
TRABALHO DE GRADUAÇÃO

A MECHANISM FOR GUARANTEEING THE
AUTHENTICITY OF DIGITAL IDENTITY DOCUMENTS USING

DIGITAL SIGNATURES, DNSSEC AND BLOCKCHAIN

Luiz Fernando Ribeiro Amaral

Brasília, Julho de 2018

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

TRABALHO DE GRADUAÇÃO

A MECHANISM FOR GUARANTEEING THE
AUTHENTICITY OF DIGITAL IDENTITY DOCUMENTS USING

DIGITAL SIGNATURES, DNSSEC AND BLOCKCHAIN

Luiz Fernando Ribeiro Amaral

Trabalho de Graduação submetido ao Departamento de Engenharia

Elétrica como requisito parcial para obtenção

do grau de Engenheiro de Redes de Comunicação

Banca Examinadora

Georges Daniel Amvame Nze, Ph.D, ENE/UnB
Orientador

Joseph E. Gersch, Ph.D, CS/Colorado State University
Co-orientador

Ugo Silva Dias, Ph.D, ENE/UnB
Examinador Interno

FICHA CATALOGRÁFICA

AMARAL, LUIZ FERNANDO RIBEIRO
A MECHANISM FOR GUARANTEEING THE AUTHENTICITY OF DIGITAL IDENTITY DOCU-
MENTS USING DIGITAL SIGNATURES, DNSSEC AND BLOCKCHAIN [Distrito Federal] 2018.
xvi, 56 p., 210 x 297 mm (ENE/FT/UnB, Engenheiro, Engenharia Elétrica, 2018).
Trabalho de Graduação - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. DNSSEC 2. Blockchain
3. RSA 4. Authenticity
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
AMARAL, L. F. R. (2018). A MECHANISM FOR GUARANTEEING THE AUTHENTICITY OF DIGITAL
IDENTITY DOCUMENTS USING DIGITAL SIGNATURES, DNSSEC AND BLOCKCHAIN. Trabalho de
Graduação, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 56 p.

CESSÃO DE DIREITOS
AUTOR: Luiz Fernando Ribeiro Amaral
TÍTULO: A MECHANISM FOR GUARANTEEING THE AUTHENTICITY OF DIGITAL IDENTITY
DOCUMENTS USING DIGITAL SIGNATURES, DNSSEC AND BLOCKCHAIN.
GRAU: Engenheiro de Redes de Comunicação ANO: 2018

É concedida à Universidade de Brasília permissão para reproduzir cópias desto Trabalho de Graduação e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte desse Trabalho de Graduação pode ser reproduzida sem
autorização por escrito dos autores.

Luiz Fernando Ribeiro Amaral
Depto. de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

DEDICATION

To my grandfather Antônio, who unfortunately passed away before I could share this
accomplishment with him.

Luiz Fernando Ribeiro Amaral

ACKNOWLEDGEMENTS

I was blessed by having the help and support of many great people during this journey.
Naming all of them and forgetting one would be unfair. To each of you who have in
some way contributed, I say thank you.

Luiz Fernando Ribeiro Amaral

ABSTRACT

This project proposes a mechanism for guaranteeing the authenticity of digital identity documents
using Digital Signatures, DNSSEC and Blockchain. Although there are papers proposing similar
implementations, none of them address the public key distribution using the DNS system and do
not provide a way of implementing trusted timestamping. The goal of this project is to propose
a mechanism design with the aforementioned characteristics, implement a proof of concept and
evaluate it using crafted attack scenarios. In the end, a few improvements that were not imple-
mented were presented as future work.

RESUMO

Este projeto propõe um mecanismo para garantia de autenticidade de documentos de identidade
digitais utilizando Assinaturas Digitais, DNSSEC e Blockchain. Apesar de existirem trabalhos
propondo implementações similares, nenhuma delas aborda a distribuição das chaves públicas
utilizando o sistema DNS e não fornecem uma maneira de implementar timestamping confiável.
O objetivo desse projeto é propor um mecanismo com as características mencionadas anterior-
mente, implementar uma prova de conceito e avaliá-la utilizando cenários de ataque construídos.
Ao final, algumas melhorias que não foram implementadas foram apresentadas como trabalhos
futuros.

CONTENTS

1 INTRODUCTION . 1
1.1 MOTIVATION . 1
1.2 THE SOLUTION . 1
1.3 OBJECTIVE . 2
1.3.1 SPECIFIC OBJECTIVES . 2
1.4 ORGANIZATION OF THIS WORK . 3

2 ARCHITECTURAL COMPONENTS . 4
2.1 DIGITAL SIGNATURES . 4
2.1.1 THE RSA ALGORITHM . 4
2.2 DOMAIN NAME SYSTEM - DNS .. 4
2.2.1 DNSSEC.. 5
2.2.2 CERT RESOURCE RECORD . 5
2.2.3 BIND DNS SERVER. 5
2.3 BITCOIN . 6
2.3.1 TRANSACTIONS . 6
2.3.2 BLOCKS . 7
2.3.3 PROOF-OF-WORK . 8
2.3.4 NETWORK . 9
2.4 QUICK RESPONSE CODE . 9
2.5 PYTHON . 10
2.5.1 CRYPTOGRAPHY PACKAGE . 11
2.5.2 TORNADO FRAMEWORK . 11
2.6 TELEGRAM . 11
2.6.1 TELEGRAM BOT . 11

3 SOLUTION DESIGN . 12
3.1 SYSTEM ARCHITECTURE . 12
3.2 MESSAGE SIGNING . 12
3.2.1 KEYS AND CERTIFICATES . 13
3.2.2 MESSAGE FORMAT . 13
3.2.3 TRUSTED TIMESTAMPING . 15
3.2.4 MESSAGE SIGNATURE . 15
3.2.5 QR-CODE GENERATION . 16
3.3 SIGNATURE VERIFICATION . 17
3.3.1 DNS .. 17
3.3.2 SIGNATURE VALIDATION . 18

vii

3.3.3 TIMESTAMP VALIDATION . 20
3.3.4 PRESENTING THE DATA TO THE USER . 21

4 PROOF OF CONCEPT . 22
4.1 OVERVIEW . 22
4.2 DNS SYSTEM . 22
4.2.1 DNS SERVERS . 23
4.2.2 DNSSEC.. 23
4.2.3 PUBLISHING THE CERTIFICATES . 24
4.3 KEYS AND CERTIFICATES GENERATION . 24
4.4 WEB APIS . 25
4.5 MESSAGE SIGNING . 25
4.5.1 SIGNING API . 26
4.5.2 MESSAGE FORMAT . 26
4.5.3 TRUSTED TIMESTAMPING . 27
4.5.4 DIGITAL SIGNATURE . 27
4.5.5 QR CODE GENERATION . 28
4.6 SIGNATURE VERIFICATION . 29
4.6.1 TELEGRAM BOT . 29
4.6.2 TIMESTAMP API . 32

5 RESULTS . 36
5.1 DNSSEC AUTHENTICATION CHAIN. 36
5.2 MECHANISM VALIDATION . 37
5.2.1 QR CODES GENERATION . 37
5.2.2 VALIDATION WITH THE TELEGRAM BOT . 39
5.3 ATTACK VECTORS . 45

6 CONCLUSION . 46
6.1 FUTURE WORK . 47

BIBLIOGRAPHY . 48

APPENDIX . 52
I.1 DNS HELPER SCRIPTS . 53
I.2 CERT DNS ENTRY EXAMPLE . 55
I.3 SIGNING A MESSAGE THROUGH THE API . 56

LIST OF FIGURES

1.1 Driver’s license example. Adapted from (DMV 2013)...................................... 2

2.1 Portion of the DNS Server hierarchy. [Source: (Kurose and Ross 2010)] 5
2.2 Main parts of a Bitcoin transaction. [Source: (Bitcoin Developer Guide 2018)] 6
2.3 Simplified Bitcoin blockchain. [Source: (Bitcoin Developer Guide 2018)] 7
2.4 QR Code linking example. On the left, a QR Code splitted in 4 linked codes

is shown. On the right, the use of linking to overcome a space restriction is
demonstrated [Source: (Soon 2008)] .. 10

3.1 System Overview ... 13
3.2 Example Message .. 14
3.3 Message signing process. ... 16
3.4 Signature Validation Process... 19

4.1 System components overview [Source: Author].. 22
4.2 Message Signature Generation Process ... 26
4.3 Signature verification process. .. 29
4.4 BotFather bot creation demo. .. 30
4.5 Telegram Bot finite state machine. ... 31
4.6 Bot message after invalid signature. ... 32
4.7 Bot message after valid signature. .. 33

5.1 DNSSEC authentication chain for the acme.luiz.eng.br zone. 36
5.2 DNSSEC authentication chain for the globex.luiz.eng.br zone. 37
5.3 QR Codes used for system evaluation ... 38
5.4 HTTP POST request to /sign endpoint using Insomnia. 39
5.5 Wireshark packet capture of the bot validating the DNSSEC authentication chain. . 40
5.6 Bot output and QR Code contents for scenario A. ... 41
5.7 Bot outputs for scenarios B and C.. 41
5.8 Bot outputs for scenarios D and E.. 42
5.9 Certificate dates and timestamps for scenarios D and E 43
5.10 Bot outputs for scenarios F, G, H and I ... 44
5.11 Bot output for scenario J. ... 45

ix

LIST OF ACRONYMS

API Application Programming Interface
ASCII American Standard Code for Information Interchange
BTC Bitcoin
CA Certificate Authority
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
DS Delegation Signer
DSA Digital Signature Algorithm
ECC Elliptic-curve cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
Hazmat Hazardous Materials Layer
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
KSK Key Signing Key
NIST National Institute of Standards and Technology
PKI Public Key Infrastructure
PNG Portable Network Graphics
POW Proof of Work
PSS Probabilistic Signature Scheme
QR Code Quick Response Code
REST Representational State Transfer
RR Resource Record
TLD top Level Domain
TXID Transaction Identifier
UTXO Unspent Transaction Output
WSGI Web Server Gateway Interface
XML Extensible Markup Language
ZSK Zone Signing Key

x

1 INTRODUCTION

1.1 MOTIVATION

As sophisticated printing and scanning technologies become cheap, criminals are taking ad-
vantage of digital technology to produce high quality fraudulent documents. To avoid fraud and
the use of falsified documents, society relies on experts for verifying the authenticity of these doc-
uments using special tools and document properties, an almost impossible job for entities dealing
with thousands of documents daily (Garain and Halder 2008).

To avoid falsification and fraud, governmental agencies have started issuing digital versions
of paper documents that can be carried by the citizens in their smartphones in the form of a QR
Code. Although this new technology brings convenience, it also brings new problems related with
the security of the information being carried in the code. For example, has it been tampered with
or is the entity identified as issuer really who it claims to be?

Previous work rarely propose ways of distributing the public key for the purpose of Authenti-
cation of Identity Documents making the rollover of new keys more difficult, besides relying on a
third-party Certificate Authority for guaranteeing the certificates authenticity, bringing additional
costs to the operation or the challenge of managing a full Public Key Infrastructure.

The Brazilian Federal Data Processing Service (SERPRO) launched in 2017 a service called
Lince, aiming to provide a similar solution to the one described in this work except that instead
of using digital signatures, their system encrypts the information using a private key. While it
provides authentication it does not fully guarantees integrity, a problem that is addressed in this
work by using digital signatures instead of pure encryption of the data.

1.2 THE SOLUTION

This work addresses these problems by providing a mechanism to guarantee authenticity and
integrity of the aforementioned data through the use of digital signatures. The distribution of
the public keys used to validate the signatures is done by publishing the certificates and corre-
sponding public keys on the DNS infrastructure. This mechanism enables any person to verify
the information contained in the QR Code using a smartphone application, instead of relying on
specialists or the physical security features of a document.

1

When it comes to guaranteeing authenticity and integrity, digital signatures are a standard
nowadays. A digital signature algorithm allows an entity to authenticate the integrity of signed
data and the identity of the signatory. The recipient of a signed message can use a digital signa-
ture as evidence in demonstrating to a third party that the signature was, in fact, generated by the
claimed signatory (FIPS 2013). In the proposed scheme, a message is digitally signed and a dig-
ital signature block is stored in a QR Code which can be printed on the identity document, such
as for instance a driver’s license containing a QR Code with the message and its digital signature
as shown in Figure 1.1 or that can be digitally loaded in a smartphone to be presented in a digital
form.

Figure 1.1: Driver’s license example. Adapted from (DMV 2013)

Compared to other proposed solutions (Warasart and Kuacharoen 2012), this system does not
need to rely on a certificate authority to provide valid certificates, reducing the costs associated
with certificate issuance, neither needs to have the certificates pre-loaded by the application used
for signature validation. Through the use of DNSSEC (Domain Name System Security Exten-
sions) enabled servers, the document issuer can publish the certificates in their DNS zone and the
authenticity and integrity of the certificate can be guaranteed by the authentication chain provided
by DNSSEC signatures (Rose et al. 2005).

1.3 OBJECTIVE

This work’s objective is to design a mechanism that guarantees the integrity of the data con-
tained in the QR Code and authenticates the issuer using digital signatures with the public keys
distributed on the DNS and a trusted timestamping service based on the Bitcoin Blockchain. To
evaluate the effectiveness and security of the system, a proof of concept will be implemented and
the analyzed data will be collected from it.

1.3.1 Specific objectives

• Design a mechanism that addresses the aforementioned problems;

2

• Implement a proof of concept of the mechanism;

• Using the proof of concept, collect results and evaluate the performance and security of the
mechanism against various attack scenarios.

1.4 ORGANIZATION OF THIS WORK

On chapter 2, the architectural components used to build our solution will be explained, fol-
lowed by a proposal of a solution design on chapter 3. Chapter 4 will demonstrate how a proof
of concept was implemented using the design from chapter 3, and the results obtained from the
proof of concept will be presented and analyzed in chapter 5. Finally, chapter 6 will talk about the
conclusions obtained with this work and some aspects that can be further developed in the future.

