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Abstract: The recent trend of automated machine learning (AutoML) has been driving further
significant technological innovation in the application of artificial intelligence from its automated
algorithm selection and hyperparameter optimization of the deployable pipeline model for unrav-
eling substance problems. However, a current knowledge gap lies in the integration of AutoML
technology and unmanned aircraft systems (UAS) within image-based data classification tasks.
Therefore, we employed a state-of-the-art (SOTA) and completely open-source AutoML framework,
Auto-sklearn, which was constructed based on one of the most widely used ML systems: Scikit-learn.
It was combined with two novel AutoML visualization tools to focus particularly on the recognition
and adoption of UAS-derived multispectral vegetation indices (VI) data across a diverse range of
agricultural management practices (AMP). These include soil tillage methods (STM), cultivation
methods (CM), and manure application (MA), and are under the four-crop combination fields (i.e.,
red clover-grass mixture, spring wheat, pea-oat mixture, and spring barley). Furthermore, they have
currently not been efficiently examined and accessible parameters in UAS applications are absent for
them. We conducted the comparison of AutoML performance using three other common machine
learning classifiers, namely Random Forest (RF), support vector machine (SVM), and artificial neural
network (ANN). The results showed AutoML achieved the highest overall classification accuracy
numbers after 1200 s of calculation. RF yielded the second-best classification accuracy, and SVM and
ANN were revealed to be less capable among some of the given datasets. Regarding the classification
of AMPs, the best recognized period for data capture occurred in the crop vegetative growth stage
(in May). The results demonstrated that CM yielded the best performance in terms of classification,
followed by MA and STM. Our framework presents new insights into plant–environment interactions
with capable classification capabilities. It further illustrated the automatic system would become an
important tool in furthering the understanding for future sustainable smart farming and field-based
crop phenotyping research across a diverse range of agricultural environmental assessment and
management applications.

Keywords: unmanned aircraft system; automated machine learning; agricultural management
practices; image classification; precision agriculture; variety performance trials; crop breeding; crop
phenotyping; agriculture decision-making
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1. Introduction

Unmanned Aerial Systems (UAS) are considered one of the most significant tech-
nologies for the further development of precision agriculture (PA) [1] and sustainable
smart farming [2]. UAS are frequently employed for the surveillance of cultivated lands,
providing effective solutions for accurate decision support, increasing farming efficiency,
enhancing profitability, reducing environmental impacts, and driving further technological
innovation [1,3,4]. UAS equipped with various novel sensor types can be exploited to
improve agreement and synergy between imagery and field reference data. In addition,
these systems can also identify the regional monitoring requirements, such as disease
detection, growth observation, yield estimation, and weed management [5,6]. In PA, vege-
tation indices (VI) are one of the most widely used outputs from UAS imagery applications
and assist in the delivery of dependable spatial and temporal information across multiple
agricultural activities. VIs typically constitute mathematical combinations of individual or
groups of bands from the electromagnetic spectrum and are intended to minimize the effect
of external confounding factors while enhancing the detectability of vegetation character-
istics [5,7]. Currently, UAS-based remote sensing techniques offer a notable contribution
in field-based crop phenotyping investigations [8]. Immediate and accurate acquisition
of crop phenotypic information in various agri-environments supports the exploration
of genetic–environmental interactions from critical production traits to determine the in-
heritance information and expression patterns to increase crop yields and tolerance to
abiotic/biotic stresses [9,10]. However, it is crucial to take into account that field conditions
are notoriously diverse compared to experimental environments, such as greenhouses or
laboratories. Moreover, the outputs and findings collected from controlled environments
can be difficult to extrapolate onto field settings and can impair the interpretation and
application of research schemes [10].

Therefore, a common approach when identifying multiple crop management proce-
dures and their interaction with the environment involves a well-conducted randomized
experimental design, in which different agricultural management practices (AMP) are
imposed on crops [11]. Variety performance trials (VPT) are a valuable method to address
this issue. VPTs are regularly implemented in AMP research activities to improve the
understanding of diverse systems and develop environmental management recommenda-
tions for variety selection [12,13]. Concerning the AMPs trial criteria chosen and the recent
growth in environmental protection awareness under the concepts of sustainable agricul-
ture, the flexibility of environmentally friendly cultivation methods, such as reduced tillage
and the application of various minerals and organic fertilizers, are being developed [14].
For example, tillage reduction is an essential characteristic of agricultural management that
changes the soil either physically, chemically, mechanically, or biologically to create the
appropriate conditions for seedling sprouting and healthy plant growth [15,16], whereas or-
ganic additions, such as manure or organic fertilizers, are widely used methods to enhance
soil fertility [17]. Studying VPT datasets, however, provides unique analysis problems
due to the structure, nature, and husbandry variations of each trial. The evaluation of
differences in management practices could potentially be confounded due to their nested
structure (e.g., as opposed to controlled replicated treatments) [18]. These AMPs have been
increasingly proposed as an ecological method involving nutrient management, increased
water holding capacity, and recoupled C and N cycling in agricultural ecosystems to im-
prove sustainability [19,20]. Although the specification of weather, soil, and management
practices in current cropping systems are vital for robust model simulation and evaluation,
these data are usually inaccessible for most cropping systems with adequate geospatial
detail and lack of ability to replicate measured yields of field crops that received the best
possible AMPs across a broad range of environments [21]. Recently, the application of UAS
combined with popular machine learning (ML) systems drives a significant contribution to
VPT crop biomass estimation. These results deepen the possibility of applying machine
learning technology to diverse and complex AMP farmland classification applications.
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Incorporating multisensory computing science approaches provides a wide range of
valuable information for the expansion of precision farming practices [22]. ML techniques
may not provide a universal solution in precision farming; however, these approaches
enable better determination in verisimilitude scenarios with minimum human intervention.
They provide not only a powerful and flexible framework for decision-making but also
facilitate the integration of expert knowledge into the PA system [23]. Complexities become
a drawback in VPTs since desired models need to contain training and testing databases
and are often restricted by the number of pure line seeds, various AMPs (fertility test,
tillage category, disease resistance, etc.), and confined areas with small sampling sizes to
compensate for the labor-intensive fieldwork. Likewise, environmental factor interventions
enhance obstacles in parameter selection in ML systems owing to the differences in location,
climate, and soil properties [24]. Occasionally, even the same crop genotypes may not
express similar spectral characteristics in UAS, which renders the models invalid. If the
reference parameters exist to formulate relationship functions, the genuine implementation
results are frequently unsatisfactory owing to mismatches between concepts and realities.

