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Abstract  23 

Isolated, detached sands provide opportunities for large-volume stratigraphic traps in many deepwater 24 

petroleum systems. Here we provide a review of the different types of sandbody detachments based on 25 

published data from the modern-day seafloor and recent (generally Quaternary-present), shallow-26 

buried strata. Detachment mechanisms can be classified based on their timing of formation relative to 27 

deposition of the detached sandbody as well as their process of formation. Syndepositional detachment 28 

mechanisms include flow transformation associated with slope failure (Class 1), turbidity current 29 

erosion (Class 2), and contourite deposition (Class 3). Post-depositional detachment is related to 30 

subsequent erosive processes and truncation of the pre-existing sandbody, either by submarine 31 

channels (Class 4), mass-transport events (Class 5), post-depositional sliding or faulting (Class 6) or 32 

bottom currents (Class 7). Examples of each of these mechanisms are identified on the modern 33 

seafloor, and show that detached sandbodies can form at different locations along the continental slope 34 

and rise (from upper slope to basin floor), and between or within different architectural elements (i.e., 35 

canyon, channels and lobes). This variation in formation style results in detached sands of highly 36 

variable sizes (tens to hundreds of kilometres) and geometries across and along the depositional 37 

profile, which are dependent upon the erosive and/or depositional processes involved, as well as the 38 

seafloor topography of the area in question. Whilst modern seafloor systems may not always represent 39 

the final stratigraphic architecture in the subsurface, they provide important insights into the 40 

development of detached sandbodies and therefore serve as potential analogues for subsurface 41 

stratigraphic traps. 42 

 43 

 44 

 45 

 46 
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1. Introduction 48 

In deepwater environments, sandbodies may become physically detached from more extensive, 49 

proximal sandy deposits, leading to updip pinchouts that have the potential to form stratigraphic traps 50 

for fluids in the subsurface. These traps  are an important target for hydrocarbon exploration in many 51 

basins globally (Pettingill, 1998; Prather, 2003; Fugelli & Olsen, 2005; Biteau et al., 2014; Stirling et 52 

al., 2018; Dolson et al., 2018; Zanella and Collard, 2018; Amy, 2019). This play type offers the potential 53 

for giant world-class oil fields, making them a major focus in deepwater drilling environments where 54 

high-rate, high-ultimate-recovery reservoirs are required to satisfy economic thresholds for commercial 55 

success (Weimer & Pettingill, 2007). Over the last decade Cretaceous and Tertiary deepwater turbidite 56 

complexes have been extensively drilled in passive margin settings, especially on both sides of the 57 

equatorial Atlantic (Flinch et al., 2009; Dailly et al., 2013; Kelly & Doust, 2016). Prominent recent 58 

discoveries with stratigraphic traps (pure or combined), include the offshore Ghana Jubilee Field (~600 59 

MMBO) (Dailly et al., 2017), offshore Guyana Liza Field (800-1400 MMBO) (Alleyne et al., 2018) and 60 

offshore Senegal Fan-1 discovery (P50 of 950 MMBO) (Dolson et al., 2018).   61 

Widespread success in this play type, however, has been difficult to replicate. For instance, 62 

Zanella and Collard (2018) note that out of sixty-eight post-Jubilee exploration wells drilled on the 63 

African Transform Margin, only two resulted in development projects. The presence of a robust trap to 64 

prevent updip leakage of hydrocarbons is often considered one of the highest risks associated with 65 

pinchout plays (Straccia & Prather, 1999; Prather, 2003; Fugelli & Olsen, 2005; Loizou, 2014). The 66 

risks associated with updip pinchout of reservoirs on the proximal parts of the depositional profile 67 

(upslope stratigraphic traps sensu Amy, 2019) is likely to be especially high, given the potential for 68 

relatively coarse-grained and continuous slope deposits in slope channel complexes or canyons. A failure 69 

analysis of recently (2008-2017) drilled stratigraphic prospects worldwide concluded that one of the 70 

major causes of geological failure is the lack of effective closures and seals (Zanella and Collard, 2018). 71 

Similarly, a 2015 assessment of exploration well failures in the UK North Sea found that a lack of seal 72 
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or trap closure was a significant cause of failure (>50%) in Jurassic deepwater turbidite prospects 73 

(Mathieu, 2018). These results suggest that, despite significant advances in seismic imaging, the ability 74 

to predict deepwater stratigraphic prospects with robust closure and containment elements remains 75 

limited.  76 

In this study, we provide a review of processes that can cause sand detachment on the seafloor, 77 

as suggested by data from modern and shallowly buried seafloor systems. Seafloor data is able to provide 78 

information on planform geometries over large areas (tens to hundreds of km2), usually difficult to 79 

achieve in outcrops, with higher resolutions compared to industry seismic datasets. Furthermore, 80 

seafloor systems may be more easily understood with regards to their depositional and geologic setting, 81 

helping to constrain the location of detachment along the slope profile and the probable controls on 82 

formation. In this review, we primarily focus on relatively large-scale, coarse-grained (sand and gravel) 83 

sandbodies with updip terminations, either pinchouts or erosional truncations, that could offer analogues 84 

for large-scale upslope stratigraphic traps and giant oil/gas field potential in the subsurface. Examples 85 

presented here are generally Quaternary to present age, with the inclusion of selected older examples 86 

where necessary. The objectives of this work are to: i) provide an overview of the methodology and 87 

terminology used to identify detached sandbodies in modern seafloor systems; ii) present a process-88 

based classification scheme for different types of pinchout type exemplified by selected cases; and iii) 89 

discuss the processes and location of detachments along the depositional profile, the effectiveness and 90 

preservation potential of different detachment mechanisms, the controls on detachment, and the 91 

implications for exploration.  92 

 93 

2. Methodology and Terminology  94 

Literature on seafloor systems was reviewed in order to collate examples of detachment at the 95 

proximal updip edges of sandbodies in recent deepwater systems. Examples of detachment discussed 96 

herein are drawn from over 20 localities across the globe (Fig. 1). These span a wide range of geologic 97 
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settings, including passive and active continental margins, active and inactive depositional systems of 98 

varying dominant grain sizes, and differing proximity to fluvial sources. In this review, we have 99 

considered detachment along the depositional profile from the continental shelf-slope break to the 100 

abyssal plain, but have excluded shallow marine shelf environments. Here we focus on “recent” systems, 101 

including both deposits that are visible on the modern seafloor surface, as well as those that are shallowly 102 

buried; and outcropping systems are generally not considered in this review. Deeply buried (i.e., 103 

