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Abstract 

Economic and Environmental Impacts of Drone Delivery 

Juan Zhang 

Motivated by the potential huge economic and environmental benefits of drone 

delivery, this dissertation developed mathematical models using the continuous 

approximation methodology to quantify the cost and emissions savings that drone delivery 

can provide relative to conventional truck delivery on multi-stop routes for a range of 

operating characteristics, delivery environments, and carbon intensities of power 

generation. This research considers two types of drone delivery: drone-only delivery and 

truck-drone delivery. In drone-only delivery, drones travel out-and-back from a depot to 

make each delivery. In truck-drone delivery, a truck and drone tandem make deliveries in 

parallel with the drone being launched and recovered at the truck. The research suggests 

that the delivery cost and emissions savings relative to conventional truck delivery can be 

substantial, but strongly depend on drone operating cost and emissions rates and their 

interrelationship.  

Chapters 1-2 provide the background and relevant literature. Because drone 

emissions depend on both the drone energy consumption rate and the electricity generation, 

Chapter 3 classifies five fundamental drone energy consumption models, and documents 

wide variability in the published drone energy consumption rates, due to different drone 

types, operating conditions and fundamental modeling assumptions. Chapters 4 and 5 

provide continuous approximation models for the cost and the emissions with truck-only 

delivery and the two drone delivery services (drone-only and truck-drone), and show how 



 

 

the savings with drones depend on key characteristics of the drone and the operational 

setting. Chapter 6 examines the cost and emissions tradeoffs with optimal use of drone-

only delivery and truck-drone delivery and shows the importance of the drone operating 

cost and energy consumption rates, as well as the delivery density and truck capacity. 

Results show that replacing truck-only delivery with drones can provide both cost and 

environmental benefits, with drone-only delivery preferred when drone operating cost and 

emissions rates and/or delivery density are very low and truck-drone delivery preferred 

when drone operating cost and emissions rates, truck-drone capacity, and/or delivery 

density are not very low. Results also show there can be a large tradeoff between cost and 

emissions when the ratio of drone operating cost rate to drone emissions rate differs from 

the ratio for trucks. 
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Chapter 1: Introduction 

1.1 Background 

Drone delivery, the use of drones (or unmanned aerial vehicles, UAVs) to deliver 

goods to customers, has been promoted and researched by a growing number of firms since 

2013 when Jeff Bezos, the founder of Amazon, announced that Amazon Prime members 

would get their packages delivered by drones within 30 minutes in areas that are within 10 

miles of an Amazon fulfillment center. Though Amazon has passed many of its deadlines 

for starting drone delivery due to the technical and regulatory challenges, the company has 

undergone various iterations of drone design and flight tests, and recently received federal 

approval to operate its fleet of Prime Air delivery drones in the U.S. (Palmer, 2020). 

The capability of drones to make autonomous deliveries has been intensively 

explored by several logistics companies (e.g., DHL, UPS), e-commerce retailers (e.g., 

Walmart, JD.com), tech companies (e.g., Google), and startups (e.g., Matternet, Zipline). 

For example, DHL’s Parcelcopter has made 130 trips in a mountainous region of Southern 

Germany in winter conditions (Edenhofer, 2018). Google’s X Wing has conducted more 

than 100,000 test flights across three continents and is currently operating in Christiansburg, 

Virginia (U.S.), Helsinki (Finland), and Canberra and Logan City (both in Australia) 

(https://wing.com/, 2021). Though most flight tests are conducted in rural or suburban areas 

(or remote/hard-to-reach areas), the goal of those companies is to serve urban areas as well. 

For example, DHL Express and EHang formed a strategic partnership to provide last-mile 

drone delivery in urban areas in Guangdong, China (Rehkopf, 2019). 

The design of drones for package delivery has rapidly evolved from multi-rotor 

drones to hybrid drones that combine vertical takeoff and landing (VTOL) capability with 

https://wing.com/
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aspects of fixed wing flight (to increase the efficiency and flight duration). Increasing 

redundancies (e.g., additional sensors, rotors, and batteries) are built into these designs to 

ensure safety and meet regulatory requirements. Currently, most drones envisioned for 

commercial package delivery are battery powered, deliver only light items (e.g., pet snacks, 

meals, medical supplies), make only one delivery per trip (flight), and have short flight 

ranges between 10-15 miles. Interestingly, the delivery system prototypes differ from 

company to company. For example, Amazon’s Prime Air delivers items from its fulfillment 

center directly to a customer’s doorstep (i.e., warehouse-to-customer). DHL’s Parcelcopter 

delivers items from a delivery package locker to another delivery package locker (i.e., 

locker-to-locker). Google’s X Wing and several startups (e.g., Postmates) collaborate with 

local businesses to deliver items directly to the customer’s doorstep (i.e., store-to-

customer). UPS and several others use a truck-drone tandem system (i.e., hybrid truck-

drone delivery), where drones deliver from the truck to the customer. Some companies 

(e.g., Amazon, FedEx, Postmates) are testing small, wheeled ground drones (or unmanned 

ground vehicles, UGVs) that operate like small self-driving cars on sidewalks. In this thesis, 

if not otherwise specified, the term “drones” denotes aerial drones. 

Last-mile or home delivery has been identified as a competitive advantage for e-

commerce retailers and other firms. But the reality is that the “last mile” of shipment is 

most expensive and inefficient, which often exceeds 50 percent of the total cost of shipping 

(Capgemini, 2019). This challenge has been intensified by the continuous rise of e-

commerce, the increased delivery volume, and the unquenchable customer expectations for 

not only fast, but also free, delivery. A recent Apex Insight report shows that global online 

sales were in excess of $3.3 trillion in 2019, having grown at a rate of 24% per year (Apex 
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Insight, 2020). Driven by these increasing online sales, the global parcel delivery industry 

approached $430 billion in 2019, up from just under $380 billion in 2018. COVID-19 

escalated those trends. For example, Target saw a 282% increase in online sales in April 

2020, compared to April 2019 (Keyes, 2020). Customers have been encouraged to expect 

free, faultless, and fast delivery services, thanks to companies such as Amazon and Alibaba. 

Studies show that 54% of shoppers abandoned their carts due to expensive shipping, 39% 

did so due to no free shipping, and 26% did so because the shipping was too slow (Sheffi, 

2020).  

The increasing volume of parcel deliveries also puts great pressure on the 

environment, due to the increasing truck travel and the associated energy consumption and 

emissions. A study published by the World Economic Forum forecasts a 36% rise in the 

number of delivery vehicles in the world’s top 100 cities in 2030, leading to an emissions 

increase of over 30% (Freightwaves, 2020). Greenhouse gas (GHG) emissions are a main 

contributor to climate change, and a large proportion of GHG emissions comes from 

transportation. In the U.S., the transportation sector generates the largest share of GHG 

emissions, about 28% of the total GHG emissions in 2018 (USEPA, 2020). Truck transport 

is responsible for 24% of transportation-related GHG emissions and comprises 23% of 

transportation-related energy use in the U.S. (Stolaroff et al., 2018). Impacts on natural and 

human systems from climate change have already been observed, and climate-related risks 

will continue to increase if GHG emissions are not mitigated or reduced (IPCC, 2018). The 

Fourth National Climate Assessment stated that climate change was already having 

noticeable effects in the United States and predicted “more frequent and intense extreme 

weather and climate-related events”, such as floods and hurricanes (U.S. Global Change 
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Research Program, 2018). The World Health Organization (2018) estimates that climate 

change will cause approximately 250,000 additional deaths (from malnutrition, malaria, 

diarrhea and heat stress) per year between 2030 and 2050, and estimates the direct damage 

costs to health to be between $2-4 billion per year by 2030. 

Drone delivery excites many e-commerce and logistics firms because of its huge 

potential to transport goods in a fraction of cost, time, and energy of today’s transportation. 

Numerous drone delivery prototypes and operation modes have been studied, including 

some not tested in practice yet. The technologies for drone delivery (e.g., batteries, 

autonomous navigation, obstacle avoidance and detection) have been improved greatly, 

and because drones are much smaller than trucks, drones potentially cost less and consume 

less energy per unit distance traveled compared with trucks. Further, since most delivery 

drones consume electricity (which can be generated from cleaner energy sources, such as 

solar, wind, etc.), they potentially emit less GHG emissions per unit energy consumed 

compared with traditional diesel trucks.  

