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Abstract

This study introduces GARCH models with cross-sectional market volatility, which

we call GARCHX model. The cross-sectional market volatility is equlvalent to

common heteroskedasticity in asset specific returns, which was suggested by Connor

and Linton (2001) as an important component in individual asset volatility. Using

UK and US data, we find that daily return volatility can be better specified with

GARCHX models, but GARCHX models do not necessarily perform better than

conventional GARCH models in forecasting.
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1 Introduction

Volatility has long been used as a risk measure. Traditionally, volatility repre-

sented by variance (or standard deviation) is decomposed into diversifiable and

non-diversifiable components. This measure of volatility, however, is unconditional

and does not recognize that there are interesting patterns in asset volatility; e.g.,

time-varying and clustering properties. Over the last two decades financial econo-

metricians have introduced various models to explain and predict these patterns in

volatility. One of the important volatility models is the autoregressive conditional

heteroskedasticity (ARCH) family of models introduced by Engle (1982). Another

important model is the stochastic volatility (SV) model introduced by Taylor (1986)

and Hull and White (1987) among others.

In this study, we introduce a GARCH model that includes market volatility as

an additional explanatory variable. The motivation of using the market volatility is

to include cross-sectional relationship between asset returns and market returns in

linear factor models. With the proposed model, we are able to investigate if there is

a market wide common component in volatility and find if the common component

is useful for explaining and forecasting individual stock volatility.

Since Fama and French (1993) introduced some accounting factors in linear re-

gression framework, linear factor models have been increasingly popular. When

we accept linear factor models as our return process, volatility of a stock is cross-

sectionally decomposed into multiple components of the factors. A recent study on

this area by Campbell, Lettau, Malkiel, and Xu (2001) decomposed the total volatil-

ity of a stock into three components, market volatility, industry volatility, and firm

specific (idiosyncratic) volatility, and then showed that the market volatility is an

important component of the stock volatility and tends to lead the idiosyncratic

volatility.
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One major problem in including market volatility into the GARCH framework is

the appropriate choice of market volatility. The squared values of market returns or

factor values are highly noisy and may not work in conditional volatility models; see

Andersen and Bollerslev (1997) and Hwang (2001b) for example. An increasingly

popular method to obtain less noisy and parameter free volatility is to use high

frequency data; for example, daily volatility can be obtained by measuring summa-

tions of intra-day squared returns. For studies using this method, see Andersen and

Bollerslev (1997), Andersen, Bollerslev, Diebold, and Labys (1999) and Campbell,

Lettau, Malkiel, and Xu (2001) among others.

In this study we use cross-sectional market volatility. The cross-sectional market

volatility is a measure of disperse of individual asset returns with respect to the mar-

ket return for a given time. Hwang (2001a), using linear factor models, showed that

there is an analytical relationship between cross-sectional market volatility and time-

series market volatility. He compared the properties of the cross-sectional market

volatility with those of time-series market volatility such as squared market returns

and conditional market volatility in the UK and US markets. The empirical re-

sults showed that cross-sectional market volatility is not only highly correlated with

time-series market volatility but also more informative than squared market returns,

suggesting that cross-sectional market volatility can be useful for the explanation

and forecasting of time-series market volatility.

The cross-sectional market volatility can be considered common volatility in mar-

ket. Recently, Connor and Linton (2001), using a large number of monthly UK equity

returns, showed that the dynamic heteroskedasticity can be decomposed into three

components; common factor-related heteroskedasticity, common heteroskedasticity

in asset-specific returns, and purely asset specific heteroskedasticity. They found

evidence of common heteroskedasticity in asset-specific returns. The cross-sectional

market volatility in our study is equivalent to the common heteroskedasticity in
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asset-specific returns which is a cross-sectional average of individual volatility. In

addition, since the cross-sectional and time-series market volatility is related both

analytically and empirically (Hwang, 2001a), the common factor-related (market

factor related) heteroskedasticity may also be explained with the cross-sectional

market volatility.

We call our model GARCHX models since the constant in GARCH models is

replaced by an extra term, i.e., the lagged cross-sectional market volatility, and

thus the GARCHX model does not need additional parameters. Note that the

cross-sectional market volatility is lagged to make the GARCHX mode conditional.

The GARCHXmodel is simple, but includes information on some important factors,

especially the market factor, via the cross-sectional volatility. Our model is a special

case of the multivariate Factor-GARCH model of Engle, Ng, and Rothchild (1990)

in the sense that only one factor, i.e., the market factor is included. Note that the

main problem in the multivariate GARCH models is that the number of parameters

to be estimated grows very fast and we need to impose some restrictions to make the

conditional covariance matrix positive definite. Several methods have been suggested

to solve these problems; see chapter 12, Campbell, Lo, and MacKinlay (1997).

GARCHX models are also a generalised version of models by Braun, Nelson,

and Sunier (1995) and Glosten, Jagannathan, and Runkle (1993), but di!erent from

Braun, Nelson, and Sunier (1995) in the sense that cross-sectional volatility is used.

A di!erent version of GARCHX models was introduced by Apergis (1998) to investi-

gate how short-run deviations from the relationship between stock prices and certain

macroeconomic fundamentals a!ect stock market volatility. In the Apergis model,

the squared past error-correction term which represents the short run deviations

is added to the GARCH conditional volatility. GARCHX models may be consid-

ered a simplified version of Connor and Linton (2001). Without using complicated

econometric models, we examine if the inclusion of the common heteroskedasticity
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in factors and asset specific returns can improve modelling volatility and also if it

can be used for forecasting volatilities.

