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Abstract 10 

 Exercising horses are commonly plagued by muscle fatigue and soreness, which can 11 

result in reduced performance ability. In the present study, ten unconditioned horses were fed 12 

200g per day DigestaWell® NRG, a commercial dietary supplement containing Yucca 13 

schidigera and Trigonella foenum-graecum, two herbs shown in other species to reduce post-14 

exercise muscle pain and soreness. A control, unsupplemented group contained ten horses of 15 

similar age, breed, and gender. Horses completed a 50 min, ridden standardized exercise test of 16 

moderate intensity immediately prior to (Period1) and after 28 d of supplementation (Period2). 17 

Muscle soreness and tightness were evaluated 24 h prior to and after each exercise test and used 18 

to determine the percent increase in post-exercise muscle soreness and tightness. Blood samples 19 

were collected before, and at 10 and 30 min, and 1, 4, and 24 h post exercise. Plasma was 20 

analyzed for glucose, lactate, non-esterified fatty acid (NEFA), tumor necrosis factor-α (TNFα), 21 

and interleukin-1β (IL-1β) concentrations. Data were analyzed by repeated measures ANOVA 22 

using SAS Enterprise Guide v. 7.1. No changes in plasma parameters were indicated between 23 

periods for unsupplemented horses (P > 0.1) during Period2, excepting glucose, which was 24 

greater during Period2 (P = 0.018). Supplemented horses had lesser concentrations of TNFα (P = 25 

0.016) and lactate (P = 0.058) during Period2 than during Period1. During Period2, 26 

supplemented horses experienced a smaller percent increase in post exercise muscle soreness (P 27 

= 0.031). DigestaWell® NRG supplementation may benefit unconditioned horses undergoing 28 

moderate intensity exercise through reducing lactate production and inflammation. 29 

Keywords: fenugreek; lactate; muscle soreness; NEFA; yucca30 



Introduction 31 

Muscular soreness is a result of ultrastructural muscle injury. As shown in humans, post 32 

exercise muscle soreness is due in part to a cascade of responses initiated by damaged Z bands 33 

and loss of contractile proteins, which results in neutrophil infiltration into muscle and 34 

production of interleukin 1-β (IL-1β) and tumor necrosis factor-α (TNFα) by immune cells [1-4]. 35 

These cytokines act to increase expression of pain-sensing pathways in muscle cells through 36 

prostaglandin production [5-7]. Horses that are in pain frequently exhibit behavioral problems 37 

such as bucking and rearing [8, 9] that put them at risk for welfare concerns if their owners do 38 

not recognize the underlying health problem. This indicates that there could be a high frequency 39 

of welfare concerns in the non-racing population, because muscular pain and lameness are 40 

common concerns of horse owners, with owners citing concurrent poor performance or 41 

misbehaviors in horses diagnosed with lameness [10, 11]. Post-exercise muscle soreness and 42 

increased serum creatinine kinase activity were induced in horses carrying 30% of their 43 

bodyweight during a moderate-intensity 45 min exercise protocol designed to mimic a riding 44 

lesson [12], while lameness was induced in previously-sound horses undertaking a 30 min 45 

dressage test, when carrying more than 17.3% of bodyweight [13]. These studies indicate a 46 

potential for muscle damage and poor welfare of horses carrying >17% of bodyweight during 47 

moderate intensity exercise, a level of exercise that more horses participate in than racing [14]. 48 

Use of herbal supplements, which can be used to moderate the physiological responses to 49 

a painful stimulus in mice [15], is increasing in human populations and they are more commonly 50 

given to horses as well [16-19]. One such plant, yucca (Yucca schidigera) exhibits anti-51 

inflammatory activity through one of its active components, resveratrol [20], which reduces 52 

eicosanoid synthesis through inhibiting COX enzyme activity [21]. Fenugreek (Trigonella 53 



foenum-graecum) also contains anti-inflammatory compounds that reduce muscle pain through 54 

reducing cell membrane peroxidation [22] and has pain relieving properties similar to over-the-55 

counter medications, as tested in mice [15]. 56 

Fenugreek has metabolism-altering actions which could reduce muscle fatigue through 57 

enhancing nutrient availability during exercise. Fenugreek-supplemented mice experienced 58 

lower blood lactic acid concentrations following exhaustive exercise than unsupplemented mice 59 

[23]. Fenugreek supplementation also lengthened time to exhaustion and increased post-exercise 60 

glycogen resynthesis rates in both humans and mice [24, 25]. For these reasons, we modified a 61 

ridden exercise protocol that was previously shown to induce muscle soreness [12], in order to 62 

evaluate DigestaWell® NRG, a dietary supplement containing yucca and fenugreek. The 63 

hypothesis was that DigestaWell® NRG would benefit unconditioned horses undergoing a bout 64 

of moderate-intensity exercise by reducing post-exercise muscle soreness. Secondly, we 65 

hypothesized that horses receiving the supplement would have reduced concentrations of both 66 

circulating inflammatory cytokines and lactic acid following exercise. 67 

  68 

Materials and Methods 69 

Horse Management 70 

The Institutional Animal Care and Use Committee of Murray State University approved the use 71 

of horses for this study. Twenty mature, healthy horses from Murray State University’s equine 72 

program were selected for use in this study. Horses were blocked into three groups by age (11 to 73 

