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Abstract
When a subduction-zone earthquake occurs, the tsunami height must be predicted to cope with the damage generated by 
the tsunami. Therefore, tsunami height prediction methods have been studied using simulation data acquired by large-scale 
calculations. In this research, we consider the existence of a nonlinear power law relationship between the water pressure 
gauge data observed by the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) and the coastal 
tsunami height. Using this relationship, we propose a nonlinear parametric model and conduct a prediction experiment to 
compare the accuracy of the proposed method with those of previous methods and implement particular improvements to 
the extrapolation accuracy.
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Introduction

Tsunami early warning systems using water pressure gauges 
and global positioning system wave gauges operate around 
the world to cope with damages caused by tsunami waves. 
Accordingly, real-time water pressure gauge data are widely 
used for tsunami early warning systems. For example, in 
Japan, the Dense Oceanfloor Network System for Earth-
quakes and Tsunamis (DONET), which enables the acqui-
sition of submarine data in real time, was constructed in the 
Nankai Trough (Kaneda et al. 2015).

Many real-time tsunami prediction studies used water 
pressure gauge data from the floor. For instance, Tsushima 

et al. (2009, 2011) proposed a prediction method that com-
bines water pressure gauge data with the estimation results 
of a tsunami source and estimated the initial distribution of 
the sea surface around the tsunami source. In addition, they 
accurately predicted a tsunami waveform within 20 min-
utes after the Tohoku Earthquake (Tsushima et al. 2009, 
2011). However, a tsunami produced by an earthquake in the 
Nankai Trough arrives after only a few minutes, and thus, a 
more rapid tsunami height prediction scheme is needed. To 
perform such a rapid prediction, it is considered more effec-
tive to forecast the tsunami height from only water pressure 
gauge data (Baba et al. 2004, 2014; Hayashi 2010) because 
this approach does not need an estimation of the initial dis-
tribution of the sea surface and can predict the height with a 
smaller amount of computational resources.

Therefore, instead of using a conventional forward calcu-
lation strategy that predicts the tsunami height after estimat-
ing the earthquake parameters, such as the earthquake mag-
nitude (Fig. 1a) (Tsushima et al. 2009, 2011), we decided 
to use a strategy that predicts the tsunami height directly 
from water pressure gauge data (Fig. 1b) (Baba et al. 2014; 
Igarashi et al. 2016).

To construct a tsunami prediction model using only water 
pressure gauge data, we simulated the water levels at the 
ocean floor and on the coast by assuming various param-
eters, including the fault model and seismic source. Then, we 
constructed a database based on these assumed parameters 
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and regressed the tsunami height at the coast from the water 
pressure gauge data (Baba et al. 2014; Igarashi et al. 2016). 
Two methods, namely, one using linear regression (Baba 
et al. 2014) and one using Gaussian process (GP) regression 
(Igarashi et al. 2016), have been proposed to regress the tsu-
nami height from the water pressure gauge data.

Regression models are classified as either parametric 
model or nonparametric models. In a parametric model, the 
relationship between the data is modeled by supposing that 
the relationship can be expressed by a parameterized for-
mula. Linear regression is classified as a parametric mode 
in which linearity is supposed. Unfortunately, the predic-
tion method using linear regression exhibits a low accuracy 
because the relationship is actually nonlinear (Baba et al. 
2014). In contrast, in a nonparametric model, strong assump-
tions are not placed on the relationship; as a result, flexible 
modeling can be performed. GP regression is classified as 
a nonparametric model. Because the modeling scheme is 
strongly affected by the data, the prediction method using GP 
regression is unable to provide effective prediction beyond 
the range of training data, and it also demonstrates a low 
extrapolation accuracy. Therefore, to construct a model with 
a high accuracy and a high extrapolation accuracy (Igarashi 
et al. 2016), it is necessary to have additional information 
regarding the relationship between the data, and a parametric 
model should be constructed under reasonable assumptions.

In this study, we plot observed water pressure gauge data 
and the coastal tsunami heights in a log–log graph, in which 
the data appear to be linearly distributed; consequently, we 
believe that a power law relationship exists between the 
gauge data and tsunami height. Accordingly, we propose a 
nonlinear parametric model to predict the tsunami height on 
the basis of a power law, that is, as the weighted sum of an 
exponentiated observed value.