Using 10 years UK and US daily data, we show that the return volatility (i.e.,

squared returns) of an individual stock can be better specified with GARCHXmodels

than with GARCH models. The maximum likelihood values, significance of the

parameter on the cross-sectional market volatility, and some other statistics show

that GARCHX models perform better than GARCH models in general. We also use

GARCHX models for forecasting return volatility. As expected, GARCHX models

show little improvement in forecasting performance for return volatility which is

highly noisy in the GARCH framework. See Andersen and Bollerslev (1997) for the

detailed explanation on the di"culties of forecasting return volatility with GARCH

models.

This study shows that common cross-sectional heteroskedasticity in stock returns

is an important component in conditional volatility models. We find evidence that

more than three-quarters of individual stocks included in the FTSE350 and S&P500

show a significant coe"cient on the lagged cross-sectional market volatility. If we

allowed current cross-sectional market volatility, we may get stronger evidence of

common volatility for the explanation of individual stock volatility. This finding is

consistent with Jones (2001) and Connor and Linton (2001) who suggested common

volatility as an important source of individual stock volatility. We also show how

much of an individual stock volatility can be explained by common volatility. We

find that on average 12% to 16% of individual volatility is explained with the market

common volatility. This is what Campbell, Lettau, Malkiel, and Xu (2001) found

during a similar sample period with monthly data.

Cross-sectional volatility can also be used in stochastic volatility (SV) models;

SVX models. We expect such models work as well as in the GARCHX context. In

this study we consider the market factor only. However, other factors may also be
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included. We leave these for future research.

In the next section, we explain why cross-sectional market volatility may be in-

cluded for conditional volatility models and introduce GARCHX models. In section

3, using UK and US data, we show that squared return can be better specified with

GARCHX models than with GARCH models and how GARCHX models can be

used for volatility forecasting. Conclusions are in section 4.

2 GARCH Models with Cross-sectional market

Volatility

The introduction of GARCHX models needs explanation of cross-sectional expecta-

tion for cross-sectional statistics such as mean and variance.

2.1 Time-series and Cross-sectional Expectation

In this section, we define a notion of expections essentially equivalent to weighted

moments. For any variable xit, where i = 1, 2, ..., N and t = 1, 2, ..., T , the time-

series expectation is defined as

ET (xit) =
1

T

T!

t=1

xit for i = 1, 2, ..., N.

On the other hand, the cross-sectional expectation for the variable xit is defined to

be

EC(xit) =
N!

i=1

witxit, for t = 1, 2, ..., T, (1)

where wit is an appropriate cross-sectional weight on asset i at time t. This weight

may be a probability measure if wit ! 0 for all i and t, and
"N
i=1wit = 1 for all

t. One simple example is wit =
1

N
for all i so that EC(xit) =

1

N

"N
i=1 xit which is

an equally weighted cross-sectional average at time t, corresponding to a discrete

version of the uniform distribution.
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Cross-sectional expectations can therefore be thought of as taking expectations

with respect to a measure where the weights are determined by the market. Note

that we have the time-series expectation for each asset so that we have N expecta-

tions, whilst we have T cross-sectional expectations. Using the definition of expec-

tations above, we can calculate the mean, variance, skewness, and kurtosis in both

the time-series and cross-sectional world.

A simple, but widely used method to obtain time-series volatility is to apply a

return process to calculate errors and then square them. For example, the AR(1)

process may be used as the return process to calculate errors. That is, for returns,

rit,

rit = ai + birit!1 + !it, (2)

where a and b are parameters, volatility is calculated by estimating !2it. Skewness

and kurtosis can also be obtained by estimating !3it and !
4
it, respectively.

On the other hand, cross-sectional market volatility needs many asset returns in

the market. Suppose that there areN assets in the market. Then, the cross-sectional

market return at time t is

rmt =
N!

i=1

witrit, (3)

which is equivalent to the (equally or value weighted) market return at time t. Thus,

one definition of cross-sectional market volatility, "2C,mt, is

"2C,mt =
N!

i=1

wit(rit " rmt)
2. (4)

Therefore, the cross-sectional volatility represents volatility calculated across a uni-

verse of stocks. When residuals obtained with a linear factor model are used, the

calculated cross-sectional market volatility is equivalent to the common asset specific

volatility of Connor and Linton (2001).

Cross-sectional skewness and kurtosis can also be calculated accordingly. These

statistics can be calculated for an industry level, or a specific set of stocks such as

6



a portfolio. In the special case that wit =
1

N
, equation (4) gives the practitioners

notion of cross-sectional volatility of a portfolio. Therefore, an individual asset’s

cross-sectional volatility does not exist.

2.2 GARCHX Models

The model we propose uses the lagged cross-sectional market volatility as an ad-

ditional explanatory variable in the conventional GARCH model. This is a special

case of the factor-ARCH model by Engle, Ng, and Rothchild (1990). However,

Hwang (2001a) argues that the cross-sectional volatility provides more information

on the time-varying factors than the time-series volatility. Thus, we propose a sim-

ple conditional volatility model including the cross-sectional market volatility. Our

model avoids the econometric hurdle of ensuring the positivity of conditional volatil-

ity in the factor-ARCH model, while providing better results than the conventional

GARCH model.

Let us first consider the following cross-sectional relationship between the returns

of asset i and the returns of the market portfolio and K factors;

rit = #0i + #mirmt + #1if1t+, ...,+#KifKt + $ it (5)

where #0i, #mi and #ki, k = 1, ...,K, are parameters, and $ it is a mean zero error

process, $ it˜N(0, "
2
i!), and rmt and fkt are the market portfolio return and the re-

alised value of factor k at time t. As in conventional linear factor models, we assume

that the explanatory variables, rmt and fkt are orthogonal, and rit and rmt represent

excess returns calculated with risk free returns. Factors may be macroeconomic,

firm specific characteristics, or based on market micro-structure, see Chen, Roll,

and Ross (1986), Schwert (1989), Fama and French (1992), Lakonishok, Shleifer

and Vishny (1994), Basu (1977) for example.

