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Abstract We constructed a model to predict the maximum

tsunami height by a Gaussian process (GP) that uses

pressure gauge data from the Dense Oceanfloor Network

System for Earthquakes and Tsunamis (DONET) in the

Nankai trough. We found a greatly improved generaliza-

tion error of the maximum tsunami height by our prediction

model. The error is about one third of that by a previous

method, which tends to make larger predictions, especially

for large tsunami heights ([10 m). These results indicate

that GP enables us to get a more accurate prediction of

tsunami height by using pressure gauge data.

Keywords Tsunami prediction � Gaussian process �
Cabled seafloor observatory � DONET � Nankai trough

Introduction

To mitigate tsunami damage, early warning systems are

operated around the world. The Pacific Tsunami Warning

System is responsible for monitoring the occurrence of

earthquakes from seismological and tidal stations

throughout the Pacific Ocean estimating their tsunamigenic

potential, and disseminating tsunami warning information

to 26 participating countries and regions. Recently the

countries located near the Indian Ocean have established

three regional tsunami warning institutes, the German

Indonesian Tsunami Early Warning System, Joint Aus-

tralian Tsunami Warning Centre, and the Indian National

Tsunami Early Warning System of the Indian Center for

Ocean Information Services (Allen and Greenslade 2010;

Münch et al. 2011; Kumar et al. 2012). In Japan, Japan

Meteorological Agency immediately issues a tsunami early

warning after the occurrence of an earthquake (Kamigaichi

2009).

The tsunami warning systems employ seismic and sea-

level monitoring, in combination with a database of past

tsunami events and premade numerical simulations.

Another monitoring system for tsunami warning is the

direct use of offshore tsunami data, such as data from the

Deep-ocean Assessment and Reporting of Tsunami

(DART) buoys. The National Oceanic and Atmospheric

Administration (NOAA) has developed a far-field tsunami

forecasting system using data assimilation by DART buoys

in real time (Titov et al. 2005; Percival et al. 2011, 2014).

In Japan, the Dense Oceanfloor Network System for

Earthquakes and Tsunamis (DONET) was recently devel-

oped in the Nankai trough (Kaneda et al. 2015). DONET1

(east of Kii Peninsula) is equipped with seismometers and

ocean-bottom pressure gauges at 20 points on the sea floor.

Fiber-optic cables connect them to a station on land so that

submarine data can be acquired in real time. These data are

useful for early prediction of tsunamis caused by earth-

quakes and submarine landslides. Such data are available

not only in Japan but also in other countries such as Canada

and Taiwan (Thomson et al. 2011; Fine et al. 2015; Hsiao

et al. 2014).
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Previous studies have used hydrostatic pressure gauges

on the sea floor to investigate real-time, fast-forecasting

methods. Tsushima et al. (2009, 2011, 2014) combined

hydrostatic pressure measurements and estimated tsunami

sources to determine the spatial distribution of initial sea-

surface displacements in the near-field tsunami source

region. This procedure provided a highly accurate predic-

tion within 20 min after the occurrence of the near-field

Tohoku earthquake (Tsushima et al. 2011). However, fas-

ter prediction of an arriving tsunami is needed since it takes

only a few minutes for a tsunami to arrive at the coastal

area of the Kii Peninsula from the Nankai trough (Baba

et al. 2004; Hayashi 2010; Baba et al. 2013a).

We studied the relationship between offshore and

coastal tsunami heights with the aim of using DONET1

ocean-bottom pressure gauges for tsunami prediction. We

assumed various tsunami models, including fault models

and tsunami sources (Fig. 1a), and created a large number

of simulations to reveal the relationship between DONET1

ocean bottom pressure gauge measurements and coastal

tsunami heights.

Due to crustal deformation associated with faulting,

hydrostatic pressure fluctuations may not accurately reflect

sea surface fluctuations. The seafloor pressure observation

also reflects elastic wave effects in the crust and seawater

(Nosov and Kolesov 2007; Saito 2013), and seafloor ver-

tical deformation below the observatory (Baba et al. 2006)

as well. To remove the former effects, we derived these

waveforms with a band-pass filter of 0.01–0.0001 Hz. Due

to the latter effects, almost no hydrostatic pressure change

is expected during earthquakes because the sea surface and

the ocean bottom are dislocated equally, the result being no

change in the total depth. The hydrostatic pressure sud-

denly decreases afterward as the tsunami propagates. A

change in hydrostatic pressure corresponding to the vertical

displacement of the seafloor remains after the tsunami has

passed. Then, to catch the surface fluctuations from ocean-

bottom pressure gauges, a previous study focused on the

maximum absolute values of the hydrostatic pressure

changes (Baba et al. 2013a), x¼ ½x1; x2; . . .; xS�, recorded at

DONET1 stations (S points) during a tsunami (Fig. 1b).

