training 
was .98 and during the transfer test .91 and .86 (Cronbach’s alpha) for the near and 
far transfer test, respectively. 
 Efficiency. Participants’ test performance on near and far transfer and mental 
effort invested during the performance of those tests were combined using the 
procedure of Paas and van Merriënboer (1993) to calculate efficiency (E) on near 
and far transfer. Performance and mental effort scores are first standardized, and 
then the z-scores are entered into the formula: 
 

2
Performance MentalEffortZ Z

E
−

=  
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 In a two-dimensional space defined by the standardized test performance and 
mental effort scores, efficiency is computed for each condition as the perpendicular 
distance between a point representing the condition (i.e., the z-score for transfer 
Performance and the z-score for Mental Effort) and the diagonal, E = 0, where 
Performance and Mental Effort are proportionally related to each other. When 
performance is higher than might be expected based on perceived mental effort, the 
instructional condition is more efficient. Conversely, when performance is lower 
than might be expected based on perceived mental effort, the instructional condition 
is less efficient. 
 Perceived control. After the 12 learning tasks, participants completed 4 items 
with a 7-point scale designed to rate self-reports of perceived control on task 
selection. The four items were: “I was able to choose the inheritance task I wanted 
to perform”, “I could decide by myself what I wanted to learn about solving 
inheritance tasks”, “I could decide by myself how I wanted to learn about solving 
inheritance tasks”, and “I could decide by myself which information about the 
inheritance tasks I wanted to consult”. Reliability of the perceived control ques-
tionnaire was .89 (Cronbach’s alpha). 
 Time logging. The learning environment kept track of the time (in seconds) 
participants needed to complete the training tasks and the transfer test tasks. 

Procedure 

In the pre-training phase, participants received the basic introduction and com-
pleted the prior factual knowledge test. Subsequently, participants started the 
training phase. Participants were not informed on how the tasks were selected or 
pre-selected (for the program control and learner control conditions, respectively). 
In each learning task, participants could press a continue button after a to-be-
completed solution step was solved. The remaining solutions steps until the next to-
be-completed solution step appeared. After each training task, mental effort was 
measured by asking the learner to fill out the 7-point rating scale. Participants could 
access the basic information from the introduction at all times by pressing a button 
labelled ‘basic information’ always visible on the left-hand side of the screen. It 
was emphasized that they were not allowed to skip any part of the answer of the 
tasks and cognitive load questions and that in such a case the program would 
prompt them to answer the questions before they could continue. After the training 
phase was completed, participants started the test phase, in which they completed 
the perceived control questionnaire and the transfer test. After each transfer task, 
mental effort was measured with the 7-point rating scale. During the test phase, the 
‘basic information’ button disappeared from the screen. Participants were allowed 
to work at their own pace. The times spent during the training and transfer phase 
were logged. 
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Results 

An ANOVA on the prior factual knowledge test revealed no differences between 
conditions (F(3, 68) < 1). Therefore, all subsequent analyses are performed using 
ANOVAs with the between-subjects factors control over task selection based on 
surface task features (program control, learner control) and control over task 
selection based on structural task features (program control, learner control). For all 
statistical tests a significance level of .05 was maintained. Table 5.2 provides an 
overview of the mean scores and standard deviations for the prior factual knowl-
edge test and the dependent variables during the training phase and transfer phase. 
 
Table 5.2 
Overview of Results from the Prior Factual Knowledge Test, the Training Phase, and the Test Phase 

 Program surface Learner surface 
 Program 

structural 
(n = 18) 

Learner  
structural 
(n = 17) 

Program  
structural 
(n = 17) 

Learner 
structural 
(n = 20)a 

 M SD M SD M SD M  SD 

Prior Factual knowledge test 4.00 1.78 4.41 1.12 4.06 1.14 4.65 1.63 

Training Phase         
Time (sec.) 3135 945.13 3006 816.18 2879 651.70 2666 783.21 

Performance (max. = 36) 20.42 8.63 23.09 8.45 16.76 9.25 19.08 9.11 

Mental Effort (max. = 7) 4.51 1.68 4.97 1.03 4.76 1.68 4.32 1.47 

Transfer Phase         
Time (sec.) 2564 744.28 2170 832.24 2341 1025.25 2290 1024.33 

Performance Near Transfer (max. = 4 ) 1.67 1.44 1.62 1.43 1.71 1.33 1.72 1.14 

Performance Far Transfer (max. = 4 ) 1.39 .94 1.16 .76 1.46 1.22 1.48 1.13 

Mental Effort Near Transfer (max. = 7) 5.01 1.76 5.50 1.13 4.35 1.58 4.35 1.39 

Mental Effort Far Transfer (max. = 7) 5.53 1.29 5.85 .72 4.68 1.41 4.59 1.53 

Efficiency         
On Near Transfer -.11 1.54 -.36 1.19 .22 1.31 .23 1.05 
On Far Transfer -.19 1.20 -.51 .71 .30 1.34 .37 1.31 

an = 19 in the Transfer Phase 

Transfer Phase 

One participant in the ‘learner surface, learner structural’ condition had to leave the 
session earlier and did not perform the transfer test. 
 Test time. No effects were found on the time spent during training for control 
over task selection based on surface task features, F(1, 67) = .06, MSE = 47363.26, 
ns; control over task selection based on structural task features, F(1, 67) = 1.06, 
MSE = 890229.32, ns, and their interaction, F(1, 67) = .62, MSE = 526428.38, ns. 
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 Test performance. Analyses on the near transfer test revealed no statistically 
significant main effects for control over task selection based on surface task 
features, F(1, 67) = .05, MSE = .09, ns; control over task selection based on struc-
tural task features, F(1, 67) = .003, MSE = .006, ns, and the interaction between 
these factors, F(1, 67) = .009, MSE = .02, ns. Similarly, on the far transfer test no 
effects were found for control over task selection based on surface task features, 
F(1, 67) = .67, MSE = .71, ns; control over task selection based on structural task 
features, F(1, 67) = .17, MSE = .18, ns, and their interaction, F(1, 67) = .27, MSE = 
.29, ns. 
 Mental effort. A significant main effect of control over task selection based on 
surface task features was found on mental effort invested during the near transfer 
test, F(1, 67) = 6.65, MSE = 14.71, p < .025, η2

p = .09. Participants in the ‘learner 
surface’ conditions experienced lower mental effort during the near transfer test (M 
= 4.35, SD = 1.46) than participants in the ‘program surface’ conditions (M = 5.25, 
SD = 1.49). No effects on mental effort during the near transfer test were found for 
control over task selection based on structural task features, and the interaction 
between control based on surface features and control based on structural features. 
For the mental effort during the far transfer test, again a significant main effect of 
control over task selection based on surface features was found, F(1, 67) = 12.01, 
MSE = 19.75, p < .010, η2

p = .15. Participants in the ‘learner surface’ conditions 
experienced lower mental effort during the far transfer test (M = 4.63, SD = 1.45) 
than participants in the ‘program surface’ conditions (M = 5.69, SD = 1.05). No 
effects on mental effort during the far transfer test were found for control over task 
selection based on structural task features, or the interaction between control based 
on surface features and control based on structural features. 
 Efficiency. No main effects on the efficiency of the near transfer test were found 
for control over task selection based on surface task features, F(1, 67) = 2.25, MSE 
= 3.72, ns; control over task selection based on structural task features, F(1, 67) = 
.16, MSE = .26, ns; and the interaction between those factors, F(1, 67) = .18, MSE = 
.29, ns. With regard to the efficiency of the far transfer test, a significant main effect 
of control over task selection based on surface task features was found, F(1, 67) = 
6.02, MSE = 8.32, p < .025, η2

p = .08. Efficiency was higher in the ‘learner surface’ 
conditions (M = .34, SD = 1.31) than in the ‘program surface’ conditions (M = -.35, 
SD = .99). No effects on efficiency of the far transfer test were found for control 
over task selection based on structural task features, and the interaction of control 
based on surface features and control based on structural features. 

Training Phase 

Due to technical difficulties, 8 participants had a missing mental effort value on one 
of their training tasks. The missing value was replaced by the participant’s own 
mean mental effort computed over the whole training phase. 
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 Training time. No effects on training time were found for control over task 
selection based on surface task features, F(1, 68) = 2.45, MSE = 1598754.36, ns; 
control over task selection based on structural task features, F(1, 68) = .81, MSE = 
524607.13, ns; and their interaction, F(1, 68) = .05, MSE = 651385.83, ns. 
 Training performance. An ANOVA revealed no main effects on training 
performance for control over task selection based on surface task features, F(1, 68) 
= 3.34, MSE = 263.24, ns; control over task selection based on structural task 
features, F(1, 68) = 1.41, MSE = 111.20, ns; and their interaction, F(1, 68) = .01, 
MSE = .59, ns. 
 Mental effort. Analyses revealed no significant main effects on the mental effort 
invested during training for control over task selection based on surface task 
features, F(1, 68) = .31, MSE = .70, ns; control over task selection based on 
structural task features, F(1, 68) = .001, MSE = .002, ns; and the interaction be-
tween those factors, F(1, 68) = 1.62, MSE = 3.63, ns. 
 Learner’s selection of tasks with different surface and structural features. The 
level of dissimilarity of the tasks selected by participants in the ‘learner surface, 
program structural’ condition (n = 17) was calculated and compared to the level of 
dissimilarity of the tasks selected by participants in the ‘program surface, learner 
structural’ condition (n = 17). Each selected task received zero, one, two, or three 
points corresponding to the low and high levels of dissimilarity for both surface and 
structural task features as described above. For example, a task with a different 
species and trait and a different species type and trait part would score 3 points 
because it corresponds to the high dissimilarity level of the surface task features. 
Similarly, a task containing one different step would score one point because it 
corresponds to the low dissimilarity level of structural task features. This led to a 
dissimilarity level of minimally zero points and maximally 33 points (maximally 
three points times 11 tasks). A t-test showed a significant difference between the 
level of dissimilarity of the tasks selected by the learners on the basis of their 
surface features and the tasks selected on the basis of their structural features, 
t(29.44) = 4.94, p < .001, d = 1.68 (which indicates a large effect size). The level of 
dissimilarity of the tasks learners selected on the basis of their surface task features 
(M = 19.78, SD = 4.46) was much higher than the level of dissimilarity of the tasks 
learners selected on the basis of their structural task features (M = 10.88, SD = 
6.03). 

Perceived Control Questionnaire 

Table 5.3 provides an overview of the mean scores and standard deviations of the 
perceived control questionnaire. 
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Table 5.3 
Overview of Results from the Perceived Control Questionnaire 

 
 A one-way ANOVA revealed an overall effect of condition on perceived 
control (F(3, 68) = 26.88, MSE = 39.39, p < .001). Post-hoc tests, using Tukey’s 
HSD, indicated that only the ‘program surface, program structural’ condition 
differed from the other three conditions on perceived control (all p‘s < .001). As 
indicated in Table 5.3, participants in the fully program-controlled condition 
reported significantly lower perceived control than participants in the other condi-
tions. 