To evaluate the prediction performance of our proposed 
method, we calculate the prediction performance in two 

ways. First, we assume that the test data are drawn from the 
same population as the training data, and we investigate the 
prediction performance under expected circumstances fol-
lowing a previous study (Igarashi et al. 2016). However, in 
practice, we cannot deny the possibility that the coastal tsu-
nami height will exceed the scope of the assumption; hence, 
we also evaluate the prediction performance under unex-
pected circumstances through extrapolation and compare 
the extrapolation accuracies of the previous methods (Baba 
et al. 2014; Igarashi et al. 2016) with that of our proposed 
nonlinear parametric model. In this investigation, we target 
Owase on the east coast of the Kii Peninsula, Japan.

Simulation and dataset

Simulation

We built a database to construct numerous fault models for 
predicting the height of a tsunami arriving at the Kii Pen-
insula. We prepared 1506 fault models by considering the 
surface shape of the Philippine Sea Plate (Baba et al. 2002) 
and the source processes related to the 1944 Tokai Earth-
quake and the 1946 Nankai Earthquake (Kanamori 1972; 
Baba and Cummins 2005). Figure 2 shows the positions of 
the fault models used in this study with rectangles (Fig. 2). 
We set the shallowest depth of the faults to range from 5 to 
25 km, the dip to range from 5 ◦ to 25◦, and the magnitude to 
range from 7.2 to 8.4. The fault length, width, and amount 
of slip were determined according to a scaling law (Utsu 
2001). The strike and the rake were set at a constant values 
of 240◦ and 90◦, respectively. For the sake of simplicity, a 
uniform fault was assumed in each of the 1506 fault models.

To simulate a tsunami from the fault models, we used 
the tsunami simulation code JAGURS (Baba et al. 2016). 
We simulated the tsunami propagation over a period 

Fig. 1   Schematic diagrams 
of two strategies employed 
to predict the tsunami height 
showing how to predict the tsu-
nami height in real time using 
an earthquake parameter � and 
the data obtained by simulation 
s and d 
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of 3 h following the occurrence of an earthquake and 
recorded the waveforms every second for each fault model 
( T = 3 h × 3600 s∕h = 10, 800 s).

Dataset

Through this simulation, we obtained the change in the 
water level �, which obeys the equation of motion in non-
linear long wave theory, and the water depth H,  which 
varies as a result of crustal deformation. We then defined 
the deviation from the mean sea level as the tsunami 
height in this paper and set the maximum value of the 
tsunami height at Owase in scenario n (n = 1,… , 1506) 
as d(n). Next, we converted the total water depth (water 
depth H + water level change � ) into the change in the 
water pressure changes and then defined the change in the 
water pressure change at the ith (i = 1,… , S) observation 
point of DONET1 as pi(n, t) (t = 1,… , T). Figure 3 shows 
the waveform measured at Owase and the water pressure 
data obtained by DONET1 for scenario n = 1057 : the red 
line shows the tsunami height waveform at Owase, and 
the red point shows its maximum value d, while the light 
blue broken lines show each set of water pressure data 
observed by each DONET1 observation point, and the 
blue line shows the averaged waveform of the absolute 
water pressure data. Figure 3 shows the maximum value 
of average absolute value s(n) (blue point), which exceeds 
400 hPa and the maximum tsunami height d(n) (red point). 
There is a strong positive correlation between observed 
water pressure gauge data and the coastal tsunami height 
in Owase (Baba et al. 2014), and thus, the coastal tsunami 
height in Owase is high in this scenario.

Method

Linear regression using the maximum mean (MM 
regression)

A clear correlation was found between the average absolute 
DONET1 hydrostatic pressure and the maximum coastal 
tsunami height (Fig. 4a). On the basis of that relationship, 
a tsunami height prediction method using linear regression 
was proposed in previous work (Baba et al. 2014). We set 
s(n) = maxt

1

S

∑S

i=1
�pi(n, t)� as the maximum value of the 

average absolute value observed by the water pressure gauge 
during scenario n and call it the MM. This prediction algo-
rithm is then expressed as

where d̂MM(n) is the predicted tsunami height in scenario 
n,  and w1

MM
 and w0

MM
 are regression coefficients. d(n) is fit-

ted by linear regression, and the regression coefficients are 
determined by training data and the least squares method.

