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Abstract
A aplicação de modelos de machine learning no âmbito jurídico está se tornando algo
indispensável na automação e na otimização de processos, tornando possível o desvio de
recursos de um trabalho mecânico e podendo concentrar esses recursos na parte mais
intelectual do processo. Modelos criados a partir da lingua portuguesa demonstram um
bom desempenho quando treinados para sub-tarefas da área de processamento de lingua-
gem natural, tornando possível a extração e a classificação automatizada de documentos
jurídicos, otimizando o tempo de processos e melhorando o atendimento de órgãos em que
o volume de entrada para avaliação tende a ser maior que a sua vazão para as próximas
esferas ou o próprio deferimento do processo. Estes modelos por sí são eficazes, porém
parte da interpretação da linguagem jurídica é perdida, visto que a estrutura de sentenças
e de documentos completos escritos com esse "dialeto"podem se diferenciar da estrutura
normalmente usada e aquela em que os modelos são treinados. Afim de criar um modelo
especializado para esse tipo de texto, foi utilizado um modelo BERT(Bidirectional En-
coder Representations from Transformers) treinado na lingua portuguesa e realizado um
processo de pós-treinamento utilizando textos jurídicos, afim de criar e disponibilizar um
modelo voltado para esse domínio. O modelo treinado alcançou um F1-Score de 94.39%
na subtarefa de reconhecimento de entidades nomeadas.

Palavras-chaves: BERT, NER, Futher pre-train.





Abstract
The application of machine learning models in the legal domain is becoming indispensable
in the automation and optimization of processes, making it possible to redirect resources
from mechanical work and being able to concentrate these resources in the most intel-
lectual part of the process. Models created from the Portuguese language demonstrate
a good performance when trained for sub-tasks in the area of natural language process-
ing, making it possible to automate extract and classification tasks of legal documents,
optimizing the time of proceedings and improving the attendance of bodies in which the
volume of input for evaluation tends to be greater than its flow to the next spheres or
the deferral of the process itself. These models by themselves are effective, but part of
the interpretation of the legal language is lost, since the sentence structure and complete
documents written with this "dialect" can differ from the structure normally used and the
one in which the models are trained. In order to create a specialized model for this type
of text, a BERT model (Bidirectional Encoder Representations from Transformers) was
used, trained in Portuguese and a further pre-training process using legal texts, in order
to create and make available a model geared to that domain. The trained model achieved
an F1-Score of 94.39 % in the subtask of named entities recognition.

Key-words: BERT, NER, Further pre-train.
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Introduction

The development of NLP models for legal texts can be a challenge, since the
language used for the elaboration of law suits texts carries in their vocabulary words
that are not used very often, therefore the trained models currently available has its
performance reduced. In order to overcome this challenge, a model for the Portuguese
language will be developed for this work,aiming for a model specialized for this specific
domain.

In this paper it will be studied Transformers architecture to better understand
how BERT and transfer learning method works. The technique known as further training
will also be studied, enabling the use of a BERT model already trained for the Portuguese
language to create a model for the specific scenario mentioned in the first paragraph. In
the end, the results of this work will be presented and discussed.

To better understand the objective of this paper, it is necessary to present some
previous concepts, in order to apply knowledge in the development of analyzes in the
future. First, it is presented the method BERT, explaining step-by-step and its architec-
ture and some key concepts, such as self-attention, multi-Head attention and positional
encoding. Then it presents the pre-training method and how it works in BERT, explain-
ing Masked Language Modeling and Next Sentence Prediction method. After explained
BERT, it is presented pos training methods as further pre-train and fine-tuning, explain-
ing how it affects the outcome, explaining the subtask Name Entity Recognition. Then,
the DATASET used for training is presented, describing how it was designed and finally,
the results and the analysis of the results after the implementation of the study are pre-
sented.





Part I

Background
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1 BERT

As showed in (DEVLIN et al., 2019), BERT, or Bidirectional Encoder Representa-
tions from Transformers, is a new method of pre-training language representations which
obtains state-of-the-art results on a wide array of Natural Language Processing (NLP)
tasks. BERT is designed to pre-train deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in all layers. As a result, the
pre-trained BERT model can be fine-tuned with just one additional output layer to cre-
ate state-of-the-art models for a wide range of tasks, such as question answering, Named
Entity Recognition and language inference, without substantial task specific architecture
modifications.

There are two steps in this framework explained in (COLLOBERT; WESTON,
2008): pre-training and fine-tuning. During pre-training, the model is trained on unla-
beled data over different pre-training tasks. For fine-tuning, the BERT model is first
initialized with the pre-trained parameters, and all of the parameters are fine-tuned using
labeled data from the downstream tasks. Each downstream task has separate fine-tuned
models, even though they are initialized with the same pre-trained parameters. A distinc-
tive feature of BERT is its unified architecture across different tasks. There is minimal
difference between the pre-trained architecture and the final downstream architecture.