As an alternative, the innovative concept of automated machine learning (AutoML)
has arisen to reduce these data-driven costs while becoming a significant topic as the expo-
nential growth of computing power continues [25]. AutoML is defined as a combination of
algorithm selection and hyperparameter optimization, which aims to recognize the mixture
of algorithm components with the best (cross-validated) performance by covering from raw
datasets to the deployable pipeline ML model to unravel substance problems [26]. AutoML
is built to decrease the time demands of data scientists and save time by empowering spe-
cialists to build ML applications automatically without requiring widespread knowledge
of ML [27] and entails the automated construction of an ML pipeline based on limited
computational constraints [28]. Recent advancements in AutoML systems, such as Auto-
WEKA [29] and Auto-sklearn, [30] are recommended as an artificial intelligence-based
solution for the expanding challenge of ML applications by combining a highly parametric
ML framework with a Bayesian optimization method for a given dataset, significantly
streamlining these steps for non-experts [30]. The standard procedure of ML modeling
involves data pre-processing, feature engineering, feature extraction, feature selection,
algorithm selection, and hyperparameter optimization to increase the model’s predictive
performance [31].

Although AutoML has promoted great achievements in computer science and recently
UAS applications, for example, the approximation of root-zone soil moisture [32] by
AutoML interface H2O AutoML [33] and RGB-based crop phenotyping [34] by neural
architecture search system AutoKeras [35], it has not been widely applied in multispectral
image analysis. A current gap persists in the knowledge base for multispectral-based AMP
analysis and agriculture land use studies in addition to the further understanding the
potential for remotely sensed solutions to field-based and multifunctional platforms for the
demands of plant phenotyping and smart farming management. To solve this knowledge
gap, this study employed a state-of-the-art (SOTA) and completely open-source AutoML
system, Auto-sklearn [30], which is constructed based on one of the most widely used ML
systems, Scikit-learn, in the scientific Python community [36], combined with two novel
AutoML visualization tools to explore UAS-derived multispectral vegetation indices (VI)
as an example for handling the AMPs classification tasks.

More precisely, the aims of this study were to (1) build an AutoML framework for
UAS classification tasks; (2) explore the applicability of UAS sensors to recognize multiple
AMP categories, namely soil tillage methods (STM), cultivation methods (CM), and manure
application (MA), which have currently not been efficiently examined and are absent of
accessible parameters in both UAS and ML fields; and (3) compare AutoML’s ability using
different ML classifiers to identify image-based AMPs for diverse crop categories and
its appropriate growth stages. To our knowledge, this paper is the first study to use an
AutoML system with UAS -derived multispectral VIs, for the agricultural classification task.
Moreover, this paper is the first to provide a novel AutoML framework, across multiple
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AMP activities, and present new insights into UAS and ML optimization methods for
future PA and crop phenotyping research.

2. Materials and Methods
2.1. Study Area and Experiment Layout

This study commenced at the Agricultural Research Centre (ARC) in Kuusiku
(58◦58′52.7”N 24◦42′59.1”E), Estonia (Figure 1a). The experimental area used in this
study covered 226 hectares, of which the 2.87-hectares variety performance trial (VPT)
area consists of two soil types: Calcaric Cambisol and Calcaric-Leptic Regosol [37]. The
experimental layout consisted of four types of common crop and their regular combi-
nations in Estonia, i.e., Field 1: red clover 75% (Trifolium pratense L.) with grass 25%
(Festuca pratensis) (RC + G). Field 2: spring wheat (SW), Field 3: pea and oat mixture
(P + O), and Field 4: spring barley with under-sowing red clover (SB + RC) in 2019
(Figure 1b). This experimental design was developed to facilitate the understanding of
the physiological conditions and yield performance capabilities of the chosen varieties
and their combinations under three types of AMPs. To assess the UAS-based AMP
detection capacity, the experiment was put together with three principal experimental
factors (Figure 1c), which included: (1) soil tillage methods (STM), considering reduced
tillage (R) (8–10 cm), ploughing (P) at a depth traditionally used in conventional tillage
(18–20 cm), and disking (DP) (8–10 cm) as treatments; (2) cultivation methods (CM),
considering conventional farming with mineral fertilizer application (Cmin+), organic
farming with mineral fertilizer application (Omin+), and organic farming without min-
eral fertilizer (Omin−); and (3) manure applications (MA). Each field comprised 72 plots,
which amounted to a total of 288 plots sampled within our study area.

2.2. UAS Image Acquisition

Figure 2 shows the workflow utilized to combine the UAS-based image collection,
processing, sampling, and AutoML framework modified from [30]. A fixed-wing UAS
eBee Plus (Sensefly Inc., Cheseaux–Lausane, Switzerland) equipped with GNSS post-
processed kinematic (PPK) capabilities was deployed with a Parrot Sequoia multispectral
sensor (version 1.2.1, Parrot, Paris, France). This UAS platform and sensor were used for
image acquisition and captured imagery across four spectral bands: green (530–570 nm),
red (640–680 nm), red-edge (730–740 nm), and near-infrared (770–810 nm). To facilitate
seasonal image processing and AMP recognition, UAS images were captured over three
timeslots in 2019 at the Kuusiku Research Center: 23 April (temperature: 16 ◦C, wind
speed: 11 km h−1 S, sunny), 30 May (temperature: 19 ◦C, wind speed: 12 km h−1 WSW,
overcast), and 10 July (temperature 20 ◦C, wind speed: 3.6 km h−1 NW, sun with minor
cloud cover). The weather conditions in the 6 days prior to the image acquisition are
displayed in Supplementary Figure S1. The originally designed flight time was 37 min
and 30 s per task over an area of 65.8 hectares (with areas of interest 2.87 hectares in this
study). However, depending on the weather conditions and wind speed of the day, the
eBee flight time might have been slightly different from the number of battery replacements
(the endurance of one battery was approximately 20–30 min). This data capture protocol
was designed to represent the reflectance spectrum characteristics of crops during different
growth stages. Flight-line overlap was set using a frontal image overlap of 80% and a
lateral overlap of 75% with a target altitude of 120 m above ground level (AGL), resulting
in a ground sampling distance (GSD) of 10 cm per pixel. All image data capture procedures
were undertaken between the hours of 10 a.m. to 2 p.m. to guarantee the consistency of
photo collection quality and to minimize lateral shading of crops within the VPT fields. An
Airinov radiometric calibration target (Airinov, Paris, France) and a one-point calibration
method [38] were used to enable post-flight radiometric correction of the multispectral
imagery before each flight to remove dark current and lens vignetting effects while post-
processing the image [39].



Remote Sens. 2021, 13, 3190 5 of 24Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 1. (a) The study area located at the Kuusiku agriculture center, Estonia. (b) The RGB 
orthomosaic image from 30 May of the experimental layout fields with four crop types, i.e., (F1. (RC 
+ G), F2. (SW), Field 3. (PO), and Field 4. (SB + RC)) (c) The VPT with three agricultural management 
practices (AMP): cultivation method (CM) with three levels (Cmin+, NPK 5-10-25 291 kg ha−1 (N-14 
kg ha−1, P-13 kg ha−1, and K-60 kg ha−1); Cmin-, mineral fertilizer 240 kg ha−1 (K-60 kg ha−1, S-41 kg 
ha−1, M-14 kg ha−1); and Omin-), manure application (MA) with two levels (M+, manure 30,000 kg 
ha−1 (N-234 kg ha−1, P-20 kg ha−1, and K-216 kg ha−1), and M-), and soil tillage method (STM) with 
three levels (DP, P, and R) were conducted in this study. 