They found a clear relationship between the average

Fig. 1 a Tsunami

computational domain and the

output stations used in this

study. The 1506 fault models

(rectangles) were prepared by

making various changes to fault

parameters. Triangles show the

locations of DONET1 and a

circle indicates the Owase tide

gauge. b Absolute values of the

hydrostatic pressure changes,

jpiðtÞj (i¼ 1; . . .;S¼ 20), at

DONET1 stations (blue lines)

and Owase (red line) for a near-

field earthquake. The blue circle

shows xi ¼maxtjpiðtÞj for the
ith DONET1 point and the red

circle indicates the maximum

wave height at Owase.

c Schematic diagram of the

relationship between DONET1

ocean-bottom pressure gauge

measurements and coastal

tsunami heights

362 Mar Geophys Res (2016) 37:361–370

123



waveforms of DONET1, ð1=SÞ
PS

i xi, and maximum tsu-

nami heights d (Fig. 1c).

However, predictions by this method tend to be larger

than simulated tsunami heights by up to about 5 m, espe-

cially for large tsunami heights (e.g., 10 m). Thus, further

investigation is needed to improve the accuracy of the

maximum tsunami height forecasting method based on

limited DONET1 sensing data.

Here we construct an algorithm to predict maximum

tsunami height based not on the average value but on indi-

vidual values, x¼ ½x1; x2; . . .; xS�. Let us consider the maxi-

mum tsunami height of the scenario n, d(n), using given

many sets of DONET1 sensing data and tsunami heights.

Since a previous study has reported that the maximum

absolute values of the hydrostatic pressure changes have

clearly positive correlations with the coastal maximum

tsunami height regardless of the non-linear effects of the

hydrodynamic equations (Baba et al. 2013a), we assumed

that from two scenarios which are sufficiently similar in

hydrostatic pressure change out of 20 observation points,

the maximum tsunami height at Owase, d, will be similar

and can be determined by interpolation. To be more pre-

cise, if the DONET1 sensing data of scenarios n and m are

similar, xðnÞ� xðmÞ, we can approximate d(n) by the

known d(m), as determined by interpolation. We then

interpolate and predict tsunami height by the method of

Gaussian process (GP) regression (Rasmussen and Wil-

liams 2005), using the distance between scenarios n and m,

jxðnÞ � xðmÞj �
PS

i¼1 jxiðnÞ � xiðmÞj.
To evaluate the accuracy of our method, we focus on the

prediction of maximum tsunami height at Owase tide sta-

tions by DONET1 sensors (Fig. 1c). We randomly divide

simulated scenarios into training and test data. Using

training data, we construct an algorithm to fit d, at the

Owase tide station from the maximum absolute value of the

hydrostatic pressure changes, x ¼ ½x1; x2; . . .; xS�. We then

apply our algorithm to test data and measure the prediction

accuracy.

Simulation and dataset

Simulation

We constructed a database to estimate tsunami heights for

near-field earthquakes in the Nankai trough region that

would affect the Kii Peninsula region. First, we prepared

1506 fault models (Fig. 1a) where we considered the sur-

face configuration of the Philippine Sea plate (Baba et al.

2002) and the source processes associated with the 1944

Tonankai and 1946 Nankai earthquakes (Kanamori 1972;

Baba and Cummins 2005). The maximum depth of the

faults ranged from 5 to 25 km, the dip from 5 to 25�, and
the magnitude from 7.2 to 8.4. We determined the fault

length and width and amount of slip from the magnitude by

a scaling law (Utsu 2001). Strike and rake were assumed to

be constant at 240 and 90� azimuth, respectively. We

assumed a uniform amount of slip on each fault to simplify

the procedure, although actual earthquakes have spatially

non-uniform slip distributions on fault planes.

