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Bifurcation transitions between a 1D invariant closed curve (ICC), corresponding to a 2D torus in
vector fields, and a 2D invariant torus (IT), corresponding to a 3D torus in vector fields, have been
the subjects of intensive research in recent years. An existing hypothesis involves the bifurcation
boundary between a region generating an ICC and a region generating an IT. It asserts that an IT
would be generated from a stable fixed point as a consequence of two Hopf (or two Neimark—
Sacker) bifurcations. We assume that this hypothesis may puzzle many researchers because it is
difficult to assess its validity, although it seems to be a reasonable bifurcation scenario at first
glance. To verify this hypothesis, we conduct a detailed Lyapunov analysis for a coupled delayed
logistic map that can generate an IT, and indicate that this hypothesis does not hold according
to numerical results. Furthermore, we show that a saddle-node bifurcation of unstable periodic
points does not coincide with the bifurcation boundary between an ICC and an IT. In addition, the
bifurcation boundaries of torus doubling do not coincide with a period-doubling bifurcation of
unstable periodic points. To conclude, torus bifurcations have no relation with the bifurcations
of unstable periodic points. Additionally, we exactly derive a quasi-periodic Hopf bifurcation
boundary introducing a double Poincaré map.

Subject Index A30, A34

1. Introduction

The rapid increase of computational power enables us to numerically solve higher-dimensional
dynamics [1-14,17,18]. In such high-dimensional dynamics, hyperchaos [5,10], torus-doubling
[1,6,15,16], and a 3D torus can be generated [3,4,7—14,17—19] that cannot be observed in minimal-
dimensional dynamics, which can generate chaos such as 3D autonomous ODEs, and 2D nonau-
tonomous ODEs. In particular, bifurcations of low-dimensional quasi-periodic oscillations have been
the subjects of intensive research in recent years [1-4,6—18]. There are two transition routes from a
2D torus to a 3D torus. Vitolo et al. called these transitions quasi-periodic Hopf (QH) bifurcations
and quasi-periodic saddle-node (QSN) bifurcations [20]. However, significant bifurcation problems
concerning torus bifurcations have remained unsolved. For example, Sekikawa et al. have recently
discovered a bifurcation structure called “two-torus Arnold tongues” [10] in a three-LC resonant
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Fig. 1. Hypothesis concerning the bifurcation of a limit cycle to a 3D torus presented in Ref. [17].

oscillator. Two-torus Arnold tongues refer to a bifurcation structure in which two of the three inde-
pendent frequency components of a 3D torus become rational, and exist similar to periodic states
existing in a region generating a 2D torus in a conventional Arnold tongue. The two-torus Arnold
tongues are observable in experimental measurements [10]. Anishchenko et al. [14] analyzed a 4D
driven oscillator, and claimed that, by using a double Poincaré map, a QSN bifurcation of a 2D torus
to a 3D torus occurs when a stable 2D torus and a saddle 2D torus merge together and disappear.

A precedent experiment on bifurcations of a 3D torus in 2000 shows, via a detailed conceptual dia-
gram in Ref. [17], that the bifurcations of a 3D torus could occur from a limit cycle as a consequence
of two Hopf (or two Neimark—Sacker) bifurcations. At first glance, their argument regarding the
bifurcation structure seems to be reasonable. However, their scenario may puzzle many researchers
because it may not be easy to verify the validity of their hypothesis. It was not easy to numerically
check the hypothesis by computation a decade ago. We will indicate that the claim of Anishchenko
et al. [14] appears to contradict the claim in Ref. [17] because the latter claim indirectly indicates
that the bifurcation boundary between a 2D torus and a 3D torus occurs when a saddle-node (SN)
bifurcation of an unstable periodic solution is generated, which is explained in detail below.

We assume that the objective dynamics is a 4D Poincaré map or 4D discrete dynamics. Additionally,
we assume that the four eigenvalues are two pairs of complex-conjugates on the complex plane.
Figure 1 shows the position of the four eigenvalues. The abscissa denotes a bifurcation parameter. In
the figure, a region denoted by ; D is an area where a fixed point (or periodic points), of which the
instability dimension is i, exists [21,22]. Therefore, the region denoted by ¢ D is an area where a stable
fixed point exists, as illustrated in the left picture in Fig. 1. Moving the bifurcation parameter from left
to right, a Neimark—Sacker (NS) bifurcation occurs when a pair of complex-conjugate eigenvalues
cross the unit circle. It is well known that this bifurcation is identified with a transition from a limit
cycle to a 2D torus. The issue presented in Ref. [17] is the point at which the second NS bifurcation
of the limit cycle would coincide with the bifurcation boundary from a 2D torus and a 3D torus, i.e.,
whether the region marked 4D generates an IT. It would hold at first glance. However, no one has
investigated the scenario in Fig. 1 by illustrating the bifurcation diagrams.