Discussion 

The goal of this study was to investigate the effects of learner controlled selection 
of learning tasks that differ in surface task features and/or structural task features on 
learning effectiveness and efficiency. It was expected that learner controlled 
selection of tasks with different surface features would enhance learning as com-
pared to program controlled task selection. This hypothesis was supported for 
efficiency on the far transfer test. With regard to effectiveness, transfer test per-
formance was not higher for students who selected tasks with different surface 
features, although their mental effort scores were in the expected direction. That is, 
it took them significantly less effort to perform the near and far transfer test. Thus, 
it is better to give learners the freedom to select tasks with their preferred surface 
task features. Learners who are given this type of control probably construct general 
cognitive schemas which enable them to flexibly apply the learned solution proce-
dure to solve unfamiliar inheritance tasks. Furthermore it was expected that learner 
controlled selection of tasks with different structural features would not enhance 
learning. Indeed, no differences were found for invested mental effort, transfer test 
performance, and efficiency between learners who could select tasks with different 
structural features and learners who could not. 
 Although participants in the ‘learner surface’ conditions invested less mental 
effort to reach a similar performance on the near transfer test than participants in the 
‘program surface’ conditions, no differences between these groups were found for 
efficiency on the near transfer test. A possible explanation for the higher efficiency 

 Program surface Learner surface 

 Program  
structural 
(n = 18) 

Learner  
structural 
(n = 17) 

Program  
structural 
(n = 17) 

Learner  
structural 
(n = 20) 

 M SD M SD M SD M SD 

Perceived control 2.97 1.50 5.94 .94 5.91 1.10 5.94 1.15 
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on the far transfer test but no higher efficiency on the near transfer test concerns the 
general information available in the schemas constructed. This general information 
is particularly useful to deal with tasks that require learners to flexibly apply the 
learned solution procedure, but is of less use for familiar tasks that require learners 
to apply the learned solution procedure similarly to the practiced tasks (Kester, 
Kirschner, & van Merriënboer, 2006; Sweller, van Merriënboer, & Paas, 1998). 
Additionally, participants in all conditions were required to direct their attention 
towards the solution steps. Hence, all participants had the opportunity to compile 
problem-specific schemas, but only participants in the ‘learner surface’ conditions, 
who were encouraged to see the connections between tasks, were enabled to 
construct generalized schemas. 
 The main hypothesis of this study was based on the assumption that learner 
control has beneficial effects on learning, provided that it is perceived by the 
learners and actually used to select a varied set of personally relevant tasks. Results 
on the perceived control questionnaire show that participants in the three conditions 
with some form of learner control reported a similar perceived control over task 
selection. It was assumed that learners would recognize surface task features more 
easily than structural task features and therefore perceive control over task selection 
based on surface features more easily than control over task selection based on 
structural features. This is not supported by the results on perceived control. A 
possible explanation is that in all three conditions with some form of learner control 
participants were required to select one task from a set of four tasks that was pre-
selected by the program. The selection screen thus always showed four tasks, 
presented in two rows of two tasks. Each task contained a description of the surface 
features and a description of the to-be-completed solution steps. So, even partici-
pants in the conditions in which the control over task selection was based on the 
structural features must have noticed that they had a choice even if they did not 
recognize the structural task features. In future studies, the perceived control 
questionnaire should specifically address if learners recognize the surface task 
features or the structural task features – and it should also be studied which infor-
mation is precisely used by the learners to select their next task. 
 Although the perceived control questionnaire does not provide specific informa-
tion on the perception of surface and structural task features, it does show that 
participants who could exercise control also perceived this control. And as pre-
dicted, only participants in the ‘learner surface’ conditions profited from this 
control. Apparently these participants were better able to select personally relevant 
and varied tasks. The analysis of which tasks were selected by the participants 
confirms this. These results clearly show that participants chose much more varied 
tasks when they selected them on the basis of their surface features than when they 
selected them on the basis of their structural features. 
 A final finding that needs to be discussed is why learner controlled selection of 
tasks based on structural features, which might yield low variation because these 



 Chapter 5 | 95 

 

 

features are not salient for the learners, did not yield inferior learning than program 
controlled selection of tasks based on structural features, which by definition 
presented tasks with dissimilar task features (i.e., high variation). A possible 
explanation is provided by Gick and Holyoak (1987). The authors hold that initial 
exposure to relatively similar learning elements (e.g., high similarity on to-be-
completed solution steps) helps establish generalized rules and more dissimilar 
elements should only be used to elaborate the rule set once the initial rules have 
been firmly established and strengthened. Accordingly, early practice of tasks with 
similar structural features, followed by subsequent exposure to more variable 
practice, is expected to optimize learning and transfer. In our study, such a sequence 
occurred in neither the ‘learner structural’ nor the ‘program structural’ conditions. 
 The results of our study have several implications for future research. First, to 
gain better insight in the way people experience learner control and use it to 
construct cognitive schemas, more direct measures of their mental processes such as 
verbal protocols, retrospective reports, and eye-tracking data should be gathered 
during training. Second, the effects on transfer performance should be examined 
over a more extended period of time because transfer may not be apparent immedi-
ately after practice, but may be present at a later time if the same or additional 
transfer tasks are repeated (Gick & Holyoak, 1987). Third, it seems plausible that 
learners with a higher level of expertise are better able to recognize structural task 
features than novice learners; thus, differences between novice and experienced 
learners should be studied with regard to their ability to select a varied set of 
personally relevant tasks on the basis of structural features. Fourth, future studies 
might investigate if supporting learners in recognizing - surface and structural - task 
features, for example by explicit instruction to compare different tasks or by giving 
them feedback on their task selections, would yield better results. Fifth, learners’ 
perceptions of the personal relevance of tasks and their motives for the selections 
they make should be assessed in more detail. Finally, it should be investigated to 
what extent practice of tasks with dissimilar surface features enhances transfer to a 
completely new domain (e.g., Chen & Mo, 2004). 
 To conclude, this study showed that the effectiveness and efficiency of learner 
control clearly depends on what this control is based on: learner control based on 
surface features is beneficial while learner control based on structural features is 
not. This finding is particularly important for instructional designers because 
educational curricula increasingly use forms of on-demand education, in which 
learners plan their own learning trajectory. 
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Dynamic Task Selection: Effects of Feedback 
and Learner Control on Transfer, Efficiency, 

and Motivation6 
Feedback and learner control 

Chapter 6 

Structural features of learning tasks are relevant for problem solving but not salient for novice learners. 
Feedback in the form of Knowledge of Correct Response (KCR) during practice is expected to help 
learners recognize the structural features and to profit from learner control over the selection of learning 
tasks. A 2 x 2 factorial experiment (N = 118) was conducted to study the effects of KCR (present, 
absent) and control over the selection of learning tasks (learner control, program control). The presence 
of KCR yielded higher performance and efficiency on a near transfer test as well as higher learner 
motivation. An interaction between feedback and control, indicating extra beneficial effects of feedback 
when learners control the selection of learning tasks, was not found. Theoretical and practical implica-
tions are discussed. 
 

                                                        
6 This chapter is based on: Corbalan, G., Kester, L., & van Merriënboer, J.J.G. (2008). Dynamic task 
selection: Effects of feedback and learner control on transfer, efficiency, and motivation. Manuscript 
submitted for publication. 
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Recent instructional theories advocate on-demand methods of education which give 
learners freedom to choose their own learning path (Hannafin, 1984; Williams, 
1996). Optimal learner control allows learners to make selections according to their 
current knowledge, interests, and preferences (Merrill, 1980; van Merriënboer, 
Schuurman, de Croock, & Paas, 2002). This is believed to positively influence 
learning and motivation (Flowerday & Schraw, 2000; Schnackenberg & Sullivan, 
2000). Studies report both positive and negative effects of learner control on 
learning (Katz & Assor, 2007; Williams, 1996). It seems that the effectiveness of 
learner control depends on what (e.g., which elements of instruction, such as pace, 
display or task features) is controlled by whom (e.g., novice or more experienced 
learners) and, moreover, is only realized if learners recognize the control that is 
given to them (Morrison, Ross, O’Dell, & Schultz, 1988; Scheiter & Gerjets, 2007). 
 This study investigates how learner control over the selection of learning tasks 
with different structural features (i.e., what) can be optimized for novice learners 
(i.e., whom). More specifically, it will be studied if feedback helps learners to 
recognize structural task features and thus enables them to select personally relevant 
tasks with beneficial effects on learning and motivation. The next paragraphs 
describe what structural task features are, how providing feedback on structural task 
features may facilitate learning and motivation, and how feedback might interact 
with different types of control over task selection. 
 Structural task features refer to task aspects that are necessary to reach a 
solution for a particular problem (e.g., solution steps in inheritance tasks or the 
underlying mathematical procedure in statistical problems; Chen & Mo, 2004; 
Novick & Holyoak, 1991; Ross, 1989; Vosniadou & Ortony, 1989). These task 
features are generally not salient for, especially, novice learners in a domain. 
Therefore, novice learners are not able to spontaneously distinguish between tasks 
that differ on structural features (Cummins, 1992; Quilici & Mayer, 1996, 2002) 
and are also not able to strategically select learning tasks that differ from each other 
on their structural features. In this study, we characterize structural task features as 
the solution steps learners must complete to solve inheritance tasks. In such tasks, 
for example, it will be difficult for novices to distinguish tasks for which they are 
required to “determine the genotype of a parent” from tasks for which they are 
required to “determine the phenotype of a parent”. Obviously, the lack of saliency 
of structural features causes problems when learners are required to select their own 
learning tasks: they might unknowingly select equivalent tasks over and over again 
and not select structurally different tasks that also need to be practiced. 
 If learners do not recognize non-salient structural task features this may have 
negative effects on both learning and motivation. With regard to learning, learners 
will not be aware of any valid motives for choosing between tasks that differ in 
these features and are thus unable to distinguish between tasks that are necessary for 
learning and tasks that could just as well be omitted (Ross & Morrison, 1989). This 
will negatively influence the learning process (Chung & Reigeluth, 1992; Kopcha 
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& Sullivan, in press; Tennyson & Buttery, 1980; Williams, 1996) and even enlarge 
individual differences between low and high ability learners (Merrill, 2002; Snow, 
1980). With regard to motivation, learners who are not aware of structural differ-
ences between tasks will probably not see the meaning of choosing between these 
tasks. For them, all tasks look the same which will negatively influence their 
motivation. Furthermore, these learners will not be able to choose personally 
relevant tasks. Personally relevant instruction facilitates learners to connect new 
information to their prior knowledge (Hanaffin, 1984; Ross & Morrison, 1989; 
Wouters, Tabbers, & Paas, 2007), with positive effects on transfer of learning (van 
Merriënboer, Kirschner, & Kester, 2003). Personally relevant instruction is also 
prerequisite for enhancing and maintaining learners’ motivation (Katz & Assor, 
2007). 
 In the current study, the provision of feedback during practice is presented as a 
method to counteract the negative effects of the lack of saliency of structural task 
features. The form of feedback used is Knowledge of Correct Response (KCR). 
KCR provides learners with worked-out correct solution steps, regardless of the 
correctness of the solution steps generated by the learner. Research has shown that 
practice with KCR leads to better learning than practice with no-feedback and 
practice with Knowledge of Response (KOR), which only states whether a response 
is correct or incorrect (Ross & Morrison, 1993). 
 KCR emphasizes structural features in the form of correct solution steps, and 
thus enables learners to focus their attention on those features and better recognize 
necessary solution steps for future tasks (Cummins, 1992; Mory, 2003; Quilici & 
Mayer, 1996). Structural task features that are recognized as shared aspects 
throughout a series of tasks promote generalization and abstraction of a common 
relational structure that can be stored in cognitive schemas (Loewenstein, Thomp-
son, & Gentner, 1999). In addition, since feedback informs learners about their 
achievement, it gives them the opportunity to adjust and improve their cognitive 
strategies and to rectify misconceptions while progressing through the training 
(Azevedo & Bernard, 1995; Gagné et al., 1987). 
 Furthermore, many authors have recognized the motivational effects of feed-
back (e.g., Azevedo & Bernard, 1995; Chai, 2003; Gagné et al., 1987; Hyland, 
2001; Keller, 1983b; Mory, 2003; Ross & Morrison, 1993). Since feedback in the 
form of KCR helps learners to focus on structural task features or solution steps, it 
will eventually promote the perceived relevance of the learning material because it 
enables learners to see the connection between what they need to learn and the 
learning opportunities presented to them (Keller, 1983b, 1987; Margueratt, 2007). 
To sum up, the provision of KCR emphasizing structural task features fosters 
learning and motivation because it enables learners to recognize the structural 
features in future tasks and to relate those tasks to what they already know. 
 Since KCR helps learners to recognize the structural task features it makes 
these features more salient to the learners. So if learners who have control over the 
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selection of tasks with different structural features are also given KCR on structural 
aspects, they will be better able to perceive the control given to them, and thus to 
choose personally relevant tasks. Consequently, the beneficial effects of providing 
KCR on learning and motivation may be higher in combination with learner 
controlled selection of learning tasks than with program controlled selection of 
learning tasks. 
 Concluding, this study investigates the effects of KCR when learners work on a 
series of learning tasks with different structural features (i.e., to-be-completed 
solution steps) on transfer, efficiency, and motivation. KCR helps the learners to 
recognize structural features of tasks and to build generalized and abstract cognitive 
schemas. Therefore, learners who are provided with KCR are expected to show 
higher transfer of learning, higher efficiency (i.e., higher transfer test performance 
combined with less mental effort to reach it), and higher motivation because they 
are better able to see the connection between what they need to know and the 
presented tasks. In addition, if feedback makes the structural task features more 
salient for learners and helps them to select personally relevant learning tasks, the 
beneficial effects of providing KCR on learning and motivation may be higher in 
combination with learner controlled selection of learning tasks than with program 
controlled selection of learning tasks. 

