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Rotational and varus–valgus laxity
affects kinematics of the normal
knee: A cadaveric study
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Abstract
Purpose: The aim of this study was to evaluate the relationship between soft tissue laxity and kinematics of the normal
knee using a navigation system. Methods: Fifteen cadaveric knees from 11 fresh frozen whole-body specimens were
included in this study. The navigation system automatically recorded the rotation angle of the tibia as the internal–external
(IE) kinematics and the coronal alignment of the lower limb as the varus–valgus (VV) kinematics. These measurements
were made with the joint in maximal extension, at 10� intervals from 0� to 120� of flexion, and at maximal flexion during
passive knee motion. For evaluation of laxity, the examiner gently applied maximum manual IE and VV stress to the knee at
0�, 30�, 60�, and 90� of flexion. Results: The measurements showed almost perfect reliability. The mean correlation
coefficient between the intraoperative tibial rotation angle and the intermediate angle of IE laxity was 0.82, while that
between the coronal alignment of the lower limb and the intermediate angle of the VV laxity was 0.96. There was a
statistically significant correlation between kinematics and laxity at all degrees of knee flexion. Conclusion: The present
study revealed that the rotation angle of the tibia was correlated to the intermediate angle of IE laxity at 0�, 30�, 60�, and
90� of knee flexion and the coronal alignment of the lower limb also correlated to the intermediate angle of VV laxity.
These findings provide important reference data on soft tissue laxity and kinematics of the normal knee.
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Introduction

Total knee arthroplasty (TKA) is a valuable and

beneficial surgical alternative used to treat pain, dis-

ability, and limited motion associated with osteoarthri-

tis. Although previous studies have indicated good

long-term outcomes,1,2 patients have reported being

less satisfied with the outcomes of TKA than those

after total hip arthroplasty.3 This dissatisfaction could

be explained partly by the changes in kinematics after

TKA.4,5 Nishio et al. reported that intraoperative med-

ial pivot kinematics with external rotation of the femur

relative to the tibia resulted in larger flexion angles

and better patient-reported outcomes6 and stated that

restoring more normal and predictable kinematics pos-

sibly improved both knee flexion angle and subjective

outcomes after TKA.
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To restore the normal knee kinematics after TKA, con-

siderable research concerning the surgical technique has

been performed. In some previous reports, the relationship

between intraoperative soft tissue balancing and postopera-

tive kinematics was evaluated.7 However, Ferle et al. stated

that there were no objective target parameters describing

the soft tissue tension of the normal knee and revealed that

normal knee laxity was dependent on the flexion angle,

using a meta-analysis of the data from previous studies

on normal knee laxity.8 Therefore, to create a guide for

restoring normal knee kinematics after TKA, it is necessary

to investigate the relationship between soft tissue laxity and

kinematics in the normal knee in detail.

The aim of this cadaveric study was to evaluate the

relationship between the soft tissue laxity and kinematics

in the normal knee using a navigation system.

Materials and methods

We evaluated 15 cadaveric knees from 11 fresh frozen

specimens stored at �20�C (six male, five female; mean

age at the time of death 82.8 years, range 70–96 years). All

the cadaveric specimens were macroscopically intact with-

out gross deformity, arthritic changes, contracture, or evi-

dence of prior knee surgery. Preoperative computed

tomography confirmed that none had osteoarthritis. An

image-free knee navigation system (Stryker Navigation

version 1.0, Stryker, Kalamazoo, Michigan, USA), infrared

cameras, and light-emitting diodes were used to evaluate

the kinematics and laxity of the knee.

The knee joint was dissected in each cadaveric specimen

using the standard medial parapatellar approach. Soft tissue

release was not performed. The navigation system was reg-

istered for each case according to the manufacturer’s pro-

tocol. The femoral rotational axis was set as the surgical

epicondylar axis. The tibial rotational axis was directed

along a line from the medial edge of the attachment of the

patellar tendon to the middle of the posterior cruciate liga-

ment.9 Intraoperative kinematic analysis was performed

once for each knee by a single examiner using the naviga-

tion system after registration. The navigation system auto-

matically recorded the angle of rotation of the tibia

(internal rotation as positive) as internal–external (IE) kine-

matics. The system also recorded coronal alignment of the

lower limb (varus alignment as positive) as the varus–val-

gus (VV) kinematics, at maximum extension, at 10� inter-

vals from 0� to 120� of flexion, and at maximum flexion,

during passive knee motion. An earlier study demonstrated

that the repeatability and reproducibility of this methodol-

ogy was statistically sufficient.10 After the intraoperative

kinematic analysis, the laxity of the knee joint was evalu-

ated twice by a different examiner using the navigation

system. For IE laxity, the examiner gently applied maxi-

mum manual internal and external stress to the knee at 0�,
30�, 60�, and 90� of flexion. The navigation system auto-

matically recorded the rotation angle of the tibia at each

knee angle. For VV laxity, the examiner applied maximum

manual varus and valgus stress to the knee at 0�, 30�, 60�,
and 90� of flexion. The coronal alignment of the lower limb

was measured at each angle. The dissected fascia was

sutured with nylon thread during the intraoperative evalua-

tion of kinematics and laxity.

