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A B S T R A C T   

In this paper, we demonstrate the application of a generalised fully Lagrangian approach to the simulation of 
polydisperse gas-evaporating droplet flows. The paper focuses on the proposed methodology for modelling the 
dispersed phase, droplets, in both steady and transient cases. To account for polydispersity, the set of Lagrangian 
variables is extended to include the droplet size, and the droplet size distribution function is introduced to the 
droplet parameter set. According to the Lagrangian approach, all the droplet parameters, including the distri
bution function, are found along the droplet trajectories. An interpolation scheme to convert droplet parameter 
fields from a Lagrangian to an Eulerian framework for visualising droplet distribution is proposed. The developed 
methodology was applied to simple 1D and 2D stationary cases for verification, after which it was incorporated 
into OpenFOAM to simulate steady and periodic flows around a cylinder. In the case of a steady flow, a region 
devoid of droplets is formed behind the cylinder. From the droplet distribution plots, it was observed that small 
and medium sized droplets reach a region near to the axis of the symmetry of the flow. In the case of periodic 
flow, the analysis of droplet distribution is based on instantaneous pictures of the droplet parameters rather than 
their values along droplet trajectories. In this flow, strongly influenced by vortices, a strong droplet segregation is 
shown; at various locations one can see a full droplet size spectrum, only small or large droplets, and/or droplets 
from a narrow size interval. In all cases, the effect of the evaporation is to decrease the maximum value of the 
droplet distribution function shifted towards smaller-sized droplets.   

1. Introduction 

Two-phase flows, more specifically gas-droplet flows, are wide
spread in daily life, for example aerosols generated when coughing and 
sneezing (Bourouiba et al., 2014), and in applications, for example 
aerosol drug delivery (Dolovich and Dhand, 2011), and sprays in gaso
line engines (Panão and Moreira, 2004). The fundamental physics 
involved is essentially the interaction between a dispersed phase of 
droplets and a carrier phase, that includes not only momentum ex
change, but also heat transport and phase change in some applications. 

One aim of relevant studies within this topic is to understand the 
concentration of the dispersed phase within the carrier phase and the 
mechanisms leading to accumulation and scattering of the droplets. 
There are many experimental studies of sprays, including those that 
provide information about droplet sizes and their velocities, see for 
example Begg et al. (2009) and Dunbar et al. (1975). However, it is 
difficult to reconstruct instantaneous droplet distribution fields from 

their experimental data. Thus, there is a great interest in the develop
ment of mathematical and numerical models for theoretical studies 
which have the potential to provide insight into the phenomena. Ex
amples of such works include those by Almeida and Jaberi (2006) and 
Karchniwy et al. (2019), where various patterns of droplets clustering 
according to their sizes were identified by simulating evaporating 
polydisperse sprays in turbulent flows. Segregation of droplets by sizes 
within a laminar oscillating flow was demonstrated by Greenberg and 
Katoshevski (2016). 

While the carrier phase is usually modelled using the classic 
Navier–Stokes equations (Eulerian approach), there are two approaches 
that describe the dispersed phase. One is based on the assumption that 
the cloud of droplets is a continuum, and the equations for the dispersed 
phase are derived in the Eulerian framework (see for example Laurent 
and Massot, 2001; Laurent et al., 2004). This is known as the Euler
ian–Eulerian (EE) approach. The other method is based on tracking each 
droplet or a parcel of identical droplets along their trajectories (see for 
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example Almeida and Jaberi, 2006; Karchniwy et al., 2019). This is 
called the Eulerian–Lagrangian (EL) approach. Both EE and EL ap
proaches have their advantages and disadvantages, and it is now 
well-known when, or in which cases, it is preferable to use one rather 
than the other. See for example Laurent and Massot (2001) for a case 
where EE is more computationally efficient than EL. On the other hand, 
EE requires careful consideration when dealing with the intersection of 
droplet trajectories, which leads to multi-valued fields of droplet ve
locities. In this case, the standard EL modelling method can accurately 
reveal the dynamics of each individual droplet, however the computa
tional costs are higher than for the EE approach if droplet concentration 
needs to be evaluated and then a great number of particles have to be 
tracked for the sake of accuracy, for example as reviewed by Healy and 
Young (2005). 

In an effort to mitigate the drawback of the EL method, two different 
approaches were proposed, one by Fernandez et al. (1981) and the other 
by Osiptsov (2000), by incorporating the assumption of droplet phase 
continuity into the original EL method. Healy and Young (2005) re
ported that Osiptsov’s approach benefits from not only elegance and 
simplicity in its mathematical form but also greater accuracy and can be 
applied to numerically generated flow fields. Osiptsov’s approach will 
be used in this work, and is here referred to as the fully Lagrangian 
approach (FLA). 

Previous studies have demonstrated the capability of the FLA to 
model monodisperse droplets in a carrier phase which is described either 
analytically (Osiptsov, 2000; Rybdylova et al., 2016; 2018) or numeri
cally (Zaripov et al., 2017; 2018; Papoutsakis et al., 2018). Some authors 
have also included the evaporation models of droplets together with the 
FLA (Zaripov et al., 2017; 2018). However, there is still a lack of 
development of the FLA for simulating a polydisperse two-phase flow, 
though Osiptsov (2000) proposed a mathematical formulation of a 
generalised FLA for this purpose. To the best of our knowledge, there are 
no works on actual application of the generalised FLA for evaporating 
polydisperse flows. 

Polydisperse gas-droplet flows with evaporation have previously 
been modelled using the EE (for example Laurent and Massot, 2001; 
Laurent et al., 2004; Dagan et al., 2017; Tambour, 1984; Greenberg 
et al., 1993) and the EL approaches (for example Almeida and Jaberi, 
2006; Karchniwy et al., 2019; Tambour, 1985). In the sectional 
approach, the droplet size domain is divided into a number of sections 
and it is assumed that the total number of droplets within each section, 
taking into account fluxes to the adjacent sections, is conserved 
(Tambour, 1984). Due to its design it is more convenient to use this 
approach with the EE model because it does not require the tracking of 
particular trajectories, although some attempts have been made to also 
couple it with an EL model (see for example Tambour, 1985). Another 
method, called the sampling approach, is based on defining a number of 
samples within the size domain then tracking each one as an indepen
dent group of monodisperse droplets. The sampling approach is mostly 
used in EL models. 

In this paper, we demonstrate the application of the generalised FLA 
to simple 1D and 2D steady cases as well as its implementation to 
OpenFOAM to simulate evaporating polydisperse droplets in a hot gas. It 
is envisaged that the generalised FLA will build on the strengths of the 
original FLA, when all droplet parameters, including number density, 
are calculated from a system of ordinary differential equations, and 
provide a complete picture of droplet distribution in terms of size, space 
and time. Coupling of the generalised FLA with OpenFOAM will enable 
more advanced modelling, which will be illustrated using an example of 
periodic flow past a cylinder. Finally, for a complete analysis, it is 
essential to plot droplet number density distribution in space; we have 
developed and proposed an interpolation scheme to map the results 
from the Lagrangian onto the Eulerian framework. 

When considering polydisperse droplet flows, it is certainly expected 
that one will observe the size segregation of droplets depending on their 
initial size and velocity distribution, as shown in Karchniwy et al. 

(2019). While we recognise that it would be an interesting direction of 
study to explore the effect of initial droplet distribution on spatial and 
temporal droplet concentration fields, this is out of the scope of this 
paper, which focuses upon the methodology and its practical imple
mentation for CFD studies. 

The paper is structured as follows. Section 2 is dedicated to the 
formulation of the problem, including the full list of assumptions used in 
the development of the model and a brief description of the original FLA. 
The details of the generalised FLA and its application to the 1D and 2D 
steady state cases are presented in Section 3. Implementation of the 
generalised FLA and its application to flow around a cylinder are 
described in Section 4. The results of the work are summarised in Sec
tion 5. Technical details about the mesh, time step, domain, and veri
fication of the implemented FLA in OpenFOAM using an analytical 
solution are included in the Appendices. 