The reason that the claim in Ref. [17] contradicts the claim of Anishchenko et al. [14] is explained
as follows. A periodic solution can bifurcate to a 2D torus by an SN bifurcation, as well as an NS
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Fig. 2. Another hypothesis for the bifurcation boundary between a 2D torus and a 3D torus deduced from the
hypothesis illustrated in Ref. [17].
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Fig. 3. Relation between the torus-doubling and period-doubling bifurcations of unstable periodic points.

bifurcation. If the 2D torus bifurcates to a 3D torus through a second Hopf (or a second NS) bifurca-
tion as illustrated in Fig. 1, it will be deduced that the 2D torus would bifurcate to a 3D torus through
an SN bifurcation of an unstable periodic solution, as illustrated in Fig. 2. However, Anishchenko
et al. [14] claims that the QSN bifurcation occurs when a 2D torus attractor and a saddle 2D torus
merge together and disappear by an SN bifurcation.

In this study we conduct a Lyapunov analysis on a coupled delayed logistic map, which is a simple
diffeomorphism that can generate a 2D invariant torus (IT) corresponding to a 3D torus in vector
fields, and indicates that the hypothesis for the generation of an IT in the two cases presented in
Figs. 1 and 2 appears to be invalid.

Additionally, a similar bifurcation problem for torus-doubling arises from the position of four
eigenvalues, i.e., whether torus-doubling bifurcation points coincide with period-doubling bifurca-
tion points of unstable periodic points. The position of the four eigenvalues is presented in Fig. 3. It
is well known that, if the periodic points are stable, a period-doubling bifurcation is generated when
a real eigenvalue crosses —1. However, according to our numerical results, their bifurcation para-
meter values do not coincide. To conclude, torus bifurcations have no relation with those of unstable
periodic solutions.

Lastly, we attempt to derive an exact bifurcation boundary between a region generating an ICC
and a region generating an IT caused by a QH bifurcation, which is a major bifurcation from an
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ICC to an IT. Because quasi-periodic attractors with n-incommensurate frequency components are
represented by a form of an n-dimensional torus in vector fields, an ICC on the Poincaré section
becomes a fixed point on the double Poincaré section, and an IT becomes an ICC on this section.
Therefore, we can derive the QH bifurcation boundary exactly by detecting the attractor on the double
Poincaré section. This is a typical method. We derived the QH bifurcation boundary with an accuracy
of 107>, and verified that it coincides with the boundary obtained via Lyapunov analysis. We can
clearly observe an ICC on the double Poincaré section corresponding to a 3D torus in vector fields.

2. Analysis of a coupled delayed logistic map generating I'T

In this study, we numerically investigate a coupled delayed logistic map in the following form,
wherein F is a simple differmorphism:

T.
F(Xn, Yn, Zn, Wn) 1 Xl = Ya,

Ynt1 = By (1 — x,) + 1wy, @D

Zn+1 = Wp,

Wpt1 = Bowy, (1 — z,) + €2yn.

Since we analyze the discrete-time dynamical system in this study, we use the terms “1D invariant
closed curve” (ICC) and “2D invariant torus” (IT) instead of “2D torus in vector fields” and “3D
torus in vector fields.”

Because of the simplicity of a delayed logistic map, an NS bifurcation parameter value of Bj
(1 = &2 = 0) is manually calculated as B; = 2. Since a delayed logistic map can generate an ICC,
a coupled delayed logistic map can generate an IT. This coupled map is an appropriate representa-
tion of the dynamics for verifying the hypothesis presented in Fig. 1 because it generates a stable
fixed point in a region oD, an ICC in » D, and an IT in 4D, respectively, when &1 = ¢, =0, i.e.,
the hypothesis holds when the coupling parameters are zero. If the structure is stable for positive ¢
and &3, the hypothesis presented in Fig. 1 holds. If the structure is destroyed for positive €1 and &3,
then the hypothesis is wrong.

