Iowa Science Teachers Journal

Volume 3 | Number 2

Article 5

1965

A Quantitative Study of the Conductivity of Solutions

Rex T. Morrison West Essex Regional High School

Follow this and additional works at: https://scholarworks.uni.edu/istj

Part of the Science and Mathematics Education Commons

Let us know how access to this document benefits you

Copyright © Copyright 1965 by the Iowa Academy of Science

Recommended Citation

Morrison, Rex T. (1965) "A Quantitative Study of the Conductivity of Solutions," *Iowa Science Teachers Journal*: Vol. 3 : No. 2 , Article 5. Available at: https://scholarworks.uni.edu/istj/vol3/iss2/5

This Article is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Iowa Science Teachers Journal by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

A Quantitative Study OF THE Conductivity of Solutions

REX T. MORRISON

During the summer of 1963, the author had the privilege of attending an Advanced Placement Chemistry

Institute in which the participants built some simple instruments useful in chemistry and studied their usual applications. The A. C. Conductivity Bridge built by the participants seemed to offer some advantages in presenting one of the

Morrison

demonstrations accompanying an experiment used in the Chem-Study course at Roosevelt High School in Des Moines, Iowa where the following activity was conducted.

Experiment 17, found in Chemistry —An Experimental Science Laboratory Manual published by W. H. Freeman and Co., is the experiment referred to above. In this experiment, it is important to determine which acids and bases used were weak or strong electrolytes. Some foundation for this judgment is provided in an

Rex Morrison received a B.S. degree in General Science from Parsons College, a B.S.P. degree in Pharmacy from Drake University, a M.S. degree in Science Education from Drake University in 1955, and has attended several N.S.F. Institutes in Chemistry since that time. He taught Chemistry at Roosevelt High School in Des Moines, Iowa for eight years before moving to West Essex Regional High School in North Caldwell, New Jersey where he is currently a teacher of Chem-Study Chemistry and Chairman of the Science Dept.

earlier demonstration in which the relationship of the presence of ions in a solution and its concomitant conductance of electricity was demonstrated in a semi-quantitative manner by use of an apparatus which could show conductance by the lighting of a two-watt neon glow bulb, and/or a ten-watt bulb, and/or a forty-watt bulb, or non-conductance by the lighting of none of the bulbs. This apparatus was suggested for the determination of conductance of the acid and basic solutions used in Experiment 17, and for the study of the change in conductance during the titration of a Ba $(OH)_2$ solution with H_2SO_4 .

It was decided that the simple electrical theory of the A. C. Conductivity Bridge could be used as a

The conductivity bridge, using alternating current, is housed in the box at the left. The ring stand supports the 2 platinum electrodes and the burettes for titration. A magnetic stirrer may also be used, as shown in the photograph. means of teaching some of the electrical units used in Ohm's Law relationships, and also as a background for later discussion of such instruments as the mass spectrograph, the teaching of Faraday's Laws of electrochem-

Using earphones to detect when the conductance of the solution is optimum, a student takes a numerical reading directly from the dial of the conductivity bridge.

IOWA SCIENCE TEACHERS' JOURNAL

istry, and related material which follows closely on the presentation of acid-base theory in the Chem-Study course. It can also be used to show how more quantitative data on conductance can be obtained, thus building on the previous experience of the students with the simpler conductance apparatus. Therefore 0.0050M solutions of each acid and base used in Experiment 17 and the accompanying demonstration were prepared and their conductance was measured with the bridge. The bridge circuit, Fig. 4, and a reference to further details on its construction, Table 3, are available with this report. The simple theory of the bridge accompanies the circuit diagram. The calibration of the variable resistance was discussed and the use of the calibration curve to permit relative conductance calculations was explained. The dial reading of the variable resistance minus an intercept of

RELATIVE CONDUCTANCE IN OHMS" +10-3

FIG.I TITRATION OF 0.0050 M NAOH (500m.) WITH 0.050M HCL

DECEMBER, 1965

3.3 times the resistance per dial unit from the slope of the calibration curve gave the resistance of the cell. This cell has two small platinized Pt electrodes which must be kept under distilled water when not in use. The inverse of this resistance is the relative conductance. Use of a standard 0.010M KCl, solution makes possible the calculation of the cell constant for the cell if equivalent conductances of solutions are desired by calculation from the specific conductance of a solution, k. The relationship used in this calculation is $\Lambda = (1,000/N)k$, in which Λ is the equivalent conductance, N is the number of equivalents per liter, and k is the specific conductance. For comparative purposes, such as in the conductimetric titration performed, the relative conductances were used on the graphs.