Gaussian process (GP) regression

Predicting the height of a tsunami by linear regression is 
less accurate because the relationship between d(n) and 
s(n) is actually nonlinear (Igarashi et al. 2016). To address 
this problem, a tsunami height prediction method using GP 
regression (Rasmussen and Williams 2006) was proposed 
in a previous study (Igarashi et al. 2016). GP regression 

(1)d̂MM(n) = w1
MM

s(n) + w0
MM

,

Fig. 2   Positions of the fault models and observation points used in 
this study. We prepared 1506 fault models (rectangles). This figure is 
adapted from Igarashi et al. (2016), Fig. 1a and shows the location of 
DONET1 observation points (triangles) and Owase (circle)
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Fig. 3   Hydrostatic pressure changes at the DONET1 observation 
points pi(n, t) (i = 1,… , S = 20) (blue dashed lines) and the tsunami 
height at Owase (red line). This figure also shows the average value 
of absolute hydrostatic pressure change (blue line) used in a previous 
study (Baba et al. 2014). In this figure, we show the maximum value 
of average absolute value s(n) (blue point), which exceeds 400hPa, 
and the maximum tsunami height d(n) (red point)
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can be applied to nonlinear data and is thus widely used 
in prediction and optimization fields (e.g., Kocijan et al. 
2004; Krause et al. 2008). Accordingly, GP regression can 
be employed with a high accuracy to predict the height of 
a tsunami as the weighted sum of the kernel function of all 
training data. Moreover, the previously proposed prediction 
algorithm does not employ the mean value of all observed 
points; rather, the algorithm uses the individual values, that 
is, si(n) = maxt |pi(n, t)| consisting of S values.

Let us consider the formulation of GP regression con-
cretely. We define a Gaussian kernel function constructed 
around training data (Igarashi et al. 2016) as follows:

where �(n) = [s1(n),… , sS(n)]. The Gaussian kernel func-
tion has a high value when two inputs are similar, namely, 
when the Euclidean distance between �(n) and �(m) is small. 
The Gaussian kernel function corresponds to the covariance 
between the prior distributions of d(n) and d(m);  this cor-
relation can be interpreted insomuch that we can insert a 
prior knowledge, that is, the higher the value of the kernel 
function is, the higher the correlation between d(n) and d(m).

We define �(1),… , �(NT ) and � = [d(1),… , d(NT )]
⊤ as a 

training data set. We also define �new and dnew as a test data 
set.

We then introduce a matrix consisting of kernels 
denoted � between the training data. The (i, j)th compo-
nent of � is k(�(i), �(j)). We also introduce � as a vector 
consisting of kernels between the training data and the 
test data. The ith component of � is k(�(i), �new), that is, 
� = [k(�(1), �new),… , k(�(i), �new),… , k(�(NT ), �new)].

Assuming that the variance �2 represents the noise dis-
tribution, the prior distribution can be expressed as follows:

(2)k(�(n), �(m)) = exp(−�|�(n) − �(m)|2),

(3)�
� ∼ N

(
0,

[
� �

�
⊤ k(�new, �new)

]
+ 𝜎

2
�

)
,

where �� = [d(1),… , d(Nt), dnew]
⊤. Since � is known, 

the posterior distribution p(dnew|�) can be obtained. The 
expected value of the posterior distribution is then used as 
the predicted value, and we denote it as d̂GP(n):

As shown in Eq. (4), the maximum tsunami height of the 
test data is estimated by the weighted sum of the kernel func-
tion of all training data. The terms � and �2 shown above are 
hyperparameters, which we optimized these hyper-parame-
ters using cross-validation and grid-search approaches.

However, while GP regression is useful as a powerful 
nonlinear multivariate interpolation tool (Rasmussen and 
Williams 2006), its prediction accuracy cannot be guar-
anteed for inputs with sparse training data. Therefore, GP 
regression does not perform extrapolation well, although 
extrapolation is fundamental for predicting beyond the range 
of training data. To solve this problem, we must know the 
relationship among the data and introduce that relationship 
into a prediction model.

Nonlinear parametric model for estimating 
the tsunami height

In this study, we propose a nonlinear parametric model 
to predict the coastal tsunami height from pressure gauge 
data by using a power law relationship between the tsunami 
height and gauge data as shown in Fig. 4b. Figure 4b shows 
that the relationship between the water pressure gauge data 
and the maximum tsunami height on a log–log graph and 
appears to be linearly distributed, and thus, this relationship 
is called a power law.

We mathematically express the power law relationship 
as follows.

