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Abstract— Autonomous Underwater Vehicles (AUVs) are 

platforms suitable for a wide variety of applications in the marine 
environment with economic and operational advantages. In these 
applications an AUV performs a given task as a mission. During 
the mission execution, the AUV will move around the environment 
following paths that allow it to fulfill the mission's objectives. To 
achieve this, a reliable Navigation System (NS) is required. In 
addition to this, the current operating concept includes the 
deployment of multiple AUVs on a given area, thus a 
communication system between vehicles is also required. In the 
underwater environment both navigation and communication 
systems deals with the particular characteristics of the medium 
that limits the use of conventional techniques. In this work, a 
complete NS for an AUV is presented. The developed NS is based 
on an inertial navigation scheme with velocity and position aiding. 
The position aiding takes advantage of the communication system 
onboard the vehicle, which avoids the use of additional positioning 
systems. The fundamentals of the applied solutions are described 
and experimental results and implementation details are provided. 
Also conclusions and future works are presented. 

Keywords—Autonomous Underwater Vehicles, Navigation 
System, Particle Filter, Particle Swarm Optimization, Robot 
Operating System 

I. INTRODUCTION  
Autonomous Underwater Vehicles (AUVs) are platforms 

suitable for a wide variety of applications in several fields in the 
marine environment with economic and operational advantages 
[1], [2] and [3]. 

In any of these applications an AUV performs a given task 
as a mission, that consists on a plan with specific objectives. 
During the mission execution, the AUV will move around the 
environment following paths that allow it to fulfill the mission's 
objectives. To achieve this, a reliable Navigation, Guidance and 
Control (NGC) structure is required [4]. This NGC structure is 
composed basically by; Navigation System (NS) that provides 
information about the speed, position and attitude of the vehicle, 
Guidance system (GS) responsible for establishing the position 
and speed set-points to develop the required trajectory and the 
Control system (CS) formed by the control loops to command 
the vehicle's propulsion system. The NS information is also 

necessary to locate the data acquired by the AUV payload 
sensors. 

Recently, multiple surface and underwater autonomous 
vehicles in coordinated operation arises as a flexible, reliable 
and efficient operation scheme. Communication between 
vehicles is required in order to allow coordinated operation. 
Acoustic carriers are the more reliable way to implement an 
underwater communication. This scenario constitutes an 
UnderWater Acoustic Sensor Network (UWASN) [5]. 

A NS provides information about the velocity, position and 
attitude of a vehicle. Within this definition one of the 
components of a NS is the Positioning System (PS) that provides 
position and attitude information. 

The underwater environment imposes particular challenges 
for the development of navigation and positioning solutions. The 
main limitation is the impossibility of using Global Position 
System (GPS) devices. Despite this, given the good propagation 
characteristics of the acoustics waves in the underwater medium, 
several acoustic positioning and navigation devices have been 
developed. 

Acoustic positioning systems are the Long BaseLine (LBL), 
UltraShort BaseLine (USBL) and GPS Intelligent Buoys (GIB) 
[6] and [7]. These systems have proven to be accurate, but 
requiring the deployment of an additional infrastructure and the 
integration of specific devices onboard the vehicles. This may 
not be possible in particular environments, such as polar regions, 
or by budget or technical restrictions in certain vehicles. Then 
the need arises to develop positioning solutions that require 
minimal additional infrastructure and devices onboard the 
vehicles. 

The limitation of GPS reception in the underwater medium 
also difficult the vehicles velocity measurement to develop a 
navigation system. The most widely used device to perform 
underwater velocity measurement is the Doppler Velocity Log 
(DVL), an acoustic device that measures the vehicles velocity 
with respect to the sea bottom [8]. The downside of this device 
is its high cost, a promising low cost alternative is the 
development of a pressure based velocity sensor for underwater 
applications which has shown good results in its first tests [9]. 



Given velocity and heading measurements at known time 
intervals, a navigation technique named Dead Reckoning (DR) 
might be implemented to estimate the vehicles position [10]. 

Inertial Navigation Systems (INS) have some advantages 
over DR, allowing to estimate the velocity and position of a 
vehicle at higher update rates (>50 Hz) from acceleration and 
attitude measurements. The implementation of an INS has low 
computational cost. However, one of its main problems is the 
accumulation of velocity and position estimation errors. This is 
because the velocity and position estimates are performed by 
successive acceleration integrations [11]. In some cases, such as 
in short duration missions or in shallow waters, those errors are 
corrected by surfacing the vehicle to acquire GPS measurements 
[12]. But the most reliable way to compensate the estimation 
errors in an INS is the use of aiding measurements from 
additional sensors. Aiding measurements are complementary to 
the INS estimates, in the sense that the lasts are more frequent 
and accurate in the short term and the previous are generally less 
frequent but accurate in the long term. 