Figure 1 – Overall pre-training and fine-tuning procedures for BERT Source: (DEVLIN
et al., 2019)

1.1 MODEL ARCHITECTURE

(DEVLIN et al., 2019) Explain BERT’s model architecture as a multi-layer bidirec-
tional Transformer encoder based on the original implementation described in (VASWANI
et al., 2017).
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The dominating trend in these models is to build complex, deep text representation
models, for example, with convolutional networks (PARIKH et al., 2016) or long short-
term memory networks (HOCHREITER; SCHMIDHUBER, 1997) with the goal of deeper
sentence comprehension. While these approaches have yielded impressive results, they are
often computationally very expensive, and result in models having millions of parameters
(excluding embeddings).

Most competitive neural sequence transduction models have an encoder-decoder
structure as as described in (VASWANI et al., 2017). Here, the encoder maps an input
sequence of symbol representations (x1, ..., xn) to a sequence of continuous representations
z = (z1, ..., zn). Given z, the decoder then generates an output sequence (y1, ..., ym) of
symbols one element at a time. At each step the model is auto-regressive, consuming
the previously generated symbols as additional input when generating the next. The
Transformer follows this overall architecture using stacked self-attention and point-wise,
fully connected layers for both the encoder and decoder, respectively.

Extended Neural GPU (KAISER; SUTSKEVER, 2015), ByteNet (KALCHBREN-
NER et al., 2016) and ConvS2S (GEHRING et al., 2017), all of which use convolutional
neural networks as basic building block, computing hidden representations in parallel for
all input and output positions. In these models, the number of operations required to
relate signals from two arbitrary input or output positions grows in the distance between
positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more diffi-
cult to learn dependencies between distant positions (HOCHREITER et al., 2001). In the
Transformer this is reduced to a constant number of operations, at the cost of reduced
effective resolution due to averaging attention-weighted positions, an effect we counteract
with Multi-Head Attention.

(VASWANI et al., 2017) Also shows some advantages to choosing self-attention
layers over recurrent and convolutional layers. One is the total computational complexity
per layer. Another is the amount of computation that can be parallelized, as measured
by the minimum number of sequential operations required. The third is the path length
between long-range dependencies in the network. Learning long-range dependencies is a
key challenge in many sequence transduction tasks. One key factor affecting the ability
to learn such dependencies is the length of the paths forward and backward signals have
to traverse in the network. The shorter these paths between any combination of positions
in the input and output sequences, the easier it is to learn long-range dependencies.

(VASWANI et al., 2017) describes self-attention, sometimes called intra-attention,
as an attention mechanism relating different positions of a single sequence in order to
compute a representation of the sequence. Self-attention has been used successfully in
a variety of tasks including reading comprehension, abstractive summarization, textual
entailment and learning task-independent sentence representations.
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1.1.1 Transformer architecture

Figure 2 – Transformer architecture Source: (VASWANI et al., 2017)

1.1.1.1 Encoder

Figure 3 – Encoder structure Source: (JALAMMAR, 2019)

(JALAMMAR, 2019) describe the encoder structure as an stack of N = 6 identical
layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism,
and the second is a simple position-wise fully connected feed-forward network. The en-
coders are all identical in structure (yet they do not share weights). The encoder’s inputs
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first flow through a self-attention layer – a layer that helps the encoder look at other words
in the input sentence as it encodes a specific word. The outputs of the self-attention layer
are fed to a feed-forward neural network. The exact same feed-forward network is inde-
pendently applied to each position. The decoder has both those layers, but between them
is an attention layer that helps the decoder focus on relevant parts of the input sentence.
It is added a residual connection around each of the two sub-layers, followed by layer
normalization. That is, the output of each sub-layer is 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)),
where 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) is the function implemented by the sub-layer itself. To facilitate these
residual connections, all sub-layers in the model, as well as the embedding layers, produce
outputs of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 = 512.

1.1.1.2 Decoder

The decoder is also composed of a stack of N = 6 identical layers as shown at
(JALAMMAR, 2019). In addition to the two sub-layers in each encoder layer, the decoder
inserts a third sub-layer, which performs multi-head attention over the output of the
encoder stack. Similar to the encoder. The self-attention sub-layer in the decoder stack
is modified to prevent positions from attending to subsequent positions so it will only
consider tokens that was already decoded. This masking, combined with fact that the
output embeddings are offset by one position, ensures that the predictions for position i
can depend only on the known outputs at positions less than i.

1.1.1.3 Attention

(VASWANI et al., 2017) describes attention function as a mapping a query and
a set of key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the query with the
corresponding key.