2. Mathematical formulation 

2.1. Eulerian–Lagrangian framework 

The general physical problem of interest in this work is a flow of gas 
loaded with evaporating droplets, where the size of the droplets is not 
uniform across the droplet cloud. The problem is considered in the 
framework of the one-way coupled two-fluid approach (Marble, 1970). 
The one-way coupled approach is applicable to dilute sprays with a 
negligibly low mass loading of droplets. In this study, the Euler
ian–Lagrangian approach is adopted. The carrier phase is described 
using the Eulerian approach, i.e. Navier–Stokes equations. In the case 
studies discussed in the paper, it is assumed that the carrier phase is a 
viscous incompressible gas. However, the focus of the paper is on the 
methodology for the dispersed phase, for which no assumptions are 
required with regard to the carrier phase. Hence, the methodology can 
be applied to compressible flows without limitations. 

To describe the dynamics of such two-phase systems within the 
Eulerian–Lagrangian framework with conventional Lagrangian 
tracking, the governing equations for a non-evaporating case can be 
written in the following dimensionless form: 
(

∂
∂t
+ ug⋅∇

)

ug = − ∇p +
1

Re
∇2ug, Re =

ρgUL
μg

, (1)  

∇⋅ug = 0, (2)  

dxd

dt
= ud, (3)  

dud

dt
= fd. (4) 

The force fd is usually a known function of velocity and size (Crowe 
et al., 2011). Note, that it is assumed that the droplets are much larger 
than the molecular size so that Brownian motion can be ignored. The 
flow is laminar and the volumetric fraction of droplets is negligibly 
small, so that the dispersed media is a ‘cold gas’ without stresses 
(Marble, 1970). In System (1)–(4), x and u are the radius vector and 
velocity normalised by L and U respectively, the subscripts g and d are 
applied to distinguish between the variables of the gas and droplet 
phases respectively. ρg and μg denote the density and viscosity of the gas, 
other notations are conventional, U, L are the chosen scales of velocity 
and length used for nondimensionalisation of the governing equations. 
The time scale can then be determined as L/U. Here and in what follows, 
the equations and results are presented and discussed in dimensionless 
forms unless otherwise stated. 

2.2. Standard fully Lagrangian approach 

According to the fully Lagrangian approach (FLA) (Osiptsov, 2000), 
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the droplet phase is a continuum, and the Lagrangian variables are 
droplet initial locations xd0, and time. The number density nd along 
chosen trajectories is calculated from the continuity equation taken in 
the Lagrangian form, which is based on the deformation of the local 
element with respect to its initial state. 

For monodisperse droplets without evaporation, Eqs. (3) and (4) are 
complemented by the following equations, which are required for 
number density calculations: 

nd =
nd0

|detJ|
, where Jij =

∂xd,i

∂xd0,j
, xd = (xd, yd, zd), (5)  

dJij

dt
=

∂ud,i

∂xd0,j
= ωij, where ud =

(
ud,x, ud,y, ud,z

)
, (6)  

dωij

dt
=

∂
∂xd0,j

dud,i

dt
=

∂
∂xd0,j

fd,i,

where fd =
(
fd,x, fd,y, fd,z

)
.

(7)  

Here, J is the Jacobian of the transformation from Lagrangian to 
Eulerian coordinates. The subscript d0 is used to denote the initial values 
of the droplet parameters. 

3. Generalisation of the FLA for the case of evaporating 
polydisperse droplets 

The model described in Section 2.2 can be generalised for the case of 
polydisperse droplets (Osiptsov, 2000). The set of Lagrangian variables 
is extended to include the initial droplet size, thus the full set of 
Lagrangian variables is xd0, yd0, zd0, and rd0, where rd0 is the initial 
droplet radius. The continuity equation for the dispersed phase is 
generalised to 

ñd(t, xd0, rd0)|detJ| = ñd0. (8)  

Here, ñd is a distribution function of droplets along their trajectories, 
which depends not only on xd0 and t, but on rd0 also. J is the Jacobian of 
the transformation from Lagrangian to Eulerian coordinates with the 
following components: 

J =

⎛

⎜
⎜
⎝

J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

∂xd/∂xd0 ∂xd/∂yd0 ∂xd/∂zd0 ∂xd/∂rd0
∂yd/∂xd0 ∂yd/∂yd0 ∂yd/∂zd0 ∂yd/∂rd0
∂zd/∂xd0 ∂zd/∂yd0 ∂zd/∂zd0 ∂zd/∂rd0
∂rd/∂xd0 ∂rd/∂yd0 ∂rd/∂zd0 ∂rd/∂rd0

⎞

⎟
⎟
⎠. (9) 

The equations for the dispersed phase are: 

∂xd

∂t
= ud,

∂ud

∂t
= fd,

∂Td

∂t
= qd,

∂rd

∂t
= ṙd,

∂Jij

∂t
= ωij,

∂ωij

∂t
=

∂fdi

∂xd,k
Jkj +

∂fdi

∂ud,k
ωkj +

∂fdi

∂rd
J4j,

for i, k = 1, 2, 3, j = 1,…, 4,
∂J4j

∂t
=

∂ṙd

∂xd,k
Jkj +

∂ṙd

∂ud,k
ωkj +

∂ṙd

∂rd
J4j,

∂J44

∂t

=
∂ṙd

∂xd,k
Jk4 +

∂ṙd

∂ud,k
ωk4 +

∂ṙd

∂rd
J44, j, k = 1, 2, 3.

(10) 

Where, ṙd is the rate of droplet size change, which is usually a known 
function of the droplet size and thermodynamic parameters as it is 
directly related to the droplet evaporation, qd is the heat flux to the 
droplet, the values of 1, 2,3, and 4 correspond to x, y, z, and r respec
tively. On a chosen droplet trajectory, System (10) is a system of ordi
nary differential equations. The initial conditions correspond to how 
droplets are introduced into the flow. These conditions are defined in a 
similar way as for the original FLA (Osiptsov, 2000; Healy and Young, 
2005). 

3.1. Droplet distribution function 

Assuming that the injection generates a polydisperse spray, we need 
to define the initial droplet size distribution and to find a new size dis
tribution at a chosen location and time instance. 

In the cases considered in this paper, it is assumed that the initial 
distribution of droplet size is the same at all initial locations xd0 and that 
it is log-normal: 

ñd0 =
1

rd0

1
S

̅̅̅̅̅
2π

√ exp
(

−
(lnrd0 − M)

2

2S2

)

. (11)  

In this work, M and S take the values of 0.16 and 0.4. Such initial dis
tribution is illustrated in the plot in Fig. 1 where rd = rd0, that is, a 
droplet radius scaled by r∗d0, a reference droplet radius corresponding to 
the highest number of droplets. 

It was demonstrated that the assumption of a log-normal distribution 
of droplet sizes is adequate for some applications (see for example 
Nguyen et al., 2016). However, this assumption does not limit the 
methodology described in Section 3. In fact, any form of the distribution 
function may be used, including a tabulated form. 

To find the total number density nd(t, x) at a chosen location x = xp 

and time instance t = tp, one needs to firstly map the distribution ñd 

from the Lagrangian to the Eulerian coordinates. If the flow is steady, nd 
and ñd in the Eulerian framework do not vary in time, and the 
Lagrangian ‘time’ becomes a parameter along a droplet trajectory. The 
droplet distribution in the Eulerian framework is found as ñd(tp, xp, rd)

for all sizes of droplet at this chosen location and time instance. Finally, 
the total number density nd(tp, xp) is calculated by integrating ñd(tp, xp,

rd) over the whole range of droplet sizes rd ∈ [rd,min, rd,max]: 

nd
(
tp, xp

)
=

∫ rd,max

rd,min

ñd
(
tp, xp, rd

)
drd. (12)  

It should be noted that in the general case ñd(tp, xp, rd) can be discon
tinuous, also, it may happen that ñd = 0 within a certain range of rd 
implying that there are no droplet of the corresponding size in the 
location under consideration. In the case, where ñd is a discontinuous 
function of rd at a given tp and xp, one need to integrate every continuous 
fragment and sum them together to obtain nd. 