15 years, n=11; 16 to 20 years, n=5; >20 years, n=4), and then assigned either to treatment 74 

(NRG) or control (CON; Table 1). Horses assigned to the CON group included 9 Quarter Horses 75 

and 1 Thoroughbred; while the NRG group included 6 Quarter Horses, 2 Thoroughbreds, and 2 76 



warmbloods. Eight geldings and 2 mares were assigned to the CON group; while 9 geldings and 77 

1 mare were assigned to the NRG group. All mares were non-pregnant. Although breed and 78 

gender numbers differed, the investigators considered age as the primary blocking factor. Body 79 

condition score (BCS) was determined on a scale of 1-9 prior to the first SET at the same time 80 

bodyweight was measured [26]. Horses were between a (BCS) of 5 to 6.5 (Table 2). Sixteen of 81 

these horses were housed on well managed Coastal-Bermudagrass pasture, while 4 of the 82 

geldings (CON n=1; NRG n=3) were housed in stalls because they developed anxious behaviors 83 

when turned out for long periods of time. Stalled horses were unequally divided amongst 84 

treatments because age was considered the primary blocking factor. Stalled horses received 85 

several hours of daily turnout onto adjacent pastures and were offered ad libitum Coastal 86 

Bermudagrass hay (Table 3) when stalled. The hay was from the same batch throughout the 87 

study. Horses received concentrate in amounts necessary to maintain condition, with pastured 88 

horses receiving a maintenance concentrate (11-Six Pelleted Horse Feed, Southern States 89 

Cooperative, Richmond, VA; Table 2) at 0.2 kg per day, with a predominant purpose of carrying 90 

the supplement. Stalled horses receiving a higher calorie concentrate, due to individual 91 

tendencies to lose condition (Triple 10 Texturized Feed, Southern States Cooperative) at 0.5 to 92 

0.7% of bodyweight per day (Table 3). Horses were fed their total feed divided into two equal 93 

feedings, twice daily. Amounts of nutrients consumed were calculated as the sum of concentrate, 94 

hay (stalled horses only), and pasture, with hay and pasture intake estimated based on equations 95 

[27, 28]. Nutrient intake by treatment and housing are presented in Table 4. First daily feedings 96 

took place between 0730 and 0900, as horses were individually fed in order to observe feed and 97 

supplement consumption. Second daily feedings occurred at 1500. All horses had ad libitum 98 

access to water and trace mineralized salt blocks (Southern States Cooperative). Feeds were 99 



analyzed for nutritional content by Equi-Analytical (Ithaca, NY), while vitamin C and E analysis 100 

was conducted by NP Analytical Laboratories (St. Louis, MO). 101 

Treatments 102 

Horses assigned to the treatment diet received 200 grams of a nutritional supplement, 103 

DigestaWell NRG® (Probiotech International, Saint-Hyacinthe, Quebec, Canada) once a day, 104 

during the morning offering of feed, for a total of 4 weeks. The Yucca schidigera and Trigonella 105 

foenum-graecum used to produce the DigestaWell NRG® product were in the form of powdered 106 

extracts that were blended into a dry carrier of ground alfalfa, wheat middlings, and grape 107 

pomace. Liquid flavors (vanillin and diacetyl) were dried over silica to convert them to dried 108 

powders. Ceylon cinnamon was included as a flavor and was included as a dried powder. Yeast 109 

culture was included as well as the preservative, calcium propionate. The product is delivered to 110 

the horse in a powdered form. Pastured horses were brought one at a time into a small paddock 111 

where they had access to the supplement for 10-15 min. Horses remained in the paddock until 112 

consumption was complete or the horse showed no interest in the feed for at least 5 min despite 113 

encouragement to eat. No horses finished the supplement on d 1. By d 3, all pastured horses 114 

consumed the entire supplement and their feed ration within 15 min. Originally, three stall horses 115 

were assigned to the NRG treatment. Stalled horses had access to the supplement for 60 min, 116 

because one stalled horse regularly refused at least 100 g of supplement, and never consumed all 117 

200 g at any point during the study. Due to lack of compliance, this horse’s data was dropped 118 

from the statistical analysis. The other two stalled horses assigned to NRG, regularly consumed 119 

their entire supplement and feed. Therefore, the CON treatment contained one stalled horse and 120 

the NRG treatment contained two. 121 

Standardized Exercise Test 122 



A ridden standardized exercise test (SET, Table 5) similar to that conducted by Powell et al. 123 

[12], was conducted prior to the start (Period1) and following the conclusion of the study 124 

(Period2). For this SET, horses exercised for a total of 50 min, consisting of 2.5 min of brisk 125 

walking, 15 min of trotting, 5 min of canter, 2.5 min of trotting, reversing direction, 2.5 min of 126 

brisk walking, 15 min of trotting, 5 min of canter, and 2.5 min of trotting. Horses were to trot at 127 

approximately 3 m/s and canter at 5 m/s. Horses were randomly allocated to one of three groups, 128 

with each group assigned to a consecutive day for performing the SET. Seven horses were 129 

assigned to d 1 (NRG n=4; CON n=3), 6 horses to d 2 (NRG n=2; CON n=4), and 7 horses to d 3 130 