In each class, the conductances of the solutions were measured to find which conducted well, and which to

a much lesser extent, i. e., which were strong and which were weak electrolytes. Then, one of the three titrations was demonstrated to each class to familiarize them with the techniques involved. The data from all three were given to the students, and they were asked to write the equations for the reactions involved in the titrations. They were also directed to graph the relative conductance calculated from the given dial readings for each addition of titrant against the volume of titrant added. They were asked to explain in a brief paragraph why the graphs had the shape they did in view of the measured conductances of the solutions involved. The titrations performed were those of a strong base, 0.0050M NaOH, with a strong acid, 0.050M HCl, in which a soluble salt was formed. A second titration was that of a strong base, 0.0045M Ba (OH) 2, with a strong acid. 0.050M H₂SO₄, in which an insoluble

RELATIVE CONDUCTANCE IN OHMS" × 10-3

FIG. 2 TITRATION OF 50.00ML OF 0.0045M BA (OH)2 WITH 0.050 M H2SO4 factory.

salt was formed. The final titration demonstrated was that of a strong base, 0.0050M NaOH, with a weak acid, 0.050M CH₃COOH. A sample of data actually taken from these demonstrations is given in Table 2. Table 1 gives similar data for the conductances of the solutions used. The graphs of the data from Table 2 such as the students prepared are shown in Fig. 1, 2, and 3. A magnetic stirrer was used to achieve uniform mixing during the titration, although any method of stirring which does not dis-

In conclusion, it was felt that though this procedure required more time than the simpler demonstration it replaced, the understanding of the ionic nature of solutions and the effect

turb the electrodes would be satis-

IOWA SCIENCE TEACHERS' JOURNAL

of this nature on their conductance was much more thoroughly understood by the students. Their appreciation of the role of instrumentation in science to obtain the quantitative data upon which the theories of solutions are based was also increased. The necessity to understand some simple electrical relationships and units used in electrical measurements increased the student's motivation for gaining a background which was of great assistance in developing later topics in which an understanding of these ideas was highly desirable. Better understanding of these topics seems to make the extra time requirement a worthwhile investment, although it also emphasizes the need for extra laboratory periods for scientific investigation in modern science courses.

RELATIVE CONDUCTANCE IN OHMS 1 × 10-3

	Substance	Dial Position	Dial Reading	Relative Conductance x 10 ⁻³ ohms ⁻¹	*Cell Constant	Specific Con- ductance in ohms ¹ cm ¹ x 10 ⁻⁸
1.	HCl	P1	16.0	6.73	0.238	1.60
2.	HNO ₃	Pi	15.5	7.00	0.238	1.66
3.	H2SO4	Pi	11.0	1.11	0.238	2.64
4.	CH3COOH	Po	25.0	3.94	0.238	9.39 x 10 ⁻²
5.	NaOH	P	24.5	4.04	0.238	9.72 x 10 ⁻¹
8.	KOH	P ₁	24.5	4.04	0.238	9.72 x 10 ⁻¹
7.	Ba (OH)2**	P ₁	15.0	7.31	0.238	1.74

* (The k, specific conductance, of 0.010M KC1 at 25° C is 1.413 x 10^{-3} ohms⁻¹cm⁻¹ and at 24° C is 1.386 x 10^{-3} ohms⁻¹cm⁻¹. The k for distilled water at 25° C is 5.8 x 10^{-8} ohms⁻¹cm⁻¹. Conductance of 0.010M KC1 at 24° C based on a dial reading of 18.0 at P₁ was 5.82 x 10^{-3} ohms⁻¹ on this cell which gave a cel lconstant of 0.238 from k — (1/A)L in which 1 is the length of the conductivity cell, A is the area between the electrodes, and L is the reciprocal of the measured resistance of the cell.)

** (The Ba(OH)2 solution was only 0.0045M.)

J. CHEM. ED. 37, 244 (MAY 1960)

WHEN POINTS A AND B ARE AT THE SAME POTENTIAL, THERE IS NO SIGNAL THROUGH THE EARPHONES.

	_	٠	•
v	=		ĸ

VCA=1R	VAD= 11 R2
VCB = I2Rv	VBD= 12Rc
VCA= VCB	VAD= VBD
11 R1 = 12 RV	12R2=12Rc
<u> 182</u> 28v	$R_c = \frac{R_2}{R_1} \cdot R_v$

