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Abstract: The sugar alcohol xylitol inhibits the growth of some bacterial species including
Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that
1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism
in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid
metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol
intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized
by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were
determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry.
Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low-
or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the
fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose
xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum
and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was
increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and
serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol
consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual
changes in gut microbiota but not in lipid metabolism.

Keywords: xylitol; triglyceride; cholesterol; Streptococcus mutans; denaturing gradient gel
electrophoresis (DGGE); capillary electrophoresis–mass spectrometry (CE–MS); caries

1. Introduction

Gut microbiota form many bioactive metabolites from dietary components which can regulate
host metabolism [1–5]. For example, an improvement in glucose metabolism induced by dietary fiber
is associated with the increased abundance of Prevotella [2]. Similarly, some food derivatives and food
additives can affect host metabolism after interactions with gut microbiota [1,5].

Xylitol has a caries preventative effect via its capacity to inhibit the growth of
Streptococcus mutans [6]. Dietary xylitol, metabolized into D-xylulose-5-phosphate, activates the
carbohydrate response element binding protein (ChREBP) [7]. We previously reported that
dietary xylitol combined with a high-fat diet (HFD) induced hepatic lipogenic gene expression via
ChREBP mRNA expression [8]. In this report, we revealed that xylitol can improve HFD-induced
hypertriglyceridemia and hypercholesterolemia with cecum enlargement in mice. In another
report, the administration of a 2.5–10% xylitol solution reduced serum cholesterol and low density
lipoprotein-cholesterol in diabetic mice [9]. Moreover, mice supplemented with 5% xylitol and 0.05%

Nutrients 2017, 9, 756; doi:10.3390/nu9070756 www.mdpi.com/journal/nutrients

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tokushima University Institutional Repository

https://core.ac.uk/display/477750413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0003-2880-3801
http://dx.doi.org/10.3390/nu9070756
http://www.mdpi.com/journal/nutrients


Nutrients 2017, 9, 756 2 of 12

daidzein in their diet had a lower serum cholesterol versus mice fed a diet containing daidzein
alone [10]; xylitol also contributed to the relative reduction of the genera Bacteroides and Clostridium
in gut microbiota. Clostridium genus clusters XI and XIVa participate in the conversion of primary
bile acids to secondary bile acids [11]. Cholic acid, one of the primary bile acids, promote cholesterol
absorption [12]. Moreover, alteration of the bile acids composition regulates lipid and energy
metabolism through the activation of the farnesoid X receptor (FXR) or G-protein-coupled receptors
(GPCRs), such as TGR5 [13,14]. On the other hand, the gut microbiota suppress fat accumulation via
the short-chain fatty acid production from dietary fiber [15]. Taken together, dietary xylitol is able to
improve hyperlipidemia and modify gut microbiota. However, at least 1.5 g/kg body weight/day
of dietary xylitol was given in those studies [8–10]. The effects of daily dietary xylitol at relatively
lower doses on gut microbiota and lipid metabolism are unclear. Over the past decade, pure xylitol
and xylitol comestible products (e.g., gums and candies) have been commercially available to the
general public. In addition, some infants are given xylitol tablets for the health of their teeth. Infants
can potentially ingest more xylitol, up to 200 mg/kg body weight/day (commercially recommended
xylitol tablets), than that of adults. In other reports, 150–300 mg xylitol/kg body weight/day have
been used for preventing caries in schoolchildren [16,17]. Because development and expansion of the
gut bacterial community occurs relatively slowly during early childhood [18], environmental factors
could more strongly affect gut microbes in children than in adults. In the present study, our goal was
to estimate the effect of feeding low-dose xylitol on gut microbiota and lipid metabolism in mice from
an early stage of life.