(NRG n=4; CON n=3). Prior to the start of this study (January – May), horses participated in 131 

riding classes and equestrian team practices, however they had not received any forced exercise 132 

for six weeks before the start of the study. With the exception of the standardized exercise test, 133 

horses did not receive forced exercise during this trial. 134 

The SETs were conducted in a 30 x 60-meter indoor arena with horses carrying 20% of 135 

their body weight. Prior to the start of the SET, each horse was weighed on a livestock scale 136 

while wearing only a halter. Following this, the rider was weighed along with tack, which 137 

included a roping-style western saddle, cinch, saddle pad, breast collar, and bridle. Additional 138 

weights were added to the scale in order to reach 20% of horse bodyweight. Weights consisted of 139 

custom-made nylon bags containing lead pellets at weights of 1, 5, and 10 pounds. Bags had 140 

grommets sewn in which allowed attachment to the saddle through use of carbineer clips. 141 

Placement of weights were equally distributed on the saddle from side to side and front to back 142 

in order to prevent tipping and pulling on the saddle. Horses were walked around to desensitize 143 

them to the feeling of these bags, yet no negative reactions were indicated. During the SET, 144 

cones were placed every 15 m, with horses needing to trot the distance in 5 s and canter the 145 



distance in 3 s. An assistant on the ground kept time and advised the rider to increase or decrease 146 

speed to meet requirements. Riders and assistants had participated in previous exercise research 147 

trials and were familiar with the protocol. During the SET’s, horses wore heart rate monitors 148 

(Equine H7, Polar USA, Bethpage, NY) that transmitted heart rate data to a wrist watch worn by 149 

the rider. Heart rate data from watches were recorded after horses were tacked up, after standing 150 

still for several minutes, at the end of each gait during the SET, and at 10 and 30 min post 151 

exercise (Figure 1). Riders dismounted immediately after the completion of the exercise test and 152 

horses were untacked after post-exercise vitals were obtained. Six advanced level riders from the 153 

MSU equitation program participated in this project and were blinded to treatment as they only 154 

participated in the riding portion. Riders were rotated and allowed breaks between exercise 155 

sessions. Riders were matched with horses in order to effectively meet the 20% of bodyweight 156 

goal.  157 

Massage testing 158 

A licensed equine massage therapist, blinded to treatments, conducted a muscle soreness and 159 

tension exam on each horse 24 h before and 24 h after each SET (Figure 1) [12]. The system 160 

used a Likert-type scale to grade the severity of muscle soreness and tightness in horses and 161 

ranged from 0 (no soreness/tightness) to 2.5 (extremely tight or sore). The scoring system 162 

included 10 muscles: the trapezius, deltoid, rhomboideus, latissimus dorsi, longissimus, triceps, 163 

biceps, gluteals, hamstring group, and tensor fascia lata, on the left and right sides of the horse. 164 

The massage therapist pressed a blunt plastic evaluation tool into the muscle and moved it 165 

caudally (trapezius, rhomboideus, latissimus dorsi, longissimus) or distally (triceps, deltoid, 166 

biceps, gluteals, hamstring, tensor fascia lata) along the muscle using consistent pressure. For 167 

each muscle and on each side of the horse, a soreness score and a tightness score were separately 168 



recorded, therefore, each muscle on each side ranged from 0 (no soreness or tightness) to 2.5 169 

(extremely sore or extremely tight). Muscle soreness and tightness scores from both sides of the 170 

horse and all muscles were summed for each horse during each evaluation, yielding a value that 171 

ranged from 0 (no soreness or tightness) to 100 (extremely sore and tight in each muscle on both 172 

sides of the horse). These values were used to calculate percent change within each period, 173 

which was calculated as (Period2 – Period1)/Period2, yielding two numbers per horse (pre-174 

supplment[Period1] and post-supplement[Period2]).  175 

Blood sampling and sample analysis 176 

Blood samples were obtained via jugular venipuncture prior to the start of the SET (time 0) and 177 

at 10 and 30 min and 1, 4, and 24 h post exercise (Figure 1). Samples were collected into 178 

evacuated heparin and EDTA coated tubes (Vacutainer, Becton, Dickinson and Company, 179 

Franklin Lakes, NJ) and then placed on ice in a cooler until centrifugation (<2 h). Plasma was 180 

harvested and stored at -20°C until later analysis. All samples were analyzed in duplicate. 181 

Plasma glucose and L-lactate concentrations were determined using commercially 182 

available enzymatic assay kits (2300 Stat Plus, YSI Inc., Yellow Springs, OH) designed for the 183 

YSI 2700 Select system (YSI Inc., Yellow Springs, OH). Plasma IL-1β and TNFα were analyzed 184 

using enzyme linked immunosorbent assays with methods previously published for use in the 185 

horse [29, 30]. Briefly, plasma samples were analyzed for TNFα using Nunc-Immuno 96 186 

MicroWell flat bottom plates (Nalge Nunc International, Rochester, NY, USA) following a 1:4 187 

dilution. The blocking buffer used for all assays consisted of 4% ELISA-grade BSA 188 

