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Abstract

This article considers facility location in a Weber problem with weights including both uncertainty and vagueness. By representing

its weights as fuzzy random variables, it can be extended to a fuzzy random weighted Weber problem, and then formulated as

a fuzzy random programming problem. By introducing possibility and necessity measures and chance constraints, the extended

problem is reformulated to new two types of Weber problems. Based upon characteristics of facility location, theorem for solving

the reformulated problems are shown.
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1. Introduction

Weber problem is one of optimal location problems, for finding a facility location minimizing the sum of distances

from/to all considering points. If the points have weights, it is extended to a weighted Weber problem, to minimize the

sum of weighted distances from/to them. Weber problem can be applied to locating delivery centers, fire stations, and

so on. Weber problems and their applications have been considered from a long time ago, and their recent references

are written by Dendievel1, Hosseininezhad et al. 3, Uno et al. 13, and so on.

In this paper, we extend Weber problems by considering both uncertainty and vagueness in their weights. We show

a significance of extension by using the above first example, locating delivery centers. For this example, weights on

points represent demands to deliver some goods to shops, store, and so on. An objective of locating delivery centers

is to deliver efficiently, and then we can regard it as to minimize the sum of weighted distances to addresses for

delivery. Hence their location problem can be represented as an ordinary weighted Weber problem for the case that

demands of delivery can be estimated accurately. However, it is usually hard to estimate them because of including

both uncertainty and vagueness.

For uncertainty, facility location with random demands is considered by Wagnera et al. 14, Shiode and Drezner11,

Uno et al. 13 and so on. On the other hand, for vagueness, facility location with fuzzy demands is considered by Moreno

∗ Corresponding author. Tel.: +81-88-656-7294 ; fax: +81-88-656-7294.

E-mail address: uno.takeshi@tokushima-u.ac.jp

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.257&domain=pdf


937 Takeshi Uno et al.  /  Procedia Computer Science   60  ( 2015 )  936 – 943 

Pérez8, represented them as fuzzy numbers proposed by Dubois and Prade2. For considering both uncertainty and

vagueness, Kwakernaak7 proposed fuzzy random variables including both randomness and fuzziness. For the details

of fuzzy random variable, the reader can refer to the book of Kruse and Meyer6. For application of fuzzy random

variables to mathematical programming, Katagiri et al. 4 considered fuzzy random bottleneck spanning tree problems,

and Katagiri et al. 5 considered multiobjective fuzzy random 0-1 programming.

In this paper, we extend weighted Weber problems by representing their weights as fuzzy random variables, called

fuzzy random weighted (FRW) Weber problems. As previous studies of evaluation for fuzzy random variables, Kata-

giri et al. 4,5 proposed solving fuzzy random programming problems by using possibility and necessity measures for

them under some chance constraints. We propose to utilize possibility and necessity measures for the FRW Weber

problems under some chance constraints. Then, we can reformulate two types of new deterministic Weber problems.

Moreover, we show their theorem for solving them based upon characteristics of facility location.

The remaining structure of this article is organized as follows. The next section devotes to introducing the definition

of fuzzy random variables. In Section 3, we introduce a location problem with demands given uncertainly and vaguely

as a fuzzy random weighted Weber problem. By reformulating it with possibility and necessity measures under some

chance constraints, we propose two types of new Weber problems in Section 4. In Section 5, we show a theorem

for solving the new Weber problems. An example of fuzzy random weighted Weber problem and finding its optimal

locations are illustrated in Section 6. Finally, conclusions and future studies are summarized in Section 7.

2. Fuzzy random variable

In this section, we introduce the definition of fuzzy random variables. Let A be a fuzzy number2 and μA : R →
[0, 1] be A’s membership function, where R is the set of real numbers. For α ∈ (0, 1], the α-level set of A is represented

as the following equation:

Aα ≡ {z ∈ R | μA(z) ≥ α} . (1)

In this paper, we use the following definition of fuzzy random variables, suggested by Kruse and Meyer6:

Definition 2.1. Let (Ω, B, P) be a probability space, where Ω, B, and P are a sample space, σ-algebra, and a proba-
bility measure function, respectively. Let F (R) be the set of fuzzy numbers with compact supports, and Ξ a measurable
mapping Ω→ F (R). Then Ξ is a fuzzy random variable if and only if given ω ∈ Ω, its α-level set Ξα(ω) is a random
interval for any α ∈ (0, 1].

Figure 1 illustrates an example of fuzzy random variables, in which randomness is derived from changes of weather

and fuzziness stems from the difficulty of exactly estimating the amount of sales.

3. Formulation of fuzzy random weighted Weber problem

In this section, we introduce a Weber problem with demands given uncertainly and vaguely. We consider that

a decision maker (DM) locates m facilities on a convex set S including n points with demands for facilities, called

demand points (DP), in plane R2. Figure 2 illustrates an example of Weber problem.

For i-th DP, i = 1, 2, . . . , n, its site and demand are denoted by vi ∈ S and wFR
i , respectively. We give all wFR

i ,

i = 1, 2, . . . , n as fuzzy random variables with k scenarios whose probabilities are p1, p2, . . . , pk.

