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ABSTRACT 

The wide availability of remote sensing data, the development of computer 

technology, and the accessibility of census data in the digital form created new 

opportunities for highly accurate population estimates. Of particular scientific interest is 

the method of dasymetric mapping, which can significantly improve the spatial accuracy 

of mapping socio-demographic processes. In addition to population density, the method 

has considerable potential in mapping the distribution of other social, economic and 

demographic variables, such as income level, crime, ethnicity, etc. Another significant 

gap in the existing studies is the development of three-dimensional dasymetric mapping 

methods.  

This study is focused on developing intelligent dasymetric mapping methods to 

create algorithms for near real-time display demographic and other socio-economic 

parameters and assess their accuracy and their potential for geovisual analytics. The study 

is developed and tested in Minneapolis-Saint Paul area, Minnesota, USA as a key study 

site given the relative diversity of urban areas and the accessibility for field surveys. 

The goal of this study is to develop and test an effective geospatially-intelligent 

method and GIS algorithm for the creation of multivariable three-dimensional dasymetric 

(3DM) geographic visualizations for the Twin Cities Metropolitan area. 

2D and 3D binary dasymetric mapping methods, as well as floor fraction and intelligent 

dasymetric mapping method were used to identify the best performing method in terms of 

accuracy.  



 

The 3D dasymetric mapping method yielded the best accuracy in estimation of 

population counts in conditions of the given study area.  3D dasymetric mapping method 

proved to improve the accuracy of population mapping in an urban environment 

compared to 2D methods. The improvement is more significant at a smaller scale of 

analysis that reflects a more heterogeneous residential building infrastructure. Finally, the 

additional socio-economic variables, such as aggregated income and three different types 

of spending(for food, household supplies, and apparel) were mapped. 

The study faced the limitations of the inability to obtain data, perfectly 

synchronized in time between all the spatial layers, non-straightforward nature of the 

selection of residential/non-residential buildings and low height variance in the study 

area.  

The future directions of the study are to integrate the developed methods with the 

existing web mapping platform, test the dasymetric mapping approach on the extended 

set of socioeconomic variables and explore the usefulness of the dasymetric mapping 

approach on the smaller scales of the enumeration units and dasymetric mapping 

polygons. 
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CHAPTER 1 

INTRODUCTION 

Advancing Geospatial Data Science through Dasymetric Mapping 

For a long time, geographers have shown an interest in increasing the accuracy of 

recording demographic parameters of population distribution and visualizing such results 

(Bracken & Martin, 1989; Langford, 2003). Multiple methods have been developed 

(MacEachren et al., 1998) to estimate and visualize the population distributions across 

space. The wide availability of remote sensing and other geospatial data and the 

accessibility of census data in the digital form created new opportunities for highly 

accurate population estimates (Wang et al., 2016). Of particular interest is the dasymetric 

mapping method. It can significantly improve the spatial accuracy of mapping socio-

demographic phenomena (Mennis, 2009). 

The method of dasymetric mapping (in translation from Greek "measuring 

density" (Kushnyr, 2015)) is an effective method of visualizing the distribution of people, 

which can show the spatial distribution of population density (Holt et al., 2004). 

Dasymetric mapping (DM) uses ancillary data to identify population distribution patterns 

and reorganize data that do not have an exact spatial reference to the spots of actual 

population distribution (Mennis, 2009; Petrov, 2012). DM requires integrating multiple 

datasets with diverse nature and characteristics. These datasets include population counts, 

digital topographic maps, building footprint and zoning datasets, remotely sensing, often 

high-resolution data, information from field observations and building surveys, as well as 

LiDAR and other heterogeneous sources of big geospatial data. DM could be 
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computationally intensive as it assimilates these datasets, and increasing the precision, 

accuracy and efficiency of DM methods is an important consideration (Petrov, 2012). 

Despite a potentially broad utility of the dasymetric mapping method to display 

any parameters associated with the uneven distribution of the investigated quantity under 

the influence of external factors, it often has a narrow focus. Most of the studies are 

concentrated on assessing the method's suitability for estimating the population 

distribution (Biljecki et al., 2016; Eicher & Brewer, 2001; Holt et al., 2004; Mennis, 

2009). However, the method has considerable potential for mapping the distribution of 

other social, economic and demographic variables, such as income level, crime, ethnicity, 

etc. (Maantay et al., 2007).  

Another emerging area of DM research is the development of three-dimensional 

dasymetric methods. Existing studies are mainly based on two-dimensional interpolation 

(Biljecki et al., 2016; Lwin & Murayama, 2009) even though the urban population exists 

in a distinctly 3D space (Moser et al., 2010). 

Another shortcoming of existing dasymetric mapping applications is their 

orientation to work in the offline mode and lack of ability to effectively incorporate 

interactivity or real-time datasets (e.g Kim et al., 2013). Most studies focus on obtaining 

and processing auxiliary data, such as building footprints, zoning areas, and volumes of 

the structures (Biljecki et al., 2016; Lwin, 2010; Sleeter & Gould, 2007; Wang et al., 

2016). As a part of emerging Geospatial Data Science (GDS), DM is overdue for 

algorithm improvement, incorporation of instant and near-real-time data flows, and 

interactive, user-driven geographic computation.   
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Goal, Research Questions, and Objectives 

This study aims to test an effective geospatially intelligent method to create 

multivariable three-dimensional dasymetric (3DM) geographic visualizations for the 

Twin Cities, Minnesota Metropolitan area. 

Hypothesis: 3DM improves the accuracy of population mapping in an urban 

environment compared to 2D methods. The improvement is more significant at a smaller 

scale of analysis that reflects a more heterogeneous residential building infrastructure.     

Research Questions 

 What is the most accurate method to introduce the 3rd dimension (3D) in 

dasymetric maps? 

 What is the difference between the standard (2D) and 3D dasymetric mapping 

methods at different scales and levels of urban heterogeneity? 

 What can additional social-economic variables be mapped using the 3D 

dasymetric method? 

Objectives 

 Identify the most accurate method to introduce the 3rd dimension in dasymetric 

maps. 

 Examine the statistical difference between 2D and 3D dasymetric mapping 

methods at different scales and levels of urban heterogeneity. 

 Apply the most accurate 3D dasymetric mapping method to additional social-

economic variables. 
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The Significance of the Outcomes 

This study improves processes, models, and algorithms, allowing accurate spatial 

data representations with relevant attributive information, thus contributing to urban 

geospatial data analytics. The low prevalence of algorithms for creating dasymetric 

visualizations, their orientation to a two-dimensional environment, and a small number of 

implementations related to the mapping non-population density variables are the 

deterrents to DM’s integration into the modern decision support systems and geospatial 

data science. During the implementation of this project, dasymetric mapping technologies 

were developed to incorporate multiple variables that can be integrated into web-based 

spatial decision support systems. Such technologies will facilitate decision support and 

decrease the time needed for each decision, which is especially important for systems 

supporting emergency response decisions or decision-making in the rapidly changing 

business environment. 
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CHAPTER 2 

LITERATURE REVIEW 

Why Dasymetric Mapping? 

Our rapidly changing world requires the adoption of quick and practical solutions. 

The majority of the world’s population expected to live in cities soon (Vlahov et al., 

2005). Cities are complex and dynamic human-natural systems that generate significant 

and heterogeneous data flows. Navigating through these big data volumes requires 

developing and implementing geovisually-advanced, data assimilation-effective, and 

often time-sensitive data analytics methods (e.g., “urban computing,” (Zheng et al., 

2014)). For example, cities are fragile systems susceptible to natural disasters and the 

impacts of climate change. To timely respond to emerging challenges, it could be 

beneficial to use decision support systems to provide accurate and timely answers during 

emergencies (National Research Council, 2010). Such solutions include calculating the 

location of situational centers, shelters, and warehouses with humanitarian aid (Lwin & 

Murayama, 2009). Other data-driven decisions are dependent on our ability to harness 

geospatial data in an urban environment to deal with public policy, real estate, business 

solutions, transportation, health care, crime, etc. (Rathore et al., 2016; Zheng et al., 

2014). To promote evidence-based decision-making, the Decision Support Systems 

(DSS) must operate on various scales - from local governmental scale to global 

(Sugumaran & Degroote, 2010). 

For effective operation, urban DSS systems require accurate and reliable 

information on the location of the population. It is necessary to know exactly how the 
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population is distributed in space, including at different times and on different floors of 

buildings. Such information cannot be directly obtained from census data (Langford, 

2003). 

Census mapping generally shows population distributions only by generalized 

geographies such as census blocks, census block groups, and census tracts. In developed 

countries, this is done to protect the privacy of citizens. In developing countries, data is 

even more unreliable or detailed due to the lack of investment in the census infrastructure 

(Eicher & Brewer, 2001; Mennis, 2009). Census geographic units, such as block groups, 

reflect only the aggregate and/or indicative values and cannot be used to discern spatial 

patterns in the distribution of the population inside the census unit. In other words, this 

data collection technique operates as a low-pass filter, smoothing any variations in the 

data (Bielecka, 2005) and generates a phenomenon of spatial incongruity (Voss et al., 

1999). 

A significant task then is to reconstruct and reflect the patterns of the actual 

distribution of the population in a quantitative manner, based on a starting point of census 

data (Mennis, 2009). A practical method of visualizing the distribution of people, which 

can show the spatial distribution of population density, is the method of Dasymetric 

Mapping (DM) (in translation from Greek "measuring density," Kushnyr, 2015). 

Dasymetric mapping uses ancillary data to identify population distribution patterns and 

reorganize data that do not have an exact spatial reference to the spots of actual 

population distribution (Mennis, 2003; Petrov, 2012).  
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Russian scientist Benjamin Semenov Tian-Shansky first proposed the method in 

1911 (Petrov, 2012). For various reasons, dasymetric techniques were not widely adopted 

in the pre-GIS era, although they were used in population research (e.g., Wright, 1936). 

The main reason was the high labor intensity of map production. Also, the difficulty in 

getting acquainted with the original materials was significant because they were 

published in Russian (Mennis, 2009; Petrov, 2012). However, with the advent of modern 

GIS technologies, dasymetric methods have become more commonly applied, as 

witnessed by increased published scientific literature (Mennis, 2009; Polyan, 2014). 

The creation of effective dasymetric maps requires high-quality and reliable 

ancillary data. Historically, topographic maps have traditionally been used for dasymetric 

mapping (Petrov, 2012; Polyan, 2014). However, with the increased availability of 

remote sensing data, detailed address classifiers, LiDAR data, it becomes possible to 

create data processing technologies that will show the distribution of population across 

individual building spaces(Aubrecht et al., 2009). Having studied the spatial patterns of 

population distribution, it becomes possible even to evaluate and predict its population 

distribution, where there are no census data(Langford, 2003). 

History of Dasymetric Mapping Methods 

Most researchers agree that the earliest (implicit) example of dasymetric mapping 

is George Julius Poulett Scrope's population density map of 1833(MacEachren et al., 

1998; McCleary, 1969; A. Robinson, 1982). He used the rudimentary method of 

dasymetric mapping to identify the differences between "populated," "insufficiently 

populated," and "not yet inhabited" parts of the Earth (Andrews, 1985). 
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 In 1837, the British cartographer Henry Drury Harness created a map of the 

population density of Ireland, in which he used data on the features of the landscape to 

distinguish between densely populated and sparsely populated areas. In this work, the 

fundamental principle of dasymetric mapping was applied (A. Robinson, 1955). 

However, the methodology for creating maps was not transparent (Andrews, 1985; 

MacEachren et al., 1998; A. Robinson, 1955), and none of the researchers used the word 

"dasymetric."  

The Russian geographer Benjamin Semenov-Tien-Shansky (1870-1942) first 

proposed the dasymetric mapping method concept as well as the term "dasymetric map." 

He first introduced the idea of dasymetric mapping in his report to the Russian 

Geographical Society in 1911. He translated the Russian words "measurement" and 

"density" into Greek, then transliterated the term into Russian as "dasymetric." (Petrov, 

2008, 2012). The popularization of this term is connected with the project "Dasymetric 

map of European Russia," which Benjamin Semenov-Tian-Shansky began publishing in 

1923 (Petrov, 2012). 

Current Approaches to 3D Dasymetric Mapping and Geovisualization 

Topographic maps were used as primary sources of auxiliary information for DM 

in the pre-GIS. There have been more studies based on remote sensing data, given wide 

remote sensing data availability. These studies are examining the relationship between 

the patterns of population distribution with the area of impervious surfaces, the intensity 

of the night glow, or even the NDVI indices (Bozheva et al., 2005). However, these 
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methods are problematic in urban areas and exhibit a significant error due to the lack of 

homogeneity within the study area (Biljecki et al., 2016). 

Later, building footprint areas were used as a proxy-value indicating the number 

of building inhabitants (Lwin, 2010). In addition to areas, it is also possible to use the 

number of buildings' stories to estimate the volume of premises inside the building 

(Greger, 2015; Järv et al., 2017). One could multiply the number of stories in the building 

to its footprint area and get the approximate volume of the building. The volume of the 

building and its type reflect the population of the structure relatively well (Lwin & 

Murayama, 2009). This work introduced the concept of three-dimensional dasymetric 

mapping (3DDM). Its disadvantages included an unnecessary simplified approach to 

assessing the residential volume— the entire volume is considered residential. In 

addition, the authors did not pay attention to the possibilities of using the three-

dimensional dasymetric method proposed by them for the disaggregation of other 

variables that are not directly related to the population. 

Literature suggests the need for a more accurate assessment of the volume of 

premises inside buildings with a variable number of stories (Biljecki et al., 2016). To 

date, the most elaborate technique to estimate the volume from remote sensing data 

seems to be a three-dimensional building reconstruction by calculating the size of 

building shadows from remote sensing data. Here, object classification in commercially 

available software such as eCognition, shadow recognition, and the subsequent 

calculation of building heights are pretty effective methods (Wang et al., 2016). 

However, despite the possibility of applying this method in areas that do not have LiDAR 
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coverage, such a method probably does not represent such high accuracy of building 

volume estimation as methods using LiDAR data. Accuracy problems of volume 

estimation make it difficult to adapt this volume measurement method to its variation 

using multiple variables. 

Estimates of building volume using multispectral remote sensing data provide a 

relatively approximate and rough estimate of building volumes. Some researchers suggest 

using LiDAR data (Aubrecht et al., 2009; Biljecki et al., 2016) as an effective way to 

calculate building volume to implement 3D volumetric methods effectively. These 

methods potentially give a much more accurate estimate of the volume of the building; 

however, they can be relatively expensive. Volume dasymetric methods can be used more 

efficiently if there is a publicly available statewide DEM, which in particular is available 

in Iowa. In the absence of such a detailed DEM, it is possible to use previous methods for 

calculating the volume of buildings. Unfortunately, despite the impressive size of the 

article (Biljecki et al., 2016) and the use of the three-dimensional dasymetric method, the 

discussion on how the dasymetric method can be used to disaggregate other variables that 

are not related to population estimates was out of the scope of the article 

However, all the methods of estimating the volume of buildings described above 

do not consider local variations. For example, some structures may contain residential 

and non-residential premises occupied by various businesses. The work of Aubrecht et 

al., (2009) suggests using the detailed address classifiers with the description of the 

companies located in a particular building to estimate the population and take into 

account the local variations. The idea of using address classifiers was to understand, 
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which apartments in the building belong to the residential and non-residential class, and 

exclude non-residential premises from the total livable volume of the building. However, 

despite the applied improvements of the classical three-dimensional dasymetric method 

to increase the accuracy of estimating the residential volume, the authors of this work 

focused on assessing the population. They did not consider the possibilities of the method 

for a more accurate assessment of other non-population variables. 

Concerning visualization methods, most authors continue to use traditional two-

dimensional maps. However, in the research by Tiede and Lang (2007), it is suggested 

how to display population estimates in the form of a 3D dasymetric map on the surface of 

a digital globe, which should facilitate a more natural perception of such information. 

Undoubtedly, the methods of web mapping are also actively used both for displaying 

traditional two-dimensional and three-dimensional maps. In this regard, we should note 

the already mentioned work of Lwin and Murayama (2009) and Tiede and Lang (2007). 

One of the main gaps identified in the existing literature is that current studies are 

focused on finding out the exact quantitative distribution of the population. However, it 

does not pay enough attention to the spatial interpolation of socioeconomic indicators. In 

my work, I would like to pay attention to the applicability of the refined method of 

dasymetric mapping for calculating socioeconomic indicators, such as income 

distribution, etc. Such methods and datasets are expected to be of interest for more 

accurate and targeted marketing purposes. In particular, this will provide an opportunity 

to more accurately carry out advertising to households that meet the required socio-
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economic metrics, such as total income and even more socially conscious programs 

instead of just advertising. 
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CHAPTER 3 

METHODS 

Overview of the Methodology 

This study consists of the following main parts: (1) data preparation, 

development, and selection of the best (most accurate) algorithm for 3D dasymetric 

mapping; (2) 3DDM experiments with additional socio-economic variables. The choice 

of the algorithm has been made using the accuracy of the obtained dasymetric map. The 

accuracy of the resulting product relative to actual census data is evaluated. The main 

steps outlined above are depicted in Fig 1. 