3.2. Application of the generalised FLA to simple cases 

In this section and what follows it is assumed that the dimensional 
expressions for the force, heat flux and evaporation rate ṁ for a droplet 

Fig. 1. Initial distribution ñd0 as defined by the Eq. (11).  
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are: 

f∗d = 6πr∗dμg

(
u∗

g − u∗
d

)
,

q∗
d = 4πr∗dkl

(
T∗

g − T∗
d

)
,

ṁ = −
q∗

d

H
.

(13)  

Here, the superscript ∗ represents the dimensional parameters, kl and H 
denote the droplet liquid thermal conductivity and the latent heat of 
evaporation. These simple models for the force and heat flux are only 
applicable for a narrow range of flow parameters, namely small droplet 

Reynolds number, that Re d = ρgr∗d
⃒
⃒
⃒u∗

g − u∗
d

⃒
⃒
⃒/μg≪1. The expression for 

the evaporation rate corresponds to the case when all the heat that 
reaches a droplet surface is spent on its evaporation. These expressions, 
however, are for demonstration purposes only. The methodology pre
sented in the paper is valid if other expressions for the force and heat flux 
are considered without limitations. 

The dimensionless equations corresponding to expressions (13) are: 

dud

dt
=

1
Stk r2

d

(
ug − ud

)
, Stk =

2ρdr∗2
d0U

9μgL

dTd

dt
= 0,

dr2
d(t)
dt

= − δ, δ =
2kl

ρdr∗2
d0H

(
T∗

g − T∗
d

)
.

(14)  

Here, ρd is the droplet liquid density. 

3.2.1. 1D stationary case of droplets evaporating into a quiescent carrier 
phase 

Consider an injection of droplets into a still hot air with uniform 
temperature where the droplets are injected with a constant velocity and 
temperature. For this problem, the velocity scale is equal to the droplet 
injection velocity, U, the length scale is equal to the characteristic 
droplet velocity relaxation length, L = 2ρdr∗2

d0U/(9μg), then Stk = 1. 
For a chosen droplet trajectory, we have the following system of 

ODEs: 

dxd

dt
= ud,

dud

dt
= −

1
r2

d
ud,

dr2
d

dt
= − δ,

dJ11

dt
= ω11,

dJ12

dt
= ω12,

dJ21

dt
= 0,

dJ22

dt
=

δ
2r2

d
J22,

dω11

dt
= −

1
r2

d
ω11 +

2
r3

d
udJ21,

dω12

dt
= −

1
r2

d
ω12 +

2
r3

d
udJ22.

(15) 

The initial conditions for System (15) are: 

x = x0, ud = 1, ñd = ñd0, rd = rd0,

J11 = J22 = 1, J12 = J21 = 0, ω11 = ω12 = ω21 = ω22 = 0. (16) 

System (15) can be solved analytically, and was used for verification 
of the calculations. The solution is 

xd =
r2

d0

δ + 1

[

1 −

(

1 −
δt
r2

d0

)(δ+1)/δ]

,

ud =

(

1 −
δt
r2

d0

)1/δ

, r2
d = r2

d0 − δt,

J11 = 1, J12 = −
2rd0

1 + δ

[(

1 −
δt
r2

d0

)1/δ(

1 +
t

r2
d0

)

− 1
]

,

J21 = 0, J22 =

(

1 −
δt
r2

d0

)− 1/2

,

ñd = ñd0

(

1 −
δt
r2

d0

)1/2

.

(17)  

The developed methodology enables collection of detailed information 
about the distribution of droplets; for example, one can plot the distri
bution of droplet velocities vs. their sizes (see Fig. 2 (left), δ = 1). As 
demonstrated in the figure, smaller droplets relax to the quiescent car
rier gas faster. At each point, a distribution of droplets was reconstructed 
and the total number density integrated. The evolution of the total 
number density along the axis is presented in Fig. 2 (right). The total 
number density increases as the droplets slow down and accumulate 
near the injection point. As the droplets travel downstream, they evap
orate completely and disappear, which leads to a decrease in the total 
number density. 

3.2.2. 2D stationary case: fan spray injection into a cross-flow 
This case was proposed to study the effect of droplet trajectory 

crossing on the reconstruction of the total number density fields. 
Consider an injection of droplets into a hot air with a uniform temper
ature and a constant velocity perpendicular to the droplet injection, 
which forms a 90∘–jet. The dimensional velocity magnitude of the gas 
and the droplet at injection are U and 0.8U respectively. The length scale 
and Stk are defined in the same way as in Section 3.2.1. 

In the case of a 2D steady-state flow, System (10) takes form: 

ñd(t, xd0, rd0)

⃒
⃒
⃒
⃒
⃒
⃒
det

⎛

⎝
J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞

⎠

⃒
⃒
⃒
⃒
⃒
⃒
= ñd0. (18) 

For horizontal flow of the carrier phase, System (10) takes the form: 

Fig. 2. Left: Distribution of droplet velocities with their sizes at cross-sections x = 0,0.1,0.5, and 1. Right: The total number density nd along the x-axis.  
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dxd

dt
= ud,x,

dyd

dt
= ud,y,

dud,x

dt
=

1
r2

d

(
1 − ud,x

)
,

dud,y

dt
= −

1
r2

d
ud,y,

dr2
d

dt
= − δ,

dJ11

dt
= ω11,

dJ12

dt
= ω12,

dJ13

dt
= ω13,

dJ21

dt
= ω21,

dJ22

dt
= ω22,

dJ23

dt
= ω23,

dJ31

dt
= 0,

dJ32

dt
= 0,

dJ33

dt
=

δ
2r2

d
J33,

dω11

dt
= −

1
r2

d
ω11 −

2
r3

d

(
1 − ud,x

)
J31,

dω12

dt
= −

1
r2

d
ω12 −

2
r3

d

(
1 − ud,x

)
J32,

dω13

dt
= −

1
r2

d
ω13 −

2
r3

d

(
1 − ud,x

)
J33,

dω21

dt
= −

1
r2

d
ω21 +

2
r3

d
ud,yJ31,

dω22

dt
= −

1
r2

d
ω22 +

2
r3

d
ud,yJ32,

dω23

dt
= −

1
r2

d
ω23 +

2
r3

d
ud,yJ33.

(19) 

The initial conditions for System (19) are: 

xd0 ∈ [ − ϵ, ϵ], yd0 = 0, ϵ = 0.05,

ud0,x = 0.8sin
(π

4
xd0

ϵ

)
, ud0,y = 0.8cos

(π
4

xd0

ϵ

)
,

ñd = ñd0, rd = rd0, J11 = J22 = J33 = 1,

J12 = J13 = J21 = J23 = J31 = J32 = J33 = 0,

ω110 =
0.8
ϵ

π
4

cos
(π

4
xd0

ϵ

)
, ω120 = ω130 = 0,

ω210 = −
0.8
ϵ

π
4

sin
(π

4
xd0

ϵ

)
, ω220 = ω230 = 0.