However, the cost efficiency and environmental friendliness of drones might be 

offset by the longer distances they have to travel in order to make a set of deliveries given 

their limited payload capacity, the additional warehouses or charging stations required to 

extend limited drone flight ranges, the labor required to operate drones, the carbon intensity 

of different power generation systems, and the competitiveness of alternative-fuel vehicles 

(e.g., electric and natural gas trucks). Furthermore, several studies suggest that a lack of 

solid scientific evidence of the benefits of drones, and large uncertainties exist about the 

environmental impacts of drones (Macrina et al., 2020; Kellermann et al., 2020; Shavarani 

et al., 2018; Park et al., 2018). Some studies show that drone-based delivery could reduce 
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GHG emissions and energy use in the freight sector if carefully deployed (Stolaroff et al., 

2018; Goodchild and Toy, 2018), while some show that parcel delivery drones consume a 

similar amount of, or more, energy than trucks in many settings (Kirschstein, 2020; Gulden, 

2017; Figliozzi, 2017). 

Given the potential benefits and drawbacks of drones, some key questions that need 

greater research attention with regard to incorporating drones into small package delivery 

networks include: 

• Is drone delivery a good alternative to truck-only delivery in terms of reducing 

delivery cost and life-cycle GHG emissions? 

• Under what conditions is drone delivery better than truck delivery?  

• How best should drones be utilized? 

My focus is to address these strategic questions so as to facilitate more detailed 

operational drone research for particular settings. 

1.2 The Framework of the Dissertation 

The main purposes of this research are: (i) to examine the potential economic and 

environmental benefits of drone delivery, (ii) to quantify the tradeoffs between the 

economic and the environmental impacts of deploying drones for home delivery, (iii) to 

identify promising delivery system designs, and (iv) to develop managerial insights.  This 

is achieved using continuous approximation (CA) modeling to provide a strategic analysis 

of a range of delivery prototypes and strategies, with a lifecycle-based analysis of 

operations and a sensitivity analysis for key parameters. As an illustration, Figure 1.1(a) 

shows conventional truck delivery where a truck travels on a multi-stop route delivering 
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packages to a set of customers.  (For example, a typical UPS delivery route in the U.S. may 

include 100-150 deliveries.) The black squares denote truck stops (i.e., deliveries). Figure 

1.1 (b) shows drone-only delivery to a subset of these customers (within the range of the 

drone) where the drone departs from the depot, visits a single customer, and returns to the 

depot. The red circles denote drone stops (deliveries). (The customers not served by the 

drone would be served in some other way (e.g., by the truck)). Figure 1.1(c) shows hybrid 

truck-drone delivery where the truck and drone alternate deliveries while traveling through 

the service region.  

 

Figure 1.1. Three delivery services: truck-only, drone-only, and truck-drone 

Continuous approximation models for estimating expected travel distances are 

formulated for each of the three delivery options, which provide the foundations for 

calculating the expected cost and emissions for delivery systems. In this dissertation I 

measure cost in $ and emissions in kg or grams of CO2e, where CO2e is the equivalent 

amount of CO2 for any GHG in terms of its impact on global warming (Brander, 2012).The 

models for cost and emissions also depend on the relevant cost rate ($/mile) and emissions 

rate (e.g., kilograms of CO2e/mile) associated with the operation of different vehicles. For 

battery powered drones, the emissions rate depends on both the energy efficiency of the 
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drone (Watt-hours per mile) and the emissions associated with the energy being used to 

charge the batteries (kg CO2e/Watt-hour). Since the use of electricity in delivery vehicles 

(e.g., battery powered drones) shifts the emissions from the vehicle tailpipe to upstream 

power plants, the emissions rate of each delivery vehicle considers the lifecycle of fuel. 

The cost and emissions metrics of different delivery services are then optimized 

analytically and compared with each other to identify the best combination of the three 

delivery services (as described in Fig.1.1) to serve a region. Sensitivity analyses are 

conducted to evaluate the impact of a wide range of operating characteristics (e.g., from 

inexpensive to expensive drone operating costs, small to large drone energy requirements, 

low to high customer service levels, etc.), delivery environments (e.g., from very rural to 

urban delivery regions), and carbon intensities of power generation (e.g., from very low to 

very high carbon intensity of generating electricity). 

1.3 Contributions 

This dissertation research fills gaps in the literature as follows: 

1) Review and classify key drone energy consumption models in the literature by 

using a unified notation and framework that allows for a collective comparison of 

the energy consumption rates for the various drone types, payloads, operating 

speeds and other important operating parameters.  

2) Develop an innovative strategic model to analyze truck-drone delivery, along with 

drone-only delivery and truck-drone delivery. 

3) Provide strategic models to assess the potential economic and environmental 

benefits as a result of shifting from truck-only delivery to drone-only and truck-

drone delivery.  
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4) Identify and examine the cost and emissions tradeoffs of the integrated truck and 

drone delivery systems that include drone-only delivery, truck-drone delivery, and 

truck-only delivery, and provide consistent evidence and analyses for estimating 

the economic and environmental benefits from drone delivery. 

5) Provide a strategic analytical tool that allows the cost and emissions tradeoff to be 

quantified – determining not only the relative cost and/or emissions savings and the 

“implied carbon price”, but also the set of optimal delivery services. This enables 

firms to better understand the consequences of deploying drones in various delivery 

services. 

1.4 Outline 

Chapter 2 is a literature review on the modeling of delivery costs and GHG 

emissions for trucks and drones and the methodologies developed for solving routing 

problems with drones. Chapter 3 provides a uniform framework designed to facilitate 

understanding different drone energy consumption models and the inter-relationships 

between key factors and performance measures to facilitate decision-making for drone 

delivery operations.  Chapter 4 lays the theoretical foundation for modeling the expected 

delivery costs and GHG emissions that facilitates a strategic analysis of the design of drone 

delivery systems. Continuous approximation models are derived for estimating the 

expected delivery costs for drone-only, truck-drone and truck-only delivery. Chapter 5 

extends the continuous approximation models and analyses for estimating the expected 

GHG emissions for drone-only, truck-drone and truck-only delivery. Numerical scenarios 

are presented to illustrate the magnitude of the potential savings relative to truck-only 

delivery. Chapter 6 examines the tradeoff between cost and emissions for drone delivery 
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systems, including drone-only, truck-drone and truck-only delivery. A delivery system 

design problem integer programming model is formulated to optimally partition the 

delivery region and assign delivery services to subregions, based on minimizing the 

delivery costs, minimizing the GHG emissions or finding Pareto efficient solutions 

considering both objectives. Analysis of the Pareto frontier is presented for several 

scenarios to quantify the cost and emission tradeoffs. Chapter 7 presents the conclusions 

and future research. 
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Chapter 2: Literature Review 

This chapter reviews the relevant literature for this dissertation. Section 2.1 is a 

review of how cost, energy consumption and greenhouse gas (GHG) emissions are 

modeled in relevant literature for trucks and drones. Section 2.2 includes a review of 

research that uses continuous approximation modeling for freight distribution, followed by 

a review of the literature on routing problems with drones for last-mile delivery. Section 

2.3 is a summary of the relevant literature. The literature review focuses on aerial drones 

for commercial delivery operations, not ground or sea drones or military drones. 

2.1 Cost, Energy Consumption, and GHG Emissions 

In this subsection, relevant literature on lifecycle analysis is first reviewed to 

determine the system scope and the functional unit of this thesis. Then, literature on the 

classic vehicle routing problem (VRP) and the green vehicle routing problem (GVRP) is 

reviewed to understand why and how environmental aspects (e.g., energy consumption and 

emissions) are integrated into the routing models for trucks and alternative-fuel vehicles. 

Finally, studies of the cost and environmental aspects of drones for last mile delivery are 

reviewed. 

2.1.1 Life Cycle Analysis 

Life cycle analysis or life cycle assessment (LCA) is a widely adopted method to 

measure and compare the potential environmental impacts of products through their entire 

life cycle, i.e., from raw material extraction, via production and use phases, to waste 

management (e.g., disposal, recycle, reuse) (Guinée et al., 1993, 2011; Finnveden et al., 

2009). This comprehensive scope of LCA is helpful to obtain a complete picture of 

environmental impacts and avoid shifting impacts from one phase of the life cycle to 
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another, or from one region or one environmental problem to another. It is most relevant 

in the comparison of truck and drone deliveries because although electricity powered 

drones emit zero tailpipe GHG emissions, emissions are shifted to upstream power plants. 

