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INTRODUCTION 

 

 

 

Breast cancer has caused a lot of distress, both to 

the people with it and the family of the patient. 

Some of this distress can be alleviated if the 

disease is caught in the early stages. Thus, cancer 

screenings are insurmountably valuable. One 

such screening used is the mammogram to detect 

breast cancer. Mammograms have an 

inconclusive rate of at least 10 percent (see [1]). 

With approximately 60 percent of the 150 million 

women in the United States receiving 

mammograms (see [6]) in the last two years, this 

means that the 10 percent of inconclusive 

mammograms affected approximately 9 million 

women. The problem we solve in this project is 

inspired by the need to tackle inconclusive results 

like these by improving the quality of the images 

around possible tumor areas. 

 

Improving the quality in a particular area of the 

image can be formulated as a variational problem. 

 Typically, issues like this in image processing 

are solved by using a rectangular table of entries 

called pixels. These pixels would have values 

ranging from 0 representing the color black to 

255 representing white. However, in medical 

imaging the domain of the image is not 

guaranteed to be a rectangle therefore causing 

issues when trying to apply the standard methods. 

In this paper, we propose that using the Finite 

Element Method (FEM) and different methods of 

triangulations; we minimize the Dirichlet integral 

to find the smoothest function that agrees with the 

higher-quality data on the boundary of the 

domain. This smoothest function will give 

radiologists an idea of how the area inside the 

boundary would look. We are particularly 

 

ABSTRACT We implement the finite element method to solve a variational problem that is inspired 

by medical imaging. In our application, the domain of the image does not need to be a rectangle and can 

contain a cavity in the middle. The standard approach to solve a variational problem involves 

formulating the problem as a partial differential equation. Instead, we solve the variational problem 

directly, using only techniques available to anyone familiar with vector calculus. As part of the 

computation, we also explore how triangulation is a useful tool in the process. 
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interested in a triangle with a circular hole as the 

domain, or any polygon with an internal cavity. 

These are shapes that represent a collection of 

tissue cells which may be blurry and causing a 

radiologist to call a test inconclusive.  

 
The result from the mammogram is inconclusive 

if the image taken is blurry. The quality of data 

over the boundaries is high, but the quality of data 

is low in the interior.  

If we regard the pixels of the image as a function 

u(𝑥, 𝑦), where the point (𝑥, 𝑦) is the location of 

the pixel, we can also treat u(𝑥, 𝑦) as a surface 

over a domain. Using only the clean data from the 

boundary, we want to find the smoothest surface 

with the given boundary condition. This 

motivates the need to solve for a function u(x,  y) 

as a variational problem. The standard approach 

to solve a variational problem involves 

formulating the problem as a partial differential 

equation. Instead, we solve the variational 

problem by a direct method.  

As part of the computation, we also explore how 

triangulation is a useful tool in the process. 
 

Solving the problem by the Finite Element 

Method 
 

Let D be a bounded domain in the plane with a 

piecewise smooth boundary. A domain is any 

connected open set, which we can think of as any 

polygon and it may have a hole inside. Given a 

function z(𝑥, 𝑦), we want to find the smoothest 

surface u(x,  y) that agrees with the given 

function on the boundary. 

To formulate this problem, we want to find a 

function 𝑢(𝑥, 𝑦) that minimizes the Dirichlet 

integral, 

 

I = ∬ {(
∂u

∂x
)

2

+ (
∂u

∂y
)

2

 }
D

 dA (1) 

 

subject to the condition: u(𝑥, 𝑦) = z(𝑥, 𝑦) on the 

boundary of D. The integrand is the square of the 

length of the gradient vector of u(𝑥, 𝑦). The 

integral measures the smoothness of a surface. If 

we do not impose the boundary condition, the 

problem becomes uninteresting; we can set the 

function u(𝑥, 𝑦) to be zero. The integral depends 

on the function u(𝑥, 𝑦), which takes an input 𝑢 

and computes a number as the output. As the 

input function u(x,  y) varies, the output number 

will vary. To avoid taking square root, we 

minimize the square of the length of the gradient 

vector. This problem of minimizing the Dirichlet 

integral is an example of a variational problem. 

 
We use the finite element method to minimize the 

Dirichlet integral. We divide the domain D into p 

triangles {Ti}i=1
p

. Instead of considering the set of 

all continuous functions, we consider a special 

class of continuous functions. Let u(𝑥, 𝑦) be a 

linear combination of local basis functions, 

u(x, y) = ∑ cjϕj(x, y) 

n

j=1

(2) 

 

where each 𝜙𝑗(𝑥, 𝑦) is a linear function on 

each triangle. Here, 𝑛 is the total number of 

vertices of all triangles. In specifying 

u(𝑥, 𝑦), the constants 𝑐𝑗 are the unknown 

variables. 