(20) 

As in the 1D case, the numerical calculations were verified using the 
analytical solution to System (19) (for the sake of space, the analytical 
solution is included in Appendix A; its derivation is trivial and similar to 
Solution (17)). Droplet trajectories, their sizes and distribution for the 

case of δ = 1 are presented in Fig. 3. It should be noted that, although in 
the 2D space the droplet trajectories intersect, there is no intersection in 
the extended space, when the droplet size is included in the set of di
mensions. The droplet distribution function remained single-valued in 
this case. Fig. 3 (left) shows droplet trajectories, where the size of the 
markers corresponds to the droplet size and colour denotes the droplet 
distribution function. Total number density profiles at horizontal cross- 
sections at various distances from the injection are presented in Fig. 3 
(right). At the injection line, the droplet distribution is step-like. Further 
away from the injection, the distribution becomes smoother and the 
interval with non-zero droplet concentration becomes wider as the spray 
expands. As the spray is injected into a cross-flow, the number density is 
not symmetrical with respect to the axis of injection, and the maximum 
is shifted to the right as the droplet cloud travels to the right in the cross- 
flow. As the droplets evaporate and disappear, the droplet total number 
density decreases as the distance from the injection increases. 

4. Two-phase flow past a cylinder 

In this section, the capabilities of the original and generalised FLA in 
the cases of steady and unsteady gas-droplet flow with and without 
evaporation of droplets are demonstrated by the simulation of a 2D two- 
phase flow past a cylinder. Both the original and generalised FLA were 
incorporated into OpenFOAM by modifying the Lagrangian tracking li
brary. The modification in the code enables the calculation of Jacobians 
and the number densities along chosen trajectories. 

4.1. Modelling of a gas flow past a cylinder 

Fluid flow around a cylinder is a classical problem and is often used 
as a benchmark for computational fluid dynamics codes (Zdravkovich, 
1997). Depending on the flow Reynolds number, various flow regimes 
may be observed, including symmetric stationary flow with attached 
recirculation zones and periodic flows (Batchelor, 1999). 

The flow domain and some notations used in our simulations are 
shown in Fig. 4, x ∈ [− lin, lout ] and y ∈ [ − lw, lw], the origin of the Car
tesian coordinate system is located in the centre of the circle. The length 
and velocity scales are chosen to be the radius of the cylinder and the 
free-stream velocity. The Reynolds number values, Re , used in this 
paper, are half of those in works where the diameter of the cylinder is 
used as the length scale, as in for example Batchelor (1999). The values 
of lin, lout and lw are set at 20, 60, and 20, correspondingly. See 
Appendix D for the details of the study, where the domain size was 
examined to ensure that the boundaries were sufficiently far away to not 
affect the flow field. 

The inlet velocity was normal to the inlet. The outlet velocity con
dition was set as zero-gradient. The inlet and outlet pressure were set as 

Fig. 3. Left: Droplet trajectories. Size of the markers corresponds to the size of the droplets, values of distribution function ñd are denoted by colour. Right: Total 
number density profiles at various cross-sections. 

Fig. 4. The 2D computational domain of the gas flow past the circular cross- 
section of a cylinder with a diameter of 2.lin, lout and lw represent the dis
tance from the centre of the cylinder to the inlet boundary on the left, the outlet 
boundary on the right and the periodic boundaries on the top and the bottom. 
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zero-gradient and a fixed value of zero, respectively. On the cross- 
section of the cylinder wall, there was the no-slip condition for the ve
locity and the zero-gradient condition for pressure. There were periodic 
boundary conditions for the boundaries on the top and bottom. 

Normally, in such a study of a flow past a cylinder, the inlet velocity 
is fixed to be equal to the free-stream velocity in the far field. In this 
work, to model the case of a periodic flow, a transient perturbation was 
deliberately introduced at the inlet at an initial stage to trigger the onset 
of vortex shedding. It is inevitable that an asymmetric flow field corre
sponding to vortex shedding will develop in a computation with a 
symmetric configuration, providing that Re is sufficiently large and the 
computational time is sufficiently long. It is known that the asymmetry 
in simulations stems from truncation errors of computational models. 
Thus, improving the spatial and temporal resolution, which increases 
the accuracy, delays the start of vortex shedding. An asymmetrical 
longitudinal disturbance of the inlet velocity introduced at the initial 
stage was reported to significantly reduce the computational time for 
generating the periodic flow field (Laroussi et al., 2014). The velocity at 
the inlet, x = − lin, y ∈ [ − lw, lw], is defined as follows 

ug( − lin, y, t) =
{
(1 + ae− ctsin(ky), 0) for t ≤ 10,
(1, 0) for t > 10. (21)  

Here a and k are the amplitude and wave number of the disturbance, and 
c is the damping parameter. Their values are chosen as 

a = 0.2, k =
π
10

, c = 1.

As suggested in Laroussi et al. (2014), these values have an effect on the 
length of the computational time taken to start generating the periodic 
flow, but not the flow pattern itself. 

For the carrier phase, pimpleFoam with a direct numerical solver was 
used, with the solver configured as suggested by Bayraktar et al. (2012). 
The computational mesh was constructed in such a way that its quality 
within the boundary layer around the cylinder could be defined 
explicitly. The details are included in Appendix B. 

4.1.1. Modelling verification 
In the literature, the drag and lift coefficients, Cd and Cl, and Strouhal 

number, St , are often used to validate a numerical model of a flow past a 
cylinder. After conversion to non-dimensional variables, in a two- 
dimensional computation, these parameters can be calculated as fol
lows, 

Cd(t) = Fd(t) =
∫

S
ex⋅P⋅n ds,

Cl(t) = Fl(t) =
∫

S
ey⋅P⋅n ds, St = 2f ,

(22)  

where 

P = − pI +
1

Re

[
∇u+(∇u)T]

.

Here Fd and Fl are the total drag and lift forces along the circumference, 
ex and ey are the unit vectors of x and y directions respectively, n is the 
unit normal to the circumference, f is the frequency of oscillations (the 
dimensional scale for frequency is U/L), which is determined using the 
Fast–Fourier–Transform method to the results of Cl(t). 

To ensure reliable and accurate results, the independence study for 
the time step and cell sizes was carried out. Details are included in 
Appendix C. 

4.2. Modelling of two-phase flows 

In the gas flow calculated using the setup described above, droplets 
are injected at xd0 = − 5 and yd0 ∈ [− 2, 2] at the same speed as the gas 
flow. At this cross-section, the local gas velocity is almost the same as the 

free-stream velocity. Hence, it is expected that there would be only slight 
quantitative change in results if injecting droplets at a location further 
away from the cylinder. 

Both original and generalised FLAs were incorporated into Open
FOAM, and to achieve this the Lagrangian module was modified and 
coupled together with pimpleFoam. The implementation was verified 
using the analytical solution for potential flow around a cylinder (see the 
details in Appendix E). 

In what follows, a total number of Ny = 51 initial locations is defined 
for yd0 ∈ [ − 2,2]. In the case of polydisperse droplets, a total number of 
Ns = 41 samples of different initial rd0 are chosen for rd0 ∈ [0.1, 4]. 
Interaction of droplets with the cylinder is not considered, when 
reaching the surface of the cylinder, droplets are assumed to stick to it. 
The initial conditions for Jij,0 and ωij,0 in System (10) are: 

Jij,0 = 1, for i = j; Jij,0 = 0, for i ∕= j;
ωij,0 = 0, for any i, j.

4.2.1. Mapping the Lagrangian variables onto the Eulerian coordinates 
System (10) describes the distribution function ñd within a 

Lagrangian framework, which is a function of t and the initial states (xd0,

rd0). To allow analysis of the droplet concentration in space and time, the 
droplet parameters need to be mapped from the Lagrangian to the 
Eulerian coordinates. This transformation can be carried out using 
various interpolation techniques. The one used in this work is described 
below. 

It is assumed that the droplet phase fields (for example velocity) are 
continuous with respect to the Lagrangian variables (xd0, yd0, rd0), not 
just time t. Taking an example of a steady case, if we need to find the 
distribution function ̃nd(rd) and total concentration nd at a location xp =

(xp,yp), the following steps are followed:  

(i) As it is a steady-state case, t is a parameter along a trajectory, then 
linear interpolation with respect to t is applied to every trajectory 
to find the values of the droplet location yd when xd = xp. 
Alongside that, values of the droplet size rd and the determinant 
of the Jacobian detJ are calculated using the same interpolation.  