The model in (5) implies that there are multiple factors; the market portfolio
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and K other factors. Therefore, the model is a multi-factor-GARCH model. The

expected return conditional on - t!1 available up to time t" 1 is

ETt!1[rit|- t!1] = #0i+#miE
T
t!1[rmt|- t!1]+#1iE

T
t!1[f1t|- t!1]+, ...,+#KiE

T
t!1[fKt|- t!1].

(6)

Using (5) and (6), we have the volatility of the return on asset i at time t1

%2it = #
2

mi%
2

mt + #
2

1i%
2

1t+, ...,+#
2

Ki%
2

Kt + $
2

it

where %it = rit"E
T
t!1[rit|- t!1], %mt = rmt"E

T
t!1[rmt|- t!1] and %kt = fkt"E

T
t!1[fkt|- t!1].

The above equation shows the cross-sectional relationship between individual asset’s

time-series volatility and factor volatilities.

Note that there is a significant di!erence between #mi and #ki. The cross-sectional

average of #mi is one, whilst those of #ki are zero; see Hwang and Salmon (2001)

for further discussion. This means that #mi is distributed around one, whilst #ki is

distributed around zero. In addition, in many cases, the coe"cients on factors other

than the market factor are not significantly di!erent from zero; see Hall, Hwang,

and Satchell (2001) for example. Campbell, Lettau, Malkiel, and Xu (2001) also

showed that market volatility and firm asset specific volatility are the important

components for the explanation of individual asset volatility.2 Furthermore, when

we take squared values of #mi and #ki, #
2

mi may still be significant in many cases

but #2ki may not. In addition, the identification of factors other than the market

factor is generally di"cult and controversial. Thus as long as our universe is one

rational market, we may approximate asset i’s return volatility with the following

1Generally if factors are not orthogonal to each other, then there should be cross-product terms

in the equation, resulting in multi-factor volatility models as in Engle, Ng, and Rothchild (1990).
2We do not use industry volatility in our study. However, the industry volatility is also an

important component in the individual asset volatility as shown in Campbell, Lettau, Malkiel, and

Xu (2001), and can be included in our model.
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cross-sectional relationship with market volatility;

%2it # #
2

mi%
2

mt + $
2

it. (7)

The popular GARCH(1,1) process for asset i is

hit = &i0 + &i1%
2
it!1 + &i2hit!1, (8)

where hit is the conditional volatility of asset i at time t. GARCH models uses

past volatility and conditional volatility to explain the current conditional volatil-

ity. However, in GARCH models we do not find market volatility which may be an

important component in volatility. That is, the important cross-sectional relation-

ship between the market volatility and the individual asset’s volatility in (7) is not

included in the conventional GARCH model.

One way to include market volatility in the GARCH (1,1) model is

hit = &i0 + &i1%
2

it!1 + &i2hit!1 + &i3%
2

mt!1. (9)

This is the same as the GARCH-X model proposed by Apergis (1998). Throughout

this study, we call the model in (9) GARCHX-T(1,1) model to di!erentiate from

our GARCHX models. For the GARCHX-T(1,1) model to be stationary, we need

&i1 + &i2 < 1 (10)

as in the ordinary GARCH (1,1) model. However, one major problem in the above

model is the non-negativity condition. For the conditional volatility process in (9)

to be always positive, we need

&i0 > 0,&ij ! 0, j = 1, 2, 3. (11)

However, during empirical estimation, we face many cases which have &i0 $ 0 but

still
1

T

T!

t=2

(&i0 + &i3%
2

mt!1) > 0. (12)
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The condition in (12) is not necessary and su"cient for the positiveness of the condi-

tional volatility hit in (9), but the conditions in (11) seem to be too strong in empir-

ical calculation. We tried to estimate model (9) using conditions (11) and (12) and

found many cases where the strict nonnegativity condition of (11) is too strong. In

addition, one more parameter needs to be estimated than the GARCH(1,1) model.3

An alternative model is

hit = &i0%
2
mt!1 + &i1%

2
it!1 + &i2hit!1. (13)

Here, for stationarity and nonnegativity

&i1 + &i2 < 1,&i0 > 0,&i1 ! 0,&i2 ! 0, (14)

which is exactly the same as the ordinary GARCH model. The unconditional vari-

ance of asset i is

ET [hit] =
&i0E

T [%2mt!1]

1" &i1 " &i2
.

One problem of the above (9) and (13) models is that %2mt is highly noisy over

time in the GARCH frame work; see Andersen and Bollerslev (1998) for example.

Therefore allowing one lag for %2mt and thus using %
2
mt!1 instead of %

2
mt may not

improve the model.

The empirical test results in Hwang (2001a) suggest that the cross-sectional mar-

ket volatility, "2C,mt, is more informative than the time-series market volatility, %
2
mt,

and highly persistent. Connor and Linton (2001) and Jones (2001) suggested that

there is common heteroskedasticity in asset specific returns, which may be replicated

3To aviod the nonnegativity constraints, we may use logarithmic function as in exponential

GARCH; see Braun, Nelson, and Sunier (1995) for example. We applied the logarithmic function

to the volatility process to make the voalitlity process such as log-ARFIMA model (Hwang and

Satchell, 1998), but the model does not seem to work well. In this study we confine our studies

on cross-sectional volatility to GARCH models. The EGARCH-cross-sectional volatility process is

not too di"cult to set up and left for future studies.
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by the cross-sectional market volatility. Therefore, we propose the GARCH-cross-

sectional (GARCHX) model;

hit = &i0"
2

C,mt!1 + &i1%
2

it!1 + &i2hit!1. (15)

where, using EC [.] as defined in (1),

"2C,mt!1 = EC [(rit!1 " rmt!1)
2],

rmt!1 = EC [rit!1],

and the stationarity and nonnegativity conditions are in (14). Note that we allow

one lag for the cross-sectional market volatility as "2C,mt!1 in equation (15). We

expect the GARCHX model performs better than the GARCHX-T model because

"2C,mt is more informative and highly persistent.