Figure 4 – (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel. Source: (VASWANI et al., 2017)
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The input consists of queries and keys of dimension 𝑑𝑘, and values of dimension
𝑑𝑣 as shown at (VASWANI et al., 2017). The dot products of the query with all keys is
computed, divide each by

√
𝑑𝑘, and apply a softmax function to obtain the weights on

the values, that pack all together into a matrix Q. The keys and values are also packed
together into matrices K and V . The matrix of outputs compute as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄.𝐾𝑇

√
𝑑𝑘

).𝑉 (1.1)

A self-attention layer connects all positions with a constant number of sequen-
tially executed operations, whereas a recurrent layer requires 𝑂(𝑛) sequential operations.
In terms of computational complexity, self-attention layers are faster than recurrent layers
when the sequence length 𝑛 is smaller than the representation dimensionality 𝑑, which
is most often the case with sentence representations used by state-of-the-art models in
machine translations, such as word-piece and byte-pair representations. To improve com-
putational performance for tasks involving very long sequences, self-attention could be
restricted to considering only a neighborhood of size 𝑟 in the input sequence centered
around the respective output position. This would increase the maximum path length to
𝑂(𝑛/𝑟) as shown at (VASWANI et al., 2017).

1.1.1.4 Multi-Head Attention

Instead of performing a single attention function with 𝑑𝑚𝑜𝑑𝑒𝑙 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 keys,
values and queries, it beneficial to linearly project the queries, keys and values h times
with different, learned linear projections to 𝑑𝑘 and 𝑑𝑣 dimensions, respectively. On each
of these projected versions of queries, keys and values it is performed multiple attention
functions in parallel, yielding 𝑑𝑣 −𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 output values. Multi-head attention allows
the model to jointly attend to information from different representation subspaces at
different positions. With a single attention head, averaging inhibits this.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂 (1.2)

Where
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄

𝑖 , 𝐾𝑊 𝐾
𝑖 , 𝑉 𝑊 𝑉

𝑖 ) (1.3)

The Multi-head attention is used in three different ways:

∙ In encoder-decoder attention layers. The queries come from the previous decoder
layer, and the memory keys and values come from the output of the encoder. This
allows every position in the decoder to attend over all positions in the input se-
quence. This mimics the typical encoder-decoder attention mechanisms in sequence-
to-sequence models.
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∙ The encoder contains self-attention layers. In a self-attention layer all of the keys,
values and queries come from the same place, in this case, the output of the previous
layer in the encoder. Each position in the encoder can attend to all positions in the
previous layer of the encoder.

∙ Similarly, self-attention layers in the decoder allow each position in the decoder to
attend to all positions in the decoder up to and including that position. We need
to prevent leftward information flow in the decoder to preserve the auto-regressive
property. We implement this inside of scaled dot-product attention by masking out
(setting to −∞) all values in the input of the softmax which correspond to illegal
connections.

Figure 5 – Multi-head attention diagram Source: (JALAMMAR, 2019)

1.1.1.5 Feed-forward networks

In addition to attention sub-layers, each of the layers in our encoder and decoder
contains a fully connected feed-forward network, which is applied to each position sepa-
rately and identically as described at (VASWANI et al., 2017). This consists of two linear
transformations with a ReLU activation in between.

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1.4)

While the linear transformations are the same across different positions, they use
different parameters from layer to layer. Another way of describing this is as two convo-
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lutions with kernel size 1. The dimensionality of input and output is 𝑑𝑚𝑜𝑑𝑒𝑙 = 512, and
the inner-layer has dimensionality 𝑑𝑓𝑓 = 2048.

1.1.1.6 Positional enconding

In order for the model to make use of the order of the sequence,(VASWANI et al.,
2017) explain the need to inject some information about the relative or absolute position
of the tokens in the sequence. To this end, it is added "positional encodings" to the input
embeddings at the bottoms of the encoder and decoder stacks. The positional encodings
have the same dimension 𝑑𝑚𝑜𝑑𝑒𝑙 as the embeddings, so that the two can be summed. There
are many choices of positional encodings, learned and fixed.

Figure 6 – Positional enconding Source: (JALAMMAR, 2019)

The transformer’s original positional encoding scheme has two key properties.
First, every position has a unique positional encoding, allowing the model to attend
to any given absolute position. Second, any relationship between two positions can be
modeled by an transform between their positional encodings. The positional encodings
take the form:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛( 𝑝𝑜𝑠

1000( 2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

)
) (1.5)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠( 𝑝𝑜𝑠

1000( 2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

)
) (1.6)

Where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension. That is, each dimension of
the positional encoding corresponds to a sinusoid. The wavelengths form a geometric
progression from 2𝜋 to 10000 · 2𝜋

(SHIV; QUIRK, 2019) explain that positional encodings address the power limita-
tions of bag-of-words representations by upgrading the bag of words to a bag of annotated
words. The transformer’s core attention mechanism is order-agnostic, treating keys as a
bag. The calculations performed on any given element of a sequence are entirely indepen-
dent of the order of the rest of that sequence in that layer; this leaves most of the work
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of exploiting positional information to the positional encodings showed by (VASWANI
et al., 2017), though decoder-side self-attention masking and auto-regression also play a
role.