(ii) Once the parameters are known at xd = xp, interpolation of all 
the droplet parameters in y direction is arranged by inversely 
interpolating yd(xd0, yd0, rd0, t)|xd=xp 

with respect to yd0. Note that 
the Lagrangian variable, yd0, is used in the interpolation, and it 
assumes the continuity of droplet parameters as functions of 
droplet Lagrangian variables. This step is completed for all rd0. 

(iii) Now all the parameters, including droplet sizes and correspond
ing Jacobian values, are known at the selected location xp = (xp,

yp). The distribution function ñd = 1/|detJ| is defined as a func
tion of rd. Then a trapezoidal integration scheme is used to find 
the total droplet number density nd by integrating the Expression 
(12). 

In the description above it was assumed that the droplet parameter 
fields are single-valued. Note, that droplet trajectory crossing does not 
necessarily lead to multivalued parameter fields within the Lagrangian 
space (see Section 3.2.2). In the study, it was observed that multivalued 
droplet parameter fields are formed, when droplets engage in recircu
lating motion. In this case, the data for various groups should be iden
tified to ensure interpolation within each group and that it is consistent 
with the continuity assumption specified above. Thus, even where a 
multivalued parameter field leads to a discontinuous function of ̃nd with 
respect to rd at the chosen location, the continuity is ensured for each 
group. The total droplet number density nd is then the sum of number 
densities calculated for each droplet family. It should be noted that even 
in the case, when the droplet parameter field is single-valued, but the 
carrier phase flow is complex, for example flow around an obstacle, the 
dispersed phase field might loose continuity, for example, when some 
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droplets stick to an obstacle, but the droplets on either side of the 
obstacle continue the motion and fill the space behind the obstacle. 

In the case of monodisperse droplets without evaporation, the same 
procedure is used without the need of calculating the distribution 
function and its integral (12). As for an unsteady case, it is no longer 
possible to apply interpolation along a trajectory as it would correspond 
to a different time instance. However, the general methodology can be 
applied if extended to include the time of injection of each individual 
droplet t0. More discussion is provided in Section 4.4.2. 

4.3. Steady-state flow around a cylinder at Re = 20 

In this subsection, the simulation results of monodisperse and poly
disperse droplet flow at Re = 20 are presented and discussed. The car
rier phase flow is steady and symmetric with respect to y = 0, thus the 
trajectories and concentrations of droplets are symmetric as well. 

4.3.1. The case of monodisperse droplets and non-evaporating conditions 
We begin the discussion of the results with the simplest case of 

monodisperse droplet flow without evaporation. The focus is on how the 
droplet concentration field depends on the droplet sizes. This problem 
has been considered before. Healy and Young (2005) studied it in a 
potential flow. Zaripov et al. (2017) plotted concentration contours near 
the cylinder at a range of different values of Stk and Re . However, the 

droplet concentration field in a steady flow has not been fully converted 
to the Eulerian framework. 

Since there have been studies of this flow, only some results will be 
presented in this paper. Sample trajectories and deformation of a droplet 
cloud, which originally was set as a line at x = − 5, are plotted as solid 
lines and circles connected by broken lines, respectively, for Stk = 0.1, 
1 and 10, as shown in Fig. 5(left). Because of the symmetry, only the top 
half of the flow domain, y ≥ 0, is shown. As expected, larger droplets, 
Stk = 10, have higher inertia and their trajectories are less deformed 
from straight lines, while smaller droplets, Stk = 0.1, follow the carrier 
phase streamlines more closely due to the viscous forces. More of the 
smaller droplets move around and past the cylinder rather than fall onto 
its surface. On the other hand, the cloud of smaller droplets deforms 
more and becomes longer than in the case of large droplets. In all cases, 
the droplets lagging furthest behind are the ones closest to y = 0. 

Using the mapping described in Section 4.2.1, the profiles of droplet 
total number density at vertical cross-sections x = 3, 6,9, 12 and 15 are 
plotted for the same droplet Stokes numbers, see Fig. 5(right). One can 
see that the regions devoid of droplets on this plot correspond to nd = 0. 
The width or height of this region depends on the droplet size, and it is 
consistent with the trajectory map presented in the same figure on the 
left. The width/height of the empty region decreases, however not 
necessarily monotonically, downstream of the cylinder. At Stk = 10, it 
increases slightly from x = 3 to 9 and then decreases. The smaller size of 
the empty region corresponds to what of the smaller droplets. Another 
interesting result is that at Stk = 1, the total number density curves 
have smaller jumps at the boundary of the empty region. 

4.3.2. Polydisperse droplets 
Consider the injection of polydisperse droplets with reference value 

Stk = 1 and log-normal initial droplet distribution, as in Expression 
(11). The droplet size distribution is different at different locations. The 
reason for that is obvious from the results presented above in Section 
4.3.1, the dispersed phase parameter fields depend on the droplet sizes. 

Some results of the modelling are presented in Fig. 6; total number 
density profiles at x = 3, 6 and 9 are shown in the figure on the left, and 
droplet size distribution at 9 points in a rectangle [3, 9] × [1, 2] are shown 
in three figures on the right. Curves corresponding to the non- 
evaporating case, δ = 0, are solid, while broken curves denote the 
evaporating case with δ = 0.05. First, let us discuss the case of non- 
evaporating droplets, δ = 0. The droplet size distributions look similar 
to each other and similar to the initial droplet size distribution (see 
Fig. 1) at the points furthest away from the axis of symmetry. This 
corresponds to the fact that the flow is less disturbed at y = 2 than at 
points nearer to the cylinder. However, the distribution function 
maximum is lower in comparison to the initial distribution and the 
maximum corresponds to lower rd. Moving to locations y = 1.5, and y =

1, it can be seen that the distribution curves become flatter, and the 
maximum further shifts to smaller size droplets. At y = 1, and x = 6,9, 

Fig. 5. Left: Trajectories of monodisperse 
non-evaporating particles injected at x0 =

− 5 and y0 ∈ [0, 2] for Stk = 0.1 (top), 1 
(middle) and 10 (bottom), Re = 20. The 
circular markers which are connected with 
broken lines tracks the same group of par
ticles at the interval of Δt = 5. Solid lines 
represent the trajectories starting at y0 = 1 
and 2. Right: The droplet number density 
profiles at x = 3, 6,9, 12 and 15, plotted in 
black, blue, red, yellow and green, respec
tively, for Stk = 0.1 (left), 1 (middle) and 
10 (right). The dotted line is plotted as a 
reference line of nd = 1. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the web 

version of this article.)   

Fig. 6. Left: Total number density nd profiles of a polydisperse spray along 
vertical cross-sections at x = 3 (black), 6 (red) and 9 (blue). Right: The distri
bution of number density ñd vs. rd when x = 3 (black), 6 (red) and 9 (blue) at 
the following vertical locations: y = 2.0 (top), 1.5 (middle) and 1.0 (bottom). 
Other parameters are: Re = 20; reference Stokes number is Stk = 1; δ = 0 
(solid lines) and 0.05 (broken lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the distribution function has its branch corresponding to large droplets 
cut, there are no large droplets travelling at this point. There are no 
droplets registered at point (3,1). This observation is consistent with the 
findings discussed in Section 4.3.1, see Fig. 5 for Stk = 1 (middle 
figures). 

The profiles of total number density concentration (see Fig. 6(left)), 
are consistent with those in the case of non-evaporating monodisperse 
droplets. As in the case for monodisperse droplets, the width/height of 
the empty region behind the cylinder reduces downstream. The total 
number density profiles increase with y, as the droplet cloud deforms 
and stretches. The total droplet number density is less than 1 near the y 
= 0 axis. 