hundreds of meters or greater) examples of subsurface stratigraphic traps have received detailed 104 

treatment elsewhere, including by Amy (2019), who comprehensively reviewed and classified numerous 105 

examples. Direct comparison of the detachment mechanisms described herein with ancient outcropping 106 

deposits is often problematic due to the lack of oceanographic and geographic context and uncertainties 107 

in the specific sedimentological processes involved at the time of deposition for the latter. Additionally, 108 

ancient sandbodies often cannot be accurately assessed as being ‘detached’ due to the two-dimensional 109 

nature of their exposure. Inclusion of such examples would therefore necessitate a discussion of these 110 

uncertainties that is beyond the scope of this study.  111 

The concepts of attachment and detachment are applied in this paper in a broader sense than 112 

generally considered in previous work which has primarily focused on the morphological or stratigraphic 113 

continuity between slope channels and basin-floor fans or lobes due to sediment erosion and bypass by 114 

turbidity currents (e.g., Mutti & Normark, 1987; Mutti, 1992; van der Mewe et al., 2014; Hansen et al., 115 

2019; Wynn et al., 2002a). “Detachment” is defined here as the lack of physical continuity of slope or 116 

basin floor sands with more proximal sand-dominated (or other permeable) units, including shelf and 117 

fluvial deposits, caused by sediment erosion or by sediment “bypass” (non-deposition) by turbidity 118 

currents or other sediment transporting flows. Sediment erosion may occur contemporaneously with 119 

deposition of the detached sandbody, or by later events that sever the physical continuity between the 120 

up-dip and down dip sandbodies. For detachment to occur, depositional units or elements (e.g., channel, 121 

lobes, sheets, drifts, etc.) must “pinchout” (i.e. gradually thin to zero or be abruptly truncated). A 122 
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“detached depositional system” (cf. “Type I of Mutti, 1985; see Van der Mewe et al., 2014, for a review 123 

of terminology) is a turbidite system with one or multiple upslope-detachment points and in the 124 

subsurface would offer stratigraphic closure for hydrocarbon accumulation but not necessarily 125 

containment (i.e. robust base, lateral or top seal). In contrast, an “attached depositional system” lacks 126 

any upslope detachment points from its distal margin to the fluvial or shelf feeder system and thus offers 127 

no updip stratigraphic closure moving proximally upslope.  128 

The examples described herein either contain sufficient data that allow detachment of sands to 129 

have been interpreted by the original author(s) of the cited work, or, where noted, inferred from our 130 

own analysis. Recognised seafloor examples of detached sandbodies are located downslope of zones of 131 

erosion or non-deposition (i.e., where the seafloor is composed of exhumed older sediments or 132 

bedrock) or mud-prone facies (e.g., mass transport deposits). Seven main categories of detachment 133 

were recognized. Detachment examples were classified, and are described below, according to i) their 134 

timing of detachment relative to deposition, and ii) the processes responsible for detachment (Fig. 2). 135 

“Syndepositional” detachment refers to scenarios in which the sandbody in question is initially 136 

deposited in a state of detachment (i.e., separated from the proximal shelf by a zone of non-deposition, 137 

erosion, or by deposits of fine-grained sediment). “Post-depositional” detachment is the result of 138 

erosional truncation of an existing attached deposit. Each mechanism is described further below with 139 

examples from the modern seafloor and shallowly buried recent deepwater systems. 140 

 141 

3. Results 142 

3.1 Syndepositional detachment processes and examples 143 

 144 

3.1.1: Class 1: Debris flow transformation 145 

 Turbidity currents in the marine environment may be triggered by a number of processes, 146 

including catastrophic slope failure (Mohrig and Marr, 2003). In such events, turbulent mixing of mass 147 
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flows or debris flows with ambient fluid is responsible for turbidity current generation (Felix and Peakall, 148 

2006) and hydrodynamic segregation of sand, sometimes forming clean sands in more distal locations 149 

(e.g., Kastens, 1984). Many of the largest mass-transport deposits on the seafloor (those with high 150 

volumes and wide spatial distributions) initially begin as slope failures, and often transition later into 151 

debris flows and then turbidity currents, (Fisher, 1983; see also for example Talling, 2014). Clean, sandy 152 

turbidites generated through this process can be detached by intervening updip mud-prone mass transport 153 

deposits (e.g., slumps and debrites) and, confined or sealed laterally by fine-grained deposition the open 154 

slope (Fig. 3A) or within a canyon or channel (Fig. 3B). These result in different scales and 155 

morphologies of the failure zone, transfer zone, and resulting sandbody. Open slope failures may have 156 

a lower likelihood of reattachment compared to in-canyon/channel failures, though the axes of canyons 157 

sometimes contain sand or gravel lags that may promote connectivity, especially in smaller events where 158 

the canyon is not flushed completely. 159 

 Examples of large, detached, failure-generated turbidite deposits with intervening debrites are 160 

well-documented in the modern submarine environment. For example, the Holocene reactivation of the 161 

Sahara Slide headwall on the NW African margin (Fig. 3C, 3D) resulted in sandy turbidites at 162 

distances of over 700 km from the original source, separated from the shelf by approximately coeval 163 

debrites and mud-rich hybrid event beds. In this case, the slope failure complex is comprised of 164 

multiple headwall scarps, downdip of which are blocky, thin translational slide deposits as well as 165 

thick, poorly sorted debrites chaotically mixed with clasts of hemipelagic oozes and rare sands (Frenz 166 

et al., 2008; Georgiopoulou et al., 2009), each with kilometre-length scales. These intervening deposits 167 

separate the proximal shelf from sandy turbidites on the basin floor that consist, in part, of massive or 168 

slightly fining-upward, well sorted sands (Bouma Ta and Tb divisions shown in core profiles in Fig. 169 

3C). A separate, but adjacent debris flow event (the Canary Debris Flow, illustrated with a dashed 170 

outline in Fig. 3C), also resulted in turbidite formation and the segregation of sands into distinct beds. 171 

In this example, deposits referred to as the “B” turbidite are present on the Madeira Abyssal Plain 172 
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(labelled in Fig. 3C) distal to the outlined debrite (Masson et al., 1997; Weaver et al., 1995). Other 173 

potential examples include the Storegga Slide complex (offshore Norway), one of the largest 174 

submarine landslides known, which contains both updip debris flows (Haflidason et al., 2004) and 175 

turbidites with internal sand-dominated units (Bugge et al., 1987). 176 

3.1.2: Class 2: Turbidity current erosion and bypass 177 

The erosive power of turbidity currents is well established (Weaver and Thompson, 1993; 178 