(4)d̂GP(n) = �
⊤(� + 𝜎

2
�)

−1
�.

Fig. 4   Relationship between 
s(n) and d(n). a The relation-
ship is plotted linearly. b The 
relationship is plotted as a log–
log graph
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where a and b are constant numbers. Upon taking the loga-
rithm of both sides in Eq. (5), we can write the power law 
relationship as log d = b log s + log a. We can interpret b 
as the inclination and log a as the intercept in the log–log 
graph.

We extend Eq. (5) to constitute a multivariate relationship, 
and then estimate d̂NP by the nonlinear parametric model can 
be obtained as follows:

where the parameters are ai and bi are optimized so that the 
mean square error is minimized. However, it is considered 
difficult to optimize these parameters analytically because of 
the model complexity; therefore, we use a gradient descent 
method to achieve optimization. In the gradient descent 
method, the parameters are initially set to certain values, 
and optimization is performed by updating the parameters 
so that the errors decrease.

We formulate the gradient descent method as follows. We 
establish a loss function as the mean squared error according 
to, E(ai, bi) =

1

n

∑
n �dNP(n) − d(n)�2. Then, the update formu-

las are written as follows:

where �, which is the named learning coefficient, is set as 
a parameter of the gradient descent method. If we use suf-
ficiently small values of � in the above update formulas, the 
loss function certainly decreases. In this study, we initialized 
ai = 0, bi = 1, and we set � = 0.01.

(5)d = asb,

(6)d̂NP(n) =

S∑

i=1

aisi(n)
bi ,

(7)ai ← ai − �
�

�ai
E(ai, bi), bi ← bi − �

�

�bi
E(ai, bi),

Results

In this section, we investigate the prediction performance 
using three methods: the MM regression approach, the GP 
regression technique, and the nonlinear parametric model. 
In “Regression” section, we perform regression for a train-
ing data set to investigate whether each methodology can 
fit the training data set. We then investigate the prediction 
performance of each methodology using test data in both 
“Prediction performance under expected circumstances” and 
“Prediction performance under unexpected circumstances” 
sections, in which we investigate the prediction performance 
of each method under both expected circumstances and 
unexpected circumstances, respectively.

Regression

We first investigate the ability of the proposed nonlinear par-
ametric model to predict the tsunami height from the water 
pressure gauge data and compare our proposed method with 
the two previous methods (Baba et al. 2014; Igarashi et al. 
2016). First, we perform regression for the tsunami height 
using the maximum value of the average absolute value 
observed by the water pressure gauge s(n). This process is 
a one-dimensional regression approach, and thus, the result 
is easy to visualize.

The one-dimensional regression results are shown in 
Fig. 5a, where the gray points represent the training data, 
and the colored lines signify the regression line of each 
method. The tsunami height predicted using MM regres-
sion tends to be bigger than the actual tsunami height when 
the observed value is high and tends to be smaller than the 
actual tsunami height when the observed value is low. On 

Fig. 5   One-dimensional regres-
sion results of the relationship 
between s(n) and d(n). Gray 
points represent training data, 
while white points show inten-
tionally removed data. This fig-
ure shows the regression lines: 
the blue line shows the MM 
regression result, the green line 
shows the GP regression result; 
the red line shows the result of 
our proposed method
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the other hand, GP regression and our proposed method 
both predict the tsunami height with relatively less bias.

To investigate whether each methodology can fit the 
training data set, we calculated an estimation error using 
the root mean squared error (RMSE) as follows:

where D is the dataset utilized to calculate the RMSE, and 
ND is the size of the dataset. Then, we compared the accu-
racy of each method quantitatively. In the one-dimensional 
regression, the RMSE values generated by the MM and GP 
regression techniques and our proposed method are 1.31 m, 
1.16 m, and 1.16 m, respectively. Thus, GP regression and 
our proposed method can predict the tsunami height with a 
better accuracy than can MM regression and can effectively 
learn the nonlinear relationship between ocean pressure 
gauge data and coastal tsunami heights.

