The effect of progressive heat acclimation on fatigue following intermittent-sprint exercise in the heat.

Hayes M, Willmott A, Lamy C, Ross EZ, Maxwell N

Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine, University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, UK

Aim: The aims of this study were to examine central and peripheral contributions to fatigue during intermittent-sprint exercise in 33°C, 50% RH using transcranial magnetic stimulation (TMS) and electrical femoral nerve stimulation (FNS) and to investigate whether progressive heat acclimation could ameliorate fatigue following exercise of this type. **Method:** Seventeen male games players matched for peak oxygen uptake (VO_{2peak}), peak power and body surface area were divided into two groups; progressive heat acclimation (PA, n = 9; 4 d, 50% $\dot{V}O_{2peak}$, 30.8 ± 0.7 °C, 49 ± 5 % RH, $4 \text{ d } 33.2 \pm 0.6$ °C, 50 ± 6 % RH and $4 \text{ d } 35.4 \pm 0.6$ °C, 62 d 20.6°C, 10.6 d 20.6° \pm 6% RH) and training (TG, n = 8; 12 d, 50% $\dot{V}O_{2peak}$, 21.2 \pm 0.9°C, 31 \pm 6% RH). Pre and post acclimation or training, participants completed a 40 min cycling intermittent-sprint protocol (CISP) in 33.7 \pm 0.6°C, 50 \pm 3% RH, with neuromuscular fatigue assessment immediately before and after exercise. Results: Maximal voluntary contraction (MVC) and potentiated twitch force in both PA and TG were reduced after CISP 1 (Table 1; all P values < 0.05), whereas cortical voluntary activation was not significantly different but tended to decline. PA reduced resting T_{re} and heart rate prior to CISP 2 (37.26 \pm 0.21 vs. 37.02 \pm 0.24° C; 65 ± 9 vs. 55 ± 4 b.min⁻¹ respectively, P < 0.05). Further, exercise heart rate was reduced by PA (168 \pm 19 vs. 155 \pm 19 b.min⁻¹, P < 0.05) and T_{re} tended to decline (37.9 \pm 0.4 vs. 37.6 \pm 0.4, P = 0.10). Despite the improved overall physiological strain, peak power output and work done were not different between CISP 1 and 2. Further, the reduction in MVC and potentiated twitch force during intermittent sprinting remained after twelve days of progressive heat acclimation (Table 1). Conclusions: These data indicate that during forty minutes of intermittent-sprint exercise in the heat, neuromuscular fatigue may be primarily peripheral in origin and PA or TG does not reduce the extent of fatigue despite a reduced physiological strain.

Table 1. Neuromuscular function pre-post CISP 1 and 2 in Progressive Acclimation (PA) and Training Group (TG).

(===)				
PA		TG		
	CISP 1	CISP 2	CISP 1	CISP 2
	Pre-Post	Pre-Post	Pre-Post	Pre-Post
MVC (N)	- 101*	- 84*	- 99*	- 121*
Potentiated twitch (N)	-45*	- 31*	- 36*	-33*
Cortical voluntary activation (%)	-3	- 5	- 9	-7

Data presented are change (Δ) from pre to post CISP 1 and pre to post CISP 2 in both PA and TG. * Indicates significant difference pre to post CISP 1 or CISP 2 (within groups).