2.2. UAS Image Acquisition 
Figure 2 shows the workflow utilized to combine the UAS-based image collection, 

processing, sampling, and AutoML framework modified from [30]. A fixed-wing UAS 
eBee Plus (Sensefly Inc., Cheseaux–Lausane, Switzerland) equipped with GNSS post-
processed kinematic (PPK) capabilities was deployed with a Parrot Sequoia multispectral 
sensor (version 1.2.1, Parrot, Paris, France). This UAS platform and sensor were used for 
image acquisition and captured imagery across four spectral bands: green (530–570 nm), 
red (640–680 nm), red-edge (730–740 nm), and near-infrared (770–810 nm). To facilitate 
seasonal image processing and AMP recognition, UAS images were captured over three 
timeslots in 2019 at the Kuusiku Research Center: 23 April (temperature: 16 °C, wind 
speed: 11 km h−1 S, sunny), 30 May (temperature: 19 °C, wind speed: 12 km h−1 WSW, 
overcast), and 10 July (temperature 20 °C, wind speed: 3.6 km h−1 NW, sun with minor 
cloud cover). The weather conditions in the 6 days prior to the image acquisition are 
displayed in Supplementary Figure S1. The originally designed flight time was 37 min 

Figure 1. (a) The study area located at the Kuusiku agriculture center, Estonia. (b) The RGB
orthomosaic image from 30 May of the experimental layout fields with four crop types, i.e., (F1.
(RC + G), F2. (SW), Field 3. (PO), and Field 4. (SB + RC)) (c) The VPT with three agricultural
management practices (AMP): cultivation method (CM) with three levels (Cmin+, NPK 5-10-25
291 kg ha−1 (N-14 kg ha−1, P-13 kg ha−1, and K-60 kg ha−1); Cmin−, mineral fertilizer 240 kg ha−1

(K-60 kg ha−1, S-41 kg ha−1, M-14 kg ha−1); and Omin−), manure application (MA) with two levels
(M+, manure 30,000 kg ha−1 (N-234 kg ha−1, P-20 kg ha−1, and K-216 kg ha−1), and M−), and soil
tillage method (STM) with three levels (DP, P, and R) were conducted in this study.
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Figure 2. The flowchart of the UAS and AutoML framework in this study. (a) The UAS framework, where (a1) Three
types of AMPs were processed for four crop categories. (a2) The eBee plus with Parrot Sequoia multispectral sensor with
the time series flight (April, May, and July) to collect spectral information from different crop periods. (a3) UAS image
post-processed in SenseFly eMotion with PPK corrections and orthomosaics in Pix4D. (a4) 19 VIs calculation, segmentation
and corresponding plot digital number (DN) extraction for AutoML modeling. (b) The Auto-sklearn framework constructed
ML pipelines automatically, which were proposed by the Bayesian optimization method with warm-started meta-learning
and joint with post hoc ensemble building approach to achieve robust performance (adapted from [30,40]). (c) Yellowbrick
visualization package was conducted for AutoML model evaluation. (d) PipelineProfiler was conducted for AutoML
interactive pipelines visualization tool allows the examination of the solution space of end-to-end ML pipelines.

2.3. UAS Image Processing

For pre-processing UAS images, we used SenseFly eMotion 3, applying differential
correction data (RINEX) provided by the GNSS CORS (Continuously Operating Reference
Station) of Estonia for post-processing kinematics (PPK) corrections [41]. PPK was reported
to increase the higher horizontal and vertical geotagging accuracy when compared to
ground control points (GCP) [42,43]. In our study, the UAS image corrections were de-
creased from 5 m error to under 0.06 m (less than one-pixel size). Pix4D v.4.3.31® (Pix4D
SA, 1015 Lausanne, Switzerland) software was utilized to process and radiometrically
correct (calibrated according to the variances between the measured value and target actual
reflectance [38]) the imagery, as well as to generate the multispectral orthomosaics. These
images were subsequently clipped with a one-meter inward buffer zone from each plot to
represent only the extent of the area of the VPTs.

2.4. Vegetation Indices Calculation

In this study, nineteen VIs were chosen and calculated to address the issues of het-
erogeneous crop classes, soil types, and the current absence of valuable UAS referenced
parameters in AMPs (see Table 1). More specifically, Datt4, SRre, NDVIre were selected
due to their positive correlation with chlorophyll content [44–46]; MTVI, MSR, MSRre,
RVIS, WDRVI [47–51] are known to be sensitive to variations in leaf area index (LAI); GDVI
was used for better lower vegetal land cover estimates and characterization [52]; GIPVI
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was calculated for its potential in grassland communities detection [53]; GNDVI, NDVI,
RTVIcore were utilized due to their high performance in crop above-ground biomass (AGB)
estimation [54,55]; GDI, GRDI, and RDVI were included due to their ability to compensate
for NDVI saturation problems, and the potential effects of soil and sun viewing geom-
etry [56,57]; GRVI was applied for its sensitivity to soil moisture [58], SR for strongly
correlated with comprehensive growth index (CGI) [59] and REGVI was included for its
sensitivity to deviations in senescence and vegetation stress [60].

Table 1. Descriptions and formulas of multispectral UAS derived VIs used in this study. The ρ R refers to the reflectance of
the red band, ρ G refers to the reflectance of the green band, ρ REG refers to the reflectance of the red edge, and ρ NIR refers
to the reflectance of the near-infrared.