Method 

Participants 

First-year students (N = 118; 93 females and 25 males; mean age = 18.73 years; SD 
= 4.67) enrolled in the Health Science program of a Dutch school for secondary 
vocational education participated in this study. In order to make participation 
attractive, they took part in a lottery making them eligible to win one of 20 cinema 
tickets. A 2 x 2 factorial design was used to study the effects of control over the 
selection of learning tasks on the basis of their structural features (program control, 
learner control) and feedback in the form of Knowledge of Correct Response (KCR; 
present, absent). Students were randomly assigned to one of the four experimental 
groups: program control/KCR (n = 30); program control/no-KCR (n = 29); learner 
control/KCR (n = 30), and learner control/no-KCR (n = 29). 

Materials 

 Electronic learning environment. The learning environment especially devel-
oped for this study was a web application written in the web scripting language 
PHP. A MySQL database connected to the learning environment contained a basic 
introduction to the domain of genetics, a factual knowledge test, the learning tasks, 
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a transfer test, mental effort measurements, a perceived relevance item, a perceived 
control questionnaire, and a motivational questionnaire. 
 Basic introduction. The basic introduction contained the main concepts in the 
domain of genetics included in the training (i.e., dominant and recessive genes, 
homozygous and heterozygous gene pairs, genotype and phenotype) and a worked-
out example containing all the solution steps of a representative inheritance task. 
 Factual knowledge test. This test contained eight multiple-choice questions and 
assessed participants’ prior factual knowledge about the domain of inheritance. The 
maximum test score was 8 points. 
 Learning tasks. The learning environment was connected to a database which 
contained 54 completion tasks in the genetics domain, dealing with the inheritance 
of particular features (e.g., inheritance of the color of hair, fur, or leafs). Completion 
tasks are learning tasks that present a given state, a goal state, and a partial solution 
(i.e., a number of solution steps) that learners have to complete by adding the 
missing steps (van Merriënboer, 1997; van Merriënboer & Kirschner, 2007). Each 
learning task could be solved following the same basic structure that comprised five 
solution steps, in order: (1) determine the genotype of the male parent based on the 
given information, that is, whether it is a homozygous or a heterozygous organism; 
(2) determine the genotype of the female parent based on the given probabilities in 
her generation; (3) draw a punnett’s square by combining the genotypes of the two 
parents; (4) determine the genotype of the offspring and calculate the proportion; 
and (5) determine the phenotype of the offspring and calculate the proportion. In 
each completion task, three solution steps were given by the program and the 
remaining two solution steps had to be completed by the learner. For instance, if 
solution steps 2, 4, and 5 were given by the program, steps 1 and 3 had to be 
completed by the learner. Each participant completed 12 learning tasks. Each 
correctly completed solution step scored 1 point, leading to a maximum score of 2 
points per learning task and 24 points for the whole training phase. The reliability of 
the learning tasks was .85 (Cronbach’s alpha). 
 Participants in the learner control conditions were given three tasks, which were 
pre-selected by the program, to choose from. This limited amount of control avoids 
overloading learners as a result of a (too) great amount of choice (Corbalan, Kester, 
& van Merriënboer, 2006; Iyengar & Lepper, 2000; Scheiter & Gerjets, 2007; 
Schwartz, 2004; Tennyson & Buttery, 1980). The first learning task in the program 
control conditions, as well as the first set of three tasks in the learner control 
conditions, was randomly selected by the program. In the program control condi-
tions, the program pre-selected three tasks containing either 0, 1, or 2 solution steps 
not completed by the learner in the preceding task, and then randomly selected and 
presented one task from this subset to the learners. In the learner control conditions, 
the program also pre-selected three tasks containing either 0, 1, or 2 solution steps 
not completed by the learner in the preceding task, but then presented all three tasks 
to the learner who made a final selection of one task to work on. 
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 In the no-KCR conditions, no information was provided after participants 
completed the two required solution steps. In the KCR conditions, the correct 
solution of the steps completed by the learner was presented together with the given 
responses immediately after the learning task was finished (i.e., after the last step 
was completed by either the learner or the program; see Figure 6.1 for an example). 
Participants were prompted to compare their own responses with the correct 
responses given. If there was a mismatch, participants were advised to restudy the 
basic information, which also contained a worked-out example showing how the 
solution steps should be applied. 
 

 
 
Figure 6.1. Partial screendump illustrating the completed solution steps of a training task in the KCR 
conditions. 
 
 Transfer test. The transfer test consisted of ten transfer tasks, divided in four 
near transfer tasks and six far transfer tasks. The near transfer tasks were structur-
ally similar to the learning tasks but contained different surface features (i.e., other 
members within the species, for example, fruit flies, and other traits, for example, 
position of the wings). They determined if participants were able to apply the 
learned procedures in the same way as in the learning tasks. The far transfer tasks 
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required participants to flexibly apply the learned solution procedures to structurally 
different tasks. More specifically, the following far transfer tasks were used: (a) 
determine if the baby of two parents with the same disease will also have this 
disease; (b) infer the genotype and phenotype of the offspring of two parents from 
information given of one parent and about the father of the other parent; (c) infer 
the genotype of several family members based on the information given in a family 
tree; (d) determine the genotype and phenotype of the offspring of two individuals 
with co-dominant genes, that is, genes that are equally strong and both expressed; 
(e) use the information of the phenotype of the offspring (i.e., bottom-up) and of 
one of the parents to find out the genotype of the other parent and of the offspring, 
and (f) determine the genotype and phenotype of the offspring of two individuals in 
a dihybrid crossing task which requires the separate treatment of two different traits. 
The maximum score was 4 points for the near transfer test and 6 points for the far 
transfer test. The reliability was, in order, .90 for the near transfer test and .80 for 
the far transfer test (Cronbach’s alpha). 
 Mental effort. Mental effort reflects the amount of cognitive capacity allocated 
to problem solving and was used as an index for cognitive load. Mental effort was 
measured after each learning task and after each transfer task with a one-item 7-
point rating scale (Paas, Tuovinen, Tabbers, & van Gerven, 2003). Reliability of the 
reported mental effort measures during training was, in order, .96, during the near 
transfer test .96, and during the far transfer test .94 (Cronbach’s alpha). 
 Efficiency. Participants’ transfer test performance and associated mental effort 
were combined using the procedure of Paas and van Merriënboer (1993) to calcu-
late instructional efficiency (E). Performance and mental effort scores are first 
standardized, and then the z-scores are entered into the formula: 
 

2
Performance MentalEffortZ Z

E
−

=  

 
In a two-dimensional space defined by the standardized test performance and 
mental effort scores, efficiency is computed for each condition as the perpendicular 
distance between a point representing the condition (i.e., the z-score for transfer test 
performance and the z-score for mental effort) and the diagonal, E = 0, where 
performance and mental effort are proportionally related to each other. When 
performance is higher than might be expected on the basis of perceived mental 
effort, the instructional condition is relatively more efficient. Conversely, when 
performance is lower than might be expected on the basis of perceived mental 
effort, the instructional condition is relatively less efficient. 
 Perceived relevance measure. The perceived relevance of the three choices 
provided in the two learner control conditions was measured with a 5-point rating-
scale (i.e., “The three inheritance tasks I could choose from were relevant to my 
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interests”). Answers ranged from ‘not true’ (1) to ‘completely true’ (5). Reliability 
of the measure was .95 (Cronbach’s alpha). 
 Instructional Materials Motivation Survey (IMMS). The IMMS (Keller, 1983a, 
see also Margueratt, 2007) assesses the motivational effects of instructional situa-
tions and asks students to rate 36 ARCS related statements (Attention, Relevance, 
Confidence, and Satisfaction) about the learning materials. Reliabilities of the 
measures were .86, .71, .91, and .89 (Cronbach’s alpha) for, in order, the attention, 
relevance, confidence, and satisfaction scales. 
 Perceived control measure. A 5-point rating scale containing 4 items was 
designed to rate participants’ perceived control over the selection of learning tasks. 
The four items were: “I was able to choose the inheritance task I wanted to per-
form”, “I could decide by myself what I wanted to learn about solving inheritance 
tasks”, “I could decide by myself how I wanted to learn about solving inheritance 
tasks”, and “I could decide by myself which information about the inheritance tasks 
I wanted to consult”. Reliability of the perceived control questionnaire was .67 
(Cronbach’s alpha). 
 Time logging. The learning environment kept track of the time (in seconds) 
participants needed to complete the learning tasks and the transfer tasks. 

Procedure 

In the pre-training phase, participants received the basic introduction and com-
pleted the prior factual knowledge test. Subsequently, participants started the 
training phase. Participants were not informed on how the tasks were selected or 
pre-selected (for the program control and learner control conditions, respectively). 
While working on a learning task, participants could press a continue button after 
each step, whereafter the next given or to-be-completed step appeared on the 
computer screen. After each learning task, mental effort and perceived relevance 
were measured. Participants could always access the basic information by pressing 
a button that was at all times visible on the left-hand side of the screen. It was 
emphasized that they were not allowed to skip solution steps or self-rating ques-
tions: the program would prompt them to provide an answer before they were 
allowed to continue. After the training phase was completed, participants started the 
test phase, in which they completed the perceived control questionnaire, the IMMS 
questionnaire, and the transfer test. During the test phase, the ‘basic information’ 
button disappeared from the screen. After each transfer task, mental effort was 
measured with the 7-point rating scale. Participants were allowed to work at their 
own pace. The times spent during the training phase and transfer phase were logged 
automatically. 
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Results 

Table 6.1 presents the means and standard deviations of the prior factual knowledge 
test, the time spent on the learning tasks, and the dependent variables measured 
during the test phase and the training phase. 
 
Table 6.1 
Overview of Results from the Factual Knowledge Test, the Training Phase, and the Test Phase 
 Program control                             Learner control  

 No-KCR 
(n = 30) 

KCR 
(n = 29) 

No-KCR 
(n = 30) 

KCR 
(n = 29) 

 M SD M SD M SD M SD 

Factual knowledge test 4.23 1.77 4.51 1.88 4.83 1.82 4.62 1.86 

Time on training phase (sec.) 1823 585.19 1815 455.68 1541 553.34 1711 471.71 

Test Phase         

Test time (sec.) 2141 492.57 2217 571.95 2234 763.18 2223 571.957 

Performance Near transfer (max. = 4 ) 2.57 1.16 2.89 1.04 2.03 1.50 2.61 1.20 

Performance Far transfer (max. = 6 ) 3.37 1.63 3.72 1.52 2.97 1.67 3.45 1.88 

Mental effort Near transfer (max. = 7) 3.66 1.71 3.53 1.95 4.25 1.67 3.30 1.68 

Mental effort Far transfer (max. = 7) 4.28 1.64 4.12 1.95 4.74 1.69 4.11 1.59 

Efficiency Near transfer .04 1.17 .27 1.21 -.51 1.45 .21 1.20 

Efficiency Far transfer .02 1.22 .23 1.34 -.35 1.32 .12 1.28 

Training Phase         

Performance (max. = 24) 16.16 5.32 16.95 4.81 16.52 6.17 17.41 5.50 

Mental effort (max. = 7) 3.19 1.65 2.77 1.45 3.40 1.73 2.56 1.28 

Note: Estimated marginal means are presented with total training time as covariate (except for the 
factual knowledge test and time on training). 
 