Mayall et al., 2006), and turbidity currents that bypass or erode proximal parts of their flow path have 179 

been identified in several ancient systems (e.g., Mutti, 1977; Brooks et al., 2018). This process can 180 

result in detached sandy turbidite deposits downdip of the bypass zone, each of which may have 181 

unique characteristics depending on the exact setting.  182 

3.1.2.1: Class 2A: Erosion and bypass in channels or canyons 183 

In deepwater fan systems, sands may be detached when turbidity currents fully erode or 184 

completely bypass parts of the slope system, in contrast with Class 1 where detachment occurs due to 185 

updip facies changes. In this scenario, detachment may be considered the result of ‘high efficiency’ 186 

flows (sensu Mutti and Normark, 1987) that are able to locally transport most of their sediment load 187 

basinward without significant deposition (Fig. 4A). Bypass and discontinuous deposition can happen 188 

within a channel itself when gradient changes in an uneven or stepwise fashion, as in the case of the 189 

Stromboli slope valley system (Gamberi and Marani, 2007), or in the form of lobate bodies and/or 190 

spillover fans in low-gradient areas (Fig. 4B).  Repeated erosional flows over time may result in 191 

erosional or mixed (rather than depositional) submarine channels (Clark and Pickering, 1996), expressed 192 

on the seafloor by a V-shaped cross-sectional morphology and lack of infill (Covault, 2011). However, 193 

channels preserved in the geologic record often show that erosional cutting phases are sometimes 194 

followed by sediment backfilling, a process that has complex allocyclic and autocyclic controls, 195 

including base-level changes (MacPherson, 1978; Bruhn and Walker, 1995; Cronin et al., 2005). Thus, 196 

while sands may be deposited in a detached state in the course of a single turbidity flow event, full 197 
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detachment of a turbidite lobe, lobe complex, or in-channel sand body requires that the process occur 198 

consistently and be preserved over time.  199 

Examples of systems with discrete abandoned channels and lobes are found in the modern 200 

Congo/Zaire (Babonneau et al., 2002; Manson, 2009, Picot et al., 2016), Mississippi (Stelting et al., 201 

1986), Bengal (Schwenk and Speiss, 2009; Emmel and Curray, 1983), and Amazon (Pirmez and Flood, 202 

1995; Jegou et al., 2008); at least some of these abandoned elements may be detached from their 203 

proximal sources. Additionally, lobes in the Monterey fan system, offshore California, have been 204 

interpreted as being detached (Fildani and Normark, 2004), offering a modern example of the process.  205 

Bypass and erosion can also be demonstrated through bed-scale correlation of a deposit resulting from 206 

a singular event, as has been documented in the Agadir Basin, offshore of Morocco, by Stevenson et al. 207 

(2015). Here, bypass is demonstrated by the absence of “Bed 5” (ca. 60 ka) within the axis of the northern 208 

Madeira Channel System, where its deposits (including fine-grained sands) are present both in more 209 

proximal and distal locations, separated by multiple bypass zones (Fig. 4B). These bypass zones may 210 

have lengths of >10’s to >100 km, implying sustained bypass or erosion over a large area. The more 211 

proximal bypass zone occurs in association with a channel-lobe transition zone (CLTZ), discussed 212 

further below. Another example comes from the 2016 submarine sediment gravity flow that was 213 

triggered by a magnitude 7.8 earthquake near Kaikōura, New Zealand. This flow flushed Kaikōura 214 

canyon of 360-850 Mt of pre-existing sediment and eroded up to 40 m of the canyon floor before 215 

depositing a detached sandy turbidite downslope in the Hikurangi channel (Mountjoy et al., 2018).  216 

 217 

3.1.2.2: Class 2B: Erosion on stepped and complex slope profiles 218 

Erosion and bypass may also occur locally on topographically complex slopes, where sands fill 219 

bathymetric lows on the seafloor but are not deposited in intervening high-gradient areas (Smith, 2004;  220 

Brooks et al., 2018; Fig. 4C). In this scenario, the detachment process is the same as that described in 221 

2A above, though the differing slope morphology leads to a different geometry of both the detached 222 
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deposit and the bypass zone. The most well-known examples of this are in the Gulf of Mexico, where 223 

salt withdrawal at depth creates seafloor depressions (minibasins) in which turbidite sands are ponded, 224 

forming thick, sandy reservoir deposits. Once accommodation is reduced or no longer available, sands 225 

bypass and are transported into another downslope minibasin through incised channels (Fig. 4D; Winker, 226 

1996). Bypass and erosion are common in these channels, allowing individual minibasin deposits to be 227 

detached from one another and from surrounding slope sediments (Prather, 2003). Similarly, complex 228 

slope topography and stepped, detached minibasins can also result from active margin tectonic 229 

processes. Imbricate thrust zones within accretionary terranes can result in multiple slope-parallel thrust 230 

ridges, separated by trench-slope minibasins in which sedimentation is concentrated; uplift of thrust 231 

ridges provides a physical barrier to deposition, facilitating detachment. This scenario is exemplified on 232 

the Hikurangi margin (offshore New Zealand), where the subducting Pacific plate creates an accretionary 233 

wedge and a minibasin-thrust ridge system on the eastern side of the island (Lewis, 1980). Minibasin fill 234 

is dominated by fines, but periodically punctuated by thin, earthquake-triggered turbidites with basal 235 

sands, which are not always present on ridge highs (Lewis and Kohn, 1973).  236 

3.1.2.3: Class 2C: Erosion within channel-lobe-transition zones  237 

The CLTZ has often been considered an optimal location for enhanced erosion and sediment 238 

bypass and hence a possible detachment point. At this location, changes in flow properties resulting from 239 

reduced gradient and/or lack of channel confinement may force flows to thicken and slow, causing a 240 

hydraulic jump as they move onto the basin floor (Fig. 4E; Komar, 1971; Mutti and Normark, 1987; 241 

Wynn et al., 2002a; Pohl et al., 2019). The enhanced turbulence associated with a hydraulic jump is 242 

inferred to be an important process responsible for seafloor features with distinct morphologies (e.g., 243 

scours and bedforms) that characterise some CLTZs (Normark and Piper, 1991; Wynn et al., 2002a). 244 

Examples of CLTZs and associated features have been documented from several localities on 245 

the modern seafloor, including from early studies using side-scan sonar imagery (Normark, 1978). 246 