 

The local basis functions 𝜙𝑗(𝑥, 𝑦) are 

determined by the triangles. We choose the 

constants 𝑐𝑗 to minimize the Dirichlet 

integral, while satisfying the boundary 

condition. The mathematical details are 

provided in the Appendix. 

 
Figure 1. Triangulation of a domain 

The basis functions 𝜙𝑗(x, y) depend on the 

triangles. We need a way to divide the 

domain into many triangles. The edges of 

the triangles do not cross each other. As an 

illustration, consider a ring-shaped domain, 

also known as an annulus. Figure 1 shows 
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the division of this domain into many 

triangles. Triangulation is any method that 

makes a division of a domain into non-

crossing triangles. The domain can be any 

polygon and it can contain a hole inside. 

One way to construct a triangulation of a 

shape is to exploit its connection to a 

Voronoi diagram. 
 

Triangulation and Voronoi diagram 
 

In the context of Voronoi diagrams, the points of 

a finite set 𝑆 are often called sites. Imagine that 

each site in 𝑆 represents a post office. If your 

home is in the plane, then naturally you want to 

go to the post office closest to your house. If 𝑝 is 

the location of a post office, you can also consider 

the region of points that are each closer to 𝑝 than 

to any other site in 𝑆. The division of the plane 

into these regions is called the Voronoi diagram 

of the point set, with each region a Voronoi 

region. Figure 2 shows the Voronoi diagram for 

seven post offices.  

 

 
Figure 2. The Voronoi diagram for 7 sites 

Let 𝑆 be a collection of sites in the plane. The 

Voronoi region of a site 𝑝 in 𝑆 is 

 

Vor(p)  =  {x ∈ R𝟚:  ||𝑥 − 𝑝||  
≤ ||x − 𝑞||} for all sites q in S,   

 
Where ||𝑝 − 𝑞|| denotes the Euclidean distance 

between points 𝑝 and 𝑞 in the plane. In words, 

Vor(𝑝) is the set of all the points in the plane 

that are at least as close to 𝑝 than to any other 

site 𝑞 in S. There are points that lie on the  

 
Figure 3. The straight-line dual graph of the Voronoi 

diagram 

 

A fundamental result in computational geometry 

is that Delaunay triangulation is the dual of the 

Voronoi diagram. The vertices of the dual graph 

are the sites of the point set 𝑆, and two sites are 

connected by a straight line if they share a 

common boundary. Figure 3 shows the Delaunay 

triangulation for seven post offices, obtained as 

the dual graph of the Voronoi diagram in figure 2 

 

For a lucid discussion on Voronoi diagram and 

Delaunay triangulation, we refer the interested 

reader to [5]. There are many triangulations for a 

domain. When we first did this project, before we 

used Delaunay triangulation, we explored with 

our own method of triangulation; we call it 

Atlantis triangulation. The division of the annulus 

into 96 triangles illustrated in figure 1 is an 

example of Atlantis triangulation. We provide a 

brief explanation of this procedure in the 

Appendix. 
 

Related Works 
 

It might appear more natural to use the length of 

the gradient vector instead of its square. Let ∇u 

be the gradient vector. Minimizing the length of 

∇𝑢 is not a smooth optimization problem. That is 

a far more challenging problem beyond the scope 

of our project. The non-smooth eigenvalue 

problem is to solve for a function u(𝑥, 𝑦) to 

minimize ∫ | ∇𝑢(𝑥, 𝑦)|2
𝐷

dA, subject to the 

constraint that ∫ |𝑢(𝑥, 𝑦)|2
𝐷

 dA = 1.  
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The finite element method is used in [3] to solve 

this problem. The authors find that whether the 

finite element solution converges to the true 

global minimum can depend on the geometry of 

the domain. 

 

Variational problems in image processing have 

been investigated by many researchers. See, for 

example, [2], [4], [7], [8]. In these works, the task 

is to remove noise from an image or to restore a 

blurry image. The domain of the image is a 

rectangle. 
 

Numerical Experiments 
 

We illustrate our method with two examples. 

Given a function z(𝑥, 𝑦), we solve for a function 

u(x,  y) that agrees with z(𝑥, 𝑦) on the outer 

boundary and the inner boundary. 