(Calbiochem, La Jolla, CA, USA), and 5% sucrose (Fisher Scientific, Fair Lawn, NJ, USA), in 189 

BuPH phosphate-buffered saline (ThermoFisher Scientific, Waltham, MA). Plates were washed 190 

in a solution of 0.05% Tween 20 (Fisher Scientific) in phosphate-buffered saline. The 191 



manufacturer’s instructions were followed, except an additional wash step was included after 192 

blocking. For IL-1β, plates were coated overnight with 3 µg/mL of capture antibody (prepared in 193 

DPBS), blocked for one hour with reagent diluent (4% BSA in DPBS), and then incubated with 194 

samples (diluted 1:2 in DPBS) for one hour. Following sample incubation, plates were incubated 195 

with detection antibody prepared at 3 µg/mL in DPBS and allowed to react with streptavidin-196 

HRP (Kingfisher Biotech Inc., St. Paul, MN) for 30 minutes prior to incubation with substrate 197 

solution (Kingfisher Biotech) for 30 minutes. Reactions were stopped with the addition of stop 198 

buffer (Kingfisher Biotech). Rinsing protocols were the same as for the TNFα ELISA. ELISAs 199 

were read at 450 nm. Non-esterified fatty acid concentrations were analyzed using a 200 

commercially available spectrophotometric assay (Zenbio, Research Triangle Park, NC). Intra 201 

and inter-assay CV’s were 3.9 and 11.5% for TNFα, 7.6 and 13.2% for IL-1β, and 7.2 and 5.9% 202 

for NEFA. Intra-assay CV’s for glucose and lactate were 1.3 and 2.5%, respectively. 203 

Statistics 204 

All statistical analyses were performed using the MIXED procedure of SAS (v. 9.4, Cary, NC). 205 

For all analyses, normality and homogeneity of variance of residuals was determined through use 206 

of influence statistics and visual analysis of residual box and whisker plots. Outliers were 207 

determined through evaluation of the Internally Studentized Residual, with values >2.7 or < -2.7 208 

being scrutinized. For all repeated measures analyses, the covariance structure yielding the 209 

lowest AICC index was selected for each analysis. Simple effect differences for a main effect of 210 

time were detected using a Dunnett test, which compares each time point to time 0, reducing the 211 

number of multiple comparisons. For all analyses, significance is considered at P  < 0.05 and a 212 

tendency at P < 0.09. 213 



Data for bodyweight and body condition scores were analyzed using repeated measures 214 

ANOVA for the main effects and interaction of period and treatment (trt), where the repeated 215 

effect was period and horse was a random effect. The statistical model was γ = µ + horse + period + 216 

trt + period*trt + ε. Data are presented as the mean ± SEM. Mean nutrient intakes were analyzed 217 

for the effect of treatment and data are presented as the mean ± SEM. 218 

Heart rate and plasma glucose, lactate, NEFA, IL-1β, and TNFα data were analyzed using 219 

repeated measures ANOVA for the effects and interactions of time and period within treatment. 220 

The statistical model was γ = µ + time(trt) + period(trt) + time*period(trt) + ε. Muscle soreness 221 

data were analyzed for the main effect of period within treatment, with a statistical model of γ = 222 

µ + period(trt) + ε. Day of SET (horses were assigned to one of three consecutive testing days 223 

during each period) included as a random effect. For all analyses except IL-1β, a covariate (time 224 

0 value) was found to be significant (P < 0.001), and therefore included in the model. All plasma 225 

variables required transformation to achieve normality and homogeneity of variance. Therefore, 226 

plasma variable means are presented as geometric means bounded by the 95% confidence 227 

interval. Heart rate and muscle soreness data are presented as means ± SEM. 228 

 229 

Results 230 

Bodyweight, body condition scores, and nutrient consumption 231 

Neither bodyweight nor body condition score were affected by period, treatment or the period by 232 

treatment interaction (P > 0.1; Table 2). Nutrient intakes were not different between treatments 233 

(P > 0.1; Table 4).    234 

Heart Rate 235 



Neither the time by period interaction nor period affected heart rates for NRG or CON 236 

horses (P > 0.6; Table 5). However, heart rates were affected by time for both treatments (P < 237 

0.001), whereby heart rates were elevated above baseline at all time points except post 30 238 

minutes (P < 0.05).  239 

Plasma Metabolites 240 

Neither the time by period interaction nor period affected plasma glucose concentrations 241 

for NRG or CON horses (P > 0.1; Figure 2A, B). Period affected plasma glucose concentrations 242 

for CON horses only (P = 0.018), whereby plasma glucose was higher (P = 0.018) during 243 

Period2 [5.1 [5.0, 5.2] mmol/L) than Period1 [4.8 [4.7, 4.9] mmol/L). Period did not affect 244 

plasma glucose concentrations for NRG (P > 0.5). 245 

There was no effect of the time by period interaction on plasma lactate concentrations for 246 

NRG or CON horses (P > 0.4; Figure 2C, D). For CON horses, there was an effect of time (P < 247 