3

2 ARCHITECTURAL COMPONENTS

2.1 DIGITAL SIGNATURES

Digital signatures are a standard for guaranteeing authenticity and integrity nowadays. A
digital signature algorithm allows an entity to authenticate the integrity of signed data and the
identity of the signatory. The recipient of a signed message can use a digital signature as evi-
dence in demonstrating to a third party that the signature was, in fact, generated by the claimed
signatory (FIPS 2013).

On the other hand, digital signatures do not have timestamps by default, leaving it up to the
user to include a timestamp with it using an additional mechanism.

2.1.1 The RSA Algorithm

RSA is a widely used public key cryptography algorithm. Invented in 1977 by Ron Rivest, Adi
Shamir and Leonard Adleman, the RSA provides encryption and digital signature capabilities, and
its cryptosystem is based on the idea that factoring is a computationally intensive task (Jansma
and Arrendondo 2004).

2.2 DOMAIN NAME SYSTEM - DNS

The Domain Name System (DNS) is standardized by a suite of Internet Engineering Task
Force (IETF) Requests for Comments (RFC). The initial idea with its creation was to provide a
translation between names and IP addresses, as a name is easier to remember than an IP address.

In order to make the DNS system robust and capable of load balancing, it is a distributed
hierarchic system, divided in root name servers, top-level domains (TLDs) and authoritative name
servers (Kurose and Ross 2010), as shown in Figure 2.1.

The DNS system stores information in standardized data structures called Resource Records
(RRs). The RRs have predefined fields: owner name, type, class, time to live, length (RDLENGTH)
and data (RDATA). The RDATA field contains the data stored in that record and its format is de-
fined depending on the type and class of the record, even enabling advanced users to create their
own custom records (Mockapetris 1987).

4

Figure 2.1: Portion of the DNS Server hierarchy. [Source: (Kurose and Ross 2010)]

2.2.1 DNSSEC

The DNS Security Extensions (DNSSEC) is a group of specifications for securing the DNS
system, provided by the Internet Engineering Task Force (IETF). The DNSSEC provides origin
authentication, authenticated denial of existence and data integrity, characteristics that were not
present in the original DNS design. All that is added while still maintaining backwards compati-
bility (Infoblox 2018).

2.2.2 CERT Resource Record

The CERT Resource Record (RR) was created for storing certificates in the DNS. Public keys
are usually published in the form of a certificate and by using the DNS, a public key can be made
available with little to no human intervention.

When a certificate is retrieved from a secure DNS zone (DNSSEC enabled and valid chain),
the key in the retrieved certificate may be trusted without having to verify the certificate chain.
Same way, the non-existence of a CERT RR within the zone can only be asserted through the use
of DNSSEC and NSEC/NSEC3 records (Josefsson 2006).

2.2.3 BIND DNS Server

BIND is the most used DNS software in the internet. It is open source and the software
includes a domain name resolver, a domain name authority server and many additional tools (dig,
dnssec-signzone, etc.), all fully compliant with the published DNS standards. By using the BIND
authority server software, one can provide DNS services on the Internet for the domain names it
is authoritative for (Consortium 2018).

5

2.3 BITCOIN

Bitcoin is the world’s first completely decentralized digital currency (Brito and Castillo 2013).
As of June 2018, the total market capitalization is estimated at more than $115 billion (CoinMar-
ketCap 2018), the biggest market capitalization among all the digital currencies.

One of the main characteristics of Bitcoin (BTC), is the decentralization, meaning that there is
no central institution responsible for it, enabling users to send payments in a peer-to-peer manner,
without having to rely on a third-party institution. By using digital signatures and a proof-of-work
chain, Bitcoin solved the double-spending problem without the need of a third-party, achieving
decentralization (Nakamoto 2008).

The blockchain can be considered a form of Distributed Ledger Technology, acting as a dis-
tributed database and enabling users to store arbitrary data within it, even tho this is not the main
purpose. This feature is what enables Bitcoin to be used as a distributed trusted timestamp plat-
form, as will be explained later.

2.3.1 Transactions

In Bitcoin, transactions are what enable users to spend Satoshis(BTC/108). In simple words, a
transaction is a transfer of Bitcoin value that is broadcast to the network and collected into blocks,
and on top of that, they are public and unencrypted, enabling any user of the network to effectively
audit and be aware of all transactions. Although the transactions are binary, there are websites,
called block chain browsers, that provides a view of the transactions in a human-readable way
(Wiki 2018).

Figure 2.2: Main parts of a Bitcoin transaction. [Source: (Bitcoin Developer Guide 2018)]

6

The main parts of a transaction are the inputs and outputs, as can be seen in Figure 2.2. Each
input is a reference to the output of a previous transaction, containing its transaction ID, the
output index (vout) of that transaction and the ScriptSig, which contains a digital signature made
with the private key and the corresponding public key. This digital signature is what proves to
the network that someone is able to collect the input funds. An output contains the number of
Satoshis being sent (how much the output is worth) as well as a ScriptPubKey, which is composed
of the OP codes and the destination public key hash, which is effectively a Bitcoin wallet address
(Wiki 2018). A transaction output that is not referenced by another transaction input, is called an
Unspent Transaction Output (UTXO).

The outputs share the combined value of the inputs and it is important to note that any input
value not included in the outputs is considered a transaction fee, which will be explained in
Section 2.3.2. If Bob has an input transaction of 50 BTC and wants to send 25 BTC to Alice, he
must include a second output that sends the remaining 25 BTC back to him, known as change,
otherwise, the remaining value will be considered a transaction fee (Wiki 2018).

2.3.2 Blocks

The blocks are the structures that permanently record the transaction data. Each block in
the network is linked to the previous block by including a 256-bit hash of the previous block
header, creating what is called the Blockchain. The blocks also include a timestamp, denoting
the approximate time when the block was created, and a list of transactions, with the first one on
the list being a so called coinbase transaction, which enables the block miner to claim the block
reward (Wiki 2018). A simplified example of the blockchain is shown in Figure 2.3

Figure 2.3: Simplified Bitcoin blockchain. [Source: (Bitcoin Developer Guide 2018)]

7

The blocks are mined using computational power and in order to incentivise people to provide
computational power to the network, a predefined amount of Bitcoins is rewarded to the block
finder, plus all the transaction fees. The Bitcoin protocol specified an initial value of 50 BTC
as a reward, with a reduction of 50% every 210000 blocks, known as halving. Because of this
characteristic, Bitcoin has a limited supply and one day will have a 0 BTC reward in mined blocks.
When that happens, the reward for the miners will be comprised of only the transaction fees (Wiki
2018).

Blocks had an original limited size of 1MB (later expanded through the use of Segregated
Witness), meaning that there is a limit of transactions that can be included in a block. Because
the miners also get the transaction fees as a reward, transactions paying a bigger transaction fee
will be included in a block faster than a transaction with a smaller or no fee, so when sending a
transaction to the network, a user is effectively buying storage space in a block by paying a fee,
which will be proportional to the size of the transaction.

2.3.3 Proof-of-Work

The proof-of-work (POW) is what gives the Bitcoin blockchain its append-only characteristic.
The POW is a set of data that is costly to produce but easily verifiable by others. The POW
production process is random, with a very low probability of success, meaning that on average, a
lot of trial and error is necessary before a valid one is generated.

In Bitcoin, the POW is a double SHA-256 hash of the block header and to be valid, it must be
smaller than the current network target. In order to generate different hashes for the same set of
data, a nonce is included in the header and is incremented each time an invalid hash is calculated
(Wiki 2018).

Because the POW requires a lot of computational effort, once a block is mined and appended
to the blockchain, no modification can be done without having to redo all the work. The majority
decision is made based on the amount of work, so it is determined by the longest chain, which
has the biggest computational effort invested. That way in order to modify an existing block, an
attacker would have to redo all the work, catch up with the work of the legit miners and surpass it
in order for his modifications to be accepted by the network (Nakamoto 2008).

This append-only characteristic is what enables the use of the blockchain for a trusted times-
tamp, as it is computationally infeasible to manipulate transaction records, meaning that times-
tamps are stored on a tamper-proof and persistently verifiable medium (Breitinger and Gipp
2017).

8

2.3.4 Network

The Bitcoin network is a peer-to-peer network, comprised of nodes running a specific and
agreed upon version of the Bitcoin protocol. Because of POW, the nodes in the network will
always consider the longest chain as the valid one and will work on extending it. If two versions
of an specific block are broadcast at the same time, a fork is created and the nodes work will be
divided between the two branches. The first branch that becomes longer will take precedence and
the smaller branch will be discarded (Nakamoto 2008).

When sending a transaction to the network, a node informs its peers of the new transaction.
The peers will retrieve the full transaction data and if considered valid, they will inform their
peers also, effectively broadcasting the transaction on the network. That way, a miner eventually
receives the transaction and then include it in a block (Wiki 2018).

Every node in the network is capable of downloading the entire blockchain and the ones that
do so are called full nodes. Full nodes have the entire blockchain downloaded and verified and
thus are capable of searching the entire blockchain for an specific transaction or block (Bitcoin
Developer Guide 2018).

2.4 QUICK RESPONSE CODE

A Quick Response Code (QR Code 1) is one of the many kinds of 2D codes. It was invented in
1994 to be used in automotive industry and became an ISO standard in 2000 (WAVE 2018). QR
Codes have become widespread nowadays, being used in patient identification in hospitals, bus
tickets, betting tickets, electronic components labeling, aircraft and space industrial data-product
identification and many other applications in all kinds of fields (Soon 2008).

The main advantages of the QR Code over other types of bar codes are the higher data-density,
no predefined data structure as a requirement, meaning that it is able to store a higher amount of
arbitrary data in the same area, ability to be read from any direction, resistance to distortion, data
restoration, where the use of Reed-Solomon codes provide resistance to smudge or damage, and
linking, making it possible for a QR Code to be split into up to 16 smaller QR Codes, enabling it
to be printed even if the space is restricted, as shown in Figure 2.4 (Soon 2008).

The QR Code specification provides four types with different capacities and efficiencies, as
shown on Table 2.1, at the cost of restricting the type of data that can be encoded (only numbers,
only numbers and letters), meaning that when choosing an specific type of QR Code to be used,
the type of data and the efficiency gain of the chosen method need to be taken into consideration,
as the overhead of encoding binary data into alphanumeric might be bigger than the efficiency
gain between the modes.

1QR Code is a registered trademark of DENSO WAVE INCORPORATED.

9

Figure 2.4: QR Code linking example. On the left, a QR Code splitted in 4 linked codes is shown. On the right, the
use of linking to overcome a space restriction is demonstrated [Source: (Soon 2008)]

Table 2.1: QR Code modes characteristics. [Adapted from (Soon 2008)]

Mode Capacity Conversion Efficiency
Numerical characters 7,089 characters at maximum 3.3 cells/character

Alphanumerical 4,296 characters at maximum 5.5 cells/character
Binary (8 bit) 2,953 characters at maximum 8 cells/character

Kanji characters 1,817 characters at maximum 13 cells/character

QR Codes also have error correction capability, enabling them to be read even when part of it
is missing or damaged. There are four error correction levels, chosen according to the operating
environment, as listed in Table 2.2. The error correction capacity is measured in an approximate
percentage of codewords that can be restored.

Table 2.2: QR Code error correction levels. [Adapted from (WAVE 2018)]

Level Correction Capacity (approx.)
Level L 7% of codewords
Level M 15% of codewords
Level Q 25% of codewords
Level H 30% of codewords

2.5 PYTHON

Python is a powerful programming language capable of providing a simple but effective ap-
proach to object-oriented programming. Because of its interpreted nature, elegant syntax and
dynamic typing, Python is widely used for rapid application development and scripting (Python
2018).

Python has a great amount of libraries and packages available, many developed by the open-
source community. Because the interpreter can be easily extended with new functions imple-
mented in C or C++, complex C libraries can be wrapped to be used by Python applications in a
simpler manner.

10

2.5.1 Cryptography Package

Cryptography is a Python package that provides interfaces for cryptographic algorithms, in-
cluding symmetric cyphers, message digests and key derivation functions. The package is di-
vided in two levels: the recipes layer and the hazardous materials layer. The first, provides safe
cryptographic recipes requiring little choices by a developer, while the later, provides low-level
cryptographic primitives that required in-depth knowledge of cryptographic concept in order to
be used safely (Python Cryptographic Authority 2013).

2.5.2 Tornado Framework

Tornado is a Python web framework and asynchronous network library (Tornado 2018) that
unlike the other frameworks is not based on WSGI. The web framework provides its own inter-
faces and HTTP server, and through the use of non-blocking network I/O, has the capability of
scaling to thousands of open connections.

The libraries provide many different components, including synchronous and asynchronous
client and server-side implementations of HTTP and a co-routine library that makes the task of
writing asynchronous code easier by avoiding callbacks among other components.

2.6 TELEGRAM

Telegram is an instant message platform that enables users to communicate securely by pro-
viding a service with end-to-end encryption. Besides the communication between users, the sys-
tem also offers two APIs: The Telegram API, enabling users to develop customized Telegram
clients and the Bot API, that provides a way for connecting bots to the system (Telegram 2018).

2.6.1 Telegram Bot

The official Telegram clients and the Bots API offer ways to enhance the user experience, by
adding customized buttons to the screen and providing a command listing in the chat window,
making it a very useful tool for building simple user interfaces.

Using the Telegram Bot API a code running on a third-party machine can be connected to
the Telegram network using the HTTP protocol instead of using the complex Telegram protocol,
enabling developers to provide customized applications to the Telegram users (Telegram 2018).