Equation (15) is the GARCHX(1,1) model and we generalise this to the GARCHX(p, q)

model;

hit = &i0"
2

C,mt!1 +
Q!

q=1

&iq%
2

it!q +
P!

p=1

'iphit!p

and for stationarity and nonnegativity, we need

Q!

q=1

&iq +
P!

p=1

'ip < 1 (16)

&i0 > 0,

&iq ! 0, q = 1, ..., Q,

'ip ! 0, p = 1, ..., P.

In terms of comparing our analysis with Campbell, Lettau, Malkiel, and Xu

(2001) who cross-sectionally decomposed volatility into market/sector/idiosyncratic

level, we do not include industry factors and so a direct comparison is di"cult. Our

model uses a cross-sectional market volatility as a component of a time series.
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3 Empirical Tests

We estimate GARCH(1,1) in (8), GARCH(1,1) with the time-series market volatility

(13) denoted by GARCHX-T, and GARCHX(1,1) with the cross-sectional volatility

(15) denoted by GARCHX for all individual stocks included in the FTSE350 and

S&P500.

3.1 Data

We use the same data as in Hwang (2001a), which consist of individual asset returns

included in the FTSE350 and the S&P500. Daily log-returns are calculated from

11 December 1989 to 9 December 1999. The data consist of 350 assets for the

UK market, each of which consists of maximum 2533 log-returns during the sample

period and 500 assets for the USA market, each of which has maximum 2527 log-

returns during the sample period. We obtained the data from Datastream.

Note that since the components of the indices have changed during the sample

period, we used equities included in the indices as of the 10th of December, 1999.

Thus, the number of equities available at the beginning of our sample period is

less than the number of equities in the indices at the end of our sample period.

Our results may be a!ected by this exclusion of equities in the early period of our

sample. However, the e!ects are not expected to be significant because of the large

number of equities used here (350 in the UK market and 500 in the USA market). In

addition, changes in the components of the indices are usually for small companies.

The numbers of equities at the beginning of our sample period are 242 and 430 for

the FTSE350 and S&P500 indices. For these equities, we have the full 10 years’

daily log-returns, while for other equities, we have shorter observations.

We do not use log-returns which are larger than 50% or smaller than -50% a

day. In this study we define these returns outliers. The total number of equities
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removed were 17 in the FTSE350 constituents and 9 in the S&P500 constituents.

For the calculation of equally weighted cross-sectional market returns and volatility,

wit is set to
1

N
as in (3) and (4), whilst for the value weighted cross-sectional market

returns and volatility, wit is set to the market weights on individual assets. For

the calculation of time-series volatility, we use (2) for both equally weighted market

returns and value weighted market returns.

3.2 Specification Tests of GARCHX Model

Table 1 summaries some statistical properties of the cross-sectional and time-series

market volatilities.4 We find that cross-sectional returns are more dispersed than

time-series returns; the average standard deviation of cross-sectional returns is larger

than that of time-series returns. The time-series volatility of the value weighted re-

turn is larger than that of the equally weighted return, while the cross-sectional

volatility of the value weighted return is smaller than that of the equally weighted

return. This is the result of heavy weights on some large equities. Another inter-

esting property in volatility is that the cross-sectional volatility is highly persistent,

whilst the time-series volatility shows far less persistence. The high persistence of

the cross-sectional volatility empirically suggests that GARCHX models perform

better than GARCHX-T models. Table 1 also shows the relationship between cross-

sectional and time-series volatility. The correlations between them are around 0.4

and there is little di!erence between the four cases. This gives a reason why we put

cross-sectional volatility in the conditional volatility models such as GARCH.

We use cross-sectional market volatility in GARCH models as suggested in the

previous section. For the GARCHX and the GARCHX-T models, both equally-

weighted and value-weighted volatilities are used. Thus, altogether we have five

4The source of table 1 is table 1 of Hwang (2001). More detailed empirical results on the

cross-sectional statistics can be found in Hwang (2001).
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models; GARCH(1,1), GARCHX(1,1) with equally weighted cross-sectional market

volatility (GARCHX(EW)), GARCHX(1,1) with value weighted cross-sectional mar-

ket volatility (GARCHX(VW)), GARCHX-T(1,1) with equally weighted time-series

market volatility (GARCHX-T(EW)), and GARCHX-T(1,1) with value weighted

time-series market volatility (GARCHX-T(VW)).

Table 2 summarises the estimation results. The first results reveal how easily we

can estimate the models. The number of converged cases provides some information

about this question. For the conventional GARCH(1,1) model, we have 323 conver-

gences out of 333 for the FTSE350 equities and 483 convergences out of 491 S&P500

equities, respectively. The numbers of converged cases for the GARCHX is nearly

the same as those for the GARCH(1,1) model. In addition, the estimation time does

not seem to be increased dramatically with cross-sectional volatility. However, the

GARCHX-T seems to su!er convergence problems. Most of the convergence errors

occur because of the non-negativity condition on the coe"cient of the past market

volatility, i.e., &i0 > 0 in (13).

A more direct comparison between the five models is possible using the maximum

likelihood (ML) values. In table 2 we reported the number of cases that the ML

values of GARCHX and GARCHX-T models are larger than those of the GARCH

model. Note that the comparisons are possible only when we have converged esti-

mates. Furthermore there is no need to adjust for ”the number of parameters” as

both models have the same number of parameters.