Using test data to calculate the prediction error repre-
sented by the RMSE in Eq. (8), we can verify the predic-
tion performance of each method. Especially with regard 
to the one-dimensional case, we focus on the prediction 
performance under unexpected circumstances to predict 
the tsunami height with inputs far from training data; this 
approach mimics the so-called extrapolation problem in 
machine learning. Unlike the previous results, it is diffi-
cult for GP regression to predict the tsunami height under 
unexpected circumstances (Rasmussen and Williams 
2006). To demonstrate the extrapolation problem with GP 
regression, we perform one-dimensional regression with 
training data of s ≤ 400 only (i.e., we intentionally remove 
the data with s > 400 ). The data with s ≤ 400 are plotted in 
Fig. 5b as gray points, and all other as white points.

While GP regression makes predictions with relatively 
little bias in the range of the training data set, the predic-
tion error far exceeds the range of the training data, as 
shown by the green line in Fig. 5b. In fact, the estimation 
error and a prediction error using GP regression under 
unexpected circumstances for the gray points and white 
points are 1.11 m and 12.28 m, respectively. In contrast, 
our proposed method makes predictions with little bias 
even when the training data does not exist, as shown by the 
red line in Fig. 5b. The errors generated by our proposed 
method for the gray points and white points are 1.12 m 
and 3.35 m, respectively. Evidently, our proposed method 
makes predictions with fewer errors than GP regression 
when we estimate the tsunami height from DONET obser-
vations through extrapolation.

Thus far, we have performed one-dimensional regres-
sion to illustrate the advantages of our proposed method 
with regard to the extrapolation problem. Next, we extend 

(8)RMSE =

√
1

ND

∑

n∈D

{
d(n) − d̂(n)

}2
,

the GP regression technique and our proposed method are 
easily extended to implement multidimensional regres-
sion, which is required for practical matters. We perform 
multidimensional regression using a randomly selected 
training data set (1004 cases), and Fig. 6a shows the mul-
tidimensional regression fitting results. The colored points 
in Fig. 6a show the values predicted by each method; the 
horizontal axis denotes the actual tsunami height, while 
the vertical axis represents the predicted tsunami height, 
and the gray line shows the d = d̂ line. The predicted 
points are closer to the d = d̂ line in the presence of fewer 
prediction errors.

As with one-dimensional regression, the tsunami height 
predicted by MM regression tends to be bigger when the 
observed value is high, and vice versa. However, GP regres-
sion and our proposed method predict the tsunami height 
with relatively less bias. The RMSE values generated by 
the MM and GP regression techniques and by our proposed 
method are 1.32 m, 0.55 m, and 0.76 m, respectively. We 
performed the same regression 100 times while changing 
the seed of the random number generator to avoid accidental 
results caused by randomly choosing training data. Figure 6c 
shows the average of fitting errors and error bars, which sig-
nify mean a 95% confidence interval. The averaged RMSE 
values generated by the MM and GP regression techniques 
and by our proposed method are 1.31 m, 0.57 m, and 0.76 m, 
respectively. GP regression makes predictions with fewer 
errors than our proposed method; despite this, our proposed 
method improves the prediction accuracy compared with 
MM regression.

It is difficult to know which DONET observation point is 
important for the prediction by interpreting the GP regres-
sion results because GP regression is a nonparametric 
method, and thus, we cannot obtain the parameters from GP 
regression. In our proposed method, which is a parametric 
method, we can obtain the parameters by regression and 
therefore interpret the results to ascertain the importance of 
each observation point for the prediction. In Fig. 7 we show 
the parameters obtained during the experiment illustrated in 
Fig. 6a. Some values of the weight parameters, ai, are closer 
to zero, whereas others are larger in the positive direction 
or the negative direction. The parameters of the power law 
bi are all positive. In the range of i in which ai is small, a 
change in the DONET observation value si(n) effects the 
prediction value d̂NP(n) only slightly.

Prediction performance under expected 
circumstances

Thus far, we have used given data to compare the regression 
performance of the proposed method with those of the previ-
ous methods. Next, we use test data to verify the prediction 
performance of each method. First, we assumed that the test 
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data are drawn from the same population as the training 
data, and we investigated the prediction performance of each 
method under expected circumstances. Following a previous 
study (Igarashi et al. 2016), we randomly shuffled all data 

points (1506 cases) and then divided them into the training 
set (1004 cases) for learning and the test set (502 cases) for 
verifying the prediction accuracy as shown in Fig. 8a. We 
then interpret the test data as unknown data under expected 