11

3 SOLUTION DESIGN

This chapter presents how each part of the system was implemented and the way they interact.
The procedures are described in a way that makes them repeatable, enabling similar systems to
be implemented.

First, a general explanation of the architecture will be given and later, the two main parts of
the system will be explained separately in two sections.

3.1 SYSTEM ARCHITECTURE

The architecture is composed of signing entities, which can be governmental institutions or
companies who issue identification documents, a phone application used for the signature vali-
dation and the DNS infrastructure. Figure 3.1 shows a diagram of the system components with a
single signing entity for simplicity. Each entity can have a signing server, responsible for message
signature and the QR Code generation and the DNS servers to provide the certificates for signa-
ture validation. A user, using his smartphone scans the QR Code using the camera, the phone
decodes the data and queries the DNS server to retrieve the certificate and validate the DNSSEC
authentication chain. It then validates the signature using the retrieved certificate and if valid,
presents the data to the user.

It is important to note that the message signing and the signature verification parts are loosely
coupled, meaning that one does not depend on the way the other is implemented, that way any
DNS server software can be used, as long as it presents the data in the formats specified.

The software part responsible for generating signatures and serving the certificates would
usually be under full control of the company implementing the system, while the signature verifi-
cation part, would not be under control of the company, for example, a user verifying the data in
the QR-Code using a software running on his phone. The main advantage of this implementation
is that no updates are needed to the verifying software if the company rolls out new signing keys.

3.2 MESSAGE SIGNING

This section describes how the message signing process works on the proposed mechanism,
including each of the required resources and operations and guidelines for their implementation.

12

Company

DNS ServersSigning Server

Data from QR Code

Blockchain
(Bitcoin Network) Blockchain

(Bitcoin Network)

Message

Figure 3.1: System Overview

3.2.1 Keys and Certificates

To assure the integrity of the message, the system relies on digital signatures generated using
asymmetric cryptography. Any of the available digital signature algorithms can be used, as long
as it is compatible with X.509 certificates containing the public key. To name a few examples,
Elliptic Curve Cryptography (ECC) (Polk et al. 2009), Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA) (Brown et al. 2010) and RSA (Housley,
Schaad and Kaliski 2005).

The system supports certificates issued by a Certificate Authority (CA) or self-signed certifi-
cates. As the proposed mechanism publishes the certificates on the DNS, the system relies on the
use of DNSSEC to guarantee the trustworthiness of the certificates published, meaning that a CA
chain of trust is not required for a certificate to be trusted.

In fact, the certificate issuer can be ignored, as the system considers that a certificate published
in a DNSSEC signed zone with a valid DNSSEC authentication chain is trustworthy.

3.2.2 Message Format

The main aspect of the design is that the data in the document, called message from now on,
can be digitally signed to have its integrity and authenticity guaranteed. The main goal was to
provide a flexible format that is machine and human readable at the same time, and still compact.

Two data formats were initially considered: Google Protocol Buffers (Buffers 2011) and
JavaScript Object Notation (JSON).

13

Google states that "protocol buffers are a language-neutral, platform-neutral extensible mech-
anism for serializing structured data", similar to "XML, but smaller, faster, and simpler" (Buffers
2011). The problem with the protocol buffers is that changes to the data format might implies in
a need to recompile application code. On top of that, protocol buffers are not human-readable,
making it a bad fit for the design requirements.

On the other hand, JSON is human-readable data-interchange format that is easily parsed
and generated by machines (Bray 2014). As JSON uses universal data structures, a message
can be generated with one programming language and parsed with another, contributing to the
uncoupling between the signing part and verifying part and if parsed in the right way, does not
need to have all the fields previously specified, making it flexible.

Because of the facts exposed above, JSON was the chosen message format for the proposed
mechanism.

The proposed format for the message is very flexible. It can contain a virtually unlimited
amount of fields, with their names chosen by the entity implementing it. An example of how a
message would look like can be seen in Figure 3.2.

Figure 3.2: Example Message

The message object needs two mandatory values: _root and _id, representing the DNS root
and the key identifier, respectively. These fields indicate where to find the certificate needed for
signature validation meaning that the validating application still need a way to map the value in
the _root to the corresponding DNS zone, to fetch the certificate, enabling the signing entity to
roll out new keys without the need of updating the validating application to include the new keys.

The rest of the message fields should be named as they would appear for a user validating a
message signature. Other hidden fields to be used by the validating application can be added by
prepending an underscore (_) character to their names.

14

3.2.3 Trusted Timestamping

One of the problems found during the initial phase of this project, was the lack of a secure and
efficient way to provide a timestamp to the signed message. It is important to have a timestamp
because otherwise the signature will always be considered invalid if verified after the certificate
expired, even if the signature was done before the expiration date.

RFC 3161 specifies a service (through a Time Stamping Authority) that proves that a certain
data existed at a particular time, through the use of timestamp tokens (Zuccherato et al. 2001).
The problem with this approach, is that the generated timestamp token is lengthy, thus making it
hard to fit in a small QR Code, and has a complex to be obtained. Another point, is that the TSA
system is centralized, making the the integrity of the timestamping process bound to the integrity
of the TSA (Gipp, Meuschke and Gernandt 2015).

In order to overcome this obstacle, a system capable of providing a trusted timestamp with the
minimal length possible was needed.

In (Clark and Essex 2012), the authors talk about a method to use cryptocurrencies as a de-
centralized trusted timestamping service. Based off of that work, (Gipp, Meuschke and Gernandt
2015) shows a method specific for the Bitcoin network, that generates an aggregated hash and can
fit multiple message hashes into a single Bitcoin transaction.

For the sake of simplicity, the method used in this solution is a simpler version of the one
mentioned above.

Before a new message signature is generated, the SHA-256 hash of the message is calculated
and included in a transaction output containing an OP_RETURN opcode. After the transaction is
created and broadcast to the network, the Transaction ID (TXID) is obtained and can be used to
retrieve the transaction from the network, thus allowing the retrieval of the information about the
block that contains the transaction, including its timestamp.

To be able to separate the TXID and message properly, a 0x1E ASCII character is inserted
between them. This is a non-printable character, making it very easy to distinguish from the
contents of the message or TXID, as they are both comprised of ASCII printable characters. The
resulting set of data after this step, consists of message + 0x1E + TXID.

This set of data is now ready to be digitally signed, as described in Section 3.2.4.

3.2.4 Message Signature

After the timestamping process, the resulting data set (message + 0x1E + TXID) needs to
be digitally signed. The private key used for this signature, is the one generated in the process
explained in Section 3.2.1.

15

The signature algorithm needs to be the one provided by the type of certificate chosen before,
adopting the best practices described in the standards, for example, the use of a Mask Generation
Function and Padding for the RSA algorithm.

The signature is generated by taking the message + 0x1E + TXID as input data. The resulting
binary signature is then Base64 encoded and appended to the input data using the 0x1F character
as a separator.

The reason for encoding the signature in Base64 is to make sure that the signature only con-
tains printable ASCII characters, enabling us to separate the data using the non-printable ASCII
characters 0x1E and 0x1F. If we did not apply the Base64 encoding, the signature could contain
a 0x1E or 0x1F byte and make it impossible to split the data correctly.

Message

H

Private Key

Digest

Message

TXID

Signature

Blockchain
(Bitcoin Network)

Message

TXID

H

Digest

Figure 3.3: Message signing process.

The resulting data from the process shown in Figure 3.3 is now ready to be encoded in a QR
Code.

3.2.5 QR-Code Generation

To enable the data to be machine readable, the final result (message + 0x1E + TXID + 0x1F +
signature) is included in a QR-Code. The resulting size of the final data, is dependant on the size
of the message and the digital signature algorithm, as the size of the Bitcoin TXID is fixed.

For example, when using RSA with a 2048-bit key, the produced signature is 256 bytes long
and after the Base64 encoding, which has a 4:3 ratio (Josefsson 2006), will result in a 344 char-
acters string. We then include the Bitcoin TXID, which has 64 characters and sums up to 408
characters of data, leaving enough space for up to 2545 bytes for the message, if we consider
each character having 1 byte.

16

The QR Code mode chosen for storage, was the binary mode. The reason for choosing it over
the alphanumerical mode is because as explained in Chapter 2, the alphanumerical mode has a
gain in data capacity of approximately 45% in relation to binary mode, but it only supports part
of the ASCII character table, which does not include the brackets and colon used in the JSON
message object. One possible solution for this problem, is to encode all the data using Base32,
which meets the character requirements of the alphanumerical mode but has an overhead of about
60% (Josefsson 2006), making the final liquid gain around -15%.

Table 3.1: QR Code modes characteristics. [Adapted from (Soon 2008)]

Mode Capacity
Alphanumerical 4,296 characters at maximum
Binary (8 bit) 2,953 characters at maximum

Table 3.2: Encoding characteristics.

Encoding Ratio Overhead
Base 32 8:3 62.5%
Base 64 4:3 25%

It is worth mentioning that the availability of the total theoretical capacity depends strongly
on the physical size of the QR-Code. For example, if we end up with a QR-Code that is the size
of a Letter page, it will be impossible to print it in a driver’s license.

3.3 SIGNATURE VERIFICATION

This section describes how the signature verification process works on the proposed mecha-
nism, including each of the required resources and operations and guidelines for their implemen-
tation.

3.3.1 DNS

The main advantage of the system is being able to roll out new keys for signature without the
need of updating the verifying application. To achieve this characteristic, the public keys used for
signature validation are made publicly available using the DNS system. This has some special
requirements, like the use of DNSSEC and the preparation of the certificates to be published in a
specific format.

An entity wishing to implement this system could use its existing DNS infrastructure, includ-
ing the zone, as long as it meets the listed requirements, but a separate child zone helps organize
the information and helps with security by using different keys from the main parent zone.

17

3.3.1.1 DNSSEC

In order to serve the zone containing the certificates in a secure manner, DNSSEC must be
enabled and correctly setup. That means generating the DNSSEC Zone Signing Key (ZSK) and
Key Signing Key (KSK), including the DS records in the parent zone to establish the trust rela-
tionship and include the public keys in the zone file, in the form of DNSKEY resource records,
matching the DS records in the parent zone.

After generating the keys, the private keys are used to sign the zone. This operation generates
the digital signatures for each set of Resource Records (RRs) and include them as RRSIG records,
making the zone ready to be served in a secure manner.

3.3.1.2 Certificates on the DNS

Now that the data in the zone is served in a secure manner, the entity can proceed to include
the RRs containing the certificates used for signature validation.

The best choice to make the certificates publicly available was through the use of the CERT
RRs. Although DANE could be used to meet this requirement, the TLSA and SMIMEA RRs
have specific purposes that differ from what is intended here. That way, they were dropped in
favor of CERT, that has a more generic purpose.

(Josefsson 2006) discusses appropriate owner names for the certificates but only as a recom-
mendation. In order to make the JSON message the smallest possible, a small integer number is
used as an ID for the certificate. This same owner name is found in the _id field of the JSON
message.

The use of small numbers in the _id field helps to keep a key history in an environment where
an entity would roll out new keys every two days in order to minimize losses in case of key
compromise (only two days worth of signatures are lost if a certificate gets revoked).

The creation of the CERT RR involves defining a certificate type, in this case type 1, PKIX,
calculating the key tag as documented in (Rose et al. 2005) Appendix B, setting the algorithm
type and finally encoding the certificate contents in Base64. An example entry is shown in Listing
3

After including all CERT RRs in the zone and generating the DNSSEC signatures, the zone is
ready to be published.

3.3.2 Signature Validation

The signature verification process consists in standard steps. Decode the generated QR Code,
query the DNS servers for the certificate, validate the signature, query the Bitcoin blockchain for
the timestamp and finally check if the timestamp correspond to a day in between the certificate
validity period.

18

That means that the verification system can be implemented in a variety of ways, be it a
desktop application, a mobile phone app or even an online webpage.

An overview of the validation process can be seen on Figurue 3.4.

H

DNS
Server

YesSignature is
valid?

Data is authentic
Present data to user

Blockchain

Certificate

Yes

Timestamp
is valid?

Digest

Digest

Message

TXID

Signature

Yes

Hashes
are

equal?

Message

TXID H

Digest

Figure 3.4: Signature Validation Process.

3.3.2.1 QR Code Decoding

The verification process starts by decoding the QR Code provided to the system and splitting
the data using the 0x1E and 0x1F delimiters. With the data split, the system proceeds to retrieve
the certificates from the DNS.

3.3.2.2 Fetching Certificates from the DNS

To fetch the certificates from the DNS, the system needs to know the owner name and zone
associated with it. The owner name comes from the _id of the message, while the zone, is mapped
to previously known values using the _root field, meaning that the only information that the
validating party needs to know beforehand is how to map the value contained in the _root field to
a DNS zone.

The mapped DNS zone is prepended with the information from the _id field and then used to
query the DNS infrastructure for the certificate used.

19

The reason for using a dictionary mapping for the _root field instead of simply including
the full domain straight away, is that an attacker could simply reproduce the same mechanism
structure designed here and craft tampered messages that contains his domain in the _root field,
essentially making the system recognize that information as valid, when it should not be.

During the process of querying for the certificate, the system must validate the DNSSEC
authentication chain, either by validating it on each DNS level or by using a validating resolver.

If the DNSSEC authentication chain is deemed valid, the application proceeds to the next step,
otherwise it ends the process and informs the user that the signature could not be verified. The
whole DNSSEC authentication chain must be valid to guarantee that the returned certificates were
not tampered with or forged by an attacker.

3.3.2.3 Validating the Signature

The signature validation process start by splitting the message + TXID from the signature by
looking for the 0x1F character. The signature is then decoded from Base64 to binary format and
verified against the message + TXID by using the procedure specified by the chosen algorithm.

Even if the signature is properly validated at this point, the application still needs to check
if the signature was generated during the certificate validity period. If the signature cannot be
validated, the user is informed and the process is terminated.