1.2 PRE-TRAINING METHOD

(DEVLIN et al., 2019) explains the difference between Pre training BERT and
others models who used traditional left-to right or right to left language models to pre-
train. BERT use two unsupervised tasks: Masked Language Modeling and Next Sentence
Prediction(NSP).

1.2.1 Masked language modeling

In order to train a deep bidirectional representation, some percentage of the input
tokens is masked at random, and then predict those masked tokens.This procedure is
refered as a “masked LM” (MLM), it is often referred to as a Cloze task in the literature
(Taylor, 1953). In this case, the final hidden vectors corresponding to the mask tokens are
fed into an output softmax over the vocabulary, as in a standard LM.

(DEVLIN et al., 2019) show how this process allows the model to obtain a bidirec-
tional pre-trained model, a downside is that are created a mismatch between pre-training
and fine-tuning, since the [MASK] token does not appear during fine-tuning. To mitigate
this, words with the actual [MASK] token are not always replace “masked”. The training
data generator chooses 15% of the token positions at random for prediction. If the i-th
token is chosen, i-th token with the [MASK] token is replaced 80% of the time, a random
token 10% of the time and the unchanged i-th token 10% of the time. Then, 𝑇𝑖 will be
used to predict the original token with cross entropy loss.

1.2.2 Next sentence prediction

Many important downstream tasks such as Question Answering (QA) and Natu-
ral Language Inference (NLI) are based on understanding the relationship between two
sentences, which is not directly captured by language modeling. In order to train a model
that understands sentence relationships, the model is pre-trained for a binarized next
sentence prediction task that can be trivially generated from any monolingual corpus.
Specifically, when choosing the sentences A and B for each pre-training example, 50% of
the time B is the actual next sentence that follows A (labeled as IsNext), and 50% of the
time it is a random sentence from the corpus (labeled as NotNext) as shown at (DEVLIN
et al., 2019).
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The input embeddings are the sum of the tokens embeddings, the segmentation
embeddings and the position embeddings. In prior work, only sentence embeddings are
transferred to down-stream tasks, where BERT transfers all parameters to initialize end-
task model parameters.

Figure 7 – BERT input representation. Source:(DEVLIN et al., 2019)

1.3 Further pre-train
Training a model for a specific domain can benefit a fine-tuning subtask with a

specific vocabulary. As shown in articles, such as SciBERT, FinBERT, BioBERT and
ClinicalBERT, it is possible to use a pre-trained model in one language and feed it with
a non-labeled domain-specific database, using unsupervised deep learning method to spe-
cialize the model. This model can be fine-tuned for sub-tasks and as shown in the articles
cited above, achieving an improvement over the BERT model without advanced training
for the specific domain.

This process can be done in multiple ways, it is possible to train from scratch, us-
ing the domain-specific dataset to train all layers from the model, another method its to
train some layers from a pre-trained model and a pre-trained model can be be re-trained
using the domain-specific dataset, training all layers. SCIBERT and ClinicalBERT was
trained using the original code from BERT (BELTAGY; LO; COHAN, 2019) (HUANG;
ALTOSAAR; RANGANATH, 2019) and BioBERT used a pre-trained model in English
language to take vantage from weights and the vocabulary, it used a WordPiece Tokeniza-
tion, which mitigates the out-of-vocabulary issue. (LEE et al., 2019)

In all cases cited above, train a BERT using a domain-specific dataset showed a
better result, outperforming BERT for general purpose on down-tasks for the domain.

1.4 Fine-tuning models
As explained at (DEVLIN et al., 2019), Fine-tuning using BERT its a straightfor-

ward job. Since BERT uses transfer learning, it uses a pre-trained model as a start point.
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The self attention mechanism in the Transformer allows BERT to model many down-
stream tasks by choosing the right inputs and outputs. There are three ways to fine-tune
BERT models: training the entire architecture, Train some layers while freezing others
and Train some layers while freezing others and input a trained neural network at the end
of the last layer. For each task, its only necessary to plug in the task specific inputs and
outputs into BERT and fine-tune all the parameters end-to-end. At the output, the token
representations are fed into an output layer for token level tasks and the [CLS] represen-
tation is fed into an output layer for classification. Compared to pre-training, fine-tuning
is relatively inexpensive.