 

 

Figure 1 Process diagram, depicting the main steps of the research design 
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Study Area 

The research area is located in the Twin Cities metropolitan area.  This area is the 

largest metropolitan area in Minnesota, with an urban population of 3,112,117. The 

agglomeration area is 1,021.8 sq mi. and the population density is 515.4 / sq mi (199.0 / 

km²). 

 

 

Figure 2 Map of the study area 

 

When choosing a research area within the Twin Cities, urban areas with relatively high 

population density and residential housing with a variable number of stories were 

identified.  
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The final study area with a total area of 18.84 km² includes a combination of one- 

and two-story buildings, small multi-story apartment buildings, and high-rise multi-story 

residential buildings. Twenty-one census tracts cover the research area with a total 

population of 76,558 people. The research area has a population density of 4,063 / km². 

The following high-rise buildings were identified within the study area; they are listed in 

Table 1. 

 

Table 1 High-rise residential building landmarks inside the study area 

Name Address 

The Carlyle 100 3rd Ave S, Minneapolis, MN 55401 

LPM Apartments 1369 Spruce Pl, Minneapolis, MN 55403 

365 Nicollet 365 Nicollet Mall, Minneapolis, MN 55401 

Marquette Place Apartments 1314 S Marquette Ave, Minneapolis, MN 55403 

110 Grant Apartments 110 W Grant St, Minneapolis, MN 55403 

4Marq Apartments 

400 Marquette Avenue South, Minneapolis, MN 

55401 

La Rive Condominiums 43 SE Main St, Minneapolis, MN 55414 

Churchill Apartments 111 S Marquette Ave, Minneapolis, MN 55401 

IVY Hotel + Residences 201 S. 11th Street, Minneapolis, MN 55403 

Riverside Plaza(McKnight 

Tower Apartments) 1600 S 6th St, Minneapolis, MN 55454 
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The study area includes the downtown area of Minneapolis, enclosed between 

Broadway St, Lynda Ave, and Highway 35. The site contains most of the remarkable 

high-rise buildings in Twin cities.  

Data 

The study uses the following data: LiDAR for developing 3D dasymetric 

representations of population distributions, building footprints, zoning, and census data 

(multiple variables at the individual and household levels. Spatial data obtained from the 

Department of Natural Resources of Minnesota and other open sources, such as street 

layers and real estate databases. Social and Demographic data are obtained from the US 

Census Bureau and ESRI Demographic Data dataset. In addition, ground-truthing field 

observations (e.g., building characteristics, occupancy) were conducted in the selected 

Minneapolis neighborhoods to ascertain the accuracy of dasymetric mapping.  
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Table 2 List of the data sources 

Data Description Source Year 

LiDAR(classified point 

clouds) 

Elevation  Minnesota DNR 2011 

Population counts by 

census block, block group, 

and tract  

Multivariable 

population data 

US Census Bureau, 

Decennial census 2010 

2010 

Income data by census 

block group and tract  

Socioeconomic data US Census Bureau, 

American Community 

Survey 

2012 

Spending data by census 

block group and tract  

Socioeconomic data ESRI Demographic 

data 

2019 

County assessor parcel 

data   

Source of information 

about residential / non-

residential areas 

City of Minneapolis 2010 

Building Footprints  Readily available 

building footprints 

City of Minneapolis 2010 

 

 

The LiDAR data in an open LAS format was used to obtain the building elevation 

and calculate the structures' volumes. It was mainly processed using FME Workbench 

software while calculating building heights and employing another method of calculating 
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budging volumes by creating solids using ESRI ArcGIS 3D Analyst software. The 

depiction of the LiDAR data as a one-meter digital elevation model is provided in Figure 

3. 

 

 

Figure 3 1 meter DEM LiDAR elevation data for the study area 

 

The multiscale population counts data in a geodatabase format from US Census 

Bureau were used to create dasymetric maps of the population distribution, used to select 

the most accurate method of dasymetric mapping within the study area. The data on the 

census block group and census tract level was used for the actual disaggregation of the 

population counts, while the data on the census blocks level was used for accuracy 
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assessment. The depiction of the multiscale population counts data on the census tract, 

block group, and block-level is provided in Figure 4. 

 

 

Figure 4 US Census 2010 population counts data on different scales 

 

Income and spending data from the US Census Bureau, American Community 

Survey product in a geodatabase format, was used to create dasymetric maps of 

sociodemographic variables. In addition, the data on the tract level was used for 

disaggregation of socioeconomic variables and census block group data for accuracy 

assessment. The depiction of the source sociodemographic variables is provided in Figure 

5 and Figure 6. 
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Figure 5 Sociodemographic variables – spending for apparel and household supplies 

 

 

Figure 6 Sociodemographic variables – spending for apparel and household supplies 
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Finally, the county assessor parcel data (MetroGIS product) in a geodatabase 

format provides various building properties. It was used in this study to obtain 

information about the residential and non-residential status of the buildings. Building 

footprint layer in a shape file format was used to calculate areas and volumes of the 

building and as an essential data source to construct building solids for the volume 

calculation. The depiction of the different parcel types from the county assessor parcel 

data can be seen in Figure 7. The building footprint layer, provided by the City of 

Minneapolis Public Works department online contains readily available building 

footprints is depicted in Figure 8. 

 

 

Figure 7 County assessor parcel dataset(MetroGIS) depicting parcel types 
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Figure 8 Building footprints 

 

Data Preparation 

As mentioned above, one of the intermediate steps of this study is to compare the 

performance of dasymetric mapping methods to identify the technique that gives the best 

result in the study area. The comparison stage consists of three sub-stages - preparation of 

the source data, creation of dasymetric maps, and comparison of the performance of the 

methods using the data set prepared in the first stage. As the primary tool for processing 

spatial data, FME Desktop software was used. 3D и 2D dasymetric mapping algorithms 

were also implemented using Python programming language to use them further in the 

development of the dasymetric mapping web application.  
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The first step in the process of comparing the methods was to prepare the source 

data. The dasymetric mapping methods require two input spatial data layers. The first 

layer is the footprints layer with the height or volume of the buildings, and the second is 

the enumeration units layer with the associated population data. 2D-dasymetric mapping 

method, 3D dasymetric (volumetric) mapping method and 3D floor fraction method 

require the set of residential footprints (such as single-family houses and apartment 

complexes) non-residential such as shopping centers and factories should be removed 

from the data set. The intelligent dasymetric mapping method(Mennis & Hultgren, 2006) 

requires the residential-non residential binary classified footprint dataset and the 

classification between the different types of residential housing stock to assess the 

individual population densities for each class. Accurate building heights or volumes are 

necessary to test all dasymetric mapping methods besides the 2D method (Biljecki et al., 

2016)  

To obtain the data on population counts and selected socioeconomic variables 

such as per-capita income, spatial databases from US Census Bureau in GDB format on 

census block, block group, and a tract were used. Each of those databases contains a 

spatial layer and a set of non-spatial attribute tables. The spatial layer, population count 

table, and a table on income were joined and exported as shapefiles to facilitate further 

data processing.   

To ensure that the layers representing three levels of the census hierarchy have the 

same extent, only those enumeration units(census blocks, census block groups, and 
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census tracts) fully contained within the study area polygon were selected. Then the 

building footprints were filtered that fall into the extent of these census layers. 

Buildings of residential types were selected by overlaying the building footprints layer 

with the residential type parcels from the county Accessor parcel dataset (MetroGIS). 

Imagery from Google maps, such as photos and StreetView imagery, and field trips to the 

study area were used to determine if the particular buildings are residential or non-

residential types. 

The following parcel types were considered as residential:  Apartment 

Condominium, Condo - Garage/Miscellaneous, Disabled Joint Tenancy, Double 

Bungalow, Housing - Low Income > 3 units, Non-4BB Compliant (Minneapolis), Non-

Profit Community Assoc., Nursing Home, Residential - Miscellaneous, Residential - Zero 

Lot Line - DB, Social Club (Minneapolis), Sorority/Fraternity Housing, Apartment, 

Blind, Condominium, Cooperative, Disabled, Residential, Townhouse, Triplex.  

All the parcels in the parcel layers were filtered to include the only parcels of the 

aforementioned types. Then, all the building footprints were filtered to remove all 

buildings with an area less than 50m2 using AreaCalculator and Attribute Range Filter 

FME transformers. 

The next important input variable for most of the dasymetric mapping method is 

building volume, which could be found by multiplying the area of the building footprints 

on the difference between roof and footprint elevation (building height). Another 

approach could be to calculate building volume by creating a 3d solids from the building 

footprints and LiDAR points located above the building footprints. During that stage, one 
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could use either a readily available footprint layer, created from tracing aerial imagery, or 

create footprints right from the LiDAR data, or create the building footprints right from 

the LiDAR data. The advantage of the readily available footprints is their regular shape 

and reliability due to manual processing and verification involving human labor. On the 

other hand, such footprints could introduce a discrepancy between the existing LiDAR 

data and the footprints. By discrepancy, the author means that some of the buildings 

present in the footprint layer could not be present in the LiDAR data and vice versa. Such 

problems could arise when there is some temporal difference between the LiDAR and 

footprint data(for instance, footprints were created in a different year than the LiDAR 

data were acquired).  During that study, both methods were tested, such as using the 

readily available footprints vs. creating the footprints right from LiDAR data. 

To estimate building height and, subsequently, building volumes using the readily 

available footprints, one needs to calculate elevations of the building roof and the 

elevation of the building footprint. LiDAR points from the first return supplied in the 

LAS files were selected using the FME PointCloud Splitter transformer to calculate the 

roof elevation. These points have been clipped inside the building footprint to get the 

multiple individual points clouds, representing the roof elevations of separate buildings. 

Then a median value of LiDAR point elevations was calculated within each footprint. 

The median operator was considered preferable to Average or Max operators to reduce 

the consequences of possible skewness in the data and eliminate the influence of the 

antennas, chimneys, and other height anomalies in elevation calculation. The results of 

the calculations on this step were stored in the attribute BldgRoofElevation. 
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The bare earth data from the supplementary XYZI files were used to obtain the 

elevation of the bottom of the buildings. These files represent the bare earth surface, and 

the data producer software already removed the non-ground features, such as buildings 

and vegetation. Unlike the regular LiDAR point clouds, bare earth points exhibit irregular 

placement of the bare earth points caused by removed ground features. Due to that fact, it 

is not reliable to select bare earth points inside of the building polygon and then find the 

minimal elevation.  One could get the building footprint elevation by creating a TIN 

surface using these bare earth points, “drape” (align all the points of the building 

footprints with the underlying TIN surface) the footprints to the surface and find the 

minimal elevation among the building footprint vertices. SurfaceDrapper transformer was 

used to align the buildings' footprints to the TIN surface, produced using XYZI files. 

Then the coordinates of all vertices of each footprint were extracted, the vertex with the 

lowest elevation for each footprint was found and stored to the attribute 

BldgBaseElevation. Finally, the individual building volume was obtained by subtracting 

the building bottom elevation from the rooftop elevation and multiplication of the result 

by the area of the building.  

As it was mentioned above, another approach is to, instead of finding the median 

roof elevation is to create solids from the building footprints and the point clouds 

representing the roofs. The advantage of that approach is a more accurate volume 

calculation due to a more reliable portrayal of the complex shape of the roofs. Unlike the 

techniques explained above, which assume that all the roofs are flat, which is far to be 

true, all the complex roof features are preserved and participating in calculating the 
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building volume. Building footprints were “draped” to the bare earth surface, as 

explained above. Their lowest elevation was recorded into an attribute during the first 

step to calculate volume from the solids. Then the ArcGIS Pro 3D Analyst module 

“Create building solids” was used to create the building solids using the footprint data 

and the LiDAR files. Finally, the volume of the buildings was calculated by using the 

“Add Surface measures” tool.  

Objective 1: Identify the Most Effective (Accurate and Precise) Method to Introduce the 

3rd Dimension in Dasymetric Maps.  

This study uses existing and developed/improved new 3DDM methods and then 

compares them and tests for accuracy. Comparisons included the most traditional 2DDM 

(binary area metric) and two 3DDM (volumetric and floor fraction). The most accurate 

method was used in further parts of the study.  

Dasymetric mapping methods have historically evolved from traditional two-

dimensional methods. These methods estimate the distribution of a population on a flat 

surface, unlike the three-dimensional methods that use the height or volume of buildings 

as ancillary data and are more suitable for assessing the distribution of population in 

urban areas (Petrov, 2012). 

Historically, the first method of dasymetric mapping was proposed by Benjamin 

Semenov Tyan-Shansky in 1911 (Petrov, 2012) and applied to create the map of the 

population of European Russia (Semenov-Tyan-Shansky, 1926). Later, the method was 

introduced and made more popular by Wright (1936), who created a map of the 

population of Cape Cod. The creation of a dasymetric mapping method is often 
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mistakenly attributed to Wright (see Petrov, 2008). Eicher and Brewer (2001) presented 

three methods (binary, three-class, and limiting variable) for dasymetric mapping of 

population density. 

Binary Areametric Method 

The most straightforward method of dasymetric mapping is the binary areametric 

method. It will be used as a baseline for comparisons. A binary mask excludes 

"unoccupied" areas and highlighting the "occupied" areas. This "binary parametric 

dasymetric method" (Eicher & Brewer, 2001; Fisher & Langford, 1995) is widely 

described in the literature and is a simplified example of the "marginal variable" 

technique proposed by Wright (1936). This method uses the base area of buildings and 

does not use the third dimension (building height) in the calculations. Perhaps the binary 

areametric method is the most typical for estimation of population density. 

As auxiliary data, often expressed as Land use/land cover(LULC) classes 

obtained by classifying satellite images or other methods are used. According to the 

analyst's ideas, the original set of LULC classes is reclassified into two classes - habitable 

(for instance, urban areas, villages) and non-habitable (for instance, water bodies, forests, 

parks) for the area being mapped. Non-habituated areas are excluded from the areas of 

the areal units. The population density for each unit of territorial division is calculated by 

dividing the number of inhabitants by the area remaining after excluding non-residential 

areas. 
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The advantages of the method include its simplicity. The disadvantages are the 

subjectivity of the classification since there are no clear criteria which particular classes 

should be classified as populated and which are non-populated. 

Three-Class Method 

The next method described in Eicher and Brewer, 2001 is the three-class method. 

The existing classes must be reclassified to the following set - urban, 

agricultural/woodland, and forested land to create a dasymetric map. Water class is 

considered as non-habituated. Then, within each enumeration unit, each class is assigned 

its share of the population - the urban class receives 70% of the total population, 20% - 

agricultural / woodland, 10% -forested land. The idea of weights (70–20–10) was taken 

by Redmond et al., 1996; however, the original coefficients (80-10-5) were modified to 

more accurately reflect the population density of more populated study area in 

Pennsylvania, while Redmond et al., 1996 used a study area in Montana, where most of 

the population lives in cities, unlike Pennsylvania. 

Of the advantages of this method, one can note its relative ease of implementation 

in GIS. The main disadvantage of the method is that it does not consider the area 

occupied by the class inside the enumeration unit. In the extreme case, when one or two 

urbanized zones are present inside the enumeration unit, they will be assigned 70% of the 

population. These zones will have an unrealistically high population density, while the 

density of the remaining non-urban zones will be too low. Also, as was mentioned above, 

it’s up to the expert to choose the appropriate weights. One of the notable disadvantages 

of the method is the subjectivity of the choice of weights. 
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Limiting Variable Method 

The next method is the limiting variable method. In the first step of the method, 

the population is assigned to all three populated classes in proportion to their area, so the 

population density is the same. Water zones are excluded from the calculation. Then 

“limits” are assigned - the values of the maximum population density for some (not all) 

populated classes. For example, population density in agricultural zones can be limited to 

50 people / km2, and in forested areas, up to 15 people / km2. When the population 

density within the polygon exceeds a predetermined threshold value, the excess 

population is evenly distributed among the remaining classes. 

When calculating the threshold values of population density, enumeration units 

are selected that fall entirely into a specific LULC class. There are often situations when 

it is impossible to find a sufficient number of zones to obtain the average threshold 

density that would fall into a particular single land-use class, complicating the use of the 

method. 

Intelligent Dasymetric Mapping (IDM) 

The other notable method of dasymetric mapping is the Intelligent Dasymetric 

Mapping (IDM) developed by Mennis and Hultgren (2006). As a source of data, this 

method uses a set of enumeration zones and a set of classified ancillary zones, similar to 

LULC classes. Zones overlap, and the polygons resulting from the intersection of 

enumeration units and ancillary zones are called target zones. For each target zone, the 

proportion of the target population of the total population of the zone is first calculated. 