3.3.3 Timestamp Validation

To validate the timestamp, the application gets the message + TXID and split it using the
0x1E character, as explained in 3.2.4. The result of this operation is the message and the ID of the
Bitcoin transaction (TXID) containing the message digest in the output that has the OP_RETURN
opcode.

Using the TXID, the application queries the Bitcoin network for the transaction, with the most
important data retrieved being the number of confirmations, outputs, timestamp and hash of the
first block that included the transaction. If for any reason the transaction cannot be retrieved from
the network or it does not have enough confirmations, the user is informed and the process is
terminated.

The aforementioned block timestamp denotes the moment that the first block containing this
transaction was broadcast to the network, proving that the data that has the SHA-256 hash stored
through the OP_RETURN opcode existed at that time. Using that timestamp, the validating party
can verify if the message was signed in between the certificate validity period (after the notBefore
date and before the notAfter date) (Boeyen et al. 2008) and finally make a decision about the
validity of the signature.

20

If the signature was generated outside of the certificate validity period, it is considered invalid
and the user should be informed.

3.3.4 Presenting the Data to the User

The final step after completing the signature and timestamp validation is to present the data
to the user. If the final decision about the signature considers it invalid, an error message should
be presented to the user informing that the signature could not be validated and no data should be
presented to him.

If all the validation steps are successful and the signature is considered valid, a success mes-
sage is presented to the user, together with the data contained in the JSON message. Because of
the way the message was designed, to present the data to the user the validating application can
simply output the key-value pairs, using the key as the field name, followed by the value except
for the fields that have keys starting with an underscore. These are the supporting fields, like _root
and _id and do not have to be shown.

21

4 PROOF OF CONCEPT

4.1 OVERVIEW

This chapter will present how each part of the system is implemented in the proof of con-
cept and explain how they interact with each other. The diagram in Figure 4.1 shows a general
overview of the components and their interactions, which will be detailed in the following sec-
tions.

ns2.luiz.eng.br

Data from QR Code

Blockchain
(Bitcoin Network)

ns1.luiz.eng.br

Telegram APIsWeb Server

Message

Figure 4.1: System components overview [Source: Author]

In order to validate the system features, two example companies will be used throughout the
proof of concept: Acme and Globex.

4.2 DNS SYSTEM

The certificates containing the public keys used for signature validation are published using
the DNS system. The details about how this proof of concept implements the DNS system are
given in the following subsections.

22

4.2.1 DNS Servers

The proof of concept uses two DNS servers in a master-slave configuration, named ns1.luiz.eng.br
and ns2.luiz.eng.br. The servers are two virtual machines running Ubuntu 16.04 and the open
source DNS software BIND version 9.10.

For each example company a zone was created and published in both servers: acme.luiz.eng.br
and globex.luiz.eng.br, having the certificates for each company published under the correspond-
ing zone.

Although in this proof of concept both companies share the same DNS infrastructure, in a real
world scenario each company would use its own DNS infrastructure.

4.2.2 DNSSEC

In order to serve the zones in a secure manner, DNSSEC was implemented in both zones using
RSA keys. First a Key Signing Key (KSK) 4096 bits long was created and then a Zone Signing
Key (ZSK) 2048 bits long, using the commands shown in Listing 4.1, where $ZONE was replaced
with each of the zone names. The chosen algorithm for the keys was the RSASHA256, meaning
that the signatures will use RSA with a SHA-256 hash function and support NSEC3. SHA-256
was chosen as it is recommended by the NIST in (FIPS 2015) and the use of NSEC3 prevents the
ability to perfom DNSSEC zone walking, as recommended by NIST in (NIST 2013).

Listing 4.1: Commands to generate the DNSSEC keys [Source: Author]

1 dnssec-keygen -f KSK -a RSASHA256 -b 4096 -n ZONE $ZONE

2 dnssec-keygen -a RSASHA256 -b 2048 -n ZONE $ZONE

The execution of the above commands for key creation results in 4 files: 2 for the private keys,
2 for the public keys. The private keys are contained in files with the .private extension, while the
public keys are contained in files with the .key extension.

The files containing the public keys, which are simply DNSKEY RRs matching the DS records
in the parent zone, were included in the child zone through the use of the "$INCLUDE <file>"
directive. Finally, the private keys were used to sign the zone, generating the digital signatures
for each set of Resource Records (RRs) and include them as RRSIG records.

The signature process can be done automatically using the command shown in Listing 4.2.
To make the process even easier when building the proof of concept, a more elaborated script
that incremented the zone serial and generated the signatures was used. The script can be seen in
Listing 2.

Listing 4.2: Command used to generate zone signatures [Source: (DigitalOcean 2016)]

23

1 /usr/local/sbin/dnssec-signzone -A -3 $(head -c 1000 /dev/urandom | sha1sum | cut -b 1-16) -N

↪→ increment -o $ZONE -t $ZONEFILE

The dnssec-signzone command generates the DNSSEC signatures and the Delegation Signer
(DS) records in a file called dsset-<zonename>. These records were added to the parent zone, in
order to establish the DNSSEC authentication chain.

4.2.3 Publishing the Certificates

With the DNSSEC in place and the zone being served in a secure manner, the RRs containing
the certificates used for signature validation can be published in the zone.

To make the certificates publicly available, they were published in the zones under CERT RRs.
The owner names are formed using the specification described in Subsection 3.3.1.2.

In this proof of concept, the generated certificates were published as described in Section 4.3,
following the guidelines previously mentioned.

The generation of the CERT RR involves obtaining the key tag, algorithm and certificate
contents. To make the task easier, a Python script (1) was created to automate the process. The
script is executed and receives the certificate file and owner name as arguments and returns a
CERT RR in the correct format to be published in the BIND zone file.

When executed, the script loads the certificate file and serializes the public key in the PEM
and DER format. It then calculates the key tag using the dnspython module, obtains the certificate
algorithm identifier using the Hazmat layer functions (as specified in (IANA 2017)), strips off the
certificate delimiters from the PEM encoded data and finally, it prints the resulting CERT RR.

An example containing one of the certificates published in the acme.luiz.eng.br zone can be
seen in Listing 3.

4.3 KEYS AND CERTIFICATES GENERATION

As explained in Chapter 3, the system can support many digital signature algorithms. The
chosen algorithm for the proof of concept was RSA, because of its widely available documenta-
tion.

The chosen private key size was 2048-bit the minimum required key size established by NIST
(NIST 2015). All of the used certificates are self-signed and were created using OpenSSL. The
use of self-signed certificates is possible if used in conjunction with DNSSEC. It guarantees the
security and trustworthiness of these certificates, enabling the entity implementing it to replace
the use of trusted CAs (Dukhovni and Hardaker 2015).

24

An example OpenSSL command used to generate some of the certificates is shown in Listing
4.3. This command will generate a self-signed certificate with a 2048-bit private key and the
certificate will be valid for 730 days. The details for the certificate, like common name, state, etc.
will be asked to be filled during the process.

Listing 4.3: OpenSSL command to generate self-signed certificates [Source: Author]

1 openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 730

The above command will produce two files: cert.pem, containing the certificate and key.pem,
containing the private key.

For the Acme company, one certificate with 1 year of validity was issued and published in the
DNS zone under the record 1.acme.luiz.eng.br, another certificate with 5 days of validity was is-
sued but not published, followed by a certificate yet to be valid published under 3.acme.luiz.eng.br
and finally an expired certificate published under 4.acme.luiz.eng.br.

For the Globex company, a single certificate with 365 days of validity was issued and pub-
lished in the DNS zone under the record 1.globex.luiz.eng.br.

The certificates were issued with big validity periods in order to make the evaluation of the
system as presented in Chapter 5 easier. In a real world scenario, certificates with only a few days
of validity should be used, so that in case of key revocation, the entity does not lose a year worth
of signed documents, for example.

4.4 WEB APIS

To make it easier to sign information, generate QR codes and retrieve timestamps with a Trans-
action ID (TXID), two Web APIs were implemented under the address https://tcc.luiz.eng.br/api/.
The APIs handle all the complicated operations on the background, exposing endpoints that pro-
vides a simpler interaction using HTTP GET and POST requests.

Many API frameworks written in different programming languages are available. The Tornado
framework was the chosen one because it is easy to implement and the author had previous expe-
rience with it. On top of that, Python provides a nice package, called Cryptography, to implement
all the cryptographic operations that were needed.

4.5 MESSAGE SIGNING

This section describes in detail all the components involved in the process of signing a mes-
sage. Each subsection will describe the details behind the components implementations.

25

Web APIs

Message
HTTP POST /sign

Figure 4.2: Message Signature Generation Process

Figure 4.2 shows the steps to generate a message signature. The diagram contained in the
circle is the one shown in Figure 3.3.

4.5.1 Signing API

The Signing API has a single endpoint, called /sign. This endpoint is responsible for receiving
a message and returning a QR Code containing the message, transaction ID and digital signature.

When a message needs to be signed, an HTTP POST request is issued to the /sign endpoint
with the message complying with the format specified in 3.2.2 contained in the request body.
When the server receives the request, it starts the signature process, performing all the required
operations: checking the message for required fields, obtaining a timestamp, generating the sig-
nature and encoding the data in the QR Code. The resulting QR Code is returned to the client in
the response body.

The operations performed by this API will be explained in details in the following subsections
and a working example is available in the appendix under Section I.3.

4.5.2 Message Format

The implemented proof of concept uses the message format explained in Subsection 3.2.2. No
changes were made to it.

26

4.5.3 Trusted Timestamping

When the Signing API receives a request containing a message to be signed, the first step is to
calculate the SHA-256 hash of the received message. After, a Bitcoin transaction is created and
an output containing the OP_RETURN opcode and the encoded hash is included. The transaction
is then signed using the signrawtransaction Bitcoin JSON-RPC command and then sent to the
network using the sendrawtransaction command.

The sendrawtransaction command sends the transaction to the network and returns the Trans-
action ID (TXID) that can be later used to retrieve the transaction from the network, allowing the
retrieval of the information about the block that contains the transaction, including its timestamp.

To be able to separate the TXID and message properly when verifying the signature, a 0x1E
ASCII character is inserted between them. This is a non-printable ASCII character, making it
very easy to distinguish from the contents of the message or the TXID. The resulting set of data
after this step, consists of message + 0x1E + TXID, as shown in Listing 4.4, and is ready to be
signed.

Although the "+" signs are shown on the Listing 4.4, they are not included in the data. They
are only used in the example to clearly show the separator used.

Listing 4.4: Data before signature

1 {"_id": 1, "_root": "acme", "Name": "Paul"} + 0x1E +

2 10eda5106d6c6ea3ba1514c5692070c6780193f8de0cd87d97fc5571fb0c966c

If for any reason the mentioned steps cannot be performed with success, the API will return
an HTTP 400 error and a JSON message in the body containing the key status with the value
error and the key message with the returned error message from the Bitcoin JSON-RPC interface
as the value.

4.5.4 Digital Signature

The Python Cryptography module (Python Cryptographic Authority 2013) is used as a tool
to deal with all the cryptographic operations, specially its Hazardous Materials Layer (Hazmat).
The Hazmat layer of the module consists of functions specially designed to deal directly with
cryptographic operations involving encryption and signatures. In this implementation, the RSA
functions were used to import the private keys and generate the signatures.

When generating the signatures, the system uses MGF1 (Kaliski and Staddon 1998) as a Mask
Generating Function, Probabilistic Signature Scheme (PSS) (Moriarty et al. 2016) as a padding
algorithm and SHA-512 as a hash function. The reason for choosing these options is because they
are the ones used in the module examples (Python Cryptographic Authority 2013) and also meet
some of the recommendations established by NIST in the SP800-57 Part 3 Rev. 1 (NIST 2015).

27

With the data (message + 0x1E + TXID) ready to be signed, the API loads the appropriate
private key, instantiates a signer object and generates the signature. The resulting signature is
then encoded in Base64 and appended to the data using the 0x1F separator. This results in a set
of data comprised of message + 0x1E + TXID + 0x1F + Base64 encoded signature.

4.5.5 QR Code generation

After receiving the final data (message + 0x1E + TXID + 0x1F + Encoded Signature) from the
previous steps, the application generates the QR Code using the parameters specified in Section
3.2.5. The solution design, did not specify an error correction level. To have the maximum
amount of space available for data and because there is no reason for the QR Codes in this proof
of concept to be damaged or dirty, the level L was chosen.

To avoid rework, the QR Codes in this proof of concept were generated using the python-
qrcode module (Lincolnloop 2018). This module provides a pure Python implementation based
on the Pillow imaging library for Python (Pillow: the friendly PIL fork 2018).

In this proof of concept implementation a specific function, shown in Listing 4.5, was created,
receiving the final data as an argument and returning a PNG image of the QR Code.

Listing 4.5: QR Code generation function

1 def generate_signature_qrcode(data):

2 outfile = BytesIO()

3 try:

4 qr = qrcode.QRCode(

5 version=None,

6 error_correction=qrcode.constants.ERROR_CORRECT_L,

7 box_size=2,

8 border=4,

9)

10 qr.add_data(data)

11 qr.make(fit=True)

12 im = qr.make_image()

13 im.save(outfile, "PNG")

14 except Exception as e:

15 logging.warning('Error when generating the QR-Code')

16 logging.exception('%s', e)

17
18 return outfile.getvalue()

The resulting PNG image is then returned by the API in the body of the HTTP response.

28

4.6 SIGNATURE VERIFICATION

The signature verification process consists of simple steps. The system decodes the generated
QR Code, splits the data, queries the DNS servers for the certificate, validates the RSA signature,
queries the Bitcoin network for the timestamp and finally checks if the timestamp correspond to
a day in between the certificate validity period.

A diagram showing the complete process can be seen in Figure 4.3.