TABLE 1

Conductance of Various 0.0050M Solutions at 24°C

A.C. CONDUCTANCE BRIDGE

FIG. 4

TABLE 2

Titration Data

leading 1	0.005	OM NaOH	vs 0.050h	I HCl	Col.	1 - ml c	f acid ad	ded
leading 2	- 0.004	5M Ba(OH	H)2 VS 0.0	50M HoS	OA Col.	2 dial :	reading	
eading 3	- 0.005	M NaOH	vs 0.050M	CH3COC	OH Col.	3 — Rela	tive Con	duc-
ll reading	gs at P1	except *,	which are	e P2.		tance	in ohms	⁻¹ x 10 ⁻³
н	leading	1	H	leading 2		1	leading S	
Col. 1 .	Col. 2	Col. 3	Col. 1	Col. 2	Col. 3	Col. 1	Col. 2	Col. 3
0.00	25.0	3.95	0.00	16.0	6.75	0.00	23.0	4.35
0.50	27.0	3.61	0.50	18.0	5.82	0.50	24.0	4.13
1.00	29.0	3.33	1.00	21.0	4.84	1.00	25.0	3.95
1.50	31.0	3.10	1.50	24.0	4.14	1.50	27.0	3.61
2.00	33.0	2.88	2.00	30.0	3.21	2.00	29.0	3.33
2.50	35.0	2.70	2.50	40.0	2.34	2.50	31.0	3.09
3.00	37.5	2.50	3.00	59.0	1.54	3.00	33.0	2.88
3.50	40.0	2.33	3.50	16.5*	0.65	3.50	36.0	2.62
4.00	43.0	2.16	4.00	38.0*	0.25	4.00	40.0	2.33
4.50	45.0	2.05	4.50	59.0	1.54	4.50	44.0	2.10
5.00	45.0	2.05	5.00	35.0	2.70	5.00	49.0	1.87
5.50	38.0	2.47	5.50	25.0	3.95	5.50	49.0	1.87
6.00	30.0	3.21	6.00	20.0	5.13	6.00	49.5	1.85
6.50	25.0	3.95	6.50	17.5	6.03	6.50	49.5	1.85
7.00	22.5	4.45	7.00	16.0	6.75	7.00	50.0	1.83
7.50	20.0	5.12	7.50	14.5	7.64	7.50	50.0	1.83
	leading 1 leading 2 leading 3 ll reading Col. 1 . 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 6.50 7.00 7.50	leading 1 0.005 leading 2	leading 1 — 0.0050M NaOH leading 2 — 0.0045M Ba(OI leading 3 — 0.0050M NaOH ll readings at P1 except *, Heading 1 Col. 1 . Col. 2 Col. 3 0.00 25.0 3.95 0.50 27.0 3.61 1.00 29.0 3.33 1.50 31.0 3.10 2.00 33.0 2.88 2.50 35.0 2.70 3.60 37.5 2.50 3.50 40.0 2.33 4.50 45.0 2.05 5.00 45.0 2.05 5.50 38.0 2.47 6.00 30.0 3.21 6.50 25.0 3.95 7.00 22.5 4.45 7.50 20.0 5.12	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	leading 1 — 0.0050M NaOH vs 0.050M HCl Col. 1 — ml of leading 2 — 0.0045M Ba(OH) ₂ vs 0.050M H ₂ SO ₄ Col. 1 — ml of leading 3 — 0.0050M NaOH vs 0.050M CH ₃ COOH Col. 2 — dial is a colspan="2">col. 2 — dial is a colspan="2" Heading 3 — 0.0050M NaOH vs 0.050M CH ₃ COOH Col. 2 — dial is a colspan="2" Heading 1 Heading 2 Col. 3 Col. 3 Col. 1 Col. 3 Col. 1 0.00 2.50 Col. 3 Col. 1 Meading 2 Heading 2 F Col. 3 Col. 1 Col. 3 Col. 1 0.00 2.60 6.00 1.00 0.50 2.00 2.50 3.00 1.00 2.50 3.00 1.50 3.00 3.21 2.00 2.50 3.00 3.21 2.00 2.50 3.00 <td< td=""><td>leading 1 — 0.0050M NaOH vs 0.050M HCl Col. 1 — ml of acid ad leading 2 — 0.0045M Ba(OH)₂ vs 0.050M H₂SO₄ Col. 1 — ml of acid ad leading 3 — 0.0045M Ba(OH)₂ vs 0.050M H₂SO₄ Col. 2 — dial reading a colspan="4">col. 1 — ml of acid ad leading 3 — 0.0050M NaOH vs 0.050M CH₃COOH Col. 2 — dial reading colspan="4">Col. 2 — dial reading a colspan="4">Col. 2 — dial reading colspan="4">Col. 2 — dial reading colspan="4">Col. 2 — dial reading colspan="4">Col. 3 — Relative Constance Heading 1 Heading 2 Col. 3 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 0.000 25.0 3.95 0.00 16.0 6.75 0.00 23.0 0.50 27.0 3.61 0.50 18.0 5.82 0.50 24.0 1.00 25.0 23.0 1.60 29.0 3.33 1.00 21.0 4.84 1.00 25.0 1.50 24.0 4.14 1.50 27.0 2.00 29.0 2.50 35.0 2.70 2.50 40.0 2.34 2.50 31.0 3.00 37.5 2.50 3.00 59.0 1.54 3.00 33.0 3.50 40.0 2.33 0.30 3.50 40.0 2.34 0.0 3.60 37.5 2.50 3.00 59.0 1.54 3.00 33.0 3.50 40.0 2.33 3.50 16.5* 0.65 3.50 36.0 4.00 43.0 2.16 4.00 38.0* 0.25 4.00 40.0 4.50 44.0 5.00 45.0 2.05 5.00 35.0 2.70 5.00 49.0 5.50 38.0 2.47 5.50 25.0 3.95 5.50 49.0 5.50 49.0 4.50 44.0 5.00 45.0 2.05 5.00 35.0 2.70 5.00 49.0 5.50 3.95 6.50 17.5 6.03 49.5 5.50 49.0 4.50 44.0</td></td<>	leading 1 — 0.0050M NaOH vs 0.050M HCl Col. 1 — ml of acid ad leading 2 — 0.0045M Ba(OH) ₂ vs 0.050M H ₂ SO ₄ Col. 1 — ml of acid ad leading 3 — 0.0045M Ba(OH) ₂ vs 0.050M H ₂ SO ₄ Col. 2 — dial reading a colspan="4">col. 1 — ml of acid ad leading 3 — 0.0050M NaOH vs 0.050M CH ₃ COOH Col. 2 — dial reading colspan="4">Col. 2 — dial reading a colspan="4">Col. 2 — dial reading colspan="4">Col. 2 — dial reading colspan="4">Col. 2 — dial reading colspan="4">Col. 3 — Relative Constance Heading 1 Heading 2 Col. 3 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 Col. 3 Col. 1 Col. 2 0.000 25.0 3.95 0.00 16.0 6.75 0.00 23.0 0.50 27.0 3.61 0.50 18.0 5.82 0.50 24.0 1.00 25.0 23.0 1.60 29.0 3.33 1.00 21.0 4.84 1.00 25.0 1.50 24.0 4.14 1.50 27.0 2.00 29.0 2.50 35.0 2.70 2.50 40.0 2.34 2.50 31.0 3.00 37.5 2.50 3.00 59.0 1.54 3.00 33.0 3.50 40.0 2.33 0.30 3.50 40.0 2.34 0.0 3.60 37.5 2.50 3.00 59.0 1.54 3.00 33.0 3.50 40.0 2.33 3.50 16.5* 0.65 3.50 36.0 4.00 43.0 2.16 4.00 38.0* 0.25 4.00 40.0 4.50 44.0 5.00 45.0 2.05 5.00 35.0 2.70 5.00 49.0 5.50 38.0 2.47 5.50 25.0 3.95 5.50 49.0 5.50 49.0 4.50 44.0 5.00 45.0 2.05 5.00 35.0 2.70 5.00 49.0 5.50 3.95 6.50 17.5 6.03 49.5 5.50 49.0 4.50 44.0