On an Aided INS (AINS) the estimates are corrected based 
on the error between the INS estimates and the measurements 
from the aiding sensors through estimation algorithms. These 
estimation algorithms are based in Bayesian filtering techniques 
[13] such as the Kalman Filter (KF). Given the nonlinearity of 
the aided INS problem, variants of the KF are applied, including 
the Extended Kalman Filter (EKF) and Unscented Kalman Filter 
(UKF). Several implementations of underwater AINS based on 
the EKF algorithm have been developed with good results [14], 
[15] and [16]. Less UKF implementations exists but also with 
satisfactory results [17]. A non-parametric Bayesian filtering 
algorithm that allows to treat non-linear and non-Gaussian 
systems is the Particle Filter (PF) algorithm. The PF has the 
potential to provide better results than the EKF or UKF 
implementations [18] and [19]. Despite this, PF based 
underwater navigation implementations are scarce [20]. One of 
the drawbacks of the PF is its higher computational cost 
compared to an EKF or UKF. Although at present it is possible 
to overcome this limitation with the modern compact and high 
performance computing units suitable for be employed in 
underwater vehicles. 

In this work the development of a NS for an AUV is 
presented. The system considers the development of an 
underwater PS employing the usual sensors onboard an AUV, 
thus requiring minimum additional infrastructure. The NS itself 
is based on an AINS that employs the PF as estimation 
algorithm. This work is organized as follow; in Section II the 
relevant theoretical aspects are described, in Section III the 
developed navigation and positioning solutions are detailed, in 
Section IV implementation details and preliminary results are 
presented and in Section V conclusions are discussed. 

II. THEORETICAL FUNDAMENTALS 
In this section the main theoretical aspects of this work are 

presented; inertial navigation, aided inertial navigation and state 
estimation. 

A. Inertial Navigation 
Inertial navigation is based on the laws of classical 

mechanics. So, by measuring the accelerations of the vehicle it 
is possible to determine its velocity by integrating the 
acceleration with respect to time. Similarly, the change in the 
vehicle position is determined by integrating the velocity with 
respect to time. 

Accelerations are measured by a triplet of sensors called 
accelerometers oriented on mutually perpendicular XYZ axes 
that constitute the vehicles reference frame, also called body 
frame (b-frame). 

To estimate the vehicles velocity and position in the 
geographic reference frame (n-frame) of axes NED (North, East, 
Down) the vehicle attitude is required. The n-frame is defined 
by a plane tangent to the Earth surface at latitude ܮ and longitude 
݈ both measured from an Earth centered frame (e-frame). These 
reference frames are represented in Fig. 1. 

The inertial navigation computation starts with the 
transformation of the vehicle acceleration measurements vector 
  from the b-frame to the n-frame through a Direction Cosinesࢌ
Matrix (DCM) : 

ࢌ  ൌ 
ே݂
ா݂
݂
 ൌ ࢌ ൌ  

݂
݂
݂
 (1) 

where; ࢌ is the acceleration measurements vector in the n-
frame and ே݂ , ா݂  and ݂  are the North, East and Down 
acceleration components. The DCM is computed from the 
vehicle attitude measurements, as seen in equation (2), where; 
ௐݍ ݍ , ݍ ,  and ݍ  are the attitude components, expressed in 
quaternions. 

The DCM is an ortho-normal matrix. The orthogonality and 
normality is maintained by correction at every computation [21]. 

g. 1. Earth centered reference frame or e-frame (green), geographic frame 
or n-frame (blue) and vehicle reference frame or b-frame (red). 
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Assuming the Earth shape as spherical, the vehicle velocity 
change in the n-frame ࢂሶ  is estimated by subtracting the gravity 
 :accelerations [11] (ࢌ) Coriolis and centripetal ,(ࢍ)

ሶࢂ   ൌ 
ሶܸே
ሶܸா
ሶܸ
 ൌ ࢌ െ ࢌ    (3)ࢍ

where; ሶܸே , ሶܸா  and ሶܸ  are the changes of velocity in the 
North, East and Down directions of the n-frame. 

Then, the vehicle velocity in the n-frame is estimated by 
integration of the results from equation (3). 

The vehicle position change in the n-frame ࡼሶ  is estimated 
as follow: 

ሶࡼ   ൌ 
ሶܮ
݈ ሶ
ሶ݄
൩ ൌ 

ேܸ ሺܴ  ݄ሻΤ
ாܸܿ݁ݏሺܮሻ ሺܴ  ݄ሻΤ

െ ܸ
 (4) 

where; ܴ is the Earth radius (6378137 m), ܮሶ , ݈ ሶ and ሶ݄  are the 
changes in latitude, longitude and altitude (or depth) 
respectively. 

Then, the vehicle position in the n-frame is estimated by 
integration of the results from equation (4). 

The velocity and position estimates obtained from the 
inertial navigation computation are grouped in a navigation state 
vector ࡿࡺࡵ࢞. 

ࡿࡺࡵ࢞  ൌ ቂࢂ


ቃࡼ ൌ ሾ ேܸ ாܸ ܸ ܮ ݈ ݄ሿ் (5) 

As can be seen, the inertial navigation computation requires 
measurements of both accelerations and attitude and is not a 
complex process. However, due to the double integration the 
measurement errors in accelerations and attitude accumulate in 
velocity and position estimates, thus resulting in increasing and 
unbounded estimation errors. 