Telegram APIs

Data from QR Code

Web Server

ns2.luiz.eng.brns1.luiz.eng.br

Blockchain
(Bitcoin Network)

User

Figure 4.3: Signature verification process.

4.6.1 Telegram Bot

To make the proof of concept implementation simpler and easier, the user interface was im-
plemented using a Telegram Bot instead of a native Android application, as the Telegram Bot
already offers a nice UI and no effort needs to be spent towards UI implementation. The first step
was to create a new bot on the platform and obtain the API keys.

That was done by starting a conversation with the BotFather (@BotFather) and using the
command /newbot. The BotFather will ask a name and username for the bot and will return the
API key. An example of the conversation is shown in Figure 4.4.

The bot backend was implemented in Python using the pyTelegramBotAPI (Eternnoir 2018)
module and the behavior is defined by the finite state machine shown in Figure 4.5.

29

Figure 4.4: BotFather bot creation demo.

When a user needs to validate a signature, it starts a conversation with the bot by sending a
message containing the command "/start". The bot will ask for a picture containing the QR Code
to be validated.

4.6.1.1 Decoding the QR Code

When the user sends a picture of the QR-Code, the backend uses the ZBarlight module (Poly-
conseil 2018), a wrapper for the ZBar library (ZBar 2010), to decode the QR-Code and return the
data contained in it.

It then splits the data as explained in 3.2.4 and proceeds to fetch the certificate from the DNS
to validate the signature.

4.6.1.2 Fetching the Certificate from the DNS

To fetch the certificate from the DNS, the bot obtains the _id and _root fields from the mes-
sage. To build the complete name for the DNS record, the field _root is mapped to the zone name
using an existing table by the bot and the field _id is prepended to the zone, forming the complete
name.

30

Got /info

Got /start

Waiting for
command

Print bot
information

Picture
received

Request
picture

No picture
received

Valid
QR Code

Decode
QR Code

Certificate fetched
successfully

Unable to
fetch certificate

Fetch
certificate

Transaction fetched
successfully

Unable to
fetch transaction

/
Invalid transaction

Fetch
transaction

Valid
Signature

Invalid
signature

Validate
signature

Present data
to the user

Invalid
QR Code

Return error
message to

the user

Start

Figure 4.5: Telegram Bot finite state machine.

With the name formed, the bot issues a query for a CERT record to the DNS and after suc-
cessful retrieval of the DNS record containing the certificate, it proceeds to validate the DNSSEC
authentication chain by querying the DNSSEC related records (RRSIG, DNSKEY and DS) for
each of the parent zones all the way up to the root. It then uses that data to check the DNSSEC
signatures and establish the validity of the authentication chain.

4.6.1.3 Validating the Signature

With the corresponding certificate retrieved, the next step is the signature validation. The
signature is decoded to binary and the Hazmat layer functions are used to load the certificate
and instantiate a verifier object. The signature and message + 0x1E + TXID are provided to the
verifier and validated.

31

If the signature is deemed valid at this point, the timestamp still needs to be fetch and verified
to ensure that the message was signed in between the certificate validity period (notBefore and
notAfter) (Boeyen et al. 2008) and a final decision be made.

This process will be described in the next section.

4.6.1.4 Validating the Timestamp

Using the TXID obtained in the first step, the bot sends a request to the Timestamp API and
gets a response with the required information, as will be explained in Subsection 4.6.2. The
response contains the block timestamp that denotes the moment that this transaction was included
in a block and thus, was recognized by the network, proving that the data that has the SHA-256
hash contained in the OP_RETURN opcode existed at that time.

The bot calculates the SHA-256 hash of the message and compares to the one contained in the
OP_RETURN opcode. If the hashes match, it means that the transaction information applies to
the message and validation can proceed. Using the mentioned timestamp, the bot can verify if the
message was signed in between the certificate validity period (after the notBefore date and before
the notAfter date) and finally make a decision about the validity of the signature.

4.6.1.5 Presenting the Data to the User

The final step is to present the result to the user. If any of the steps deems the signature invalid
or for any reason the required components for validation cannot be obtained, no data from the
message is returned to the user. The only information the user will receive is that the bot could
not validate the signature. An example is shown in Figure 4.6.

Figure 4.6: Bot message after invalid signature.

If the signature is verified and deemed valid by the bot, the fields starting with an underscore
are stripped from the JSON message and all other fields and their respective data are returned to
the user in a proper format, as show in Figure 4.7.

4.6.2 Timestamp API

To make the retrieval of timestamps from the Bitcoin Network easier, a specific API was im-
plemented to provide a simple HTTP interface to make the timestamp retrieval operation, instead
of exposing the full JSON-RPC interface of the Bitcoin Core client.

32

Figure 4.7: Bot message after valid signature.

When a user makes an HTTP GET request to the /stamp endpoint of the API including the
txid parameter containing a valid transaction ID, the Tornado process issues a getrawtransaction
JSON-RPC command to the Bitcoin Core client and parses the response, similar to the example
shown in Listing 4.6.

Listing 4.6: Bitcoin Core JSON-RPC response for a published transaction

1 {

2 "confirmations": 2687,

3 "vin": [{

4 "txinwitness": ["30440220248ad6d087cae918cbb062173999ca90a289b14fedd92edb892c8a3b019c

↪→ 303102205bca1cc54ea6d83352f2405f949506fd519b8e1dc25d6faa73c5bcfe9c7c81a101", "

↪→ 03d84418a33cd13e473f616b9c6a42037aa3a0cf9d09e06533ac2f7c6f0b1beee5"],

5 "scriptSig": {

6 "asm": "0014c0c49f665d0f9c140d248e80abb941ada836b59b",

7 "hex": "160014c0c49f665d0f9c140d248e80abb941ada836b59b"

8 },

9 "sequence": 4294967295,

10 "vout": 0,

11 "txid": "64f1dedaed3c0d90f10e052a38fe50705637e5cb73ab1d5a6c95bc707271db1c"

12 }],

13 "blockhash": "00000000000002aa4cf25115e3d933d0d57952f1129a6a53ac2e1bd70537dfcc",

14 "vsize": 209,

15 "version": 2,

16 "blocktime": 1524365641,

17 "size": 290,

18 "vout": [{

19 "scriptPubKey": {

20 "type": "scripthash",

21 "addresses": ["2MtPyBqH8rtER6ppWzdWnGyT2kJgWpqE989"],

22 "asm": "OP_HASH160 0c9f83a89d181247534e1f121ea0d9be2f94dc64 OP_EQUAL",

23 "reqSigs": 1,

24 "hex": "a9140c9f83a89d181247534e1f121ea0d9be2f94dc6487"

25 },

26 "n": 0,

27 "value": 0.0

28 }, {

29 "scriptPubKey": {

30 "type": "scripthash",

31 "addresses": ["2N4uWHiXdcRs7CLhne3v9Ymi7qD7LYrL8sa"],

32 "asm": "OP_HASH160 7fe6cc15202b00ce6b2a92862eea85ddb72d0ca9 OP_EQUAL",

33 "reqSigs": 1,

33

34 "hex": "a9147fe6cc15202b00ce6b2a92862eea85ddb72d0ca987"

35 },

36 "n": 1,

37 "value": 0.8999

38 }, {

39 "scriptPubKey": {

40 "type": "nulldata",

41 "asm": "OP_RETURN 6ad2ada45e682fc1836d299e12ffd7b229c1b01f71afe617c73e3372d54ecf9

↪→ c",

42 "hex": "6a206ad2ada45e682fc1836d299e12ffd7b229c1b01f71afe617c73e3372d54ecf9c"

43 },

44 "n": 2,

45 "value": 0.0

46 }],

47 "txid": "10eda5106d6c6ea3ba1514c5692070c6780193f8de0cd87d97fc5571fb0c966c",

48 "hash": "8650794e4614f308c9071d827ac063ebe2cb4732b28b5251fe9929ad2507470e",

49 "locktime": 0,

50 "time": 1524365641,

51 "hex": "020000000001011cdb717270bc956c5a1dab73cbe537567050fe382a050ef1900d3ceddadef164000

↪→ 0000017160014c0c49f665d0f9c140d248e80abb941ada836b59bffffffff03000000000000000017a

↪→ 9140c9f83a89d181247534e1f121ea0d9be2f94dc648770235d050000000017a9147fe6cc15202b00

↪→ ce6b2a92862eea85ddb72d0ca9870000000000000000226a206ad2ada45e682fc1836d299e12ffd7b2

↪→ 29c1b01f71afe617c73e3372d54ecf9c024730440220248ad6d087cae918cbb062173999ca90a289b1

↪→ 4fedd92edb892c8a3b019c303102205bca1cc54ea6d83352f2405f949506fd519b8e1dc25d6faa73c5

↪→ bcfe9c7c81a1012103d84418a33cd13e473f616b9c6a42037aa3a0cf9d09e06533ac2f7c6f0b1beee5

↪→ 00000000"

52 }

The API parses this response and if it has more than 6 confirmations, the OP_RETURN op-
code with a valid SHA-256 hash included in the output, returns only the relevant fields, as shown
in Listing 4.7.

Listing 4.7: API JSON response for a valid transaction

1 {

2 "txid": "10eda5106d6c6ea3ba1514c5692070c6780193f8de0cd87d97fc5571fb0c966c",

3 "hash": "6ad2ada45e682fc1836d299e12ffd7b229c1b01f71afe617c73e3372d54ecf9c",

4 "blocktime": 1524365641,

5 "blockhash": "00000000000002aa4cf25115e3d933d0d57952f1129a6a53ac2e1bd70537dfcc",

6 "status": "OK",

7 "confirmations": 2687

8 }

The fields are, the transaction ID on line 2, the hash of the message that was embedded using
the OP_RETURN opcode on line 3, the timestamp denoting the instant that the block was mined
on line 4, the hash of the block online 5, the API reponse status on line 6 and the number of
confirmations for the transaction on line 7.

One possible case, is if an existing transaction is provided but containing no OP_RETURN
opcode in the outputs. In that case, the API returns an HTTP 400 error containing the message in
Listing 4.8:

34

Listing 4.8: API JSON response for a transaction without the OP_RETURN opcode

1 {

2 "info": "tx has no valid OP_RETURN",

3 "code": "-4",

4 "status": "error"

5 }

Another case, is to have a valid unconfirmed transaction (less than 6 confirmations). In that
case, the API returns the message shown in Listing 4.9.

Listing 4.9: API JSON response for an unconfirmed transaction

1 {

2 "info": "tx has not been confirmed yet",

3 "code": "-3",

4 "status": "error"

5 }

If the transaction ID is not found on the network, the Bitcoin Core client will return an HTTP
500 error with the JSON message shown in Listing 4.10. The API endpoint will then return an
HTTP 404 error with the JSON response shown in Listing 4.11.

Listing 4.10: Bitcoin Core JSON response for an inexistent transaction

1 {

2 "result": null,

3 "error": {

4 "code": -5,

5 "message": "No such mempool or blockchain transaction. Use gettransaction for wallet

↪→ transactions."

6 },

7 "id": "1525385300.7972455-124878"

8 }

Listing 4.11: JSON response for transaction not published

1 {

2 "info": "tx not found",

3 "code": -2

4 "status": "error"

5 }

35

5 RESULTS

This chapter will present all the steps taken to validate if the implemented proof of concept
meets all the expectations established for the mechanism described in Chapter 3.

5.1 DNSSEC AUTHENTICATION CHAIN

In Section 4.2.2 steps were taken to deploy DNSSEC in each of the DNS zones created in
the Proof of Concept. In order to correctly validate the features of the mechanism, one of the
zones (the globex.luiz.eng.br) did not have the DS RRs published in the parent zone, effectively
breaking the DNSSEC authentication chain. In the other hand, the acme.luiz.eng.br zone was
setup a full authentication chain.

To properly evaluate the DNSSEC configuration of the zones, the DNSSEC Analyzer tool
(Verisign Inc. 2011) from Verisign Labs was used. The tool validates the DNSSEC authentication
chain for a given zone and lists all the records used to establish the completeness of it, as shown
in Figure 5.1.

in Figure 5.1, we can verify that each of the zones from the root (.) to the acme.luiz.eng.br
had proper DNSSEC signatures and corresponding DS RRs on their respective parent zones.

Figure 5.1: DNSSEC authentication chain for the acme.luiz.eng.br zone.

Figure 5.2 shows that the globex.luiz.eng.br zone itself contained DNSSEC signatures, but the
parent zone did not have the DS RRs making it impossible to establish the complete authentication
chain.

36

Figure 5.2: DNSSEC authentication chain for the globex.luiz.eng.br zone.

5.2 MECHANISM VALIDATION

With the DNSSEC in place and properly validated, the next step was to issue QR Codes to be
later used to validate the mechanism robustness.

During this step, many different QR Codes were generated, with specific characteristics used
to evaluate the resilience of the mechanism against different attacks, each aimed at testing the
security features of the mechanism in ways that an attacker would possibly do.

The example QR Codes shown in Figure 5.3, containing data from an example driver’s license,
were produced using the Web API implemented in Section 4.5.1 and the Python 3 interpreter in
interactive mode, along with some reused code from the Web API. After the QR Codes were
produced, they were used to test if the Telegram Bot would properly validate the untampered one
and return the data and alert the user when supplied with the tampered ones.