0.001) but not period (P > 0.3), whereby lactate concentrations, when averaged across periods, 248 

were higher at 10 min (1.27 [1.16, 1.39] mmol/L; P < 0.001) and 30 min (0.99 [0.90, 1.08] 249 

mmol/L; P < 0.001) post exercise than baseline concentrations (0.57 [0.52, 0.63) mmol/L). For 250 

NRG horses, there was an effect of time (P = 0.021). Similar to CON horses, lactate 251 

concentrations, when averaged across periods, were elevated above baseline (0.43 [0.39, 0.47] 252 

mmol/L) at 10 min (0.96 [0.88, 1.06] mmol/L; P < 0.001), 30 min (0.71 [0.88, 1.06] mmol/L; P 253 

< 0.001), and also 1 h (0.59 [0.54, 0.65] mmol/L; P = 0.040) post exercise. Average lactate 254 

concentrations tended to be higher during Period1 (0.65 [0.61, 0.69] mmol/L) than Period2 (0.58 255 

[0.54, 0.61]; P = 0.058). 256 

There was no effect of the time by period interaction on plasma NEFA concentrations for 257 

NRG or CON horses (P > 0.1; Figure 2E, F). For CON horses, there was an effect of time (P < 258 



0.001) but not period (P > 0.4), whereby NEFA concentrations, when averaged across periods, 259 

were greater at 10 min (551 [451, 674] µM; P < 0.001), 30 min (310, [253, 381] µM; P < 0.001), 260 

and 1 h (191 [156, 233] µM; P < 0.01) than baseline (98 [81, 120] µM). For NRG horses, there 261 

was a main effect of time (P < 0.001) but not period (P > 0.7), whereby NEFA concentrations 262 

were greater at 10 min (702 [599, 824] µM; P < 0.001) and 30 min (378, [322, 443] µM; P < 263 

0.001) than baseline (164 [140, 193] µM). 264 

Plasma Inflammatory Cytokines 265 

There was no effect of the interaction of time and period for plasma TNFα concentrations 266 

for NRG or CON horses (P > 0.5; Figure 3 A, B). For CON horses, there was no effect of time or 267 

period (P > 0.4). For NRG horses, there was no effect of time (P > 0.7), but concentrations were 268 

lower during Period2 (170, [167, 173] pg/mL) than Period1 (182, [178, 185] pg/mL; P = 0.012). 269 

There were no effects or interactions of time and period for CON or NRG horses for plasma IL1-270 

β concentrations (P > 0.2; Data Not Shown). 271 

Muscle Soreness 272 

The percent increase in muscle soreness and tightness was lower during Period2 (44 ± 273 

16%; P = 0.031) than Period1 (95 ± 16%) for NRG treated horses (P = 0.031; Figure 3B). The 274 

percent increase in muscle soreness and tightness was not affected by period for CON horses (P 275 

> 0.9; Figure 3A). 276 

 277 

Discussion 278 

The primary objective of this experiment was to test the hypothesis that 30 d of dietary 279 

supplementation with DigestaWell® NRG would reduce muscle soreness following a bout of 280 

moderate-intensity exercise in horses that receive minimal ridden exercise. Secondly, we 281 



hypothesized that horses receiving the supplement would have reduced concentrations of 282 

circulating inflammatory cytokines and lactic acid following exercise. During this study, horses 283 

carried 20% of their bodyweight. This weight was chosen as an intermediate between that of 284 

25% previously shown to have an effect on heart rates and 17% previously shown to induce 285 

lameness in riding horses [12, 13], as our goal was to utilize moderate exercise that induced 286 

muscular soreness, but also to have horses complete the 50 minute exercise test without 287 

becoming lame. The current study differs from that of Dyson et al., due to the use of lead 288 

weights to adjust total weight instead of finding heavier riders, and this could account for 289 

differences in post-exercise lameness. The exercise program increased heart rates and plasma 290 

lactate concentrations to levels indicating that horses were being exercised at a moderate 291 

intensity level [12, 31-33].  292 

A principal finding of this study was that NRG supplemented horses experienced reduced 293 

post exercise muscle soreness following the 30 d supplementation period. Yucca and fenugreek 294 

possibly reduce muscle soreness through their protective effects on cell membrane lipids, which 295 

when damaged during exercise [34], induce the sensing of pain through an increase in local 296 

inflammation. Derivatives of yucca contain antioxidant activities that reduce cell membrane 297 

peroxidation [35-38] while fenugreek inhibits the activity of the lipid peroxidase enzyme [22]. 298 

Fenugreek also downregulates pain sensing through inhibiting the activity of cyclooxygenase 299 

(COX)-1, and COX-2, the enzymes that convert arachidonic acid to prostaglandins [22, 39]. 300 

Fenugreek has similar pain reduction levels to ibuprofen when administered to mice [15]. 301 

Although extracts of both yucca and fenugreek have been evaluated for their pain-relieving 302 

activity, neither appears to have been previously tested in a model of exercise induced muscle 303 

soreness despite widely accessible over-the-counter herbal supplements for humans and horses.  304 



A relationship exists between post-exercise muscle soreness and inflammation in humans 305 