This value is calculated as the product of the area of the target zone and the estimated 
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population density divided by the sum of the area's products and the estimated population 

density within the original zone. Then the result of the division is multiplied by the 

number of people in the target zone. 

Perhaps the main novelty of the IDM method is the three sub-methods proposed 

by the authors to find the estimated population density: “containment,” “centroid,” and 

“percent cover.” In the “containment” method, from the set of enumeration units, only 

those areas are selected that fall entirely into one or another type of ancillary zone. The 

“centroid” method selects those enumeration units whose centroids fall inside the 

ancillary zone. 

In the “containment” method, it is not uncommon for some classes to find an 

enumeration unit entirely enclosed within an ancillary data polygon. Here comes the third 

sampling method, “percent cover,” which is a little more complicated than the previous 

two. It selects “enumeration units” having a given percentage of overlap with ancillary 

zones. Then, the population in the target zones that fall into the same enumeration unit as 

the zone with unknown density is calculated. The population in these target areas is 

estimated based on the density found by the “containment” method. The population 

density in an area of unknown density is calculated based on the difference between the 

population values already calculated, and the original population reported for the 

enumeration unit. 

Volume Dasymetric method(VDM) 

The volume method is the most commonly used in three-dimensional dasymetric 

mapping (Lwin & Murayama, 2011; Wu et al., 2008). First, the volume is calculated for 
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each building, depending on its area and height. Then the number of people per unit of 

volume is calculated by adding the total population and then dividing it by the total 

volume of all buildings in the study area. 

𝑃𝑉𝑗 = 𝑝𝑜𝑝𝑗/𝑉𝑇𝑗 

PV is the number of people per unit of volume in region j (area of research), pop is the 

total population in area j, and VT is the total volume of buildings in region j. 

After calculating the volume, population density is determined by multiplying PV by the 

individual volume of the building and dividing the result by the area of the building base. 

𝑃𝐷𝑛
𝑗
= 𝑃𝑉𝑗 ∗ 𝑉𝑛

𝑗
/𝐴𝑛 

PD is the population density of building n, where PV is the person per unit volume V, is 

the individual building volume of one building n in the area of interest j, and A is the 

base area. The broad overview of the volume dasymetric method is depicted in Fig. 2.  
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Figure 9 Process diagram of dasymetric map creation via 3D volumetric dasymetric 

mapping technique for urban areas. 

 

As for source data to estimate building volume, one could use building footprints, 

LiDAR, and bare earth data. Also, the population counts from census per census 

block/tract are necessary. Then typical workflow including calculation of the volume of 

every residential building. Having calculated the volume, one could calculate the number 

of people per unit of volume(PV) and population density. Then the resulting data could 

be used for thematic map preparation. 
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Floor Fraction Method 

The volumetric dasymetric method, which is the most comprehensive described in 

the literature, considers the entire volume of a residential building as an inhabited space. 

However, buildings are occupied unevenly, and some of the premises are uninhabited, for 

example, attics. The volume method simply adds the uninhabited area to the living space 

and, thus, may underestimate population densities. The floor fraction method proposed in 

the unpublished work of GeoTREE Center by Cavin et al. (2011) eliminates this problem 

by separating the volume of the building into floors and determining the population size 

only in living quarters. 

First, an analysis of samples of residential buildings based on the in-person visual 

survey, panoramic imagery from the Google StreetView, and aerial photography to 

determine the average height of the floor is used. Then this parameter is used to 

determine the residential capacity of the building. This approach allows excluding the 

additional volume of non-residential premises. 

The floor height threshold value is applied to the entire housing stock in the study 

area. For example, if the average floor height is approximately 3.5 meters, a building with 

a height of 4.5 meters will still be considered a one-story structure since the space above 

3.5 meters is not enough to give an additional floor to the residents. Dwellings above 7.0 

meters tall will be classified as two-story and so forth. The likelihood of inhabitance and 

expected population density on each floor are assumed to be identical. In other words, 

multistory structures are treated as ‘stacked’ single-story buildings. 



35 

Once all buildings are classified by the number of floors, the method applies the 

floor fraction technique to calculate the estimated population density. The floor fraction 

technique is based on the conventional population fraction method (Mennis, 2003), 

widely used in dasymetric mapping. However, instead of the typical urban, suburban, and 

rural classification, the floor fraction method uses floor classes, each about some floors 

present in the building dataset (one, two, three, four, etc., as needed within the study 

area).   

The population density fraction is calculated by dividing the floor class’s floors by the 

cumulative number of floors present in all floor classes. The population density fraction 

in effect expresses a relative propensity of people to reside (and different population 

densities to occur) in a floor class group. It is directly proportional to the number of 

available floors. This formulation may be given the following notation: 

𝐷𝐹𝑛=𝐹𝐶𝑛/∑ 𝐹𝐶𝑗𝑘
𝑛=1  

Where DFn is the population density fraction of a classified floor class (n).  FCn is the 

floor class or “stories” of n (typically starting from 1). The sum of FC is all floor classes 

within a study area j where k in some existing classes.  This operation is computed for 

each aerial unit of analysis (e.g., block group). 

After the population density fraction is found, we compute the area ratio to 

account for differences in total areas occupied by each floor class to accurately allocate 

the population to floor fraction classes. The area ratio represents the ratio of the actual 

percentage of total buildings’ footprint area that belongs to a particular floor class to the 

theoretically expected percentage (i.e., equal distribution of all classes).  The area ratio 
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for the given floor class within a given block group is calculated by dividing the area of 

the floor class by the total building footprint area and dividing that result by the expected 

percentage.  For example, in the case of three-floor classes:  

𝐴𝑅𝑛
𝑗
= (

𝑎𝑛
∑ 𝑎3
𝑛=1

)/0.33 

Where AR is the area ratio of a floor class n within a study area (census block groups) j, a 

is the area of a floor class n, divided by the sum of the total building footprint area.  Then 

this result is divided by the expected percentage of the area occupied by a single floor 

class in a three-class example.   

Next, the total fraction is calculated by combining the population density fraction 

and the area ratio.  Total Fraction represents the fraction of a given floor class in the total 

population. In other words, it determines the share of the population that should be 

distributed to the given floor class. Similarly to Mennis (2003), the Total Fraction is 

calculated by multiplying population density fraction by area ratio for a given floor class 

and then dividing the results by the outcome of the same expression for all floor classes:   

𝑇𝐹𝑛
𝑗
= 𝐷𝐹𝑛

𝑗
∗ 𝐴𝑅𝑛

𝑗
/∑(𝐷𝐹 ∗ 𝐴𝑅)

𝑗

𝑛=1

 

TF is a total fraction of floor class n within region j, and DF is the population density 

fraction, AR is the area ratio for floor class n, divided by the sum of the total fractions for 

other classes within the region.   

Lastly, we find the number of people to be apportioned to a given floor class.  

This is done by taking the total fraction multiplying it by the entire actual population of 
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the area. Finally, we calculate population density by dividing the result of this that 

calculation by footprint area.  

𝑝𝑜𝑝𝑛
𝑗
= (𝑇𝐹𝑛

𝑗
∗ 𝑝𝑜𝑝𝑛

𝑗
)/𝑎𝑗 

Pop is population density assigned to floor class n within region j, TF is a total fraction of 

a floor class n within the region j, pop is the actual population of the region j, a is the total 

building footprint area j.  

Comparing Dasymetric Mapping Methods at Two Scales 

The dasymetric methods, such as 2D binary, 3D volumetric, floor fraction, and 

an intelligent dasymetric mapping method explained above, were implemented at the two 

spatial scales: census block groups and census tracts. The rationale was to test whether 

results will vary by scale, assuming that a smaller scale/larger unit (e.g., tract) will be 

internally more heterogeneous with respect to building heights and thus more sensitive to 

3DDM improvements. 

The study used FME Desktop 2018.1 software as FME Workspace (file with a 

*.fmw extension designed in FME Desktop). This approach resembles data processing 

using models created in the ArcGIS Model builder. Created models automate the process 

of dasymetric mapping using the selected method. This approach allows one to reuse the 

models further during the development of the web dasymetric system after minor changes 

to add support for variables not related to the assessment of the population. Some 

methods, such as 3D and 2D binary dasymetric mapping methods, were also 

implemented using Python 3.0 programming language and a GeoPandas module. 
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Dasymetic Methods Methods Accuracy Assessment and Comparisons  

Maps of the population were created using the census block groups for 

disaggregation. The resulting population counts were compared with the reported 

population of the census blocks to facilitate the accuracy assessment. The second set of 

the population maps was created using the census tract data for disaggregation, and the 

resulting counts were compared against the census block groups to test the assumption 

that the homogeneity of the building heights affects the results.  

Root square mean error was calculated for each dataset produced by the particular 

dasymetric method to access the accuracy of the dasymetric mapping methods. The 

general idea of the mapping method accuracy estimation is to create a dasymetric map 

based on a set of the larger enumeration units, aggregate the calculated building 

population by smaller enumeration units, and find the difference between the computed 

and reported values per enumeration unit. For instance, one can create the dasymetric 

map using the census block groups and then assess the accuracy of the resulting product, 

sum the computed population by census blocks and find the difference between the actual 

population, reported by the census for each census block and predicted population, 

aggregated within census blocks.  

Then, to compare the results of the various methods between each other, root 

square mean error (RMSE). RMSE is a standardized measure to access the error in 

predicted quantitative data. It was calculated using the formula: 

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑛

𝑖=1
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 Where 𝑦1̂,  𝑦2̂, … , 𝑦�̂�  are predicted values, 𝑦1, 𝑦2, … , 𝑦3 are observed values, and n is the 

number of observations. RMSE was calculated for each resulting dasymetric map.  

Another measure besides RMSE that was used to evaluate the accuracy of the resulting 

dasymetric map products was the mean absolute error(MAE) measure. Mean absolute 

error represents the average difference between the set of predicted and actual values. In 

the scope of the study, population count estimates or income and spending values in 

dollars per individual building, aggregated per enumeration unit(census block or census 

block group) were considered as predicted values and values, reported by US 

census/ESRI were considered as actual values. Then to estimate the mean absolute error, 

one can find the difference in each pair of actual versus predicted observations and 

calculate the average of the absolute values of the difference.  

𝑀𝐴𝐸 =
∑ |𝑦�̂� − 𝑦𝑖|
𝑛
𝑖=1

𝑛
 

 Where 𝑦1̂,  𝑦2̂, … , 𝑦�̂�  are predicted values, 𝑦1, 𝑦2, … , 𝑦3 are observed values, and n is the 

number of observations.  

Both metrics are negatively oriented, so the lower value indicates a lower error. Both 

metrics express the error of prediction in the same units as it was for the source variable. 

The important difference that the RMSE penalizing the large errors more severely, so it’s 

useful where the large errors are particularly undesirable (Wesner, 2016). 

The paired t-test was used to test if there is a statistically significant difference 

between 2D and 3D mapping methods population estimates. The difficulty when using 

the t-test is that the mean value of two groups stays the same because the same census 
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population is being redistributed between the same number of buildings, although in 

different ways. The resulting population counts dataset was subset to ten random groups, 

and the t-test was performed separately for each resulting sub-set to overcome that issue. 

Incorporating Additional Socioeconomic Variables 

The following variables were selected to demonstrate the dasymetric mapping 

approach for mapping the sociodemographic variables besides the population distribution 

– aggregated annual per-capita income and different categories of spending. These 

variables are highly correlated with each other and with population distribution, so the 

assumption was that they exhibit similar distribution assumptions of the population 

distribution. The assumptions were that the socioeconomic variable was defined for 

residential buildings only and assigned as a proportion of a building volume of the 

particular building out of the total volume of all residential buildings within the 

enumeration unit. 

The American Community Survey(ACS) data was used to create the maps of the 

socioeconomic variables other than population. Since the smallest enumeration unit of the 

ACS is the census block group, socioeconomic variables were disaggregated from the 

census tracts, and the results were compared against the census block groups.  

The 3D binary dasymetric mapping method was used to disaggregate the 

socioeconomic variables on the census tract level. The following variables were used to 

provide ‘proof of the concept’ of dasymetric disaggregation of the socioeconomic 

variables (other than population density): aggregated annual income from the American 

Community Survey (2012), and three types of spending: spending for food, household 
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supplies and apparel from ESRI Demographic dataset (2019). The same FME workspace 

for the 3D dasymetric mapping method was used for data processing, but instead of 

population variable, socioeconomic variables on census tract level were used. The 

accuracy of the results was accessed by aggregating the results on the census block group 

level, finding the difference between the aggregated and reported values, and calculating 

the RMSE and MAE metrics for the map of each disaggregated variable. 

  



42 

CHAPTER 4:  

RESULTS 

What is the Most Accurate Method to Introduce the 3rd Dimension (3D) 

in Dasymetric Maps? 

Using the methodology explained in Chapter 3 allowed me to create a set of 

dasymetric maps, modeling the population distribution on the building level. It was 

necessary to discover the best method for disaggregating the urban population to 

disaggregate the socioeconomic variables using the dasymetric mapping.  

The first investigated dasymetric mapping method was the binary 2D dasymetric 

mapping method. During the first iteration of the method, census block groups were used 

for disaggregation of the population. The example map of the population density created 

using the 2D dasymetric mapping method is depicted in the Figure 10. 
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Figure 10 Population density, 2D mapping method, from census block groups 

 

 Then, the accuracy of the result was assessed against the census blocks. The 

different levels of the enumeration units were used in dasymetric disaggregation to test 

the assumption that the increased internal variance of the building heights within the 

enumeration units will unveil the superiority of the 3D dasymetric methods that use 

building volume/height in calculations versus 2D methods, that are not taking into 

account these measures.  

 



44 

 

Figure 11 Population density, 2D mapping method, from census tracts 

 

Then the same 2D binary dasymetric method was used to disaggregate the 

population reported on census tracts level (see Appendix 1, p. 74), and the accuracy was 

assessed against the census blocks and census block groups. The example map of the 

population density could be seen in the Figure 11.  Another set of maps was created using 

the 3D volumetric mapping method. The resulting maps can be found in Appendix 1, pp. 

73-76. Census block groups and census tract datasets were used for disaggregation and 

the accuracy of the results was accessed against the census blocks and census block 

groups as well. 
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Figure 12 Population density, 3D method, from census block groups 

 

To access the resulting accuracy of the dasymetric maps, the RMSE metric was 

calculated for each resulting map. Having created the dasymetric maps, the population 

counts for each building, obtained from disaggregation on the census block groups and 

census tracts level were re-aggregated by census block and census block group 

accordingly.  That aggregated results were considered as predicted values 𝑦1̂,  𝑦2̂, … , 𝑦�̂�, 

and the population counts per census block or per census block group were considered as 

observed values  𝑦1, 𝑦2, … , 𝑦3in RMSE calculation. The results are provided in Table 2. 
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Table 3. Root Square Mean Error for 2D/3D dasymetric mapping methods. 

Method VS blocks VS block groups 

RMSE MAE RMSE MAE 

2d – from block groups 74.76 30.30 - - 

2d – from tracts 116.95 41.01 560.95 400.45 

3d – from block groups 69.51 26.92 - - 

3d – from tracts 101.56  34.14 451.789 321.45 

Note: Average population for census block is 84, census block group - 1309, tract - 3645 

 

One can notice that the lowest RMSE was observed for the 3D dasymetric 

mapping method when disaggregating the fine-scale data from census block groups. The 

improvement in RMSE in the 3D method versus 2D DDM was relatively small - 74.76 

people per block versus 69.51, which expresses in 7.27% difference. Although when 

disaggregating the data on the census tract level, the improvement was more significant – 

116.95 for the 2D method vs. 101.56 for the 3D method, which expresses in 14% 

difference. When estimating the accuracy by aggregating the results of the tract 

disaggregation by block group, the 3D dasymetric mapping method exhibits significantly 

higher accuracy compared to its 2D counterpart – RMSE is 560.95 people per block 

group vs. 451.798 people per block group, which expresses in 21.55% difference. The 

difference between the methods could be explained in that the internal variation of 

building heights and their range within the census tracts are lower than in census tracts. 
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The average standard deviation and range of the building heights per census block group 

and per census tract were calculated for the building dataset to prove that point. 

 

Table 4. Average standard deviation and range of the building heights. 

Enumeration level The standard deviation of 
height 

Height range 

Census blocks 3.263 7.74 
Census block groups 5.622 25.91 
Census tracts 5.89 41.82 

 

Having estimated the results of the binary 2D and 3D dasymetric mapping, the 

more sophisticated mapping techniques were tested, such as the floor fraction method and 

the intelligent dasymetric mapping method. The floor fraction method was tested in 

multiple iterations, using different average floor height parameters.  Census block group 

population was used for disaggregation, and the resulting RMS was calculated against the 

census blocks. The resulting RMS values are reported in Table 5. 

 

Table 5. Resulting RMS for different average floor heights parameter in floor fraction 

method. 