Let x1, x2, . . . , xm ∈ S be the sites of the facilities, and x = (x1, x2, . . . , xm). The distance from j-th facility,

j = 1, 2, . . . ,m to i-th DP are denoted by di(x j). We assume that the distance from facilities to each DP are given as

the minimum of the distances, e.g.,

di(x) ≡ min
j=1,2,...,m

{
di(x j)

}
. (2)

Then, the sum of weighted distances from facilities to DPs are represented as follows:

f FR(x) :=

n∑
i=1

wFR
i di(x) (3)
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Fig. 1. An example of fuzzy random variables

Therefore, we can formulate the following fuzzy random weighted Weber problem:

minimize y = f FR(x)

subject to x ∈ S m

}
(4)

4. Reformulation with possibility and necessity measures

Note that (4) is an ill-defined problem because the meaning of minimizing its objective function is not well defined.

An efficient method for estimating fuzziness, Katagiri et al. 4,5 proposed to define possibility and necessity measures

with their goals for objective functions and constraints. By using their chance constraints for transformed stochastic

programming problems, their fuzzy random programming problems can be transformed to deterministic well-defined

problems. Because the DM can easily give their goal for object function, we can also utilize her/his definition to

the decision making for (4) with fuzzy random variables. In this section, we propose a new Weber problem with

possibility and necessity measures for her/him under some chance constraints by reformulating (4).

Taking account of vagueness of human judgment, the DM gives her/his fuzzy goal G: “I hope to make my objective

function value y roughly smaller than l1 but certainly smaller than l0”, as the following membership function:

μG(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if y ≤ l1,
g(y), if l1 < y < l0,
0, if y ≥ l0,

(5)

where g(·) is a decreasing function in interval (l1, l0) and its example is as follows:

g(y) =
l0 − y
l0 − l1

. (6)

Figure 3 illustrates an example of membership functions for fuzzy goal G.
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Fig. 2. An example of Weber problem

Given the DM’s membership function of fuzzy random variable A and that of a fuzzy goal G, degrees of possibility

and necessity that the objective function value y satisfies her/his fuzzy goal can be defined as follows, respectively:

ΠA(G) = sup
y

min {μA(y), μG(y)} , (7)

NA(G) = inf
y

max {1 − μA(y), μG(y)} . (8)

Since the above degrees are represented as random variables, we use the following chance constraints suggested by

Katagiri et al. 4,5:

Pr (ΠA(G) ≥ h) ≥ θ, (9)

Pr (NA(G) ≥ h) ≥ θ, (10)

where Pr(·) is a probability function, h is an auxiliary variable satisfying 0 ≤ h ≤ 1, and θ ∈ (0, 1) is a permissible

probability level given by the DM. Then, (4) can be reformulated as the following two types of deterministic program-

ming problems:

maximize h
subject to Pr (ΠA(G) ≥ h) ≥ θ,

x ∈ S m,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

maximize h
subject to Pr (NA(G) ≥ h) ≥ θ,

x ∈ S m.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

We call (11) and (12) as possibility and necessity Weber problems, respectively.
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Fig. 3. An example of membership function of fuzzy goal

5. Properties of deterministic Weber problem

In this section, we show an important theorem for solving the reformulated two problems in the previous section.

Theorem 5.1. For any given fuzzy goal G and θ ∈ (0, 1], both possibility and necessity Weber problems are convex.

Proof: Since di(x) is a convex function, f FR(x), the sum of weighted distances, is also convex if weights are deter-

ministic values. From (9) and (10), feasible sets of (11) and (12) are convex for any given h and θ. This means that

both (11) and (12) are convex.

From Theorem 5.1, possibility and necessity Weber problems can be solved by applying ordinal convex program-

ming, e.g., Successive quadratic programming (SQP) method; for the details of the SQP method, the reader can refer

to the book of Nocedal and Wright9.

6. Numerical example

In this section, we illustrate an example of the proposed fuzzy random Weber problem and find the two optimal

locations for possibility and necessity Weber problems. In the example, we set 20 DPs on a rectangle location area

S = [0, 300] × [0, 200]. Sites of these DPs are shown in Figure 4. For each of their demands, we give a fuzzy random

variable with 100 scenarios each of whose probability is 0.01 and with triangle fuzzy numbers for each scenario, like

Figure 1. Note that we add highly uncertain and vague demands to the four left lower DPs in Figure 4, that is, there

are great differences between scenarios.

Next we consider an optimal location for fuzzy random weighted Weber problem on S . For fuzzy goal G, we set

(l1, l0) = (1.0 × 106, 1.0 × 107) and use (6). For chance constraint, we set θ = 0.9. We create a program for finding

optimal locations of possibility and necessity Weber problems on R version 3.1.210. For the possibility and necessity

Weber problems , Figures 5 and 6 shows their optimal locations, respectively.
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Fig. 4. Location area

Fig. 5. Optimal location for possibility Weber problem
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Fig. 6. Optimal location for necessity Weber problem

From Figures 5 and 6, the optimal location of necessity Weber problem makes one of sites of facilities move to

a center of 4 DPs with highly uncertain and vague demands. This means that the necessity Weber problem weighs

uncertainty and vagueness heavily than the possibility Weber problem.

7. Conclusions and future studies

In this paper, we have considered facility location in a Weber problem with weights including both uncertainty

and vagueness. By representing its weights as fuzzy random variables, we have proposed new two types of Weber

problems with possibility and necessity measures under some chance constraints. An important theorem for solving

the new Weber problems have been shown based upon the characteristics of the facility location.

This paper consider Weber problem whose distance from facilities and DPs is defined by Euclid distance. However,

if this model is applied to real world facility location, we need to consider the location model with other distance, such

that block norm12 or more complex distances than Euclid distance. Extending the proposed Weber problem to that of

general distance is an important future study.
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