Based on these fault models, we performed numerous

tsunami calculations to study the relationship between

coastal tsunami heights and the absolute value of the

hydrostatic pressure change. We solved the nonlinear

shallow water equations for the tsunami calculations

expressed as,
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where g is the water height from the sea surface at rest, t is

time, u and h are the longitude and co-latitude, respec-

tively. R is the earth’s radius, H is the water depth, and the

variables Qx and Qy are depth-integrated quantities equal to

ðH þ gÞu and ðH þ gÞv, where u and v are flow velocities,

along longitude and latitude lines, respectively. The

parameter f is Manning’s roughness coefficient, and g is the

gravitational constant. Equations (1) and (2) are equations

of motion. Equation (3) is an equation of continuity. In this

study we used a parallelized tsunami calculation code

called JAGURS (Baba et al. 2013b, 2015), which solves

the Eqs. (1), (2), and (3) in a staggered, leap-frog finite

difference scheme with nesting algorithms. Five nesting

layers were used in this analysis. Figure 1a shows the

computational domain and output points. The grid spacing

of the finest grid was 2 / 9 arcseci (� 5 m) and we used it

for the Owase area in Mie Prefecture in central Japan. We

simulated tsunami propagation for 3 h following the

earthquake and recorded waveforms at every second for all

the tsunami fault models (T ¼ 3 h	 3600 s=h ¼ 10800 s).

Data set

From this simulation, we obtained time series of water

height changes g and water depth H at Owase and
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DONET1 stations (S¼ 20 places). We define the maximum

absolute value of the tsunami height at Owase in scenario

n (n¼ 1; . . .;N) as d(n). The time series of total depth

(depth of the sea H ? tsunami height g) at DONET1 sta-

tion i (i¼ 1; . . .; S) is converted to hydrostatic pressure

changes piðn; tÞ (t¼ 1; . . .; T) by assuming that 1hPa is

equivalent to a 1-cm change in depth. In the simulations,

the depth of the sea was also affected in accordance with

crustal deformation due to faulting.

Figure 1b shows the tsunami wave forms at the Owase

tide station, or the absolute value of hydrostatic pressure

fluctuations jpiðn; tÞj (i¼ 1; . . .; S) in the case of scenario

n¼ 1229. In this study, we predict d(n) at Owase from the

maximum absolute value of the hydrostatic pressure

changes, x¼ ½x1; x2; . . .; xS�, at DONET1 stations.

To evaluate the prediction accuracy of our method, we

randomly divided simulated scenarios (1506 cases) into

training data (2 / 3 of all cases) and test data (1 / 3 of all

cases). We set the above divide and gather statistics to both

construct our prediction algorithm, using adequate training

data, and to validate the prediction accuracy. Based on the

training data, we optimized our algorithm to fit d from

x¼ ½x1; x2; . . .; xS�. Applying our algorithm to test data, we

evaluate the prediction accuracy and compared our method

to the previous one.

Methodology

Maximum mean regression

Baba et al. (2013a) took particular note of the peak abso-

lute value in hydrostatic pressure changes, recorded at all

DONET1 stations during a tsunami (Fig. 1b). They found a

clear relationship between the average waveform of the

values at each DONET1 point and the maximum tsunami

heights at the coast. Although they used a heuristic method

to choose the peak absolute values, we employed the

maximum absolute value as the representative point for all

the DONET1 stations, xiðnÞ¼ maxt jpiðn; tÞj (i¼ 1; . . .; S),
which produced results similar to their method. To be more

precise, we can write the prediction algorithm (maximum

mean (MM) algorithm), using the mean value of the

maximum absolute value, ð1=SÞ
PS

i xi, as

d̂MMðnÞ ¼ w1
MM

1

S

XS

i¼1

xiðnÞ þ w0
MM; ð4Þ

where d̂MMðnÞ represents the predicted maximum tsunami

height for scenario n and w1
MM and w0

MM are regression

coefficients. MM algorithm, which is a simple linear

regression, fits d(n) by 1
S

PS
i¼1 xiðnÞ and determines the

regression coefficients by using the training data set

(NT ¼ 1004 cases) and the least squares approach.

Gaussian process regression

There is a prediction bias in MM because the relationship

between d and 1
S

PS
i¼1 xiðnÞ is nonlinear and the regression

is strongly affected by the large number of low tsunami

heights.