Fig. 6   Results of the predic-
tion experiment. a Relationship 
between the simulated tsunami 
height d(n) and the tsunami 
height d̂(n) estimated from the 
training data set. Blue points 
show the estimation results of 
MM regression, green points 
show the estimation results of 
GP regression, and red points 
show the estimation results 
of our proposed method. b 
Relationship between the 
simulated tsunami height d(n) 
and the tsunami height d̂(n) 
predicted from the test data set. 
c Comparison of the RMSE 
estimation errors for training set 
with two-sided 95% confidence 
intervals. d Comparison of the 
RMSE prediction errors for the 
test dataset with two-sided 95% 
confidence intervals

Fig. 7   a Parameters of our 
proposed method optimized in 
the experiment illustrated in 
Fig. 6a. b Each corresponding 
DONET1 observation point
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circumstances. Figure 6b shows the prediction performance 
of each method under expected circumstances. The gray line 
represents the d = d̂ line, to which the predicted points are 
closer in the presence of fewer prediction errors. The val-
ues predicted by MM regression tend to be smaller when 
5 ≤ d ≤ 10; furthermore, MM regression generates bias, as 
shown in Fig. 6b. In contrast, GP regression and our pro-
posed method appear to predict the tsunami height with rela-
tively less bias. The RMSE values generated by MM and GP 
regression and by our proposed method are 1.28 m, 0.74 m, 
and 0.81 m, respectively; the RMSE values generated by our 
proposed method are smaller than those of MM regression 
by 36% and larger than those of GP regression by 9%. This 
finding indicates that our proposed method can predict the 
coastal height of a tsunami with approximately the same 
accuracy as can GP regression.

We performed the same prediction experiments 100 times 
for each method while changing the seed of the random 
number generator to avoid accidental results caused by ran-
domly choosing the training data. Figure 6d shows the aver-
age of each prediction error and error bars, which signify 
a 95% confidence interval. Averaged RMSE by MM, GP, 
and our proposed method are 1.31 m, 0.76 m, and 0.83 m, 
respectively. Averaged RMSE by our proposed method is 
smaller than that of MM by 37% and larger than that of GP 
by 9%. This also indicates that our proposed method can 
predict the coastal tsunami height with approximately the 
same accuracy as can GP regression.

Prediction performance under unexpected 
circumstances

In the previous section, we assume that the test data are 
drawn from the same population as the training data, and 
we investigate the prediction performance of each method 
under expected circumstances. However, in practice, we can-
not deny the possibility that the coastal tsunami height can 

exceed the scope of the assumption. Thus, in this subsection, 
we investigate the prediction error under a scenario of unex-
pected circumstances, which is often called extrapolation, 
using the three methods, namely, the MM and GP regression 
techniques and our proposed nonlinear parametric model. 
To verify the prediction performance of each method under 
unexpected circumstances, we sorted all data (1506 cases) 
by the water pressure gauge observation value s(n) and then 
divide them into the training set (1406 cases) for learning 
and the test set (100 cases) for verification, as shown in 
Fig. 8b. Using the test data set, we evaluated the predic-
tion performance of each method under unexpected circum-
stances, that is, when the coastal tsunami height exceeds the 
scope of the assumption.

To clearly show the prediction performance of each 
method under unexpected circumstances, we perform one-
dimensional regression with the abovementioned training 
data set (1406 cases) and evaluate the test data set (100 
cases). In the one-dimensional regression scenario, we use 
the MM, s(n) = maxt

1

S

∑S

i=1
�pi(n, t)�, as an input variable, 

where n denotes scenario n of the training set. Similar to 
Figs. 5b, 9a shows that our proposed method makes predic-
tions with relatively little bias even the training data do not 
exist, whereas the prediction error of GP regression largely 
exceeds the range of training data. The predictions values 
of GP regression in s(n) > 250 are directly affected by the 
rightmost training data, and they exponentially increase as 
a result, as shown in Fig. 9a. In fact, calculating the RMSE 
values generated by GP regression and our proposed method 
for the white points to evaluate the prediction performance 
of both methods under unexpected circumstances, we found 
that the GP regression and MM regression techniques and 
proposed method generated RMSE values of 165.7, 6.2 and 
4.1 m, respectively.