2. Materials and Methods

2.1. Animals

Seven-day pregnant female C57Bl/6J mice were purchased from a local breeding colony (Charles
River Japan, Yokohama, Japan) and their offspring—male pups only—were used in experiments 1 and
2 of this study. Mice were housed in cages maintained at constant temperature (23 ± 2 ◦C) and relative
humidity (65–75%) with a 12-h light/dark cycle (8:00–20:00). In experiment 1, all three-week-old males
were fed the control diet (CD, AIN93G, Oriental Yeast, Osaka, Japan) formulated for rapid growth for
16 weeks, during which time they were divided into three groups as follows: control diet (CD) group,
with free access to distilled water (CD, n = 5); low-dose xylitol group, were given xylitol solution of
40 mg/kg body weight/day (CD-LX, n = 5); and a medium-dose xylitol group, were given xylitol
solution of 200 mg/kg body weight/day (CD-MX, n = 5). In experiment 2, three-week-old male mice
were fed a high-fat diet (HFD32, Japan Crea, Osaka, Japan) for 18 weeks, during which time they
were divided into two groups as follows: high-fat diet (HFD) group with free access to distilled water
(HFD, n = 5) and an HFD with a medium-dose xylitol group, were given xylitol solution of 200 mg/kg
body weight/day (HFD-MX, n = 6). Body weight and fluid intake were measured three or four times
weekly. We used to control the xylitol consumption of mice using pair-feeding like method. The
xylitol concentration was calculated on the basis of daily fluid intake and body weight; adjustments
to the concentration of xylitol in the drinking water were made every 1–2 days to regulate xylitol
consumption. In the fecal microbiota transplantation (FMT) experiment, six-week-old male mice were
treated with a cocktail of broad spectrum antibiotics (1 g/L ampicillin, neomycin, and metronidazole
and 0.5 g/L vancomycin) in their drinking water for three weeks [19]. FMT was performed to
transplant gut microbiota from donor mice fed an HFD, with or without xylitol (HFD-MX-FMT and
HFD-FMT, respectively) to antibiotic-treated recipient mice as has been reported previously with slight
modifications [19]. The transplantation procedure was performed every 3 days, twice per experiment.
After an FMT, mice were maintained on HFD for eight weeks. All mice were euthanized; blood was
collected in addition to ceca, cecal contents, feces, and liver tissue. The University of Tokushima
Animal Use Committee approved the study (T14010), and mice were maintained according to the
National Institutes of Health Guide for the Care and Use of Laboratory Animals.
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2.2. Oral Glucose Tolerance Test

At week 16, mice fed the HFD and HFD-MX were fasted for 16 h and subsequently administered
2 g glucose/kg body weight orally to test their glucose tolerance. Blood samples taken from the tail
vein at indicated times were used to determine plasma glucose concentration (Glucose Pilot, IWAI
CHEMICALS COMPANY, Tokyo, Japan).

2.3. Extraction of Genomic DNA and Quantitative PCR

Genomic DNA from fecal and cecal content samples were isolated using the FavorPrep Stool
DNA Isolation Mini Kit (FAVORGEN Biotech Corp., Ping-Tung, Taiwan) in accordance with the
manufacturer’s protocol. The relative abundance of each target’s bacterial 16S rRNA gene sequence
(see primer sequences in Table 1) was calculated by normalization to the amount of amplified product
from all bacteria 16S rRNA gene copy numbers.

Table 1. Oligonucleotide primers.

Primer Name Sequence (5′–3′) Reference

Eub338F ACTCCTACGGGAGGCAGCAG
[20]Eub518R ATTACCGCGGCTGCTGG

HDA1-GC-F CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGG
CACGGGGGGACTCCTACGGGAGGCAGCAGT [21]