There is no direct causal relationship between x and d,

but x is indirectly correlated with d since these values are

the result of a common fault model and simulation. Thus,

the correlation, such as a nonlinear function system or

polynomial expression, remains unknown. Instead we

apply GP regression as a method of interpolation (Ras-

mussen and Williams 2005), which is widely used for

prediction or optimization in practical fields (e.g. Kocijan

et al. 2004; Krause et al. 2008). GP regression estimates

maximum tsunami height for a test data set using weighted

sum of tsunami heights of all the training data sets. Each

weight is determined by the Gaussian function of the dis-

tance between DONET1 observed values of the test data

set and each training data set as denoted below. GP

regression approximates a non-linear relationship and gives

unbiased prediction of intermediate values, assuming not a

relationship between x and d but noise variance or how to

calculate the distance between test and training data sets,

which are determined by a few parameters.

Let us introduce the formulation of GP regression in this

paragraph. A GP is a generalization of the multivariate

Gaussian probability distribution. Given the sensor values

at DONET1 stations in scenario n, xðnÞ¼ fx1ðnÞ; . . .;
xSðnÞg, the prediction dGPðnÞ at a point xðnÞ and its vari-

ance vGPðnÞ are described by using the Gaussian kernel

function,

kðxðnÞ; xðmÞÞ ¼ exp �bjxðnÞ � xðmÞj2
	 


; ð5Þ

where m is a scenario number and b represents the inverse

of the length-scale of the Gaussian kernel. If we assume a

normal distribution with noise variance, r2 as a prior, we

obtain

dGPðnÞ ¼ ðkðnÞÞTðKþ r2IÞ�1d; ð6Þ

where kðnÞ¼ ½kðxð1Þ; xðnÞÞ; . . .; kðxðNTÞ; xðnÞÞ� is a vector
of the kernel between xðnÞ and training data, ð�ÞT repre-

sents the matrix transpose, and I is the identity matrix of

size N. d¼ ½dð1Þ; dð2Þ; . . .; dðNTÞ�T represents the tsunami

height of training data, and K consists of the kernels

between training data. As shown in Eq. (6), maximum

tsunami height for a test data set is estimated by weighted

sum of tsunami heights of all the training data sets and the
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weight depends on the Gaussian kernel. The prediction

variance is described by

vGPðnÞ ¼ kðxðnÞ; xðnÞÞ � ðkðnÞÞTðKþ r2IÞ�1kðnÞ: ð7Þ

Figure 2 shows examples of one-dimensional data interpo-

lation by GP regression (S¼ 1). The black points represent

given training data, and we want to predict a tsunami height

when x1 ¼ 4. The solid line represents the estimated maxi-

mum tsunami height by using GP and Eq. (6) and the asterisk

represents the estimated maximum tsunami height d̂GP, cor-

responding to x1 ¼ 4. The interpolation by GP regression (the

solid line) runs along the means of the normal distribution

with the two-sided 95% confidence interval represented by

gray-filled area, which is derived by Eq. (7). As shown in

Fig. 2b, while interpolation goes well near x1 ¼ 4, where

training data are dense, estimation of GP regression is much

less accurate near x1 ¼ 0, given the lack of training data.

As denoted above, GP approximates a non-linear rela-

tionship by using only two parameters, b and r. Let us
consider how do the GP parameters affect the tsunami

prediction. First, we focus on the parameter b of GP, which

determines the width of the Gaussian kernel of each

training data as shown by gray dashed lines in Fig. 2. When

it is wide, the estimated line is smooth and reduce the

accuracy (Fig. 2a). On the other hand, when the Gaussian

kernel is narrow, the estimated prediction is over-fitted to

the training data (Fig. 2c).

Next, we consider noise variance, r2. If we assume that

r2 is large, the estimated line is smooth and reduce the

accuracy, similar to the case of wide Gaussian kernel

(Fig. 2a). On the other hand, if r2 is small, the confidence

interval represented by gray-filled area is narrow and the

estimated prediction is over-fitted to the training data.

Thus, both of the GP parameters greatly affect GP

estimation. To avoid the over-fit to the training data and

keep the accuracy of prediction, we optimize the parame-

ters b and r2 as the generalized error of cross validation

(CV) is minimized as is described in detail below.