 
 
Figure 4. Atlantis triangulation of the shape from 

Example 1 

 

Figure 5. Delaunay triangulation of the shape from 

Example 1 

 

Figure 6. Vertices of the triangles in the shape from 

Example 1 

 

Example 1 
 

Suppose the shape 𝐷 is a pentagon with a 

pentagon cavity. The boundary of 𝐷 consists of 

two pieces: the outer boundary of the pentagon 

and the inner boundary of the cavity in the 

middle. Figure 4 shows the triangulation of the 

shape. Figure 5 shows the Delaunay 

triangulation of the shape. To make the 

triangulation, we need to first specify the 
vertices of the triangles. Figure 6 shows the 

triangulation of the shape. Suppose z(𝑥, 𝑦) =
x + y + 5. This is a plane. The finite element 

solution u(𝑥, 𝑦) constructed using either 

Delaunay or Atlantis triangulation completely 

reconstructs z(𝑥, 𝑦) on the interior of the 

domain. Figure 7 shows the initial surface given 

by u(𝑥, 𝑦) = x + y + 5 when (𝑥,  𝑦) is on the 

outer boundary and inner boundary, 

and u(𝑥, 𝑦) = 0 when (𝑥, 𝑦) is on the interior of 

the domain. Figure 8 shows the surface u(𝑥, 𝑦) 

constructed by using finite element method. To 

make the example more interesting, suppose 

z(𝑥, 𝑦) = 𝑥2 − 𝑦2. This surface is a horse 

saddle. Now, u(𝑥, 𝑦) is the smoothest surface 

that must agree with z(𝑥, 𝑦) on the outer 

boundary and the inner boundary. In this sense, 

among all piecewise-linear functions, u(𝑥, 𝑦) is 

the best approximation of the saddle. How 

accurate is this approximation on the interior?  
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Among the 64 vertices shown in Figure 6, there 

are 16 vertices on the outer boundary (blue 

points on outer pentagon) and 16 vertices on the 

inner boundary (red points on a smaller 

pentagon in the middle). By construction, 

u(𝑥, 𝑦) = z(𝑥, 𝑦) on these 32 vertices. In the 

remaining 32 vertices on the interior of the 

domain, we can calculate the error ϵ,  

ϵ =
||𝑢 − 𝑧||

||𝑧||
 (3) 

 

where, the norm || ⋅|| is the Euclidean norm, i.e. 

||𝑢 − 𝑧||2 = ∑ (𝑢(𝑗) − 𝑧(𝑗))
232

𝑗=1  Here, by 

a slight abuse of notation, the variables 𝑢(𝑗) and 

𝑧(𝑗) are, respectively, the values of 𝑢 and 

𝑧 on the 32 internal vertices. The sum is from 

𝑗 =  1 to 𝑗 =  32 because we are adding over 

all the internal vertices. 

 

Figure 9 shows the initial surface given by 

u(𝑥, 𝑦) = 𝑥2 − 𝑦2 when (𝑥, 𝑦) is on the outer 

boundary and inner boundary, and u(𝑥, 𝑦) = 0 

when (𝑥, 𝑦) is on the interior of the domain. 

Figure 10 shows the surface u(𝑥, 𝑦)for the 

saddle constructed by using finite element 

method. The computation using finite element 

method (with Delaunay triangulation) shows that 

u(𝑥, 𝑦) does a reasonably well to approximate 

z(𝑥, 𝑦) on the interior of the surface; the 

error is 0.95 percent. For a quick comparison, on 

four of the inner vertices, the values of u 

are 
[0.3186, −0.6727, −1.5985, −0.6727] 

and the corresponding values of z are 
[0.3125, −0.6250, −1.5625, −0.6250]. 

 

The finite element solution with Atlantis 

triangulation shows a comparable result. 

 
Figure 7. The initial surface 𝑢(𝑥,  𝑦)from Example 1 

 

Figure 8. The solution of 𝑢(𝑥,  𝑦) for the plane from 

Example 1 

 

Figure 9. The initial surface 𝑢(𝑥,  𝑦) of saddle from 

Example 1 
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Figure 10. The solution of 𝑢(𝑥,  𝑦) for the saddle  

𝑥2 − 𝑦2 from Example 1 

 

 
Figure 11. Delaunay triangulation of the shape from 

Example 2 

 

Example 2 
 

Suppose the shape D is a triangle with a circular 

cavity. The boundary of D consists of two 

pieces: the outer boundary is a triangle, and the 

inner boundary is a circle in the middle. 

Figure 11 shows the triangulation of the shape. 