Vegetation Index Equation Reference

Datt4 ρ R/(ρ G * ρ REG) [61]
Green Infrared Percentage Vegetation Index (GIPVI) ρ NIR/(ρ NIR + ρ G) [62]

Green Normalized Difference Vegetation Index (GNDVI) (ρ NIR − ρ G)/(NIR + ρ G) [63]
Green Difference Vegetation Index (GDVI) ρ NIR − ρ G [64]

Green Ration Vegetation Index (GRVI) ρ NIR/ρ G [64]
Green Difference Index (GDI) ρ NIR − ρ R + ρ G [65]

Green Red Difference Index (GRDI) (ρ G − ρ R)/(ρ G + ρ R) [65]
Normalized Difference Vegetation Index (NDVI) (ρ NIR − ρ R)/(ρ NIR + ρ R) [66]

Red-Edge Normalized Difference Vegetation Index
(NDVIre) (ρ NIR − ρ REG)/(ρ NIR + ρ REG) [46]

Red-Edge Simple Ratio (SRre) ρ NIR/ρ REG [46]
Renormalized Difference Vegetation Index (RDVI) ((ρ NIR − ρ R)/((ρ NIR + ρ R) ** (0.5))) [67]

Red-Edge Modified Simple Ratio (MSRre) ((ρ NIR − ρ REG) − 1)/(((ρ NIR + ρ REG) ** (0.5))
+ 1) [49]

Red-Edge Triangular Vegetation Index (RTVIcore) (100 * (ρ NIR − ρ REG)) − (10 * (ρ NIR − ρ G)) [55]
Red-Edge Vegetation Stress Index (RVSI) ((ρ R + ρ NIR)/2) − ρ REG [50]

Red-Edge Greenness Vegetation Index (REGVI) (ρ REG − ρ G)/(ρ REG + ρ G) [68]
Simple Ratio (SR) ρ NIR/ρ R [69]

Modified Simple Ratio (MSR) ((ρ NIR − ρ R) − 1)/(((NIR + ρ R) ** (0.5)) + 1) [48]
Modified Triangular Vegetation Index (MTVI) 1.2 * ((1.2 * (ρ NIR − ρ G)) − (2.5 * (ρ R − ρ G))) [47]

Wide Dynamic Range Vegetation Index (WDRVI) (((0.2 * ρ NIR) − ρ R)/((0.2 * ρ NIR) + ρ R)) [70]

2.5. Principal Component Analysis and VI Extraction

In this study, principal component analysis (PCA) was used to decrease the dimension-
ality of data through the calculation of a series of new variables, or principal components,
through linear combinations of the original parameters [71]. PCA was employed as an
exploratory data analysis (EDA) technique to describe the relationship between three
different agricultural management types (CM, MA, and STM) and multispectral UAS-VIs.
The PCA was used for testing whether or not it could improve the classification efficiency
of AMPs. PCA was conducted using R version 4.0.2 [72] and the FactoMineR package [73].
For extraction of the digital number (DN) values from each VIs of four experimental fields
(72 plots in each field), a total of 288 plots were digitized in ArcGIS Pro 2.6.3 [74]. As stated
previously, a one-meter buffer zone was extended inwards from each plot boundary to
address potential edge effects from agricultural management, and the average VIs were
isolated and calculated. These extracted values were further used in this study when
building ML algorithms and for AutoML assessment and evaluation.

2.6. AutoML Modeling with Auto-Sklearn

Auto-sklearn [30], a robust and efficient AutoML system first introduced in 2015 and
upgraded in 2020 [75], was utilized in this study. Auto-sklearn is developed on the Python
Scikit-learn machine learning package. It uses 15 classifiers, 14 feature pre-processing meth-
ods, and four data pre-processing methods, giving rise to a structured hypothesis space
with 110 hyperparameters [76]. It improves on existing AutoML methods by automatically
considering the previous performance on similar datasets, and by constructing ensembles
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from the models evaluated during the optimization process. At its core, this method com-
bines the highly parametric ML framework with automatically constructed ML pipelines
suggested by the Bayesian optimization method sequential model-based algorithm con-
figuration (SMAC) [77]. SMAC can automatically construct ML pipelines that include
feature selection (i.e., removing insignificant features), transformation (i.e., dimensionality
reduction), classifier selection comprising support vector machines (SVM) [78], Random
Forest (RF) [79], and other algorithms, hyperparameter optimization, etc. Subsequently, it
then utilizes a Random Forest technique for swift cross-validation by evaluating one-fold
at a time, while at the same time discarding poor-performing hyperparameter settings
during early stages. It achieves competitive classification accuracy, in addition to novel
pipeline operators that significantly increase classification accuracy on the datasets [80].
During the feature selection stage, any highly correlated VIs were removed to eradicate the
influence of collinearity. This step was omitted here since Auto-sklearn deals with the low
dimensional optimization problems [81].

In this study, all calculations were done in the open-source operating system LINUX
with Intel Core i5-1035G1 CPU (1.00 GHz) and 16 GB RAM. For the AutoML framework, the
steps described in [30] were followed, with some modifications for this study (Figure 2b).
First, the system used a supplementary approach of extensively applied meta-learning
methods to train machine learning models over statistical attributes of datasets and esti-
mated the parameter of models that yielded the best precision [82]. Second, the system
automatically built ensembles of the models considered by Bayesian optimization. Third,
the system constructed a highly parameterized ML framework from high-performing
classifiers and pre-processors implemented within the ML framework. Finally, the system
performed broad empirical analysis using a diverse collection of datasets to demonstrate
the resulting Auto-sklearn system outperformed preceding AutoML methods. The major
AutoML parameter settings of this study are described in Table 2. Due to computational
resource constraints and to test the efficiency of AutoML, we first limited the CPU time for
each run to 60 s and the running time for evaluating a single model to 10 s as an example
of rapid model selection. Subsequently, we then used a total of 1200 s with a 10-s single
model computing time as a representative of the better processing of AutoML models. The
data were analyzed separately according to the four crop fields (F1–F4), with each field
containing 72 plots (n = 72) with a split in the training site and validation site (0.6/0.4) for
classification modeling.

Table 2. The AutoML main parameters and descriptions used in this study.

Parameter Name Range Value Description

time_left_for_this_task 60–1200 s The time limit for the search of appropriate models.
per_run_time_limit 10 s The time limit for a single call to the machine learning model.

ensemble_size 50 (default) The number of models added to the ensemble built by Ensemble
selection from libraries of models.

ensemble_nbest 50 (default) The number of best models for building an ensemble model.
resampling_strategy CV; folds = 3 (CV = cross-validation); to handle overfitting

seed 47 Used to seed SMAC.
training/testing split (0.6; 0.4) Data partitioning way

The other parameters that are not listed on the table were run in default mode.

A recent review study of supervized ML methods applied in land-cover image classi-
fication disclosed that Random Forest (RF), support vector machine (SVM), and artificial
neural network (ANN) classifiers were among the most commonly used ML techniques
from 220 related articles [83]. Therefore, in this study, these popular ML classifiers were
selected for comparison against the accuracy performance of AutoML (with 60-s run,
and 1200-s run of Auto-sklearn). These algorithms were programmed in Python by
the robust ML library Scikit-learn (0.24.2) [76] with the perimeter setting as following:
sklearn.ensemble.RandomForestClassifier (100 trees; min_samples_split (2); leaf_node (1));
sklearn.svm.SVC (cost (C = 500); gamma (0.5); epsilon (0,01)), and sklearn.neural_network.
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MLPClassifier (alpha (0.00005); the maximum number of iterations (100,000)) The pa-
rameters not mentioned were computed as default settings from Scikit-learn, and for the
accuracy, calculation referring to Table 3.

Table 3. The confusion matrix-based accuracy evaluation equations used throughout this study.