For NER fine-tuning, the dataset need to be labeled and treated to feed the model.
Considering a dataset structured as a table with 3 columns (number of sentence, word and
label), it is necessary to build a array of sentences, using words and labels. After the array
is built, it is transformed into tokens. From this new array, its applied both mechanisms
cited before, Masked Language Modeling and Next Sentence Prediction, each one of then
input a different special token to the array so the model can interpret. Finally it is possible
to feed the input into model and fine-tuning for the specific task.

1.5 Name Entity Recognition

Named Entity Recognition (NER) is a task in information extraction, consisting in
identifying and classifying information elements called named entity. Common categories
are person, organization, location, time and numerical expressions. NER systems are often
used as the first step in question answering, information retrieval, co-reference resolution,
topic modeling, etc.

This term was first cited at the 6𝑡ℎ Message Understanding Conference (MUC) in
1996. One of the first research papers in the field was presented by Lisa F. Rau (1991) at
the Seventh IEEE Conference on Artificial Intelligence Applications. Rau’s paper describes
a system to “extract and recognize [company] names”. Early NER systems were based on
handcrafted rules, lexicons, orthographic features and ontologies. These systems were
followed by NER systems based on feature-engineering and machine learning.

Despite being conceptually simple, NER is not an easy task. The category of
a named entity is highly dependent on textual semantics and its surrounding context.
Moreover, there are many definitions of named entity and evaluation criteria, introducing
evaluation complications.

(NADEAU; SEKINE, 2007) Shows that a good proportion of work in this task is
devoted to the study of English, but a larger proportion addresses language independence
and multilingualism problems. ConLL-2003 studied German in earlier works, Spanish and
Dutch are represented by ConLL-2002, Japanese has been studied in MUC-6 conference
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and Portuguese is studied in HAREM conference. There is datasets that focus on specific
tasks in a process called fine-tuning. For this paper, a dataset for NER will be used in the
legal scope, this dataset were build by AILAB 1. This dataset is composed by 66 law suits
documents from several Brazilian Courts, containing 318.073 tokens in total as shown at
(ARAUJO et al., 2020).

(SANTOS et al., 2019) presents a system for Portuguese NER proposed by the
Shared Task “Portuguese Named Entity Recognition and Relation Extraction Tasks (NerRe-
lIberLEF2019) ” on IberLEF 2019. It used a BiLSTM-CRF model that receives a compi-
lation of highly representational embeddings: FlairBBP + W2V-SKPG, achieving 74.64%
F1-score for general proposes at the Second HAREM using the CoNLL-2002 script to eval-
uate. (SANTOS; GUIMARAES, 2015) used as approach language-independent NER using
a DNN that employs word-and-character-level embeddings to perform sequential classifi-
cation, achieving a 82.213% F1 score on SPA CoNLL-2002 and 71.23% on HAREM eval-
uation corpus. (SOUZA; NOGUEIRA; LOTUFO, 2020b) outperforms the previous state-
of-the-art model (BiLSTMCRF+FlairBBP). It was trained three distinct models: Mul-
tilingual BERT-Base, Portuguese BERT-Base and Portuguese BERT-Large. it achieved
78.67% F1 score using Portuguese BERT-Large on total scenario and 83.24% for selective
scenario using CoNLL 2003 evaluation script and MiniHAREM test set.

1.6 Dataset
Iudicium Textum Dataset is a database generated through the scraping process

of Supreme Federal Court Agreements, where only digital judgments were considered,
ignoring those that were digitized for a better reading of the words and fewer errors
associated with the OCR process. Usually, a scanned document can misspell some words,
harming the vocabulary used to train the model. This dataset contains 50.928 law suits,
in between 2010 and 2018 and 20 gigabytes in PDF.

As shown in (SOUSA; FABRO, 2019), the main document used to compose the
database are documents resulting from the trial by higher courts of the Judiciary in Brazil,
the choice was made due to the very rigid and well-defined structure.

1.6.1 Extraction

(SOUSA; FABRO, 2019) explains that the decision of the documents to be ex-
tracted was based on the study of the quality of the texts, aiming at a better quality of
the data and not the quantity. A document whose digitization presents noise impairs the
reading of the text, making it harmful to the training of the model to use it, and may
create bias with words that do not exist in the Portuguese vocabulary.
1 UNB artificial intelligence research laboratory
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After scrapped, a text cleaning process was carried out, removing signatures, page
numbers, footnotes and headings. Some textual components have also been removed,
such as locations, dates, final and initial indication of the rapporteur and personal names.
However, such textual information can be retrieved in the database itself, since a copy of
the full text was kept for each document.
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2 Experiment

This experiment was separated into two stages: Further pre-train a bert-large-
portuguese-cased model using BERT and (SOUSA; FABRO, 2019) dataset and fine-tuning
this model for the subtask Named-entity recognition. For comparison purposes it was fine-
tuned a bert-large-portuguese-cased.