In addition, trucks and drones differ in size, which may result in different magnitudes of 

environmental impacts. 

According to ISO (2006a), there are four phases in an LCA study: (1) the goal and 

scope definition phase, which defines the intended application, the functional unit of the 

analysis and the system boundary; (2) the life cycle inventory analysis phase, which 

compiles the inputs (energy) from and outputs (emissions) to the environment; (3) the life 

cycle impact analysis phase, which quantifies and evaluates the magnitude and significance 

of the potential environmental impacts of the system under study; and (4) the interpretation 

phase, which provides conclusions and recommendations. Even though LCA has existed 

for decades, the methods and data used in LCA phases differ from study to study, which 

results in different or conflicting conclusions even when the object of the study is the same 

(Guinée et al., 1993, 2011; Finnveden et al., 2009). Finnveden et al. (2009) claim that LCA 

is very data intensive, and the lack of data may limit the conclusions that can be drawn 

from a study. Therefore, it is very important to clearly define the scope of the study and 

specify the data sources. 

The applications of LCA to freight transportation have revealed that tailpipe energy 

use and emissions alone underestimate the total lifecycle energy use and emissions 

(Horvard, 2006; Lee et al., 2013). The lifecycle of a freight transportation system can be 

classified into three categories: (i) the fuel cycle, which includes upstream raw material 

extraction, processing and distribution, and tailpipe use of fuel; (ii) the vehicle cycle, which 
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includes upstream raw material extraction, manufacturing, tailpipe use, maintenance, and 

end-of-life disposal or recycle of the vehicle and battery if applicable; and (iii) the 

transportation infrastructure cycle, which includes the construction, operation, 

maintenance, and end-of-life disposal or recycle of transportation infrastructures. Horvard 

(2006) shows that the tailpipe emissions account for about 70% of the lifecycle emissions 

for the freight transportation. However, it is not uncommon to see that most LCA scopes 

of traditional truck delivery include only the tailpipe phase of the fuel cycle. The reasons 

may be that the environmental aspects of transportation are undervalued, and the 

availability of data is limited.  

Similar phenomena are observed for drone delivery. The emissions rate differs from 

study to study, which is due in part to different lifecycle components being considered, 

different databases and functional units of analysis being adopted, and the availability of 

data. For example, Park et al. (2018) consider only the fuel cycle for delivering pizza using 

drones. Figliozzi (2017) considers both the fuel and the vehicle cycles for quadcopter 

drones, and the author acknowledges that there is not much data for the manufacturing of 

drones, thus, the analyses are done separately for the fuel cycle and the vehicle cycle. 

Stolaroff et al. (2018) considers the fuel cycle and the infrastructure cycle which considers 

the energy (i.e., electricity and natural gas) required to operate the extra warehouses 

required by the drones. The common functional units of analysis used are a single delivery 

and a unit distance traveled. In the U.S., the lifecycle emissions for diesel, natural gas, and 

electricity are well-documented in the GREET Model and the eGRID databases (Figliozzi, 

2017; Stolaroff et al., 2018). However, there is not much data for the lifecycle emissions 

of drones. Studies conducted in other countries use other databases. For example, Park et 
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al. (2018) use data from the Korea Environmental Industry and Technology Institute for 

electricity and gasoline. Koiwanit (2018) uses data from multiple regions, such as the US, 

China, Canada, for assessing the environmental impact of drone delivery in Thailand. 

In this study, the system boundary considered includes the fuel cycle and the 

vehicle to avoid shifting emissions from tailpipe to upstream power plants. Since the drones 

either depart from an existing depot or a truck, the construction of new infrastructure is not 

required, thus, the infrastructure cycle is not considered in the lifecycle analysis. However, 

the models can be easily extended to include the infrastructure cycle if additional 

warehouses or recharging stations are required. Two commonly utilized functional units of 

analysis are chosen: per unit distance traveled and per delivery. 

2.1.2 Cost, Energy Use and GHG Emissions of Trucks 

Medium-duty trucks are commonly used for the last-mile or home delivery (Lee et 

al., 2013). Those trucks generally weigh 6,350 to 11,793 kg (or 14,000 to 26,000 lbs) and 

are classified in the U.S. as class 4-6 trucks based on their gross vehicle weight. Since 

conventional truck delivery has been widely studied, there is a consensus on reasonable 

values for the cost and fuel consumption. For example, American Transportation Research 

Institute (ATRI) has continued to publish an annual update, streamlining methodologies 

and updating the marginal costs of trucking since 2008. According to ATRI, the operating 

costs of trucking (in dollar per mile) can be divided into two general categories: driver- and 

vehicle-based costs. The former includes driver wages and benefits (e.g., full medical, 

dental, vision coverages, 401(k) matching). The latter includes fuel, equipment (e.g., truck 

release or purchase payments), repair and maintenance, truck insurance premiums, permits 

and special licenses, tires and tolls. Driver and fuel costs are the dominating factors in the 
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overall costs (over 50%), a phenomenon that has been observed in ATRI’s survey for a 

number of years (Williams and Murray, 2020). A shortage of qualified drivers further 

increases driver-based costs, and the shortage is estimated to grow to 160,000 drivers by 

2028 (Costello and Karickhoff, 2019). The trend of fuel cost is closely linked with diesel 

prices which are affected by many factors and are highly speculative. The truck fuel 

consumption is commonly determined by the fuel economy. A typical Class 4 parcel 

delivery truck travels 11.5 miles per gallon of diesel (Stolaroff et al., 2018). Lammert (2009) 

reports an average of 10.2 mpg for the standard UPS signature diesel truck based on a 12-

month evaluation. The fuel efficiency of diesel trucks continues to improve as logistics 

companies and auto manufacturers strive to reduce energy consumptions and emissions. 

Figliozzi (2017) uses the rated fuel efficiency of 22 mpg for a diesel cargo van. However, 

it is well-documented that the actual observed fuel efficiency varies with driving patterns, 

traffic, terrain, vehicle weight, age of the vehicles, and other parameters (Stolaroff et al., 

2018; Demir et al., 2014; Bektas and Laporte, 2011). 

Last-mile or home delivery by trucks is an application of the well-known vehicle 

routing problem (VRP) which has a rich and extensive literature since the seminal article 

by Dantzig and Ramser (1959). Interested readers are referred to a recent review of VRP 

by Braekers et al. (2016), an earlier review by Cordeau et al. (2007), and reviews of VRP 

solution methods (e.g., exact algorithms, heuristics and metaheuristics) by Laporte et al. 

(2007 and 2009). The problem involves designing delivery or pickup routes from a depot 

to a number of geographically distributed customers, subject to various practical 

constraints, such as vehicle capacity, driver working hours, time windows and the fleet mix. 

The objective is to minimize the total distance traveled by all vehicles or to minimize the 
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overall cost, usually a linear function of distance (Bektas and Laporte, 2011). The VRP is 

known to be NP-hard and is difficult to solve to optimality except for rather small size 

instances. A great number of research efforts have been devoted to the design of effective 

heuristics and algorithms for the VRP and its variants. 

The green vehicle routing problem (GVRP) extends the classic VRP by integrating 

the environmental aspects (namely fuel consumption and emissions) of vehicles into 

routing models. Interested readers are referred to a comprehensive review of GVRP by Lin 

et al. (2014), a review of green logistics by Dekker et al. (2012), and a survey of sustainable 

logistics by Abbasi and Nilsson (2016).The GVRP includes the Green-VRP and the 

Pollution Routing Problem (PRP). The difference between the two is that the former 

utilizes alternative-fuel vehicles with the objective of minimizing fuel consumptions, while 

the latter aims at minimizing the pollution (especially GHG emissions) ( Lin et al., 2014).  

The studies of GVRP provide a rich discussion of how to incorporate environmental 

aspects into classical VRPs, and how to model the fuel consumption and emissions. 