Indices Equations

Recall TP/(TP + FN)
Precision TP/(TP + FP)

Specificity TN/(TN + FP)
Accuracy TP/(TP + TN + FP + FN)
F1-score 2 * Precision * Recall/(Precision + Recall)

False Positive Rate (FPR) 1 − Specificity = FP/(FP + TN)
True Positive Rate (TPR) Sensitivity = TP/(TP + FN)

2.7. AutoML Model Evaluation and Visualization

For the visualization and evaluation of the Auto-sklearn model, the workflow in-
cluded, in general, multiple iterations through feature engineering, algorithm selection,
and hyperparameter tuning [84]. In this study, an open-source visual steering tool Yellow-
brick visualization package (essentially a wrapper for the Sklearn documentation) was
conducted for AutoML evaluation [85]. Yellowbrick contributes to assessing the stability
and predictive values of ML models and delivers visualizations for our AutoML classi-
fication models. The accuracy evaluation based on the confusion matrix system of the
AutoML classification parameters were defined as follows: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), which have been well described in [86].
The equations used in this study are described in Table 3. The derived receiver operating
characteristic curve (ROC) graph with the x-axis showing FPR and the y-axis showing TPR
was used in this study to show the relationship among specificity and sensitivity for each
possible cut-off [87] and the area under the curve (AUC) ranges from 0 to 1 to visualize
the trade-off between the classifier’s sensitivity and specificity [87,88]. Macro- and micro-
averaging ROC were calculated to evaluate overall classifier performance in multi-class
problems. In this approach, the ROC curve was calculated anew, based upon the true posi-
tive and false positive rates for all dataset (by weighting curves by the relative frequencies
of the dataset and then averaging them) [89,90]. In addition, the precision–recall curve
(PR) was calculated for different probability thresholds. PR curves were conducted in
cases where there was an imbalance in the observations between the classes [91] as another
classification evaluation standard to assist with the ROC curve. The prediction errors
(confusion matrix) and classification report that displays precision, recall, and F1-score [92]
(Table 3) per class as a heatmap in our study.

Alternatively, even though the AutoML framework facilitates the construction of
models, given their black-box nature, the complication of the underlying algorithms
and the large number of pipelines they derive leads to the reduced trust of AutoML
pipelines systems [93]. Therefore, in our study, PipelineProfiler [94] was conducted for
AutoML pipelines visualization. PipelineProfiler is a SOTA in visual analytics for AutoML
interactive visualization tool that allows the examination of the solution space of end-to-
end ML pipelines. It offers a recovering understanding of how the AutoML algorithms
are generated and the perceptions of how they can be optimized. As the outcome of the
interactive AutoML pipeline matrix plots, where illustrated Pipeline flowchart, primitives
used by the pipelines; one-hot-encoded hyperparameters for the primitive across pipelines;
the accuracy ranking; primitive contribution view; and the class balancing of correlation
score with accuracy. These calculations and expressions are clearly detail described in
the [94] article.
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3. Results
3.1. The AMPs Observation in VPTs and VIs Calculation

Figure 3 displays the observation of onsite crop VPTs (i.e., Field 1 (F1) (Figure 3a) and
Field 2 (F2) (Figure 3b) with CM treatments) and one of the VIs (NDVI; Figure 3c) captured
on 10 July from F1 and F2. It can be observed from the onsite AMPs treatment photographs
of F1 and F2 in July that it was not readily distinguishable. In addition, it can be seen from
the NDVI image that the heterogeneity within the plot may be caused by edge effects or
uneven fertilization. For this reason, we used the plot average value considering the pixels
inward boundary clipping to decrease the noise.
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Figure 3. Interpretation diagrams representing onsite crop VPTs and the calculation of VIs per the
image captured on 10 July (a) Field 1: red clove + grass (RC + G) with CM treatment. (b) Field 2:
Spring wheat (SW) field with CM treatment. (c) Normalized Difference Vegetation Index (NDVI)
image captured of F1 (RC + G) and F2 (SW) VPT.

3.2. Monthly PCA Analysis in Various Crop Growth Periods

PCA was conducted as the first step of data exploration in this study to gain an under-
standing of the relationship between VIs and different AMP categories during the three
flight periods (April, May, and July) with their corresponding growing stages (Figure 4).
The results showed that on 30 May and 10 July, the PC1 and PC2 captured most of the
variation from the F1 to F4 fields with 98.3%, 98.7%, 97.3%, and 97.6%, respectively, on
30 May (Figure 4b), and with 98.7%, 94.0%, 95.4%, and 95.4%, respectively, on 10 July
(Figure 4c); followed by 23 April (Figure 4a). In addition, during the three flight periods,
the PCA results in May and July provide better separation of the three AMP categories
throughout the four crop cultivation areas based on the colored concentration ellipses
where the sizes were determined by a 0.95-probability level. In terms of the AMP category,
the subclasses of CM (Cmin+ Cmin+ and the other two categories) and MA (M+ and M−)
seemed easier for non-overlapping AMP clustering, followed by STM. In terms of crop
types, F1 (SW) were better clustered in April, while F2 (SW), F3 (P + O), and F4 (SB + RC)
were better clustered in May or July. Given the better clustering performance in May,
follow-up AutoML analysis was conducted on the UAS-VIs data of this month. In general,
feature selection (finding the most relevant spectral bands) and extraction (reduced set
of new significant variables) are commonly used to solve the collinearity and overfitting
problems in the dimensionality reduction process [95]. However, after our test results,
using PCA, 95% feature extraction in our preliminary experiments could not significantly
improve the classification efficiency. Therefore, these PCA results were simply used as a
reference basis for AutoML classification.
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Figure 4. PCA biplot of 19 VI variables (n = 72) of each crop field on (a) 23 April, (b) 30 May, and (c) 10 July. Each biplot
shows the PCA individuals (three AMPs) (i.e., CM (Cmin, Omin+, Omin−), MA (M+, M−), STM (DP, P, R)) of the first (x-axis:
PC1 score) and second (y-axis: PC2 score) principal components (the variation explained by the dimensions are shown on
the axes); four crop categories (F1–F4) and its corresponding growing stage from top to bottom. Colored concentration
ellipses (size determined by a 0.95-probability level) show the observations grouped by marked AMP sub-classes.

3.3. AutoML ROC and AUC Evaluation of AMP Recognition in May

The different subclasses and average results of ROC/AUC were calculated for evalua-
tion of the AutoML performance for the AMP classification ability in UAS-VIs that were
captured in May (Figure 5), where AUC values were categorized in this study as AUC = 0.5:
no discrimination; 0.7≤ AUC≤ 0.8 (acceptable discrimination); 0.8≤ AUC≤ 0.9 (excellent
discrimination); 0.9 ≤ AUC ≤ 1.0 (outstanding discrimination) [87].
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Figure 5. ROC curves and AUC of the AutoML classification corresponding to the subclasses within the AMPs for the
acquisition of the UAS-VIs DN in May. From left to right, the ROC curves computed on (a) CM (Cmin+ (blue lines), Omin+
(green lines), Omin− (red lines)); (b) MA [M+ (blue lines), M− (green lines)]; (c) STM (DP (blue lines), P (green lines), R
(red lines)); and their micro (pink dotted line) and macro (dark blue dotted line) average performance. Four crop categories
(F1–F4) from top to bottom.