[40]; with production of pro-inflammatory cytokines such as IL-1β and TNFα increasing in 306 

response to tissue damage [41]. These cytokines have a purpose of initiating clearance of 307 

damaged tissue, peak 1-2 days post exercise, and are then down regulated by anti-inflammatory 308 

cytokines following tissue cleanup [1, 42, 43]. Therefore, we were interested in evaluating the 309 

inflammatory protein response to exercise. Unfortunately, our exercise protocol did not influence 310 

IL-1β or TNFα protein in either CON or NRG treated horses. These findings are inconsistent to 311 

the findings of Liburt et al. [44], who reported increases in blood IL-1β mRNA at 2 hours and 312 

muscle and blood TNFα mRNA at 6 hours. However, many differences exist between the 313 

methods of these two studies. The former research group measured mRNA expression in white 314 

blood cells of blood and muscle, whereas we measured circulating protein concentrations. It is 315 

now known that IL1β is regulated at the level of protein secretion and a measurement of 316 

increased mRNA expression without an increase in secreted protein, does not reflect the activity 317 

of IL1β protein [45]. We also captured a slightly shorter window at 4 h post exercise instead of 6. 318 

The former study also included greater exercise intensity, type, and duration and it is most likely 319 

that the horses on the Liburt et al. study experienced more soreness than horses used for the 320 

present study. However, the purpose of this study was to investigate the potential benefits of 321 

DigestaWell® NRG in moderately exercised horses, and therefore, the exercise protocol 322 

employed in this study was of lower intensity. 323 

An interesting finding of this study was the reduction in average TNFα concentrations in 324 

NRG treated horses after 30 d of supplementation. One possible explanation for this finding is 325 

that the extracts of Yucca schidigera and Trigonella foenum-graecum contain anti-inflammatory 326 

activity. For instance, resveratrol is an extract of yucca schidigera that reduced TNFα protein 327 



production in cultured equine lymphocytes [46]. This is similar to results in mouse models, 328 

where resveratrol reduced TNFα protein in mouse spleen [47] and inhibits the TNFα response to 329 

lipopolysaccharide stimulation in a mouse cell line [48, 49]. This is possibly through the effects 330 

of yucca extracts to reduce LPS-induced binding of NFκB to the promoter of target genes [37], 331 

such as TNFα [50, 51]. Resveratrol also down regulates JAK1-STAT3 transcription factor 332 

mRNA levels [47]. These two transcription factors are important for mediating the inflammatory 333 

effects of TNFα in target cells [52]. Eight weeks of fenugreek seed powder supplementation also 334 

reduced TNFα protein concentrations in human blood [53], which could be due to one or more of 335 

the bioactive compounds contained in fenugreek: diosgenin, 4-OH-Ile, and galactomannan, all of 336 

which purportedly contain anti-inflammatory activity. 337 

Horses supplemented with DigestaWell NRG® had altered metabolic responses to the 338 

moderate intensity exercise employed in this study. Unconditioned horses use a combination of 339 

fats, blood glucose, and muscle glycogen as energy sources during low and moderate intensity 340 

exercise (35% of VO2max) [54], with muscle glycogen contributing 81% of energy at the start of 341 

exercise and 44% by one hour into the test. Despite using multiple sources of energy, 342 

unconditioned horses utilize aerobic metabolism until they reach speeds of about 4 m/s, at which 343 

point plasma lactate concentrations begin to accumulate, indicating that unconditioned horses 344 

increase their reliance on anaerobic mechanisms above this speed [55]. In that study, 11 weeks of 345 

conditioning increased the breakpoint to nearly 6 m/s, suggesting that fitter horses could exercise 346 

at the speeds used in our study without requiring anaerobic metabolism in contrast to 347 

unconditioned horses. The capacity to utilize aerobic metabolism can be increased through 348 

conditioning [56, 57], but it may also be possible to achieve increased aerobic capacity without 349 

conditioning, as fenugreek-treated mice exhibited increased capacities for aerobic metabolism 350 



[24]. In these mice, both muscle and liver glycogen contents were higher immediately post-351 

exercise than muscle and liver contents of untreated mice, supporting that fenugreek 352 

supplementation could possibly alter metabolic responses to exercise. The tendency for lower 353 

plasma lactate concentrations in NRG horses following exercise suggests that the dietary 354 

supplement increased capacity for aerobic metabolism. Future research should investigate the 355 

potential for reduced glycogen depletion following DigestaWell NRG® supplementation and in 356 

horses undergoing a regular exercise program. 357 

Limitations of this study include that we used only one licensed massage therapist to 358 

perform muscle soreness and tightness scores. Unfortunately, we were unable to locate a second 359 

licensed massage therapist within the geographical region. Similarly, Powell et al. [12] used one 360 

licensed massage therapist to perform post-exercise muscles soreness and tightness scoring. 361 