B. Aided Inertial Navigation and State Estimation 
An alternative to overcome the error accumulation on an INS 

consists in the use of additional sensors measurements, usually 
called aiding measurements. This kind of system constitutes an 
Aided Inertial Navigation System (AINS). 

In an AINS, the estimates from the INS are converted by a 
function to equivalents magnitudes to those of the aiding 
sensors. The differences between the aiding measurements and 
the estimated measurements are used in an estimation algorithm 
to obtain an improved estimation of the navigation states. 

The aiding measurements are less frequent but accurate in 
the long term while the inertial navigation estimates are more 
frequent but accurate in the short term. So, in an AINS the 
inertial estimates are updated periodically when an aiding 
measurement is available and in absence of aiding 
measurements the states are estimated by the inertial navigation. 

Estimation algorithms applied to AINS are mostly based in 
Bayesian filtering schemes. Within this schemes, the Particle 
Filter (PF) is a non-parametric Bayesian filter. As EKF or UKF 
the PF is a suboptimal estimator. All the PF, EKF or UKF allow 
to estimate non-linear systems states, but the PF also allows to 
estimate the real Probability Density Function (PDF) of the 
states, while the EKF and the UKF assumes a Gaussian PDF 
[13]. 

In the PF algorithm, a set of states, or particles, are generated 
from a given distribution (a uniform distribution, for example). 
Every particle in the set has an associated weight that represents 
the probability of the particle to represent the real state of the 
system. 

Initially all the particles have the same weight, so all has the 
same probability to represent the real state of the system. 

The following values of the particles are predicted trough the 
INS computation, and its weights are no modified. 

But, when an aiding measurement is available the particles 
weights are updated through a likelihood function between the 
aiding measurement and the estimated measurement computed 
from the particles. This results in that some particles preserve a 
relative high weight, thus representing the most probable values 
of the real states of the system, while others will have a lower 
weight, thus representing the less probable values of the real 
states of the system. In this way, the PF allows to represent the 
real PDF of the system states. 

However, after some updates the majority of the particles 
weights becomes negligible. This is a problem, because the 
particles with negligible weight will not provide information to 
the estimation. To avoid this, after every update, the effective 
particle number of the particle set is calculated. If this effective 
weight is less than a threshold the particle set is re-sampled [22]. 
Through the re-sampling process, the particles with lower 
weight are suppressed and those with higher weight are 
reproduced, as an analogy of the “survival of the fittest” 
principle. There are several re-sampling algorithms [23], such as 
the systematic re-sampling and the selection and resampling 
[24] and [25]. The PF algorithm might be divided into five 
stages: 

1) Initialization: in this stage an initial set ࢄ  of ܰ 
particles ࢞  from an uniform distribution in the state space is 
created. The weight ݓ

  assigned to all particles is equal to ͳȀܰ. 

ࢄ  ൌ ࢞ൣ ൧ ݅�݄ݐ݅ݓ ൌ ͳǡʹǡ ǥܰ (6) 

ࢃ  ൌ ݓൣ
 ൧ ݓ�݄ݐ݅ݓ ൌ ͳȀܰ� ݅ (7) 

2) Prediction: the particles are propagated to the ݇ instant 
through a procces function ࢌ and the control inputs ࢛. 

ࢄ  ൌ ିଵ࢞൫ࢌ ǡ  ൯ (8)࢛
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3) Update: if at the instant ݇ an aiding measurement ࢠ is 
available, the weights of the ܰ are updated through a likelihood 
function ݃ whose argument is the difference between ࢠ  and 
the predicted measurement ࢎ൫࢞ ൯  for every particle. The 
updated weights are the normalized. 

ݓ 
 ൌ ିଵݓ

 ݃ ቀࢠ െ ࢞൫ࢎ ൯ቁ (9) 

ݓ 
 ൌ ݓ



σ ேݓ
ୀଵ

 (10) 

4) Re-sampling: the re-sampling stage is executed if the 
effective particle number ܰ  is lower than a threshold ௧ܰ. 

 ܰ ൌ
ͳ

σ ൫ݓ ൯
ଶே

ୀଵ
൏ ௧ܰ (11) 

After the re-sampling process, all the particles are assigned 
the same weight ͳȀܰ. 

5) Estimation: the state estimation ࢞ is performed by the 
weighted mean of the particles by their weights. 

࢞  ൌݓ ࢞
ே

ୀଵ
 (12) 

After stage 5, a new iteration is carried out from stage 2. 

III. DEVELOPED SOLUTIONS 
In this section the development of the underwater navigation 

and positioning systems are detailed. In both systems PF 
estimation algorithms are applied with different variations in 
each case. 

The underwater navigation system is based in an INS 
scheme aided in both velocity and position. The INS requires 
acceleration and attitude measurements, acceleration is obtained 
from an Inertial Measurement Unit (IMU) and attitude 
information is provided by the positioning system. Velocity 
aiding is provided by a Doppler Velocity Log (DVL), while 
position aiding is provided by the spatial information of the 
positioning system. 