Average height Resulting RMS 

2.5 95.48 
3.0  90.59 
3.5  93.96 
4.0  92.46 
5.0  91.65 
5.5 91.32  
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One can conclude that the RMS for the floor fraction method is significantly 

higher than for the binary 3D and even 2D dasymetric mapping. Therefore it should not 

be considered for further steps with disaggregating of socioeconomic variables. 

Then the intelligent dasymetric mapping method was tested. The method requires a set of 

samples of the building of a particular property type to calculate a population density for 

each property type. The multiple sets of the census blocks, populated with a single type 

of residential buildings, were selected to calculate the population density of their 

respective type of residential property.  

 

Table 6. Samples of building stock used in the Intelligent Dasymetric Mapping method 

Property type 
Total sample 

population 

No of 

blocks 

Total 

volume 
Density 

Apartment 19728 76 3891568.966 0.005069421 
Condo - 
Garage/Miscellaneous 593 4 226124.7102 0.002622447 
Condominium 4711 25 1836171.184 0.002565665 
Cooperative 91 1 11979.07098 0.007596582 
Double Bungalow 117 2 2984.647944 0.039200603 
Housing - Low Income > 3 
units 2700 12 320197.1419 0.008432305 
Residential 418 22 156820.6745 0.002665465 
Sorority/Fraternity Housing 334 3 37880.38178 0.008817229 
Townhouse 326 7 175049.7771 0.001862327 
Triplex 129 3 11048.28064 0.011676025 

 

However, I could not calculate by this method a representative population density for all 

types of real estate, as most of the blocks contain multiple types of residential property. 

Therefore for the following property types: Apartment Condominium, Disabled Joint 
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Tenancy, Housing - Low Income < 4 units, Non-4BB Compliant (Minneapolis), Non-

Profit Community Assoc., Nursing home, Sorority/Fraternity Housing, Blind, Social Club 

(Minneapolis), the average population density for entire dataset were used. Their 

properties compose about 1.4% of all housing units(88 buildings out of roughly 6,000 

buildings) 

The resulting map was created by disaggregating census blocks group population, 

and then RMSE was calculated against census blocks. The resulting RMSE is 251.39 is 

significantly higher than the other methods compared in the study, so one can conclude 

that they do not move forward with that method. In terms of resulting RMSE, the binary 

3D dasymetric mapping method gave the best accuracy, followed by the Floor fraction 

methods.  

Then the next goal was to check if the results of the 3D and 2D binary dasymetric 

methods, the best performing in terms of RMSE, were significantly statistically different.  

To accomplish that, the paired sample t-test was run over the multiple randomly selected 

groups of the building population estimates, produced using 3D and 2D dasymetric 

mapping methods. In this attempt, 1000 randomly selected samples were selected. Each 

sample contains approximately 10%  of the records from the source dataset.  
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Table 7. Sample T-test results(first ten iterations) for the disaggregated population of 

census block groups and tracts 

T-test for population, disaggregated 
from CBG 

 T-test for population, disaggregated 
from CT 

Group t-value Significance  Group t-value Significance 
1 -2.379 0.018  1 -0.324 0.746 
2 0.124 0.901  2 -1.435 0.152 
3 -0.951 0.342  3 1.973 0.049 
4 0.056 0.956  4 -0.454 0.650 
5 1.843 0.066  5 2.558 0.011 
6 2.369 0.018  6 0.816 0.415 
7 -0.871 0.384  7 -0.749 0.454 
8 -0.817 0.414  8 0.985 0.325 
9 -1.525 0.128  9 -1.470 0.142 
10 -0.506 0.613  10 0.258 0.746 

 

There were 42 statistically significant(with their p = 0.05 or less) groups for the 

dasymetric dataset created from census block groups. For the census tracts, there were 

105 statistically significant groups. The complete list of t-test results is supplied in 

Appendix 2; statistically significant iterations are highlighted.  As the statistical 

significance is more than 0.05, the null hypothesis of the lack of difference between the 

two groups can not be rejected. Thus, the results did not reveal a statistically significant 

difference between the results of both methods.  
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What is the Difference Between the Standard (2D) and 3D Dasymetric Mapping Methods 

at Different Scales and Levels of Urban Heterogeneity? 

Differences in the height of buildings were compared on a small scale (at the level 

of census tracts), intermediate (at the level of census block groups), and at the largest, at 

the level of census blocks. Standard deviation averages vary significantly between the 

census block group and census block levels. However, their differences between census 

block groups and census tracts are not that significant. However, the building heights 

range within the enumeration unit values are more pronounced and vary significantly 

between large, intermediate, and small scale.  

Scatter plots representing the relation between the absolute percentage error(APE) 

and variance of building heights were plotted. 
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Figure 13 Scatter plots of errors 
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For the scatter plots representing the errors on census blocks level, most of the 

data points on the scatter plots tend to cluster in the left part of the graph due to the low 

variability of the building heights within the census block in the given study area.  The 

point arrangement exhibits more scattered patterns for census tracts due to the larger size 

of enumeration units and, consequently, higher variability.  

Regarding the scatter plots of building heights standard deviation versus absolute 

percentage error, there is a slight visible upward trend on the graph representing the 2D 

method on the census block group level. The graph for the 3D methods on the census 

block group level is straight and does not exhibit any trend. Both graphs exhibit an 

upward trend on the census block tract level, so APE rises with an increase of variability. 

The rise of APE is slower for the 3D method. The trend lines on the plots of errors for the 

3D method are lower, indicating the better performance of the 3D dasymetric method in 

terms of accuracy. This is consistent with RMSE and MAE metrics for the maps created 

with the 3D binary dasymetric method. 

What can Additional Socio-Economic Variables Be Mapped 

Using the 3D Dasymetric Method? 

Finally, the proof of the concept of using the dasymetric mapping to disaggregate 

the socioeconomic variables was produced. The 3D dasymetric mapping was used to 

disaggregate aggregated income – ACS variable called “B19313e1 - Aggregate income in 

the past 12 months (in 2012 inflation-adjusted dollars):   Population 15 years and over -- 

(Estimate)”  on the tract level, and then the results were verified against the census block 

groups. It was not feasible to disaggregate the population on the finer scale due to the fact 
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that American Community Survey reports all the sociodemographic variables only on 

census block level only. The RMSE metric was calculated to compare the dasymetric 

disaggregation result of the tract income with the reported income of the block level. The 

resulting RMS was $ 15 212 247, and the resulting MAE was $ 8 290 862. The 2D 

dasymetric method yielded RMSE $ 17 932 711 and MAE $ 11 475 825. The resulting 

maps for both(3D and 2D) methods, disaggregated from census block groups and census 

tracts, are provided in Appendix 1, pp. 77-80. 

 

 

Figure 14 Income density, 2D method, from census tracts 
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Regarding the other sociodemographic variables, the following variables from the Esri 

Demographics data, 2019 release were disaggregated on the tract level and compared 

with the census block groups level: 

2019 Food, Variable: X1002_X, Source: Esri and Bureau of Labor Statistics. 

Vintage: 2019. Definition: The total amount spent on Food includes food at home or 

away from home. Total spending represents the aggregate amount spent by all 

households in an area annually. 

2019 Housekeeping Supplies, Variable: X4033_X, Source: Esri and Bureau of 

Labor Statistics, Vintage: 2019. Definition: Total amount spent on Housekeeping 

Supplies includes soaps and detergents, other laundry and cleaning products, cleansing 

and toilet tissue/paper towels/napkins, miscellaneous household products including 

paper/plastic/foil products, stationery/gift wrap supplies, and postage and delivery 

services. Total spending represents the aggregate amount spent by households in an area 

annually. 

2019 Apparel & Services, Variable: X5001_X, Source: Esri and Bureau of Labor 

Statistics, Vintage: 2019 

Definition: Total amount spent on Apparel & Services includes men’s and women's 

apparel, children's: apparel, footwear, apparel products and services, and watches and 

jewelry. Total spending represents the aggregate amount spent by all households in an 

area annually. 
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Table 8. Error estimates for the three socioeconomic variables. 

Metric / 
Variable 

2010 

Income 

B19313e1 

2019 Food 

X1002_X 
2019 

Housekeeping 

Supplies X4033_X 

2019 Apparel 

& Services 

X5001_X 
Average value 
for census 
block group($) 

34 154 143 6 091 696 
 

472 113 1 529 296 

Average value 
for census 
tract($) 

94 330 480 16 935 233 1 319 750 4 236 060 

Average value 
for building($) 

392 654 70 493 5 493 17 632 

RMSE 15 212 247 2 169 517 164 271 548 495 
MAE 8 290 862 1 313 670 102 069 329 690 

 

The resulting maps for these three variables(spending for food, household 

supplies, and apparel) for both(3D and 2D) methods, disaggregated from census block 

groups and census tracts, are provided in Appendix 1, pp. 79-83. The maps of the 

differences between 2D and 3D dasymetric methods are provided in Figure 15 
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Figure 15 Differences between the results of the mapping methods 
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CHAPTER 5: 

DISCUSSION 

A comparison of the dasymetric mapping methods demonstrates that the binary 

3D dasymetric mapping method yields the best accuracy in terms of RMSE and MAE 

metrics. Other more complicated dasymetric methods, such as the intelligent dasymetric 

mapping method suggested by Mennis and Hultgren (2006) and the floor fraction method 

(Cavin & Petrov, n/d), did not demonstrate much improvement. The 2D binary 

dasymetric mapping method is one of the most discussed methods in the existing 

literature. The 3D dasymetric method emerged in recent years (Biljecki et al., 2016); it is 

tailored mostly for urban environments and did not discuss in the existing literature 

extensively (Lu et al., 2011). By claim of its authors, Lwin and Murayama (2009), it 

demonstrates better results in urban environments in comparison with other methods 

according to their test results on the study area in Tokyo, Japan, which exhibits an 

extremely diverse set of residential high-rise buildings.   

During the experiment conducted on the study area in Minneapolis, Minnesota, 

the 3D dasymetric method demonstrated an approximately 10% improvement in terms of 

RMSE when disaggregating the data for the census block groups level, and 

approximately a 20% increase when disaggregating the data on the census tract level. 

That finding could be explained by a higher diversity in the residential building stock 

heights at the census tract levels in comparison with the census block group level. In 

other words, it’s more likely that the high-rise and low-rise buildings could fall in the 

same census tract, and it’s a less frequent occurrence in the census block groups (as the 



59 

latter tend to be more homogenous). Due to the increased diversity in building heights 

and subsequently their volume, it becomes more difficult to assign an appropriate number 

of inhabitants by using conventional 2D methods due to their use of the footprints of the 

buildings only and failure to consider the volume/height of the buildings. 

Both methods (2D and 3D binary dasymetric mapping, population density maps 

are provided in Appendix 1, pp. 73-76) tend to overestimate the population density in the 

multi-family buildings surrounded by single-family buildings. In that situation, one can 

observe significant overestimation of the population counts in the block with the multi-

family/apartment buildings and underestimation in the blocks populated with single-

family buildings.   

Regarding the other dasymetric mapping methods (Floor Fraction and Intelligent 

Dasymetric Mapping), they exhibit more significant errors. For the floor fraction method, 

the most significant limitation is that it uses the constant value for floor height for the 

entire study area. In case when the supplied floor height is too high for the particular 

building, one can get the number of the floors less than in reality, and when the supplied 

average floor height is too low, it will create additional floors.  It could lead to a 

significant overestimation of the population counts in that building where the actual floor 

height is more than the supplied average floor height and an underestimation where the 

actual floor height is less than the specified value. As for the 3D Intelligent dasymetric 

mapping method, the biggest shortcoming is the lack of census enumeration units 

populated with a single property type. That fact leads to an inability to accurately 

calculate the representative population densities for the particular classes (9 out of 19), so 
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the average value was used, which leads to the high inaccuracies during the calculation of 

the population counts.  

Based on the analysis of the relationship between DM accuracy and building 

height heterogeneity, one can conclude that both methods(2D and 3D binary methods) 

demonstrate an increase of absolute percentage errors of predicted results with an 

increase of building height variability within the enumeration unit. On the other hand, the 

3D binary dasymetric method demonstrates relatively better accuracy of predicting 

population counts with an increase of building height variability in comparison with its 

2D counterpart.  

T-test results were utilized to reveal the statistically significant difference between 

the datasets produced by 2D and 2D binary dasymetric mapping methods. There is no 

evidence that the results significantly vary between the methods. As the literature 

suggests (Biljecki et al., 2016), the 3D method should work better in the conditions, 

exhibiting a high degree of height variability. The findings of this study partially support 

that point. The number of iterations with the statistically significant difference in results 

was higher for the maps derived from the census tracts (smaller scale, more diverse 

housing stock, i.e., the higher standard deviation of building heights) versus those derived 

from the census block groups(larger scale).  

Regarding the particular study area, located in the typical Midwestern urban 

environment, the results demonstrated that at a smaller scale, the differences between 

dasymetric mapping methods are more pronounced, although still exhibited relatively 

weak statistical significance. Thus, using the 3D dasymetric method in these urban 
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environments, one should exercise caution, as it may not give a satisfactory increase in 

accuracy over the conventional dasymetric method in the conditions with the subtle 

building height variability. One can conclude that the 3D dasymetric method is best used 

in conditions of significant differences in the height of buildings in the study area. 

Finally, the dasymetric maps of four socioeconomic variables were created. The 

resulting maps are provided in Appendix 1, pp. 77-83. Their visual appearance is closely 

resembling each other. It is mainly because the socioeconomic variables are strongly 

correlated (see Table 9), so the units and scale of the depicted phenomena could be 

different, but using the same classification scheme and cartographic approach, they will 

look very similar. That property could be helpful to more accurately spatially distribute 

the variables that are typically highly correlated with population distribution based on the 

assumption that these variables exhibit similar distribution patterns and principles as the 

distribution of the population. 

 

Table 9. Correlation coefficients between the variables, census block group level 

 1 2 3 4 5 
1. Population -     
2. Income 0.273177 -    
3. Food 0.210203 0.908829 -   
4. Household 0.210314 0.911319 0.999511 -  
5. Apparel 0.21049 0.906519 0.999746 0.998954 - 
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Table 10. Correlation coefficients between the variables, census tract level 

 1 2 3 4 5 
1. Population -     
2. Income 0.25737 -    
3. Food 0.175349 0.959087 -   
4. Household 0.170257 0.963076 0.999526 -  
5. Apparel 0.175906 0.958281 0.999919 0.999256 - 

 

These maps of socioeconomic variables(Appendix 1, pp 77-83) provide valuable insight 

into the distribution of the socioeconomic phenomena by providing a disaggregated 

values of the income and spending on a much finer scale than that provided by the census 

– instead of the census block groups, one can see the distribution of the variable on the 

building level. In particular, using the economic data on the income and spending 

aggregated on the building level could be beneficial in deciding the location of the retail 

outlets and conduct more effective and precisely targeted advertising campaigns. 
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CONCLUSION 

The following hypothesis was examined in the research: 3D dasymetric mapping 

improves the accuracy of population mapping in an urban environment compared to 2D 

methods. The improvement is more significant at a smaller scale of analysis that reflects 

a more heterogeneous residential building infrastructure. The research supported the 

hypothesis despite some discrepancy between confidence in the results for the first and 

for the second part of the hypothesis.  

This study demonstrates that the most accurate method to introduce the 3rd 

dimension in the dasymetric map was the 3D binary dasymetric (volumetric) mapping 

method. The difference in the accuracy between the 2D and 3D dasymetric method in 

terms of RMSE at the larger scale(census block groups) was significantly smaller than at, 

the larger scale (7.27 % difference versus 21.55% difference). Thus one can conclude that 

the 3D dasymetric mapping method gives more evident accuracy improvement on 

smaller scales of enumeration units, which exhibits more variation in building heights. 

Regarding the difference between the 2D and 3D dasymetric mapping methods at the 

different scales and levels of urban heterogeneity, the 3D dasymetric mapping method 

shows more significant improvement when using the enumeration units of larger size due 

to increased diversity in building heights within the enumeration units.  In heterogeneous 

residential building infrastructure settings, the 3D dasymetric mapping method does not 

provide significant accuracy improvement. One of the implications explaining the weak 

statistical difference between 2D and 3D dasymetric mapping results could be difficulties 
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in methods used in the typical Mid-Western urban conditions that do not exhibit 

significant variability in building heights.  

The 3D dasymetric method was successfully applied to produce detailed maps of 

income and spending to expand DM beyond purely population mapping. These maps are 

providing valuable insight into the fine-scale distribution of these socioeconomic 

variables. The economic data on income and spending, aggregated on the building level, 

could be beneficial in deciding the location of the retail outlets and to conduct more 

effective and precisely targeted advertising campaigns. 