 An ANOVA on the factual knowledge test filled out by the participants prior to 
the training revealed no differences between conditions, F(1, 114) < 1, ns. A 
significant main effect of control was found on time on the learning tasks, F(1, 114) 
= 4.05, MSE = 1095979.79, p < .05, η2

p = .03. Participants in the program control 
conditions needed more time to perform the learning tasks (M = 1819.07, SD = 
521.04) than participants in the learner control conditions (M = 1624.78, SD = 
517.54). No effects on time on the learning tasks were found for KCR and the 
interaction between control and KCR. Therefore, the test scores - time, perform-
ance, and mental effort – and the training scores – performance and mental effort - 
were analyzed with ANCOVAs with the between-subjects factors control (program 
control, learner control) and KCR (present, absent) and the covariate time on 
learning tasks. For all statistical tests a significance level of .05 was maintained. 
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Test Phase 

 Test time. ANCOVA revealed no main effects on test time for control, F(1, 
113) = .15, MSE = 60003.81, ns; KCR, F(1, 113) = .27, MSE = 106571.28, ns; and 
their interaction, F(1, 113) = .02, MSE = 8436.49, ns. 
 Test performance. ANCOVA showed a significant main effect of KCR on near 
transfer performance, F(1, 113) = 4.15, MSE = 5.85, p < .05, η2

p = .04. Participants 
in the KCR conditions scored higher on the near transfer test (M = 2.72, SD = 1.12) 
than participants in the no-KCR conditions (M = 2.33, SD = 1.34). No effects on the 
near transfer test were found for control, F (1, 113) = 3.03, MSE = 4.70, ns; and the 
interaction between control and KCR, F(1, 113) = .36, MSE = .51, ns. In addition, 
no effects on far transfer performance were found for control, F(1, 113) = 1.30, 
MSE = .3.21, ns; KCR, F(1, 113) = 2.05, MSE = 5.07, ns; and their interaction, F(1, 
113) = .06, MSE = .14, ns. 
 Mental effort. ANCOVA revealed no effects on mental effort during the near 
transfer test for control, F(1, 113) = .36, MSE = .96, ns; KCR, F(1, 113) = 3.2, MSE 
= 8.56, ns; and their interaction, F(1, 113) = 1.88, MSE = 5.03, ns. Similarly, no 
effects on mental effort during the far transfer test were found for control, F(1, 113) 
= .36, MSE = .96, ns; KCR, F(1, 113) = 3.2, MSE = 8.56, ns; and their interaction, 
F(1, 113) = 1.88, MSE = 5.03, ns. 
 Efficiency. ANCOVA showed a significant main effect of KCR on efficiency 
on near transfer, F(1, 113) = 4.70, MSE = 6.51, p < .05, η2

p = .04. Efficiency on the 
near transfer test was higher in the KCR conditions (M = .20, SD = 1.20) than in the 
no-KCR conditions (M = -.20, SD = 1.31). No effects on efficiency on near transfer 
were found for control, F(1, 113) = 1.93, MSE = 3.67, ns; and the interaction 
between KCR and control, F(1, 113) = 1.24, MSE = 1.71, ns. Similarly, no effects 
on efficiency on far transfer were found for control, F(1, 113) = 1.12, MSE = 1.57, 
ns; KCR, F(1, 113) = 2.42, MSE = 3.40, ns; and their interaction, F(1, 113) = .35, 
MSE = .49, ns. 

Training Phase 

 Training performance. ANCOVA revealed no effects on training performance 
for control, F(1, 113) = .18, MSE = 4.67, ns; KCR, F(1, 113) = .78, MSE = 20.43, 
ns; and their interaction, F(1, 113) = .003, MSE = .07, ns. 
 Mental effort. ANCOVA revealed a significant main effect of KCR on mental 
effort during training, F(1, 113) = 5.69, MSE = 11.501, p < .025, η2

p = .05. Partici-
pants in the KCR conditions reported lower mental effort during training (M = 2.71, 
SD = 1.37) than participants in the no-KCR conditions (M = 3.24, SD = 1.68). No 
effects on mental effort during training were found for control, F(1, 113) = .00, 
MSE = .00, ns; and the interaction between control and KCR, F(1, 113) = .164, 
MSE = 1.28, ns. 
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Motivation 

Table 6.2 provides an overview of the mean scores and standard deviations for the 
perceived relevance item and the four IMMS scales. 
 
Table 6.2 
Overview of Results from the Perceived Relevance Item and the Instructional Materials Motivation 
Survey (IMMS) 
 Program control                                    Learner control  

 No-KCR 
(n = 30) 

KCR 
(n = 29) 

No-KCR 
(n = 30) 

KCR 
(n = 29) 

 M SD M SD M SD M SD 

During training         

Perceived Relevance - - - - 2.61 .77 3.16 .66 

After training - IMMS         

  Attention 2.89 .66 3.16 .83 2.78 .71 3.42 .59 

  Relevance 3.30 .63 3.38 .77 3.28 .59 3.70 .56 

  Confidence 3.28 1.03 3.52 1.09 3.39 .96 3.93 .80 

  Satisfaction 2.72 .89 3.10 1.03 2.82 .78 3.45 .82 

 
 Perceived relevance. A t-test showed a significant difference between partici-
pants’ perceived relevance of the three choices provided in the two learner control 
conditions, t(57) = -2.95, p < .01, d = 0.77, indicating a medium to large effect size. 
Perceived relevance was significantly higher in the learner control/KCR condition 
(n = 29; M = 3.16, SD = .66) than in the learner control/no-KCR condition (n = 30; 
M = 2.61, SD = .77). 
 IMMS. ANOVAs showed significant main effects for KCR on attention, F(1, 
114) = 12.31, MSE = 6.08, p < .001, η2

p = .10; relevance, F(1, 114) = 4.51, MSE = 
1.86, p < .05, η2

p = .04; confidence, F(1, 114) = 4.72, MSE = 4.51, p < .05, η2
p = 

.04; and satisfaction, F(1, 114) = 9.65, MSE = 7.57, p < .01, η2
p = .08. Participants 

in the KCR conditions reported higher attention (M = 3.29, SD = .73), higher 
relevance (M = 3.54 SD = .60), higher confidence (M = 3.73, SD = .97), and higher 
satisfaction (M = 3.27, SD = .94) than participants in the no-KCR conditions (in 
order, M = 2.83, SD = .68; M = 3.28, SD = .60; M = 3.33, SD = .99, and M = 2.77, 
SD = .83 for attention, relevance, confidence, and satisfaction). Post hoc tests using 
Tukey’s HSD revealed that participants in the learner control/KCR condition 
reported significantly higher attention (M = 3.42, SD = .59) than participants in both 
the program control/no-KCR condition (M = 2.89, SD = .66; p < .025) and the 
learner control/no-KCR condition (M = 2.78, SD = .71; p < .01). In addition, 
participants in the learner control/KCR condition reported significantly higher 
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satisfaction (M = 3.45, SD = .82) than participants in both the program control/no-
KCR condition (M = 2.72, SD = .89; p < .05) and the learner control/no-KCR 
condition (M = 2.82, SD = .78; p < .05). 

Perceived Control 

Because the assumption of homogeneity of variances was violated, a Kruskal-
Wallis test was used to compare the four conditions on perceived control. A 
significant effect of condition was found, H(3) = 45.57, p < .001. Multiple compari-
sons among groups were performed using a Conover-Inman test, which is a non-
parametric alternative to Fisher’s least significance difference method performed on 
ranks (Conover, 1999). Results showed a significantly lower perceived control for 
the program control/no-KCR condition (mean rank = 36.60) than the learner 
control/no-KCR condition (mean rank = 69.23; p < .001) and than the learner 
control/KCR condition (mean rank = 89.66; p < .001); a significantly lower per-
ceived control for the program control/KCR condition (mean rank = 42.97) than the 
learner control/no-KCR condition (mean rank = 69.23; p < .001) and than the 
learner control/KCR condition (mean rank = 89.66; p < .001); and a significantly 
lower perceived control for the learner control/no-KCR condition (mean rank = 
69.23) than the learner control/KCR condition (mean rank = 89.66; p < .01). 

Discussion 

This study investigated the effects of giving feedback in the form of KCR, which 
emphasized structural features of learning tasks (i.e., to-be-completed solution 
steps), on transfer, efficiency, and motivation. Moreover, it examined if potential 
beneficial effects of providing KCR are higher in combination with learner con-
trolled selection of learning tasks, which gives learners the opportunity to select 
personally relevant learning tasks, than with program controlled selection of 
learning tasks. 
 First, we hypothesized that providing learners with KCR emphasizing structural 
features leads to higher transfer, efficiency, and motivation. This hypothesis is 
largely supported by our results. Learners provided with KCR performed better on 
the near transfer test and also showed higher efficiency on near transfer, indicating 
that the near transfer performance of participants provided with KCR was higher 
than could be expected on the basis of their invested mental effort. In addition, 
participants provided with KCR scored significantly higher on all four scales of the 
IMMS questionnaire (attention, relevance, confidence, and satisfaction) than 
participants who were not provided with KCR. This seems to indicate that KCR 
helps learners to recognize structural features, which enables them to connect what 
is presented to them (i.e., learning tasks) to what they already know. In addition, 
results support Keller’s (1983a, 1983b) theory of motivation, which argues that the 
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motivation of a learner can be manipulated by the instructional design of the 
materials. They are also in line with Bassok (1990), who stated that it is possible to 
foster transfer of learning by increasing the relative weight of structural aspects, for 
example, by giving learners information about the relevance of structural features. 
 In contrast to the results on performance and efficiency for near transfer, no 
differences between the experimental conditions were found on performance and 
efficiency for far transfer. This may have been caused by the fact that KCR located 
where the error exactly was and what the learner could do to solve that problem 
(i.e., consult the basic information). This yielded ‘restricted’ cognitive schemas that 
allowed learners to perform the steps of the near transfer test - as indicated by the 
higher performance and efficiency for near transfer - as ‘routines’ (van Merriën-
boer, 1997). However, far transfer does not require learners to merely apply a 
routine: deep understanding of the rationale behind the solution steps is crucial. 
Providing learners not only with the correct solution steps, but also with the 
rationale behind and/or the purpose of the solution steps could have enabled them to 
more flexibly use those steps which is essential for far transfer (van Gog, Paas, & 
van Merriënboer, 2004, 2006, in press). 
 Second, we studied if the beneficial effects of providing KCR would be higher 
in combination with learner control than in combination with program control, 
because the given feedback has the potential to make the structural task features 
more salient for learners, enabling them to select personally relevant tasks which 
further enhances learning and motivation. Our results do not support the superiority 
of combining KCR with learner control for transfer and efficiency, but the effects 
on motivation are in the expected direction. Participants in the learner control/KCR 
condition reported higher attention and satisfaction than participants in the learner 
control/no-KCR condition. Moreover, participants in the learner control/KCR 
condition reported to perceive the choices provided as more relevant than partici-
pants in the learner control/no-KCR condition. Additionally, participants in the 
learner control/KCR condition perceived more control than participants in the 
learner control/no-KCR condition, which indicates that the provision of KCR 
enhances the perception of control. 
 Nevertheless, with regard to transfer and efficiency the learner control condi-
tions did not profit more from KCR than the program control conditions. Appar-
ently, KCR did not sufficiently support learners in making more effective task 
selections which seems to support the idea that less experienced learners are not 
able to make effective selections regarding structural features and must thus be 
explicitly guided in how to achieve learning objectives (Butler & Winne, 1995). 
Alternatively, the small number of tasks to choose from (only three) and the small 
variety between the three tasks to choose from may also have limited the learners’ 
opportunities to select a range of personally relevant tasks with a genuine effect on 
learning, although it positively influenced motivation. 



110 | Feedback and learner control 

 

 A final unexpected result that needs to be discussed is that participants in the 
learner control conditions invested less time in performing the learning tasks than 
participants in the program control conditions. Descriptive analysis reveals that in 
the learner control/no-KCR condition, the time invested was lower (M = 1541, SD = 
553.34) than in the learner control/KCR condition (M = 1711, SD = 471.71). This 
lower time invested in the learner control/no-KCR condition seems to account for 
the largest part of the lower time invested in both learner control conditions together 
compared with the program control conditions. Participants in the learner con-
trol/no-KCR condition were not supported in recognizing the structural features, 
perceived the choices provided as being significantly less relevant, and scored 
relatively low on all motivational measures. Their lack of motivation may well 
explain the lower time invested in training. 
 Our findings yield some important implications for future research. First, more 
sophisticated process-tracking methods, such as eye-tracking or thinking-aloud 
protocols, may uncover whether learners who are provided with feedback indeed 
focus their attention to more relevant task aspects than learners who are not pro-
vided with feedback. Second, the issue of near and far transfer should be addressed 
in forthcoming studies. Possibly, richer types of feedback than KCR yield not only 
effects on performance and efficiency for near transfer, but also for far transfer. 
Similarly, the effects on transfer performance should be examined over a more 
extended period of time because transfer may not be apparent immediately after 
practice, but may only be present at a later time if the same or additional transfer 
tasks are repeated (Gick & Holyoak, 1987). Third, Bell and Kozlowski (2002) 
found that adaptive guidance which provided learners with diagnostic and interpre-
tive information (i.e., a sort of guidance), supported learners in making more 
effective learning decisions. Future studies may examine the effects of adaptive 
feedback on learners’ selection of learning tasks on the basis of their structural 
features. 
 To conclude, this study clearly shows the beneficial effects of feedback in the 
form of KCR on near transfer performance and efficiency, as well as its added value 
for motivating learners when they are given the freedom to select tasks that differ 
with regard to their structural features. These results are particularly important 
because more and more educational approaches stress the importance of providing 
learners with control over the learning tasks they perform. This could easily hamper 
learners’ motivation if they are brought into a position in which they cannot see 
valid motives for choosing between different tasks. 
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General Discussion 

Chapter 7 

 

In this chapter, a general overview of the dissertation is presented, the main conclusions of the studies 
presented in Chapters 3 to 6 are described, and limitations of the studies are acknowledged. Further-
more, theoretical implications for the improvement of the tested task selection models in future studies 
as well as practical implications of the studies are discussed. 
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Overview of the Results 