However, despite recent advances in the acquisition of seafloor sedimentological data, complete, 247 
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detailed studies of CLTZs in modern environments (with a full understanding of the processes and 248 

deposits involved) are still uncommon. Wynn et al. (2002a) presented three case studies of CLTZs in 249 

the Atlantic and Mediterranean: the Agadir, Lisbon, and Rhone systems. Scour morphology and scale 250 

differs across each of these systems, and the size of the CLTZ is proportional to the size of the system, 251 

though all are on the order of 10’s of kilometres. Each zone contains erosive features, including isolated 252 

and amalgamated scours, lineations, and scarps. Individual scours in these systems are <1-3 km long 253 

and 10’s m deep (Rhone neofan scours shown in Fig. 4F, from Bonnel et al., 2005), and may coalesce 254 

into amalgamated scours up to 9 x 6 km, although these may contain topographically elevated remnants 255 

of past deposits that were not fully eroded. In the central and distal parts of CLTZs, patchily distributed 256 

depositional features including sediment waves, mounds, and sand streaks, may also occur such that the 257 

CLTZ is not purely an erosional zone. MacDonald et al.’s (2011) catalogue of large-scale erosional 258 

scours associated with CLTZs shows that individual scours can be long-lived (up to 200 kyr) features 259 

and can be partially filled with sediments that may comprise a combination of mass transport deposits, 260 

sandy turbidites and intervening pelagic muds. In the Valencia Fan (eastern Mediterranean), 261 

discontinuous scours are present in conjunction with isolated sand ribbons and dunes (Palanques et al., 262 

1995). These examples generally show a proximal-distal transition from large to smaller scours, to 263 

coarse-grained sediment mounds, to thin, streaky reworked sands, and finally to more continuous lobe 264 

deposits. In the most recent deepwater lobe of the Nile deep sea fan, the zone between the most distal 265 

portion of the channel and the generally fine-grained lobe is characterized by a smaller sandy lobate 266 

body (visible in backscatter in Fig. 4G; Migeon et al., 2010) without clear evidence of scouring or 267 

erosion. Erosion in CLTZs may therefore be incomplete, and the spatial distribution of sediments likely 268 

to change with successive flow events on account of variable flow characteristics, increasing 269 

connectivity risks.  270 
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3.1.2.4: Class 2D: Erosion or bypass associated with crevasse splay formation  271 

Breaching of levees in submarine channels can result in the deposition of basin-floor sands in 272 

the form of crevasse splays (Fig. 4H) or in the case of spillover due to flow stripping where sand is 273 

suspended above the levee crest (Piper and Normark, 1983). Detachment may occur due to 274 

erosion/bypass between the channel and the splay deposit, or by incomplete breaching of levees, where 275 

finer-grained levee deposits may remain between the channel and splay deposits. Crevasse splays have 276 

been observed on both the modern seafloor (Twichell et al., 1996), and in the shallow subsurface of the 277 

Gulf of Mexico (Posamentier et al., 2007), the northeastern Pacific (Fig. 4I; Gardner, 2017) and the 278 

Bay of Bengal (Lowe et al., 2019) among other localities. In the Bay of Bengal, amplitude extraction 279 

from 3D seismic data reveals a possible zone of bypass in the area closest to the feeder channel, 280 

suggesting that splay sands may be detached (Lowe et al., 2019). Avulsion and crevassing may be 281 

followed by further channel development atop the initial splay deposit, with the latter preserved as a 282 

laterally extensive coarse-grained unit that forms a repeated component of channel architecture (high-283 

amplitude reflection packet, or HARP) in, for example, the Amazon fan system (Flood et al., 1991; 284 

Damuth, 2002).   285 

3.1.3: Class 3: Bottom current deposition and winnowing 286 

Once in the marine environment, sand-sized particles may be remobilized and redeposited by 287 

deepwater bottom currents, forming bottom-current reworked sands (BCRS) (de Castro et al., 2020), 288 

which may be isolated in the deep sea and detached from their original sediment input source. Sands 289 

are often sourced from nearby turbidite systems, and bottom currents often interact with downslope 290 

turbidity currents at transverse angles to form mixed or hybrid systems within a basin (Fig. 5A; 291 

Rebesco et al., 2014, Faugères and Mulder, 2011). Detached sands may form at multiple locations 292 

within these types of systems, including the upper and middle slope as slope-parallel currents strip 293 

sediment from downslope flows and transport it laterally along contourite-generated terraces. Similar 294 

processes occur in more distal locations (i.e., on the lower slope) due to reworking of turbidite lobes 295 
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(de Castro et al., 2020). Winnowing of fines by bottom currents throughout turbidite systems 296 

potentially improves reservoir quality of both attached and detached sands (e.g., Fonnesu et al., 2020).  297 

Detached sandy contourites have been well-documented in the Gulf of Cadiz (Nelson et al., 298 

1993; Hernández-Molina et al., 2003; Llave et al., 2007; Brackenridge et al., 2018; de Castro et al., 299 

2020), where mixed-source sediment is moved and redeposited by currents of Mediterranean Outflow 300 

Water exiting the Strait of Gibraltar. Here, contourite features are distributed around the mid-slope into 301 

a number of different provinces, each of which is characterized by dominant morphologies and 302 

sediment types. Contourite depositional systems with a sand component may be present in the form of 303 

mounded, sheeted, or elongate drifts, with scouring and erosional features also common throughout the 304 

region (Hernández-Molina et al., 2003). Meter-scale thick, continuous sands are seen in northern and 305 

southern arms of the Cadiz Contourite Channel, with a general decrease in sand content away from 306 

channel axes (Brackenridge et al., 2018). Other examples of sandy contourites are found in the Gulf of 307 

Mexico (Shanmugam et al., 1993), the Argentine continental margin (Bozzano et al., 2011), and in the 308 

subsurface (Pleistocene; location unrecorded); (Viana, 2008). The subsurface example illustrates the 309 

preservation potential of the mechanism, with a complex of avulsion lobes that have been reworked 310 

into smaller, irregular sandbodies (Fig. 5B). These examples each have deposits related to both bottom 311 

current and turbidity flow processes, forming mixed systems.  312 

 313 

3.2: Post-depositional detachment processes and examples 314 

 A number of mechanisms involving erosion and/or reworking may detach sands after their initial 315 

seafloor deposition. These processes generally involve only limited depths of erosion to several tens of 316 

meters, and typically occur at time scales of 0 (near-instantaneous) up to 106 years. 317 