The institutional review board of our hospital

approved this prospective study (No. 2068). All proce-

dures involving human participants were conducted in

accordance with the ethical standards of the institutional

and/or national research committee and with the 1964

Declaration of Helsinki and its later amendments or com-

parable ethical standards. Written informed consent was

obtained from all individual participants included in the

study.

Statistical analysis

The statistical analysis was performed using IBM SPSS

statistical software (SPSS v.21.0 for Mac OS X; IBM

Corp., Armonk, New York, USA). Intraclass correlation

coefficients (ICCs) were used to evaluate the intra-

examiner reproducibility of measurements of IE and VV

laxity. Pearson’s product correlation coefficients for the

intraoperative tibial rotation angle and the intermediate

angle of IE laxity were assessed at 0�, 30�, 60�, and 90�

of knee flexion. The correlation coefficients for the intrao-

perative coronal alignment of the lower limb and the inter-

mediate angle of VV laxity were also assessed at 0�, 30�,
60�, and 90� of knee flexion. The value of p < 0.05 was

considered statistically significant. Given the small number

of subjects, a post hoc calculation of statistical power was

performed using G*power statistical software (version

3.1.9.2, Dusseldorf, Germany). A sample size calculation

based on the calculated correlation coefficient demon-

strated that nine specimens would be sufficient to detect

statistically significant kinematic differences with a power

of 0.8.

Results

The mean intra-rater ICC for IE laxity was 0.99 (range

0.97–0.99), and the mean intra-rater ICC for VV laxity was

0.99 (range 0.98–0.99). All measurements showed almost

perfect reliability (Table 1).

The results for the internal rotation angle of the tibia and

the coronal alignment of the lower limb during knee flexion

Table 1. Intra-rater intraclass coefficients for internal–external
tibial rotation and varus–valgus laxity.

0� 30� 60� 90�

Internal rotation 0.97 0.99 0.99 0.99
External rotation 0.98 0.99 0.99 0.99
Varus 0.99 0.99 0.99 0.98
Valgus 0.99 0.99 0.99 0.99
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are summarized in Figures 1 and 2. The IE kinematics

indicated sharp internal rotation of the tibia in the early

stage of knee flexion and mild internal rotation of the tibia

from 60� to maximum knee flexion. The VV kinematics

showed mild changes in varus until 60� of knee flexion and

in valgus over 70� of knee flexion.

Correlation coefficients for kinematics and laxity during

flexion of the knee are summarized in Figures 3 and 4. The

mean correlation coefficient for the rotation angle of the

tibia and the intermediate angle of IE laxity was 0.82, while

the mean correlation coefficient for the coronal alignment

of the lower limb and the intermediate angle of VV laxity

was 0.96. There was a statistically significant correlation

between kinematics and laxity at each angle of knee flexion

(Table 2).

Discussion

The most important finding of this study was a statistically

significant correlation between kinematics and laxity at 0�,
30�, 60�, and 90� of knee flexion. The present data sug-

gested that both the rotation angle of the tibia and the

coronal alignment of the lower limb might be similar to

the intermediate angle of laxity at each knee flexion angle.

Figure 1. Angle of internal rotation of the tibia during knee flexion. Error bars indicate standard error.

Figure 2. Coronal alignment of the lower limb during knee flexion. Error bars indicate standard error.
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To the best of our knowledge, this whole-body cadaveric

study is the first to report on the relationship between kine-

matics and laxity in the normal knee using a navigation

system. These findings provide important reference data

on soft tissue laxity and kinematics of the normal knee.

Manual stress testing during intraoperative measure-

ment of laxity using a navigation system has been used

mainly in studies of knees with anterior cruciate ligament

Figure 3. Comparison of the tibial internal rotation and mean angle of IE laxity. Cross mark indicates the intermediate angle of IE laxity.
Error bars indicate the range of IE laxity. IE: internal–external.

Figure 4. Comparison of the coronal alignment of lower limb and the mean angle of VV laxity. Cross mark indicates the intermediate
angle of VV laxity. Error bars indicate the range of VV laxity. VV: varus–valgus.