First, the GARCHX model performs very well; for example, the cases that the

GARCH model performs better than the other four models are 46 (16.5%) and

33 (7.8%) for the FTSE and S&P500 equities, respectively. Other statistics such as

portmanteau tests also suggest that GARCHXmodels perform well. The numbers of

significant serial correlations in the squared standardised error in the GARCH(1,1)

model for 5, 10, 20 lags are decreased in GARCHX models. For example, the
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percent of significant correlations at 95% level with the first five lags (Q(5)) in the

GARCH(1,1) model are 9.60% and 17.39% for the FTSE350 and S&P500, while

those statistics are 6.11% and 8.92% in GARCHX(EW).5 On the other hand, the

statistics of skewness and kurtosis of the standardised residuals are not improved.

The GARCHX-T models perform poorly compared with GARCH or GARCHX

models. The number of the ML values larger than those of GARCH are around 25-

42% of the total number of equities. The poor performance of GARCHX-T model

is not surprising when we consider the relatively large amount of noise included in

the time-series volatility; see signal-to-noise ratios in table 2, Hwang (2001a).

We next compare GARCH and GARCHX models in detail in table 3. The first

comparison is the number of significant &i0 of GARCH(1,1) in (8) and GARCHX

in (15). The significance increases with cross-sectional volatility; in particular, for

the S&P500, the percentage increases from 56.31% to more than 70%. This means

that the lagged cross-sectional volatility is an important explanatory variable in

the presence of the past volatility and past conditional volatility. This result is

consistent with Connor and Linton (2001) and Jones (2001). In order to investigate

further if the relationship in (7) is still important after one period lag and the

replacement of %2mt (market volatility) with "
2
C,mt!1 (cross-sectional volatility), we

also calculate the correlation coe"cient between squared betas and coe"cients on

the past cross-sectional volatility (&i0 in the GARCHX(1,1) model). The betas are

estimated using a one factor (market) model. The second rows in panels A and B

in Table 3 show that there is still significant positive correlation (0.16) between #2mi

and &i0 except for the GARCHX(VW) model of the FTSE350 which is negative but

not significant. Other correlation coe"cients are all positive and significant. This

means that the market volatility is an important factor for forecasting individual

asset volatility. The results are consistent with Campbell, Lettau, Malkiel, and Xu

5Note that these statistics should be around 5% since we use 95% significance level.
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(2001) who found evidence that market volatility Granger-causes individual stock

volatility.

We also calculate the proportion of &i0"
2
C,mt!1 in conditional volatility, which can

be interpreted as the proportion of the cross-sectional market volatility in individual

stock volatility. The results in Table 3 show that these proportions range between

12% and 16%, which is consistent with Campbell, Lettau, Malkiel, and Xu (2001),

who found that the market volatility accounts for about 13% for the unconditional

mean of individual stock volatility for the period from January 1988 to December

1997. Our study shows that, despite di!erences in the definition of the market

volatilities and in other detail procedures, the overall conclusion is the same; market

volatility does matter for the individual stock volatility.

The next rows report results on the ML values. GARCHX(EW) has larger ML

values than the GARCH model for 237 and 417 cases, for the S&P500 and the

FTSE350, respectively, which are equivalent to 76.7% and 86.9% of the total cases.

The average values of the changes in the ML values are all positive. Since there is no

change in the number of parameters between the GARCH in (8) and the GARCHX

in (15), the positive increase in ML values suggest that GARCHX model performs

better than GARCHmodel. In addition, the average values of portmanteau statistics

are decreased slightly in GARCHXmodels. However, the estimates of skewness show

little di!erence, whilst those of kurtosis tend to increase for GARCHX model.

3.3 Forecasting Tests of GARCHX Model

The empirical results in the previous subsection show that return volatility (squared

returns) is better specified with GARCHXmodels. In this subsection, we investigate

the forecasting performance of the GARCHX model.

For our data, we use four daily return volatility series of three stocks, i.e., Abbey

National, Unilever, British Airways, and one index, i.e., the FTSE100 index. The
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return volatility (RV) is obtained by squaring de-meaned daily log-returns. The

total number of 2496 daily returns from 21 January 1992 to 27 November 2001 is

used to test the forecasting performance of the GARCHX model. The return series

of the underlying asset is provided by Datastream.

In Table 4 GARCH(1,1) and GARCHX(1,1) estimates of the four return series

are reported. The maximum likelihood values of the GARCH model are all larger

than those of the GARCHX model for the four cases. Except for British Airways,

the estimated coe"cients on the past cross-sectional market volatility are significant

at the 10% level. These are some examples of GARCHX estimates as well as other

evidence that the common heteroskedasticity in asset specific returns is an important

component for individual asset’s volatility process.

Another important result in Table 4 is that the inclusion of the cross-sectional

market volatility tends to decrease &i2 so that the level of persistence in the GARCHX(1,1)

model, i.e., &i1 + &i2, is less than that in the GARCH(1,1) model. This indirectly

shows that the high persistence frequently found in volatility process may be due to

missing time-varying components.

We use a rolling sample of the past volatilities. On day t, the conditional volatil-

ity of one period ahead, t + 1, is constructed by using the estimates which are

obtained from only the past observations (i.e., 2197 observations in this study). By

recursive substitution of the conditional volatility, forecasts for up to 60 horizons

are constructed. On the next day (t+ 1), using 2197 recent observations (i.e., 2197

observations from the second observation to the 2198th observation), we estimate

the parameters again and get another forecast for up to 60 horizons. The estimation

and forecasting procedures are performed 240 times using rolling windows of 2197

observations. And then, each forecast is compared with the realised return volatility.