For the first stage, a BERT model was imported from Huggingface (SOUZA;
NOGUEIRA; LOTUFO, 2020a) and trained using (SOUSA; FABRO, 2019). All layers of
the model were trained using the methods described in BERT, masked language modeling
and next sentence prediction.

For the first step, it was used the default setup:

∙ evaluation_strategy = "epoch",

∙ learning_rate=2e-5,

∙ weight_decay=0.01

Some challenges in relation to this first stage were mainly due to the requirement
of high computational power. Such an experiment could have been developed using colabs,
however some configurations so that the GPU was not deallocated and the machine did not
go down were necessary, some configurations even as an auto-clicker to avoid inactivity.
In addition, the resource in time gave up the use of the platform, although it was free,
since the development time for the elaboration of the experiment and the study about it
would be key to the conclusion of the CBT in time. Therefore, it was requested to use
the GPU available by the AILAB laboratory for training the model.

Before starting training the model, it was necessary to perform a processing on the
database, unifying all available texts, which were in several folders separated by process
into a single text file. The database had both pdf and txt files, for this first moment
only text files were used ignoring PDF files, because they have to go through an optical
character recognition process before they can be used in the training.

There were some setbacks in this stage, since the training a unsupervised model
itself was expensive in time and after 2 days,a conflict in the version of transformers
packages occurred, generating a significant delay in this first stage. At the end it was
possible to export the trained model, unfortunately due to the high time required, it
was not possible to experiment training another model with other parameters in order to
analyze.
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Second it was used a specific data set, made available by the laboratory AILAB for
law suits texts in Portuguese/Brazil. There are 13 different labels, wich are: B-LOCAL,
I-PESSOA, I-LOCAL, I-LEGISLACAO, B-LEGISLACAO, O, B-ORGANIZACAO, I-
ORGANIZACAO, B-PESSOA, I-JURISPRUDENCIA, B-TEMPO, I-TEMPO and B-
JURISPRUDENCIA, where B stands for begin and I for inside the entity. For a example,
if the phrase "Meu nome é Victor Ciurlini e eu estudo na Universidade de Brasília", the
model will return Victor as B-PESSOA, Ciurlini as I-PESSOA, Universidade as B-LOCAL
and de Brasília I-LOCAL. note that if multiple words is used to describe a entity, all of
then will receive one label.

for this second step there was also a data processing, since for the BERT fine-
tuning requires a specific structure to take full advantage of all the resources of this
method, it was necessary to generate a new column assigning for each sentence an ID,
indicating for each word which sentence it belong. It was separate the text into sentence in
all ending points (commas, periods, etc) and for each sentence a unique ordered ID. The
individual words were separated from the sentences and assigned the ID corresponding to
the sentence that word belonged to. at the end of the procedure, the database was in the
following format:

Word Tag Sentence #
STJ B-ORGANIZACAO 8
, O 8
REsp B-JURISPRUDENCIA 8
n I-JURISPRUDENCIA 8
. I-JURISPRUDENCIA 8
1694984/MS I-JURISPRUDENCIA 8
, O 8
Rel O 8
. O 8
Ministro O 8
LUIS B-PESSOA 8
FELIPE I-PESSOA 8
SALOMÃO I-PESSOA 8
, O 8
QUARTA B-ORGANIZACAO 8
TURMA I-ORGANIZACAO 8
, O 8
julgado O 8
em O 8
14/11/2017 B-TEMPO 8
, O 8
DJe O 8
01/02/2018 B-TEMPO 8

Table 1 – Fine-tuning table for NER
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Some pipelines for fine-tuning were made available by Huggingface, however it was
developed a algorithm from scratch, both for the deeper understanding of the method-
ology, as well as for greater control of the steps, in order to visualize the entrance and
output for each step until complete fine-tuning of the model. This choice allowed to gen-
erate metrics for future analysis.

For the Optmizer definition, a pipeline was developed in order to test a greater
combination of parameters, noting results so that the way the changes affect the F1-
score of the model was analyzed. 5 values were tested for each learning rate and epsilon
parameter and then iterating between them, a total of 25 tests. the choice of the epoch
number was made based on an experiment, where it was noted that in 4 generations,
the loss in validation start to increase, with 5 continuing to grow and with 2 it did not
converge to the best model, so 3 epoch were frozen for all experiments.

After the experiment, graphs were generated in order to better analyze the results
of each experiment, analyzing the general f1-score and each class for the subtask. These
visualizations enabled a deeper analysis of the model, understanding where the model
failed and where it can improve its performance.