The AutoML results showed that the micro-average ROC of CM’s classification re-
sulted in F1 (RC + G) and F2 (SW) being higher (AUC = 0.95, and 0.92, respectively).
Especially in the subclass Omin−, the AUC both reached 0.99 for the micro-average ROC,
followed by F4, and F3 (P + O), with 0.86 and 0.75, respectively) (Figure 5a). On the contrary,
MA classification results showed that the micro-average AUC in F3 and F4 were higher
(AUC = 0.83, and 0.89, respectively), followed by F1 (AUC = 0.71). F2 performance for MA
was the worst (AUC = 0.51), with no discrimination ability (Figure 5b). In contrast, STM
classification results were generally poor, with better results only present in F3, while other
fields have larger divergence in classification results under the sub-class (DP, P, and R), as
shown in Figure 5c). Overall, the AutoML classification ability from UAS-VIs of CM was
the best, followed by MA and STM.
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3.4. AutoML Precision–Recall, Prediction Error, and Classification Report of CM Recognition

Among the classification results of AMPs in May (Figure 5) of four crop types, CM
yielded the best ROC/AUC overall performance. Therefore, we used the precision–recall
(PR) curves, prediction error, and classification report plots to gain an in-depth understand-
ing of the classification status of CM treatments (Figure 6).
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is depicted at the coordinate of (1,1). A curve that tends towards the (1, 1) coordinate 
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horizontal line on the plot with a precision that is proportional to the number of positive 
examples in the dataset. For a balanced dataset, this value ought to be 0.5 [96]. The results 

Figure 6. The evaluation of AutoML classification of AMPs from the acquisition of the UAS-VIs DN in May. (a) Precision–
recall, where the class 0, 1, 2 equals to Cmin+, Omin+, and Omin−, respectively (b) Prediction error (confusion matrix), the
X-axis represents the three subclass form CM result in May, and the Y-axis represents the type (with color), and the number
of correct or incorrect estimates., and (c) Classification report lists the precision, recall, and F1-score per class as a heatmap
for overall comprehensive evaluation results. The calculation methods used in this figure are shown in Table 3.

The PR curve of F4 CM shows the trade-off between a classifier’s precision perfor-
mance from UAS VIs in May (Figure 6a), where a model with perfect performance is
depicted at the coordinate of (1,1). A curve that tends towards the (1, 1) coordinate rep-
resents a well-performing model, whereas a no-skill classifier is depicted as a horizontal
line on the plot with a precision that is proportional to the number of positive examples
in the dataset. For a balanced dataset, this value ought to be 0.5 [96]. The results showed
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that the classifications of Fields 1 and 2 were promising, their average PR being 0.90 and
0.85, respectively, while the results of F3 and F4 were poor (0.50 and 0.49). We can further
discover from the prediction error graph (Figure 6b) in F3 and F4 that the judgment error
of Cmin+ was low, and the confusions of Omin+ and Omin− were more common. We
can also compare the precision, recall, and F1-score results of various cultivation method
sub-classes to evaluate the classification accuracy from the heatmap (Figure 6c).

3.5. AutoML Pipeline Visualization

An interactive AutoML visualization tool PipelineProfiler was used in this study.
Figure 6 shows the CM classification results across four crop fields in May with the accuracy
performance of AutoML pipelines running time set at 60 s, and the primitive comparison
against the others, and the real-time hyperparameter selection strategy (Figure 7). The
results demonstrated that the best classifier found for Field 1 was linear discriminant anal-
ysis (LDA) [97] (Figure 7a), for Field 2, it was the Extra Trees Algorithm [98] (Figure 7b),
for Field 3, it was LDA (Figure 7c), and Random Forest (RF) for Field 4 (Figure 7d), with
each of their hyperparameters found by AutoML also being represented in the figures.
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Figure 7. The interactive AutoML pipeline matrix plots with running time-limited setting 60 s sorted by accuracy perfor-
mance (a–d), (a) Field 1 pipeline matrix with the Top1 classifier LDA, where (a1) illustrated Primitives (in columns) used
by the pipelines (a2) (in rows, the blue line showed the best accuracy rank); (a3) one-hot-encoded hyperparameters (in
columns) for the primitive across pipelines, (a4) the AutoML pipeline with the accuracy ranking; (a5) Primitive contribution
view, showing the correlations between primitive usage and pipeline scores—in a5 displays that class balancing has the
highest correlation score with accuracy; (a6) Step by step AutoML Pipeline flowchart. The ML box before Output represents
the classifier used by this set of algorithms (in a6 LDA as the classifier) (b–d) Fields 2, 3, and 4 interactive pipeline matrix
sort by AutoML accuracy performance with the chosen hyperparameters (top 1 was listed).
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3.6. Comparison of Performance between AutoML and Other Machine Learning Technologies

Based on the large calculations and multiple classifier selections that were required
during the initial stage of AutoML computations, the processing time setting of 60 s
may not completely reflect the performance power of AutoML. To evaluate the effects of
AutoML processing time, we adjusted the times to 1200 s and 60 s (original running time)
and considered the AMPs’ classification accuracy with RF, SVM, and ANN algorithms
(Table 4). The results demonstrated that under the permutation and combination of ML
algorithms included in AutoML, classification accuracy did not perform well in 60 s of
computing time. Furthermore, performance was the worst in F1 CM, F2 STM, and F3 CM
classifications compared to RF, SVM, and ANN. However, as processing time was increased
to 1200 s, the classification accuracy of AutoML in AMPs was shown to improve. The
results also indicated that overall AutoML (1200 s) and RF classifiers produced 5 and 3 best
classification accuracy in AMPs, respectively (in black bold) and did not produce the worst
accuracy values (in bold red) in any instances. Regarding SVM and ANN, the classifiers
performed the best in 3 and 5 cases, respectively. However, these methods consistently
produced low-performing classifiers compared to other AMPs.

Table 4. The AMPs classification accuracy comparison of AutoML and three other popular applied
ML (RF, SYM, and ANN) algorithms in UAS.