3.2.1: Class 4: Erosion by slope turbidite channels  318 

 On the lower slope, many canyons transition into sinuous deepwater channels, which can 319 

continue basinward for hundreds or even thousands of kilometres (Covault et al., 2012) and may incise 320 
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tens of meters into the seafloor (e.g., Babonneau et al., 2010; Deptuck and Sylvester, 2018). The 321 

crosscutting of one submarine channel by another provides a potential mechanism for the detachment of 322 

downdip basin-floor sands. In this scenario, complete detachment requires: 1) the abandonment of the 323 

initial, earlier sand-dominated channel, 2) crosscutting and erosion by a subsequent channel, to a level 324 

deeper than the initial channel, and 3) the filling of the later crosscutting channel with muddy deposits 325 

conducive to seal formation (Fig. 6A). In such scenarios, however, many opportunities exist that may 326 

allow detachment to be compromised. Most notably, submarine channels often contain coarse-grained 327 

lags or bars emplaced along their length (Janocko et al., 2013), even those considered to be in a bypass 328 

or erosional regime. Additionally, sands may be deposited outside of channel axes through flow stripping 329 

and crevassing. If such deposits were continuously present in or around the later crosscutting channel, 330 

they may result in a persistent attachment.  331 

On the modern seafloor and in the shallow subsurface, mapped submarine channels within fan 332 

systems show numerous instances where younger channels intersect previously abandoned channel 333 

segments (e.g., those in Fig. 6B; Jegou et al., 2008). However, neither the degree of incision nor the 334 

nature of channel fill is always clear in these types of data sets. Evidence for mud-filled channels that 335 

crosscut sand-filled channels is best observed in older subsurface systems, where infilling sediment 336 

character along a continuous area can be inferred from seismic reflection amplitudes (e.g., Fig. 6C).  337 

3.2.2: Class 5: Erosion by mass transport events  338 

Slope failures and subsequent mass transport processes can result in decameters of erosion on 339 

the seafloor of many 10s of metres depth (Eggenhuisen et al., 2010; Dakin et al., 2013; Sobiesiak et al., 340 

2018), and can therefore isolate and detach previously deposited sands from the shelf and slope. Mass 341 

transport deposits (MTDs), for example, have been observed to locally erode the proximal portions of 342 

slope channels and lobe complexes, resulting in distal sands that are decapitated from their source 343 

through slope erosion and the emplacement of large-scale MTD (Fig. 7A).  344 
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Channels terminating updip into MTD and slope failure scars can be clearly seen in the western 345 

Nile delta near the Rosetta lobe (Fig. 7B). Here, multiple slope failures during the Pleistocene-Holocene 346 

triggered a series of mass transport events originating from east of the Rosetta canyon (Garziglia et al. 347 

2008). While the most recent, active channel is not affected by the slide, at least two well defined 348 

paleochannels (channel-levee systems 3 and 5 of Garziglia et al., 2008) have portions of their channel 349 

axes completely removed by mass transport events. These channels are inferred to be sand-filled 350 

downdip of MTD erosion and to terminate distally in sandy lobes (Ducassou et al., 2009). Moscardelli 351 

et al. (2006) also document erosional scours up to 30 m deep that were formed by large mass transport 352 

events in offshore Venezuela, helping quantify the magnitude of erosion resulting from these processes.  353 

Erosive mass transport events can also occur within submarine canyons rather than on open 354 

slopes. These are more likely to interact with existing fan systems, although given their smaller volume, 355 

they are unlikely to completely destroy the upper parts of sandy turbidite complexes. In-canyon wall 356 

failures are present in most submarine canyons (e.g., Iacono et al., 2011; Chaytor et al., 2009; Janocko 357 

et al., 2013; He et al., 2014, Gardner et al., 2016, and many others), though due to their smaller scale, 358 

they are more likely to simply impede connectivity by partially eroding and blocking parts of sandy 359 

deposits rather than detaching downdip sands. 360 

3.2.3: Class 6: Translational failure of upper slope sandy systems 361 

 Sandbodies deposited onto continental slopes in canyon floors, channels and associated deposits, 362 

or as lobate bodies may become disconnected from the proximal shelf if the slope fails (Fig. 8A). In this 363 

case, we assume that relatively limited internal deformation or disaggregation occurs, and that turbidite 364 

sandbodies maintain their original characteristics and reservoir viability. Unlike Class 5, in which the 365 

sand body is truncated by an erosive MTD, here, failure may occur along a subsurface glide or shear 366 

plane, or early syndepositional fault, and the entire sand body may be translated basinward while still 367 

maintaining coherency. Detached sands may be contained within slides, slumps, or as coherent blocks 368 

within MTDs. Examples of basinward transport processes with some translational component can be 369 
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found both in the subsurface and in more recent settings. International Ocean Discovery Program (IODP) 370 

core acquired within the Tuaheni Landslide Complex (offshore New Zealand) reveals the presence of 371 

undeformed or lightly deformed bedding, including meter-scale beds of sands, within a large MTD that 372 

originated on the Hikurangi margin (Pecher et al., 2018; Couvin et al., 2020). Bedding (including sands) 373 

is interpreted to remain relatively organized due to its inclusion in undisturbed or incipiently slumped 374 

blocks of stratified sediment that are transported downslope by the MTD (Fig. 8B), which terminates 375 

into a headward scarp (Couvin et al., 2020). In the Porcupine Basin offshore of western Ireland, 376 

subsurface data has revealed downslope slumping of Lower Cretaceous sediments, creating an upper 377 

slope detachment zone that can clearly be seen to separate slope deposits from those more proximal 378 

(Pedley et al., 2015; Fig. 8C).  RMS amplitude extraction maps for individual horizons show detached 379 

lobate bodies interpreted as turbidites; amplitude brightening associated with updip closure may suggest 380 

the presence of potential reservoirs created by this type of stratigraphic trap.  381 

3.2.4: Class 7: Erosion by bottom currents 382 

Bottom currents may also be responsible for erosion, which may be considered distinct from the 383 

reworking and reposition described in Class 3. Bottom currents may also erode and winnow fine-grained 384 

sediments, leaving behind sands and coarse-grained particles (Stow et al. 2008). In the Gulf of Cadiz, 385 

bottom currents are observed to be responsible for deep, erosive, slope-parallel channels and/or moats 386 

(100’s of meters deep on the present-day seafloor) at the base of slope where currents associated with 387 

the Mediterranean Upper Water are forced against the slope by the Coriolis effect (Fig. 5A, Fig. 9; see 388 

Rebesco et al., 2014, and Hernández-Molina et al., 2008 for a review). These linear channels and moats 389 

may separate deposits of the lower slope from those on the upper slope and shelf, including many sandy 390 

mixed contourite/turbidite deposits (Hernández-Molina et al., 2016); their slope-parallel orientation 391 

increases the likelihood that they will intersect sand-dominated downslope delivery systems. Slope 392 

contourites in the Argentine Basin are also separated from the shelf and upper slope by linear erosive 393 

zones; instead of terminating in a basal lobe, slope canyons abruptly disappear into a series of slope-394 
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parallel contouritic channels caused by the northward flow of Antarctic Bottom Water (Hernández-395 