Cross validation

Our goal with GP regression is not to fit the training data

but to construct a prediction algorithm with small predic-

tion errors. To construct a prediction algorithm to be

trained on limited training data without severe over-fitting,

we determine optimal GP parameters by using CV. In CV,

the training dataset of NT cases is divided into two parts,

one to train the prediction algorithm and the other to

evaluate its generalization error. The method we use for

partitioning data is L-fold CV. First we divide the data set

into L parts: C1; . . .;CL. For each l¼ 1; . . .; L, we train the

GP regression using data that are not in Cl. Then, we use

this trained GP regression algorithm to predict the tsunami

height d for the data in Cl and calculate the root-mean-

square error,

RMSEGe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

NT

X

n2Cl

dðnÞ � d̂ðnÞ
� �2

s

: ð8Þ

This training and testing procedure was repeated using

different data partitioning and we obtained the general-

ization error. In summary, CV is a method for evaluating

the prediction accuracy generalized to unknown data that

are not used in training (Kohavi 1995). We then deter-

mined optimal GP parameters to minimize the general-

ization error. We also calculated the generalization error of

the MM method and compared GP and MM.

Fig. 2 Schematic diagrams of interpolation by GP regression with

b¼ 0:1; 0:5; 5, respectively. The black points represent given training

data and the gray dashed lines represent the Gaussian kernel of each

training data. When b is small, the Gaussian kernel is wide. We fixed

r2 ¼ 0:04 and circles indicate the data locations and the asterisk

represents the estimated maximum tsunami height d̂GP, corresponding

x1 ¼ 4. The interpolation by GP regression (the solid line) runs along

the means of the normal distribution with the two-sided 95%
confidence interval represented by gray-filled area

Mar Geophys Res (2016) 37:361–370 365
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Results

Regression

GP regression can approximates a non-linear relationship

between observed values at DONET1 and maximum tsu-

nami height better than Maximum mean (MM) method. To

compare the ability to approximate the non-linear rela-

tionship of GP and MM methods, we here predict the

maximum tsunami height of Owase, using 1 dimensional

data for GP, referred as ‘‘1dGP’’. To be more precise, we

used the mean value of the maximum absolute value of

scenario n, �xðnÞ� ð1=SÞ
PS

i xi from NT ¼ 1004 training

data. d̂1dGPðnÞ at a point �xðnÞ are described by Eq. (6)

where we used the Gaussian kernel function,

kð�xðnÞ; �xðmÞÞ ¼ exp �bj�xðnÞ � �xðmÞj2
	 


: ð9Þ

The prior parameters are b and r2, optimized as the gen-

eralized error of L-fold CV (L¼ 10) is minimized. As

shown in Fig. 3, d̂MM tends to be bigger in the case of a

large tsunami height, such as 10m, since MM method is

simple linear regression. On the other hand, GP regression

approximates a non-linear relationship and gives unbiased

prediction of intermediate values.

Next, let us consider GP regression using not the mean

value of all observed points, �xðnÞ, but the individual values,
x¼ ½x1; x2; . . .; xS�. Using L-fold CV (L¼ 10), we deter-

mine optimal GP parameters, b and r2, by minimizing the

generalization error and constructing a prediction algo-

rithm to be trained on limited data without severe over-

fitting.

Figure 4a shows a map of the generalization error. The

area of large generalization error has low noise variance

(r2 � 0) and short Gaussian kernel length-scale

(b [ 10�3) because of severe over-fitting. A quickly

varying signal with low noise from this area would give

rise to a white-noise process model for the signal, which is

not a convincing data model. On the other hand, GP

regression with moderate noise variance and long kernel

length scale can support the data model and the GP

regression can be generalized to unknown data not used in

the training.

We thus obtain optimal GP parameters, b¼ 1:7	 10�3

and r2 ¼ 5:7	 10�5, which yield the minimum general-

ization error (Fig. 4a). We compare the GP and MM gen-

eralization errors in Fig. 4b, and observe that both the mean

and standard deviation of the GP generalization error are

less than those of MM by 36 and 25%, respectively. Based

on optimal GP parameters and all the training data (1004

cases) and fitting d from x¼ ½x1; x2; . . .; xS� by GP regres-

sion, we construct a prediction algorithm for the maximum

Fig. 3 Correlation between �x and d. Results of MM and 1

dimensional GP for a training data set with NT cases. Dashed line

and solid line represent the results of MM and GP method,

respectively

Fig. 4 a Color represents the

GP generalization error. The

horizontal and vertical axes

represent b and r2 respectively,

on a log scale. The red star

indicates the minimum point of

the generalization error,

b¼ 1:7	 10�3 and

r2 ¼ 5:7	 10�5. b Comparison

of the GP and MM

generalization errors with two-

sided 95% confidence intervals

366 Mar Geophys Res (2016) 37:361–370
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tsunami height. Figure 5a shows the relationship between

estimated and simulated maximum tsunami heights at

Owase. RMSE of training data by GP and MM are 0.52 and

1.07, respectively and the GP training error also dramati-

cally decreases by 52% compared with MM.