As can be seen, besides computation and estimation 
algorithms the development of both navigation and positioning 
systems also requires of a variety of sensors and devices onboard 
the AUV: 

• Inertial Measurement Unit (IMU) 
• Doppler Velocity Log (DVL) 
• Global Position System (GPS) 
• Depth meter 
• Acoustic modems 

An additional device is also required to provide a known 
reference position and range measurement when AUV is 
submerged. In this work this device consists in a surface buoy 
equipped with a GPS receiver and an acoustic modem that 
periodically broadcast a positioning report with its GPS position. 
The range between the surface buoy and the AUV is estimated 
thru measurement of the acoustic communication Time Of 

Flight (TOF). In order to perform the TOF measurement the 
clocks in the surface buoy and AUV must be synchronized [19]. 

In this way the developed systems require of a minimal 
additional infrastructure (surface buoy) and the normal sensors 
and devices integrated in an AUV. 

A. Underwater Navigation System 
The core of the developed underwater navigation system is 

an INS. The INS velocity and position estimates are aided by 
measurements from a DVL and the position information 
provided by the positioning systems. Two PF estimation 
algorithms were applied, one for the velocity estimation and the 
other for position estimation. 

Initialization: in both velocity and position PFs a set of ௩ܰ 
and ௩ܰ  particles representing probable velocity and position 
states are generated and an equal weight is assigned to every 
particle component. In the velocity PF: 

࢜  ൌ ேݒൣ ாݒ ݒ ൧�݆ܿ�݊ ൌ ͳǡǥ ǡ ௩ܰ (13) 

௩࢝ 
 ൌ ሾͳȀ ௩ܰ ͳȀ ௩ܰ ͳȀ ௩ܰሿ  ݆ (14) 

And in the position PF: 

  ൌ ܮൣ ݈
 ݆�݊൧�ܿݖ ൌ ͳǡǥ ǡ ܰ (15) 

࢝ 
 ൌ ሾͳȀ ܰ ͳȀ ܰ ͳȀ ܰሿ  ݆ (16) 

Prediction: estate prediction in both velocity and position 
PFs is based in the INS computation (Section II-A). 

For velocity prediction, accelerometer measurements 
(referred to the b-frame) at the instant ݇ ࢇ are translated to the 
n-frame by means of the DCM ሺ݇ሻ: 

ࢇ  ൌ   (17)ࢇሺ݇ሻ
With the acceleration measurements now referred to the n-

frame ࢇ , the velocity change ࢜ሶ for the ݆ particle is obtained 
by subtraction of the Coriolis, centripetal and gravity 
accelerations, expressed by ࢇ  and ࢍ (detailed description in 
[11]). 

ሶ࢜  ൌ ࢇ െ ࢇ    (18)ࢍ

The velocity of the ݆ particle predicted at the instant ሺ݇  ͳሻ 
is given by integration of the velocity change ࢜ሶ considering the 
sampling time ௌܶ: 

ሺାଵሻ࢜  ൌ ࢜  ௌܶ࢜ሶ�݆ܿ�݊ ൌ ͳǡǥ ǡ ௩ܰ (19) 

Position change ሶ  for the ݆ particle at the instant ݇ is given 
by the estimations of the velocity PF ( ேܸ

 , ாܸ
 � and ܸ

 ) 
and the last depth estimation ݖ: 

ሶ   ൌ ൦
ேܸ
 ൫ܴ  ൯ൗݖ

ாܸ
 ൯ܮ൫ܿ݁ݏ ൫ܴ  ൯ൗݖ

െ ܸ


൪

்

 (20) 

Then the position of the ݆ particle predicted at the instant 
ሺ݇  ͳሻ  is given by integration of the position change ሶ  
considering the sampling time ௌܶ: 
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ሺାଵሻ  ൌ   ௌܶሶ �݆ܿ�݊ ൌ ͳǡǥ ǡ ܰ (21) 

Update: whenever a velocity or position aiding 
measurement is available the weights of the particles in the 
velocity PF or position PF are updated. 

The velocity PF update is carried out if a vehicle velocity 
measurement is available from GPS (vehicle at surface) or DVL 
(vehicle submerged), the difference between the aiding 
measurement and every particle estimated velocity is calculated: 

 
࢜ࢾ ൌ ௌȀሺାଵሻீ࢜ െ  ሺାଵሻ࢜

࢜ࢾ ൌ ேାଵݒߜൣ ாାଵݒߜ  ାଵ൧ݒߜ
(22) 

The particles components weights are updated thru a 
likelihood function: 

 
ݓ
ାଵ ൌ ݁

ିቀఋ௩ೕೖ ቁ
మ

ଶఙഃೡమ

ߨʹఋ௩ξߪ
ݓ
  

(23) 

The updated weights are then normalized (equation (10)). 

For the position PF, the update is performed when a 
measurement from the Positioning System (PS) is available 
from which the difference with the particles estimated positions 
is calculated: 

 
ࢾ ൌ ௌሺାଵሻ െ  ሺାଵሻ

ࢾ ൌ ାଵܮߜൣ ߜ ݈
ାଵ  ାଵ൧ݖߜ

(24) 

The particles components weights are updated thru a 
likelihood function: 

 
ݓ
ାଵ ൌ ݁

ିቀఋೕೖ ቁ
మ

ଶఙഃమ

ߨʹఋξߪ
ݓ
  

(25) 

The updated weights are then normalized. 