Thus far, we have performed one-dimensional regres-
sion to illustrate the advantages of our proposed method. 
Next, let us consider multidimensional regression, using 

Fig. 8   Dataset used in the 
prediction experiments. Black 
points represents the training 
data set, and the white points 
represents the test data set. a 
Randomly selected data set used 
in the experiment illustrated in 
Fig. 6. b Data set used to verify 
the extrapolation accuracy
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�(n) = [s1(n),… , sS(n)] as the input variables. Similar to the 
results of one-dimensional regression results, Fig. 9b shows 
that, MM regression and our proposed method provide rela-
tively accurate predictions, whereas GP regression fails to 
predict the tsunami height due to a deficit of water pressure 
gauge data. In fact, the MM regression method, GP regres-
sion technique, and our proposed method generated RMSE 
values of 4.30 m, 10.72 m, and 3.16 m, respectively; the 
RMSE generated by our proposed method is smaller than 
that generated by MM regression by 27% and smaller than 
that generated by GP regression by 71%.

The differences in the prediction performance of the 
methods under unexpected circumstances are due to whether 
the prediction methods are parametric or nonparametric 
models. Regression models are classified as either paramet-
ric or nonparametric models. While GP regression is clas-
sified as a nonparametric model, MM regression and our 
proposed method are both parametric models, in which the 
relationship between the data can be modeled by expressing 
the relationship through a parameterized formula. Although 
strong assumptions are not placed on the relationship in non-
parametric models and flexible modeling can be performed, 
the regression results are strongly affected by the data; fur-
thermore, nonparametric models cannot offer effective pre-
dictions beyond the range of training data, and thus, they 
exhibit a low extrapolation accuracy. Theoretically, Eq. (4), 
which gives us the theoretical results of GP regression, 
shows that the Gaussian kernel between the test data and 
training data, �, drops sharply to zero in the case of a predic-
tion beyond the range of training data well, and the predicted 
tsunami height becomes 0, as shown in Fig. 9b. Although 

Fig. 9a shows that the predictions values of GP regression 
in s(n) > 250 are directly affected by the rightmost training 
data and thus exponentially increased, s(n) increases, and 
the predictive tsunami height also becomes 0. Therefore, 
our proposed method and MM regression are much better 
than GP regression at predicting the tsunami height under 
unexpected circumstances.

Discussion

In this study, we find that there is a power law relationship 
exists between the water pressure gauge data and the tsu-
nami height and accordingly construct a nonlinear para-
metric model on the basis of this power law relationship. 
However, in practice, we cannot deny the possibility that the 
coastal tsunami height will exceed the scope of the assump-
tion; therefore, we evaluate the prediction performance of 
the three methods under a scenario of unexpected circum-
stances, which is called extrapolation. Following a verifi-
cation, we found that our proposed method increases the 
prediction performance under the extrapolation scenario 
in comparison with GP regression. In this study, we verify 
the ability of our proposed method to extrapolate data with 
higher water pressures. However, as another case of extrapo-
lation, the ability of our proposed method to extrapolate for 
nonuniform fault models is considered. In addition, for fur-
ther verification, simulating tsunami scenarios are simulated 
with nonuniform fault models, and performing prediction 
experiments are necessary.

Fig. 9   Extrapolation prediction results for the test set in Fig.  8b. a 
One-dimensional data set used to verify the extrapolation accuracy 
and regression results for extrapolation prediction. This figure shows 
the regression lines: the blue line shows the MM regression result, 
the green line shows the GP regression result, the red line shows the 

result of our proposed method. b Multidimensional regression results 
for extrapolation prediction. This figure shows the regression results: 
the blue points show the MM regression result, the green points show 
the GP regression result, the red points show the result of our pro-
posed method
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Let us discuss the applications of our method to real data. 
In practice, physical phenomena such as seismic and ocean 
acoustic waves are abundant; nevertheless, our simulation 
does not take these phenomena into account. However, 
because the periods of tsunami waves are much higher than 
those of these physical phenomena, a preprocessing system 
using low-pass filtering can work effectively at removing 
these phenomena (Takahashi et al. 2017). Thus, the appli-
cation of our proposed model into real data is considered 
effective, and the application of our method to the real data 
must be further investigated.

From the perspective of machine learning, there are a few 
problems in our proposed method. First, when our proposed 
method is trained using training data, there is a possibility 
that the model will be affected by the noise included within 
the training data. This problem is known as overfitting, and 
MM regression and GP regression also exhibit this problem. 
Second, our proposed method is a somewhat complicated 
model; consequently, local minima may exist, and thus, it 
is necessary to verify whether local minima actually exist 
and to address them accordingly. Finally, in this study, to 
enhance the prediction performance, the prediction model 
does not take a physical model into account and the coeffi-
cient of the prediction model can be either negative or posi-
tive. As a result, some of the coefficients ai are negative, as 
shown in Fig. 7, which may does not make physical sense. 
Thus, further investigation is needed to construct a model 
for predicting the height of a tsunami under the constraint 
of positive coefficients and to study the relationship between 
this phenomenological model and a physical tsunami model.