Multiple objective functions are usually proposed that either treat energy consumption 

and/or the emissions independently (Bektas and Laporte, 2011) or as components of a total 

cost-minimization objective function (Bektas and Laporte, 2011; Cachon, 2014; Zhang et 

al., 2015). For example, Bektas and Laporte (2011) minimize the total cost that is 

composed of driver cost, fuel consumption cost and emission cost. They also establish three 

other objective functions, i.e., distance-minimization, energy-minimization and weighted 

load-minimization. The price of emissions is usually modeled as a carbon tax (e.g., $ per 

unit of emissions) (Bektas and Laporte, 2011; Cachon, 2014). The models of fuel 

consumption and emissions differ by the levels of complexity, with the simplest model 
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being a linear function of the distance traveled and the most sophisticated model 

considering various vehicle parameters, traffic, and driver behaviors (Cachon et al., 2014; 

Lee et al., 2013; Bektas and Laporte, 2011). A comprehensive review of these models is 

given by Demir et al. (2014).  

Within studies that compare drone delivery with truck delivery, the modeling of 

truck energy consumption and emissions differs slightly from one another, resulting in 

different emissions factors. Figliozzi (2017) model the emissions as a product of an 

emission factor (11.05 kg CO2e/gallon of diesel), an average vehicle fuel economy (35.41 

km per gallon), and the distance travelled. Goodchild and Toy (2018) model the emissions 

as a product of the distance traveled and the weighted average CO2 tailpipe emissions rate 

(0.61-1.06 kg CO2e/km) based on truck age and travel speed. Stolaroff et al. (2018) do not 

provide a fuel consumption model, but use a base fuel economy (2.17 kWh per package) 

and conduct a sensitivity analysis.  

2.1.3 Cost, Energy Use and GHG Emissions of Drones 

Though the green vehicle routing problem has been intensively studied for diesel 

and alternative-fuel vehicles, there is limited research on this topic for drones, mostly 

because drone delivery is still an emerging technology. Chiang et al. (2019) studies the 

cost and environmental improvements of using drones for package delivery relative to 

truck delivery. A mixed integer programing (MIP) model is proposed for two independent 

objective functions. One is to minimize CO2 emissions which are proportional to the 

distance traveled (based on the model of Goodchild and Toy (2018)). The drone energy 

consumption rate is 3.33 Wh/mile. The other is to minimize costs which include a fixed 

vehicle cost associated with each truck/drone tandem and a variable routing cost that is a 
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function of distance traveled and vehicle weight. The variable costs for the drone and the 

truck are $0.02/mile and $1/mile, respectively. A genetic algorithm is developed and tested 

on instances with up to 500 customers. The results show a positive correlation between 

cost reduction and CO2 emission reduction, i.e., the minimization of cost also minimizes 

CO2 emissions, through the integration of drones into the current truck delivery system. 

Coelho et al. (2017) study the drone-only routing problem and propose an MIP 

model with seven weighted objective functions including total distance traveled, the 

maximum speed of UAVs, the number of UAVs used, the makespan of the last collected 

and delivered packages, the average time spent with each package, and total amount of 

energy for batteries. Though the authors claim it is a green vehicle routing problem, the 

environmental aspect and its tradeoffs with traditional objectives are not emphasized in the 

analysis. Troudi et al. (2018) study the capacitated drone routing problem with time 

windows and take into account the drone payload capacity and energy constraints. Three 

objective functions are proposed: minimizing distance, minimizing the number of drones 

used, and minimizing the number of batteries used. The distance traveled and energy 

consumption are correlated because the latter is proportional to the distance traveled and 

the payload. In their future work, the authors are interested in addressing the balance of 

these three different objectives in terms of cost. 

Several works study the economics of drone-only delivery or hybrid truck-drone 

delivery (e.g., Campbell et al., 2017; Ha et al., 2018). Those studies show that drones have 

the potential to significantly reduce delivery costs because drones are usually associated 

with a much lower transportation cost rate than trucks (in $ per unit distance). However, 

the cost effectiveness of drone delivery depends on several factors, such as drone operating 
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costs and delivery density. D’Andrea (2014) performed a theoretical feasibility test of 

drone delivery. He claimed that batteries dominate the total drone operating costs in the 

long run, once drones reach a level of maturity compared to today’s automobiles. The total 

operating costs directly associated with the drone are on the order of 10 cents for a 2 kg 

payload and a 10 km range. The operating costs include only battery cost (80%) and 

electricity cost (20%), because the analysis assumed that drones operate fully 

autonomously without any human intervention. ARK Invest originally suggested a price of 

$1 per delivery for a drone that departs from a depot and makes an average of 30 deliveries 

per day with each under 5 lbs and within 10 miles of the depot (Keeney, 2015). The price 

is determined from estimate of annual capital costs for infrastructure, drones and batteries, 

and annual operating costs for labor (drone operators), electricity, maintenance and 

insurance. Labor costs are the large majority of operating costs, even with the assumption 

that each operator controls 10-12 drones, which does not follow current US law. Recently, 

ARK Invest updated that figure to be only $0.25 per delivery for a parcel drone assuming 

more efficient autonomous flight and less amount of human intervention (Keeney, 2020). 

Campbell et al. (2017) propose a continuous approximation model to compare the 

cost competitiveness of drone delivery with that of traditional truck delivery. The cost 

model includes a travel cost between deliveries and a stop cost for each delivery of each 

vehicle. The authors find that the attractiveness of using drones for home delivery strongly 

depends on the relative drone operating cost, the marginal drone stop cost (relative to truck 

delivery), and the delivery density. Ha et al. (2018) emphasize the algorithmic aspect of a 

traveling salesman problem with drones that minimizes operational costs including total 

transportation cost and the cost incurred when one vehicle has to wait for the other. 
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Several studies have been conducted to compare the environmental improvements 

of drones relative to other delivery vehicles (Kirschstein, 2020; Goodchild and Toy, 2018; 

Stolaroff et al., 2018; Figliozzi 2017; Gulten, 2017). The research results are mixed with 

regard to the energy and emissions efficiency of drone delivery. Most earlier studies show 

that drones have the potential to reduce energy consumption and emissions (e.g., GHG, 

particulates) due to their light weight, small size, and consumption of usually inexpensive 

and green electricity. However, how large the potential reductions are depend on several 

factors, such as the delivery density, drone energy requirements, which lifecycle 

components are considered, the carbon intensity of electricity, the number of customers 

served by a truck route, and the area of the service region. Considering more realistic 

operating environments (e.g., wind, takeoff/landing, hovering), however, some recent 

studies show that drone delivery often requires more energy than truck delivery, which 

might lead to greater emissions. 

Goodchild and Toy (2018) compare the performance (i.e., vehicle miles traveled 

and CO2 emissions) of drone-only delivery with traditional diesel truck delivery. Tools in 

ArcGIS are utilized to estimate the travel distances for both the truck and the drone based 

on real residence addresses in Los Angeles. The CO2 emissions are modeled as a product 

of an emission factor (0.3773 kg CO2 per kWh), drone energy consumption rate, and total 

distance traveled. The emission factor includes both battery charge/discharge and power 

transfer efficiencies. Their results show that the vehicle miles traveled (VMT) per delivery 

of the drone (16.38 km/delivery) is much higher than that of the truck (0.26 km/delivery). 

The reason is that the drone is assumed to return to the depot after making one delivery 

(i.e., single stop delivery) while the truck can make multiple deliveries during its route (i.e., 



20 

 

multi-stop delivery). The discrepancy becomes larger when customers are farther from the 

depot. The impact on CO2 emissions was evaluated by varying: (i) drone energy 

requirements (ranging from 10 Wh per mile to 100 Wh per mile), (ii) delivery density 

(ranging from 50 to 500 customers per square mile), and (iii) distance between the depot 

and the center of a service zone (ranging from 0 to 10 miles). Note each service zone is 

served by one truck route, thus the truck size changes as the delivery density changes. The 

results show that drones tend to emit less CO2 emissions than trucks in service zones that 

are either closer to the depot or have a smaller delivery density, or both. A blended system 

would perform the best with drones serving closer customers while trucks serve more 

remote ones. 