Re-sampling: after the update stage the effective number of 
the particles components is calculated. 

For the ݅ component of the velocity or position PFs particles, 
the effective particle numbers are calculated as in equation (11). 

In any case if the effective particle number is lower than a 
threshold the re-sampling is performed. In both PFs the selection 
and replacement algorithm was applied. 

Estimation: in both PFs velocity and position components 
are estimated as the weighted average of the particles 
components as shown in equations (26) and (27). 

B. Underwater Positioning System 
In this sub-section the developed AUV positioning solutions 

are detailed. The positioning system provides both angular and 
spatial position. Angular or attitude is used in INS computation 
(see equations (1) and (2)) and spatial position serves as aiding 
measurement in the AINS solution. 

1) Attitude estimation 

The vehicles attitude is determined from the IMU sensors 
measurements and expressed in quaternions. 

Initially attitude is predicted by integration of the gyroscope 
measurements: 

ሺሻ  ൌ
ሺିଵሻ  ͲǤͷ ௌܶ൫ሺିଵሻ ఠ൯۪

ቛሺሻ ቛ
 (28) 

where; ሺሻ  and ሺିଵሻ  are the attitude predictions from the 
gyroscope measurements a the instants ሺ݇ሻ  and ሺ݇ െ ͳሻ , ۪ 
denotes the quaternion product operator, ௌܶ  is the sampling 
period (s) and ఠ is the angular velocity measurements vector 
(rad/s). 

ఠ  ൌ ሾͲ ࣓ሿ் ൌ ሾͲ ߱ ߱ ߱ሿ் (29) 
where; ࣓ ൌ ሾ߱ ߱ ߱ሿ  is the gyroscope 

measurements vector. 

As can be seen in the above equations, attitude prediction 
through gyroscope measurements requires an integration, this 
makes that attitude predictions accumulate error. So an aided 
attitude estimation is implemented. 

Aiding attitude measurements are derived from 
accelerometer and magnetometer measurements: 

ሺሻǡ  ൌ ሺሻట ሺሻఏ۪ ሺሻథ۪  (30) 

where; ሺሻǡ  is the quaternion attitude estimation from 
accelerometer and magnetometer measurements, ሺሻట  is the yaw 
attitude estimated from magnetometer measurements and ሺሻఏ  
ሺሻథ  are the pitch and roll attitude estimated from accelerometer 
measurements. 

The accelerometer measurements based attitude estimations 
are computed as: 

ሺሻఏ  ൌ ܿݏ ൬ߠʹ൰ Ͳ ݊݁ݏ ൬ߠʹ൰ Ͳ൨ (31) 

 

 

ሺାଵሻࢂ  ൌ ݓேሺାଵሻݒேሺାଵሻ
ேೡ

ୀଵ
ݓாሺାଵሻݒாሺାଵሻ
ேೡ

ୀଵ
ݓሺାଵሻݒሺାଵሻ
ேೡ

ୀଵ
 (26) 

ሺାଵሻࡼ  ൌ ݓሺାଵሻܮሺାଵሻ
ே

ୀଵ
ݓሺାଵሻ ݈ሺାଵሻ
ே

ୀଵ
ݓ௭ሺାଵሻݖሺାଵሻ
ே

ୀଵ
 (27) 
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ݏܿ  ൬ߠʹ൰ ൌ
ඨͳ  ඥͳ െ ሺܽതതതሻଶ

ʹ  (32) 

݊݁ݏ  ൬ߠʹ൰ ൌ ሺܽതതതሻඨ݃݅ݏ
ͳ െ ඥͳ െ ሺܽതതതሻଶ

ʹ  (33) 

where; ߠ is the pitch angle (rad), ܽതതത is the normalized X axis 
accelerometer measurement and ݃݅ݏሺሻ  denotes the sign 
function. 

ሺሻథ  ൌ ܿݏ ൬߶ʹ൰ ݊݁ݏ ൬߶ʹ൰ Ͳ Ͳ൨ (34) 

ݏܿ  ൬߶ʹ൰ ൌ
ඨͳ  ඥͳ െ ሺܽതതതሻଶ

ʹ  (35) 

݊݁ݏ  ൬߶ʹ൰ ൌ ሺܽതതതሻඨ݃݅ݏ
ͳ െ ඥͳ െ ሺܽതതതሻଶ

ʹ  (36) 

where; ߶ is the roll angle (rad) and ܽതതത is the normalized Y 
axis accelerometer measurement. 

ሺሻట ൌ ܿݏ ൬߰ʹ൰ Ͳ Ͳ ݊݁ݏ ൬߰ʹ൰൨ (37) 

ݏܿ ൬߰ʹ൰ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ ට݉

ா  ݉
ா ඥ݉

ா

ඥʹ݉
ா �݂݅�݉ா  Ͳ
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where; ߰  is the yaw angle (rad), ݉
ா  and ݉

ா  are the 
magnetometer measurements calibrated and compensated for 
pitch and roll and ݉

ா ൌ ሺ݉
ா ሻଶ  ሺ݉

ா ሻଶ. 