Let us consider the limitation of our proposed method 
insomuch that it depends on the study area. In this study, we 
choose Osawa in Kii Prefecture, Japan, as the target region 
because Owase represents the front of the DONET ocean 
bottom pressure gauges and because there is a strong posi-
tive correlation between the maximum tsunami height at 
Owase and the maximum value of the absolute water pres-
sure (Baba et al. 2014). We thus assume the existence of a 
positive correlation between the ocean bottom gauges and 
tsunami height in the prediction region, but this assump-
tion restricts the application of our method to other regions. 
To apply our method to other regions, we have to select 
appropriate gauges for the tsunami prediction using machine 
learning methods. In our previous study (Taniguchi et al. 
2018), we used the prior knowledge that the important points 
for tsunami height prediction is sparse and show the sparse 
modeling (Tibshirani 1996; Bishop 2006) is useful for auto-
matic selection of ocean bottom gauges. Therefore, further 
investigation is needed to combine the sparse modeling and 
our proposed method for overcoming the limitation of our 
proposed method depending on the study area.

Next, let us discuss the case in which our proposed 
method has a substantial advantage over the other two 

methods. Based on the strong positive correlation between 
the observed water pressure data and the costal tsunami 
height in Owase, a previous study (Baba et  al. 2014) 
assumed a linear relationship with the MM regression 
method for the sake of simplicity. In contrast, our proposed 
method uses a nonlinear power law relationship, which auto-
matically expresses the strong positive correlation in Owase. 
Thus, when this nonlinear relationship is preserved in the 
prediction dataset, the tsunami prediction performance of 
our proposed method is better than that of the MM regres-
sion method, even under unexpected circumstances. Moreo-
ver, although the prediction method using GP regression 
does not assume the existence of this relationship, the GP 
regression method cannot offer predictions exceeding the 
range of training data well, and its prediction performance 
under unexpected circumstances is worse than those of the 
other two methods.

As shown in a previous study (Baba et al. 2014), the 
abovementioned nonlinear relationship is preserved in other 
areas in the Kii Peninsula such as Kumano and Uragami in 
Kii Peninsula, which are the fronts of the DONET ocean 
bottom pressure gauges. In the future work, it will be neces-
sary to investigate the effects of the local bathymetry (due to 
wave shoaling) on the power law relationship using massive 
scenarios of tsunami simulation in other regions simultane-
ously with the selection of ocean pressure gauges for tsu-
nami prediction. Moreover, further investigation is needed 
to explain how this phenomenological nonlinear relation-
ship relates to a physical model, which would helps us to 
understand tsunamis in a broader context and implement 
rapid tsunami prediction schemes in various coastal regions.

Conclusion

In this study, we found the existence of a power law rela-
tionship between water pressure gauge data and the tsunami 
height, and we constructed a nonlinear parametric model to 
predict the tsunami height. We performed prediction experi-
ments to verify the accuracy of our proposed method, the 
results of which indicate that our proposed method can offer 
predictions with approximately the same accuracy as GP 
regression. However, in practice, we cannot deny the possi-
bility that the coastal tsunami height will exceed the scope of 
the assumption; therefore, we evaluated the prediction per-
formance under unexpected circumstances, which is called 
extrapolation. As a result, we found that the extrapolation 
accuracy of our proposed method is higher than those of 
MM regression and GP regression.

The results reported in this paper are based on a nonlinear 
power law relationship, which authentically expresses the 
strong positive correlation in Owase. Therefore, to over-
come the limitation of our proposed method insomuch that 
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it depends on the study area, further investigation is needed 
to understand the effects of the local bathymetry (due to 
wave shoaling) on the relationship using massive scenarios 
of tsunami simulations in other regions simultaneous with 
the selection of ocean pressure gauges for tsunami predic-
tion. Moreover, further investigation is needed to explain 
how this phenomenological nonlinear relationship relates 
to a physical model, which would helps us to understand 
tsunamis in a broader context and implement rapid tsunami 
prediction schemes in various coastal regions.
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