Figliozzi (2017) shows that the emissions advantage of drones depends on the 

number of customers that can be served in a truck’s route. Unlike Goodchild and Toy 

(2018), Figliozzi (2017) considers lifecycle greenhouse gas emissions that include 

emissions from both the operational vehicle phase (i.e., the fuel cycle) and the non-

operational vehicle phase (i.e., the vehicle cycle). The operational vehicle phase emission 

is a product of an emission factor (0.56 kg CO2e per kWh) and the energy consumption. 

The non-operational vehicle phase emission depends on the weight of the drone body and 

batteries (assuming four batteries over the lifetime of the drone), with a rate of 69.2 kg 

CO2e per kg. However, the analysis is mainly performed for the operational vehicle phase 

emission. The author compares the energy consumption and CO2e emission of drone-only 

delivery with those of a single-stop and a multi-stop ground vehicle delivery (e.g., diesel 

van, electric truck and van, electric tricycle). The energy consumption per unit distance 

traveled and the emissions per unit energy consumed of drones are about 47 times and 22 
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times more efficient than those of diesel vans in the single-stop delivery scenario, 

respectively. However, ground vehicles outperform UAVs when a large number of 

customers can be served in a multi-stop delivery route. The break-even point varies from 

1.5 to 1,340 customers per multi-stop route depending on the energy requirement of the 

drones and the size and the fuel type of ground vehicles. 

In additional to Figliozzi (2017), Stolaroff et al. (2018) add one more lifecycle 

piece—the infrastructure cycle (e.g., emissions from operating warehouses and 

waystations)—into the comparison of GHG emissions of drones with that of trucks, as 

more warehouses may be needed in order to extend the flight range of drones. Different 

types of drones (i.e., quadcopter and octocopter) and ground vehicles (i.e., diesel, gasoline, 

natural gas and electricity vehicles) and the carbon intensity of power generation (i.e., in 

different regions in the United States) are studied. The emissions is modeled as a product 

of an emissions rate (0.645 and 1.264 kg CO2e per delivery for quadcopter and octocopter, 

respectively) and the number of deliveries made. The study shows that drones consume 

less energy per delivery per km than trucks, but the energy required for additional 

warehouses and the longer distances traveled by drones severely increase the lifecycle 

impacts. Moreover, the emissions advantage of drones also depends on the energy 

consumption of drones and the carbon intensity of power generation in different regions. 

Park et al. (2018) compare the environmental impact (e.g., GHG emission, particulates) of 

pizza delivery by drones with that by motorcycles. The GHG emissions rate used is of 7.1 

g CO2e per mile. 

Kirschstein (2020) propose a detailed energy consumption model for a drone 

delivery process that includes takeoff and ascent, steady level flight, descent, hovering, and 
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landing. It also considers the environmental conditions (e.g., wind). The energy consumed 

by drones is then compared to the energy consumption of diesel trucks and electric trucks 

serving the same set of customers from the same depot. The results indicate that switching 

to a solely drone-only delivery system is not worthwhile in terms of energy efficiency 

because drone-only delivery requires more energy than truck-only delivery, especially in 

urban areas where customer density is high and truck routes are relatively short. Even in 

rather rural areas, the energy consumption of drones is comparable to that of electric 

vehicles.  

In summary, there are limited studies on the economic and the environmental 

benefits of drone delivery. Most of those studies focus on drone-only delivery, whereas 

only a few studies look at the truck-drone delivery which is also an important approach for 

using drones. Few study examines a blended delivery system that optimizes the use of 

drone-only delivery, truck-drone delivery, and truck-only delivery. Furthermore, there are 

mixed research results in regard to the energy and emissions efficiency of drone delivery 

due in part to a limited understanding of drone energy consumption and highly diverse 

drone energy consumption models and rates. Although most studies show that drones have 

the potential to reduce delivery costs and emissions, there is no agreement in the literature 

on (i) how much drones might reduce costs, and how environmentally friendly drones 

might be; (ii) how the magnitude of cost and emissions reductions depend on key 

characteristics of the drones and the operational settings; and (iii) how best drones should 

be used.  
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2.2 Methodology and Discrete Drone Delivery Models 

In this subsection, studies using the continuous approximation (CA) method in the 

transportation field are first reviewed to demonstrate the flexibility and the validity of 

applying CA to the study of drone delivery. Other methods, such as discrete mathematical 

modeling, for modeling drone delivery are also briefly reviewed. 

2.2.1 Continuous Approximation Models 

The continuous approximation (CA) method formulates mathematical models of 

cost or other objectives as continuous functions of fundamental problem characteristics, 

such as the density of customers over time and space. This essentially replaces detailed 

discrete numerical models (e.g., MIP models) with continuous analytical models for 

expected costs (or other performance). Thus, analytical techniques (e.g., calculus) can be 

used to solve the models and find optimal or near-optimal performance measures and 

variable values. Key early publications on CA include the asymptotic approximation 

formula for the traveling salesman problem (TSP) proposed by Beardwood et al. (1959), 

and the strip strategy proposed by Daganzo (1984) for approximating near-optimal vehicle 

tour lengths. A main goal of CA is to obtain near-optimal solutions with as little 

information as possible, and to gain insights from a clear understanding of the relevant 

trade-offs. Therefore, one main use of CA method is to estimate the routing costs or other 

objectives within strategic or tactical problems. Interested readers are referred to recent 

reviews of the advancements and applications of CA models by Ansari et al. (2018) and 

Franceschetti et al. (2017), and an earlier review of CA models in freight distribution by 

Langevin et al. (1996). 
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The applications of CA on distribution system and network design are rich and 

extensive, such as distance approximations (Beardwood et al., 1956; Eilon et al., 1971; 

Daganzo, 1984a, b; Vaughan, 1984), various VRP variants (Campbell, 1993; Francis and 

Smilowitz, 2006; Figliozzi, 2007; Carlsson and Jia, 2013, 2015; Cachon, 2014;), and public 

transit (Szplett, 1984; Ouyang et al., 2014; Ellegood et al., 2015). Within CA, there are 

different ways to model the transportation cost for a single origin and multiple destinations 

delivery system, but a common way is to divide it into two components: travel cost and 

stop cost (Daganzo, 2005; Campbell et al., 2017). The travel cost is attributable to each 

mile traveled, which is also called the operating cost. The stop cost is attributable to each 

delivery (i.e., stop), regardless of the distance to reach the delivery location. For example, 

this includes the cost of stopping the vehicle and having it sit idle while it is being loaded 

and unloaded. 

There are various advantages of the CA approach over discrete approaches 

including: the small data requirements, the ease of decomposing complex problems, and 

the ability to generate insights (Daganzo, 1984; Daganzo and Newell, 1986; Novaes et al., 

2000; Ho and Wong, 2006; Smilowitz and Daganzo, 2007; Li et al., 2016). The CA method 

usually requires less data preparation than discrete methods, because the locations of 

customers or facilities can be represented by a continuous density function over a service 

area. Therefore, the exact locations of customers, which may be thousands or millions of 

data elements, are not required. For example, Novaes et al. (2000) compare a CA approach 

for designing a minimal-cost physical distribution system with a discrete modeling 

approach on data preparation and conclude that the former approach only needs 

information about ground coordination, expected delivery time and standard variance, 
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cargo quantities and visiting frequencies, which are easy to obtain. Thus, a CA approach 

can be best applied to the initial planning or design stage, since there is lack of data at that 

moment (Daganzo and Newell, 1986; Novaes et al., 2000; Ho and Wong, 2006).  

The inherent capability of the CA method to decompose a complex problem into 

several solvable sub-problems makes it advantageous for studying distribution problems, 

such as facility location, vehicle routing, and network design, which are NP-hard. By 

formulating analytical models of the locally optimal design and cost as functions of the 

local conditions (e.g., density of deliveries), one can find a system-wide optimal solution 

that will vary as the underlying parameter values vary. In illustrating this focus on 

optimizing local behavior, Daganzo and Newell (1986) note that “the optimum operating 

strategy within an influence area [a local region] is not affected by decisions made outside 

it”. Smilowitz and Daganzo (2007) reduce the total cost model for a distribution system 

into a series of easily solved convex sub-problems which consider one variable at a time. 