When visually evaluating behaviors indicating equine musculoskeletal pain, agreement among 362 

trained veterinarians and behaviorists was 92% [8] and a second study evaluating lameness 363 

found that agreement increased with experience level [58]. Physical therapists evaluating human 364 

subjects’ muscle tenderness to palpation reported an average of 72% agreement, with agreement 365 

being highest (95%) for lumbar muscles [59]. The therapist utilized for this study had several 366 

years of experience in the field and was blinded to treatments.  367 

Future research using herbal supplements should include a flavonoid analysis. Flavonoids 368 

are the active ingredients in herbs, therefore determining their presence and concentration 369 

enables insights into the mechanism of a supplement’s actions. Findings of this study can only be 370 

related to the product in entirety and not to the components of the ingredients. Furthermore, 371 

intakes of antioxidant-related minerals, such as selenium, zinc, and copper, and vitamins, such as 372 

E and C, would potentially influence inflammatory responses post exercise. All horses met or 373 



exceeded their estimated requirements for vitamin E, selenium, and copper, while zinc was 374 

slightly low in pastured horses. However, all horses had ad libitum access to trace mineralized 375 

salt blocks, and intake of micronutrients from salt blocks was not included in the calculations. 376 

Therefore, it is highly likely that all horses met their copper and zinc requirements. Regretfully, 377 

we were only able to obtain a vitamin C analysis on the NRG supplement, with findings that 378 

vitamin C was undetectable and that the supplement provided NRG horses with an additional 3.7 379 

IU of α-tocopherol per day. This is a small percentage of the average daily requirement of 500 380 

IU (NRC, 2007), which was met by the other components of their diet, including fresh pasture, a 381 

rich source of vitamin E [60]. While the stalled horses consumed several hours of pasture daily, 382 

they also received a greater quantity of commercial concentrate, which was formulated to meet 383 

vitamin E requirements when fed at rates between 0.5 and 0.7% of bodyweight (Southern States 384 

Cooperative, Richmond, VA). Therefore, it is less likely that the observed differences were due 385 

to the increased antioxidant intakes of NRG horses. In order to further address the effects of a 386 

treatment on reducing inflammatory responses to exercise, plasma concentrations of TBARs and 387 

PGE2α could have been analyzed. Unfortunately, we lacked the funds necessary to complete 388 

these analyses.  389 

Finally, this study was conducted during the months of June and July, with similarly 390 

warm and humid weather conditions during each of the SET’s. June was slightly cooler (25.6°C, 391 

73.8% humidity) than July (27.6°C, 77.6% humidity); however, both of these months exceeded 392 

the thermoneutral zone of the horse, yielding a heat index of 152-159. This high heat index 393 

would have required increased reliance on evaporative cooling mechanisms as compared to 394 

exercise in cooler and drier conditions [61, 62]. Others have indicated the additional stress placed 395 

on equine athletes to perform as the heat index increases above 150 [63, 64], with higher post 396 



exercise plasma lactate concentrations and a more rapid time to fatigue in higher heat index 397 

conditions. Notably, our horses did not experience higher lactate concentrations during Period2 398 

(July), despite the higher heat index. 399 

In conclusion, horses experienced altered metabolic responses to a moderate intensity 400 

exercise trial following four weeks of DigestaWell® NRG supplementation. DigestaWell® NRG 401 

supplementation may benefit exercising horses through reducing muscle soreness and tightness 402 

as identified by massage and a tendency for reduced lactate production following exercise. 403 

DigestaWell® NRG supplementation also reduced circulating TNFα concentrations. 404 

 405 
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Tables 570 

Table 1. 571 

Table 1. Number of horses within each age block that were assigned to the control (CON) 

or treatment (NRG). 

Treatment 11-15 years 16-20 years >20 years 

NRG 6 2 2 

CON 5 3 2 
 572 

 573 

 574 



Table 2. Bodyweight and body condition scores of horses prior to (Period 1) and after (Period 

2) a 4-week supplementation period with 200 g DigestaWell® NRG per day. 

 CON NRG SEM P Values 

 Bodyweight, kg Treatment Period Treatment x Period 

Period 1 547 574 
20 0.26 0.65 0.11 

Period 2 543 581 

 Body Condition Score    

Period 1 6.0 5.5 
0.3 0.28 0.27 0.71 

Period 2 6.2 5.8 
 575 

 576 

 577 



Table 3. Dry matter nutritional content of forages and concentrates provided to horses prior to 

and during the 4-week supplementation period with 200 g DigestaWell® NRG per day. 

Nutrient Hay Pasture Feed1a Feed2b Supplementc 

DE, Mcal/kg 1.81 2.29 3.04 3.28 3.34 

CP, % 9.6 22.4 22.4 14.6 13.0 

ADF, % 42.6 27.9 19.3 11.3 18.0 

NDF, % 68.1 50.3 30.8 25.3 21.6 

ESC, % 2.5 8.6 6.1 5.1 3.7 

WSC, % 6.8 12.2 6.0 12.0 3.7 

Starch, % 0.4 1.0 18.4 24.6 3.3 

NSC,% 2.9 9.6 24.7 29.7 7.0 

Fat, % 2.6 4.5 5.78 10.0 7.0 

Vitamin C, ppm NA NA NA NA <4 

α-tocopherol acetate IU/g 61 162 150 100 0.02 

Zinc 30 26 100 166 6 

Copper 7 9 9 47 0.6 

Selenium 0.06 0.16 0.35 0.6 - 

Yucca, mg/g - - - - 8.7 

Fenugreek, mg/g - - - - 36.0 
aFeed provided to horses housed on pasture (n=16), horses provided with 0.2 kg per day. 
bFeed provided to horses housed in stalls (n=3), horses provided with 2.3 kg per day. 
cNutrients contained in composited supplement. 