The calibrated magnetometer measurements are 
compensated for pitch and roll by a DCM: 

ா  ൌ ሺሻ൫ ൯  (40) 

where; ா is the calibrated and pitch and roll compensated 
magnetometer measurements vector,   is the calibrated 
magnetometer measurements vector and ൫ሺሻ ൯ is the DCM 
evaluated for the pitch and roll orientation ሺሻ  estimated from 
the accelerometer measurements. 

ሺሻ  ൌ ሺሻఏ ሺሻథ۪ ൌ ሾݍௐ ݍ ݍ  ሿ (41)ݍ

The difference between the aiding attitude from the 
accelerometer and magnetometer measurements the attitude 
prediction from the gyroscope measurements provides an 

evaluation measurement to estimate an improved attitude 
estimation. 

ሺሻࢾ  ൌ ሺሻǡ െ ሺሻ ൌ ሾߜௐ ߜ ߜ  ሿሺሻ (42)ߜ

A PF based attitude estimation algorithm based in the 
previous equations was implemented. The PF algorithm stages 
for the attitude estimation are: 

Initialization: a set of ܰ  particles representing probable 
attitude states is generated and an equal weight is assigned to 
every particle component. 

  ൌ ሾݍௐ ݍ ݍ ݍ ሿ݅�݄ݐ݅ݓ� ൌ ͳǡǥ ǡ ܰ (43) 
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Prediction: when a gyroscope measurement is available, the 
particle set is propagated according to equation (28). 

Update: when both accelerometer and magnetometer are 
available, the aiding attitude is estimated and the ࢾሺሻ  is 
calculated for every particle. The particles weights are then 
updated through a likelihood function: 

 
ݓ
ାଵ ൌ ݁

ିቀఋೕೖ ቁ
మ

ଶఙഃమ

ߨʹఋξߪ
ݓ
  

(45) 

where; ߪఋ  is the component attitude difference standard 
deviation, sub-indexes ݅ and ݆ correspond to the particle number 
and component respectively. Then the updated weights are 
normalized. 

Re-sampling: after weights update, the effective particle 
number is calculated for each particle component ݆  to 
determinate if the re-sampling process must be executed: 

 ாܰி
ାଵ ൌ ͳ

σ ൫ݓ
ାଵ൯ଶே

ୀଵ
 (46) 

If ாܰி
ାଵ is lower than a experimentally determined threshold 

்ܰு the selection and replace re-sampling algorithm is applied 
[25]. Then, the weights of the re-sampled components are 
updated assigning to all the same and equal to ͳȀܰ. 

Estimation: the attitude is estimated as the weighted mean 
of al particles components (see equation (47)). 

2) Position estimation 

In this work the AUV position is expressed in terms of depth 
and coordinates in longitude and latitude. Depth is assumed 
known and measured by a specific sensor onboard the AUV 
[26]. 

The horizontal position (longitude and latitude) when the 
AUV is in surface or at very low depth (< 4 m) is obtained by a 
GPS receiver. In other case, a PF based estimation algorithm is 
applied using the time of flight (TOF) measurements from 
communications between a known position platform and the 
AUV and the velocity estimations provided by the AUV 
navigation system. 



In this work is assumed that the known position platform is 
a surface buoy. The buoy and the AUV are equipped with 
acoustic modems and a positioning message is broadcasted by 
the buoy every 30 seconds. In this message, the buoy position is 
part of the data, so every time the AUV receives the positioning 
message, the TOF is estimated and the buoy position is obtained. 
With the TOF measurement and sound speed information of the 
operation area, the AUV estimates the distance between its 
actual position and the buoy position. 

A PF based estimation algorithm was developed with this 
information to obtain an improved estimation of the AUV 
position compared to the one obtained by the single integration 
of the velocity data of the AUV navigation system. The stages 
of the developed PF based algorithm are described below: 

Initialization: the PF particles represents probable AUV 
positions. The particle set ࡿ is initialized around the last known 
AUV position ሺܮ ǡ ݈ ሻ such as the last GPS measurement 
before the AUV dives in. ࡿ consists of ܰ particles uniformly 
distributed an all with the same weight ͳȀܰ. 

ࡿ  ൌ ܮൣ ݈
൧݆�݄ݐ݅ݓ� ൌ ͳǡǥ ǡ ܰ (48) 

ݓ  ൌ
ͳ
�ܰ ݆ (49) 

Prediction: if in an instant ݇ data from the AUV navigation 
system velocity estimation ݒே  and ݒா  are available the 
particles are propagated according to equation (50). 

where; ௦ܶ is the navigation system update period (s), ݖ  is 
the AUV depth measurement (m) and ܴ  is the Earth radius 
(6378137 m). 

Update: if at the instant ݇ a communication from the buoy is 
received and through the TOF measurement the distance ݀ 
between the surface buoy and the AUV is estimated. The 
distances between the particles positions ൫ܮǡ ݈൯ and the known 
buoy position ሺܮ ǡ ݈ሻ  considering the AUV depth ݖ  are 
calculated. 