5.2.1 QR Codes Generation

Each of the QR Codes shown in Figure 5.3 contain different data, simulating different scenar-
ios, as shown on the list below:

(a) Untampered message, untampered TXID and untampered signature;

(b) Untampered message, tampered TXID and untampered signature;

(c) Untampered message, untampered TXID and tampered signature;

(d) Untampered message, untampered TXID and signature generated before certificate validity
period;

37

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: QR Codes used for system evaluation

(e) Untampered message, untampered TXID and signature generated after certificate validity
period;

(f) Tampered message, untampered TXID and untampered signature;

(g) Untampered message, untampered TXID, untampered signature but DNS zone with DNSSEC
problems;

(h) Untampered message, untampered TXID, untampered signature using an unpublished cer-
tificate;

(i) Untampered message, untampered TXID, untampered signature and an unknown zone;

(j) Untampered message, untampered TXID and untampered signature verified before transac-
tion confirmation;

38

Obtaining a digitally signed QR Code using the Web API consists of a simple HTTP POST
request containing the JSON formatted message in the body of the request. To issue the requests
in a simpler way, the Insomnia REST Client (Software 2018) was used and the request made to
obtain the QR Code of Figure 5.3 (a) is shown in Figure 5.4.

Figure 5.4: HTTP POST request to /sign endpoint using Insomnia.

5.2.2 Validation with the Telegram Bot

In order to test the bot behavior, each of the above QR Codes were validated through the bot.
The resulting messages returned by the bot were very descriptive and specific, to demonstrate the
bot resilience against each kind of attack. In a real world implementation, it would be done with
a simpler message informing that the signature could not be validated.

5.2.2.1 DNSSEC Authentication Chain validation

Part of the mechanism security relies on the use of DNSSEC. Section 4.6.1.2 talked about the
validation of the authentication chain in order to establish trustness on the data returned by the
DNS server.

Figure 5.5 contains a Wireshark (Wireshark 2018) packet capture of the network traffic be-
tween the bot and a DNS resolver, showing queries and responses for DNS records related to
DNSSEC used to validate the authentication chain.

39

Figure 5.5: Wireshark packet capture of the bot validating the DNSSEC authentication chain.

The implementation of the authentication chain validation used in the bot was heavily based
on the Electrum Bitcoin Client DNSSEC library (Electrum 2018), with modifications to make the
methods simpler and to add the DNS Checking Disabled (CD) flag to the queries.

5.2.2.2 Validating QR Codes with the bot

In order to test if the bot could properly validate the QR Code in all the proposed scenarios,
each QR Code was sent to the bot and the presented behavior was registered and compared with
what was expected.

Figure 5.6a shows the validation result of scenario (a) by the bot. The data displayed by the bot
is the data obtained from the JSON message encoded in the QR Code, as shown in Figure 5.6b.
The output shown was obtained by manually decoding the code using the Python Interactive Mode
and shows the JSON message, followed by a small square that represents the 0x1E character (the
square is a way to represent non-printable ASCII characters), the Bitcoin transaction ID, another
small square representing the 0x1F character and finally the digital signature encoded in Base64.

The QR Code in Figure 5.6a represented a scenario of a perfect use case, where no tampering
was tried.

40

(a) Bot output for scenario A (b) QR Code contents for scenario A

Figure 5.6: Bot output and QR Code contents for scenario A.

(a) Bot output for scenario B (b) Bot output for scenario C

Figure 5.7: Bot outputs for scenarios B and C

Scenario (b) is a QR Code that had its transaction ID tampered with. In this specific case, a
transaction ID for another set of data was appended to the message and then signed. Although it
is unlikely to happen, the intention of evaluating it was to show the robustness of the bot against
different kinds of attacks, including the one where an attacker in possession of the private key
corresponding to an expired certificate tried to sign a fake message. If he simply published a new
transaction in the Bitcoin network, the timestamp would not be in between the certificate validity
period. To surpass this problem, he could try including the transaction ID of another message
issued during the validity period of the certificate.

Figure 5.7a shows that the bot was able to detect that the digest of the message and the digest
contained in the transaction did not match and returned a message informing the user, frustrating
the attacker intentions.

41

Scenario (c) tests the case where an attacker has a valid message with its corresponding trans-
action ID but a signature that was taken from another QR Code and so, does not correspond to the
data. Figure 5.7b shows that the bot properly detected that the signature did not match the data
and informed the user.

Scenarios (d) and (e) were proposed in order to check if the bot would properly validate
the certificates validity period, where in scenario (d), the data was signed before the certificate
was valid and in scenario (e) the data was signed after the certificate had expired. The bot was
able to detect and inform the user in both cases by using the timestamp contained in the Bitcoin
transaction ID to establish the date of signature, as shown in Figures 5.8a and 5.8b.

Figure 5.9a shows the validity period of the certificate used in scenario d, starting in June of
2020 and ending in May of 2030 while Figure 5.9b shows information about the Bitcoin trans-
action, the most important one being the blocktime that denotes the timestamp that represent the
exact instant when the first block including this transaction was mined on the network. One detail
to note is that the txid and blockhash fields were truncated in the picture, making them appear
shorter than they really are.

To assure the date of signature, the bot relied on the fact that an attacker would need a lot of
computation power to alter any information already published and accepted by the nodes in the
Bitcoin network, as explained in Chapter 2.

(a) Bot output for scenario D (b) Bot output for scenario E

Figure 5.8: Bot outputs for scenarios D and E

Scenario (f) simulates the simplest attack case: an ill-intentioned person simply tried to alter
the information of the JSON message, in this specific case, the driver’s name. When changing the
data, the attacker not only invalidated the digital signature but also changed the message digest,
that now will not match the one contained in the Bitcoin transaction. Because of the way the bot
validates the data in the QR Code, it will alert the user that the signature could not be validated
against the message and will not proceed further and compare the message digests. Figure 5.10a
shows the bot response for this scenario.

42

(a) Certificate dates for scenario D (b) Timestamps for scenario D

(c) Certificate dates for scenario E (d) Timestamps for scenario E

Figure 5.9: Certificate dates and timestamps for scenarios D and E

Another possible way for an attacker to cheat the mechanism is to try to serve a certificate from
a malicious DNS server. In scenario (g), the malicious server is presenting the globex.luiz.eng.br
DNS zone, with DNSSEC signatures that do not match the key specified in the DS records in the
luiz.eng.br zone. When fetching the certificate, the bot performs a full DNSSEC authentication
chain validation, as shown in Figure 5.5, and by doing so, is able to detect the mismatch between
the signing key and the DS records in the parent zone.

When using a Telegram Bot as a user interface, this problem is harder to happen, as the piece
of software running the validations would be running in a controlled server, less susceptible to
attacks like that. But in the case where the validation is done using a native Android applica-
tion, for example, the DNS resolvers provided by the smartphone could not be trusted, hence the
importance in testing this scenario.

In scenario (h), the QR Code data points to a certificate under the record 2.acme.luiz.eng.br,
that does not exist in the acme.luiz.eng.br. There are two possible reasons for a certificate record
to not be found in a zone: the record never existed or the certificate was revoked. Because
the system relies self-signed certificates, the use of Certificate Revocation Lists (CRLs) is not
possible (Housley et al. 2002), so when revoking a certificate it simply gets removed from the
DNS. The consequence is that when trying to validate a message signed using the key pair tied to
that certificate, like the example in Figure 5.3h, the bot will not be able to retrieve the certificate
and by consequence, invalidate the signature.

Figure 5.10c contains the response from the bot when trying to validate a signature that has
no corresponding certificate published in the DNS.

43

(a) Bot output for scenario F (b) Bot output for scenario G

(c) Bot output for scenario H (d) Bot output for scenario I

Figure 5.10: Bot outputs for scenarios F, G, H and I

As explained in Section 4.6.1.2, to build the complete DNS name when retrieving the certifi-
cates, the bot maps the value contained in the _root field to a zone name using a table built into
it. That way, if an attacker crafts a message with an unknown value in the _root field, the bot is
not able to map it into a valid zone, a case simulated in scenario (i). When the bot does not find
an entry in the table that corresponds to the value in the message it informs the user and ends the
validation process, as seen in Figure 5.10d.

Scenario (j) shows the disadvantage of implementing the secure timestamping using the Bit-
coin blockchain. Because of the bigger block time of the Bitcoin protocol, a transaction is not
confirmed instantly, meaning that the bot is not able to validate a signature right after issuance.
While waiting for the 6 confirmations of the transaction, the bot is not able to deem the transac-
tion as invalid or not as well as the signature, so instead of informing the user that the signature
is invalid, it simply informs that the transaction does not have enough confirmations and asks the
user to try again after one hour, as shown in Figure 5.11.

44

Figure 5.11: Bot output for scenario J.

5.3 ATTACK VECTORS

The use of the proposed technologies, bring security implications that were not explicitly
addressed in this work. For example, an attacker may target the components of the system like the
message signing services or even try to compromise the keys, instead of attacking the mechanism
itself.

Another aspect is that because the system relies on DNS for key retrieval, another attack that
may be tried is a Denial of Service, by making the DNS servers serving the keys unavailable and
thus, impacting signature validation.

45

6 CONCLUSION

With the increased popularity of smartphones, the issuance of digital documents by govern-
ments and entities has grown, enabling citizens to carry digital versions of their documents in
their smartphones instead of a physical paper version in the wallet.

This work proposed a mechanism to authenticate the information contained in the digital doc-
ument using Digital Signatures, DNSSEC and Blockchain, guaranteeing integrity, authentication
and non-repudiation. The proposed design was used to implement a proof of concept that was
later tested against different attack scenarios in order to evaluate its resilience.

During the research phase, one of the issues that arose was the inability to verify if a document
was signed during the certificate validity period due to the lack of a timestamp in the message.
The use of a Time Stamping Authority as per RFC 3161 was unfeasible given the amount of data
needed and the restricted storage space in the QR Codes. To overcome this problem, a proof of
existence mechanism relying on the Bitcoin Blockchain was developed and effectively addressed
the problem, as evaluated in the results.

Different from previous work, the proposed mechanism distributes the public keys used for
signature verification in the form of digital certificates distributed using the DNS system with
DNSSEC implemented for security, enabling entities issuing documents to roll out new keys
without having to update the verifying applications and without human intervention. The mecha-
nism also offers reduced complexity as the use of PKI is completely optional and the revocation
of certificates is done by simply removing them from the DNS zone. The simplicity brings one
disadvantage: after revoking a certificate, all documents signed using the corresponding private
key are deemed invalid, even if issued before the certificate revocation.

The mechanism can be implemented using any Digital Signature algorithm supporting X.509
certificates, bringing flexibility to the system, enabling it to fit an algorithm that has faster public
key operations or an algorithm that has faster private key operations, although the difference in
performance is not very big. A few examples of supported algorithms are Elliptic Curve Cryp-
tography (ECC), Digital Signature Algorithm (DSA), Elliptic Curve Digital Signature Algorithm
(ECDSA) and RSA.

The implemented proof of concept was evaluated with a focus on the security of the system
and in order to properly evaluate it, 10 scenarios were proposed covering aspects like message
tampering, signature tampering, Bitcoin Transaction ID tampering, proper validation of the cer-
tificate validity period, validation of the DNSSEC authentication chain, rogue certificate detec-
tion, rogue zone detection, validation before transaction confirmation as well as a valid working
scenario. In the 8 attack scenarios, the proof of concept was able to deter and properly identify
the attacks being tried, demonstrating the robustness of the proposed mechanism.

46

From a performance point of view, the signature validation process is in theory able to scale
together with the DNS system, although one limiting factor perceived was the mechanism used
for retrieving the transaction information from the Bitcoin network, in the implemented proof of
concept, a Web API. The document signing process scalability is limited by the cost of publishing
a Bitcoin transaction and the theoretical throughput limit of 7 transactions per second on the
Bitcoin protocol. A possible solution for this problem is proposed in Section 6.1.

Is is important to mention that not all the security aspects of this mechanism were evaluated in
this work. A real-world implementation of what is described here must be subject to penetration
tests in order to make it more robust and eventually find out vulnerabilities and flaws not perceived
by the author.

6.1 FUTURE WORK

During the execution of this project additional ideas emerged and could not be included be-
cause of a time or complexity constraint. The list below contains a list of the ideas and a brief
explanation about them:

• Implementation of the validating application using a native Android or iOS application,
eliminating a third-party (the Telegram Bot API) from the system and bringing more relia-
bility;

• Use of smart contracts to implement the distributed authenticated timestamping, increasing
the scalability of the document signing process and reducing costs;

• Propose a way of including a picture of the person together with the data, be it through an
external URL or other method.

47

BIBLIOGRAPHY

Bitcoin Developer Guide 2018 BITCOIN Developer Guide. 2018. Available from Internet:
<https://bitcoin.org/en/developer-guide>.

Boeyen et al. 2008 BOEYEN, S.; SANTESSON, S.; POLK, T.; HOUSLEY, R.; FARRELL, S.;
COOPER, D. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC Editor, 2008. RFC 5280. (Request for Comments, 5280). Available from Internet:
<https://rfc-editor.org/rfc/rfc5280.txt>.

Bray 2014 BRAY, T. The javascript object notation (json) data interchange format. 2014.

Breitinger and Gipp 2017 BREITINGER, C.; GIPP, B. Virtualpatent - enabling the traceability of
ideas shared online using decentralized trusted timestamping. In: Proceedings of the 15th International
Symposium of Information Science. [S.l.: s.n.], 2017.

Brito and Castillo 2013 BRITO, J.; CASTILLO, A. Bitcoin: A primer for policymakers. [S.l.]: Mercatus
Center at George Mason University, 2013.

Brown et al. 2010 BROWN, D. R. L.; DANG, Q.; POLK, T.; SANTESSON, S.; MORIARTY,
K. Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and
ECDSA. RFC Editor, 2010. RFC 5758. (Request for Comments, 5758). Available from Internet:
<https://rfc-editor.org/rfc/rfc5758.txt>.

Buffers 2011 BUFFERS, P. Google’s data interchange format. 2011.

Clark and Essex 2012 CLARK, J.; ESSEX, A. Commitcoin: Carbon dating commitments with bitcoin.
In: SPRINGER. International Conference on Financial Cryptography and Data Security. [S.l.], 2012. p.
390–398.