HDA2-R GTATTACCGCGGCTGCTGGCAC

Bact934F GGARCATGTGGTTTAATTCGATGAT

[22]
Bact1060R AGCTGACGACAACCATGCAG
Firm934F GGAGYATGTGGTTTAATTCGAAGCA

Firm1060R AGCTGACGACAACCATGCAC

Prevotella-F CATGACGTTACCCGCAGAAGAAG
[23]Prevotella-R TCCTGCACGCTACTTGGCTG

mChREBP-F TCAGCACTTCCACAAGCATC
NM_021455.4mChREBP-R GCATTAGCAACAGTGCAGGA

18sF AAACGGCTACCACATCCAAG
NR_003278.318sR GGCCTCGAAAGAGTCCTGTA

mPklr-F TTGTGCTGACAAAGACTGGC
NM_013631mPklr-R CCACGAAGCTTTCCACTTTC

mFasn-F TGCCTTCGGTTCAGTCTCTT
NM_007988.3mFasn-R GGGCAACTTAAAGGTGGACA

mScd1-F CGAGGGTTGGTTGTTGATCT
NM_009127.4mScd1-R GCCCATGTCTCTGGTGTTTT

m II-6-F CTGATGCTGGTGACAACCAC
NM_031168.2m II-6-R TCCACGATTTCCCAGAGAAC

mTnf-F AGCCTGTAGCCCACGTCGTA
NM_013693.3mTnf-R TCTTTGAGATCCATGCCGTTG

Eub: Eubacteria (total bacteria), Bact: Bacteroides, Firm: Firmicutes, ChREBP: Carbohydrate response element binding
protein, Pklr: pyruvate kinase liver and red blood cell, Fasn: fatty acid synthase, Scd1: stearoyl-Coenzyme A
desaturase 1, Tnf: tumor necrosis factor, II-6: interleukin 6.

2.4. PCR-DGGE Analysis

Denaturing gradient gel electrophoresis (DGGE) was performed as previously described [24]
using the DCodeTM Universal Mutation Detection System instrument and model 475 gradient former
according to the manufacturer’s instructions (Bio-Rad Labs, Hercules, CA, USA). The V2–V3 region
of the 16S rRNA genes (positions 339–539 in the Escherichia coli gene) of bacteria in gut samples was
amplified with the primers HDA1-GC and HDA2. PCR reaction mixtures and the amplification
program were the same as described previously [24]. The denaturing gradient was formed with two
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8% acrylamide (acrylamide-bis 37.5:1) with denaturing gradients ranging from 20–80% for analysis
of the amplified 16S rRNA fragments. The 100% denaturant solution contained 40% (v/v) deionized
formamide and 7 M urea. PCR product (40 µL) was mixed with 40 µL dye before loading. Gels were
run in 0.5× Tris/Acetate/EDTA buffer at 60 ◦C for 5.2 h at 180 V, 210 mA, stained with Gel Star (Lonza
Japan, Tokyo, Japan) for 30 min, and analyzed by ChemiDoc MP (Bio-Rad, Hercules, CA, USA). Image
Lab software, version 5.0 (Bio-Rad) was used for the identification of bands and normalization of band
patterns from DGGE gels.

2.5. Determination of Bacterial Strain by Sequence Analysis

Specific bands from DGGE gels were excised for DNA extraction, mashed, and incubated
overnight in a diffusion buffer (0.5 M ammonium acetate, 1 mM EDTA, 0.1% SDS, 15 mM magnesium
acetate). DNA was purified by the standard ethanol precipitation method. The V2–V3 region of the 16S
rRNA genes were amplified by PCR, and purified DNA was used as a template. PCR products were
cloned into the pCR2.1-TOPO vector (Invitrogen, Carlsbad, CA, USA), sequenced, and the bacterial
genus was identified by BLAST.

2.6. Plasma and Hepatic Lipid Concentrations

Hepatic lipids were extracted and measured as previously described [25]. Plasma and liver
triglycerides (TG) and total cholesterol concentration were measured by using Triglyceride-E and
Cholesterol-E tests (Wako Pure Chemical Industries, Osaka, Japan), respectively.

2.7. RNA Preparation and Quantitative Reverse Transcriptase PCR

Extraction of total RNA, cDNA synthesis, and real-time PCR analysis were performed as described
previously [25]. The relative abundance of each target transcript was calculated by normalization to
the amount of amplified product from constitutively expressed β-actin mRNA (see primer sequences
in Table 1).