 ݀
 ൌ ට൫ ݀

 ൯ଶ  ሺݖ െ ݆�ݎሻଶ�݂ݖ ൌ ͳ(53) ܰ�ݐ� 

where; ݖ is the depth (m) of the acoustic modem installed 
in the buoy (also a known value) and ݀

  is the distance (m) at 
the instant ݇  between the position of the particle ݆  and the 
position of the surface buoy, see equations (51) and (52) where; 

ܮ  and ݈  are the latitude and longitude positions of the Surface 
buoy at the instant ݇  while ܮ  and ݈

  are the latitude and 
longitude positions of the ݆ particle at the instant ݇. 

The particles weights are updated through a likelihood 
function and the difference between the distance between the 
AUV and the surface buoy estimated with the communication 
TOF measurement and the distances between the particles 
positions and the position of the surface buoy. 
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where; ߪௗ is the distance difference standard deviation. Then 
the updated weights are normalized. 

Re-sampling: this stage is performed if the effective number 
of particles ாܰி

ାଵ is lower than a threshold ்ܰு  (see equation 
(11)). 

If this condition is satisfied there will be ሺܰ െ ்ܰுሻ (with ܰ 
not determined yet) particles in the set with a negligible weight, 
in other words, those particles represent a state with a very low 
probability of represent the real state of the system. 

First, the equivalent number of particles ாܰொ
ାଵ represented 

by the particles weights are calculated: 

 ாܰொ
ାଵ ൌ ݆�ݎାଵ�݂ݓܰ ൌ ͳݐ� ܰ (55) 

Then a new set of particles is generated by reproducing 
ாܰொ
ାଵ times the particle ݆. In this way only the particles with a 

significant probability of represent the real state of the system 
are reproduced. This new set will contain less than ܰ particles. 
The set is completed with particles uniformly distributed around 
the particle with higher weight, allowing the exploration of the 
state space around the best estimation of the set at the moment. 
After the re-sampling all the particles weights are set to ͳȀܰ. 

Estimation: two cases are distinguished in the estimation 
step. If the re-sampling stage wasn’t executed the state 
estimation ࡿௌାଵ ൌ ሾܮௌାଵ ݈ௌାଵሿ  is obtained as the weighted 
mean of the particle set 

ௌାଵࡿ  ൌࡿାଵݓାଵ
ே

ୀଵ
 (56) 
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If the re-sampling stage was executed, the state estimation is 
performed as the weighted mean of the particles that were 
reproduced, excluding those that were generated to complete the 
set, since that those were not updated yet. In this case, the sum 
of the weights of the reproduced particles is calculated: 

ோெݓ 
ାଵ ൌݓାଵ

ெ

ୀଵ
 (57) 

where; ܯ is the number of particles reproduced from the set 
previous to the re-sampling. Then the estate estimation is 
obtained as the weighted mean of the sub-set of ܯ  particles, 
normalizing its weights with ݓோெ

ାଵ: 

ௌାଵࡿ  ൌࡿାଵݓାଵ
ோெାଵݓ

ெ

ୀଵ
 (58) 

At this point, navigation and positioning solutions were 
detailed with focus in the details of the estimation algorithms 
applied. 

IV. IMPLEMENTATION AND PRELIMINARY RESULTS 
Considering that the developed solutions are intended to be 

integrated into an AUV the algorithms implementation was 
coded in C++ language and supported by the Robot Operating 
System (ROS), to take advantage of the development and 
integration benefits that this system provides [27]. All systems 
were implemented as ROS packages and integrated in a 
simulation architecture that emulates the AUV dynamics, 
guidance and control systems and onboard sensors, also a 
surface buoy was simulated as a separated package and acoustic 
communications cycles between buoy and AUV are also 
considered. Next the preliminary results of the performance of 
the developed systems are presented 

A. Attitude Estimation 
Attitude estimation algorithm developed in Section III-B-1 

was implemented as a ROS node. A Xsens MTi-30-2A5G4 IMU 
[28] was used to acquire gyroscope, accelerometer and 
magnetometer measurements at a sampling rate of 100 Hz. 

Prior to execute the estimation algorithm a calibration step is 
performed. During calibration the IMU is maintained static and 
leveled. The accelerometer and gyroscopes axis offsets are 
calculated as the average of 400 measurements. Magnetometer 
calibration is then performed, but due to the local magnetic field 
perturbations, named soft-iron and hard-iron, a more complex 
calibration procedure is required. In this work a Particle Swarm 
Optimization (PSO) algorithm was implemented [29]. In a 
calibrated magnetometer the measurements locus is a centered 
sphere, while in an uncalibrated magnetometer the locus is a 
non-centered spheroid. During the magnetometer calibration a 
set of measurements moving the IMU in different directions is 
acquired and through the PSO the equivalent spheroid 
parameters are estimated to correct the uncalibrated 
measurements. In Fig. 2 an example of the magnetometer 
calibration is illustrated. 

Fig. 2. Uncalibrated magnetometer measurements (left) and PSO 
calibrated measurements (right). 

Once the calibration step is performed the PF for attitude 
estimation is executed. 

Performance evaluation was carried out by analyzing three 
IMU conditions; static, pitch and roll movements and yaw 
movement.  