For the GARCH(1,1) model in (8), the one step ahead forecast, ht+1|t, and the
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f step ahead forecasts, ht+f |t, are

hi,t+1|t = &i0 + &i1%
2
it + &i2h

2
it, (17)

hi,t+f |t = &i0

f!1!

j=0

(&i1 + &i2)
j + (&i1 + &i2)

f!1(&i1%
2

it + &i2h
2

it), when f>1,

where hi,t+f |t represents f step ahead volatility conditional on the information avail-

able at time t. For large f , hi,t+f |t approaches
"i0

1!"i1!"i2
, the unconditional variance

for the case 0 < &i1 + &i2 < 1. On the other hand, the one step ahead forecast,

hXi,t+1|t, and the f step ahead forecasts, h
X
i,t+f |t, of the GARCHX(1,1) model are

hXi,t+1|t = &i0"
2

C,mt + &i1%
2

it + &i2hit, (18)

hXi,t+f |t = &i0"
2

C,mt

f!1!

j=0

(&i1 + &i2)
j + (&i1 + &i2)

f!1(&i1%
2

it + &i2h
2

i,t), when f>1,

and for large f , hXi,t+f |t approaches
"i0#

2

C,mt

1!"i1!"i2
, the unconditional variance for the case

0 < &i1+ &i2 < 1. Equations (17) and (18) clearly show that the forecasting perfor-

mance depends on the property of "2C,mt. However, since the two forecasts, hi,t+f |t

and hXi,t+f |t, approach the same unconditional volatility as the forecasting horizon

increases, the main di!erence between the two forecasts lies in short forecasting

horizon.

Table 5 shows that, as reported in many other studies, the GARCH model per-

forms poorly for the forecasts of volatility. The mean absolute forecast error is close

to the average value of the realised return volatility (squared returns) during the

forecasted period. The high volatile return volatility seems to be hard to forecast

with the conditional volatility model, and the results are consistent with previous

studies such as Andersen and Bollerslev (1997). Our GARCHX model shows smaller

MAFE and MSFE than the GARCH model for all four cases in short forecast hori-

zons, but the di!erence is marginal.

Over the longer horizons, we may not find if the GARCHXmodel performs better

than the GARCH model. As explained above, as the forecasting horizon increases,
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the two forecasts obtained with the GARCH and GARCHX models are similar, the

main di!erence between the two models can be found in the shorter forecasting

horizons.

4 Conclusions

This study introduces a simple new conditional volatility model called GARCHX

using the cross-sectional market volatility. The model is simple, but can be used

to explain the proportion of market volatility included in individual stock volatility.

The model can also be used to explain common heteroskedasticity in asset returns

which was suggested by Jones (2001) and Connor and Linton (2001) as a significant

component.

Using the UK and US markets, we find that more than three-quarter cases, the

maximum likelihood values of the GARCHX(1,1) model are larger than those of the

GARCHX(1,1) model and the coe"cients on the cross-sectional market volatility are

significant. Therefore, individual stock volatility seems to be better specified with

the inclusion of an additional cross-sectional market volatility. However, GARCHX

models still are not good enough for forecasting RV.

A few important findings of our study can be summarised as follows. We find that

the proportion of the market volatility in an individual stock’s conditional volatility

ranges from 12% to 16% which is consistent with the results of Campbell, Lettau,

Malkiel, and Xu (2001). In addition, the large number of the significant coe"cients

on the cross-sectional market volatility support what Connor and Linton (2001)

found. Our study, using a simple model with daily instead of monthly returns for

both the UK and US markets, confirms these recent studies.

In this study we include one cross-sectional volatility calculated for market level,

but cross-sectional volatility can also be calculated for industry level or for a specific
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portfolio. These cross-sectional volatilities can be incorporated with conditional

volatility models such as GARCH models or stochastic volatility models.
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Table 1 Properties of Cross-sectional Volatility

A. Properties of Cross-sectional and Time-series Equally Weighted Market Volatility

FTSE100 S&P500

Cross-sectional 

Volatility

Time Series 

Volatility

Cross-sectional 

Volatility

Time Series 

Volatility

Average Value 1.5852 0.6477 1.9293 0.8353

Autocorrelations Lag 1 0.6105 0.2651 0.7168 0.2421

 of Volatility Lag 2 0.5300 0.1543 0.6474 0.1562

Lag 3 0.4879 0.1155 0.5968 0.0983

Lag 4 0.4771 0.0796 0.5778 0.1156

Lag 5 0.4562 0.0516 0.5722 0.1784

Lag 10 0.4235 0.0705 0.4971 0.0651

Lag 20 0.3785 0.0271 0.4169 0.0706

Lag 30 0.3769 0.0384 0.3894 0.0479

Lag 40 0.3316 0.0397 0.3203 0.0339

Lag 50 0.3147 0.0234 0.3197 0.0610

Lag 100 0.2492 0.0144 0.2064 0.0148

Correlation Between Cross-sectional

 and Time-series Volatilities 0.4494 0.4069

B. Properties of Cross-sectional and Time-series Value Weighted Market Volatility

FTSE100 S&P500

Cross-sectional 

Volatility

Time Series 

Volatility

Cross-sectional 

Volatility

Time Series 

Volatility

Average Value 1.3995 0.8328 1.6012 0.8876

Autocorrelations Lag 1 0.6350 0.1682 0.6627 0.2358

 of Volatility Lag 2 0.5679 0.1886 0.6336 0.1449

Lag 3 0.5269 0.1723 0.5890 0.0799

Lag 4 0.5306 0.1441 0.5620 0.1114

Lag 5 0.5265 0.1357 0.5642 0.1951

Lag 10 0.5005 0.1469 0.4891 0.0821

Lag 15 0.4637 0.1160 0.4301 0.0747

Lag 20 0.4770 0.0762 0.4164 0.0699

Lag 30 0.4087 0.1203 0.4121 0.0426

Lag 40 0.3918 0.0923 0.3492 0.0481

Lag 50 0.3671 0.0804 0.3617 0.0715

Lag 100 0.3349 0.0584 0.3081 0.0313

Correlation Between Cross-sectional

 and Time-series Volatilities 0.3990 0.3856

Notes: The number of daily log-returns for the FTSE350 is 2532 from 11 December 1989 to 9 December 1999, and

that for the S&P500 is 2527 for the same sample period. Standard deviation rather than variance is used 

to obtain the properties in the above table.