We thus constructed GP regression model from

NT ¼ 1004 training data that predicts the maximum tsunami

height at Owase, d, from the sensor values of DONET1

stations, x.

Prediction

Finally, by applying the algorithm to test data (NP ¼ 502

cases) of uniform slip models, we evaluate the prediction

accuracy of our method, using the root-mean-square error

(RMSEPr) between d and d̂GP, and to compare GP and MM

(Fig. 5b). We observe that the GP prediction error for

uniform slip models is 0.78 and decreases by 39% com-

pared with MM, and GP regression greatly improves the

prediction accuracy. The variance of the prediction error

decreases without bias, including large tsunami heights

([10 m) where the MM estimation tends to be larger.

Moreover, we show the prediction results by GP and

MM about the 1944 Tonankai, 1946 Nankai earthquakes

and 11 kinds of anticipated M9-class non-uniform slip

models in the Nankai trough released by the Cabinet Office

of the government of Japan as blue and red plus signs for

GP and MM in Fig. 5b, respectively (Kanamori 1972; Baba

and Cummins 2005; Cabinet office in Japan 2012). The

prediction results for non-uniform slip models are gener-

ally consistent with those for uniform slip models, although

there are a few cases that the prediction errors of GP are

Fig. 5 a Relationship of estimated and simulated maximum tsunami

heights at Owase using a training data set with NT cases by GP (blue

circles) and MM (red circles). The horizontal and vertical axes

represent the simulated d, and estimated d̂ maximum tsunami heights,

respectively. This figure represents that the estimation is good since

many of the points are close to d¼ d̂ (gray line). b Relationship of

estimated and simulated maximum tsunami heights at Owase by MM

and GP for prediction. Red circles and plus signs represent the results

of MM using a test data set with NP cases and non-uniform slip

models, respectively (Kanamori 1972; Baba and Cummins 2005;

Cabinet office in Japan 2012). Blue circles and plus signs show the

prediction results by GP for a test data set with NP cases and the non-

uniform slip models, respectively. The horizontal and vertical axes

represent d, and d̂, respectively. c Comparison of GP and MM

prediction errors for a test data set with NP cases with two-sided 95%
confidence intervals. d Comparison of GP and MM prediction errors

for a test data set with NP cases and the non-uniform slip models with

two-sided 95% confidence intervals
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larger than those of MM. We argue about the cause of the

largest prediction error in discussion.

To indicate that the improvement of prediction accuracy

is not affected by the division into training dataset and

prediction dataset, we performed the same protocol 10

times to keep statistics on the mean and variance of pre-

diction accuracy. Figure 5c, d show the average value of

prediction RMSE (RMSEPr) of GP and MM only for uni-

form slip models and both for uniform and non-uniform

slip models, respectively. Figure 5c shows that although

the standard deviation of RMSEPr of GP increases by 59%

in comparison with that of MM, the average RMSEPr of GP

for uniform slip models decreases by 29% and prediction

accuracy greatly improves independent of the divide of

dataset, which is well accorded with the results of gener-

alization error in Fig. 4b. Similar to the results for uniform

slip models, the average RMSEPr of GP for uniform and

non-uniform slip models is 19% less than the one by MM

method, as shown in Fig. 5d. Thus, the improvement of

prediction accuracy is not affected by the division into

training dataset and prediction dataset.

Although we predict the tsunami heights using 3-h time

series of DONET1 data from the earthquake occurring time

in this paper, we can apply this method to short-time tsu-

nami prediction. Optimizing the GP method for only the

10-min time series of the ones used in Fig. 5a, b, we found

that the prediction error of GP method is 1.09 m, including

non-uniform slip models, which is 18% larger than the one

given full time series and is 19% less than the one by MM

method as shown in Fig. 6. These are almost the same as

the results using 3-h time series data as shown in Fig. 5b,

except that, if the tsunami does not arrive at DONET1

within 10 min, predicted tsunami height is constant in

these cases. Thus, the GP method can also work for short-

time tsunami height prediction and further investigations

are needed to evaluate the short-time prediction of GP

method.