Molina et al., 2009), illustrating their capability to erode sand. Like Class 4, long-term detachment due 396 

to bottom current erosion is dependent upon the filling of channels, moats or other eroded zones with 397 

fine-grained sediment; this would require some degree of reorganization of bottom currents and a 398 

cessation of sand input from the slope.  399 

4: Discussion 400 

Previous work on sand detachment in deep-marine environments has principally considered 401 

connections between seafloor channels and lobes, as dictated by erosion and bypass processes in 402 

turbidity currents (Mutti & Normark, 1987; Mutti, 1992; Wynn et al., 2002a; Van der Merwe et al., 403 

2014; Stevenson et al., 2015). Here, we have reviewed existing literature on modern seafloor systems in 404 

order to broaden and classify the range of marine sedimentary processes that can result in updip 405 

terminations of sandbodies based on the process and timing of detachment (Fig. 2). The occurrence of 406 

one or more of these processes are a prerequisite for the formation of large-scale stratigraphic traps in 407 

the subsurface, however, each process may differ in its effectiveness, location and preservation potential; 408 

all are factors to consider when evaluating trapping risk.   409 

4.1: Detachment Effectiveness 410 

Formation of a robust pinchout or truncation is key to effective detachment. Based on 411 

observations reported here, some mechanisms are considered to be more likely to result in complete 412 

detachment than others. These more effective mechanisms include flow-transformation-related sands 413 

(Class 1), especially where downdip clean sands are separated from shelf sediments by slope collapse 414 

zones (MTDs) and failure scars. Detachments related to MTD erosion (Class 5), where mud-prone mass 415 

flows with seal capacity create deep erosion (e.g. Cardona et al., 2016), should also form robust 416 

detachments. Conversely, while the CLTZ has been discussed as an optimal site of potential detachment 417 

(Mutti & Normark, 1987; Mutti, 1992; Wynn et al., 2002a; Van der Merwe et al., 2014; Stevenson et 418 
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al., 2015), seafloor data indicates that CLTZ zones are not always present between channel and lobes. 419 

When present, CLTZ’s may contain sand and gravel deposits, often in between or within erosional scours 420 

and small channels (Wynn et al., 2002b; Stevenson et al., 2015; Postma et al., 2016). Moreover, some 421 

CLTZ examples, such as those seen in the Rosetta lobe of the Nile system (Migeon et al., 2010) are not 422 

wide enough to separate channel from lobe deposits. Given the dynamic nature of this zone, CLTZs may 423 

be preserved as continuous or semi-continuous lag deposits, which have been identified in outcrop (Van 424 

der Merwe et al., 2014; Postma et al., 2015; Hofstra et al., 2018). Outcrop data suggest relatively high 425 

net sand values for interpreted CLTZ deposits and greater lateral continuity than channel and lobe 426 

deposits (Fryer & Jobe, 2019). Thus, we suggest that CLTZ-related stratigraphic traps be considered 427 

high risk; a supposition also supported by the lack of examples of stratigraphically trapped producing 428 

reservoirs associated with CLTZ pinchouts (Amy, 2019). 429 

Another critical factor for stratigraphic trapping potential is the overall amount of net sand in the 430 

slope system. Whilst higher net-to-gross, active margin systems afford better reservoir potential, it may 431 

significantly compromise the chance of stratigraphic trapping (Reading and Richards, 1994). Analysis 432 

of seafloor systems shows that relatively coarse-grained systems, despite having high gradient slopes, 433 

likely have limited updip pinchout potential. For instance, sands and gravels appear to form a continuous 434 

body of sand and/or gravel within the axes of slope canyons and channels in the cases of the Var (Klaucke 435 

et al., 2000) and Monterey (Paull et al., 2005) systems. However, detachment of small scale sandbodies 436 

might occur locally in these systems, as associated with cyclic steps on the Var ridge (Migeon et al., 437 

2000; Cartigny et al. 2011). Passive margins often favour the development of large, muddy fan systems 438 

(Reading and Richards, 1994; Bouma, 2004). Such muddier systems should be more prone to bypass, 439 

since it is easier for currents to suspend and bypass finer-grained particle sizes promoting erosional 440 

regimes on slopes (Mutti and Normark, 1987; Amy & Dorrell, in review), however, they will also be 441 

prone to lower reservoir potential due to the overall increased amount of fines in the system. 442 
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In both detachment scenarios related to bottom-currents, the specific sediment inputs, current 443 

directions and velocities, and basin topography preclude an overall assessment of detachment 444 

effectiveness. Bottom-current erosion, however, may be generally more effective and predictable than 445 

deposition (assuming the presence of existing sands) as it is known to occur in slope-parallel moats and 446 

channels that may have significant relief and temporal persistence (Stow et al. 2008). 447 

4.2: Detachment Location 448 

The amount and coverage of geophysical data currently does not allow a quantitative analysis of 449 

whether detachment is more likely to occur in certain locations along the slope, or along certain margin 450 

types. However, while the nature and location of each individual detachment zone is specific to the 451 

sedimentary, physiographic, and oceanographic system in which it occurs, some generalizations can be 452 

made about the most likely location of erosive, bypass, or transfer zones based on knowledge of the 453 

processes involved. Figure 10A schematically illustrates and summarizes the various detachment 454 

mechanisms discussed here, and their relative locations on the continental margin. The review presented 455 

here shows that detached sandbodies (depicted in yellow) can occur widely across the slope, both in 456 

profile and laterally on different margin types. Ultimately, detachment, or lack thereof, is controlled by 457 

several factors, including: 1) the grain size and sorting of input sediment, 2) the height, frequency, and 458 

variability of the flows involved, 3) the status of the system relative to its equilibrium profile, i.e.,  459 

whether the geometry of the system favours erosion or deposition, 4) the erosive capability of submarine 460 

landslides, and 5) the intensity and direction of bottom currents. These are in turn controlled by the 461 

larger-scale geologic and oceanographic setting of the area in question (e.g., active vs. passive margins; 462 

Fig. 10A), which affect the overall margin geomorphology, the slope gradient, the frequency of 463 

earthquakes and volcanic eruptions, and the shelf width. Pinchout location is controlled by detachment 464 

mechanism and thus, a priori, upper slopes of active margins with high gradients might be expected to 465 

be probable sites for slope failure and turbidity current erosion-bypass related detachments. Previous 466 
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studies using seismic analysis have also made this inference (e.g., Hadler-Jacobsen et al., 2005). 467 