Table 2. Correlation coefficients for kinematics and laxity during
knee flexion.

0� 30� 60� 90�

IE kinematics versus angle of IE laxity 0.83a 0.82a 0.79a 0.83a

VV kinematics versus angle of VV laxity 0.96a 0.97a 0.96a 0.93a

IE: internal–external; VV: varus–valgus.
ap < 0.001.
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(ACL) injury. Miura et al. reported that evaluation of laxity

in the contralateral stable knee is useful during reconstruc-

tion of a knee with ACL injury.11 Martelli et al. demon-

strated that this method has acceptable reliability.12,13

Similarly, the intra-observer reliability for most measure-

ments was almost perfect in the present study despite the

use of manual stress testing.

The kinematics of the normal knee has been widely

investigated,14,15 and several movements unique to the nor-

mal knee have been reported in terms of axial rotation.

Sharp external rotation of the femur near extension has

been identified and is known as the “screw-home” move-

ment.16,17 Bicondylar rollback has also been found to occur

at mid-flexion during various activities18 and a medial

pivot motion has been identified during deep knee

bends.19,20 In the present study, IE kinematics data indicate

that sharp internal rotation of the tibia occurs in the early

stage of knee flexion and that mild internal rotation of the

tibia occurs between 60� and maximum flexion of the knee.

The present data of cadaveric knees are similar to those in

previous kinematics studies, possibly because we evaluated

the kinematics of the normal knee in whole-body cadaveric

specimens. In terms of VV kinematics, the present data

were also similar to those of a previous cadaveric study

by Siston et al. using a navigation system.21 However, there

were some discrepancies in comparison with previous in

vivo kinematic results.15,22 These discrepancies may be due

to a difference in the reference point of the axis. Further

research is necessary to identify the reason for the discre-

pancies in kinematic measurements.

The relationship between soft tissue laxity and kine-

matics in TKA has been studied. Watanabe et al. evaluated

soft tissue balance using a tensor device in posterior-

stabilized TKA and concluded that the intraoperative joint

gap in deep flexion and soft tissue balance play important

roles in kinematics after TKA.23 Matsuzaki et al. evaluated

the influence of intraoperative soft tissue balance para-

meters on knee kinematics in cruciate-retaining TKA and

reported that lateral laxity at mid-to-deep knee flexion

plays a significant role in internal rotation of the tibia.24

Furthermore, it has also been reported that several factors

affect both soft tissue laxity and kinematics. Wada et al.

conducted a cadaveric study and revealed that tibial inter-

nal rotation during knee flexion was reduced by extensive

medial collateral ligament release in posterior-stabilized

TKA.7 According to Matsumoto et al., kinematically

aligned cruciate retaining TKA maintained more tibial

internal rotation and lateral laxity during flexion than

mechanically aligned TKA.25 Even though meticulous

TKA studies have been conducted, it is necessary to under-

stand the relationship between the soft tissue laxity and

kinematics in normal knee. In this study, the rotation angle

of the tibia was correlated to the intermediate angle of IE

laxity at 0�, 30�, 60�, and 90� of knee flexion, and the

coronal alignment of the lower limb also correlated to the

intermediate angle of VV laxity. The present results would

be important data for further assessment of the knee laxity

and kinematics.

This study had several limitations. First, we assessed

only the rotation angle of the tibia and the coronal align-

ment of the lower limb. There is a lack of kinematic data

for the anteroposterior, mediolateral, and superoinferior

dimensions because the kinematics of the knee includes

six degrees of freedom. Anteroposterior translation should

be examined to evaluate the kinematics of knee flexion

but could not be assessed by our navigation system. Sec-

ond, the reproducibility of the kinematic analysis was not

evaluated; this may be questionable because the analysis

was performed manually. Nevertheless, in a previous

study, Wada et al. demonstrated that intraoperative anal-

ysis of kinematics was highly reproducible.10 Therefore,

we believe that our present data, which were obtained

using the same method, have acceptable reproducibility.

Third, the mean age of knees included in this study is 82.8

years, which is relatively old for studies of normal knees.

In the present study, all the cadaveric specimens were

evaluated as macroscopically intact and preoperative

computed tomography confirmed that none had osteoar-

thritis. Thus, these knees seem to be suitable to be eval-

uated as normal knees.

Conclusion

The present study revealed that the rotation angle of the

tibia was correlated to the intermediate angle of IE laxity at

0�, 30�, 60�, and 90� of knee flexion and the coronal align-

ment of the lower limb also correlated to the intermediate

angle of VV laxity. These findings provide important ref-

erence data on soft tissue laxity and kinematics of the nor-

mal knee.
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