Another key feature of the CA method is the insights provided from the analytical formulae 

and solutions. Daganzo and Newell (1986) point out that a CA approach indicates near-

optimal design guidelines instead of yielding a particular solution, which may also lead to 

improved heuristic solution methods for discrete formulations. Ho and Wong (2006) 

demonstrate that “as the numerical results of a continuum model can be visualized in a 

two-dimensional sense, the influence of different model parameters and the spatial 

interactions between locations can be easily detected and analyzed”.  

Giving the advantages of CA method, a growing number of studies have applied it 

for drone delivery problems. Carlsson and Song (2018) investigate the efficiency of a 

“horsefly delivery system” which is very similar to the truck-drone delivery in this 
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dissertation, except that the truck does not make any deliveries. The objective is to 

minimize the completion time of a route. Since the problem is a generalization of the TSP 

that is difficult to solve to optimality, the authors use the CA method to derive upper and 

lower bounds. The results show that the amount of improvement in efficiency (in terms of 

the completion time with the drone over the completion time without the drone) is 

proportional to the square root of the ratio of speeds of the drone and the truck. The original 

analysis is extended to also consider the impacts of the truck visiting some customers and 

a limited drone battery life. A similar finding is obtained. Furthermore, the authors conduct 

two computational experiments verifying that the CA results are valid in practice. 

Chowdhury et al. (2017) study the benefits of deploying drones to serve a disaster 

affected region with some roads inaccessible by trucks. Both trucks and drones make direct 

shipments, i.e., each vehicle transports emergency goods from a distribution center (DC) 

to demand points and returns to the DC. The research question is modeled as a network 

design problem with the objective of minimizing the total distribution cost which includes 

the facility cost, the inventory holding cost and the transportation cost. The CA method is 

used to simplify the model formulation and the solution procedure. Sensitivity analysis is 

conducted to show the impact of key drone parameters (e.g., drone flying altitude, drone 

speed) on disaster relief operations. Finally, the model is tested using data from three 

coastal counties of Mississippi. 

Campbell et al. (2017) apply the continuous approximation method to answer the 

question of how best to deploy drones for home delivery from a strategic perspective. The 

CA method employed is an extension of a strip strategy proposed by Daganzo (1984) for 

estimating the length of a TSP route. In this new situation, some of the deliveries are made 
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by drones that are carried on the roof of a truck while the truck makes the rest of the 

deliveries. The transportation cost includes a travel cost and a stop cost of each type of 

vehicle. It considers one drone per truck, multiple drones per truck, linehaul travel, and 

time limits on the route. The authors find that the attractiveness of using drones for home 

delivery strongly depends on the relative drone operating cost, drone marginal stop cost, 

and the delivery density. 

In summary, the small data requirements, the ease of decomposing complex 

problems, and the ability to generate insights make the continuous approximation (CA) 

method appropriate for the study of drone delivery from a strategic perspective. The CA 

method has been applied to the study of the time and cost efficiencies of integrating drones 

into conventional truck delivery. Results show that drone delivery can improve delivery 

time efficiency and reduce delivery cost. They also indicate that the CA method is efficient 

and valid for solving drone delivery problems. 

2.2.2 Other Drone Delivery Models 

Most drone delivery research has employed mixed integer programming (MIP) 

formulations and solutions with various algorithms and heuristics. Interested readers are 

referred to the recent reviews of drone-aided routing problems in transportation by Macrina 

et al. (2020) and Khoufi et al. (2019), generic routing problems with drones by Rojas 

Viloria et al. (2020), and hybrid truck-drone optimization problems by Chung et al. (2020). 

Based on Macrina et al. (2020), drone routing/delivery problems can be classified 

into three categories: (1) the traveling salesman problem with drone (TSP-D), (2) the 

vehicle routing problem with drones (VRP-D), and (3) the drone-only delivery problem 

(DDP). For TSP-D and VRP-D, the deliveries are made either by the truck(s) or the 
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drone(s). The main difference between TSP-D and VRP-D is that in VRP-D the truck 

capacity is restricted and more than one truck is allowed. For DDP, the deliveries are made 

only by the drone(s). Our proposed drone-only delivery and truck-drone delivery are in the 

category of DDP and VRP-D, respectively. 

Murray and Chu (2015) propose MIP models for two variants of the TSP-D. One 

is called the flying sidekick TSP (FSTSP) where a drone is launched from, and returns to, 

the truck after making a single delivery, while the truck makes a delivery at the same time. 

The other is called the parallel drone scheduling TSP (PDSTSP). Unlike the FSTSP, the 

drone is separate from the truck, as both independently depart from and return to the depot. 

The drone is restricted by its flight endurance in both FSTSP and PDSTSP. Both objectives 

are to minimize the route completion time. The authors show that exact methods can only 

solve small-scale instances. Extensive studies have since then proposed algorithms to solve 

these problems and extend the work of Murray and Chu (2015) (e.g., Ponza, 2016; 

Ferrandez et al., 2016; Ha et al., 2018;  Yurek and Ozmutlu, 2018; Bouman et al., 2018; 

Agatz et al., 2018; Poikonen et al., 2019; Freitas and Penna, 2020). Ponza (2016) 

investigates several different heuristics to solve a modified FSTSP and shows that a 

simulated annealing algorithm performs the best among other heuristics (e.g., ant colony 

optimization, naïve approach). Agatz et al. (2018) propose two route-first, cluster-second 

heuristics based on local search and dynamic programming to solve an extended version 

of FSTSP called “TSP-D” where a drone can be recovered by the truck at the node where 

it was launched from the truck. Only small instances with 12 customers are solved by the 

exact method. Freitas and Penna (2020) propose a metaheuristic to solve both the FSTSP 

and the “TSP-D” with instances up to 200 customers. Ha et al. (2018) propose two 
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heuristics for the FSTSP with a different objective which aims at minimizing operational 

costs. 

 The discrete models for drone delivery typically make many assumptions to comply 

with current (US) drone regulations and to make the problem more tractable. The most 

common assumptions are: (1) a drone can make only one delivery at a time and must return 

to a depot or truck after each delivery; (2) there is one drone per truck; (3) a drone can land 

on and depart from a truck only when the truck is parked at a customer location; (4) the 

pickup and delivery time by both truck and drone is negligible; (5) the recharging time of 

a drone is negligible; (6) the speeds of the drone and the truck are constant; (7) the truck 

does not need to wait for the drone because the speed of the drone is assumed to be faster 

than that of the truck. Many of these assumptions, such as (1)-(4), are relaxed in some 

studies. For example, Ferrandez et al. (2016), Wang et al. (2016), Phan et al. (2018), 

Salama and Srinivas (2020) investigate multiple drones per truck. Cheng et al. (2020) 

model a multi-trip drone routing problem with a nonlinear drone energy function that takes 

speed into consideration. To launch and retrieve the drone while the truck is traveling is an 

area of ongoing research.  

 Most studies compare the time efficiencies of drone delivery to that of truck 

delivery. Results show that total delivery time can be reduced by using drones in tandem 

with trucks, but how large the reduction is depends on the relative speed of drones to trucks 

and the number of drones per truck (Agatz et al., 2018; Ferrandez et al., 2016; Wang et al., 

2016). Agatz et al. (2018) assume that the drone is faster than the truck with a factor of α, 

and they prove theoretically that the savings in total service time is a factor of (1+α) by 

equipping a truck with a drone compared with truck-only delivery. Ferrandez et al. (2016) 
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propose K-means and genetic algorithms to determine the optimal number and location of 

drone launch sites and the number of drones per truck.  

 In summary, most studies on drone delivery utilize mixed integer programming 

(MIP) models with the objectives of minimizing delivery time or comparing the time 

efficiencies with truck delivery. These studies show that drones have the potential to 

improve the service level.  However, only small size instances (≤12) can be solved to 

optimality within a reasonable solution time, with a significant amount of the research has 

been devoted to designing efficient discrete algorithms and heuristics. 

2.3 Literature Review Summary 

A review of relevant literature on drone delivery identifies the following trends and 

research gaps: 

1) There is an increasing amount of academic research on the use of drones for home 

delivery. Although the potential economic benefits of drones are the greatest driver, 

much of the research focuses on the discrete modeling of routing problems using 

drones to minimize completion time. There is a need for strategic analyses of how 

best to deploy drones for home delivery in an economically sound manner. 

2) Incorporating the environmental aspects into transportation planning is becoming 

increasingly important. However, there are only a few studies examining the 

environmental benefits of drone delivery (and mainly drone-only delivery). 