ML Algorithms

Field AMPs AutoML
(1200 s Run)

AutoML
(60 s Run) RF SVM ANN

F1
(RC + G)

CM 0.79 0.76 ** 0.79 0.83 0.86 *
MA 0.59 0.62 * 0.62 * 0.62 * 0.55 **
STM 0.57 * 0.31 0.48 0.38 ** 0.48

F2
(WS)

CM 0.79 0.79 0.79 0.83 * 0.72 **
MA 0.55 * 0.52 0.48 0.52 0.45 **
STM 0.52 * 0.45 ** 0.48 0.45 ** 0.52 *

F3
(P + O)

CM 0.55 * 0.41 ** 0.55 * 0.48 0.55 *
MA 0.66 0.72 0.76 * 0.62 ** 0.76 *
STM 0.66 0.69 * 0.69 * 0.57 ** 0.59

F4
(SB + RC)

CM 0.57 0.59 * 0.56 0.59 * 0.48 **
MA 0.85 * 0.78 0.67 0.78 0.63 **
STM 0.56 0.59 0.59 0.52 ** 0.63 *

(*) The bold black numerical value in the Table represents the highest accuracy classifier in the row; (**) the thin
red numerical value represents the worst accuracy in the row.

4. Discussion

This paper is the first study to use an auto-learning system, with UAS multispectral-
derived VIs, for agricultural classification purposes. The study provides a novel AutoML
framework across multiple AMP activities and presents a UAS and ML methodology
optimized for future PA and crop phenotyping research.

4.1. Applicability and the Impact of the AutoML Method in UAS

In this study, we employed a SOTA, open-sourced AutoML framework for automatic,
rapid multispectral image classification strategies and assistance in optimizing problematic
hyperparameter adjustments. This technology brings several benefits and enhances the
application of UAS for environmental and ecological research classification tasks.

First, UAS related classification research publications have significantly increased
within recent years, with over a hundred articles developed since 2017. This substan-
tial adoption of UAS related classification approaches demonstrates its impact and the
mounting interest in such research issues [99]. Our UAS-AutoML framework may also
be implemented in other UAS classification research, such as research employing multi-
sensors (i.e., thermal, visible light, hyperspectral, radar or light detection and ranging
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(Lidar) sensors) across a range of contemporary agriculture classification activities (i.e.,
weed management [100,101], crop phenotyping [9,102–104], disease monitoring [105,106],
etc.), as well as research focused on ecological classification schemes, multispectral-based
plant community mapping options [107], and coastal wetland vegetation classification
results [108].

Second, the AutoML framework quickly provided usable classifiers and hyperparam-
eter selections for unknown UAS classification tasks and parameter selection. For example,
in the current study, the parameters and applicable classifiers of AMPs were unknown a
priori. However, it provided a promising and efficient performance rating for classifiers
for inclusion in modeling selection. As the results of Figure 6 show, LDA (Figure 7a,c) and
Extra Trees (Figure 7b) were chosen as the best classifiers corresponding to the VPT fields
of the AMP recognition task. These ML methods have been less applied and referenced
in the field of UAS [83]. These findings clearly illustrate that AutoML has the potential to
locate alternative ML approaches that might customarily be ignored by investigators with
unknown classification subjects.

Third, the operational efficiency of AutoML classifiers can be given a time limit and
gives the researcher the flexibility to find the most suitable formula within the required time.
In general, a longer time setting allows for increasingly accurate results with additional
classifier combinations. Since our experiments did not involve substantially large datasets,
the focus was put on time setting close to the minimum limit of AutoML calculation
(60 s of total CPU operation (this can be up to 3000 s) and 10 s of a single ML algorithm
computation) to highlight the flexibility and rapid performance of AutoML.

Finally, within our research, the latest released AutoML interactive visualization
system PipelineProfiler was employed and assisted in the screening of classifiers and the
reference of fine-tuning parameters when analyzing UAS data. This interaction included
adjustable time, accuracy ranking, and selection of hyperparameters in response to the
requirement of customized UAS modeling. Our results showed that AutoML computations
within 60-s-run produced between 11 and 12 pipelines (Figure 7), which might offer
a beneficial foundation for providing adequate outcomes in most cases with minimal
attempts and time.

4.2. The Impact of Algorithm Selection, Cultivated Period, and Crop Types in AutoML
AMP Recognization

In terms of algorithm selection in our AMP classification results, different classifiers
were suggested by AutoML as the best performances even within the same AMP category
for different crop types (Figure 7). We can conclude that applying AutoML in UAS-derived
multispectral VI data allowed for the consideration of a variety of algorithm combinations
to meet the complexity of the VPT field. We also compared the three most used ML
algorithms (RF, SVM, and ANN) in the UAS classification fields with AutoML algorithms
(Table 4). The overall performance showed that AutoML (with 1200-s CPU duration)
provided the five best (or equal best) accuracy performances (shown in bold black in
Table 4). Interestingly, in all tests, the AutoML (1200) and RF methods were never found to
be the worst-performing methods (shown in bold red). Moreover, when using the ANN
method, despite providing five of the best classification accuracy results, this method also
included five of the worst performance results. Similar outcomes were observed regarding
the SVM and AutoML 60-s runs.

From our results, we can deduce that increasing the computing time has the potential
to improve the accuracy and stability of AutoML classification performance under certain
AMPs conditions. However, it also highlights the potential to include AutoML methods in
the computation of common classification problem-solving. Similar ranks were shown in a
study that compared the results of the numerous classifiers with Auto-sklearn, where the
RF classifier presented the strongest performance, and SVM showed robust performance
for some datasets [30]. Since the Auto-sklearn classifiers are based on Scikit-learn as a
blueprint, it should theoretically capture the hyperparameters of the RF algorithm on what
was selected for Table 4. Despite the strong performance of AutoML (1200 s), there were
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still several results that indicated the inferiority of AutoML (1200 s) when compared to the
RF classifier (i.e., Field 1 MA; Field 3 MA, and STM). Moreover, in a few cases, the accuracy
of AutoML (1200 s) was even lower than the calculation result of the 60-s set (i.e., Field
1 MA, Field 3 STM, and Field 4 CM). It may be that the algorithm computations involve
different factors other than accuracy, and the model it uses to tune the parameters actively
tries to avoid overfitting. This will possibly lead to the situation where the most accurate
model, on the testing or training data, will not be the one that can generalize the best on
real data. In addition, developers from the Auto-sklearn team have previously described
that during the ensemble selection phase, the methods can add numerous substandard
models to the final ensemble, and unregularized selection may lead to overfitting with
a small number of candidate models [40]. This result shows that there is still room for
improvement regarding AutoML calculation methods in the future.