Unlike those models cited above, it was used 500.000 epochs, avoiding overfitting
the model. The further trained took 96 hours, using a GPU GP102-TITAN Xp, with 33
MHz clock and 64 bits width (made available by the laboratory AILAB)

For the second step, it was used a algorithm were developed in google colabs plat-
form. The algorithm is descriptive, showing step-by-step of the NER fine-tuning pro-
cedure. It will be fine-tuned two models, a bert-large-portuguese-cased and the further
pre-trained model with domain-specific dataset.

aiming for the best possible model, a logic was developed in the training stage that
performs the variation of 2 parameters within the AdamW Optmizer, the loss rate and
epsilon. 5 values were tested for each parameter, whose values are close to the value used
as the default and a combination was made between them to contemplate all possible
pairs, totaling 25 tests.

For evaluation and comparison between those two models, it was used the metric
F1-SCORE, since that it has a balanced relationship between precision and recall.

𝐹1 = 𝑡𝑝

𝑡𝑝 + 1/2(𝑓𝑝 − 𝑓𝑛) (2.1)

where

∙ tp: True Positive

∙ fp: False Positive
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∙ fn: False negative
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3 RESULTS AND DISCUSSION

All fine-tuning and training data metrics were exported to generate graphical vi-
sualizations in order to allow a better analysis of the results obtained.

# Loss
Rate epsilon F1 Score

Total
F1 Score for each entity

jurisprudencia legislacao local organizacao pessoa tempo
1 0.00001 1.000e-06 0.941592 0.926293 0.915361 0.935574 0.913793 0.969450 0.976092
2 0.00001 1.000e-07 0.944528 0.912752 0.935433 0.903409 0.917981 0.968528 0.994172
3 0.00001 1.000e-08 0.941594 0.903297 0.922118 0.915068 0.915682 0.970134 0.994172
4 0.00001 1.000e-09 0.951529 0.930693 0.946203 0.935211 0.927626 0.961224 0.993344
5 0.00001 1.000e-10 0.949785 0.932018 0.927673 0.933718 0.928627 0.962360 0.992519
6 0.00002 1.000e-06 0.947053 0.920177 0.944532 0.913295 0.925955 0.960082 0.991694
7 0.00002 1.000e-07 0.950587 0.931718 0.929134 0.927954 0.930124 0.966361 0.993344
8 0.00002 1.000e-08 0.950887 0.933775 0.939873 0.916427 0.926905 0.966223 0.993367
9 0.00002 1.000e-09 0.945713 0.914607 0.925984 0.916427 0.925117 0.962360 0.995844
10 0.00002 1.000e-10 0.947782 0.929360 0.919431 0.913793 0.927287 0.962963 0.995844
11 0.00003 1.000e-06 0.951369 0.942350 0.918083 0.923077 0.927514 0.968335 0.995844
12 0.00003 1.000e-07 0.952595 0.942350 0.923567 0.922190 0.928739 0.969325 0.995844
13 0.00003 1.000e-08 0.951882 0.942605 0.939683 0.922636 0.924647 0.962206 0.994172
14 0.00003 1.000e-09 0.943262 0.937294 0.916535 0.911111 0.912941 0.954918 0.994172
15 0.00003 1.000e-10 0.946719 0.943522 0.906832 0.906077 0.926366 0.958848 0.995844
16 0.00004 1.000e-06 0.947094 0.933921 0.925750 0.938202 0.913887 0.960082 0.995844
17 0.00004 1.000e-07 0.947211 0.934950 0.924765 0.916201 0.918189 0.962051 0.995844
18 0.00004 1.000e-08 0.951261 0.935094 0.915361 0.947977 0.929577 0.965306 0.995008
19 0.00004 1.000e-09 0.950562 0.935236 0.910236 0.934844 0,932912 0.967078 0.993333
20 0.00004 1.000e-10 0.945116 0.935841 0.920188 0.924370 0.907137 0.969072 0.993333
21 0.00005 1.000e-06 0.945244 0.936123 0.914557 0.916667 0.922231 0.956967 0.993333
22 0.00005 1.000e-07 0.941702 0.937294 0.903125 0.923944 0.902326 0.962887 0.995844
23 0.00005 1.000e-08 0.947113 0.943396 0.909091 0.926554 0.917187 0.964029 0.995844
24 0.00005 1.000e-09 0.946937 0.937017 0.919937 0.923513 0.912335 0.967413 0.995844
25 0.00005 1.000e-10 0.947901 0.935982 0.937799 0.918768 0.918448 0.959184 0.992506

Table 2 – Results table fine-tuning BertBR

As shown above, the best model found was using 𝑙𝑜𝑠𝑠𝑟𝑎𝑡𝑒 = 0.00003 and 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 =
1.10−7 as parameter for AdamW optimizer, which achieved a general F1-score of 0.9525.
for each entity, the best f1-score its found as described above.
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Figure 8 – F1-score evolution per experiment

For visualization purposes, table 2 was presented in a graph, and it can be perceived
how the alteration of the parameters affect the results in the fine tuning step in the final
f1-score of each experiment. This F1-score is a metric generated from other f1-scores
generated by the precision and calculated recall of the individual classification of each
class of named entity.