2.8. Metabolome Analysis of Cecum Luminal Content by Capillary Electrophoresis Electrospray Ionization
Time-of-Flight Mass Spectrometry

The cecum luminal content was immediately frozen in liquid nitrogen and stored at −80 ◦C
until metabolite extraction. Sample tissues were weighed and completely homogenized in 0.5 mL
ice-cold methanol containing 50 µM methionine sulfone and camphor-10-sulfonic acid as internal
standards. The homogenates were mixed with 0.5 mL chloroform and 0.2 mL ice-cold Milli-Q water.
After centrifugation at 2300× g for 5 min, the supernatant was centrifugally filtrated through 5-kDa
cut-off filters (Millipore, Bedford, MA, USA) at 9100× g for 4–5 h to remove proteins. The filtrate was
centrifugally concentrated in a vacuum evaporator, dissolved with Milli-Q water, and analyzed by
capillary electrophoresis electrospray ionization time-of-flight mass spectrometry (CE-TOFMS).

CE-TOFMS analysis was performed using an Agilent CE system combined with a TOFMS (Agilent
Technologies, Palo Alto, CA, USA) as reported by previously [24,26,27]. Each metabolite was identified
based on a reference which containing internal standards including 110 metabolites (H3304-1002,
Human Metabolome Technology (HMT), Inc., Tsuruoka, Japan) to m/z and migration time, and
quantified by peak area.

2.9. Statistical Analyses

Data are expressed as means ± standard errors of the mean (SEM). A significant difference
between groups was assessed via an unpaired two-tailed t-test in experiment 2 and FMT experiment.
For comparisons among more than three groups, we employed analysis of variance (ANOVA) or
the Kruskal-Wallis test in experiment 1. When a significant difference was found by ANOVA or
the Kruskal-Wallis test, post hoc analyses were performed using the Tukey-Kramer protected least
significant difference test. Concentration-dependent effects were identified via linear regression
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analysis. Spearman’s rank correlation coefficient was used to calculate correlation coefficients between
selected variables. Differences were considered significant at p < 0.05. Statistical analyses were
performed using Mass Profiler Professional and Excel-Toukei 2006 (SSRI, Tokyo, Japan).

3. Results

To elucidate the effect of consuming low-dose xylitol on gut microbiota and lipid metabolism, the
mean xylitol dosage administered to mice after weaning was 40 ± 5 mg/kg body weight/day (CD-LX),
194 ± 24 mg/kg body weight/day (CD-MX), and 194 ± 25 mg/kg body weight/day (HFD-MX)
(Figure 1A,B). During the treatment periods, body weight, relative epididymal fat weight per body
weight, relative liver weight per body weight, and relative cecum weight per body weight were
not different between the xylitol-fed groups and the control group of mice in experiment 1 and 2
(Figure 1C,D, and Table 2). The relative amount of total fecal bacteria to fecal DNA displayed a trend
towards an increase in the feces of CD-MX mice and was significantly increased in the feces of HFD-MX
mice when compared with control mice (Figure 2A,B). In contrast, Bacteroides, a phylum of bacteria,
was reduced in both MX mice fed a CD or HFD (Figure 2A,B). In addition, the combination of an HFD
and ingestion of a medium-dose xylitol solution showed that an increased amount of Firmicutes phylum,
the Prevotella genus, and the relative ratio of Firmicutes/Bacteroides and Prevotella/Bacteroides than those
of HFD fed control mice (Figure 2B,C). To explore in detail the microbiome bacterial composition,
we carried out DGGE analysis. We identified five genera, which included two species of Clostridium
and a Faecalibaculum genus which were increased in the MX mice and one from both the Clostridium
and Barnesiella genera which were reduced in the MX mice; different analysis bands were significantly
different (Figure 2D–H). Principal component analysis (PCA) allowed us to clearly distinguish among
groups based on dietary xylitol exposure, regardless of the control or HFD (Figure 2I,J). Continuous
daily consumption of 40 or 194 mg xylitol after weaning induced different populations of gut microbiota
in the feces of mice.
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Figure 1. Experimental design and changes in body weight in mice fed xylitol. Study design
for experiment 1 and 2 and the fecal transplantation experiment (A). Xylitol consumption during
experiments (B). Changes in body weight (BW) throughout experiment 1 and 2 (C) and during the
fecal transplantation experiment (D). Data represent the mean ± SEM (n = 5–6).
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Figure 2. Changes in the fecal microbiota of mice fed xylitol. An abundance of specific bacterial phylum
or genus and ratio after seven weeks of xylitol supplementation using specific primer set (Table 1)
(A–C). Band image of DGGE analysis of DNA from feces after seven weeks of xylitol exposure with
CD (D) or HFD (E). Identified five bacterial genus (No. 1–5) from DGGE band (F). Relative band
density of identified five bacterial genus from feces after seven weeks of xylitol exposure with CD (G)
or HFD (H). Two-dimensional principal component analysis plot of DGGE band pattern in mice fed
xylitol with CD (I) or HFD (J). Data represent the mean ± SEM (n = 5–6). a: p < 0.05 between CD and
CD-MX. b: p < 0.05 between CD-LX and CD-MX. c: p < 0.05 between HFD and HFD-MX.
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Table 2. Body weight, organ weight, and plasma parameters of mice fed the control diet or the high-fat
diet with or without xylitol.