CoinMarketCap 2018 COINMARKETCAP. Bitcoin (BTC) price, charts, market cap, and other metrics.
2018. (Accessed on 2018-06-11). Available from Internet: <https://coinmarketcap.com/currencies/bitcoin/
>.

Consortium 2018 CONSORTIUM, I. S. BIND Open Source DNS Server. 2018. Available from Internet:
<https://www.isc.org/downloads/bind/>. Cited: 2018-06-14.

DigitalOcean 2016 DIGITALOCEAN. How To Setup DNSSEC on an Authoritative BIND DNS Server.
DigitalOcean, 2016. Available from Internet: <https://www.digitalocean.com/community/tutorials/
how-to-setup-dnssec-on-an-authoritative-bind-dns-server--2>.

DMV 2013 DMV, N. Y. S. Sample New York State DMV Photo Documents. 2013. Available from
Internet: <https://dmv.ny.gov/id-card/sample-photo-documents>. Cited: 2017-07-10.

Dukhovni and Hardaker 2015 DUKHOVNI, V.; HARDAKER, W. The DNS-Based Authentication of
Named Entities (DANE) Protocol: Updates and Operational Guidance. RFC Editor, 2015. RFC 7671.
(Request for Comments, 7671). Available from Internet: <https://rfc-editor.org/rfc/rfc7671.txt>.

Electrum 2018 ELECTRUM, S. Electrum DNSSEC Library. 2018. Available from Internet:
<https://github.com/spesmilo/electrum/blob/master/lib/dnssec.py>.

Eternnoir 2018 ETERNNOIR. eternnoir/pyTelegramBotAPI. 2018. Available from Internet:
<https://github.com/eternnoir/pyTelegramBotAPI>.

48

https://bitcoin.org/en/developer-guide
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5758.txt
https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
https://www.isc.org/downloads/bind/
https://www.digitalocean.com/community/tutorials/how-to-setup-dnssec-on-an-authoritative-bind-dns-server--2
https://www.digitalocean.com/community/tutorials/how-to-setup-dnssec-on-an-authoritative-bind-dns-server--2
https://dmv.ny.gov/id-card/sample-photo-documents
https://rfc-editor.org/rfc/rfc7671.txt
https://github.com/spesmilo/electrum/blob/master/lib/dnssec.py
https://github.com/eternnoir/pyTelegramBotAPI

FIPS 2013 FIPS, P. 186-4. Digital Signature Standard (DSS), 2013.

FIPS 2015 FIPS, P. 180-4. Secure hash standard (SHS), 2015.

Garain and Halder 2008 GARAIN, U.; HALDER, B. On automatic authenticity verification of printed
security documents. In: IEEE. Computer Vision, Graphics & Image Processing, 2008. ICVGIP’08. Sixth
Indian Conference on. [S.l.], 2008. p. 706–713.

Gipp, Meuschke and Gernandt 2015 GIPP, B.; MEUSCHKE, N.; GERNANDT, A. Decentralized trusted
timestamping using the crypto currency bitcoin. arXiv preprint arXiv:1502.04015, 2015.

Housley et al. 2002 HOUSLEY, R.; POLK, T.; FORD, D. W. S.; SOLO, D. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC Editor, 2002. RFC 3280.
(Request for Comments, 3280). Available from Internet: <https://rfc-editor.org/rfc/rfc3280.txt>.

Housley, Schaad and Kaliski 2005 HOUSLEY, R.; SCHAAD, J.; KALISKI, B. Additional Algorithms
and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC Editor, 2005. RFC 4055. (Request for Comments,
4055). Available from Internet: <https://rfc-editor.org/rfc/rfc4055.txt>.

IANA 2017 IANA. Domain Name System Security (DNSSEC) Algorithm Numbers. 2017. Available from
Internet: <https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml>.

Infoblox 2018 INFOBLOX. What is Domain Name System Security Extensions
(DNSSEC)? 2018. Available from Internet: <https://www.infoblox.com/glossary/
domain-name-system-security-extensions-dnssec/>. Cited: 2018-06-14.

Jansma and Arrendondo 2004 JANSMA, N.; ARRENDONDO, B. Performance comparison of elliptic
curve and rsa digital signatures. nicj. net/files, 2004.

Josefsson 2006 JOSEFSSON, S. Storing Certificates in the Domain Name System (DNS).
RFC Editor, 2006. RFC 4398. (Request for Comments, 4398). Available from Internet: <https:
//rfc-editor.org/rfc/rfc4398.txt>.

Josefsson 2006 JOSEFSSON, S. The Base16, Base32, and Base64 Data Encodings. RFC
Editor, 2006. RFC 4648. (Request for Comments, 4648). Available from Internet: <https:
//rfc-editor.org/rfc/rfc4648.txt>.

Kaliski and Staddon 1998 KALISKI, B.; STADDON, J. PKCS #1: RSA Cryptography Specifications
Version 2.0. RFC Editor, 1998. RFC 2437. (Request for Comments, 2437). Available from Internet:
<https://rfc-editor.org/rfc/rfc2437.txt>.

Kurose and Ross 2010 KUROSE, J.; ROSS, K. Computer Networking: A Top-down Approach. [S.l.]:
Addison-Wesley, 2010. (Pearson International edition). ISBN 9780136079675.

Lincolnloop 2018 LINCOLNLOOP. lincolnloop/python-qrcode. 2018. Available from Internet:
<https://github.com/lincolnloop/python-qrcode>.

Mockapetris 1987 MOCKAPETRIS, P. Domain names - implementation and specification.
RFC Editor, 1987. RFC 1035. (Request for Comments, 1035). Available from Internet: <https:
//rfc-editor.org/rfc/rfc1035.txt>.

Moriarty et al. 2016 MORIARTY, K.; KALISKI, B.; JONSSON, J.; RUSCH, A. PKCS #1: RSA
Cryptography Specifications Version 2.2. RFC Editor, 2016. RFC 8017. (Request for Comments, 8017).
Available from Internet: <https://rfc-editor.org/rfc/rfc8017.txt>.

49

https://rfc-editor.org/rfc/rfc3280.txt
https://rfc-editor.org/rfc/rfc4055.txt
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.infoblox.com/glossary/domain-name-system-security-extensions-dnssec/
https://www.infoblox.com/glossary/domain-name-system-security-extensions-dnssec/
https://rfc-editor.org/rfc/rfc4398.txt
https://rfc-editor.org/rfc/rfc4398.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc4648.txt
https://rfc-editor.org/rfc/rfc2437.txt
https://github.com/lincolnloop/python-qrcode
https://rfc-editor.org/rfc/rfc1035.txt
https://rfc-editor.org/rfc/rfc1035.txt
https://rfc-editor.org/rfc/rfc8017.txt

Nakamoto 2008 NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system. 2008.

NIST 2013 NIST, S. Nist sp 800-81-2 secure domain name system (dns) deployment guide. 2013.

NIST 2015 NIST, S. NIST 800-57 Part 3 Rev 1, Recommendation for Key Management: Part 3:
Application-Specific Key Management Guidance. 2015.

Pillow: the friendly PIL fork 2018 PILLOW: the friendly PIL fork. 2018. Available from Internet:
<http://python-pillow.org/>.

Polk et al. 2009 POLK, T.; HOUSLEY, R.; TURNER, S.; BROWN, D. R. L.; YIU, K. Elliptic Curve
Cryptography Subject Public Key Information. RFC Editor, 2009. RFC 5480. (Request for Comments,
5480). Available from Internet: <https://rfc-editor.org/rfc/rfc5480.txt>.

Polyconseil 2018 POLYCONSEIL. Polyconseil/zbarlight. 2018. Available from Internet: <https:
//github.com/Polyconseil/zbarlight>.

Python 2018 PYTHON. The Python Tutorial. 2018. Available from Internet: <https://docs.python.org/3/
tutorial/index.html>. Cited: 2018-06-14.

Python Cryptographic Authority 2013 Python Cryptographic Authority. Welcome to pyca/cryptography
— Cryptography 2.0.dev1 documentation. 2013. Https://cryptography.io/en/latest/. (Accessed on
2017-07-10).

Rose et al. 2005 ROSE, S.; LARSON, M.; MASSEY, D.; AUSTEIN, R.; ARENDS, R. DNS Security
Introduction and Requirements. RFC Editor, 2005. RFC 4033. (Request for Comments, 4033). Available
from Internet: <https://rfc-editor.org/rfc/rfc4033.txt>.

Rose et al. 2005 ROSE, S.; LARSON, M.; MASSEY, D.; AUSTEIN, R.; ARENDS, R. Resource
Records for the DNS Security Extensions. RFC Editor, 2005. RFC 4034. (Request for Comments, 4034).
Available from Internet: <https://rfc-editor.org/rfc/rfc4034.txt>.

Software 2018 SOFTWARE, F. K. Insomnia. 2018. Available from Internet: <https://insomnia.rest/>.

Soon 2008 SOON, T. J. Qr code. Synthesis Journal, v. 2008, p. 59–78, 2008.

Telegram 2018 TELEGRAM. Telegram F.A.Q. 2018. Available from Internet: <https://telegram.org/faq>.

Tornado 2018 TORNADO. Tornado Web Server - Tornado 5.0.2 documentation. 2018. Available from
Internet: <http://www.tornadoweb.org/en/stable/>. Cited: 2018-06-14.

Verisign Inc. 2011 Verisign Inc. DNSSEC Analyzer. 2011. Https://dnssec-debugger.verisignlabs.com/.
(Accessed on 2017-07-10).

Videntity 2013 VIDENTITY. How to Serve Public Certificates with BIND for the
Direct Project. 2013. Available from Internet: <http://www.videntity.com/2013/08/
how-to-serve-public-certificates-in-bind-for-the-direct-project/>.

Warasart and Kuacharoen 2012 WARASART, M.; KUACHAROEN, P. Paper-based Document
Authentication using Digital Signature and QR Code. 2012.

WAVE 2018 WAVE, D. DENSO WAVE, the Inventor of QR Code. 2018. Available from Internet:
<http://www.qrcode.com/en/>.

Wiki 2018 WIKI, B. Block hashing algorithm. 2018. Available from Internet: <https://en.bitcoin.it/wiki/
Block_hashing_algorithm>.

50

http://python-pillow.org/
https://rfc-editor.org/rfc/rfc5480.txt
https://github.com/Polyconseil/zbarlight
https://github.com/Polyconseil/zbarlight
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://rfc-editor.org/rfc/rfc4033.txt
https://rfc-editor.org/rfc/rfc4034.txt
https://insomnia.rest/
https://telegram.org/faq
http://www.tornadoweb.org/en/stable/
http://www.videntity.com/2013/08/how-to-serve-public-certificates-in-bind-for-the-direct-project/
http://www.videntity.com/2013/08/how-to-serve-public-certificates-in-bind-for-the-direct-project/
http://www.qrcode.com/en/
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm

Wiki 2018 WIKI, B. Controlled Supply. 2018. Available from Internet: <https://en.bitcoin.it/wiki/
Controlled_supply>.

Wiki 2018 WIKI, B. Network. 2018. Available from Internet: <https://en.bitcoin.it/wiki/Network>.

Wiki 2018 WIKI, B. Proof of work. 2018. Available from Internet: <https://en.bitcoin.it/wiki/Proof_of_
work>.

Wiki 2018 WIKI, B. Transaction. 2018. Available from Internet: <https://en.bitcoin.it/wiki/Transaction>.

Wireshark 2018 WIRESHARK. Download. 2018. Available from Internet: <https://www.wireshark.org/
>.

ZBar 2010 ZBAR. ZBar bar code reader. 2010. Available from Internet: <http://zbar.sourceforge.net/>.

Zuccherato et al. 2001 ZUCCHERATO, R.; CAIN, P.; ADAMS, D. C.; PINKAS, D. Internet X.509
Public Key Infrastructure Time-Stamp Protocol (TSP). RFC Editor, 2001. RFC 3161. (Request for
Comments, 3161). Available from Internet: <https://rfc-editor.org/rfc/rfc3161.txt>.