Limitations 

This study had several limitations. Despite the best efforts, it was not possible to 

select layers that were synchronized entirely in time. This is due to the frequency of data 

collection. In particular, the population layer was taken from the 2010 census, the height 

of buildings was calculated from the 2011 LiDAR data, layers with sociodemographic 

indicators were dated 2012 for income and 2019 for spending data. Data on the census 

block population is available for the decennial census only, which was conducted almost 

ten years ago. To produce the optimal results, one needs to use the building footprint and 

LiDAR data, synchronized with each other and with the census data. Otherwise, one 

could face the situation when some of the buildings have zero or negative heights. If the 

LiDAR data was collected before the particular building was erected, there are no 

corresponding non-ground points inside the corresponding footprint, so the average bare 

earth height instead of true building height will be assigned. Considering that 
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Minneapolis is updating the parcel and footprint data on an annual basis, it is possible to 

obtain the parcel and building footprint data synchronized with the census. 

Regarding the LiDAR data, it is much more expensive to update it regularly, and 

in turn, it exists only at a single point of time – 2011, so some discrepancy exists between 

the LiDAR and the other spatial layers are inevitable. Considering the looming urban 

sprawl and city development, the use of such old data significantly obstructs the 

fieldwork nowadays to determine which buildings are residential and which are not, as 

some new buildings were constructed, and some of the buildings do not exist anymore. 

These limitations are especially significant for the disaggregation of the spending data for 

2019 using the ancillary data from 2010-2011. 

The next group of limitations is related to the selection process of residential and 

non-residential buildings. Filtering residential buildings by their minimum area does not 

allow to unambiguously separate residential buildings from non-residential buildings, 

because even inside those lots marked as residential, there are separate buildings, such as 

garages with a sufficiently large area, which leads to the erroneous designation of a 

specific population to such buildings and the underestimation of population density in 

residential buildings.  

Finally, the study area location's choice imposed limitations in testing hypotheses 

about the different performance of 2D and 3D methods under conditions of varying 

scales and level of building heights homogeneity. The Mid-Western urban landscape with 

a small number of high-rise buildings does not allow to achieve a significant degree of 
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differences in variability of building heights at different scales of enumeration units, 

which makes it difficult to obtain convincing results in this study. 

Future Directions 

The following future directions were identified to continue and extend the study 

on dasymetric disaggregation of socioeconomic variables. The feature to calculate 

population and sociodemographic indicators at the building level using dasymetric 

mapping can be a useful addition to the popular web mapping platforms such as ArcGIS 

Online or other web geospatial platforms. Taking into account the availability of the 

source data necessary for dasymetric mapping, such as footprints with the associated 

building height, census data, and partially data on residential and non-residential lots 

within the ArcGIS Online platform itself, it seems feasible to implement the calculation 

of various sociodemographic indicators based on this platform. The dasymetric mapping 

feature can be implemented either in a dynamic approach, in the form of a web tool that 

will disaggregate selected variables at the user's request, and as a set of static layers on 

the territory of interest, for example, covering some large cities with a limited set of 

sociodemographic indicators. 

The capabilities of the method of dasymetric mapping in this paper were 

demonstrated using a minimal set of variables, namely, population, income, and three 

categories of spending. In the future, it is planned to expand the range of socioeconomic 

variables and test the possibility of using the method of dasymetric mapping on their 

example. Despite the demonstrated potential of the DM technique for the disaggregation 

of socioeconomic variables, the decomposition of variables in rural conditions, not 
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necessarily at the building level, but at the level of, for example, census blocks using 

classical 2D dasymetric mapping techniques such as limiting variable, has not been 

investigated in the study. Another area of future research is the use of dasymetric 

mapping methods to disaggregate sociodemographic parameters at a smaller scale, not at 

the building level. 
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APPENDIX 1 

DASYMETRIC MAPS OF THE POPULATION DENSITY 

AND DISAGGREGATED SOCIOECONOMIC VARIABLES 
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APPENDIX 2 

RESULTS OF THE T-TEST TO COMPARE POPULATION MEANS BETWEEN 

3DDM AND 2DDM ON TWO SCALES – ON CENSUS BLOCKS GROUP AND 

CENSUS TRACTS LEVELS 

 
Statistically significant iterations(p < 0.05) are highlighted. 
 

Block groups Census tracts 

Iteration t-value significance t-value significance 

1 0.321756 0.7477428 -0.32357 0.74640235 

2 1.426107 0.1542998 -1.43518 0.15183668 

3 0.101848 0.9189063 1.972817 0.04907127 

4 -0.98971 0.3226837 -0.45367 0.65026399 

5 -0.69928 0.4846267 2.557632 0.01084052 

6 -1.37248 0.170406 0.815749 0.41500425 

7 -0.97622 0.3293244 -0.74869 0.45439661 

8 -0.78159 0.4347431 0.985493 0.32486028 

9 0.110333 0.9121821 -1.46991 0.14222845 

10 -1.14111 0.2542237 0.25771 0.79673906 

11 -1.96258 0.0501152 -0.91631 0.35995878 

12 0.244338 0.8070481 2.420781 0.01584377 

13 0.819567 0.4127785 0.631008 0.5283199 

14 -0.19712 0.8438021 0.356424 0.7216714 

15 -0.55639 0.5781375 -0.78156 0.43485404 

16 0.913195 0.3614586 1.429525 0.15347062 

17 -0.6955 0.4869803 -0.3907 0.69620244 

18 0.814454 0.4156837 -1.04072 0.2984597 

19 -0.60208 0.5473279 1.275086 0.202902 

20 0.625539 0.5318376 0.020019 0.9840365 

21 -0.3033 0.7617585 0.650845 0.51541323 

22 0.587403 0.5571335 1.857779 0.06376331 

23 -1.00926 0.3132347 -1.02537 0.30568282 

24 0.560032 0.5756722 1.179807 0.23861042 

25 0.511196 0.6093952 1.487868 0.13741618 

26 -0.80761 0.4196108 -0.52354 0.60082794 

27 -0.10146 0.9192129 0.849839 0.39580854 

28 1.434107 0.1520308 -0.65902 0.5101813 

29 0.527625 0.5979424 1.038635 0.29948677 

30 1.217158 0.2239886 -0.77082 0.44117557 

31 0.426493 0.6698904 -0.10773 0.91425088 

32 -0.23868 0.8114286 -0.43676 0.66248117 
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Block groups Census tracts 

Iteration t-value significance t-value significance 

33 -0.44345 0.6575806 0.227931 0.81979545 

34 -0.36103 0.7181953 0.670741 0.50269241 

35 1.376989 0.1689833 -0.76233 0.44622903 

36 -1.56301 0.1185283 1.311398 0.19030314 

37 -0.25574 0.798226 0.773971 0.43931728 

38 0.98786 0.3235865 -0.05913 0.95286981 

39 0.584008 0.5594199 0.735223 0.46254629 

40 1.482402 0.1387143 -0.13009 0.89654722 

41 -0.13003 0.8965813 1.106104 0.26917293 

42 -0.66859 0.5039846 2.353614 0.01898758 

43 -1.02516 0.3056711 -0.97053 0.33222384 

44 -1.87569 0.0611294 -0.3114 0.7556192 

45 -0.63108 0.5281973 1.541558 0.12384559 

46 1.503024 0.133334 -1.1323 0.25807057 

47 0.328101 0.7429401 -0.33333 0.73902514 

48 0.225103 0.8219677 0.99966 0.31799724 

49 0.011886 0.9905202 1.522378 0.12862144 

50 -0.43071 0.6668273 -0.29766 0.76608538 

51 -1.78612 0.0745274 -0.74251 0.45812514 

52 -0.46588 0.641445 1.251991 0.21115734 

53 0.158788 0.8738866 -0.95155 0.34177318 

54 -0.42924 0.6678895 -0.00658 0.99475418 

55 -1.08069 0.2802591 -0.66077 0.50905715 

56 -1.02161 0.3073377 -1.45717 0.14568993 

57 0.437398 0.6619609 0.002851 0.99772641 

58 -1.19987 0.2306195 0.366468 0.71416705 

59 -0.65767 0.5109898 1.606113 0.10887163 

60 -0.05898 0.9529869 3.129897 0.00184884 

61 0.075253 0.9400368 1.052334 0.29316078 

62 0.104334 0.9169382 -1.19446 0.23286185 

63 -0.46444 0.6424907 1.408069 0.15971872 

64 -0.90184 0.3674587 -0.1875 0.85134685 

65 -2.04937 0.0408232 2.297036 0.02202336 

66 -0.47828 0.6326202 0.136171 0.8917443 

67 0.67526 0.4997362 -0.81743 0.41408152 

68 -0.59532 0.5518274 0.213269 0.83120496 

69 1.274651 0.2029125 -0.65178 0.51484831 

70 1.837707 0.0665335 0.388993 0.69746295 

71 -0.03481 0.9722428 2.699941 0.00717956 

72 -1.36526 0.17265 -1.00165 0.31701395 

73 -0.09525 0.9241458 0.324547 0.74566418 

74 1.556601 0.1200173 0.076361 0.93916028 

75 1.314884 0.1890296 0.444041 0.65721365 

76 -1.57054 0.1167555 0.365559 0.71484884 
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Block groups Census tracts 

Iteration t-value significance t-value significance 

77 -0.44245 0.6583109 -0.87898 0.37984325 

78 -0.19384 0.846368 -0.79957 0.42434499 

79 0.592884 0.5534643 1.222259 0.22216889 

80 -1.02751 0.304563 -1.43847 0.15093869 

81 0.614415 0.5391529 -0.4728 0.63656028 

82 -1.08098 0.2800908 -1.72755 0.08469116 

83 2.507576 0.0123974 0.085451 0.93193502 

84 1.492137 0.1361637 1.014249 0.31092249 

85 -0.31258 0.7546956 1.012162 0.31193148 

86 -0.09697 0.9227824 1.838377 0.06658261 

87 -0.46518 0.6419527 -0.26596 0.79037902 

88 1.142184 0.2537994 0.491487 0.62328402 

89 1.071014 0.2845372 -0.70987 0.47808734 

90 0.688007 0.4916812 0.604862 0.54554155 

91 -1.37081 0.1709346 -1.02475 0.30600682 

92 0.048467 0.9613604 -0.47834 0.63259244 

93 1.430197 0.1531538 -0.98541 0.32488989 

94 0.31538 0.752578 -0.93087 0.35242295 

95 0.220197 0.8257854 -0.41272 0.67998925 

96 0.86939 0.3849469 2.247781 0.02499515 

97 -0.80177 0.4229861 0.58895 0.55616111 

98 1.055096 0.2917601 0.065186 0.94805199 

99 2.191526 0.0288073 0.606524 0.54443007 

100 -1.88624 0.0597377 -0.07501 0.94023244 

101 -1.02364 0.306386 -1.01041 0.31277463 

102 0.568099 0.5701632 1.160498 0.24641006 

103 1.102535 0.2706374 -0.10958 0.91278747 

104 -0.92253 0.3566137 -0.76326 0.44568137 

105 0.29208 0.7703167 -1.23845 0.21613186 

106 0.039985 0.9681172 0.848387 0.3966554 

107 1.991562 0.0468484 0.843754 0.39922305 

108 2.51183 0.0122426 -1.44594 0.14876971 

109 -0.92759 0.3539689 1.447019 0.14854302 

110 -0.21009 0.8336642 -0.32519 0.74517294 

111 1.544756 0.1229131 0.090819 0.92767337 

112 0.003708 0.9970429 0.561069 0.57499306 

113 0.246802 0.8051372 0.799898 0.42412515 

114 0.470321 0.6382755 0.319765 0.74927209 

115 0.284739 0.775934 0.92111 0.35742831 

116 -0.42084 0.6740139 0.143566 0.8859017 

117 -0.0717 0.9428616 2.995544 0.00287521 

118 0.554933 0.579122 -0.13727 0.89087655 

119 -0.36722 0.7135697 2.88527 0.0040744 

120 -1.83128 0.0674781 -0.0557 0.95560156 
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Block groups Census tracts 

Iteration t-value significance t-value significance 

121 1.104615 0.2697416 -0.55664 0.57802113 

122 0.576998 0.5641361 1.949888 0.05174464 

123 -0.4746 0.6352373 0.020895 0.98333756 

124 2.170246 0.0303772 -0.88974 0.37402679 

125 -0.0058 0.9953743 0.909608 0.36344923 

126 -0.05547 0.9557796 -0.12991 0.89669267 

127 1.346793 0.1785099 0.016522 0.9868251 

128 -0.46729 0.6404499 1.362695 0.1735741 

129 -0.29409 0.7687845 -1.16273 0.24545779 

130 -0.78799 0.4309954 0.724593 0.46902601 

131 -1.17319 0.2411396 0.445065 0.65645663 

132 -0.59922 0.5492281 0.982143 0.32650347 

133 -0.51948 0.6036086 -0.43001 0.66737236 

134 1.581612 0.1142465 0.212896 0.83148787 

135 -0.67537 0.4996911 -0.74372 0.4573798 

136 -0.64395 0.5198486 -1.27215 0.20391419 

137 0.320615 0.7486033 0.778281 0.43676485 

138 0.81656 0.4144673 -0.15569 0.87634365 

139 0.377961 0.7055762 -0.20572 0.83709325 

140 -0.32372 0.7462536 1.198636 0.23120942 

141 0.322501 0.7471806 1.260789 0.20799748 

142 -1.39772 0.1626674 -1.34765 0.17837176 

143 -1.85075 0.0646472 -1.34744 0.17844981 

144 -1.48047 0.1392436 -1.32445 0.18598728 

145 1.313718 0.1894202 1.959821 0.05056308 

146 -0.35749 0.7208434 -0.24976 0.80288824 

147 1.910651 0.0564939 0.975665 0.32968308 

148 -0.04339 0.9654014 -0.48481 0.62804497 

149 -0.55808 0.5769766 0.622132 0.53414305 

150 0.033991 0.9728952 -0.05897 0.95299843 

151 0.195828 0.8448077 1.69845 0.09004505 

152 0.77945 0.4359957 1.899483 0.05809639 

153 1.829864 0.0676978 0.061174 0.95124467 

154 1.234275 0.2175464 -0.49876 0.61817585 

155 0.204764 0.8378199 1.8727 0.06170502 

156 0.275138 0.7832942 1.841719 0.06609225 

157 1.825035 0.068461 0.771097 0.44099847 

158 0.358463 0.7201124 0.298241 0.76563668 

159 -0.15468 0.8771258 1.932866 0.05381825 

160 0.035861 0.9714041 -1.33708 0.18178388 

161 0.416086 0.6774839 -0.23661 0.81305204 

162 0.941702 0.3466889 0.465825 0.64155541 

163 -2.0538 0.0403913 -1.2889 0.19800831 

164 0.808309 0.4192087 2.125804 0.0340013 



88 
 

88 

Block groups Census tracts 

Iteration t-value significance t-value significance 

165 0.081175 0.9353287 1.253966 0.21041135 

166 -1.16014 0.2464308 2.416499 0.01600934 

167 -1.73602 0.0830329 0.247283 0.80479532 

168 -1.10264 0.2705732 1.033193 0.30198281 

169 -1.23311 0.2179762 -1.12907 0.25942263 

170 -0.15323 0.8782668 -0.68056 0.49646255 

171 0.733997 0.4632039 0.610775 0.54160636 

172 -1.98932 0.0470883 -0.79434 0.42738394 

173 0.231751 0.8168063 1.240899 0.21524283 

174 0.888686 0.3744783 -0.01227 0.99021653 

175 0.833936 0.4046032 1.261847 0.20757719 

176 0.992239 0.3214431 0.775546 0.43838822 

177 0.068654 0.9452854 -0.88007 0.37923611 

178 -0.54008 0.5893294 -1.01242 0.31180459 

179 -0.03391 0.9729588 0.273563 0.78453777 

180 -0.43171 0.6661042 -0.11775 0.9063153 

181 0.63583 0.5251132 2.616111 0.00917576 

182 1.902082 0.0575989 -1.18811 0.23536039 

183 -1.73397 0.0833944 1.140839 0.25448312 

184 -0.00811 0.9935279 2.19359 0.02873105 

185 -0.01994 0.9840961 0.360398 0.71869884 

186 3.274571 0.0011202 1.011936 0.31206195 

187 -0.64106 0.5217163 -0.30064 0.76381664 

188 0.034067 0.9728333 -0.31913 0.74975054 

189 0.658646 0.5103628 2.271594 0.02354469 

190 1.434891 0.1517753 2.45115 0.01458761 

191 2.90475 0.0038106 1.946993 0.05205747 

192 1.079076 0.2809561 0.751338 0.45279243 

193 0.124324 0.9010949 0.784468 0.43310285 

194 -0.10301 0.9179838 1.226423 0.2205722 

195 0.646409 0.5182403 -0.61119 0.54134582 

196 -0.85853 0.3909172 -0.39919 0.68993125 

197 -1.65948 0.0974877 -1.21964 0.22315926 

198 -0.8374 0.4026793 0.921018 0.35747371 

199 0.046427 0.962984 -0.87132 0.38398605 

200 0.174212 0.8617567 3.434553 0.00064075 

201 -1.49552 0.1352814 0.805305 0.42100371 

202 0.23332 0.8155881 -1.31714 0.18839036 

203 0.723038 0.4699048 3.182514 0.00155051 

204 -0.7345 0.4629009 1.141337 0.25423448 

205 0.973523 0.3306516 3.704236 0.00023459 

206 0.752113 0.452247 1.624657 0.10491464 

207 -0.89506 0.3710732 -0.11269 0.91031956 

208 1.392252 0.1643221 0.569462 0.56929889 
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Block groups Census tracts 