Current educational approaches focus on flexible curricula which offer a unique 
sequence of learning tasks selected according to a learner’s needs or preferences. 
Task sequence can be personalized by either a computer program or the learners 
themselves. The studies in this dissertation investigated under which conditions 
learner control over task selection is most effective. 
 First of all, the studies all used a specific form of learner control, namely, 
shared control. With shared control over task selection, there is partial program 
control combined with partial learner control, that is, the program first selects a 
subset of tasks from which the learner can subsequently choose one task to work on. 
The model presented in Chapter 2 underlines the trade-off between program control 
and learner control over task selection as a basis for shared control. The effective-
ness of learner control largely depends on which task features are selected by the 
program and which task features are selected by the learners themselves. With a 
good trade-off, shared control should reduce the choice provided to learners, 
prevent cognitive overload, and ensure that learners select from a subset of tasks 
that is optimal for their learning. 
 The studies described in Chapters 3 to 6 tested the effects of different shared 
control models for dynamic task selection on effectiveness (i.e., transfer test 
performance), efficiency (i.e., test performance combined with invested mental 
effort), and motivational effects of the learning material. In Chapter 3, difficulty and 
support were tailored to changing levels of learner expertise. In the studies de-
scribed in Chapters 4 to 6, learning tasks were (pre-) selected on the basis of 
previous surface or structural task features. 
 In general, four conclusions can be drawn from the studies reported in this 
dissertation. First, adapting critical task aspects such as task difficulty and embed-
ded support to changing levels of expertise, prevents cognitive overload and 
associated negative effects on learning (Chapter 3). Second, choosing tasks with 
preferred surface features has beneficial effects on learning and motivation (Chap-
ters 3 to 5). However, the range of tasks to choose from should not include tasks 
with surface features very similar to those of the previous task (Chapter 4). Third, 
learners should receive extra support if they are given control over the selection of 
tasks that differ in their non-salient structural features (Chapter 5). Support in the 
form of feedback emphasizing structural features, such as ‘Knowledge of Correct 
Response’ (KCR), makes learner control over task selection on the basis of those 
features more motivating (Chapter 6). Fourth, in order to have positive effects on 
learning outcomes, more powerful feedback strategies than KCR are needed to 
support learners in making optimal selections from tasks with different structural 
features. The next sections summarize general findings and provide explanations for 
expected and unexpected results. 
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Adaptive task selection 

In all studies reported in this dissertation, each task or subset of tasks was dynami-
cally adapted to either learner variables (Chapter 3) or task variables (Chapters 4 to 
6). First, tailoring task difficulty and given support to the learner variables compe-
tence level and reported task load led to more effective and efficient learning 
(Chapter 3). Probably, adapting task selection to learner variables lowered cognitive 
load to an acceptable level, which then enabled the allocation of freed-up cognitive 
resources to learning. Unexpectedly, training time was found to be lower in the non-
adaptive conditions. Training time can be considered as ‘cost’ associated with 
learning and in principle a lower training time may indicate more effective training. 
A possible explanation has been provided in the Discussion of Chapter 3. Partici-
pants in the adaptive conditions could have noticed the relationship between their 
performance and the difficulty and/or embedded support of each subsequent task, 
whereas participants in the non-adaptive conditions probably lacked this associa-
tion. This might have negatively influenced their time investment. 
 Second, adaptation to task features was based on the assumption that effective-
ness of learner control partly depends on preventing learners from being overloaded 
by a too high amount of choice. In addition, the control should be actually per-
ceived as something valuable by the learners. Hence, the program should pre-select 
tasks with different salient surface features to enable learners to select a varied set 
of personally relevant tasks (Chapter 5). Accordingly, if the program pre-selects 
tasks with highly similar surface features, the effectiveness of learner control will 
be hampered because learners will recognize the lack of differences in the choices 
provided (Chapter 4). Additionally, if the program pre-selects tasks with non-salient 
structural task features, learners will probably not recognize those features and will 
be unable to select a varied set of personally relevant tasks. This annuls the effec-
tiveness of learner control (Chapter 5). These assumptions will be examined more 
closely in the next section. 

Learner control over task selection 

It has been noted that the added value of learner control largely depends on what 
(e.g., surface features or structural features) is selected by learners. Learners will 
profit from the control exercised by them only when they use it to select a varied set 
of personally relevant tasks (Katz & Assor, 2007). A first remarkable conclusion 
concerns the beneficial effects of learner control over the selection of tasks with 
different surface features. Because those features are salient and thus perceptible for 
learners, they can use this information to select a varied set of personally relevant 
tasks which promotes induction and elaboration and, eventually, transfer of learn-
ing. In Chapter 3 evidence was found that allowing learners to select their preferred 
surface features enhances task involvement. Furthermore, providing learners with a 
subset of tasks with surface features dissimilar from the previous task was found to 
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enhance transfer test performance and task involvement (Chapter 4) as well as the 
efficiency on far transfer (Chapter 5). In Chapter 5, it was argued that selecting 
one’s preferred surface features may have elicited personal relevance which 
facilitated learners to connect new information to their prior knowledge. This 
process of elaboration enables the construction of general cognitive schemas which 
are especially useful when solving unfamiliar tasks (i.e., far transfer tasks). 
 Learner control over the selection of tasks with different structural features is 
difficult for learners. They do not spontaneously recognize these non-salient 
features and thus cannot select a varied set of personally relevant tasks based on 
them (Chapter 5). Yet, learners should not just like that be given control over tasks 
with similar structural features because, probably, they will not see the point of 
choosing between outwardly similar tasks. They may even become frustrated from 
choosing between things that are seen as equivalent. Hence, learners need to be 
supported in identifying the structural task features, for instance, by giving them 
feedback. The hypothesis that providing learners with feedback over structural 
features would lead to more efficient learning was indeed supported for a near 
transfer test although the expected pattern found for the far transfer test did not 
reach significance (Chapter 6). It is possible that the feedback helped learners 
construct restricted cognitive schemas, allowing them to perform routine aspects of 
the task. But learners did possibly not fully understand how to solve the problems, 
which is a prerequisite for far transfer. Additionally, feedback increased motivation 
but it did not support learners on the task selection process (Chapter 6). 
 The effects of having learners select from a subset of tasks differing in surface 
features and from a subset of tasks differing in structural features, might well be 
captured by the distinction between ‘picking’ (i.e., selecting without preferences) 
and ‘choosing’ (i.e., selecting as meaningful realization of preferences; Ullmann-
Margalit & Morgenbesser, 1997). Picking is less motivating than choosing and also 
undermines the effectiveness of learner control (see for a review, Katz & Assor, 
2007). The difference between picking and choosing might well explain the 
superior effects on transfer test performance and task involvement of learner control 
when learners choose from pre-selected tasks with surface features that were 
different from the surface features of previous tasks, found in the study reported in 
Chapter 4. 
 It was assumed that surface features are easier to recognize than structural 
features, so that learners who select tasks on the basis of their surface features 
would perceive a higher level of control (Chapter 5). Although the answers to the 
perceived control questions did not directly support this assumption, as expected, 
only participants who selected their preferred tasks on the basis of surface features 
benefited from the control exerted; and moreover, they selected much more varied 
tasks. Future studies should explicitly address the issue if learners indeed recognize 
surface features and structural features, and if so, if they actually use this informa-
tion to select the next task(s) to work on. Additionally, the perceived control and the 
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perceived relevance of the given choices were found to be higher when feedback 
emphasizing structural features was provided. Thus, it can be concluded that 
feedback is helpful to recognize structural features and should thus be provided 
when learners have to choose between tasks which differ on those features (Chapter 
6). 
 Our studies yielded both positive and unexpected results on motivation. Learner 
control enhanced task involvement (Chapters 3 and 4), and the provision of feed-
back increased the perceived relevance and motivational effects of making choices 
between tasks with different structural features (Chapter 6). However, no effects 
were found on interest and other scales of the Intrinsic Motivation Inventory 
(Chapters 3 and 4). Possibly, a wider range of tasks to choose from or a higher 
variety between the tasks to choose from in the learner control conditions could 
have revealed differences in the motivational scales between the experimental 
conditions. The fact that positive effects were found on the task involvement 
measure but not on interest and other scales of the Intrinsic Motivation Inventory 
seem to support Paas et al.’s (2005) argument that combining cognitive load and 
performance measures is supplementary to the use of inventories collecting motiva-
tional data. Another explanation concerns the fact that learner control was only 
limited to task selection. That is, learner control while working on the tasks was 
similar in all conditions. Hence, the provision of learner control over task selection 
may be considered as only one method to enhance interest, which needs to be 
combined with other methods to reach effects on motivation. 

Summary of methods to optimize learner control 

Whereas learner control enhances learning and motivation, it should not be used 
unconditional. Learners should perceive the control provided, choices should enable 
learners to select personally relevant tasks, learners should select relatively varied 
tasks, and they should not be overwhelmed by the amount of choice. Shared control 
limits the choice to manageable levels. This section briefly summarizes proposed 
strategies to enhance learner control. 
 First, learner control should be provided over tasks with varied surface fea-
tures. Surface features are often more perceptible for learners than structural 
features. Learners who are presented a subset of tasks that differ in surface features 
from previous tasks will most likely recognize those differences, and be able to 
select a varied set of personally relevant tasks which enhances learning and transfer 
because of improved induction and elaboration. However, learner control should 
not be provided over tasks with highly similar surface features because this may 
hamper task involvement and transfer. 
 Second, learner control over tasks with different non-salient structural features 
does not enhance learning because learners are not likely to recognize those features 
and are not able to select a varied set of personally relevant tasks (Chapter 5). It has 
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been suggested that feedback should be provided in combination with learner 
control over tasks with different structural features because this underlines those 
features and enables learners to select personally relevant tasks. In the study 
reported in Chapter 6, feedback enhanced motivation and made the choices pro-
vided (i.e., tasks differing in structural features) more personally relevant for 
learners. But feedback did not support learners in making better task selections. 
Giving feedback in the form of correct responses is thus insufficient to develop task 
selection skills. More powerful feedback strategies in the form of advice on task 
selection might better help learners to engage in appropriate actions – self-selecting 
optimal learning tasks – to close the gap between actual and desired performance 
(Butler & Winne, 1995). 

Limitations 

Three methodological issues need to be acknowledged regarding the use of the 
efficiency and task involvement measures reported in Chapter 3. First, the original 
efficiency measure proposed by Paas and van Merriënboer (1993) relies on the 
combination of performance and invested mental effort during a test and examines 
the relative instructional efficiency of experimental conditions in terms of learning 
outcomes. More efficient learning outcomes are indicated by relatively high 
performance combined with low mental effort during the test, and less efficient 
learning outcomes are indicated by relatively low performance combined with high 
mental effort during the test. A review of the use of the instructional efficiency 
measure (van Gog & Paas, 2008) underlines the widely inappropriate use (33 out of 
36 reviewed studies) of the originally proposed measure by cognitive load research-
ers. These studies, as well as the study described in Chapter 3, adopted an ‘adapted’ 
measure to compute efficiency that combines test performance with mental effort 
invested during training (referred to as ‘task load’ in Chapter 3), which analyzes 
instructional efficiency in terms of the learning process rather than the learning 
outcomes. Although the use of the adapted measure is not problematic in studies 
that only aim at reducing extraneous load, its use in studies aiming at increasing 
germane load is inappropriate because it is then an explicit goal to increase the 
investment of mental effort during training. 
 A second, related issue with regard to the efficiency measure concerns its 
combined use for selecting tasks and computing efficiency. As in the study reported 
in Chapter 3, in the review of van Gog and Paas (2008) 6 from the 33 studies 
applying the adapted measure used mental effort during training not only to com-
pute efficiency but also to select learning tasks. Although the combination of 
performance and mental effort during training provides valuable information for 
dynamic task selection, van Gog and Paas make clear that using the same mental 
effort invested during training to compute efficiency and to select tasks, poses an 
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additional limitation because mental effort has been directly manipulated by the 
instructional strategy. That is, in Chapter 3 cognitive load was optimized in the 
adaptive conditions but not in the non-adaptive conditions, and this inevitably 
affects the adopted efficiency measure. Hence, a replication of the study should 
compute efficiency using mental effort invested during the test phase, which 
provides a better indicator of the quality of the learning outcomes. 
 The third issue concerns the use of the task involvement measure in Chapter 3 
which is based on the assumption that higher involvement is reflected by the 
investment of more mental effort and higher resulting performance. The original 
computation of task involvement (Paas et al., 2005) uses mental effort as a general 
term, not making a distinction between the investment of effort to deal with extra-
neous/intrinsic load and the investment of effort to deal with germane load. How-
ever, the study in Chapter 3 used a scale that solely intended to measure the effort 
learners invested in learning (i.e., germane load) to compute task involvement. 
Future efforts must address whether perceived mental effort in general, which may 
also be influenced by aspects such as the difficulty of the task (affecting intrinsic 
load) or the availability of support (affecting extraneous load), or a measure of 
mental effort directly related to learning (i.e., germane load), should best be used to 
compute task involvement. 
 A limitation of the studies reported in Chapters 4 and 5 concerns the lack of 
direct measures of some underlying variables. First, the higher perception of control 
when learners could select amongst tasks with different surface features accounted 
for the positive effects reported in Chapter 4. Second, the unexpected similar 
perceived control reported by the participants in all learner control conditions (i.e., 
control over tasks with different surface features and with different structural 
features) in the study described in Chapter 5, suggested that not only perception of 
control but also perceived relevance of the given choices is a prerequisite for learner 
control to work. However, none of these variables were directly measured. Al-
though the variables that were hypothesized to be affected by increasing perceived 
control and perceived relevance were directly measured, replication of the studies 
must include measures of perception of control (Chapter 4) as well as measures of 
personal relevance (Chapters 4 and 5). 
 Finally, as a more general measurement issue, it is not yet clear if learners are 
actually able to distinguish between different types of cognitive load. In fact, 
cognitive load theorists are still facing the challenge to distinguish the different 
types of cognitive load through self-reporting instruments. The multi-
dimensionality of the concept of cognitive load may even rise the question whether 
it is possible at all to empirically separate the constituent types of load. 
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Implications and Future Research 