However, given the complex nature of these phenomena, there may not be a simple correlation between 468 

gradient and slope failure location (e.g., McAdoo et al., 2000, Krastel et al., 2012; Urlaub et al., 2015). 469 

Similarly, though turbidity current erosion and bypass is dictated by the equilibrium profile (Kneller, 470 

2003; Georgiopoulou and Cartwright, 2013; Amy & Dorrell, in review; Crisóstomo-Figueroa et al., in 471 

press), modern systems suggest that detached sandbodies related to turbidite erosion (Class 2A, for 472 

example) form near both higher-gradient active margins as well as on low-gradient passive margins (e.g., 473 

Congo fan system; Babonneau et al., 2010) (Fig. 10A). Topographic relief leading to ponding and 474 

erosion can also be generated locally by different underlying causes (e.g., salt-related subsidence, or 475 

deep tectonic processes expressed on the seafloor). Similarly, syndepositional sliding and faulting 476 

(detachment by translational failure) is likely present on continental slopes of both active and passive 477 

margins, depending on the gradient and rheology of the slope sediment itself. The final result—478 

detachment in Classes 2A, 2B, and 6—is therefore present across a variety of geologic settings.  479 

Aside from those processes related to turbidity currents, the controlling factors behind other 480 

mechanisms may also lead to them to occur more frequently in certain settings. Channel crosscutting is 481 

most often found in the middle and distal portions of deepwater fans, where channels are highly 482 

meandering and prone to avulsion. Sand bed deposition resulting from flow transformation necessitates 483 

that the sediments incorporated into the initial failure contain a substantial portion of sand-sized 484 

sediment, most likely on active margins or in the vicinity of large fluvial inputs. Conversely, long-term 485 

detachment necessitates that failure scars be healed by fine-grained sediments, a point that emphasizes 486 

the complex nature of detachment and the disconnect between the modern environment and the geologic 487 

record. Finally, bottom-current related detachment should be most prominent on the margins of large 488 

open basins and portions of the slope profile impinged upon by strong bottom currents, including in and 489 

around large contouritic terraces (de Castro et al., 2020, Hernández-Molina et al., 2018). 490 
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 491 

4.3: Preservation Potential 492 

Although each of the mechanisms described here carries some inherent risk when considering 493 

their probability of forming reservoirs or traps, ancient examples (known from subsurface or outcrop) 494 

of each mechanism are present in the geologic record (Fig. 10B). As outlined for post-depositional 495 

detachment classes, initially attached systems may evolve to become detached due to subsequent 496 

erosion. The opposite may also occur, where detached systems become attached prior to burial, posing 497 

a key risk for stratigraphic trap formation. This evolution may occur, for instance, in cases where 498 

detachment is associated with erosion/bypass by turbidity currents in channel reaches or in the proximal 499 

lobe (Class 2A). Changes in flow parameters through time may reduce the ability of flows to transfer 500 

their coarse load basinward, as related to their efficiency or equilibrium slope (Mutti, 1992; Kneller, 501 

2003). This process can result in phases of backfilling of erosional conduits with coarse material, as 502 

described by evolutionary models for canyon and channel stratigraphic development (e.g., Gardner et 503 

al., 2000; Samuel et al., 2003; Dalla Valle & Gamberi, 2011; Bain & Hubbard, 2016; McArthur et al., 504 

2018). Preservation of detached lower slope or basin floor sandbodies may thus be contingent on the 505 

inhibition of backfilling processes. Recent work shows the potential for updip migration of coarse-506 

grained bedforms under supercritical flow conditions in channels and channel-lobe settings that may 507 

facilitate the development of updip thief lags or backfill feeder conduits (e.g., Postma et al., 2014; 508 

Vendettuoli et al., 2019). Similarly, slope failure-related detached sandbodies (Classes 1 and 6) may 509 

become reattached if slope systems continue to deliver coarse material to the area of detachment or 510 

become sites of slope incision exploited by new conduits (e.g., in the Rockall Trough; Elliot et al., 2006).  511 

Producing fields with upslope stratigraphic traps demonstrate that the mechanisms described here 512 

may be preserved over geologic time spans. Known examples of fields indicate that viable traps can be 513 

produced by detachment Classes 2, 4, 5 and 6 of this study. These include reservoirs whose updip 514 
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pinchouts are inferred to have been produced by turbidity current bypass (e.g., Alba, Buzzard, and Young 515 

North fields) and post-depositional erosion by submarine channels (e.g., Marlim, Marlim Sul, and Shwe 516 

fields) or mass transport erosion (e.g., Bud, Nautilus, Pabst fields) (Amy, 2019). Plays exploiting 517 

contourites have also been identified by Shanmugam et al. (1993). Examples of commercial hydrocarbon 518 

volumes trapped in pinchouts associated with the other detachment mechanisms (Classes 1, 3 and 7) are 519 

lacking; conspicuously absent are examples of producing fields of upslope stratigraphic traps associated 520 

with CLTZ processes. As found in modern systems, upslope pinchouts in stratigraphically trapped fields 521 

occur along the slope profile, from the upper to the lower slope (Amy, 2019). Anecdotally, the significant 522 

potential for deepwater stratigraphic traps in the subsurface is supported by the recent assessment that 523 

more oil and gas have been discovered in upslope stratigraphic traps than any other type (Myers, 2020). 524 

However, it should be noted that only a relatively small number (~20) of producing fields with upslope 525 

stratigraphic traps have been reported (Amy, 2019). The paucity of field examples may be attributed to 526 

a range of factors, including those that are not geological in nature (i.e., confidentiality and/or 527 

commercial and exploration strategy). 528 

5: Conclusions 529 

 The wide array of detached sandbody types found on the modern deep seafloor and in the shallow 530 

subsurface defines the range of possible stratigraphic closures in buried deepwater systems. Detachment 531 

may occur simultaneously with the event(s) that deposit sandbodies themselves, or by subsequent erosive 532 

processes that can disconnect initially attached systems. Deepwater syndepositional detachment 533 

processes include flow transformation (Class 1), turbidity current erosion (Class 2), and deposition of 534 

sands by bottom currents (Class 3). Post-depositional detachment processes include erosional turbidite 535 

channels (Class 4), truncation by mass-transport deposits (Class 5), downslope translational movement 536 

due to slope failure (Class 6), and erosion by bottom currents (Class 7). The diversity of these processes 537 

results in detachment zones that vary in size and effectiveness, and in detached sands that may occur 538 
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throughout the slope profile and across margin types.  Whilst recent systems may not represent the final 539 

stratigraphic architecture, they provide important insights into the development of detached sandbodies 540 

that offer stratigraphic-trap potential in analogous subsurface systems. 541 

 542 

FIGURE CAPTIONS 543 

Figure 1: Global map (bathymetry/topography) of selected locations mentioned in this study. Sites 544 

color coded by detachment mechanism. Class numbers are defined in more detail in Fig. 2; basemap 545 

from Amante and Eakins (2009).  546 

Figure 2: Top-tier classification of detachment mechanisms discussed in this paper. Classes are based 547 

on timing of detachment relative to initial sandbody deposition; subclasses (discussed in text) are 548 

related to more specific processes and settings that may affect the morphology and sedimentological 549 

properties of the final deposit. Red boxes in Classes 3 and 7 highlight specific process in questions 550 