Iteration t-value significance t-value significance 

209 1.131582 0.2582128 -1.27638 0.20238726 

210 -0.81376 0.4160705 1.740325 0.08246357 

211 -0.06504 0.9481638 -0.9427 0.34625796 

212 -0.17702 0.8595523 -0.9485 0.34334374 

213 0.34706 0.7286552 -0.61768 0.53706698 

214 -0.54803 0.5838645 0.647446 0.51764937 

215 -1.17643 0.2398461 1.065822 0.28700429 

216 -0.13371 0.8936693 1.34954 0.17776944 

217 -0.51906 0.6038896 0.747077 0.45536696 

218 -0.74029 0.4593791 0.161763 0.87156223 

219 0.258543 0.7960657 0.46133 0.64476052 

220 -0.06937 0.9447131 -0.10205 0.91875825 

221 -0.94565 0.3446902 0.148883 0.88170087 

222 1.792756 0.0734834 -0.59444 0.55248436 

223 1.253412 0.2104878 -0.94211 0.34659663 

224 -1.01075 0.3125518 0.894263 0.37159341 

225 0.1364 0.8915504 -0.67624 0.4992014 

226 0.069401 0.9446909 2.139553 0.03283202 

227 0.490125 0.6242135 -0.32756 0.74339573 

228 2.628074 0.008781 2.376883 0.01781366 

229 -1.02179 0.3072461 -0.6957 0.48692735 

230 0.556868 0.5778012 0.284667 0.77601556 

231 -0.72133 0.4709776 0.812004 0.41718549 

232 1.307173 0.19163 0.820494 0.41231045 

233 0.178219 0.8586076 0.549761 0.58273015 

234 0.678218 0.4978811 1.371277 0.17086681 

235 -0.37293 0.7093145 0.497082 0.6193444 

236 -0.72549 0.468404 -0.26058 0.79452564 

237 -0.36721 0.7135874 0.023086 0.98159043 

238 0.541043 0.5886715 1.89256 0.05894999 

239 3.043821 0.0024333 -0.91433 0.36098599 

240 0.723591 0.4695696 -0.0202 0.98389373 

241 1.902737 0.0575052 0.626587 0.5312244 

242 -0.80858 0.4190431 -1.88709 0.05972487 

243 0.473354 0.6361147 0.328968 0.7423208 

244 0.676515 0.4989494 1.668443 0.09584526 

245 1.325547 0.1854435 -0.64737 0.51768626 

246 1.286542 0.1986872 -0.34682 0.72887839 

247 -0.46992 0.638573 0.342365 0.73222134 

248 -0.09785 0.9220806 0.65515 0.51266388 

249 -1.15883 0.2469613 0.85729 0.39171451 

250 -0.58444 0.5591351 0.707055 0.47986229 

251 1.947146 0.0519469 -0.53325 0.59410019 

252 -1.17035 0.2422922 0.151922 0.87930709 
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Block groups Census tracts 

Iteration t-value significance t-value significance 

253 -1.79891 0.0724999 -0.0471 0.96245137 

254 3.112644 0.0019393 -0.51081 0.60969056 

255 -0.83111 0.4062333 -0.17315 0.86260112 

256 0.37235 0.7097499 -0.62021 0.53539883 

257 1.620663 0.1055683 0.108824 0.91338812 

258 -1.04034 0.2985691 0.329648 0.74179848 

259 -1.32053 0.187133 2.169752 0.03046258 

260 -0.50851 0.6112621 -0.82171 0.41164057 

261 0.411518 0.6808406 2.120553 0.03443401 

262 0.495914 0.6201343 -0.99853 0.31850999 

263 -0.07766 0.9381237 0.425766 0.67045892 

264 0.949178 0.342911 0.645533 0.51887431 

265 0.756755 0.4494706 -0.11539 0.90818618 

266 0.759574 0.4477894 2.410679 0.0162969 

267 1.426211 0.1542831 0.126604 0.89930585 

268 -1.72945 0.0842083 0.004412 0.99648137 

269 -1.25672 0.2093254 -0.66881 0.5039443 

270 -1.20168 0.2299353 0.459085 0.6463751 

271 -0.28066 0.7790612 -1.16179 0.24590411 

272 1.054108 0.2922459 1.852473 0.06457932 

273 -1.04013 0.2986572 -0.71759 0.47331372 

274 0.154978 0.8768876 -0.60836 0.54322323 

275 -0.64589 0.5185754 1.499901 0.13424805 

276 0.073541 0.9413988 0.364615 0.71556139 

277 -0.30155 0.7630844 1.020112 0.30819796 

278 0.035521 0.9716759 1.092893 0.27498573 

279 -0.47411 0.6355757 -0.27834 0.78086232 

280 0.255231 0.79863 1.437756 0.15110932 

281 1.676466 0.0941212 -0.00896 0.99285785 

282 0.528824 0.5971107 -0.3623 0.7172739 

283 0.994995 0.3201154 -0.66822 0.50430217 

284 -1.3676 0.171855 1.382557 0.16740005 

285 1.553725 0.1207287 -0.556 0.57845669 

286 0.510969 0.6095464 -0.30454 0.76084716 

287 0.850265 0.3954798 0.849508 0.39597605 

288 1.750909 0.0804276 0.933436 0.35103735 

289 -0.1791 0.857915 -1.20277 0.22964928 

290 0.695527 0.4869651 0.540287 0.58922928 

291 1.40529 0.1604174 0.287705 0.77368529 

292 -0.46459 0.642389 -0.52273 0.60139913 

293 1.471307 0.1416982 -0.37171 0.71025763 

294 0.139314 0.8892446 0.602344 0.54722154 

295 0.553699 0.5799776 1.447044 0.14849406 

296 0.73491 0.4626628 3.077346 0.00220403 
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297 0.143759 0.885734 -1.46443 0.14373011 

298 0.114039 0.9092427 1.837634 0.06673688 

299 -0.09523 0.9241585 -0.92981 0.35294224 

300 -1.19685 0.2317985 2.276916 0.0232038 

301 -0.2187 0.8269486 0.525629 0.59935455 

302 -1.33674 0.1817626 -0.85224 0.39447647 

303 -0.19859 0.8426413 0.550094 0.5824928 

304 0.334387 0.7381977 -0.6819 0.49562673 

305 0.677113 0.4985672 -0.99895 0.31828776 

306 0.180053 0.8571657 -0.02972 0.97630332 

307 1.259659 0.2082558 0.918335 0.35887499 

308 -1.15198 0.2497702 1.998902 0.04614608 

309 1.305832 0.1920834 -0.57748 0.56386295 

310 -0.3331 0.7391613 2.748358 0.00621413 

311 -0.2186 0.8270263 -0.89499 0.3712102 

312 1.598491 0.1104101 1.47238 0.14152917 

313 0.617045 0.5374183 1.299443 0.19438365 

314 0.795061 0.4268753 -0.675 0.50000346 

315 -1.59905 0.1103079 0.568825 0.56971109 

316 1.104899 0.2696123 0.566442 0.57134646 

317 0.230256 0.8179616 0.906351 0.36516288 

318 -0.49428 0.621264 3.868202 0.0001242 

319 0.800375 0.4238024 1.4286 0.15376157 

320 -0.54897 0.5832067 -0.18943 0.84983358 

321 1.925013 0.0546338 -0.3962 0.69211561 

322 -0.33977 0.734141 -0.71351 0.47585942 

323 1.811361 0.0705294 -0.03985 0.96823112 

324 1.54242 0.1234606 1.212776 0.22580832 

325 -1.09268 0.2749245 -1.6111 0.10779843 

326 -0.88559 0.3761709 1.334816 0.18256532 

327 -0.09397 0.9251612 1.27877 0.20156176 

328 1.731684 0.0837841 -0.12645 0.89942375 

329 -0.76975 0.4417144 0.862663 0.38873969 

330 1.031634 0.3026148 -0.92073 0.35765733 

331 1.362796 0.1734215 -0.49522 0.62064648 

332 -1.24823 0.2124132 -0.55123 0.58174501 

333 -0.23323 0.8156525 0.838344 0.40225668 

334 0.618851 0.5362259 0.526529 0.59874595 

335 -0.52052 0.6028784 -1.47073 0.14195351 

336 0.144362 0.8852588 1.151773 0.24999751 

337 -1.84468 0.0655497 -0.22498 0.82208318 

338 0.673114 0.5011287 2.352861 0.01900922 

339 0.236939 0.8127756 -1.13046 0.25882257 

340 -0.3136 0.753931 0.251308 0.80167298 
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341 -0.88742 0.3751678 -0.4745 0.63534775 

342 1.461982 0.1442192 -0.12839 0.89789217 

343 1.595173 0.111159 -0.26835 0.78853911 

344 0.872864 0.3830383 -0.00976 0.99221296 

345 1.038932 0.2992306 1.492597 0.13620111 

346 -0.63763 0.5239435 -0.83495 0.40415274 

347 0.259451 0.7953726 0.406245 0.68473785 

348 0.726536 0.4677761 1.123303 0.26181434 

349 0.902137 0.3673222 1.519498 0.12928087 

350 -0.61715 0.5373522 2.717532 0.00680807 

351 1.506106 0.1325127 -1.57221 0.11650326 

352 -1.83582 0.0668376 0.858336 0.39110625 

353 0.649096 0.5164954 -0.00321 0.9974375 

354 0.403519 0.6867125 -0.13734 0.89081407 

355 -0.52145 0.6022451 -0.01896 0.98488379 

356 -1.32029 0.187186 0.065188 0.94804858 

357 0.923852 0.3559094 -0.17925 0.85781598 

358 -1.04924 0.294431 -0.64673 0.51811782 

359 0.391623 0.6954664 -0.0912 0.92736797 

360 -0.41578 0.6777063 -0.84874 0.39639317 

361 1.531596 0.1260786 0.424771 0.67118315 

362 0.992581 0.3212792 -0.21344 0.83107197 

363 1.18739 0.235507 0.932892 0.35135076 

364 0.728281 0.4667214 0.996036 0.31972125 

365 -0.29324 0.7694316 2.060902 0.03983003 

366 0.593777 0.5528717 0.642638 0.52075142 

367 0.132842 0.8943573 1.072052 0.28419684 

368 -0.41079 0.6813668 -0.03267 0.97395378 

369 1.025146 0.3056575 -0.40624 0.68474917 

370 -0.79033 0.4296296 -0.23558 0.81385279 

371 -0.27325 0.784744 1.439735 0.15055941 

372 0.63908 0.5229911 1.678784 0.09378806 

373 -1.16586 0.2441023 -0.31618 0.75200027 

374 -0.45658 0.6481326 1.574472 0.11599594 

375 0.56999 0.5688774 -0.23315 0.81574665 

376 -1.44132 0.1499681 0.541096 0.58867478 

377 -0.06227 0.9503703 -0.05199 0.95855491 

378 -1.3693 0.1713609 -0.07351 0.94142921 

379 1.19569 0.2322682 1.534042 0.12569501 

380 2.294527 0.0220705 1.308584 0.19125126 

381 -1.13117 0.2584047 -0.14686 0.88330405 

382 -0.62372 0.5330278 0.457089 0.64780178 

383 1.933753 0.0535676 0.851096 0.39512498 

384 -0.63163 0.527855 0.381283 0.70315532 
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385 -0.00223 0.9982252 0.400843 0.68869548 

386 0.678783 0.4975047 -0.17019 0.86493031 

387 1.184104 0.2368128 -0.55968 0.57594684 

388 -0.93911 0.348021 1.377825 0.16888001 

389 0.24768 0.8044602 0.611316 0.5412817 

390 0.546197 0.5851279 -0.06301 0.94978653 

391 -1.05155 0.2934046 -0.329 0.74229543 

392 -1.651 0.0992397 -0.57763 0.56375149 

393 1.58128 0.1142846 -0.31117 0.7558006 

394 -1.12532 0.2608541 -0.43819 0.66144273 

395 -0.3998 0.6894232 -1.11146 0.26687347 

396 -1.39317 0.1640339 0.301532 0.76313459 

397 -1.17244 0.2414461 -0.65709 0.51145045 

398 2.859358 0.0043859 0.433838 0.66458574 

399 -0.86498 0.3873861 0.705679 0.48071264 

400 0.436292 0.6627675 1.200407 0.23052165 

401 0.691664 0.4893861 -0.95936 0.33789102 

402 -2.07433 0.0384558 0.198086 0.84305199 

403 -0.54361 0.586894 1.141325 0.25426704 

404 -0.70902 0.478557 0.528782 0.59718893 

405 -0.19486 0.8455667 1.1403 0.25469013 

406 -1.43861 0.1507433 0.1383 0.89006027 

407 1.352259 0.1767415 -0.99119 0.32205021 

408 0.132876 0.8943343 1.136093 0.25648832 

409 -0.06272 0.950012 1.311726 0.19019919 

410 -0.43302 0.6651432 0.608048 0.54344551 

411 1.719863 0.0859356 2.278705 0.02310881 

412 1.534433 0.1254251 -0.33038 0.74125555 

413 -0.09333 0.9256642 -1.40373 0.16106149 

414 -0.62233 0.5339602 0.910504 0.36299093 

415 0.335361 0.7374571 -0.81885 0.41325295 

416 0.017949 0.9856853 -0.82997 0.40692307 

417 1.121796 0.26235 -0.63828 0.52359195 

418 -0.23637 0.8132256 -0.59502 0.55209555 

419 0.354137 0.7233545 -0.19548 0.8450998 

420 0.806975 0.4199811 -0.84203 0.40016141 

421 0.826618 0.408753 -0.72178 0.47078057 

422 0.549276 0.5830028 2.384562 0.01745694 

423 -0.38416 0.7009858 0.052759 0.95794417 

424 0.652094 0.5145676 -1.01341 0.31134037 

425 1.953414 0.0511858 -0.74004 0.4596097 

426 1.517108 0.1297559 1.045736 0.29619111 

427 -1.16981 0.2425227 0.635806 0.52521077 

428 -1.44713 0.1483449 -0.78588 0.43230664 
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429 0.613272 0.5399289 -1.59845 0.11057873 

430 1.424547 0.1547384 0.165303 0.86877084 

431 1.202958 0.22943 -0.24389 0.80741041 

432 1.322179 0.1865583 -0.65583 0.51220257 

433 1.412938 0.1581702 1.949182 0.0517969 

434 2.176644 0.029868 1.128194 0.25976953 

435 0.230999 0.8173853 1.352235 0.17687364 

436 -0.36423 0.7157942 0.476513 0.63391127 

437 0.003543 0.9971744 0.364028 0.71599479 

438 1.665163 0.0963271 -1.36934 0.1715136 

439 -0.40449 0.685993 0.615043 0.53880031 

440 0.089083 0.929043 -0.35576 0.72216209 

441 -0.25615 0.7979141 -1.068 0.28601541 

442 1.97342 0.0488529 2.036746 0.04217105 

443 -0.23501 0.8142717 0.776316 0.43793414 

444 1.587646 0.1129022 1.274862 0.20295509 

445 -0.51903 0.6039122 0.731684 0.4646899 

446 -0.30301 0.7619812 2.065183 0.03941648 

447 0.061535 0.9509537 2.484186 0.01331512 

448 -0.17732 0.8593134 0.960731 0.33719668 

449 -1.1469 0.2518346 2.185511 0.02930824 

450 -0.46098 0.644969 1.811031 0.07070207 

451 0.607318 0.5438562 -0.04356 0.96527303 

452 -0.02369 0.9811038 0.783255 0.43382577 

453 0.273852 0.7842809 2.31899 0.02080022 

454 -1.04896 0.2946209 1.689199 0.0918376 

455 -0.92974 0.3528454 2.526451 0.0118172 

456 1.306274 0.1918835 -1.09217 0.27523309 

457 -0.20293 0.8392563 0.996547 0.31946922 

458 2.661612 0.0079729 0.064921 0.94826301 

459 1.030976 0.3029181 -0.6216 0.53449199 

460 0.278682 0.7805725 -1.10434 0.27000047 

461 -1.33245 0.1831782 1.468242 0.14268269 

462 1.355214 0.1758407 1.779827 0.07576867 

463 -0.32208 0.7474918 3.02511 0.00261544 

464 1.646005 0.1002536 3.2708 0.00115126 

465 1.381035 0.1677436 -1.61176 0.10764316 

466 -1.21844 0.2235117 0.384782 0.70055026 

467 0.988558 0.3232388 -0.42144 0.67362524 

468 1.488831 0.1369868 -0.65239 0.51444185 

469 0.582464 0.5604437 -0.66103 0.50889437 

470 1.434766 0.1518491 0.708776 0.47877967 

471 1.169662 0.2425923 0.583406 0.55988295 

472 1.587442 0.1128681 0.275411 0.78310774 
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473 0.413961 0.6790394 0.343422 0.73141881 