Furthermore, the research results are mixed in regard to the energy and emissions 

efficiency of drone delivery, which is due to a limited understanding of drone 

energy consumption and highly diverse drone energy consumption models and 

rates.  
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3) Although most of the studies show that drones have the potential to reduce delivery 

costs and emissions, there is no agreement in the literature on (i) how much drones 

might reduce costs, and how environmentally friendly drones might be; (ii) how 

the magnitude of the cost and emissions reductions depend on key characteristics 

of drones and the operational settings; and (iii) how best should drones be used.  

4) We are not aware of any studies assessing the cost and emissions tradeoffs for an 

integrated truck and drone delivery system that includes drone-only delivery, truck-

drone delivery, and truck-only delivery. 
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Chapter 3: Energy Consumption Models of Delivery Drones 

An article based on this chapter has been published as “Energy consumption models 

for delivery drones: A comparison and assessment” in Transportation Research Part D: 

Transport and Environment (Zhang et al. 2021). 

Energy consumption is a critical constraint for drone delivery operations to achieve 

their full potential of providing fast delivery, reducing cost, and cutting emissions. This 

section provides a uniform framework to facilitate understanding different drone energy 

consumption models and the inter-relationships between key factors and performance 

measures to facilitate decision making for drone delivery operations. Drone energy 

consumption models are classified, analyzed, and assessed. A very wide variations in the 

modeled energy consumption rates are documented, which are resulting from differences 

in: (1) the scopes and features of the models; (2) the specific designs of the drones; and (3) 

the details of their assumed operations and uses. The results provide useful insights for 

modeling energy consumption for current drones, as well as for future (not yet existing) 

drones. 

Subsection 3.1 provides background and classification of drone energy 

consumption models in the literature. Subsection 3.2 discusses key drone energy 

consumption models using a unified notation. Subsection 3.3 documents the differences in 

the energy consumption rates as reported in the literature as well as in a common setting. 

Subsection 3.4 discusses insights and implications of the analyses, and subsection 3.5 

provides concluding remarks. 
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3.1 Introduction 

The energy requirements of drones determine the key performance metrics of range 

(or endurance), cost and emissions for drone delivery systems. An accurate estimation of 

drone energy consumption ensures feasible as well as efficient operating decisions. 

However, many optimization models that design drone or truck-drone routes or drone 

delivery systems incorporate energy consumption only indirectly as a fixed limit on drone 

endurance (flight time limit) or range (flight distance limit) (e.g., Murray and Chu, 2015; 

Chiang et al., 2019; Kithacharoenchai et al., 2020). Other drone delivery research 

incorporates energy directly with an energy consumption model based on the fundamental 

physical forces involved in flight or on field measurements (e.g., Kirschstein, 2020; Murray 

and Raj, 2020; Poikonen and Golden, 2020; Stolaroff et al., 2018; Figliozzi, 2017; Dorling 

et al., 2017). Some of these drone energy consumption models are quite simple with only 

a few parameters, while others are very complex comprised of multiple interdependent 

components that provide detailed representations of the forces of flight and drone design. 

However, these various drone energy models can produce widely divergent results 

in terms of the energy consumed for essentially the same drone delivery operations, leading 

to wide differences in modeled drone ranges and emissions. These differences create the 

need to carefully delineate why such differences exist when modeling the same phenomena 

(i.e. drone flights or drone delivery) and to assess the different approaches to modeling 

drone energy consumption. While we limit our consideration to models of battery-powered 

aerial drones, such as those proposed for home delivery (Lee, 2019; Josephs, 2019) and 

related activities (e.g., medical deliveries over short ranges (Cohen, 2019; Drones in 
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HealthCare, 2020)), our analyses and insights are also applicable and important to other 

applications of drones with limited energy capacity. 

The wide variation of energy consumption in published drone delivery research is 

a result of different scopes and features of the models, different designs of the drones being 

modeled, and different assumed operations. Thus, current research has not reached 

consensus on standards for drone energy consumption, nor on how to model delivery drone 

energy consumption – and therefore existing models may not reflect drone delivery 

operations well. As drone technology is evolving rapidly, our work strives to help improve 

understanding of drone energy consumption and to develop common standards. For 

conventional ground vehicles such as trucks and cars, we have good fuel consumption 

standards thanks to decades of rigorous research from government agencies, universities 

and manufacturers (Barth et al., 2005). Given that the operations of drones are more 

sensitive to the energy capacity than those of conventional vehicles (Cheng et al., 2020), it 

is critical to develop good understanding and estimation of drone energy consumption. 

The key contributions of Chapter 3 are to: (1) review and classify key drone energy 

consumption models using a unified notation that allows a collective comparison of the 

energy consumption rates for the various drone types, payloads, speeds, etc.; (2) examine 

how the distinguishing features of different drone energy consumption models contribute 

to differences in the calculated energy consumption; (3) evaluate published results on 

energy consumption for small, medium and heavy delivery drones from both the models 

and field tests; and (4) compare the drone energy consumption models in a common setting 

for two prototypical drones to document how energy use and range vary differentially as a 

function of speed and payload.  
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3.2 Classifications of Drone Energy Consumption Models 

3.2.1 Key Factors Affecting Drone Energy Consumption 

Key factors affecting drone energy consumption can be classified into four 

categories: drone design, environment, drone dynamics, and delivery operations. Major 

factors in these four categories are provided in Figure 3.1 (adapted from Demir et al. (2014) 

for road transport). Drone design factors include the weight and size of the drone body, the 

number and size of rotors, the weight, size and energy capacity of the battery, power 

transfer efficiency, maximum speed and payload, lift-to-drag ratio, delivery mechanism 

and avionics. Environmental factors include air density, gravitational force, wind 

conditions, weather (snow, rain, etc.), ambient temperature and operating regulations. 

Drone dynamics factors include drone travel speed, drone motion (i.e., takeoff/landing, 

hover, horizontal flight), acceleration/deceleration, angle of attack and flight altitude. We 

also include the possibility for drones to be carried on other vehicles such as trucks or 

public transit, for a portion of their trip. Delivery operations factors include weight and size 

of the payload, “empty returns” (i.e. the return trip after delivery is without the payload, 

which implies a successful delivery), fleet size and mix, the number of deliveries per trip, 

the delivery mode, and the area of the service region. Some of these factors are determined 

or limited by the drone design (e.g., maximum payload, projected area of the drone, etc.), 

others are operational factors that can vary for a given drone design (e.g., payload, speed, 

etc.), and still others are external factors (e.g., weather). Further, many of these factors are 

interdependent and dynamic during a drone delivery trip.  
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Uncertainty in estimating drone energy consumption can result from all of these 

factors, especially drone design, drone dynamics, and delivery operations. Note that if 

drones are carried on other vehicles (e.g., trucks or public transit) they expend little or no 

energy, and that different payload delivery modes (landing, lowering via tethers, 

parachuting) require different levels of energy use. When drones are paired with other 

vehicles, or multiple drones are operating closely together (as for take-off and landing from 

the same site), considerable coordination and synchronization may be required, which 

might lead to substantial hovering by the drone(s). 

A drone uses energy to fly by generating thrust and lift forces to overcome the 

weight and drag forces. Figure 3.2 highlights five key interrelated aspects of drone energy 

consumption: payload weight, battery weight, drone (airframe) weight, airspeed, and range. 

The airspeed, payload, drone and battery weight are important determinants of the drone 
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energy consumption rate. The energy consumption rate in turn, along with the battery 

weight (and type), determines the range. Note that the payload, drone and battery weight 

determine the total weight of the drone at takeoff, and involve both design decisions and 

operating decisions. Increasing the weight of any component increases the energy 

consumption rate, ceteris paribus, as indicated by the “(+)” on the three arrows from the 

weights to the energy consumption rate. Airspeed is an operating decision, and for drones 

(as well as airplanes and helicopters) the power consumed is approximately a convex 

function of airspeed (due to the competing forces of induced drag, parasite drag, and profile 

drag – see for example Rotaru and Todorov (2017)). Thus, there is a “(+/-)” on the arrow 

out of Airspeed. Range is determined by both the drone design and operating decisions. 