In terms of cultivated period and crop type, according to the monthly performance of
different crop growth stages, the PCA results indicated that the VPT with better clustering
performance occurred during the flight in May, with a confidence level of 0.95 (Figure 4b).
In this regard, this flight period was further used for our AMPs’ classification study.
Conversely, in the case of more homogeneous crop types (Field 3 (WS)), and despite the
promising classification result in CM, the results of MA and STM were not as effective as
other crops (Figures 5 and 6). These results may suggest that even with higher heterogeneity
of cultivation within the plots (i.e., F1, F3, and F4), it appears not necessarily to affect the
classification ability. However, concerning the Field 3 results from the PCA in May (stage
of stem elongation) and July (stage of flowering), the MA clustering ability was better
with a 0.95 confidence level in both months, and the accuracy was later improved from
the classification analysis. The results of our study have demonstrated that, although the
feature selection stage of AutoML is a black box, we can still preliminarily determine the
potential predictive ability of the AutoML model based on PCA result and reduce the cost
of period selection as we did in this study. In addition, this study has contributed evidence
to the classification obstacles in the case of STM that may be caused by the orientation
of images taken over vegetation or soil with uniform texture and re-cursive pattern, sub-
optimal flight configuration [109], or unflavored VIs selection. Some studies also suggest
that the use of grey-level co-occurrence matrix (GLCM)-based texture information [100,110],
semantic segmentation [111], or edge computing [112] can improve the accuracy of UAS-
ML classification in the crop categories. This may be an applicable technology for AMPs
classification in the future. The applicability and optimization of this framework, and the
visualization of feature importance, required the optimization of the AutoML programmers
and UAS application feedback to improve.

Currently, multispectral indices have been effectively applied in some AMP image
analysis studies with the color, texture, and shape factors of the agricultural land at the
satellite level. These include conservation tillage methods identification [113] and agri-
culture landscapes with pixel-based or object-based classification tasks [114,115]. AMPs
application are indispensable for environmental monitoring and for facilitating the agri-
cultural decision-making process, regarding the adoption practices proposed by growing
conservation agriculture demand [116], and for its potential upscaling ability to accelerate
land cover classification studies. Recently, combining commonly adopted management
practice with UAS multispectral-VIs research has gradually gained attention and has been
applied to cotton and sorghum fields [117]. In our study, the effective application of
UAS sensors to recognize multiple AMP categories has been shown. More specifically, an
UAS-AutoML approach can improve the classification ability under specific crop AMPs,
highlighting that, in this study site, classification performed better in CM, with overall
classification performance followed by MA and STM.

4.3. The Limitations of Our Method

In this study, not all classifiers computed within the Auto-sklearn system were able to
be backtracked and reviewed to investigate the individual feature importance rankings
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of VIs, which has limitations in terms of their ability to assist in the selection of suitable
VIs for AMPs classification tasks. However, our efforts to achieve a wide-ranging and
well-considered predictor collection through a variety of VI combinations may lead to
performance improvements. This study may also be limited by the location, crop categories
selected, and varieties present at the study site. However, these issues can be simply
addressed by including a wider range of VPT at multiple study sites and across a greater
diversity of crop types in future investigations. Due to the characteristic complexity and
repeatability of VPT, we need to recognize that the small sample size, and the potential
interaction effects between trials, were not fully addressed. A potential solution worth
pursuing may be to increase the VPT sampling size and/or enhance the segmentation
number of each plot, ultimately increasing the training samples for AutoML calculation.
Currently, the applicability of the AutoML framework will still require more UAS-based
tests in the future to demonstrate its true potential and effectiveness.

5. Conclusions

First, our study demonstrated a novel UAS technology and a state-of-the-art Au-
toML framework across multiple AMP tasks through non-destructive and cost-effective
approaches. The scientific merit of this article lay in utilizing artificial intelligence to re-
place the judgment of the human for UAS classification analysis with its automated data
pre-processing, model selection, feature engineering, and hyperparameter optimization
capabilities. Furthermore, it provided innovative insights into agricultural management
practices and accelerated the intellectualized progress of the in-field monitoring UAS sys-
tem and established future crop phenotyping abilities. In our study, AutoML embodied
“learning how to learn” for any given UAS subject; and it is the first study of its kind
to apply an auto-learning system for AMP classification tasks in multispectral-derived
VI data.

Second, in this study, we employed an AutoML workflow combined with two innova-
tive visualization tools. We performed three multispectral-UAS flights at the farm-scale,
under the four crop types (RC + G, SW, PO, and SB + RC) of VPT within three AMPs (CM,
MA, and STM) treatments. In addition, we compared AutoML performance with those
of three widely used ML methods. The ML comparison analysis results showed AutoML
achieved the most overall classification accuracy numbers after 1200 s of calculation and
without any of the worst-performing classifications of the given datasets. In terms of AMPs
classification, the best recognized period for data capture occurred in the crop vegetative
growth stage (in May of Estonia). The result demonstrated that CM yielded the best per-
formance in terms of treatment, followed by MA, and STM; the last was shown to be the
worst-performing treatment. These conclusions may be attributed to the low heterogeneity
of the spectral reflectance value in the corresponding AMP treatment.

Third, the flexibility of fixed-wing imaging technology provides longer flight durations
and thus allows for larger applications, such as commercial farmland, grasslands, forests,
etc. Furthermore, the multispectral dataset produces various precise VIs without the
need for any supplementary sensors, which reduces measurement errors and significantly
reduces costs. In addition, given the AutoML’s open-sourced platform and the powerful
capabilities of automation, the complexities surrounding parameter selection in machine
learning are greatly reduced, while it also has the potential to select long-ignored but
highly efficient ML algorithms. Regarding the choice of AutoML systems or interfaces,
although many of them have been developed successively (i.e., Auto-sklearn, H2O AutoML,
AutoKeras), it is necessary to identify whether their subsequent updates and revisions keep
up to date with current times.

Lastly, this UAS-AutoML solution has the potential to be implemented across a
variety of other UAS classification research, such as contemporary agricultural classification
methods, multispectral-based plant community mapping, ecological or wetland plant
community recognition. Other remote sensing classification methods that lack algorithm
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and hyperparameter backgrounds may also be considered and benefited from our findings
and insights.

In summary, our study, the UAS application particularly focused on the adoption
and application of AutoML method across a diverse range of agricultural environmental
assessment and management applications. Our approach demonstrated that UAS based on
our AutoML framework, can recognize multiple agricultural management practices under
certain conditions and that the integration of UAS technologies, geoprocessing methods,
and automatic systems are vital tools for increasing the knowledge of plant–environment
interactions within the management of crops. The framework also considerably contributes
towards the simplified advancement of image-driven analytical pipelines for current
VPT systems used in most countries. At the end of preparing this study, the Google
Cloud AutoML also came out in 2019 for image-recognition use cases [118], showing that
automatic learning will drive a non-negligible impact in the UAS field and provide new
insight into the potential for remotely sensed solutions to field-based and multifunctional
platforms for the demands of precision agriculture in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13163190/s1, Figure S1: Daily climograph of the study area (Kuusiku) during the flying
period, including the previous 6 days (a. 17–23 April, b. 24–30 May, and c. 4–10 July) in 2019. Blue
bars and the red line represent the daily average of rainfall and temperature, respectively.
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