474 1.001779 0.3168309 1.494674 0.13559019 

475 1.361359 0.1738823 -0.53275 0.5944297 

476 0.439966 0.6601108 -0.49203 0.62291381 

477 -0.0532 0.9575868 -0.88974 0.37402773 

478 1.265393 0.2061607 -0.7406 0.45928169 

479 -1.3248 0.185713 -0.21454 0.8302191 

480 -0.6753 0.4997217 -0.64662 0.51817991 

481 -1.01346 0.3112008 -0.34266 0.73199398 

482 0.337724 0.7356823 2.326009 0.02039799 

483 1.208568 0.2272436 0.886654 0.37570647 

484 0.58173 0.5609421 -2.09564 0.03665585 

485 -0.27521 0.7832406 -0.20693 0.8361555 

486 0.020342 0.9837774 1.738958 0.08268202 

487 -1.31415 0.1892967 0.617094 0.53746151 

488 -0.19233 0.8475451 -0.23581 0.81367798 

489 -0.47282 0.6365 1.363731 0.17324678 

490 1.60757 0.1084164 1.872985 0.0616334 

491 2.090895 0.036946 -0.31191 0.75522476 

492 0.439046 0.6607707 -1.57187 0.11660741 

493 -0.68549 0.4932902 -1.10215 0.27091262 

494 -0.39224 0.6950102 2.271375 0.02356992 

495 -0.96018 0.3373265 -1.01843 0.30897203 

496 0.27258 0.7852636 -0.6306 0.52857327 

497 0.614162 0.5393184 -0.1375 0.89068941 

498 -0.01219 0.9902744 2.363341 0.01848963 

499 -1.144 0.2530635 0.259457 0.79538007 

500 0.377215 0.7061392 -0.00263 0.99790534 

501 0.236076 0.8134492 0.360591 0.71854838 

502 -0.79193 0.4286776 -0.68426 0.49411743 

503 -1.03605 0.3005687 0.831553 0.40604616 

504 -0.53555 0.592457 1.998631 0.04618174 

505 -1.10978 0.2674972 0.929905 0.35288573 

506 -1.14365 0.2531757 0.086791 0.93087188 

507 0.433073 0.6651039 -0.03582 0.97144276 

508 -0.65526 0.512516 -0.12226 0.90274614 

509 1.018287 0.3089379 -1.48595 0.13797478 

510 -0.25825 0.7962873 0.830123 0.40688455 

511 -0.34773 0.7281526 -0.33008 0.74147628 

512 -0.84589 0.3979523 -0.22729 0.82029135 

513 2.151333 0.0318177 -0.26317 0.79252648 

514 -0.36439 0.7156845 -1.19706 0.23188973 

515 0.051066 0.9592894 -0.12591 0.89986078 

516 -0.31089 0.7559783 -1.04799 0.2951292 
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517 0.409165 0.6825469 -1.28695 0.19864561 

518 -1.3918 0.164423 3.077416 0.00220897 

519 0.516503 0.6056892 0.377762 0.70575873 

520 -0.83716 0.4028162 0.562768 0.57381621 

521 0.975535 0.3296635 0.874646 0.3822013 

522 1.534088 0.1255013 -0.15638 0.87579341 

523 -0.92421 0.3557551 -0.03929 0.9686738 

524 0.145989 0.8839735 0.11392 0.90934429 

525 -0.00491 0.9960842 -0.35696 0.7212812 

526 2.640689 0.0084607 -0.22924 0.81877022 

527 1.317108 0.1882759 0.691247 0.48970464 

528 0.039248 0.9687041 -1.28702 0.19872194 

529 -0.61151 0.5410676 -0.73918 0.46014239 

530 -0.17032 0.8648134 0.041262 0.96710223 

531 -0.41559 0.6778412 -0.07616 0.93932562 

532 -0.08368 0.9333384 -1.81661 0.0698847 

533 0.669544 0.5033953 -1.42545 0.1546113 

534 0.160305 0.8726902 1.308978 0.19113957 

535 0.664497 0.506618 2.079772 0.0380615 

536 -1.00741 0.3141047 0.487989 0.62577562 

537 -0.42859 0.6683538 -0.49894 0.61803033 

538 -0.27429 0.783948 1.251348 0.21135766 

539 -0.62651 0.5311744 1.45682 0.14579259 

540 -1.25278 0.2107283 -1.10294 0.27057226 

541 0.065369 0.9479006 0.04872 0.96116192 

542 -1.1489 0.2510172 -0.46544 0.64181473 

543 -0.46059 0.6452467 2.348502 0.01920675 

544 1.056019 0.2913356 -0.21862 0.8270348 

545 0.940432 0.3473529 2.713492 0.00688216 

546 2.457678 0.0142305 -0.92838 0.35367874 

547 0.010045 0.9919888 0.317649 0.7508854 

548 0.460827 0.6450739 -0.21699 0.82830682 

549 -1.02854 0.3040421 -0.31046 0.75634392 

550 1.826193 0.0682614 0.544193 0.58654346 

551 0.337104 0.7361448 0.795335 0.42679929 

552 -0.47988 0.6314637 3.408542 0.00070695 

553 1.269027 0.2048871 -1.35744 0.17523947 

554 -0.0349 0.9721702 -1.01969 0.30839683 

555 -0.52919 0.5968555 1.036292 0.30058463 

556 -1.75128 0.0803689 -1.19815 0.23144918 

557 -0.71672 0.4738155 1.354892 0.17606888 

558 -0.24492 0.8065922 2.023809 0.04352653 

559 0.574734 0.5656762 -1.33937 0.18104522 

560 0.404931 0.6856654 -0.22503 0.82205531 
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561 -0.41047 0.6815903 0.522234 0.60172999 

562 -0.95857 0.3381279 -1.23522 0.2173614 

563 0.018175 0.985505 0.248107 0.80415504 

564 0.450365 0.6525922 0.039935 0.96815981 

565 -0.48214 0.6298676 -0.4288 0.66824769 

566 0.432914 0.6652215 -0.76881 0.44236303 

567 0.543763 0.5867842 -0.71465 0.47515424 

568 -0.51824 0.6044801 -1.16978 0.24264527 

569 -1.20229 0.2296602 0.108066 0.91398578 

570 -0.03874 0.9691125 -0.32497 0.74534193 

571 1.30501 0.1923607 -0.6067 0.54430824 

572 -0.98884 0.3231157 0.743074 0.45779437 

573 1.375278 0.169505 1.821337 0.06914369 

574 -0.48587 0.6272156 0.71159 0.47704596 

575 -2.36508 0.0183124 -1.18728 0.23567392 

576 -0.6642 0.5068086 -0.45825 0.64695661 

577 -0.38279 0.7020021 -0.75257 0.45206589 

578 -0.19414 0.8461208 0.794584 0.42720864 

579 -1.14295 0.2535058 2.019944 0.04389663 

580 -0.34148 0.7328498 0.360762 0.71842236 

581 0.607733 0.5435793 -0.07672 0.93888067 

582 -0.37573 0.7072444 1.079861 0.28073655 

583 0.851543 0.3947746 1.657879 0.09794157 

584 -1.76097 0.0786906 1.206705 0.22810626 

585 1.176048 0.2400063 -0.15073 0.88024626 

586 0.523784 0.6005965 -0.77103 0.4410734 

587 -0.49416 0.6213555 -0.46939 0.63898161 

588 0.407138 0.6840414 1.033371 0.30193704 

589 1.072621 0.2838403 -0.26527 0.79091734 

590 -0.54369 0.5868403 0.017868 0.98575165 

591 0.880579 0.3788515 -0.77891 0.43641284 

592 -0.74189 0.4584229 0.814139 0.41594526 

593 1.703428 0.088966 -0.17513 0.86104091 

594 2.102339 0.0358951 1.351408 0.1771467 

595 1.897254 0.0582508 0.186909 0.85180724 

596 -0.97158 0.3316111 -0.71824 0.47295317 

597 0.408859 0.6827781 0.112915 0.91014266 

598 -0.28887 0.7727709 1.888143 0.05960342 

599 1.010797 0.3124879 0.287041 0.7741976 

600 2.39915 0.0167142 -0.80462 0.42142189 

601 -0.22552 0.8216381 0.039631 0.96840301 

602 -0.28415 0.776384 -1.28712 0.19863559 

603 0.542228 0.5878478 0.769221 0.44212853 

604 -1.50131 0.1337813 0.369332 0.71203225 
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605 -0.77987 0.4357546 -0.49007 0.62430673 

606 -0.93844 0.3483508 2.698051 0.0072267 

607 1.888774 0.0593591 -0.7015 0.48329096 

608 -0.04052 0.9676895 1.222262 0.22217883 

609 0.633632 0.5265445 -1.34785 0.1782819 

610 0.161364 0.8718575 -0.72167 0.47082705 

611 0.008025 0.9935995 0.446492 0.65542681 

612 0.013264 0.9894214 -0.55803 0.57707571 

613 1.038118 0.2996071 -0.36849 0.7126742 

614 -1.44647 0.1485247 -1.12997 0.25902253 

615 0.124238 0.901167 -0.79154 0.42901329 

616 -0.05611 0.9552711 0.552838 0.5806359 

617 1.412437 0.1582727 1.508643 0.13202159 

618 0.719564 0.4720578 -0.10978 0.91263389 

619 1.03428 0.3013779 1.602228 0.10971253 

620 0.279734 0.779767 1.282907 0.20010859 

621 0.347785 0.7281255 -0.37012 0.71144464 

622 1.19043 0.2343041 -0.62099 0.53488589 

623 0.564562 0.5725598 -0.43691 0.66236949 

624 -1.05454 0.2920221 1.453075 0.14683157 

625 1.58153 0.1142628 1.704828 0.08883556 

626 -0.19836 0.8428212 0.790113 0.42983766 

627 -1.22563 0.2208149 -0.21108 0.83290809 

628 1.856878 0.0637944 2.239819 0.02553188 

629 -0.18008 0.857145 -0.50436 0.61423741 

630 -0.19103 0.8485595 0.459862 0.64582123 

631 0.304098 0.7611519 -0.73114 0.46505678 

632 -0.19686 0.8439961 -0.39745 0.69119821 

633 -1.27341 0.2033276 0.475936 0.6343391 

634 -0.5272 0.5982348 0.320697 0.74857716 

635 0.295532 0.7676811 1.91773 0.05567838 

636 -0.16823 0.8664571 -0.64793 0.51733264 

637 1.192229 0.2336217 -0.3944 0.69344732 

638 -0.10253 0.9183681 -1.0359 0.30076307 

639 -1.10304 0.270415 -1.15148 0.25005781 

640 1.121542 0.2624441 2.176808 0.02993722 

641 -0.34717 0.7285806 -0.93137 0.35210615 

642 -0.94737 0.343782 -0.01337 0.98933432 

643 -1.33393 0.1826883 2.179036 0.02980177 

644 1.668502 0.0956912 0.386467 0.6993149 

645 -0.306 0.7596993 -1.90639 0.05716115 

646 -0.98372 0.3256456 0.769016 0.44223938 

647 0.115307 0.9082353 -0.78316 0.43391766 

648 -0.43984 0.660201 0.597911 0.55015251 
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649 -0.61388 0.5395029 0.437954 0.66161361 

650 0.996931 0.3191952 -1.06509 0.28736634 

651 -0.60564 0.5449659 0.756278 0.44982119 

652 0.148303 0.8821466 -0.17712 0.85948869 

653 -0.42986 0.6674504 -0.91611 0.360043 

654 -0.70328 0.4821556 1.04835 0.29501637 

655 -1.67081 0.0952446 -0.04874 0.96114355 

656 0.817622 0.4138689 0.31733 0.75113278 

657 2.262008 0.0240165 -0.09094 0.92757622 

658 0.222514 0.8239808 0.206697 0.83633045 

659 1.502436 0.1335081 0.195784 0.84486068 

660 -1.61848 0.1060599 -1.1086 0.26811213 

661 2.991024 0.0028901 0.209586 0.83407565 

662 1.479359 0.1395109 -0.67381 0.50073291 

663 -0.43409 0.6643576 0.692519 0.4889179 

664 -0.89648 0.3703429 2.343648 0.01948694 

665 -1.25718 0.2091478 -1.0652 0.28728445 

666 0.433028 0.6651378 1.333079 0.18312536 

667 1.54059 0.1239546 0.38617 0.69952776 

668 -0.50942 0.6106398 -0.70333 0.48216989 

669 -0.78792 0.4310338 -1.43322 0.15246549 

670 -0.8779 0.3803118 0.508336 0.61145262 

671 0.283898 0.7765807 -0.11725 0.90670948 

672 1.116188 0.2647404 0.068634 0.94530683 

673 -0.72186 0.4706372 0.439567 0.66044658 

674 1.944354 0.0522954 0.949049 0.3430765 

675 1.278654 0.2014404 1.105889 0.26932499 

676 -0.61582 0.5382304 -0.73875 0.46040797 

677 -0.88932 0.3741493 0.108509 0.91363511 

678 -0.40355 0.6866739 0.893887 0.37182752 

679 -1.20631 0.2281307 0.012175 0.99029027 

680 -0.82474 0.4098213 1.762396 0.07861464 

681 1.788607 0.0741792 2.382309 0.01757733 

682 0.776462 0.4377625 -0.04587 0.96343095 

683 -0.09941 0.9208442 0.122885 0.90224296 

684 -0.91855 0.3586537 1.000135 0.3177166 

685 -1.95273 0.0513277 -0.60566 0.54503839 

686 1.247277 0.2127545 -0.52142 0.60231072 

687 -0.31199 0.7551529 -0.99908 0.31824103 

688 -0.39856 0.6903492 -0.56999 0.56891838 

689 -0.32005 0.749024 2.477364 0.01355236 

690 0.790658 0.4294089 0.428581 0.66841509 

691 -0.77136 0.4407829 0.631907 0.52773917 

692 0.794052 0.4274574 -1.06423 0.28776678 
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693 -0.70853 0.4788719 1.799862 0.07250121 

694 -0.69061 0.4900687 -0.01046 0.99165854 

695 0.562003 0.5743117 -0.23561 0.81383216 

696 -0.78918 0.4302973 1.491201 0.1365381 

697 -0.38009 0.7040031 0.72915 0.46627688 

698 1.337589 0.1815004 0.85509 0.39287043 

699 1.1547 0.2486411 0.000173 0.99986187 

700 1.877605 0.0608746 -0.04381 0.96507708 

701 -0.84635 0.3976672 -0.58569 0.55834302 

702 -0.26737 0.789271 0.151827 0.8793895 

703 2.128343 0.0336746 -0.51028 0.6100747 

704 -0.89904 0.3689683 2.298779 0.0219186 

705 1.449895 0.1475687 -0.47459 0.63528799 

706 -0.51004 0.6102002 0.578058 0.5634974 

707 0.072862 0.9419377 0.67496 0.50001571 

708 0.080919 0.9355296 2.969495 0.00312794 

709 1.157194 0.2476358 1.527945 0.12716611 

710 -0.38885 0.6975204 1.577168 0.11536502 

711 1.14967 0.250719 1.171115 0.24211128 

712 -0.80738 0.4197241 2.836384 0.00473826 

713 -0.33719 0.7360888 -1.03781 0.29985723 

714 0.532022 0.5948998 0.176922 0.85963834 

715 -1.00287 0.3163085 -0.56692 0.57104137 

716 -0.57871 0.5629985 -0.94377 0.34572403 

717 -1.19331 0.2332023 -0.19074 0.84880481 

718 -0.27629 0.7824136 0.163986 0.86980518 

719 1.483024 0.1385931 1.476802 0.14035316 

720 1.217597 0.2238464 -1.46179 0.1444114 

721 -1.25329 0.2105481 0.747663 0.45502265 

722 -1.32876 0.1843784 -0.56448 0.57267419 

723 1.372379 0.1704095 1.542526 0.12355425 

724 1.223098 0.2217523 2.183765 0.02944725 

725 0.20976 0.8339161 0.802383 0.4226879 

726 -0.75473 0.4506692 0.779464 0.43606473 

727 -1.29657 0.1952054 1.630063 0.10372945 

728 0.164568 0.8693344 -0.51314 0.60809299 

729 1.340856 0.18044 -1.03633 0.30055345 

730 -0.4434 0.6576281 -1.13299 0.25774824 

731 1.756884 0.0794077 0.654456 0.51312473 

732 -1.02651 0.3050441 -0.72355 0.46968166 

733 -1.2752 0.202715 -0.60498 0.54548863 

734 -0.45132 0.6519062 0.388177 0.69806089 

735 0.040258 0.9678994 1.003028 0.31632286 

736 0.411921 0.6805265 2.538742 0.0114225 
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737 -1.05786 0.2905282 0.783962 0.43343815 