For comparison, the same group of results but for the case of evap
orating droplets, δ = 0.05, is presented on the same Fig. 6 with broken 
curves. As expected, evaporation leads to a shifting of the distribution 
curve maximum towards the smaller rd and also reduced the value of the 
maximum ̃nd in comparison to the case for non-evaporating droplet. The 
empty region width/height is larger in comparison to the case for non- 
evaporating droplets because the small droplets, which travel closer to 
the symmetric plane, evaporate completely. 

4.4. Results at Re = 100 

In this section, a periodic unsteady gas-droplet flow is studied at 
Re = 100. As in the previous subsection, the results and discussions 
corresponding to monodisperse non-evaporating droplets are presented 
first, followed by those for polydisperse evaporating droplet. At Re =

100, the frequency of the periodic flow in the gas phase is found to be 
f = 0.1. This means that the period is T = 10. 

4.4.1. Trajectories and det|J| of monodisperse droplets 
As will be demonstrated later, in the case of vortex shedding, drop

lets engage in a circular vortex flow behind the cylinder, which develops 
and becomes wider further downstream. 

The droplet trajectories for Stk = 0.1, 1 and 10, which are injected at 
four different times, t0 = 0,2.5,5,7.5, are shown in Fig. 7. The samples in 
the figure correspond to droplets injected at yd0 = − 2, − 1, − 0.5, 0,
0.5, 1 and 2. The time interval between every two consecutive plots is 
equal to a quarter of the period (T/4). For convenience, the injection 
time instance of the first plot on the top left is denoted as t0 = 0. The 
trajectories show more complicated dynamics for the droplet phase in 
comparison to the case at Re = 20. They include: circulation within, and 
then escape from, small regions; multiple intersections; and 

Fig. 7. Droplet trajectories plotted during their lifetime of 40, which are injected at t0 = 0 (Top left), 2.5 (Top right), 5 (Bottom left) and 7.5 (Bottom right). Each 
figure contains three subplots for Stk = 0.1, 1 and 10 from top to bottom. 

Fig. 8. The plots of detJ versus x along 
the same droplet trajectories as pre
sented in Fig. 7, which are injected at 
t0 = 0 (left) and 2.5 (right). The colour 
denotes droplets injected at different 
initial locations: yd0 = − 2 (blue), − 1 
(green), − 0.5 (red), 0 (black), 0.5 
(cyan), 1 (magenta), 2 (yellow). The 
thin dotted line represents detJ = 0. 
Stk = 0.1 (top), 1 (middle) and 10 
(bottom). (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the 
web version of this article.)   
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congregation of various droplet trajectories. It should be noted that the 
intersection of two trajectories in an unsteady case does not necessarily 
lead to singularity in the droplet number density as it does in a steady 
case (Osiptsov, 1984). This is due to the fact that droplets may arrive at 
the intersection at different times. 

Comparing droplet trajectories injected at t0 = 0 and 5, it can be seen 
that the two plots are symmetric with respect to y = 0. The same applies 
to t0 = 2.5 and 7.5 injection times. This indeed reflects the symmetric 
feature of gas flow; the vortex shedding is symmetric about y = 0 with a 
phase delay of T/2. Advantage can be taken of this fact to save 
computational costs. 

The values of detJ along the trajectories injected at t0 = 0 and 2.5 are 
plotted in Fig. 8, noting that nd is inversely proportional to the Jaco
bian’s absolute value. The case of detJ = 0 implies an infinitely high 
number density nd. It is interesting to note that the singularity in the 
number density field is observed at Stk = 10 but not Stk = 0.1, when 
even the more complicated intersection of trajectories is observed (see 
Fig. 7 (top)). 

4.4.2. Transient traces of monodisperse droplets 
Unlike in a steady case, in a transient case, droplet trajectories 

cannot be used to map droplet parameter fields (number densities 
included), to Eulerian coordinates at a chosen time instance. In contrast, 

at a time instance t, xd of all droplets and corresponding rd and ̃nd need to 
be considered within the entire domain. Thus, one can connect the 
location of all droplets from the same (xd0, rd0) injected during the time 
interval between the first injection and t, and this will form a transient 
trace of droplets with the same initial state. From the traces, the inter
polation scheme, which is explained in Section 4.2.1, can be applied, by 
simply changing the parameter t to the time of injection t0. 

It is realised that large number of droplets are required to fill in a 
large computational domain, with sufficiently small intervals Δt0 be
tween the start of each group of droplets (in the calculations, droplets 
are injected in vertical lines) to keep the ‘trace’ as filled in as possible for 
accurate interpolation. However, one can take advantage of the periodic 
and symmetric features of the flow to reduce the computational cost 
significantly. Because of the periodicity, for example, tracking the 
droplets injected during t0 ∈ [t1, t1 +T] for a duration of t ∈ [t1, t2 + nT], 
where t2 ≥ t1 and n is integer, can recover states of droplets injected 
during t0 ∈ [t1, t1 +nT] for a duration of t ∈ [t1 + nT, t2 + nT]. Further
more, one only needs to inject droplets above the y = 0 axis (in our case 
y0 ∈ [0, 2]), as the data on droplets injected below the axis can be 
reconstructed using symmetry and applying a phase delay of T/2. 

An example of the application of this method is Fig. 9, which illus
trates traces of droplets at t = 35 with the droplet injected during t0 ∈ [0,
30], when Stk = 0.1, 1 and 10. The traces are recovered from a simu
lation of droplets injected at yd0 ∈ [0,2] and t0 ∈ [0, 10] for a duration of 
t ∈ [0,40]. Due to the periodicity, the traces of these droplets at t = 15, 
25 and 35 can be superimposed which is equivalent to one set of traces at 
t = 35 of droplets injected at yd0 ∈ [0, 2] and t0 ∈ [0, 30]. Similarly, to 
visualise droplets injected in the bottom half, another set of traces is 

Fig. 9. A snapshot to track the locations of droplets which are injected between 
t0 ∈ [0, 10] at three time steps t = 15 (black), 25 (red) and 35 (green). The 
droplets starting at yd0 = − 2, − 1, 1 and 2 are tracked. It is equivalent to a 
snapshot at t = 35 of the droplets which are injected between t0 ∈ [0,30]. Stk =
0.1 (top), 1 (middle) and 10 (bottom). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 10. Left: The total number den
sity, nd, profile at x = 5 (the vertical 
subplot) when t = 35 (Fig. 9) and the 
droplet size distribution at x = 5 and 
y = 1.2 (black), 1.7 (red) and 2.2 
(blue), shown on the top subplot, y = 0 
(black), 0.5 (red) and 1.0 (blue), shown 
on the middle subplot, y = − 3 (black), 
− 2.5 (red) and − 2 (blue), shown on 
the bottom subplot. Right: The total 
number density nd profile at x = 15 
(the vertical subplot) and the droplet 
distribution at x = 15 and y = 1 
(black), 1.5 (red) and 2 (blue), shown 
on the top subplot, y = − 2.4 (black), −
1.9 (red) and − 1.4 (blue), shown on 

the middle subplot, y = − 4 (black), − 3.5 (red) and − 3 (blue), shown on the bottom subplot. Non-evaporating droplets. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)   

Fig. 11. The same distributions as in Fig. 10 (left), but for evaporating droplets, 
δ = 0.04. 
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generated at t = 20, 30, and 40. This is due to the symmetry present 
with a phase delay of T/2. After changing the sign of y, it gives a set of 
traces starting from yd0 ∈ [− 2,0) at t = 15, 25, and 35. 

As is apparent from Fig. 9, the traces show that the vortices in the gas 
flow have a significant clustering effect on the droplets, especially the 
small ones. Along the vortex street, the droplets are segregated, with the 
smaller droplets accumulating closer to the centres of the vortices. This 
segregation becomes more pronounced further downstream behind the 
cylinder. The droplets tend to collect in thin regions between adjacent 
vortices, from where they move along the periphery of a vortex away 

from the axis while still accumulating within thin zones. 