NA= not available. 
 578 

 579 



Table 4. Average (±SD) daily nutrient intakes in control horses (CON) and horses 

supplemented with 200 g DigestaWell® NRG (NRG) per day for 4 weeks. 

Nutrient CON NRG 

 Stall (n=1) Pasture (n=9) Stall (n=2) Pasture (n=7) 

DE, Mcal 31.2 23.9 ± 2.3 35.9 ± 1.3 26.2 ± 4.0 

CP, g 1934 2350 ± 228 1959 ± 74 2533 ± 392 

ESC, g 547 902 ± 88 588 ± 22 969 ± 150 

WSC, g 1095 1280 ± 124 1374 ± 52 1370 ± 213 

Starch, g 480 105 ± 10 628 ± 24 134 ± 18 

NSC, g 1576 1385 ± 134 2001 ± 76 1504 ± 231 

Fat, g 496 472 ± 46 693 ± 26 518 ± 79 

α-tocopherol acetate, 

IU 

1682 1710 ±166 1803 ± 269 1633 ± 62 

Zinc, mg 614 280 ± 27 902 ± 34 303 ± 46 

Copper, mg 114 95 ± 9 102 ± 16 238 ± 9 

Selenium, mg 2.3 1.7 ± 0.2 2.7 ± 0.1 2.0 ± 0.4 

 580 
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Table 5. Characteristics of the standardized exercise test and average heart rates (beats per 

minute ± SEM) of horses prior to (Period 1) and after (Period 2) a 4-week supplementation 

period with 200 g DigestaWell® NRG per day (NRG) and unsupplemented controls (CON). 

   
Heart Rate, beats per min, CON Heart rate, beats per min, NRG 

Gait 

Pace, 

m/s 

Time, 

min 

Period 1 

± 3.0 

Period 2 

± 3.2 

AVE 

± 2.2 

Period 1 

± 3.5 

Period 2 

± 3.5 

AVE 

± 2.5 

Baseline --- --- 44 42 43 36 39 37 

PreEx --- --- 53 50 51*** 50 47 49* 

Walk Brisk 2.5 70 67 69*** 72 66 69*** 

Trot 3 15 105 106 106*** 110 107 109*** 

Canter 5 5 132 130 131*** 137 136 136*** 

Trot 3 2.5 112 112 112*** 118 114 116*** 

Reverse --- --- --- --- --- --- --- --- 

Walk Brisk  87 87 90*** 90 89 90*** 

Trot 3 2.5 113 114 113*** 118 118 118*** 

Canter 5 15 128 134 131*** 139 137 138*** 

Trot 3 5 116 116 116*** 123 124 123*** 

Post-10  2.5 60 58 59*** 54 59 57*** 

Post-30   53 49 51 39 48 43 

Total  50       

*Within rows P  < 0.05 for values compared to baseline. 
***Within rows P  < 0.001 for values compared to baseline. 
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 583 



 584 

Table 6. The percent increase in muscle soreness and tightness following a 50 minute 

standardized exercise test in which control (CON) horses and horses supplemented daily with 

DigestaWell® NRG (NRG) carried 20% of their body weight.a 

Treatment Period1b Period2c P-value 

CON 59.1 ± 11.1 58.1 ± 11.4 0.9 

NRG 94.9 ± 16.3 43.8 ± 16.3 0.031 
aPercent increase calculated as (post-exercise muscle soreness – pre-exercise muscle 

soreness)/pre-exercise muscle soreness. 
bPeriod1 reflects values obtained prior to the study period. 
cPeriod2 values were obtained after 4 wk. 
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Figures 586 

Fig. 1 587 

 588 

Figure 1. Timeline of data and sample collection from horses completing a standardized exercise 589 

test, where arrows with diagonal stripes indicate blood sampling time points, black arrows 590 

indicate when heart rate was obtained, and arrows with dots indicate massage testing for muscle 591 

soreness and tightness. Speeds during exercise test are approximate. Heart rates during exercise 592 

test were obtained at the end of the speed, prior to switching gaits. 593 
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Fig 2.   595 
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Figure 2. Plasma glucose (A, B), lactate (C, D), and non-esterified fatty acids (NEFA; E, F) 599 

concentrations prior to (PreEx) and following a 50 min standardized exercise test. Samples were 600 

collected from unsupplemented controls (A, C, E) and horses supplemented daily with 601 

DigestaWell® NRG (B, D, F) prior to the study (Period 1, black bars) and after 4 wk (Period 2, 602 

white bars). abMeans with unlike superscripts differ from PreEx P < 0.05.  603 
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 607 

Figure 3. Mean and 95% confidence interval plasma tumor necrosis factor-α (TNFα) 608 

concentrations during a 50 min standardized exercise test. Samples were collected from 609 

unsupplemented controls (A) and horses supplemented daily with DigestaWell® NRG (B) prior 610 

to the study (Period 1) and after 4 wk (Period 2). 611 
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