The results from our studies provide a number of issues that should be considered in 
future research and have some practical implications as well. First, adaptive task 
selection on the basis of learner variables should include variables representing 
other costs than mental effort, such as time on task. Also, to get better insights in 
the quality of learners’ constructed cognitive schemas, more direct measures - such 
as verbal protocols, retrospective reports, and eye tracking data - of their mental 
processes could be taken during training. The inclusion of these variables would 
further refine the basis for adaptive task selection, which in turn may provide 
superior learning results. Although in the study reported in Chapter 3 some addi-
tional rules to select challenging tasks were included, a more sophisticated selection 
algorithm should include a combination of cognitive and motivational measures to 
dynamically select challenging tasks for learners (e.g., a more difficult task or a task 
with less support). In addition, future efforts should implement task selection rules 
to tailor the practice of tasks with different structural features to the learner’s 
progress, for example, by providing additional practice or feedback when a learner 
repeatedly makes an error in a specific solution step. 
 Second, it has been argued that the amount of learner control should increase as 
learner expertise develops (Chapter 2). However, the reported studies kept the level 
of learner control constant. They did not take this aspect of the model into account. 
A fine-tuned model of shared control could first offer learners control over surface 
features, then over surface features plus embedded support, and, finally, over 
surface features plus support plus task difficulty. As learner control increases, 
learners may receive advice – rather than merely knowledge of correct responses - 
to guide them through the complex process of task selection (Kicken, Brand-
Gruwel, & van Merriënboer, 2007). Another possibility would be to explicitly teach 
learners to self-assess themselves and to select optimal tasks (Kostons, van Gog, & 
Paas, 2007). This seems a promising approach which will allow learners to select 
tasks on the basis of their self-assessed competence in combination with their 
reported mental effort. Nevertheless, instructional designers should keep in mind 
that too much choice causes cognitive overload, even for expert learners. 
 Third, the transfer test scores reported in the study described in Chapter 5 were 
relatively low, which may have attenuated learning and made it more difficult to 
find differential effects. In that study, all tasks involved seven types of solution 
steps, from which three steps were repeated twice. This could have resulted in 
incoherence caused by redundant information (i.e., the same step repeated twice) or 
to too detailed information (i.e., an overly specific description of the steps) which 
may have hampered learning and transfer (Nadolski, Kirschner, & van Merriënboer, 
2005). Future studies should reveal whether optimizing the number and the level of 
detail of steps required to solve a problem better enables learners to understand the 
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problem, which will ultimately enhance the learning outcomes and especially 
transfer. 
 Fourth, whereas in Chapters 3 and 4 the transfer test was administered one 
week after the training, in Chapters 5 and 6 the transfer test was administered 
immediately after the training. Hence, nothing can be concluded about short-term 
effects in Chapters 3 and 4 and about long-term effects in Chapters 5 and 6. Future 
research is needed to determine whether the results can also be found with immedi-
ate (Chapters 3 and 4) and delayed (Chapters 5 and 6) assessments of transfer test 
performance. In addition, although all the studies of this dissertation adopted a 
quantitative approach, a more qualitative approach may complement and corrobo-
rate the results. For example, interviews may provide more insight in learners’ 
criteria for their task selections (e.g., whether they ‘pick’ or ‘choose’ a task) and 
their motives to invest effort and time in training. 
 Our findings have important educational implications. Effects of perceived 
control have been widely studied in medicine (e.g., on cancer, stress, asthma) and 
even in gambling, but less in educational contexts. Giving learners control over 
surface features in such a way that they perceive this control is yet beneficial for 
learning. Although surface features are not considered to affect the way a task is 
solved, instructional designers should acknowledge their instructional importance 
because of their strong influence on learning and transfer. A final implication 
pertains to the implementation of dynamic task selection in the field of lifelong 
learning (van Gerven, 2002). Given the ability to adapt the sequence of tasks on the 
basis of prior performance and mental effort invested, this approach may be 
especially appropriate and valuable for the elderly, because this group generally 
shows larger individual differences in those variables than young people do. 
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Summary 
Summary 
Summary Summary Summary 