4.4.3. Number density distribution of polydisperse droplets 
The distribution function ñd and the total number density are much 

more complex than in the case without vortex shedding, which is caused 
by droplet size segregation; see the profiles and distributions at x = 5 
and 15 in Fig. 10. At x = 5 (Fig. 10, left), only small droplets reach the 
region near y = 0 as shown in the middle of the three horizontal sub
plots. These droplets are injected at y0 > 0 and brought closer to the axis 
by the vortex in the carrier phase, which is consistent with the traces 
shown in Fig. 9. For y > 0, away from the axis, the droplet population 
changes gradually from only small droplets, to a full spectrum of all 
sizes, then to only large droplets, as shown in the top subplot. For y < 0, 
if sufficiently far away from the axis, as shown in the bottom subplot, the 
droplet population varies from large droplets only to small droplets only 
following the decrease in y. According to the results presented in this 
subplot, small and medium-sized droplets injected in the bottom half, 
y0 < 0, appear only at y < − 2 at the cross-section x = 5 due to blockage 
of the cylinder and the vortices in the carrier phase flow, while the 
vertical locations of large droplets do not move away from their initial y0 
as much. The total number density nd profile shows that its two local 
maxima are reached both above and below the x-axis and correspond to 
locations, where the droplet size spectrum is the fullest. 

At x = 15, shown in Fig. 10 (right), the segregation is stronger. As 
can be seen in the three subplots of droplet size distribution ñd, only 
some size ranges, in some cases small, are observed at each of the chosen 
locations. For example, high densities (ñd values are up to 5) of small 
droplets appear at y = 1 and 1.5, while at y = 2 the distribution has two 
pieces, one branch is short but high for mid-sized droplets, and another 
branch corresponds to large-sized droplets. The droplet distribution 
function ̃nd is infinitely high for small droplets at y = − 1.9 and 1.5. This 
leads to a singularity in the total number density nd as well. Although not 
present in the distributions shown in Fig. 10, it is probable that an 
infinitely high value of ̃nd corresponding to large droplets is present at a 
different location, this follows from Fig. 8. Note that an infinitely high 
number density value corresponds to a collapse of a Lagrangian element. 

Fig. 12. Dependence of C∗
l , Cd and Δ(Cd) on Δt (left, middle and right, respectively). Square, circle and diamond markers denote Nr = 3, 5, 10, respectively (number 

of mesh layers within a boundary layer. 

Fig. 13. Dependence of the mean drag coefficient Cd (left) and amplitude of the lift coefficient C∗
l (right) on lw.  

Fig. 14. Droplet trajectories (top) and droplet number density along chosen 
droplet trajectories (bottom), Stk = 0.1 and δ = 0.1, potential flow around a 
cylinder. The droplets are injected at xd0 = − 5 and yd0 = 0, 0.2,0.4,0.6,0.8,1.0. 
The curves with larger nd values correspond to trajectories starting closer to the 
x-axis. Solid curves denote numerical results calculated using the modified 
OpenFOAM solver, broken curves denote results obtained using an in-house 
stand-alone code. The two groups of results match with each other perfectly, 
the broken curves are barely distinguishable. 
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The singularity is integrable in this case, meaning that the number of 
droplets remains finite (Osiptsov, 1984). However, as the singularity 
may impose difficulties in accurately interpolating ñd and then calcu
lating nd without overburdening the computation, further investigation 
is required to justify the quantitative results of nd around the singularity. 

The same distributions but for the case of evaporating droplets with δ 
= 0.04 are shown in Fig. 11. The distributions of ̃nd and the total number 
density profiles are plotted at the same locations as in Fig. 10 (left). 
Qualitatively the results are similar to the case of non-evaporating 
droplets δ = 0, except that the values of the total number density nd 
and distribution function ñd are lower due to the evaporation. 

5. Conclusion 

In this paper, a generalised FLA to describe polydisperse evaporating 
droplet flows is presented. The generalisation of the fully Lagrangian 
approach is based on the extension of the Lagrangian variable space to 
include droplet size. The paper includes a description of the mathe
matical formulation, methodology, details of key elements of imple
mentation, and some examples of application. The examples presented 
involved a number of simplifying assumptions, for example the simple 
Stokes drag and the infinite heat conductivity model were used to 
describe the momentum and evaporation equations of the droplet phase. 
A log-normal function was employed to describe the droplet size dis
tribution. However, these assumptions do not limit the application of the 
generalised FLA. Appropriate expressions for the momentum and energy 
exchange terms can be used for a specific application, as well as other 
forms of droplet size distribution functions. 

The generalised FLA was applied to simple cases where the solution 
could be found analytically. These cases were used to verify the nu
merical implementation. Probably the most interesting finding of this 
exercise is that droplet trajectory crossing does not necessarily lead to 
multivalued droplet parameter fields. This is attributed to the fact that 
the variable domain is extended by including the droplet size. 

To enable simulation of polydisperse droplets in more complex car
rier fields, the generalised FLA was incorporated into OpenFOAM as a 
modified Lagrangian module, whilst the pimpleFoam module was used 
to calculate the gas flow field. A mapping procedure was suggested and 
implemented to convert the droplet parameter field from Lagrangian to 
Eulerian coordinates. This mapping is a processing tool, which enables 
better understanding of droplet distribution in space and and its change 
with time. 

The presentation of the examples of the generalised FLA application 
has two parts. The first part shows simulation results of representative 
groups of monodisperse droplets. This is useful information that could 
be used as a reference for the case of polydisperse droplets. It could also 
be interpreted, if the results for all groups of monodisperse droplets are 
superimposed, as an approximation of the polydisperse droplet case. 
Simulation results for polydisperse droplets are discussed in the second 
part. 

Gas-evaporating droplet flow past a circular cylinder was simulated 
as a benchmark case. Some key features of the droplet distribution in a 
steady and periodic laminar flow were captured. In the steady case, an 
empty region free of droplets can be clearly identified from the total 
number density profiles, which correspond to the picture of droplet 
trajectories. The droplet number density profiles give a better under
standing of how droplets are distributed and how this distribution 

depends on droplet sizes. It is demonstrated that evaporation increases 
the size of the empty region because smaller droplets, which travel 
closer to the axis of symmetry in non-evaporating conditions, evaporate 
completely and disappear. 

In the periodic case, the droplet trajectories are much more complex 
and include small recirculation zones. To study the number density 
profiles at a given time instance, a snapshot of all droplets and their 
states within the whole computational domain is used for analysis, 
assuming a constant injection of droplets. The obtained distribution 
profiles show droplet segregation by size, which becomes more pro
nounced further downstream. The droplet phase fields become multi
valued in the extended Lagrangian space, with development of 
singularities in the droplet distribution function on the folds of the 
dispersed phase continuum, which in turn are reflected as infinitely high 
droplet total number densities at the same point. The singularity, how
ever, is an artefact of the mathematical model corresponding to the 
collapse of the Lagrangian element. Usually, such singularities are 
integrable and correspond to a finite number of droplets as explained in 
Osiptsov (1984). 

This work focuses on demonstration of the potential of the general
ised FLA for studying both steady and unsteady polydisperse gas-droplet 
flows with or without evaporation. The developed methodology pro
vides insight into droplet distribution in terms of size and space and their 
evolution with time in two-phase flows. Thus, it enables visualisation of 
droplet distribution in the computational domain. To the best of our 
knowledge, this is the first work to demonstrate such functionality in the 
family of Eulerian–Lagrangian gas-evaporating droplet simulation ap
proaches. Post-processing is relatively straightforward in the case of 
single-valued droplet fields. In the case of strong droplet segregation and 
recirculation, the droplet distributions are much more complex and 
might contain singularities. This does not affect the simulation accuracy 
in the vicinity of the singularity or downstream, however further 
development is required for visualisation of the droplet distribution. 