We conduct a Lyapunov analysis for Eq. (2.1), and illustrate the results via several two-parameter
bifurcation diagrams. In actual calculations of Lyapunov spectra, we employ an algorithm presented
by Shimada and Nagashima [23]. Specifically, we derive the approximated Lyapunov exponents using
the following equations:

M+N )
A — Z In||DFjelll,
j=M+1
M+N ) )
Moo > In|[DFjei x DFjejll,
j=M+1 55
M+N . . . (2.2)
R Y In|[DFjei x DFje3 x DFe}ll.
j=M+1
Mt +ha A Z In||DFje] x DFje x DFje} x DF;jejll,
j=M+1
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Fig. 4. Global two-parameter bifurcation diagram with &; = 0.025 and &, = 0.035.
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Fig. 5. A stable IT. (a) Left: a global picture with B} = 2.1, B, = 2.0, ¢; = 0.025, and &, = 0.035. (b) Right:
a magnified view of (a).

where D F; is a Jacobian matrix of Fj and ¢; (i = 1, 2, 3, and 4) are orthonormal bases determined
using the procedure outlined in Ref. [23]. It is known that the following relationship holds:

A=A > A3 > A4 (2.3)

We count the number of zero Lyapunov exponents for each parameter value, and draw a bifur-
cation diagram. In the following discussion, we set N = M = 1000000 and assume A; = 0 if
[Ai] < 1/100 000.

In the following discussion, we set ¢; = 0.025 and &, = 0.035. Figure 4 shows the global picture
of the two-parameter bifurcation diagram. We use orange, blue, and black to indicate stable periodic
points, an ICC, and an IT, respectively. The red line denotes the boundaries between regions gener-
ating a fixed point and regions generating ICCs. In addition, the green line indicates the boundary
between , D and 4 D. In the figure, red shaded areas indicate chaos-generating regions. A stable IT is
depicted in Fig. 5.

First, we discuss the NS bifurcation of the fixed point denoted by the red line. Figure 6 shows a mag-
nified view of Fig. 4 near the NS bifurcation of o D. Figure 6 shows that the NS bifurcation boundary
between oD and > D denoted by the red line completely coincides with the boundary between the
fixed-point-generating region and an ICC-generating region. The red line is derived using a shooting
algorithm defined in Ref. [21]. This is a well known bifurcation transition boundary from a stable
periodic solution to a 2D torus in vector fields. The numerical result shows that the iteration num-
bers M = 1000000 and N = 1000000 are sufficient to detect the bifurcation boundary. It can be
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Fig. 6. Magnified view of the bifurcation diagram of Fig. 4 near the boundary between ¢D and ,D with
&1 = 0.025 and &, = 0.035.
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Fig. 7. Magnified view of the bifurcation diagram near the transition ;D <> 4D with &¢; = 0.025 and
& = 0.035.

confirmed that our code used to calculate Eq. (2.2), and the code to draw the NS bifurcation curve
using the shooting algorithm [21], are correct.

Next, we discuss the relation between the transition from an ICC to an IT and the NS bifurcation
boundary from D to 4 D, which is a major theme of this study. A magnified view of the bifurcation
diagram near the transition from , D to 4D is illustrated in Fig. 7. From the figure, we find that an
IT-generating region is divided into two domains, and furthermore, it becomes clear that the NS
bifurcation of , D to 4 D does not coincide with the bifurcation boundary between an ICC and an IT.
Therefore, according to the numerical results, the hypothesis in Fig. 1, stated in Ref. [17], is invalid
for positive €1 and ¢ in this discrete dynamics. In the figure, the solid yellow circles denote an exactly
derived QH bifurcation boundary, the derivation of which is explained in Sect. 4.

We explain how the bifurcation diagram near the codimension-two bifurcation point existing at
By = B, = 2 with 1 = &, = 0 changes for small positive ] and &;. Figure 8 shows the bifurcation
diagram near By = By = 2 for &1 = 0.025 and &, = 0.035. It is confirmed again that the bifurcation
boundary between oD and > D is the boundary between a stable fixed point and an ICC. However,
the bifurcation boundary between > D and 4 D and the generation of an IT have no relation.