Table 2  Summary Table for Various Conditional Volatility Models

A. FTSE350

GARCH GARCHX(EW) GARCH-T(EW) GARCHX(VW) GARCH-T(VW)

Total Number of Equities 333

Number of Converged Cases 323 311 286 316 312

Maximum Likelihood Values

Number of Converged Cases 

for all Five Models
278

Number of Cases which have 

the Largest Maximum 

Likelihood Values among the 

Five Models

46 96 10 109 17

Portmanteau Tests Q(5) 9.60% 6.11% 48.25% 6.33% 42.31%

( Percent of Significant Serial Q(10) 6.81% 5.79% 48.95% 6.33% 48.40%

   Correlation at 5% Level) Q(20) 7.74% 8.36% 56.64% 8.54% 54.81%

Percent of Significant Skewness at 95% Level 80.80% 82.32% 86.71% 80.38% 83.33%

Percent of Significant Excess Kurtosis at 95% Level 99.07% 99.36% 99.30% 99.05% 99.36%

A. S&P500

GARCH GARCHX(EW) GARCH-T(EW) GARCHX(VW) GARCH-T(VW)

Total Number of Equities 491

Number of Converged Cases 483 482 436 478 430

Maximum Likelihood Values

Number of Converged Cases 

for all Five Models
421

Number of Cases which have 

the Largest Maximum 

Likelihood Values among the 

Five Models

33 237 12 122 17

Portmanteau Tests Q(5) 17.39% 8.92% 58.72% 11.92% 59.30%

( Percent of Significant Serial Q(10) 13.87% 8.30% 50.46% 10.46% 51.63%

   Correlation at 5% Level) Q(20) 11.18% 8.09% 48.62% 9.21% 49.53%

Percent of Significant Skewness at 95% Level 66.25% 65.98% 67.20% 66.95% 64.88%

Percent of Significant Excess Kurtosis at 95% Level 100.00% 99.79% 100.00% 100.00% 100.00%

Notes: The results are calculated with individual asset returns included in the FTSE350 and the S&P500 from 11 December 1989 to 9 December 1999.



Table 3  Detail Comparison of GARCH and GARCHX Models

A. FTSE350

GARCH GARCHX(EW) GARCHX(VW)

Percent of Significant Coefficients on Drift (GARCH) and 

the Past CCS Volatility (GARCHX(EW) and GARCHX(VW))* 81.42% 87.14% 87.66%

Correlation Coefficient between Squared Betas and 

Coefficients on the Past Cross-sectional Volatility 0.16 -0.07

Percent of Cross-sectional Market Volatility

in the GARCHX Model 13.44% 12.85%

Number of Comparisons with GARCH Model  - 309 312

Aaveraged Increase in Maximum 

Likelihood Values

Number of Cases Where 

GARCHX Has Larger Maximum 

Likelihood Values Than GARCH  - 237 226

Compared with those of GARCH 

Model
Averaged Increase in Maximum 

Likelihood Values in Percent 
 - 0.55% 0.49%

Averaged Increase in Maximum 

Likelihood Values 
 - 19.79 17.75

Averaged Portmanteau Test Q(5) 4.70 4.15 4.36

 Statistics for Squared Errors Q(10) 8.08 7.63 7.82

Q(20) 15.59 15.56 15.67

Averaged Skewness for Standardised Errors 0.30 0.25 0.27

Averaged Excess Kurtosis for Standardised Errors 12.04 11.04 11.12



B. S&P500

GARCH GARCHX(EW) GARCHX(VW)

Percent of Significant Coefficients on Drift (GARCH) and 

the Past CCS Volatility (GARCHX(EW) and GARCHX(VW))* 56.31% 73.24% 71.34%

Correlation Coefficient between Squared Betas and 

Coefficient on the Past Cross-sectional Volatility 0.40 0.32

Percent of Cross-sectional Market Volatility

in the GARCHX Model 15.87% 12.22%

Number of Comparisons with GARCH Model  - 480 478

Aaveraged Increase in Maximum 

Likelihood Values

Number of Cases Where 

GARCHX Has Larger Maximum 

Likelihood Values Than GARCH  - 417 393

Compared with those of GARCH 

Model
Averaged Increase in Maximum 

Likelihood Values in Percent 
 - 0.30% 0.23%

Averaged Increase in Maximum 

Likelihood Values 
 - 14.48 11.06

Averaged Portmanteau Test Q(5) 6.67 4.67 5.52

 Statistics for Squared Errors Q(10) 10.05 8.35 9.12

Q(20) 17.77 17.23 17.75

Averaged Skewness for Standardised Errors -0.08 -0.08 -0.08

Averaged Excess Kurtosis for Standardised Errors 4.77 4.64 4.54

Notes: The significance test marked with * is carried at 5% level.