The static condition was performed to evaluate the long term 
stability of the estimate and verify if drift occurs. While pitch, 
roll and yaw movements were performed to evaluate the short 
term estimation quality. In Figures 3, 4 and 5 the attitude 
estimation results for the IMU proprietary attitude output and 
the PF estimation for each movement condition are shown. 

Fig. 3. IMU attitude estimation in static position; propetary IMU 
algorithm (left) and PF estimation algorithm (right). 

Fig. 4. IMU attitude estimation under pitch and roll movements; 
propetary IMU algorithm (left) and PF estimation algorithm (right). 



Fig. 5. IMU attitude estimation under yaw movement; propetary IMU 
algorithm (left) and PF estimation algorithm (right). 

For each movement condition 10 tests were performed to 
obtain the Root Mean Square (RMS) attitude estimation error. 
Comparison of the gyroscope attitude estimation (equation 
(28)), the IMU proprietary attitude output and the PF estimation 
were performed against the aiding measurements to obtain a 
common error figure. In Table I the results for each condition 
are presented. In every case the results obtained with the PF are 
superior to those of the gyroscope integration and the proprietary 
IMU attitude output. 

B. Navigation System 
The positioning and navigation solutions were implemented 

as ROS packages configuring a complete AUV navigation 
system. The NS performance was evaluated in a ROS based 
simulation environment. An AUV was emulated by means of a 
dynamic model, guidance and control systems were also 
implemented to perform parallel transects mission profiles 
(adequate for acoustic survey applications). Onboard AUV 
sensors such as IMU, GPS, depth meter, DVL and acoustic link 
to a surface buoy with GPS are also simulated considering 
technical specifications of commercial devices. 

Results of velocity and position errors for the INS 
computation, DVL aided INS and the developed NS against the 
real AUV velocity and position were computed in a real time 
like mission execution. 

In Fig. 6 the DVL aided INS, the developed NS and the true 
AUV trajectories are shown, in this case INS trajectory was 
omitted due to its large deviation from the true trajectory. 

Its noted that the developed NS provides a better position 
estimate than the DVL aided INS that shows a cumulative trend 
in position error. This is clearly seen in Fig. 7 were errors for 
horizontal and vertical position are shown. For comparison 
propose only in Fig. 8 the position error for the INS computation 
without aiding is shown. 

Fig. 6. DVL aided INS (red), the developed NS (green) and true AUV 
trajectories for a five legs parallel mission profile. Blue asterisk indicates the 
surface buoy position and the black asterisks indicates an acoustic 
communication event, thus a range aideding update. 

Fig. 7. Position errors for North, East and Down directions for the DVL
aided INS (blue) and the developed NS (green). 

Fig. 8. Position errors for North, East and Down directions for the unaided 
INS computation. 

 
TABLE I.  IMU ATTITUDE RMS ESTIMATION ERRORS 

Attitude 
component 

Gyroscope 
Integration 

IMU 
estimation

PF 
estimation 

Static Pitch 
and roll Yaw Static Pitch 

and roll Yaw Static Pitch 
and roll Yaw 

 3.7E-3 1.8E-3 1.3E-2 3.4E-5 1.9E-3 1.5E-2 2.7E-5 4.5E-4 1E-2 ݓ
 1.1E-2 4.1E-3 3.5E-2 3.6E-3 1.2E-2 9.6E-3 5.3E-4 1.5E-3 3.4E-3 ݔ
 7.3E-3 8.1E-3 2.9E-2 6.4E-3 9.6E-3 9.7E-3 5.5E-4 1.4E-3 4E-3 ݕ
 1.9E-2 1.2E-2 5.9E-2 4.1E-3 1.3E-2 1.1E-2 3.9E-4 2.2E-3 7.2E-3 ݖ
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In Fig. 9 the velocity estimate for the developed NS is 
compared with the true AUV velocity. 

Fig. 9. AUV true velocity in the North, East and Donwn directions (blue)
and the corresponding estimations from the developed NS (blue).. 

From these results the following error figures were 
extracted; for the DVL aided INS position error shows a 
tendency to accumulate linearly with the traveled distance with 
errors of 23.8, 29 and 32.8 m/km for North, East and Down 
direction respectively. While the developed NS shows an 
oscillatory error with RMS values of 1.54, 2.38 and 0.03 m for 
the North, East and Down directions respectively. Velocity 
errors for both the DVL aided INS and the developed NS are the 
same since the first is the output of the velocity PF and in RMS 
values are 0.014, 0.016 and 0.016 m/s for the North, East and 
Down directions respectively 

V. CONCLUSSIONS 
In this work the development of an underwater navigation 

system is presented. The system is based on a DVL and range 
from a surface buoy aided INS. Extensive use of PF estimation 
algorithm were applied. Results from simulations shows a very 
good performance of the system. Future work will consist in the 
simulation of the system replacing the surface buoy by a surface 
vehicle that develops trajectories to benefit the performance of 
the range aiding. Also an attitude estimation algorithm applying 
a PSO for magnetometer calibration and PF for estimation is 
presented. The performance from experimental tests of attitude 
estimation are encouraging outperforming the IMU proprietary 
attitude output. Implementation of the systems as ROS packages 
considers its integration in a real AUV. 
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