738 0.914954 0.3605396 3.033371 0.00255025 

739 1.625777 0.1045248 -0.20042 0.84122988 

740 0.549135 0.5831025 -1.28038 0.20098869 

741 1.013663 0.3111366 1.411623 0.15865574 

742 0.324469 0.7456821 2.966615 0.00315002 

743 -1.20187 0.2298182 1.287104 0.1986157 

744 -1.19473 0.2326223 0.06097 0.95140918 

745 0.353834 0.7235844 1.404949 0.16064896 

746 -0.61355 0.5397215 -0.00388 0.99690684 

747 1.399905 0.162022 1.389294 0.16534386 

748 1.174692 0.240541 1.65662 0.09821862 

749 0.042202 0.9663495 2.2192 0.02690724 

750 2.317616 0.0207756 0.439422 0.66055594 

751 0.627878 0.5302964 1.812339 0.07052646 

752 -1.16499 0.2444569 0.020475 0.98367283 

753 -0.74473 0.4567046 0.157596 0.87483976 

754 1.469536 0.1421721 -0.75318 0.45170293 

755 2.369641 0.018089 -1.36652 0.17240024 

756 0.919503 0.3581829 1.211334 0.22632736 

757 -0.23457 0.8146197 -0.13015 0.89649957 

758 0.659076 0.5100827 0.926238 0.35475051 

759 -0.36253 0.7170784 0.900843 0.36810801 

760 0.426304 0.6700265 1.001837 0.31689754 

761 -0.01059 0.9915544 -0.79313 0.42807073 

762 1.325755 0.1854107 -0.74326 0.45766907 

763 -1.37897 0.1683671 0.115353 0.90820799 

764 1.887915 0.0595117 0.579487 0.56251006 

765 -0.71661 0.4738678 -1.70715 0.08842559 

766 -0.60605 0.5446885 -0.80913 0.41881982 

767 0.433449 0.6648312 0.562428 0.57407292 

768 -0.26394 0.7919098 1.570746 0.11688974 

769 0.603499 0.5464082 1.753802 0.08005931 

770 -1.54979 0.1216637 -0.53772 0.59103797 

771 -0.61825 0.5366102 -1.05522 0.29182391 

772 0.706351 0.4802371 1.453722 0.14666223 

773 -0.63974 0.5225524 0.605726 0.5449693 

774 -0.05305 0.9577118 2.707585 0.00699839 

775 1.911959 0.0563102 1.438366 0.15094487 

776 0.156897 0.8753757 0.484306 0.62838151 

777 -1.1714 0.2418566 -0.88296 0.37768201 

778 0.072202 0.942464 -0.30557 0.76005813 

779 -0.99235 0.3214038 -0.14886 0.88172202 

780 1.162641 0.2453954 1.207505 0.22775127 
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781 0.152153 0.879112 1.686473 0.09233229 

782 -0.8862 0.3758637 -0.28231 0.7778328 

783 -0.469 0.6392189 4.802319 2.0184E-06 

784 0.267551 0.7891273 1.238237 0.21615359 

785 -0.32458 0.7456052 0.04455 0.96448374 

786 -0.61027 0.5419058 -1.33791 0.18151628 

787 1.231929 0.2184289 -0.08301 0.93387487 

788 -0.44125 0.659185 -0.58154 0.56113702 

789 0.174634 0.8614209 -0.52684 0.59855988 

790 -0.5239 0.6005358 -0.25205 0.80110657 

791 -0.40373 0.686538 1.071117 0.2846017 

792 -0.68312 0.4947689 -0.631 0.52833841 

793 0.34201 0.7324531 -0.64227 0.52099157 

794 0.334147 0.7383716 -0.27872 0.78057902 

795 -0.78388 0.4333929 -0.45327 0.65054562 

796 1.273298 0.2033668 2.686711 0.0074596 

797 -0.95453 0.3401755 1.862648 0.06310637 

798 -0.40475 0.6857902 0.705949 0.48057208 

799 1.494067 0.135629 -0.49678 0.61955656 

800 -0.13947 0.8891203 1.877511 0.06101641 

801 0.0393 0.9686633 -0.01998 0.9840678 

802 -0.87452 0.3821437 1.06776 0.28609402 

803 0.064383 0.9486842 0.861097 0.38960834 

804 -0.20911 0.8344317 0.415857 0.67769179 

805 0.754965 0.4505378 -0.16593 0.86827694 

806 -0.34798 0.7279692 1.315194 0.18904385 

807 0.301558 0.7630833 -0.52385 0.60060699 

808 1.022537 0.3069049 0.428217 0.66868208 

809 1.85435 0.0641001 -0.40259 0.68740377 

810 -0.81514 0.4152835 0.151401 0.8797169 

811 0.900879 0.3679717 -1.20902 0.2272336 

812 0.277308 0.7816352 -0.34737 0.72845856 

813 -1.44909 0.1477946 -0.71864 0.4726972 

814 1.049285 0.2944348 1.672354 0.09508512 

815 -0.32572 0.7447487 1.464954 0.14356205 

816 -1.71532 0.0867505 -0.08176 0.93487301 

817 -0.3638 0.7161203 -0.67667 0.49893876 

818 -0.20482 0.8377807 -0.25865 0.79601198 

819 0.046466 0.962952 -0.80931 0.41873721 

820 0.54102 0.5886992 -1.54667 0.12252441 

821 -0.0352 0.9719315 0.58178 0.56097594 

822 0.360913 0.718277 1.175279 0.24043027 

823 -0.97854 0.3281669 2.631863 0.0087516 

824 -0.2948 0.7682405 0.05302 0.95773671 
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825 -0.12814 0.8980795 0.027542 0.97803823 

826 1.065015 0.2872486 0.947596 0.34379382 

827 0.673177 0.5010857 0.470718 0.63804559 

828 -0.77932 0.4360801 -0.57081 0.56837862 

829 -1.37538 0.1695006 -1.1304 0.2588756 

830 1.152039 0.2497535 -0.2279 0.81982353 

831 0.494698 0.6209786 1.416511 0.15726277 

832 0.17365 0.8621925 0.452424 0.65116081 

833 -1.01768 0.3091901 -1.10666 0.2689346 

834 0.367488 0.7133831 2.219108 0.02695415 

835 0.262577 0.7929615 -1.0811 0.28020381 

836 -0.21899 0.8267321 2.363111 0.01849214 

837 -1.50985 0.1315622 -0.16584 0.86834798 

838 0.162658 0.8708407 0.366952 0.71380192 

839 1.369721 0.1712377 -1.04313 0.29737409 

840 -0.31709 0.7512799 0.384952 0.70044865 

841 -0.39527 0.6927687 1.747711 0.08114293 

842 0.898705 0.3691554 -0.05682 0.95470719 

843 1.770758 0.0770732 -0.18778 0.85112852 

844 -1.2272 0.2201874 -0.38758 0.69847817 

845 0.253016 0.8003362 -0.19981 0.84171184 

846 -1.16673 0.2437421 -0.86005 0.39015982 

847 0.195619 0.8449712 0.172656 0.86298985 

848 -1.5725 0.1163143 0.11625 0.90749934 

849 -0.57436 0.5659355 3.824532 0.00014721 

850 1.97808 0.0483448 -0.32669 0.74404364 

851 0.970017 0.3324081 0.417275 0.6766576 

852 -0.92426 0.3556824 1.33341 0.18304468 

853 -0.69592 0.4867371 -1.18315 0.23730125 

854 0.473502 0.6360006 -0.79151 0.42903623 

855 1.062538 0.2884054 0.627687 0.53051034 

856 -1.27857 0.2014792 1.206781 0.22805875 

857 1.403297 0.1610036 -0.41795 0.67617966 

858 0.547636 0.5841292 0.243197 0.80795059 

859 -0.04896 0.9609702 3.621619 0.00032347 

860 0.468263 0.6397488 1.602112 0.10972563 

861 -0.44181 0.6587699 -0.25223 0.80096474 

862 -1.091 0.2756921 -1.22846 0.21984352 

863 1.099629 0.2718986 2.29396 0.02220006 

864 -0.78743 0.4313287 0.837361 0.40279036 

865 0.418131 0.6759894 0.624864 0.53235033 

866 3.312368 0.0009784 -1.52333 0.12831095 

867 -0.84737 0.3971065 1.05432 0.29226238 

868 -0.9419 0.3465853 -0.82373 0.41047926 
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869 0.40544 0.6852926 0.164707 0.86924057 

870 -0.62015 0.5353735 -0.13167 0.89530011 

871 -1.21331 0.225448 2.524822 0.01186695 

872 -0.60922 0.5426085 1.483173 0.1386487 

873 0.648959 0.5166059 -0.79755 0.42551799 

874 -1.51938 0.129142 -1.0581 0.29053977 

875 0.63113 0.5281823 -1.41012 0.15911152 

876 1.71433 0.0869327 0.793743 0.42772075 

877 -1.02289 0.3067429 -1.14794 0.25154442 

878 0.310761 0.7560808 -0.24141 0.80933979 

879 -0.72727 0.4673331 0.857004 0.39181137 

880 3.308548 0.0009901 -0.50438 0.61420355 

881 0.375229 0.7076132 0.849512 0.39600149 

882 3.361325 0.000819 -0.52534 0.59958398 

883 1.325076 0.1855863 1.067991 0.28604703 

884 -0.90635 0.3650852 0.118054 0.90607207 

885 1.305822 0.192089 -1.53669 0.12498102 

886 0.816184 0.4147061 -0.79005 0.42985486 

887 -0.7084 0.4789485 1.349594 0.17773797 

888 1.050454 0.2938953 -0.12832 0.8979451 

889 -0.08615 0.9313763 -0.92543 0.35519079 

890 1.158493 0.2471026 1.555974 0.12040798 

891 -0.74896 0.4541546 -0.26853 0.78840766 

892 0.844267 0.3988325 0.061629 0.95088175 

893 0.656936 0.5114496 0.000769 0.99938688 

894 -0.74742 0.4550799 -0.36356 0.71633554 

895 1.91888 0.0554384 -1.15662 0.2479431 

896 2.006782 0.0451847 0.830614 0.40659061 

897 2.088877 0.037128 -1.24318 0.21437266 

898 -0.74131 0.4587747 0.147488 0.8828086 

899 0.997416 0.3189351 0.136138 0.89176455 

900 1.191137 0.2340166 -1.38601 0.16631402 

901 0.186516 0.8520965 -1.24283 0.21450113 

902 -0.37068 0.7110006 -0.30194 0.76282647 

903 1.791647 0.073644 -0.35156 0.72530257 

904 -1.65877 0.0976511 -0.63986 0.52253767 

905 -0.43866 0.6610548 -0.5543 0.5796272 

906 -0.36716 0.7136232 2.016689 0.04425779 

907 0.161902 0.8714382 -1.27464 0.20303143 

908 0.6643 0.5067432 0.354995 0.72274499 

909 0.419365 0.6750915 0.097583 0.9223019 

910 -0.73379 0.4633461 -0.01623 0.98705498 

911 -0.12033 0.9042621 0.677575 0.49835705 

912 0.022812 0.981807 -0.31201 0.75516211 
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913 0.717592 0.4732743 1.945087 0.05232247 

914 0.940445 0.3473445 -0.56091 0.57512829 

915 0.250865 0.8020035 -0.92553 0.3551617 

916 -0.12965 0.8968884 0.693136 0.48853771 

917 -0.45078 0.652294 -0.00279 0.99777234 

918 -0.23835 0.8116808 2.462731 0.01410767 

919 -0.99673 0.3192431 1.842095 0.06607536 

920 -0.55201 0.5811205 0.309763 0.75686263 

921 1.132792 0.2577168 -0.15417 0.87754247 

922 -0.77199 0.4403873 0.383508 0.70148952 

923 -0.77898 0.4362686 -0.45711 0.64777786 

924 1.60246 0.1095324 -1.03561 0.30088805 

925 0.029263 0.9766641 -0.66112 0.5088352 

926 -0.23391 0.8151205 0.587938 0.55685244 

927 0.537248 0.5912769 -1.31691 0.18848085 

928 -0.41592 0.6776033 0.667189 0.50496213 

929 -0.00973 0.9922433 0.459121 0.64636393 

930 0.988784 0.3231132 0.248465 0.8038697 

931 -1.17374 0.2409129 -0.63306 0.52698408 

932 0.132897 0.8943193 -0.32277 0.747003 

933 0.790923 0.4292785 0.023911 0.98093291 

934 0.839987 0.4012503 0.370364 0.71127172 

935 0.263793 0.7920193 -0.98402 0.32558214 

936 0.540426 0.5890963 1.073497 0.28358649 

937 0.201289 0.8405364 -0.5509 0.58195017 

938 -1.07317 0.2835935 2.142843 0.03258393 

939 -1.40772 0.1596972 0.311051 0.75590372 

940 0.557686 0.5772562 -0.40735 0.68391842 

941 0.506852 0.612431 0.592042 0.55408878 

942 1.585831 0.1132426 -0.37802 0.70557232 

943 -0.74524 0.4564037 -0.96113 0.33693949 

944 0.656735 0.5116151 -0.4868 0.62659919 

945 0.686452 0.4926725 -1.65554 0.09842965 

946 1.810008 0.0707252 -1.36133 0.17403073 

947 -0.7759 0.4380953 -1.09328 0.27482744 

948 0.421204 0.6737417 -0.23161 0.81693246 

949 -1.15938 0.2467145 4.027649 6.526E-05 

950 -0.54448 0.586296 -0.42633 0.67004597 

951 0.194323 0.8459856 0.666621 0.50530142 

952 -0.60168 0.5476109 -0.57809 0.56346176 

953 -0.49021 0.6241502 -0.3643 0.71579403 

954 0.179635 0.8575003 1.404555 0.16080302 

955 2.157255 0.0313349 1.898509 0.05823227 

956 0.443148 0.6578156 -0.89198 0.37283504 



106 
 

106 

Block groups Census tracts 

Iteration t-value significance t-value significance 

957 0.812536 0.4167743 -0.92825 0.35371171 

958 -1.05439 0.2920649 0.184819 0.85345218 

959 -0.71952 0.4720712 0.156262 0.87589088 

960 0.878026 0.3802453 1.406806 0.16013338 

961 -1.3005 0.1939023 -0.18777 0.85112491 

962 0.660203 0.509352 1.018378 0.30903621 

963 0.183424 0.854521 0.837255 0.40283254 

964 1.902959 0.0574755 0.126698 0.89923101 

965 1.994867 0.0464688 -0.04789 0.96182598 

966 1.193404 0.2331454 0.674972 0.49998693 

967 -0.30244 0.7624148 -0.73412 0.46320588 

968 -0.83917 0.4016661 -1.3856 0.16646306 

969 4.844571 1.589E-06 0.692544 0.48892439 

970 0.424322 0.671466 0.540008 0.58942509 

971 -1.21922 0.2232437 0.406663 0.68443964 

972 -0.56169 0.5745204 0.090637 0.92781799 

973 -1.51593 0.1300204 -0.42053 0.67428392 

974 -0.21181 0.8323185 -0.81925 0.41303542 

975 -0.45658 0.6481215 -0.35508 0.72267945 

976 -0.45195 0.6514522 0.212201 0.83203579 

977 -0.56968 0.5690889 1.64126 0.10132148 

978 -1.23784 0.2162279 0.232106 0.81655693 

979 1.830084 0.0676937 -0.68625 0.49286887 

980 -1.61973 0.1057624 0.40178 0.68801259 

981 -0.50731 0.6121062 1.190281 0.23447498 

982 -1.29227 0.1967276 1.018534 0.30897155 

983 0.598175 0.5499215 1.585173 0.11354555 

984 -0.86652 0.3865189 0.698141 0.48542286 

985 -1.01113 0.3123258 0.088306 0.92967011 

986 1.641784 0.1011193 -1.08789 0.27718702 

987 -1.27367 0.2032456 -0.53396 0.59360268 

988 -0.04936 0.960647 -0.14272 0.88656607 

989 -0.23223 0.8164249 0.635889 0.5251185 

990 2.108551 0.0353801 -0.37375 0.70874934 

991 1.651013 0.0992017 2.386976 0.01735246 

992 0.249141 0.8033313 -0.89773 0.3697616 

993 1.381668 0.1675712 0.613019 0.54012963 

994 -1.09496 0.2739346 2.13239 0.03349035 

995 -0.66552 0.5059476 0.798397 0.42504098 

996 -0.73801 0.4607599 -0.02956 0.97642721 

997 -0.16388 0.869879 0.461047 0.64496307 

998 0.241701 0.8090898 0.721128 0.47113331 

999 0.502719 0.6153267 0.403057 0.68706654 

1000 0.818214 0.4135288 1.642915 0.10101092 
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