Next, we show that the hypothesis illustrated in Fig. 2 also appears to be wrong. Since a periodic
solution exists in an [CC-generating region near an IT, indicated by S in Fig. 7, we show a magnified
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Fig. 8. Magnified view of the bifurcation diagram near the codimension-two bifurcation point with &; = 0.025
and &, = 0.035.
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Fig. 9. Two-parameter bifurcation diagram near a saddle-node bifurcation with £; = 0.025 and ¢, = 0.035.

view of the bifurcation diagram in Fig. 9. In this figure, stable-periodic-solution-, ICC-, and IT-
generating regions are observed.

It has been shown that a bifurcation boundary, denoted by a red line in Figs. 6 and 8, is an NS bifur-
cation of a stable periodic solution. In contrast, the red line illustrated in Fig. 9 is an SN bifurcation
curve of a stable periodic solution, which is also derived in the procedure shown in Ref. [21]. Moving
upward along the bifurcation line, one sees that the SN bifurcation curve of a stable periodic point
can be traced further, and it transitions to an SN bifurcation curve of an unstable periodic solution,
denoted by a green line. The SN bifurcation curve denoted by the red line coincides with the bifurca-
tion boundary between a region generating a periodic solution and a region generating a stable ICC.
However, the bifurcation boundary of the SN bifurcation curve of unstable periodic points, denoted
by the green line, is not a bifurcation boundary between an ICC and an IT, which is similar to the case
illustrated in the hypothesis of Fig. 1. Therefore, the hypothesis illustrated in Fig. 2 is also invalid.

In the figure, QH is a QH bifurcation boundary, and the yellow solid circles are an exactly derived
QH bifurcation boundary, the derivation of which is explained in detail in Sect. 4.

The bifurcation boundary between an ICC-generating and an IT-generating region, denoted by
“QSN” in Fig. 9, may be caused by an SN bifurcation of a stable ICC and a saddle ICC from the
assertion by Anishchenko et al. [14].
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Fig. 10. Two-parameter bifurcation diagram near period-doubling and torus-doubling bifurcations with
g1 = 0.001, &, = 0.002, and B, = 0.2.

3. Relation between torus-doubling and period-doubling bifurcations of unstable
periodic points

Herein, we investigate a bifurcation boundary of torus-doubling. Although it is not a bifurcation
transition problem between an ICC and an IT, a similar hypothesis about the relations between torus-
doubling and period-doubling bifurcations of unstable periodic points could arise from the position of
the eigenvalues on the complex plane illustrated in Fig. 3. We conclude that the torus-doubling bifur-
cation boundary does not coincide with the period-doubling bifurcation boundaries of the unstable
periodic points that are generated when one of the real eigenvalues crosses —1.

Since we cannot easily observe torus-doubling in the coupled two-delayed logistic map given by
Eq. (2.1), we consider a coupled delayed logistic map and a Hénon map, given as follows:

T.
G(Xn, Yns Zns Wp) ' 0 Xptl = Yn,

Yn+1 = Bryn(1 — x,) + e1wy, 3.1)

2
Zn+1 = Wy + AZn + &2yn,

W1 = Brz,.

Since the Hénon map generates period-doubling bifurcations, torus-doubling can occur in Eq. (3.1)
under appropriate conditions.

To numerically derive the period-doubling and torus-doubling bifurcation boundaries by Lyapunov
analysis, we distinguish them by colors in the bifurcation diagram, similar to the method used in
Figs. 4-9 but replacing DF by DG in Eq. (2.2). Hence, we draw the period-doubling bifurcation
curves with thin blue lines, and the torus-doubling bifurcation curves in black. However, it is difficult
to illustrate the bifurcation boundaries with sufficiently thin lines. N = 1000000 is insufficient.
Therefore, we set N = 10000000 and color the figure when |A| < 3/10000000. The reader may
feel that it is still not thin enough when studying the bifurcation diagram. However, it is beyond our
computational ability to compute more than these iterations.