Figure 9 – F1-score evolution per experiment per class
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Analyzing the graph 3 , it is noted that the time class is the most constant during
training, keeping its f1-score above 98%. This is due to the fact that its specific structure
with limited formats for identification, having less chance of being confused with other
possible classes. It is also noted that, even they have an acceptable f1-score, the identifi-
cation of the jurisprudence, legislation, organization and local classes presents a greater
challenge for the model.

Figure 10 – F1-score evolution per epoch of the best model

Analyzing the results of experiment 12, which achieved the best f1-score and is
therefore considered the best model, we noticed a significant improvement from the first
generation to the second and a less attenuated improvement from the second generation
to the third.
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Figure 11 – F1-score evolution per epoch per class of the best model

Regarding the individual analysis of the classes, it is noted that the result shown
for all models is reflected in the analysis of this specific model. It is observed that for
the time class, the model performs with an f1-score of 99%. Such value would generate
a suspicion if this value were referred to accuracy, which does not consider the miss-
classification in this class, however for f1-score, this value represents the high success rate
in the classification along with the low miss-classification.

Labels Precision Recall F1-score
JURISPRUDENCIA 0.96 0.91 0.94
LEGISLACAO 0.99 0.88 0.91
LOCAL 0.98 0.92 0.92
ORGANIZACAO 0.98 0.91 0.92
PESSOA 0.95 0.96 0.96
TEMPO 0.96 0.99 0.99

Table 3 – BertBR metrics
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Labels precision recall f1-score
JURISPRUDENCIA 0.95 0.91 0.93
LEGISLACAO 0.93 0.93 0.93
LOCAL 0.89 0.88 0.89
ORGANIZACAO 0.92 0.89 0.90
PESSOA 0.99 0.98 0.98
TEMPO 0.99 0.99 0.99

Table 4 – large-bert-model metrics

Figure 12 – Confusion matrix BertBR

Analyzing the confusion matrix, it is possible to observe the classes in which the
model miss-classificated. In BertBR model, it is noted that in 2% of cases, it classified
a word as "LOCAL", but when it was "JURISPRUDENCIA". It can also be noted that
the highest miss-classification is 3% and belongs to the "person-time" and "person-object"
label conflicts. When observing the column of objects, a pattern occurs where it classifies
as an object words that when he ranks without a good accuracy, which is in accordance
with the training, since most of the training classification labels are object.
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Figure 13 – Confusion matrix large-bert-cased

Analyzing the confusion matrix of the large-bert-cased model, it is possible to
notice that miss-classification reaches 9% and is in the same category in which the BertBR
model missed. This shows that in the training base there is a close relationship between
these two classes, even though visibly the two classes do not seem to be related, even if for
the humans it is not possible to perceive the similarity, the models finds some difficulty
in effectively differentiating them. this scenario can be suppressed with a larger training
base.

Comparing the generated models, it can be seen that bert-large-portuguese-cased
overcome BertBR for PESSOA and ORGANIZACAO labels. This is due to the type of
word that describes this labels, where bert-large-portuguese-cased can efficiently distin-
guish it from the others. It is also observed that for the specific law suits terms scenario,
the model trained using further training has a greater capacity to distinguish classes
correctly.
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4 CONCLUSION

In this paper, it was implemented a BERT specialized for law suits domain by
further training a bert-large-portuguese-cased using a law suits corpus. This model was
fine-tuned for Named entity recognition for comparison purposes and achieved a state-of-
the-art score, overcoming the latest model for this specific scenario.

The BertBR showed a improvement performance than PORTUGUESE-BERT,
with a 94.45% F1-Score against 95.25%. showing similar results demonstrating results
that resemble those shown previously.

This result corroborates with the premises pointed out by the studies that followed
the same line, a trained model using a specific domain dataset demonstrates a better
performance than one trained for general purpose, making it a valid technique to create
models that reach state of the art for sub tasks.

Considering the resources spent, both in time (development and training) and
computational resources, it is necessary to assess whether this performance gain justifies
the resources cited above. For some applications it is in the developer interest to aim for
the highest score possible application, however for simpler applications a model trained
from BERT-large-cased is enough and can be developed, trained, exported and deployed
in less than 1 day.

The experience of creating this new model has brought a lot of learning through
extensive research into the architecture of BERT, as well as methodologies for improving
unsupervised learning models. The study of architecture transformers and the learning
transfer methodology shows why BERT and other models that use it are at the forefront
in research and markets, due to its flexibility and scalability.

For future research, it is possible to analyze more deeply each class of named entity,
looking for patterns in the miss-classifications and alternatives overcome the peculiarities
found. It is also possible to perform the further training process again by changing the
training parameters.
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