CRediT authorship contribution statement 

Y. Li: Conceptualization, Methodology, Software, Validation, 
Investigation, Data curation, Writing – original draft, Writing – review & 
editing, Visualization, Project administration. O. Rybdylova: Concep
tualization, Methodology, Software, Validation, Visualization, Writing – 
original draft, Writing – review & editing, Supervision, Project admin
istration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors are grateful to the EPSRC, UK (Grant EP/R012024/1) 
and UKRI Future Leaders Fellowship (Grant MR/T043326/1)UKRI for 
their financial support, Dr Chris Stafford for useful discussions of the 
model, and the School of Computing, Engineering and Mathematics, 
University of Brighton, for access to the School’s High-Performance 
Cluster.  

Appendix A. Solution to system (19) 

System (19) with initial conditions (20) can be solved analytically. Assuming δ ∕= 0 and δ ∕= − 1, the solution is: 
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xd = xd0 + t −
(
1 − ud0,x

) r2
d0

δ + 1

[

1 −

(

1 −
δt
r2

d0

)(δ+1)/δ]

,

yd = ud0,y
r2

d0

δ + 1

[

1 −

(

1 −
δt
r2

d0

)(δ+1)/δ]

,

ud,x = 1 −
(
1 − ud0,x

)
(

1 −
δt
r2

d0

)1/δ

,

ud0,y = ud0,y

(

1 −
δt
r2

d0

)1/δ

, r2
d = r2

d0 − δt,

J11 − 1
ω110

=
J21

ω210
=

r2
d0

δ + 1

[

1 −

(

1 −
δt
r2

d0

)(δ+1)/δ]

,

J22 = 1, J12 = J31 = J32 = 0,

J33 =

(

1 −
δt
r2

d0

)− 1/2

,

J13

1 − ud0,x
=

J23

− ud0,y
= −

2rd0

δ

[
1

1 + δ

(

1 −
δt
r2

d0

)1/δ+1

−

(

1 −
δt
r2

d0

)1/δ

+
δ

(1 + δ)

]

,

ω11

ω110
=

ω21

ω210
=

(

1 −
δt
r2

d0

)1/δ

, ω12 = ω22 = 0,

ω13

1 − ud0,x
=

ω23

− ud0,y
=

2
δrd0

[(

1 −
δt
r2

d0

)1/δ

−

(

1 −
δt
r2

d0

)1/δ− 1]

.

(23)  

Appendix B. Mesh design 

The meshing structure for problem simulations of this kind is often designed with fine grids close to the cylinder, their size increasing gradually 
towards the other boundaries (see for example Bayraktar et al., 2012; Zaripov et al., 2017). Indeed, the region near the cylinder requires a better 
resolution because of the boundary layer formation. Although mesh independence tests were carried out in the cited works in terms of the total 
number of cells, it remains unclear what element size is sufficient near the cylinder. In this work, the quality of mesh is defined differently and based on 
the size of cells closest to the cylinder. 

The mesh quality is quantified by the mesh resolution with respect to the boundary layer, and is a measure of the ability to capture the essential 
physics. It is well known that the thickness of a boundary layer is proportional to Re − 1/2 (Schlichting and Gersten, 2016). Thus, Re − 1/2 is taken as a 
reference value when describing the boundary layer thickness. Near the cylinder, cells are arranged in layers with inflation, and the number of annular 
layers is denoted by Nr within the Re − 1/2-layer in the radial direction. The size of the cells in the first layer near the cylinder in the radial direction is 
then ϵr = Re − 1/2(1 − a)/(1 − aNr − 1), where a is a defined geometric progression ratio. The arc length of a cell along the circumference of the cylinder 
is expected to be similar in size to the cell size in the radial direction. Thus the number of cells within each annular layer can be defined as Na =

4[π /(2ϵr)]. The square bracket denotes the integer part. This choice of Na ensures a symmetric mesh design with the same number of cells in every 
quarter. The cell arc length along the cylinder circumference is ϵa = 2π/Na. 

In our work, the mesh was created and validated only for the maximum value of Re used in our examples, which was Re = 100. 

Appendix C. Time step and mesh independence study 

The independence of the simulation results from the time step and mesh sizes is studied with respect to the drag and lift coefficients, Cd and Cl, and 
the Strouhal number, St , at Re = 100. 

The values of the lift and drag coefficients, Cd and Cl, oscillate over time. Thus the mean value of Cd and the amplitude of Cd and Cl, which are 
denoted as Cd, Δ(Cd) and C∗

l , are considered in the study. The mean value of Cl is zero. 
The dependence of the results on the time step size, Δt, is shown in Fig. 12. According to this figure an acceptable accuracy is achieved with Δt =

0.01. 
In all of these tested cases, the Strouhal number is St = 0.2. 
The effect of the mesh size within the boundary layer is demonstrated in the same Fig. 12 using square, circle and diamond markers denoting Nr =

3,5,10, respectively. The simulation results are of acceptable accuracy when Nr = 5. 

Appendix D. Validation study of the effect of the domain size 

Three parameters describing the domain size were studied, namely lin, lout and lw (see Fig. 4). 
The results of the simulation, when the effect of lw was studied, are presented in Fig. 13 (see plots of Cd and C∗

l vs. lw). According to these figures, lw 

= 20 is a good choice in that Cd and C∗
l only decrease by 0.06% and 0.04% respectively if the width is doubled, but by 1.33% and 1.17% if the width is 

reduce to lw = 10. The amplitude of Cd is 0.045 with negligible variation. 
A similar procedure was used to study the effect of the other two parameters. It was found that lin = 20 and lout = 60 are sufficiently large to apply 
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the far-field boundary conditions. 
It should be noted that Nr = 5 was used for the calculations described above, and that the Strouhal number has the same value, St = 0.2, in all of 

these cases. 

Appendix E. Verification of the Lagrangian module 

A useful test case to validate the implementation of the fully Lagrangian approach (FLA) is to consider a potential flow around a cylinder with an 
analytical solution for the carrier phase (Healy and Young, 2005), in which the non-dimensional velocity potential can be written as 

ϕg = x +
x

x2 + y2. (24) 

Then the x and y velocity components are 

ug,x =
∂ϕg

∂x
= 1 +

y2 − x2

(
x2 + y2)2,

ug,y =
∂ϕg

∂y
= −

2xy
(
x2 + y2)2.

(25) 

Therefore, the velocity derivatives, which are used in the FLA, are 

∂ug,x

∂x
=

− 2x(3y2 − x2)

(
y2 + x2)3 ,

∂ug,x

∂y
=

2y(3x2 − y2)

(
y2 + x2)3 ,

∂ug,y

∂x
=

∂ug,x

∂y
,

∂ug,y

∂y
= −

∂ug,x

∂x

(26) 

These expressions (25) were used with the equation of motion in the droplet phase, (10). The ODEs to find xd, ud and the Jacobian components were 
solved using the 4th order Runge–Kutta method, then the number density nd is found along trajectories using Eq. (8). 

This verification was combined with the evaporation model (14), with evaporation coefficient δ = 0.1. The droplets with Stk = 0.1 were injected 
at a number of selected points at xd,0 = − 5 with the same initial velocity as the carrier phase. 

The other initial conditions were 

nd0 = 1, J11 = J11 = 1, J12 = J21 = 0,
ω11 = ω12 = ω21 = ω22 = 0. (27) 

For the purpose of verification of the modified Lagrangian module in OpenFOAM, it was coupled with potentialFoam, which computed the carrier 
phase velocity field. The boundary conditions at the cylinder surface were set for the slip condition instead of the standard no-slip. The reference data 
was calculated using in-house code for the 4th order Runge–Kutta method of integrating droplet parameters along their trajectories. Perfect agreement 
was achieved between the two sets of results, as shown in Fig. 14. 
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