Figure 10 shows the two-parameter bifurcation diagram illustrated as mentioned above. We set
&1 = 0.001, &5 = 0.002, and B, = 0.2. In the figure, the abscissa denotes the parameter A, and the
ordinate is parameter B{. Since the coupling parameters &; and &; are small, Eq. (3.1) can generate
torus-doubling, and the boundary between the periodic-solution-generating and 2D-torus-generating
regions is approximately B; >~ 2 because the single delayed logistic map generates an NS bifurcation
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Fig. 11. Definition of a double Poincar¢ section.

if By = 2. In the figure, the red line denotes the first period-doubling line, which is derived by a
procedure presented in Ref. [21]. In this figure, the bifurcation boundary, denoted by a red line,
coincides with a somewhat thick bifurcation boundary, obtained by Lyapunov analysis between the
regions marked P and 2P. However, moving up the red line, it is continuously connected to the green
line around By =~ 2. This is a period-doubling bifurcation curve of unstable periodic points. The
thick black curve is the bifurcation boundary obtained by Lyapunov analysis between a 1D ICC and
a second 1D ICC that consists of the two ICCs. The black curve does not coincide with the periodic-
doubling bifurcation curve of unstable periodic points. Therefore, the scenario illustrated in Fig. 3 is
also invalid.

4. Derivation of a QH bifurcation boundary

We now focus on the QH bifurcation boundary generated by Eq. (2.1). The QH bifurcation is a
major transition from an ICC to an IT. We attempt to derive this bifurcation boundary by introducing
a double Poincaré section. Because quasi-periodic attractors with n-incommensurate frequency com-
ponents are represented by a form of an n-dimensional torus in vector fields, an ICC on the Poincaré
map becomes a fixed point on the double Poincaré section, and an IT becomes an ICC on this section.
Therefore, we can derive a QH bifurcation boundary exactly by detecting the attractor on the double
Poincaré section.
We define the double Poincaré map as follows (see Fig. 11):

T :D —s D, (x0, Y0, 20, wo) ' > (X1, Y1, 21, w1) 4.1)

where D = {(xn, Y, Zn, wn)||xn — 0.5] < 107%, y, < 0.5}. Because the domain of the double
Poincaré section has a very small width, it is also called a double Poincaré slice. The attractors
on the double Poincaré section projected onto the z,—w, plane are illustrated in Figs. 12(a) and (b).
Because an approximated fixed point exists on 7" in the former case, this is a 2D torus in vector fields.
In contrast, an IT forms an ICC on T. We can observe a clear ICC in Fig. 12(b). Therefore, by using
the bisection method, the boundary between a region generating an ICC and a region generating an
IT can be derived. The solid yellow circles in Figs. 7 and 9 denote the QH bifurcation boundary
obtained with an accuracy of 107>. They can be seen on the bifurcation boundary between the blue
and black zones.

Conversely, an IT can be generated by QSN bifurcations [20], which could occur by saddle-node
bifurcations of a stable ICC and a saddle ICC [14]. Independently, this bifurcation may also be called a
saddle-node-invariant-circle bifurcation in a certain field, and has been extensively studied [24]. QNS
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Fig. 12. Attractors on the double Poincaré section. (a) Left: a stable fixed point corresponding to a 2D torus
in vector fields with & = 0.025, &, = 0.035, B; = 2.0, and B, = 2.0. (b) Right: a stable ICC corresponding
to a 3D torus in vector fields with ¢; = 0.025, ¢, = 0.035, By = 2.1, and B, = 2.0.

bifurcations attract much attention because they lead to complex bifurcation structure. The bifurca-
tion structure called two-torus Arnold tongues may be caused by QSN bifurcations [10]. However,
the whole aspect of these phenomena has not yet become clear. Catching saddle 2D tori [25,26] could
be the first step towards clarifying the complex bifurcation structure caused by QSN bifurcations.

5. Conclusion

An existing hypothesis states that an [CC bifurcates to an IT through an NS bifurcation of an unstable
fixed point. According to sufficient numerical simulations, we have shown that this hypothesis is
invalid. Furthermore, the bifurcation boundary between an ICC and an IT does not coincide with
an SN bifurcation point of unstable periodic points. In addition, the torus-doubling bifurcation point
did not coincide with a period-doubling bifurcation curve of unstable fixed points. Therefore, all the
bifurcations of unstable periodic points have no relation with torus bifurcations. In addition, we have
exactly derived a QH bifurcation boundary by introducing a double Poincaré section, and confirmed
that these bifurcation points lie on the bifurcation boundary obtained by Lyapunov analysis. To show
that an IT is generated exactly by an SN bifurcation of a stable ICC and a saddle ICC could be an
avenue for further research.
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