TABLE 3

13.5

12.5

12.0

11.0

10.5

8.39

9.32

9.84

11.1

11.9

8.00

8.50

9.00

9.50

10.00

50.0

50.0

50.5

50.5

50.5

1.83

1.83

1.81

1.81

1.81

8.00

8.50

9.00

9.50

10.00

18.0

17.0

16.0

15.0

14.5

5.82

6.25

6.75

7.31

7.63

8.00

8.50

9.00

9.50

10.00

Parts List — A. C. Conductance Bridge

Quantity	Article	Cost
1	10 kohm potentiometer-Type J-AB	\$ 2.75
1	2 pole, 6 position non-shorting switch, Malory 3226J	1.06
2	Transistors, Raytheon CK 722	2.60
2	Capacitors-2 microfarad	1.16
1	Capacitors-0.2 microfarad	.30
1	Capacitor-0.02 microfarad	.28
1	Capacitor-0.005 microfarad	
2	10 kohm deposited carbon resistor (+ 1%, ½ w)	
2	1 kohm deposited carbon resistor (+1%, ½ w)	
1	1 kohm resistor (+ 10%, ½ watt)	.19
1	3.3 kohm resistor (+ 10%, ½ watt)	.19
1	18 kohm resistor (+ 10%, ½ watt)	
1	4 kohm headphones (Lafayette F-374)	
1	DPDT switch	.60
2	SPST switches	.64
1	Dial plate for 10 kohm potentiometer	.45
2	Platinum foil electrodes and wire	2.29
2	6 V batteries	2.14
1	1½ V battery-type NE	.11
1	Transformer (Merit Coil and Transf. CorpC2973)	
10	Banana plugs and knobs	2.07
	Miscellaneous: mounting panel and base,	
	hardware, shipping costs	
		05.11

25.11