(erosional vs. depositional). 551 

Figure 3: Illustration and examples of Class 1, detachment through flow transformation. A) Open-552 

slope failure unrelated to existing channel-canyon system, creating large, sometimes basin-scale 553 

turbidite deposits. B) Failure of steep canyon walls or upper slopes, where sediments are directed into 554 

pre-existing canyon and channel systems. Resulting turbidite deposits overlie those in the channels and 555 

lobes that are the result of previous turbidity currents. C) Map of the Sahara Slide and Canary Debris 556 

Flow, offshore northwest Africa, showing scale of deposits interpreted to have undergone flow 557 

transformation and location of cores containing evidence of differing downslope processes. Modified 558 

from Georgiopoulou et al. (2009, 2010) and Weaver et al. (1995). D) Schematic cross-section A-A’ in 559 

Figure 3C, showing interpreted flow transformation process and slope gradient for the Sahara Slide. 560 

Modified from Georgiopoulou et al. (2010). 561 
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Figure 4: Detachment related to erosion by turbidity currents. A) Illustration of in-channel or in-562 

canyon bypass on the basin floor, occurring when the slope gradient and grain size distribution of a 563 

flow favour erosion or non-deposition. B) An example of bypass in the Madeira turbidite system, 564 

where identifiable zones of bypass occur between depositional areas. Modified from Stevenson et al. 565 

(2015). C) Illustration of bypass on topographically complex slopes, where sand may pond in 566 

bathymetric lows and bypass slopes between. D) Sand thickness map of a series of salt-withdrawal 567 

minibasins in the Gulf of Mexico, showing bypass or reduced thickness between individual basins. 568 

Modified from Winker (1996). (E) Illustration of channel-lobe transition zone (CLTZ) near the mouth 569 

of a submarine canyon. F) Acoustic backscatter image showing possible CLTZ features in the Rosetta 570 

lobe of the Nile delta, as evidenced by differential backscatter at the ends of channels. Modified from 571 

Migeon et al. (2010) G) Shaded swath bathymetry image showing CLTZ-related scour features in the 572 

Rhone Fan, western Mediterranean, from Bonnel et al. (2005). H) Illustration of levee breaching and 573 

formation of a crevasse splay. I) Backscatter image of a deposit interpreted as a crevasse splay by 574 

Gardner (2017). 575 

Figure 5: A) Schematic illustration of detachment by bottom currents, showing erosive moat and 576 

deposition of deepwater sandy contourites. B) Subsurface seismic amplitude image of kilometer-scale 577 

coarse-grained deposits (yellow and red colours) in avulsion lobes. Sands can be reworked by bottom 578 

currents from these lobes into separate sandbodies that are detached from the main lobate deposit. 579 

Modified from Viana (2008), as seen in Rebesco et al. (2014).  580 

Figure 6: A) Illustration of the process of crosscutting of submarine channels in a fan system. Older 581 

channel (1) has been backfilled by sand but is being crosscut by erosional channel (2), which may be 582 

abandoned before backfilling occurs, leading to detachment of lobe (1) as the second, newer channel is 583 

filled by fines. B) Composite map of channels in the deepwater Amazon fan system and associated 584 

features. Instances of crosscutting highlighted in red; however, lithologies and depths of incision are 585 

unrecorded. Modified from Jegou et al. (2008), Pirmez et al. (1997), Flood et al. (1995), and Damuth 586 
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et al. (1988). C) Examples of presumably mud-filled channels in the subsurface that crosscut sandier 587 

channel or fan systems. Upper example (RMS amplitude extraction map and seismic line) modified 588 

from Mayall et al., (2006); location unrecorded. Lower example (AVO) from the North Atlantic 589 

Porcupine Basin (Providence Resources, 2016), showing bright-amplitude fan deposit cut by later 590 

mud-filled channel (white). Neither exact depths nor locations recorded for either example. 591 

Figure 7: A) Schematic illustration of detachment processes and resulting depositional products due to 592 

mass-transport erosion. Pre-existing sandy channels and lobes are shown being decapitated by a large 593 

MTD originating from the upper slope. B) Example of the mechanism described in (A), near the 594 

Rosetta lobe of the Nile Delta and Fan in the eastern Mediterranean. Note defined channels terminating 595 

proximally into MTD. Modified from Garziglia et al. (2008).  596 

Figure 8: A) Schematic illustration of translational slope failure processes, in which sandy units 597 

maintain their coherency (but may be deformed) while still moving downslope and becoming detached 598 

from the shelf and/or upper slope. B) Downdip seismic line showing failure of the Hikurangi Margin, 599 

New Zealand, and formation of the Tuaheni Landslide Complex. Unit II (orange) contains deformed, 600 

fining-upward sand beds, separated from the more proximal slope by the failure scarp shown here.  601 

Modified from Couvin et al., 2020. C) Subsurface horizon with RMS amplitude extraction, showing 602 

downslope slumping and detachment of Cretaceous sediments, offshore Ireland. Modified from Pedley 603 

et al., 2015. 604 

Figure 9: Dip-oriented seismic line showing bottom-current erosion in the form of a slope-parallel 605 

moat in the Gulf of Cadiz, southern Portugal. Note also the presence of onlapping contourite deposits 606 

and interaction with turbidites, which frequently co-occur with deepwater bottom-current erosion. 607 

Modified from Hernández-Molina et al. (2010). 608 

Figure 10: A) Schematic illustration of the various detachment processes discussed in this review, and 609 

their most likely locations on the slope. Not to scale. B) Table outlining primary (though not all) risks 610 
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for associated sand detachment for each process, and examples in the geologic record (subsurface or 611 

outcrop) where deposits affected by each process have been preserved.   612 
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