Diet

CD (n = 5) CD-LX (n = 5) CD-MX (n = 5) HFD (n = 5) HFD-MX (n = 6)

Final body weight, g 33.4 ± 0.3 31.2 ± 0.5 32.5 ± 0.8 38.5 ± 1.3 40.5 ± 1.3
Visceral fat, g/kg body weight 15.2 ± 1.2 15.8 ± 1.4 19.4 ± 3.8 43.9 ± 4.5 49.1 ± 2.8

Cecum weight, g/kg body weight 17.7 ± 0.9 16.8 ± 1.3 16.3 ± 0.9 8.9 ± 0.8 8.8 ± 1.4
Hepatic parameters

Liver, g/kg body weight 48.6 ± 0.7 45.1 ± 1.3 43.0 ± 2.3 43.5 ± 3.8 47.6 ± 3.4
Total cholesterol, mmol/liver 7.5 ± 0.8 7.2 ± 0.4 7.1 ± 0.5 21.3 ± 2.8 33.7 ± 7.3

Triglycerides, mmol/liver 8.8 ± 0.8 11.4 ± 1.3 12.0 ± 1.6 56.0 ± 12.3 74.2 ± 9.2
Plasma parameters

Total cholesterol, mmol/L 2.0 ± 0.1 2.3 ± 0.1 2.0 ± 0.2 3.6 ± 0.7 4.2 ± 0.3
Triglycerides, mmol/L 1.2 ± 0.1 1.5 ± 0.1 1.4 ± 0.3 1.0 ± 0.1 0.8 ± 0.1

Data represent the mean ± SEM (n = 5–6).