Suppose z(𝑥, 𝑦) = x + y + 5. This a plane, 

and since u(x,  y) is the best linear function that 

agrees with z(𝑥, 𝑦) on the boundary, u(𝑥, 𝑦) 

is exactly equal to z(𝑥, 𝑦) in this case, as to be 

expected. 

 

Following Example 1, we next consider 

z(𝑥, 𝑦) = 𝑥2 − 𝑦2, the horse saddle. The 

computation using finite element method shows 

that u(𝑥, 𝑦) does a reasonably well to 

approximate z(𝑥, 𝑦)on the interior of the surface; 

the error is 0.54 percent. For a quick comparison, 

on five of the inner vertices, the values of 𝑢 are 

 
[4.7902,13.4896,26.6379,42.7864,62.8647] 

 

and the corresponding values of 𝑧 are 

 

[4.76,  13.44,  26.04,  42.56,  63.00]. 
 

Figure 12 shows the initial surface given by 

u(𝑥, 𝑦) = 𝑥2 − 𝑦2when (𝑥, 𝑦) is on the outer 

boundary and inner boundary, and u(𝑥, 𝑦) = 0 

when (𝑥, 𝑦) is on the interior of the domain. 

Figure 13 shows the surface u(𝑥, 𝑦) constructed 

by using finite element method. 

 

 
Figure 12. The initial surface 𝑢(𝑥, 𝑦) for the saddle 

from Example 2 
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Figure 13. The solution of 𝑢(𝑥, 𝑦) for the saddle from 

Example 2 

 

 

 

Conclusion 
 

We implement the finite element method to 

solve a variational problem that is inspired by 

medical imaging using only techniques available 

to anyone familiar with vector calculus. The 

domain of the image does not need to be a 

rectangle and can contain a cavity in the middle. 

 

The standard approach to solve a variational 

problem involves formulating the problem as a 

partial differential equation. Instead, we solve 

the variational problem by a direct method. As 

part of the computation, we also explore how 

triangulation is a useful tool in the process. We 

suspect that when the number of vertices is 

large, dividing a domain into triangles with 

Atlantis triangulation can be much faster than 

Delaunay triangulation. We leave the 

exploration of triangulation and more examples 

to future research.
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APPENDIX 
 

We provide the detail of how we use the finite element method for the variational problem. 

We also briefly describe how to partition a domain into triangles using Atlantis triangulation. 

 

Applying the Finite Element Method 

 

We are given a function z(𝑥, 𝑦). The problem is to minimize the Dirichlet integral, 

 

 

𝐼 = ∬ [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

 ]
𝐷

 𝑑𝐴 (4) 

 

 

with the condition: u(x,  y)  =  z(x,  y) on the boundary of D. 
 

Let  

 

 𝑢(𝑥, 𝑦) = ∑ 𝑐𝑗𝜙𝑗(𝑥, 𝑦)

𝑛

𝑗=1

 (5) 

 
where n is number of vertices. 

 

Let m be the number of internal vertices. The other vertices are the ones on the boundary of D. We pick the 

constants 𝑐𝑗 so that 

 
∂𝐼

∂𝑐𝑗
= 0  for 1 ≤ 𝑗 ≤ 𝑚.

From the expression of 𝐼 in equation (1), we apply the chain rule to obtain  

 

0 = ∬ [2
𝜕𝑢

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑐𝑗
+ 2

𝜕𝑢

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑐𝑗
]

𝐷

 𝑑𝐴 (6) 

 

for 1  ≤  j  ≤  m. In equation (4), 𝑢𝑥 and 𝑢𝑦 are the partial derivatives of u with respect to the variables 

x and y. This equation is a condition for each index j, and so there are m conditions in total. Now, 
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∂𝑢

∂𝑥
= ∑ 𝑐𝑗

∂

∂𝑥

𝑛

𝑗=1

ϕ𝑗(𝑥, 𝑦) (7) 

 

 

and since 
∂𝑢

∂𝑐𝑗
= ϕ𝑗(𝑥, 𝑦), we also have 

 
𝜕𝑢𝑥

𝜕𝑐𝑗
=

𝜕𝜙𝑗

𝜕𝑥
(8) 

Substitute equation (7) into (4) to obtain 

 

0 = ∬ [2
𝜕𝑢

𝜕𝑥

𝜕𝜙𝑗

𝜕𝑥
+ 2

𝜕𝑢

𝜕𝑦

𝜕𝜙𝑗

𝜕𝑦
]

𝐷

 𝑑𝐴;   for 1 ≤ 𝑗 ≤ 𝑚. (9) 

 