Modern education emphasizes the need to flexibly personalize learning tasks to the 
needs and interests of individual learners. Rather than one curriculum for all 
learners, such approaches allow each learner to have her own curriculum. The 
sequence of learning tasks performed by the learners can be personalized either by a 
computer program, by the learners themselves, or by a combination of both, that is, 
the program and the learner may share control over task selection. The aim of the 
studies presented in this dissertation is to investigate under which conditions learner 
control over task selection is optimized. 
 Chapter 2 introduces a personalized task selection model with shared instruc-
tional control. Taking the 4C/ID-model (van Merriënboer, 1997) as a starting point, 
the first component comprises (a) task characteristics – level of complexity (i.e., 
from easy to difficult), embedded learner support (i.e., from full support to no 
support), and other task features (e.g., surface features) – and (b) learner character-
istics – task performance and invested mental effort – documented in a learner 
portfolio. The second component refers to the personalization mechanism. Program 
controlled instruction includes task-selection rules used by an instructional agent to 
base its decisions on. Learner controlled instruction lets the learner select the 
learning tasks from a smaller or larger subset of - pre-selected - tasks. The third 
component includes the learning-task database with tasks with diverse levels of 
complexity, embedded support, and other task features. The model combines the 
strong points of program control and learner control into a model with shared 
control over task selection, which is expected to make learning more effective (i.e., 
higher transfer test performance), more efficient (i.e., higher transfer test perform-
ance combined with less invested mental effort), and more motivating. Chapter 2 
also reports the results of a pilot study carried out with a twofold purpose: (a) to test 
whether adaptive task selection with shared control yields better results than 
adaptive task selection with full program control, and (b) to test a web application 
developed according to the model. 
 Taking the model described in Chapter 2 as a basis, Chapter 3 (domain: dietet-
ics) describes a study in which 55 health science students participated in an experi-
ment with a 2 x 2 factorial design with the factors adaptation (present or absent) and 
control over task selection (program control or shared control). It was predicted that 
adapting the selection of tasks to learner variables would lower cognitive load to an 
acceptable level, which enables the allocation of learners’ freed-up cognitive 
resources to learning. This hypothesis was confirmed. Specifically, the results show 
that adapting task difficulty and support to learners’ level of competence and 
perceived task load leads to more effective and efficient learning. However, training 
time in the non-adaptive conditions was unexpectedly low. This could be explained 
by a lack of learners’ willingness to invest more time in training, probably because 
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in comparison with participants in the adaptive conditions they could not perceive 
the relationship between their performance and the levels of difficulty and support 
of the tasks they were working on. The second hypothesis stated that shared control 
over task selection – which provided learners a choice amongst three tasks varying 
in surface features – would enhance motivation. As expected shared control yielded 
higher task involvement (i.e., higher learning outcomes combined with more effort 
directly invested in learning). However, learners’ interest in training was not 
enhanced. This was partially explained by the relatively small amount of choice 
provided and the fact that learner control was limited to task selection. 
 Chapters 4 and 5 (domain: genetics) tested the effects of control over task 
selection based on surface task features (shared or learner control and program 
control). The study described in Chapter 4 is based on the assumption that the 
positive effects of learner control decrease when learners do not perceive the 
control given to them, make didactically unsound choices, or are overwhelmed by 
the amount of choice. Ninety-four students participated in a 2 x 2 factorial experi-
ment with the factors control (program, shared) and variability of surface features 
(low, high). Two interaction effects reveal that learner control over surface features 
of selected tasks enhances transfer test performance and task involvement, but only 
when surface tasks features differ from the previous task. When learners were 
required to make a selection amongst highly similar tasks, transfer test performance 
and task involvement were hindered. The notion of perception of control was used 
to account for this effect, although no direct measures of perceived control were 
included in this study. Again, no differential effects were found on learners’ interest 
in training or the other motivational scales measured after the training. Measuring 
motivation during training, instead of after completing the whole training, could 
have been a more sensitive measure of motivation. Reported self-efficacy was 
found to be higher in the conditions with program control, which seems to indicate 
that when the sequence of tasks is extrinsically controlled, learners have more 
confidence that they will be able to perform the tasks. 
 Similarly, Chapter 5 describes a 2 x 2 factorial experiment carried out with 72 
participants, to study the effects of control over the selection of learning tasks that 
differ in surface task features (program control or learner control) and control over 
the selection of learning tasks that differ in structural task features (program control 
or learner control) of a series of completion tasks. Whereas in the study reported in 
Chapter 4 learners could select from a range of tasks with either similar surface 
features or dissimilar surface features as compared to each prior task, in the study 
reported in Chapter 5 learners could select from a range of tasks with both similar 
and dissimilar surface features and/or similar and dissimilar structural features. It 
was predicted that learner control over the selection of tasks with salient surface 
features would enable learners to select a varied set of personally relevant tasks 
which fosters learning and transfer. This hypothesis was supported for efficiency on 
the far transfer test. It was argued that learners who were given control over surface 
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features probably constructed general cognitive schemas which enabled them to 
flexibly apply the learned solution procedure to solve unfamiliar inheritance tasks. 
In addition, learner control over the selection of tasks with non-salient structural 
features does not enable learners to select a varied set of personally relevant tasks 
and therefore was not expected to yield beneficial effects on learning. As expected, 
learner controlled selection of tasks with different structural features did not 
enhance learning. It was concluded that learners should be explicitly supported in 
recognizing structural task features. 
 Consequently, a final study (Chapter 6; domain: genetics) with 118 students 
investigates whether feedback on the structural features (operationalized as ‘knowl-
edge of correct response’) would support learners to recognize those features. 
Feedback was found to enhance efficiency on the near transfer test, although the 
expected pattern found on the far transfer test failed to reach significance. Probably 
feedback supported learners in acquiring more or less automated cognitive schemas 
that allowed them to perform the steps of the near transfer test as ‘routines’. 
However, far transfer does not allow learners to merely apply a routine but deep 
understanding of the rationale behind the solution steps is crucial. In addition, in 
agreement with our predictions the provision of feedback made training in general 
as well as learner controlled selection of tasks with different structural features 
more motivating and relevant for learners. However, no support was found for the 
hypothesis stating that in combination with learner control over task selection, 
feedback would enhance efficiency. No differences amongst participants in the 
learner controlled conditions were found on efficiency. This seems to support the 
idea that less experienced learners are not able to make effective task selections on 
the basis of structural features and must thus be guided in how to achieve learning 
objectives. 
 Finally, Chapter 7 presents an overview and a general discussion of the results 
of the studies presented in Chapters 3 to 6. The general conclusions are: (a) it is 
advisable to adapt task difficulty and support to learners’ expertise, (b) learners 
should be provided with control over the selection of tasks that differ in surface 
features, provided that choices do not include surface features that are very similar 
to the surface features of the prior task, (c) learners do not benefit from control over 
the selection of tasks that differ in non-salient structural features unless they are 
supported in recognizing those features, and (d) feedback on structural features 
during task practice may supply this support. The provision of feedback made the 
given choices more motivating for the learners, but additional feedback strategies 
are needed to support learners in making an optimal selection of tasks with different 
structural features. In addition, Chapter 7 provides some explanations for unex-
pected results, followed by a discussion of some methodological issues concerning 
the efficiency measures and task involvement measures used in the study described 
in Chapter 3. The final Chapter closes with some considerations for future research 
and practical implications. A more fine-tuned task selection model might include 
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other variables than mental effort and performance, such as time on task and 
motivation, for task selection purposes. Such a fine-tuned model should also 
increase the amount of learner control along with learners’ expertise. Future studies 
must include direct measures of perceived control and personal relevance, as well as 
immediate and delayed measures of transfer of learning. Implications concern the 
further examination of the effects of perceived control in educational settings, the 
importance of the role of salient surface features, and the potential effects of 
dynamic task selection especially for elderly people. 
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In het moderne onderwijs wordt benadrukt dat leertaken flexibel moeten worden 
afgestemd op de behoeften en interesses van de individuele student. In plaats van 
één curriculum voor iedereen kan iedere student dan zijn of haar eigen curriculum 
volgen. De volgorde van de leertaken die de studenten uitvoeren, kan worden 
gepersonaliseerd door een computerprogramma, of door de studenten zelf, of door 
een combinatie daarvan (waarbij het programma en de student de sturing van de 
taakselectie samen doen). In de studies die in dit proefschrift worden beschreven, is 
onderzocht onder welke omstandigheden zelfsturing van de taakselectie optimaal is. 
 Hoofdstuk 2 introduceert een gepersonaliseerd taakselectiemodel met gezamen-
lijke sturing, gebaseerd op het 4C/ID-model (Van Merriënboer, 1997). De eerste 
component omvat (a) taakkenmerken: complexiteit (van gemakkelijk tot moeilijk), 
ingebouwde ondersteuning (van volledige ondersteuning tot geen enkele ondersteu-
ning) en andere taakkenmerken (bijv. oppervlaktekenmerken); en (b) studentken-
merken: taakprestatie en mentale inspanning, die worden vastgelegd in een student-
portfolio. De tweede component heeft betrekking op het personalisatiemechanisme. 
Programmagestuurde instructie omvat taakselectieregels die een instructiegever 
gebruikt om zijn beslissingen op te baseren. Bij zelfgestuurde instructie kiest de 
student de leertaken uit een kleinere of grotere subset van – vooraf geselecteerde – 
taken. De derde component omvat de leertakendatabase met taken van diverse 
complexiteitsniveaus, ingebouwde ondersteuning en andere taakkenmerken. Het 
model combineert de sterke punten van programmasturing en zelfsturing tot een 
model met een gezamenlijke sturing van de taakselectie, dat het leerproces naar 
verwachting effectiever (betere transfer test-prestaties), efficiënter (betere transfer 
test-prestaties én minder mentale inspanning) en motiverender zal maken. Hoofd-
stuk 2 beschrijft ook de resultaten van een pilotstudie die werd uitgevoerd met het 
tweeledige doel om: (a) te toetsen of adaptieve taakselectie met gezamenlijke 
sturing betere resultaten oplevert dan adaptieve taakselectie met volledige pro-
grammasturing, en (b) een op basis van dit model ontwikkelde webapplicatie te 
toetsen. 
 Aan de hand van het in hoofdstuk 2 uitgewerkte model beschrijft hoofdstuk 3 
(vakgebied: diëtetiek) een studie waarbij 55 studenten gezondheidskunde deelna-
men aan een 2 x 2 factorieel experiment met als factoren adaptatie (aanwezig of 
afwezig) en sturing van taakselectie (programmasturing of gezamenlijke sturing). 
De veronderstelling was dat het aanpassen van de taakselectie aan studentvariabelen 
de cognitieve belasting zou verlagen tot een aanvaardbaar niveau, waardoor de 
student de vrijgemaakte cognitieve capaciteit zou kunnen gebruiken om te leren. 
Deze hypothese werd bevestigd. Meer specifiek laten de resultaten zien dat wanneer 
de taakmoeilijkheid en ondersteuning worden aangepast aan het competentieniveau 
en de vermeende taakbelasting van de studenten, dit tot effectiever en efficiënter 
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leren leidt. Zonder aanpassing daarvan bleek de trainingstijd echter onverwacht 
kort. Dit zou verklaard kunnen worden door een gebrek aan bereidheid onder de 
studenten om meer tijd te investeren in de training, waarschijnlijk omdat zij in 
vergelijking met de deelnemers voor wie de aanpassing wél gold, geen verband 
zagen tussen hun prestatie en de moeilijkheidsgraad van en de ondersteuning bij de 
taken waaraan ze werkten. De tweede hypothese was dat gezamenlijke sturing van 
de taakselectie – waarbij de studenten de keuze kregen tussen drie taken met 
verschillende oppervlaktekenmerken – de motivatie zou verbeteren. Zoals ver-
wacht, leidde gezamenlijke sturing tot meer taakbetrokkenheid (d.w.z. betere 
leerresultaten gecombineerd met meer directe leerinspanning). De belangstelling 
van de studenten voor de training nam echter niet toe. Dit werd deels verklaard door 
de relatief geringe keuzemogelijkheden en het feit dat de zelfsturing was beperkt tot 
de taakselectie. 
 De hoofdstukken 4 en 5 (vakgebied: genetica) gaan in op de effecten van 
sturing van taakselectie op basis van de oppervlaktekenmerken van taken (geza-
menlijke of zelfsturing en programmasturing). De studie die in hoofdstuk 4 wordt 
beschreven, gaat uit van de veronderstelling dat de positieve effecten van zelfstu-
ring afnemen als studenten niet doorhebben welke sturingsmogelijkheden zij 
hebben, of als zij didactisch onverantwoorde keuzes maken, of overweldigd worden 
door het aantal keuzes. Vierennegentig studenten namen deel aan een 2 x 2 factori-
eel experiment met als factoren sturing (programma, gezamenlijk) en variabiliteit 
van oppervlaktekenmerken (laag, hoog). Twee interactie-effecten laten zien dat 
zelfsturing van oppervlaktekenmerken van geselecteerde taken een positief effect 
heeft op de transfer test-prestaties en de taakbetrokkenheid, maar alleen als de 
oppervlaktekenmerken van de taken verschillen van de vorige taak. Wanneer 
studenten moesten kiezen tussen sterk overeenkomende taken, had dit een negatief 
effect op de transfertestprestaties en de taakbetrokkenheid. Dit effect werd ver-
klaard aan de hand van het begrip ‘perceptie van controle’, hoewel dit in deze studie 
niet direct gemeten werd. Ook hier was geen sprake van differentiële effecten op de 
belangstelling van studenten voor de training of op de andere motivatie-indicatoren 
die na afloop van de training werden gemeten. Het was wellicht beter geweest om 
de motivatie tijdens de training te meten in plaats van na afronding van de hele 
training. De self-efficacy bleek hoger te zijn in het geval van programmasturing, 
hetgeen erop lijkt te duiden dat wanneer de volgorde van taken van buitenaf wordt 
gestuurd, studenten er meer vertrouwen in hebben dat zij in staat zullen zijn de 
taken uit te voeren. 
 Hoofdstuk 5 beschrijft een soortgelijk 2 x 2 factorieel experiment met 72 
deelnemers. Dit was bedoeld om na te gaan wat de effecten zijn van sturing van de 
selectie van leertaken die qua oppervlaktekenmerken verschillen (programmastu-
ring of zelfsturing) en sturing van de selectie van leertaken die qua structurele 
kenmerken verschillen (programmasturing of zelfsturing) bij een reeks completeer-
opdrachten. Terwijl studenten in de in hoofdstuk 4 beschreven studie konden kiezen 
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uit een reeks taken met dezelfde of andere oppervlaktekenmerken dan iedere 
voorgaande taak, konden zij in de in hoofdstuk 5 beschreven studie kiezen uit een 
reeks taken met dezelfde en andere oppervlaktekenmerken en/of dezelfde en andere 
structurele kenmerken. Aangenomen werd dat, bij zelfsturing van de selectie van 
taken met opvallende oppervlaktekenmerken, de studenten in staat zouden zijn om 
een gevarieerd geheel van voor hen persoonlijk relevante te taken te selecteren dat 