        Table 4  Maximum Likelihood Estimates of GARCH(1,1) and GARCHX(1,1) 

A. Abbey National

Models  !0 !1 !2
Maximum 

Likelihood Values

GARCH(1,1)              Estimates 0.000003 0.0476 0.9471 6450.98

        Standard Deviation (0.000003) (0.0270) (0.0339)

GARCHX(1,1)              Estimates 0.002316 0.0769 0.8139 6469.83

        Standard Deviation (0.001464) (0.0236) (0.0860)

B. Unilever

Models  !0 !1 !2
Maximum 

Likelihood Values

GARCH(1,1)              Estimates 0.000001 0.0471 0.9525 7196.72

        Standard Deviation (0.000001) (0.0156) (0.0175)

GARCHX(1,1)              Estimates 0.000110 0.0495 0.9438 7200.76

        Standard Deviation (0.000081) (0.0149) (0.0193)

C. British Airways

Models  !0 !1 !2
Maximum 

Likelihood Values

GARCH(1,1)              Estimates 0.000005 0.0861 0.9079 6353.35

        Standard Deviation (0.000008) (0.0805) (0.0885)

GARCHX(1,1)              Estimates 0.001264 0.1113 0.8426 6364.04

        Standard Deviation (0.001187) (0.0753) (0.1114)

D. FTSE100 Index

Models  !0 !1 !2
Maximum 

Likelihood Values

GARCH(1,1)              Estimates 0.000001 0.0724 0.9177 8184.52

        Standard Deviation (0.000001) (0.0243) (0.0314)

GARCHX(1,1)              Estimates 0.000182 0.0716 0.8963 8192.56

        Standard Deviation (0.000065) (0.0157) (0.0225)

Notes: Returns from 21 January 1992  to 27 November 2001 for a total of 2496 observations are used. 



Table 5  Forecasting Performance of GARCH(1,1)-RV and GARCHX(1,1)-RV for RV

A. Abbey National

Forecasting GARCH(1,1) GARCHX(1,1)

Horizons

MAFE MSFE MAFE MSFE

1 0.1230 0.0642 0.1225 0.0636

2 0.1243 0.0647 0.1239 0.0641

3 0.1264 0.0659 0.1260 0.0654

4 0.1267 0.0659 0.1262 0.0653

5 0.1411 0.1143 0.1406 0.1141

6 0.1458 0.1203 0.1459 0.1206

7 0.1461 0.1203 0.1462 0.1205

8 0.1465 0.1202 0.1462 0.1199

9 0.1460 0.1198 0.1471 0.1201

10 0.1451 0.1194 0.1461 0.1199

15 0.1451 0.1168 0.1456 0.1178

20 0.1455 0.1168 0.1486 0.1189

25 0.1488 0.1182 0.1523 0.1209

30 0.1467 0.1163 0.1495 0.1184

40 0.1427 0.1151 0.1466 0.1156

50 0.1440 0.1142 0.1457 0.1149

60 0.1422 0.1139 0.1430 0.1145

B. Unilever

Forecasting GARCH(1,1) GARCHX(1,1)

Horizons

MAFE MSFE MAFE MSFE

1 0.0656 0.0112 0.0655 0.0112

2 0.0658 0.0112 0.0656 0.0112

3 0.0658 0.0111 0.0657 0.0111

4 0.0659 0.0111 0.0658 0.0111

5 0.0674 0.0117 0.0673 0.0117

6 0.0667 0.0116 0.0665 0.0115

7 0.0682 0.0120 0.0680 0.0120

8 0.0694 0.0124 0.0693 0.0123

9 0.0706 0.0128 0.0704 0.0128

10 0.0712 0.0129 0.0710 0.0128

15 0.0763 0.0168 0.0762 0.0167

20 0.0807 0.0190 0.0806 0.0189

25 0.0809 0.0192 0.0807 0.0190

30 0.0829 0.0196 0.0825 0.0194

40 0.0806 0.0187 0.0803 0.0185

50 0.0815 0.0184 0.0806 0.0181

60 0.0795 0.0161 0.0788 0.0157



C. British Airways

Forecasting GARCH(1,1) GARCHX(1,1)

Horizons

MAFE MSFE MAFE MSFE

1 0.1707 0.0857 0.1659 0.0851

2 0.1763 0.0932 0.1710 0.0926

3 0.1767 0.0936 0.1710 0.0930

4 0.1776 0.0944 0.1714 0.0938

5 0.2356 0.9266 0.2296 0.9263

6 0.2353 0.9264 0.2289 0.9266

7 0.2394 0.9297 0.2327 0.9293

8 0.2700 1.1549 0.2635 1.1545

9 0.2735 1.1584 0.2666 1.1586

10 0.2730 1.1590 0.2660 1.1590

15 0.3033 1.2708 0.2950 1.2714

20 0.3136 1.2776 0.3055 1.2785

25 0.3221 1.2819 0.3152 1.2848

30 0.3098 1.2580 0.3012 1.2590

40 0.3311 1.3388 0.3219 1.3416

50 0.3538 1.3616 0.3440 1.3664

60 0.3906 1.5355 0.3833 1.5479

D. FTSE100 Index

Forecasting GARCH(1,1) GARCHX(1,1)

Horizons

MAFE MSFE MAFE MSFE

1 0.0343 0.0028 0.0339 0.0028

2 0.0350 0.0029 0.0345 0.0029

3 0.0357 0.0030 0.0351 0.0030

4 0.0358 0.0030 0.0352 0.0030

5 0.0396 0.0061 0.0390 0.0061

6 0.0405 0.0063 0.0399 0.0063

7 0.0405 0.0063 0.0398 0.0063

8 0.0421 0.0069 0.0413 0.0068

9 0.0430 0.0071 0.0422 0.0070

10 0.0430 0.0071 0.0421 0.0070

15 0.0461 0.0082 0.0453 0.0081

20 0.0472 0.0083 0.0466 0.0083

25 0.0472 0.0084 0.0467 0.0084

30 0.0479 0.0085 0.0474 0.0085

40 0.0489 0.0087 0.0483 0.0086

50 0.0476 0.0085 0.0471 0.0085

60 0.0463 0.0084 0.0464 0.0085

Notes: Return and implied volatilities from 21 January 1992  to 27 November 2001 for a total of 2496

observations are used. Recent 2197 observations are used for estimating models and forecasting volatility

over 60 horizons. MAFE and MSFE represent mean absolute forecast error and mean squared forecast

error, respectively. The results are based on 240 out-of-sample forecasts.  
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