51

https://en.bitcoin.it/wiki/Controlled_supply
https://en.bitcoin.it/wiki/Controlled_supply
https://en.bitcoin.it/wiki/Network
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Transaction
https://www.wireshark.org/
https://www.wireshark.org/
http://zbar.sourceforge.net/
https://rfc-editor.org/rfc/rfc3161.txt

APPENDIX

52

I.1 DNS HELPER SCRIPTS

Listing 1: Python script to generate CERT RRs [Adapted from: (Videntity 2013)]

1 #!/usr/bin/env python

2 # -*- coding: utf-8 -*-

3 # vim: ai ts=4 sts=4 et sw=4

4
5 # BIND Certificate Convert - Read in a host name and PEM certificate path and write out the

↪→ corresponding line for

6 # BIND's zone file

7
8 import argparse

9 import dns.rdata

10 import dns.dnssec

11 import dns.rdataclass

12 import dns.rdatatype

13 import dns.rdtypes.ANY.DNSKEY

14
15 from cryptography import x509

16 from cryptography.hazmat.backends import default_backend

17 from cryptography.hazmat.primitives import serialization

18
19 algorithms = {

20 "1.2.840.113549.1.1.4": "RSAMD5",

21 "1.2.840.113549.1.1.5": "RSASHA1",

22 "1.2.840.113549.1.1.11": "RSASHA256",

23 "1.2.840.113549.1.1.13": "RSASHA512",

24 "1.2.840.10045.4.3.2": "ECDSAP256SHA256",

25 "1.2.840.10045.4.3.3": "ECDSAP384SHA384",

26 "1.2.840.10040.4.3": "DSA"

27 }

28
29
30 def find_between(s, first, last):

31 try:

32 start = s.index(first) + len(first)

33 end = s.index(last, start)

34 return s[start:end]

35 except ValueError:

36 return ""

37
38
39 def bind_cert_convert(hostname, certpath):

40 # Loading the serialized public key form the X.509 certificate

41 with open(certpath, "rb") as cert_file:

42 cert = x509.load_pem_x509_certificate(cert_file.read(), default_backend())

43
44 # public_key = cert.public_key()

45 #

46 pem = cert.public_bytes(

47 encoding=serialization.Encoding.PEM

48)

49
50 der = cert.public_bytes(

51 encoding=serialization.Encoding.DER

52)

53

53

54 output = pem.decode()

55
56 algo = algorithms.get(cert.signature_algorithm_oid.dotted_string)

57
58 clean_pk = find_between(output,

59 "-----BEGIN CERTIFICATE-----",

60 "-----END CERTIFICATE-----")

61
62 clean_pk = clean_pk.replace("\n", "")

63 decoded_clean_pk = der

64
65 dnskey = dns.rdtypes.ANY.DNSKEY.DNSKEY(dns.rdataclass.IN,

66 dns.rdatatype.DNSKEY, 0, 0,

67 dns.dnssec.RSASHA256,

68 decoded_clean_pk)

69
70 bind_entry = "%s\tIN\tCERT\tPKIX %s %s %s" % (hostname,

71 dns.dnssec.key_id(dnskey),

72 algo,

73 clean_pk)

74
75 print(bind_entry)

76
77
78 if __name__ == "__main__":

79 # Parsing command line arguments

80 parser = argparse.ArgumentParser(

81 description='Generate a CERT DNS record containing the certificate to be published')

82 parser.add_argument('hostname', type=str, help='The hostname for the DNS entry')

83 parser.add_argument('certfile', type=str, help='File containing the PEM encoded

↪→ certificate and public key')

84
85 args = parser.parse_args()

86
87 bind_cert_convert(args.hostname, args.certfile)

Listing 2: Bash script for automated zone signing [Adapted from: (DigitalOcean 2016)]

1 #!/bin/bash

2 die() { echo "$@" 1>&2 ; exit 1; }

3 [[$# -gt 0]] || die "Invalid number of arguments"

4 PDIR=`pwd`

5 ZONEDIR="/etc/bind/zones"

6 ZONE=$1

7 ZONEFILE="$ZONEDIR/$ZONE.zone"

8 DNSSERVICE="bind9"

9 cd $ZONEDIR

10 [[-f $ZONEFILE]] || die "Zone file does not exists"

11 SERIAL=`/usr/sbin/named-checkzone $ZONE $ZONEFILE | egrep -ho '[0-9]{10}'`

12 sed -i 's/'$SERIAL'/'$(($SERIAL+1))'/' $ZONEFILE

13 /usr/sbin/dnssec-signzone -A -3 $(head -c 1000 /dev/urandom | sha1sum | cut -b 1-16) -N

↪→ increment -o $ZONE -t $ZONEFILE

14 service $DNSSERVICE reload

15 cd $PDIR

54

I.2 CERT DNS ENTRY EXAMPLE

Listing 3: Example CERT RR in the acme.luiz.eng.br zone [Source: Author]

1 1 IN CERT PKIX 9461 RSASHA256

2 ↪→ MIIEJjCCAw6gAwIBAgIBATANBgkqhkiG9w0BAQsFADCBnzELMAkGA1UEBhMCQlIxGTAXBgNVBAgMEERpc3RyaX

3 ↪→ RvIEZlZGVyYWwxETAPBgNVBAcMCEJyYXNpbGlhMR8wHQYDVQQKDBZMdWl6J3MgR3JhZCBQcm9qZWN0IENBMR8w

4 ↪→ HQYDVQQDDBZMdWl6J3MgR3JhZCBQcm9qZWN0IENBMSAwHgYJKoZIhvcNAQkBFhFlbWFpbEBsdWl6LmVuZy5icj

5 ↪→ AeFw0xNzA2MDQyMzA4MTRaFw0xODA2MDQyMzA4MTRaMH8xCzAJBgNVBAYTAkJSMRkwFwYDVQQIDBBEaXN0cml0

6 ↪→ byBGZWRlcmFsMRkwFwYDVQQKDBBBQ01FIENvcnBvcmF0aW9uMRkwFwYDVQQDDBBBQ01FIENvcnBvcmF0aW9uMR

7 ↪→ 8wHQYJKoZIhvcNAQkBFhBhY21lQGx1aXouZW5nLmJyMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA

8 ↪→ 1WNoxOxIt5b4tqdjEdcmTaKEMwe1T4WwZuOwrg/DHfs3dUfMRl00pWgUUGzIXRTGGkq7hfmKTiJgOMuHQIhPEZ

9 ↪→ hEp55OzaHFHdKo3rrdkrlaph7c0DLrDMZ8hmU5gPrrC4TC3lOQGEUbx1T5oM3jrRwFta/XqMTwVkuewmAkSA3O

10 ↪→ VUEMa1f8Jbtfk37wp5Ya4ITmewMfA6Zxz2a4wsVRg2nCTR54kVuEoy4RIfn12yuFIHJw1IcaUHsQM1ESj+X8Zz

11 ↪→ E1n5TuXfMP1jzWMruRp40ABTy4C4FdkRatYb9Um90iMPsrd3eSOPOw4G5k8cFk7r0Si4N98HEM26p908206QID

12 ↪→ AQABo4GLMIGIMAkGA1UdEwQCMAAwOwYJYIZIAYb4QgENBC4WLEx1aXoncyBHcmFkIFByb2plY3QgQ0EgR2VuZX

13 ↪→ JhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQWBBTO5gLyPwpxswg/+eD2ar2REJCMKTAfBgNVHSMEGDAWgBQQsSAK

14 ↪→ TjKPPyHTefWeqswR5MyYmDANBgkqhkiG9w0BAQsFAAOCAQEAMO/QhIBP1HoBW5ks9e/x6HVAN/X7GHfWUYU4is

15 ↪→ QCEe7J6at+cmlLXd1/biOC9HnxzRlwnKjqe4TK8/OCac/6/zS7EgwZoiBNhX8vLPe4ne3uCpcGDi66f5kQEfSA

16 ↪→ uWehDyHN+WIFXQED5C6u94FU3q6+qMT7ZEgGwh2H9nkCFKNNi1yV2pwf1hB1kVDbGjuEsYVv9o3ea8uQp1xQGb

17 ↪→ IT83ZIdKRUyVHhBkfpko7idXazvHODUQL9JEEqKO4ZuzitFjzWhhJz8x7QdBu8EZYGZ5ZS+tohI6KBrhQZaFYo

18 ↪→ RYJvATqighecO29V216npGYREqyeqm2jqPl36GyA+84d8Q==

Listing 4: ASCII representation of certificate under 1.acme.luiz.eng.br zone [Source: Author]

1 Certificate:

2 Data:

3 Version: 3 (0x2)

4 Serial Number: 1 (0x1)

5 Signature Algorithm: sha256WithRSAEncryption

6 Issuer: C = BR, ST = Distrito Federal, L = Brasilia, O = Luiz's Grad Project CA, CN =

↪→ Luiz's Grad Project CA, emailAddress = email@luiz.eng.br

7 Validity

8 Not Before: Jun 4 23:08:14 2017 GMT

9 Not After : Jun 4 23:08:14 2018 GMT

10 Subject: C = BR, ST = Distrito Federal, O = ACME Corporation, CN = ACME Corporation,

↪→ emailAddress = acme@luiz.eng.br

11 Subject Public Key Info:

12 Public Key Algorithm: rsaEncryption

13 Public-Key: (2048 bit)

14 Modulus:

15 00:d5:63:68:c4:ec:48:b7:96:f8:b6:a7:63:11:d7:

16 26:4d:a2:84:33:07:b5:4f:85:b0:66:e3:b0:ae:0f:

17 c3:1d:fb:37:75:47:cc:46:5d:34:a5:68:14:50:6c:

18 c8:5d:14:c6:1a:4a:bb:85:f9:8a:4e:22:60:38:cb:

19 87:40:88:4f:11:98:44:a7:9e:4e:cd:a1:c5:1d:d2:

20 a8:de:ba:dd:92:b9:5a:a6:1e:dc:d0:32:eb:0c:c6:

21 7c:86:65:39:80:fa:eb:0b:84:c2:de:53:90:18:45:

22 1b:c7:54:f9:a0:cd:e3:ad:1c:05:b5:af:d7:a8:c4:

23 f0:56:4b:9e:c2:60:24:48:0d:ce:55:41:0c:6b:57:

24 fc:25:bb:5f:93:7e:f0:a7:96:1a:e0:84:e6:7b:03:

25 1f:03:a6:71:cf:66:b8:c2:c5:51:83:69:c2:4d:1e:

26 78:91:5b:84:a3:2e:11:21:f9:f5:db:2b:85:20:72:

27 70:d4:87:1a:50:7b:10:33:51:12:8f:e5:fc:67:31:

28 35:9f:94:ee:5d:f3:0f:d6:3c:d6:32:bb:91:a7:8d:

29 00:05:3c:b8:0b:81:5d:91:16:ad:61:bf:54:9b:dd:

55

30 22:30:fb:2b:77:77:92:38:f3:b0:e0:6e:64:f1:c1:

31 64:ee:bd:12:8b:83:7d:f0:71:0c:db:aa:7d:d3:cd:

32 b4:e9

33 Exponent: 65537 (0x10001)

34 X509v3 extensions:

35 X509v3 Basic Constraints:

36 CA:FALSE

37 Netscape Comment:

38 Luiz's Grad Project CA Generated Certificate

39 X509v3 Subject Key Identifier:

40 CE:E6:02:F2:3F:0A:71:B3:08:3F:F9:E0:F6:6A:BD:91:10:90:8C:29

41 X509v3 Authority Key Identifier:

42 keyid:10:B1:20:0A:4E:32:8F:3F:21:D3:79:F5:9E:AA:CC:11:E4:CC:98:98

43
44 Signature Algorithm: sha256WithRSAEncryption

45 30:ef:d0:84:80:4f:d4:7a:01:5b:99:2c:f5:ef:f1:e8:75:40:

46 37:f5:fb:18:77:d6:51:85:38:8a:c4:02:11:ee:c9:e9:ab:7e:

47 72:69:4b:5d:dd:7f:6e:23:82:f4:79:f1:cd:19:70:9c:a8:ea:

48 7b:84:ca:f3:f3:82:69:cf:fa:ff:34:bb:12:0c:19:a2:20:4d:

49 85:7f:2f:2c:f7:b8:9d:ed:ee:0a:97:06:0e:2e:ba:7f:99:10:

50 11:f4:80:b9:67:a1:0f:21:cd:f9:62:05:5d:01:03:e4:2e:ae:

51 f7:81:54:de:ae:be:a8:c4:fb:64:48:06:c2:1d:87:f6:79:02:

52 14:a3:4d:8b:5c:95:da:9c:1f:d6:10:75:91:50:db:1a:3b:84:

53 b1:85:6f:f6:8d:de:6b:cb:90:a7:5c:50:19:b2:13:f3:76:48:

54 74:a4:54:c9:51:e1:06:47:e9:92:8e:e2:75:76:b3:bc:73:83:

55 51:02:fd:24:41:2a:28:ee:19:bb:38:ad:16:3c:d6:86:12:73:

56 f3:1e:d0:74:1b:bc:11:96:06:67:96:52:fa:da:21:23:a2:81:

57 ae:14:19:68:56:28:45:82:6f:01:3a:a2:82:17:9c:3b:6f:55:

58 db:5e:a7:a4:66:11:12:ac:9e:aa:6d:a3:a8:f9:77:e8:6c:80:

59 fb:ce:1d:f1

I.3 SIGNING A MESSAGE THROUGH THE API

To obtain a digitally signed QR Code, a user issues a POST request to the /sign endpoint of
the API, with the JSON message contained in the request body. Listing 5 shows an example curl
request.

Listing 5: Curl request to sign a message [Source: Author]

1 curl "https://tcc.luiz.eng.br/api/sign" -H "Accept: image/png" -H "Content-Type: application/

↪→ json; charset=UTF-8" --data '{"_id": 5, "_root": "acme", "Name": "Michael M. Motorist"

↪→ , "DOB": "08/31/1978", "ID": "123 456 789", "Class": "D", "Issued": "08/31/2013", "

↪→ Expires": "08/31/2021"}' > qrcode.png

The command produces an image file called qrcode.png that can be then verified using the bot
by sending a message containing "/start" to the Telegram account @validator_bot and following
the instructions given by the bot. When it asks for a picture, just send the qrcode.png file and the
bot will then answer with the validation result.

56

	Contents
	List of figures
	Introduction
	Motivation
	The Solution
	Objective
	Specific objectives

	Organization of this work

	Architectural Components
	Digital Signatures
	The RSA Algorithm

	Domain Name System - DNS
	DNSSEC
	CERT Resource Record
	BIND DNS Server

	Bitcoin
	Transactions
	Blocks
	Proof-of-Work
	Network

	Quick Response code
	Python
	Cryptography Package
	Tornado Framework

	Telegram
	Telegram Bot

	Solution Design
	System Architecture
	Message Signing
	Keys and Certificates
	Message Format
	Trusted Timestamping
	Message Signature
	QR-Code Generation

	Signature Verification
	DNS
	Signature Validation
	Timestamp Validation
	Presenting the Data to the User

	Proof of Concept
	Overview
	DNS System
	DNS Servers
	DNSSEC
	Publishing the Certificates

	Keys and Certificates Generation
	Web APIs
	Message Signing
	Signing API
	Message Format
	Trusted Timestamping
	Digital Signature
	QR Code generation

	Signature Verification
	Telegram Bot
	Timestamp API

	Results
	DNSSEC Authentication Chain
	Mechanism Validation
	QR Codes Generation
	Validation with the Telegram Bot

	Attack Vectors

	Conclusion
	Future Work

	Bibliography
	Appendix
	DNS helper scripts
	CERT DNS entry example
	Signing a Message through the API