Divide the domain 𝐷 into 𝑝 triangles {𝑇𝑖}𝑖=1
𝑝

 and the last equation becomes 

 

0 = 2 ∑ ∬ [
𝜕𝑢

𝜕𝑥

𝜕𝜙𝑗

𝜕𝑥
+

𝜕𝑢

𝜕𝑦

𝜕𝜙𝑗

𝜕𝑦
]

𝑇𝑖

𝑝

𝑖=1

 𝑑𝐴;   for 1 ≤ 𝑗 ≤ 𝑚. (10) 

The function 𝜙𝑗(𝑥, 𝑦) is linear on triangle 𝑇𝑖 and we write 𝜙𝑖𝑗 to denote the restriction of 𝜙𝑗 to triangle 𝑇𝑖 

so that 
ϕij(x, y) = aijx + bijy + dij 

where 𝑎𝑖𝑗  , 𝑏𝑖𝑗 and 𝑑𝑖𝑗  are constants. These constants associated with each triangle for 𝜙𝑗 are uniquely 

determined by the three vertices of the triangle. From the last equation, we see that 
 

𝜕𝜙𝑖𝑗

𝜕𝑥
= 𝑎𝑖𝑗  and  

𝜕𝜙𝑖𝑗

𝜕𝑦
= 𝑏𝑖𝑗 (11 & 12) 

 
Note that 

 

𝜕𝑢

𝜕𝑥
= ∑ 𝑐𝑘𝑎𝑖𝑘  

𝑛

𝑘=1

(13) 

 

and 

 

𝜕𝑢

𝜕𝑦
= ∑ 𝑐𝑘𝑏𝑖𝑘

𝑛

𝑘=1

 (14) 

 

Therefore, equation (8) becomes 

 

0 = 2 ∑ ∬ [(∑ 𝑐𝑘𝑎𝑖𝑘

𝑛

𝑘=1

) 𝑎𝑖𝑗 + (∑ 𝑐𝑘𝑏𝑖𝑘

𝑛

𝑘=1

) 𝑏𝑖𝑗]
𝑇𝑖

𝑝

𝑖=1

 𝑑𝐴;   for 1 ≤ 𝑗 ≤ 𝑚. (15) 

 
 

Note that the quantity in each bracket is a constant on triangle 𝑇𝑖  . Let 𝐴𝑖  be the area of triangle 𝑇𝑖. Then, 

for 1  ≤  j  ≤  m, 
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0 = ∑ [(∑ 𝑐𝑘𝑎𝑖𝑘

𝑛

𝑘=1

) 𝑎𝑖𝑗 + (∑ 𝑐𝑘𝑏𝑖𝑘

𝑛

𝑘=1

) 𝑏𝑖𝑗]

𝑝

𝑖=1

 𝐴𝑖  (16) 

 
 

If we interchange the sums, then we can write the last expression as 

 

0 = ∑ 𝑐𝑘 (∑[𝑎𝑖𝑘  𝑎𝑖𝑗 + 𝑏𝑖𝑘  𝑏𝑖𝑗]

𝑝

𝑖=1

 𝐴𝑖) 

𝑛

𝑘=1

(17) 

 

which is a condition for each j, where 1  ≤  j  ≤  m. For each j, there is one equation with 

n variables 𝑐𝑘. But only m of the 𝑐𝑘  are unknown. The remaining vertices are ones on the boundary of D. 

For any vertex on the boundary of D, we set 𝑐𝐽 to be the value of z(𝑥, 𝑦) on that vertex. That means, we 

have a system of m equations in m unknown variables, and so we can solve for 𝑐𝑘. 

 

Atlantis Triangulation 
 

 
Figure 14. Triangles between two sets of vertices 
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Figure 15. Atlantis triangulation using 14 vertices 

 

Suppose we want to divide a domain into triangles. The outer boundary is one curve. The inner boundary 

is another curve. We can draw curves between these two boundaries. Places vertices on these curves. To 

start the procedure, begin with any two adjacent curves, connect the vertices from one curve to the vertices 

on the other curve, and continue in this manner, using a sawtooth pattern (i.e. zig-pattern) to draw triangles. 

Figure 14 shows the triangulation of a domain by drawing sawtooth wave (i.e. zig-zag pattern) between the 

two sets of vertices. For clarity, we illustrate with red vertices on one curve and blue vertices on the other 

curve. For comparison, Figure 15 and Figure 16 shows the construction by Atlantis and Delaunay 

triangulation, respectively, for the same set of 14 vertices. 

 

 
Figure 16. Delaunay triangulation using 14 vertices 
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