bevorderlijk zou zijn voor leren en transfer. Deze hypothese werd bewezen voor 
efficiency bij de verre transfer test. Gesteld werd dat studenten die taakselectie 
konden sturen op basis van oppervlaktekenmerken, vermoedelijk algemene cogni-
tieve schema’s construeerden om de geleerde oplossingsprocedure flexibel toe te 
kunnen passen voor het oplossen van onbekende erfelijkheidsopdrachten. Bij 
zelfsturing van de selectie van taken met niet-opvallende structurele kenmerken zijn 
studenten niet in staat om een gevarieerd geheel van voor hen persoonlijk relevante 
taken te selecteren, en daarom werd niet verwacht dat dit gunstige leereffecten zou 
opleveren. Zelfgestuurde selectie van taken met verschillende structurele kenmer-
ken leidde inderdaad niet tot beter leren. Geconcludeerd werd dat studenten expli-
ciet moeten worden geholpen om structurele taakkenmerken te herkennen. 
 Vervolgens onderzoekt een laatste studie (hoofdstuk 6; vakgebied: genetica) 
met 118 studenten of feedback op de structurele kenmerken (geoperationaliseerd als 
‘informatie over het juiste antwoord’) studenten zou helpen om die kenmerken te 
herkennen. Feedback bleek de efficiency te vergroten bij de nabije transfer test, 
hoewel voor het verwachte patroon bij de verre transfer test geen significant effect 
optrad. Waarschijnlijk hielp de feedback de studenten om min of meer geautomati-
seerde cognitieve schema’s te verwerven waarmee zij de stappen van de verre 
transfer test ‘routinematig’ konden uitvoeren. Bij verre transfer zijn studenten 
echter niet in staat om domweg routinematig te werk te gaan, maar is diepgaand 
inzicht in het principe achter de oplossingsstappen cruciaal. Geheel volgens onze 
voorspellingen maakte het geven van feedback bovendien de training in het alge-
meen en de zelfgestuurde selectie van taken met verschillende structurele kenmer-
ken motiverender en relevanter voor studenten. Er werd echter geen onderbouwing 
gevonden voor de hypothese dat feedback in combinatie met zelfsturing van de 
taakselectie de efficiency zou vergroten. Ten aanzien van efficiency werden geen 
verschillen gevonden onder de deelnemers voor wie zelfsturing gold. Dit lijkt te 
bevestigen dat minder ervaren studenten niet in staat zijn tot effectieve taakselectie 
op basis van structurele kenmerken en dus moeten worden geholpen bij het berei-
ken van hun leerdoelen. 
 Hoofdstuk 7 omvat tot slot een overzicht en een algemene bespreking van de 
resultaten van de in hoofdstuk 3 t/m 6 beschreven studies. De algemene conclusies 
zijn: (a) het is raadzaam om taakmoeilijkheid en ondersteuning aan te passen aan 
het kennisniveau van studenten, (b) studenten moeten controle hebben over de 
selectie van taken die qua oppervlaktekenmerken verschillen, mits daarbij geen 
sprake is van oppervlaktekenmerken die sterk overeenkomen met die van de 
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voorgaande taak, (c) studenten hebben geen baat bij zelfsturing van de selectie van 
taken die qua niet-opvallende structurele kenmerken verschillen, tenzij ze hulp 
krijgen bij het herkennen van die kenmerken, en (d) feedback over structurele 
kenmerken tijdens het uitvoeren van taken kan in deze hulp voorzien. Het geven 
van feedback maakte de gegeven keuzes motiverender voor de studenten, maar er 
zijn aanvullende feedbackstrategieën nodig om studenten te helpen bij het maken 
van een optimale selectie van taken met verschillende structurele kenmerken. 
Daarnaast biedt hoofdstuk 7 een aantal verklaringen voor onverwachte resultaten, 
gevolgd door een bespreking van enkele methodologische aspecten met betrekking 
tot de in hoofdstuk 3 gebruikte maten voor efficiency en taakbetrokkenheid. Het 
laatste hoofdstuk wordt afgesloten met een aantal overwegingen voor toekomstig 
onderzoek en praktische implicaties. Een verfijnder taakselectiemodel zou naast 
mentale inspanning en prestatie ook andere variabelen voor taakselectiedoeleinden 
kunnen omvatten, zoals ‘time-on-task’ en motivatie. Een dergelijk verfijnd model 
zou ook de mate van zelfsturing moeten vergroten naargelang van het kennisniveau 
van de student. Toekomstige studies zouden directe maten voor ‘perceptie van 
controle’ en persoonlijke relevantie moeten omvatten, en ook directe en uitgestelde 
maten voor de transfer van leren. Mogelijke implicaties hebben betrekking op nader 
onderzoek van de effecten van perceptie van controle in onderwijsomgevingen, het 
belang van de rol van opvallende oppervlaktekenmerken, en de potentiële effecten 
van dynamische taakselectie, met name voor ouderen. 
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Los métodos de enseñanza actuales enfatizan la necesidad de personalizar, de una 
manera flexible, las tareas de aprendizaje según las necesidades e intereses de cada 
alumno. Más que un currículum para todos los alumnos, cada uno debe disponer de 
su propio currículum. La secuencia de las tareas de aprendizaje ejecutadas por los 
alumnos puede ser personalizada por un programa (en inglés, program control), por 
ellos mismos (learner control), o por una combinación de ambos; es decir, el 
programa y el alumno pueden compartir el control en la selección de tareas de 
aprendizaje (shared control). El objetivo principal de esta tesis es investigar qué 
condiciones ayudan a los alumnos a controlar mejor la selección de tareas de 
aprendizaje. 
 Para conseguirlo, el Capítulo 2 propone un modelo de personalización de tareas 
de aprendizaje basado en el control compartido. El modelo incluye tres elementos y 
se basa en el modelo de diseño instruccional Four Components Instructional Design 
Model (4C/ID; van Merriënboer, 1997). El primer elemento del modelo propuesto 
en el Capítulo 2 incluye (a) características de las tareas de aprendizaje: el nivel de 
dificultad (de fácil a difícil), la ayuda al alumno (learner support; de ayuda 
completa a sin ayuda), y otras características de las tareas de aprendizaje (por 
ejemplo, características superficiales o surface features que en principio son 
irrelevantes para resolver una tarea); y (b) características del alumno: el rendimiento 
y esfuerzo cognitivo (mental effort) documentado en el porfolio del alumno. El 
segundo elemento se refiere al mecanismo de personalización. Cuando el programa 
lleva a cabo la selección de tareas, incluye reglas que son utilizadas por un agente 
instruccional con el fin de decidir qué tareas deben seleccionarse. Cuando la 
selección de tareas es llevada a cabo por el alumno, éste las elige basándose en un 
subset de tareas previamente seleccionadas por el programa. El tercer elemento es 
una base de datos que incluye tareas de distintos niveles de dificultad, ayuda, y 
otras características. El modelo combina los puntos más fuertes del control llevado 
a cabo por el programa y por el alumno para seleccionar tareas de aprendizaje a 
través del control compartido, para facilitar un aprendizaje más efectivo (mayor 
rendimiento en la transferencia de conocimientos), más eficiente (mayor rendi-
miento en la transferencia de conocimientos combinado con menor esfuerzo 
cognitivo), y más motivante. El Capítulo 2 también reporta los resultados de un 
estudio piloto llevado a cabo con dos propósitos: (a) comprobar si la selección 
adaptativa de tareas combinada con el control compartido produce mejores resulta-
dos que la selección adaptativa de tareas combinada con un control total por parte 
del programa, y (b) examinar una aplicación web desarrollada según el modelo 
propuesto. 
 Partiendo del modelo descrito en el Capítulo 2, el Capítulo 3 describe un 
estudio (que toma la Dietética como dominio base) en el que 55 estudiantes de 
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Ciencias de la Salud participaron en un experimento factorial 2 x 2 con los factores 
Adaptación (presente o ausente) y Control sobre la selección de tareas (programa o 
compartido). La hipótesis planteada sostiene que, adaptando la selección de las 
tareas a las características de cada alumno, se reduciría la carga cognitiva a un nivel 
aceptable, lo que permitiría a los alumnos destinar al aprendizaje los recursos 
cognitivos que no utilizó. Esta hipótesis fue confirmada. De manera más específica, 
los resultados permiten observar que el hecho de adaptar el nivel de dificultad y de 
ayuda al nivel de competencias del alumno y, además, a la carga cognitiva percibida 
por el alumno, origina un aprendizaje más efectivo y eficiente. Sin embargo, el 
tiempo utilizado en las condiciones experimentales donde no existía dicha adap-
tación fue inesperadamente bajo. Esto podría deberse a la falta de disposición de los 
alumnos de invertir más tiempo en su formación, probablemente porque en com-
paración con los participantes que trabajaron en las condiciones donde hubo 
adaptación, aquellos no tuvieron la oportunidad de observar la relación entre su 
rendimiento y los niveles de dificultad y ayuda asociadas a las tareas recibidas. En 
una segunda hipótesis se predijo que el control compartido en la selección de tareas 
- ofreciendo al alumno tres opciones a elegir variando en las características superfi-
ciales - aumentaría su motivación. Tal y como se había planteado en la hipótesis, el 
control compartido conllevó una mayor implicación de los alumnos en las tareas de 
aprendizaje (mejores resultados con un esfuerzo cognitivo mayor invertido directa-
mente al aprendizaje). Los alumnos, sin embargo, mostraron un interés similar en 
todas las condiciones experimentales, probablemente por el número reducido de 
alternativas ofrecidas y porque el control ofrecido al alumno se limitó a la selección 
de tareas.  
 En los Capítulos 4 y 5 (centrados en el campo de la Genética) se investigaron 
los efectos del control en la selección de tareas en base a sus características superfi-
ciales (programa o compartido). El estudio descrito en el Capítulo 4 se basa en la 
idea de que los efectos positivos de proveer de control al alumno disminuyen 
cuando éste no percibe el control recibido, sus elecciones no son didácticamente 
correctas, o el número elevado de elecciones ofrecidas los sobrecarga cogniti-
vamente. Noventa y cuatro alumnos participaron en un experimento factorial 2 x 2 
en el que los factores eran el control (programa o compartido) y la variabilidad de 
las características superficiales de las tareas (baja o alta). Dos efectos de interacción 
revelan que proveer de control al alumno sobre las características superficiales 
mejora la transferencia de conocimientos y la implicación de los alumnos, pero 
únicamente cuando las características superficiales difieren de las de la tarea 
anterior. Cuando los alumnos deben seleccionar entre tareas de aprendizaje dema-
siado similares, la transferencia de conocimientos y su implicación se pueden ver 
afectadas negativamente. La percepción del control ofrecido (perceived control) 
puede justificar este efecto, aunque en este estudio no se incluyó ninguna medida 
directa. Una vez más, no se encontraron diferencias en el interés o en las otras 
escalas incluidas posteriormente a la instrucción para medir la motivación. La 
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evaluación de la motivación durante la instrucción, en lugar de después de la 
instrucción, podría haber sido una medida más sensible de la motivación. La auto-
eficacia (self-efficacy) resultó superior cuando es el programa el responsable de 
seleccionar las tareas. Este hecho parece indicar que cuando la secuencia de tareas a 
ejecutar ha sido realizada por un agente externo, los alumnos confían más en su 
propia capacidad para realizar las tareas.  
 Del mismo modo, el Capítulo 5 describe un experimento factorial 2 x 2 en el 
que participaron 72 alumnos. En éste se estudiaron si los efectos del control sobre 
una serie de tareas que deben completarse difieren según si el control ofrecido a los 
alumnos es sobre las características superficiales (programa o alumno) o sobre las 
características estructurales (programa o alumno). Mientras que en el estudio 
descrito en el Capítulo 4 los alumnos debían elegir entre un abanico de tareas con 
características superficiales similares o distintas de las de la tarea ejecutada 
anteriormente, en el estudio descrito en el Capítulo 5 los alumnos tenían la opción 
de elegir entre tareas con características superficiales y estructurales similares y 
distintas con respecto a la tarea ejecutada anteriormente. La hipótesis fue que el 
control del alumno sobre la selección de tareas en función de las características 
superficiales le permitiría seleccionar un conjunto de tareas personalmente rele-
vantes para ellos, lo que le ayudaría a mejorar el aprendizaje y la transferencia de 
conocimientos. Esta hipótesis se confirmó con respecto a la eficiencia en la trans-
ferencia lejana (far transfer). Los alumnos que eligieron las características superfi-
ciales de las tareas construyeron esquemas cognitivos generales que les permitieron 
utilizar de manera flexible el procedimiento de solución de los problemas (solution 
procedure) aprendido a la hora de resolver ejercicios de Genética que les eran 
menos familiares. Por otra parte, se predijo que proveer al alumno de control en la 
selección de tareas en función de sus características estructurales no influiría 
positivamente en su aprendizaje, ya que la baja perceptibilidad de estas característi-
cas no les permitirá seleccionar un conjunto variado de tareas relevantes para ellos. 
Como se planteó en la hipótesis, el control dado al alumno en función de las 
características estructurales no mejoró su aprendizaje. Se concluyó, por tanto, que 
los alumnos necesitan ayuda para reconocer estas características.  
 Finalmente, se llevo a cabo un último estudio, que se describe en el Capítulo 6 
(con la Genética nuevamente como campo), con 118 alumnos, para investigar si la 
provisión de feedback sobre las características estructurales (operacionalizado como 
“conocimiento de respuesta correcta” – knowledge of correct response) ayuda a los 
alumnos a reconocer dichas características. Los resultados muestran que el feedback 
facilitó la transferencia de conocimientos cercana (near transfer). Aunque los 
resultados de la transferencia lejana muestran el patrón esperado, éste no alcanzó 
relevancia estadística. Probablemente, el feedback ayudó a los alumnos a adquirir 
esquemas cognitivos más o menos automatizados que les permitieron realizar los 
pasos del test en forma de rutinas. Sin embargo, la transferencia lejana requiere más 
que aplicar una mera rutina, ya que es fundamental entender profundamente la 
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lógica de los pasos para llegar a la solución. Además, tal y como se había sugerido 
en la hipótesis, proveer feedback trajo como consecuencia que los alumnos perci-
bieran la instrucción como más motivadora y relevante. Sin embargo, la hipótesis 
que planteaba que la provisión de feedback, en combinación con la provisión de 
control al alumno sobre la selección de tareas en base a caracteristicas estructurales, 
ocasionaría un aprendizaje más eficiente, no se confirmó. No se encontraron 
diferencias significativas entre los participantes de las dos condiciones que dieron 
control al alumno (con y sin feedback). Esto podría indicar que alumnos con menos 
experiencia no son capaces de elegir tareas en función de las características estruc-
turales de una manera efectiva y, por tanto, deben contar con apoyo guiado para 
mejorar sus objetivos educativos. 
 Para concluir, el Capítulo 7 presenta un resumen y una discusión general de los 
resultados de los estudios expuestos en esta tesis. En general, las conclusiones son: 
(a) es recomendable adaptar el nivel de dificultad y ayuda al nivel de experiencia de 
los alumnos, (b) los alumnos deben tener la posibilidad de elegir sus propias tareas 
de aprendizaje en función de las características superficiales, siempre y cuando las 
alternativas ofrecidas no incluyan características superficiales demasiado similares 
a las de la tarea anterior, (c) los alumnos no se beneficiarán de la elección de tareas 
basándose en las características estructurales a no ser que se les ayude a reconocer 
dichas características, y (d) este apoyo puede ofrecerse durante la ejecución de las 
tareas de aprendizaje mediante feedback sobre las características estructurales. 
Proporcionar feedback hace que los estudiantes perciban las alternativas ofrecidas 
como más motivadoras, aunque es necesario implementar estrategias de feedback 
adicionales con el fin de ayudarles a hacer una elección óptima. Adicionalmente, el 
Capítulo 7 incluye explicaciones de los resultados no esperados de esta tesis, y 
prosigue describiendo algunas cuestiones metodológicas relacionadas con las 
medidas de eficiencia y de implicación utilizadas en el estudio descrito en el 
Capítulo 3. Este último Capítulo 7 destaca diversas consideraciones para futuras 
investigaciones y finaliza subrayando una serie de implicaciones prácticas. Un 
modelo de selección de tareas más elaborado podría incluir otras variables aparte 
del esfuerzo cognitivo y el rendimiento como, por ejemplo, el tiempo invertido en 
las tareas y la motivación del alumno. Un modelo más elaborado también debería 
facilitar al alumno más control a medida que éste adquiera más experiencia. 
Estudios posteriores deben incluir medidas de percepción de control y relevancia 
personal, así como medidas de transferencia de conocimiento inmediatas y a largo 
plazo. Las implicaciones prácticas incluyen investigaciones adicionales sobre los 
efectos de percepción de control en entornos educativos, la importancia de las 
características superficiales en educación, y los efectos potenciales de la selección 
dinámica de tareas en personas de edad avanzada. 
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