Our study and others report that a high dose of xylitol improved hyperlipidemia in mice fed
an HFD and in diabetic mice [8–10]. To reveal the effect of a low dose of xylitol on lipid metabolism,
we investigated cholesterol and triglyceride concentrations in the liver and serum, parameters
which were not different among the three groups of mice maintained on the control diet (Table 2).
In contrast, an HFD induced hypertriglyceridemia and hypercholesterolemia in the liver, but xylitol
supplementation did not ameliorate dyslipidemia (Table 2). We also found that hepatic ChREBP
and the expression of its target genes were increased in HFD-MX mice compared with control mice
(Figure 3A) as was reported in a previous study [8]. In addition, we investigated glucose tolerance in
mice fed an HFD because two reports have shown an abundance of several different species of the
genus Prevotera that are linked with glucose intolerance or insulin resistance in humans and mice [2,28].
We could not detect any changes in glucose tolerance, as well as the expression of inflammation-related
genes, in mice fed the HFD with or without dietary xylitol supplementation (Figure 3A,B).
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Figure 3. Hepatic gene expression, oral glucose tolerance test, and luminal metabolite in xylitol-fed
mice. Relative hepatic gene expression involved in lipid metabolism in mice fed xylitol (A). Changes in
blood glucose levels during an oral glucose tolerance test (OGTT) in mice fed xylitol with the HFD (B).
Principle component analysis of 94 luminal metabolites in mice supplemented with xylitol and the
CD (C) or the HFD (D). Changes in relative concentration of luminal dihydroxyacetone phosphate in
mice supplemented with xylitol and the CD (E). Fasn: fatty acid synthase, Pklr: pyruvate kinase liver
and red blood cell. Data represent the mean ± SEM (n = 5–6). a: p < 0.05 between CD and CD-MX.
b: p < 0.05 between CD-LX and CD-MX. c: p < 0.05 between HFD and HFD-MX.
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To further investigate the effects of xylitol intake on luminal metabolites, we conducted a CE-MS
analysis. We identified 94 metabolites from a metabolite list provided by HMT. From the PCA plot, we
were unable to distinguish any metabolite patterns among the groups of mice in experiment 1 fed the
AIN93G diet with or without supplemental dietary xylitol in their drinking water (Figure 3C,D). Only
dihydroxyacetone phosphate concentration was different between CD and CD-MX groups. These
results suggest that the changes in luminal content microbiota in xylitol supplemented groups had
little, if any, effect on overall metabolism.
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Finally, we attempted to detect microbiota-dependent effects of xylitol feeding in mice fed an
HFD via FMT. One day after the final transplantation, the microbiota was clearly different between
the mice that were recipients of feces transplanted from mice fed an HFD (HFD-FMT) and fed an
HFD with medium-dose xylitol (HFD-MX-FMT) (Figure 4A,B). These perceptible differences between
the two groups disappeared 18 day after the transplantation (Figure 4A,B). No changes in luminal
metabolites, body weight, and relative tissue weight between HFD-FMT and HFD-MX-FMT mice were
detected (Figure 4C, Table 3). These results indicate that changes in the fecal microbiota of mice fed
xylitol are transient and likely continuous xylitol supplementation is necessary to sustain the changes
observed. Interestingly, serum cholesterol in the HFD-MX-FMT mice was slightly, but significantly,
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higher than that of the HFD-FMT mice (Table 3). This suggests that changes in the composition of
microbiota induced by dietary xylitol increase serum cholesterol.

Table 3. Body weight, organ weight, and plasma parameters of mice fed the high-fat diet following
fecal transplantation from mice fed a high-fat diet with or without xylitol.

Diet

HFD-FMT (n = 4) HFD-MX-FMT (n = 3)

Final body weight, g 39.5 ± 2.9 40.8 ± 1.4
Visceral fat, g/kg body weight 55.1 ± 6.3 60.6 ± 8.8

Cecum weight, g/kg body weight 6.6 ± 0.8 8.5 ± 1.2
Hepatic parameters

Liver, g/kg body weight 44.1 ± 1.8 45.1 ± 6.5
Total cholesterol, mmol/liver 82.3 ± 11.1 101.4 ± 16.7

Triglycerides, mmol/liver 23.8 ± 4.6 31.5 ± 3.6
Plasma parameters

Total cholesterol, mmol/L 4.9 ± 0.1 5.6 ± 0.3 *
Triglycerides, mmol/L 1.1 ± 0.2 1.0 ± 0.2

Data represent the mean ± SEM (n = 5). * Significant differences were observed compared with HFD-FMT (p < 0.05).

4. Discussion and Conclusions

In this study, we showed that the administration of xylitol at 40 and 194 mg/kg body weight/day
significantly altered gut microbiota in mice. In particular, we noted the relative abundance of
the Bacteroidetes phylum was reduced in mice in the CD-MX and HFD-MX groups, indicating that
xylitol suppressed the growth of some bacterium, including the genus Barnesiella in mice fed either
CD or HFD. In contrast, the relative abundance of Firmicutes phylum and the genus Prevotella
were increased in the HFD-MX group. Contrary to the significant alteration of microbiota, body
composition, lipid parameters, and luminal metabolites were not different between groups, regardless
of xylitol consumption.