Discussion

We developed an accurate prediction algorithm for maxi-

mum tsunami height in the Kii Peninsula of Japan by a

Gaussian process (GP) that uses pressure gauge data.

It is obvious thatMaximumMean (MM) regression, which

is a previously used network-averaged prediction method,

will not be able to deal with future expanded observational

networks such as DONET2 (west of the Kii Peninsula)

(Kaneda et al. 2015) and S-net (along the Japan Trench)

(Uehira et al. 2012; Saito 2013), since the large variety of

scenarios measured by these systems cannot be uniformly

approximated. Thus, it makes sense to construct an algorithm

to predictmaximum tsunami height based not on averaged but

on individual measurements at DONET1 stations.

In this study we interpolate not a direct causal but a non-

linear relationship between maximum tsunami height and

DONET1 sensory data by using GP regression, which is an

interpolation method governed by a few prior parameters

(Rasmussen and Williams 2005). The prediction error by GP

regression greatly decreases by about one third in comparison

with MM regression, which makes predictions assuming a

linear relationship with average gauge data from DONET1.

Moreover, for large tsunami heights ([10 m), although MM

estimates tend to be larger, GP estimates greatly improve

without this bias (Fig. 5b). These results show that GP

regression enables us to abstract the complex and nonlinear

relationship between tsunami height and pressure gauge data

and to predict tsunami height more accurately.

Although the prediction results by GP for non-uniform

slip models are generally smaller than those by MM, there

are a few cases that the prediction errors by GP are larger.

We then discuss about the cause of the largest prediction

error (maxjd � d̂j ¼ 5:56 m) in a non-uniform slip model

as shown in Fig. 5b. We calculate the smallest exponential

part of the Gaussian kernel (Eq. (5)), which is the distance

between test data n and training data m (m¼ 1; . . .;NT),

(minmjxðnÞ � xðmÞj), because, if it is small, test data are

close to training data and GP can interpolate well. We

found that the minimum distance in the case of the maxi-

mum GP prediction error is 11.6 times larger than that of

the mean minimum distance. This indicates that the GP

prediction error tends to be larger because test data cannot

be interpolated by using training data. Furthermore, this

suggests that in unexpected circumstances the tsunami

height prediction of GP could be less accurate.

Therefore, to utilize GP regression for tsunami height

prediction, we have to minimize unanticipated scenarios by

preparing a huge variety of scenarios in advance that

include actual diverse phenomena. In concrete terms,

although we assume a uniform amount of slip for each fault

to simplify the simulation procedure, actual earthquakes
Fig. 6 Results of short-time tsunami height prediction by MM and

GP using only 10-min data following the earthquake in the same way

as Fig. 5b
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have spatially non-uniform slip distributions on fault

planes and in the simulations we deal with the non-uni-

formity to enhance the prediction capability. Furthermore,

to expand the predictable tsunami scenario, we can add the

non-uniform slip models, which are represented by blue

plus signs in Fig. 5b, for training data set of GP.

However, no matter how well we prepare, in reality,

unintended scenarios could happen where extrapolation is

needed. If so, although test data are far from training data

and we can expect the GP prediction error is apt to be large,

we can prepare tsunami predictions using a conventional

method such as MM, which is probably the lesser of the

two methods for extrapolating to unexpected scenarios.

In this paper, using GP regression, we predict the

maximum tsunami height of only one station (Owase). For

practical use, different estimations are necessary to be

estimated for several stations along the coast of the Kii

Peninsula. Different optimal parameters are necessary to be

estimated since b and r2 of GP regression change every

point along the coasts of Kii Peninsula. Due to the

smoothness of coastal topography, the optimal parameters

of neighboring points could be preferred to change grad-

ually along the coasts. The proposed method in this paper

can be extended to take into account of the smoothness of

coastal topography in the optimal parameters of our

method. We will study how the smoothness of the coastal

topography improves reliable prediction rather than one

station in the future work.

Conclusion

We constructed a methodology to predict coastal maximum

tsunami height by a Gaussian process (GP) that uses off-

shore pressure gauge data from DONET1. We found that

our methodology can greatly reduce the prediction error for

uniform slip models; about one third of that by a previous

method which tends to make larger predictions, especially

for large tsunami heights ([10 m). We can extend our

method using GP to tsunami height prediction for several

stations and add the non-uniform slip models for training

data set. Further investigations for these extensions are

needed for high-accuracy tsunami height prediction.
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