The improvement of glucose tolerance observed with increased dietary fiber intake is linked
with a higher abundance of the genus Prevotella [2]. In contrast, the abundance of Prevotella copri was
positively associated with microbial branched-chain amino acid (BCAA) biosynthesis in the gut and
insulin resistance with a soy protein diet which contained a low level of BCAAs [28]. Our present study
showed an increased abundance of Prevotella and an increase in the Prevotella/Bacteroidetes ratio, but no
differences were observed in glucose tolerance or luminal BCAA concentrations between the HFD and
HFD-MX groups. Because the mice were fed a diet containing casein, which has as the protein source
a high BCAA content, we were unable to detect any changes in the luminal BCAA concentrations.
These results suggest that changes in the bacterial composition and the supply of dietary components
modulates host metabolism in a coordinated manner.

An amount of dietary indigestible fiber and gut microbiota which digest fiber regulates cecum
weight [29,30]. In the experiment 1, we used AIN93G as a control diet which contains more fiber (5%)
than the HFD which used in experiment 2 (2.9%). In the present study, xylitol feeding did not affect
cecum weight, therefore a difference in the amount of dietary fiber might affect cecum weight.

In our study, daily supplemental dietary xylitol of 194 but not 40 mg/kg body weight
induced significant changes in microbiota for the genera Barnesiella, which was reduced, and
Feacalibaculum, which was increased. Barnesiella and Feacalibaculum have been detected in human
or mice microbiota [31,32]. Barnesiella species have been negatively correlated with the colonization
of vancomycin-resistant Enterococcus faecium in mice intestines [33] and the relative abundance of
the bacterial genera Faecalibacterium was significantly decreased in children at risk of asthma [34].
In contrast, dietary xylitol suppressed lipopolysaccharide-induced inflammatory responses in male
broiler chickens [35] and has been shown to ameliorate human respiratory syncytial virus infections
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in mice [36]. Collectively, changes in the fecal microbiota of animals fed xylitol might affect immune
responses or colonization of some bacterial species.

Recently, Geidenstam et al. reported that baseline levels of serum xylitol showed an inverse
association with a ≥10% weight loss in obese subjects fed low-calorie diet [37]. Firmicutes phylum
accelerates degradation of food component to supply energy to host, it is, therefore, known as
obesity-related bacterial phylum [38]. In our study, the total bacteria/DNA and the relative abundance
of Firmicutes phylum were increased in the HFD-MX group. Geidenstam and colleague did not examine
gut microbiota in their study, human metabolism of xylitol and potential involvement of the gut
microbiota could help us to understand the effect of xylitol feeding on human lipid metabolism.

Xylitol metabolized into xylulose-5-phosphate (X-5-P) is synthesized via the pentose phosphate
pathway [39] and activates ChREBP through protein phosphatase 2A [40]; this results in its binding to
a specific DNA sequence which induces lipogenesis-related genes which increase lipogenesis from
carbohydrates [41]. Daily dietary xylitol at exposure levels ranging between 1.5–4.0 g/kg body weight
in combination with a HFD showed a trend towards increased expression of hepatic ChREBP mRNA
and a reduction in hepatic triglycerides and total cholesterol as reported in a previous study [8]. These
findings suggest xylitol has other functions unrelated to the ChREBP pathway. In the present study,
we found that an HFD supplemented with 0.2 g/kg body weight/d of dietary xylitol also induced
the increased expression of hepatic ChREBP mRNA and but had a tendency to increase hepatic
triglycerides and total cholesterol. The differences between the studies may arise from differences in
model species, xylitol dose, and diet which used to characterize the effect of xylitol on lipid metabolism.
Because plasma triglyceride level was not increased by HFD feeding in this study, another study
that uses another diet (e.g., high-fat high-sucrose diet) which strongly induces hypertriglyceridemia
will help to understand the effect of xylitol to alter plasma TG levels. Hepatic total cholesterol in
HFD-MX-FMT mice was slightly but significantly higher than that of HFD-FMT mice. Taken together,
these changes in the gut microbiota induced by dietary xylitol may potentiate the accumulation of
cholesterol and upregulation of hepatic ChREBP.

In conclusion, we found that 40 and 194 mg/kg body weight/day of dietary xylitol in mice
induced gradual changes in gut microbiota, but did not ameliorate HFD-induced dyslipidemia.
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