Note that an increase in battery weight will increase the drone energy consumption rate, 

ceteris paribus, which decreases the range; but the larger battery will also increase the 

available energy capacity, which increases the range (see Stolaroff et al. (2018) for a 

discussion of how battery affects drone energy use and range). 

 

Figure 3.2. Interrelated aspects of the energy consumption rate for drone delivery 
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Drone Energy 

Consumption Rate 
Drone weight 
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3.2.2 Distinguishing Features of Drone Energy Consumption Models 

Drone travel models generally impose a fixed time or distance limit constraint to 

reflect the drone’s limited battery capacity. Much of the research assumes a constant rate 

of energy consumption per unit time or unit distance, so that drone energy consumption is 

modeled as a linear function of time or distance traveled (e.g., Ferrandez et al., 2016; Ha 

et al., 2018; Moore 2019; Huang et al., 2020). Some optimization models have incorporated 

drone energy consumption models explicitly, with a key differentiation being the 

assumption regarding thrust for steady horizontal flight. The model may assume that (i) the 

thrust force (𝑇) equals the drag force (𝐷), and the weight force (𝑊) equals the lift force (𝐿) 

(therefore, 𝑇 = 𝑊/𝑟, where 𝑟 = 𝐿/𝐷 is the lift-to-drag ratio), (ii) the thrust force equals 

the weight force, as for a hovering helicopter, or (iii) the thrust force equals the sum of the 

weight, the drag and the lift forces. These different assumptions reflect different 

perspectives on the drone operations, e.g., whether they operate more like fixed-wing 

aircraft or helicopters. These three approaches give rise to three continuing streams of 

literature for drone energy modeling. 

Table 3.1 provides a categorization of 12 key drone energy consumption models 

identified in the literature. Column 1 shows the reference for the model. Columns 2-4 

identify the assumption regarding thrust for steady horizontal flight and show the three 

groupings of models as discussed earlier. Columns 5-7 reflect the scope of drone travel 

included in the model for the different drone flight segments (horizontal flight, hover, and 

vertical flight including takeoff/landing). Note that all 12 models for drone delivery include 

energy use for horizontal travel, but only half include energy use for hovering and vertical 

travel. Columns 8-10 indicate adjustments to the modeled energy consumption for wind, 
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avionics, and empty returns. Note that only two models do not include at least one of the 

three adjustments in columns 8-10, although these adjustments are often removed from the 

models in the reported computational results. Including avionics increases energy 

consumption, while modeling empty returns decreases energy consumption (the return trip 

has lower weight). Wind is often modeled as increasing drone energy consumption (e.g., 

D’Andrea (2014)), though more detailed analyses show the energy use may increase or 

decrease depending on wind speed and direction and drone type (e.g., headwinds may 

increase lift, thereby reducing the power requirements; see Kirchstein (2020) for a detailed 

analysis of wind effects). Columns 11-12 indicate the type of model provided (either 

theoretical based on modeling thrust as in columns 2-4, or regression models) and show 

that 10 articles provide theoretical models, while 4 papers present regression models. 

Column 13 indicates the five references that include field tests with a drone, often used for 

setting parameter values in the model.  
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Table 3.1. Summary of key features of the models of drone energy consumption  

Reference 

Thrust Assumption for Flight Travel Components 

Wind Avionics 
Empty 

Return 

Model 
Field  

Tests i 

T=W/r 

ii 

T=W 

iii 

T=W+D+L 
Horizontal Hover Vertical Theoretical Regression 

D'Andrea (2014) x   x   x x  x   

Figliozzi (2017) x   x     x x   

Dorling et al. (2017)  x  x x x    x x x 

Tseng et al. (2017a)    x x x x x   x x 

Tseng et al. (2017b)    x x x x x   x x 

Liu et al. (2017)   x x x x x   x  x 

Lohn (2017) x   x x x x x x x   

Xu (2017) x   x x x x x x x   

Stolaroff et al. (2018)   x x   x  x x  x 

Troudi et al. (2018) x   x    x  x   

Jeong et al. (2019)  x  x      x x  

Kirschstein (2020)   x x x x x x x x   
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3.3 Theoretical Models for Energy Consumption 

In this section, we discuss the theoretical models for energy consumption of each 

of the 12 articles in Table 3.1. We first introduce in subsection 3.3.1 a unified notation to 

facilitate comparison of all models. We then discuss in subsection 3.3.2 the models that 

use an integrated approach (with the lift-to-drag ratio), followed in subsection 3.3.3 by the 

models that use a more complex component approach. For consistency we report all energy 

values in Joules (1 Joule = 1 Watt-second) and the energy consumption rate for steady level 

flight (𝐸𝑝𝑚) in Joules/meter. 

3.3.1 Unified Notation 

Different authors use different notation for the same concepts, so to facilitate 

understanding and comparison of the models, we employ the unified notation shown in 

Table 3.2 (m = meter; s = seconds; J = joules). We classify the drone physical components 

into three categories: (i) drone body (including the airframe, propellers, motors, sensors, 

GPS, avionics, and a camera if used), (ii) drone battery, and (iii) payload (package). Thus, 

the drone body includes everything except the battery and package. Two areas that 

sometimes cause confusion in the literature concern the range and the battery usage. We 

use 𝑅 to denote the drone flight range as the maximum distance that a drone can travel in 

one direction and still be able to return to the depot, i.e., half of the round-trip distance for 

an out-and-back delivery. D’Andrea (2014) and Xu (2017) use the round-trip distance to 

denote the maximum range, while Figliozzi (2017) does not specify how the range is 

defined.  We define 𝜂 as the power transfer efficiency, which is the energy loss from battery 

to the propeller. Figliozzi (2017) uses an overall power transfer efficiency, which also 
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includes the energy loss from charging to battery, to denote power transfer efficiency. This 

definition will result in a value a little smaller than 𝜂, as charging is not 100% efficient. 

Table 3.2. Unified notation for drone energy models 

𝜌 =  air density [kg/m3] (e.g., 1.225 kg/m3 at 15° C at sea level) 

𝑔 = acceleration of gravity [m/s2]  

𝑣𝑖 = induced speed [m/s] (the change in the speed of the air after it flows through an object) 

𝑣𝑎 = airspeed [m/s] (speed of drone relative to the air) 

𝜑 = ratio of headwind to airspeed [unitless] 

𝑣 = drone ground speed [m/s], so 𝑣 = (1 − 𝜑)𝑣𝑎 

𝑑 = drone one-way travel distance for a single delivery trip [m] 

𝑟 = lift-to-drag ratio [unitless] 

𝜂 = battery and motor power transfer efficiency (from battery to propeller) [unitless]  

𝜂𝑐 = battery charging efficiency [unitless]  

𝑘 = index of the drone components: drone body=1; drone battery=2; payload (package)=3 

𝐶𝐷𝑘
= drag coefficient of drone component 𝑘 [unitless] 

𝐴𝑘 = projected area of drone component 𝑘 [m2] 

𝑚𝑘 = mass of drone component 𝑘 [kg] 

𝛾 = maximum depth of discharge of the battery [unitless] 

𝑠𝑏𝑎𝑡𝑡 = specific energy of the battery (energy capacity per kg) [J/kg] 

𝑓 = safety factor to reserve energy in the battery for unusual conditions [unitless] 

𝑅 = maximum one-way distance of drone travel per battery charge [m] 

𝑃 = power required to maintain a steady drone flight [Watt=J/s] 

𝑃𝑎𝑣𝑖𝑜 = power required for all avionics on the drone (independent of drone motion) [Watt=J/s] 

𝑛 = number of rotors for a rotocopter drone [rotors] 

𝑁 = number of blades in one rotor for a rotocopter drone [blades] 

𝑐 = blade chord length [m] 

𝑐𝑑 = blade drag coefficient [unitless] 

𝜍 =  area of the spinning blade disc of one rotor [m2] 

𝛼 = drone angle of attack [radians] 

𝐸𝑝𝑚 = energy required for steady drone flight per unit distance [J/m] 
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3.3.2 Energy Models Using Integrate Approaches 

The seminal integrated model is provided by D’Andrea (2014) and is based on the 

ratio of lift-to-drag (𝑟 ), which translates the fundamental flight principles of manned 

aircraft to a model for the much smaller scale of unmanned aerial drones. This is a simple 

formula for calculating the power consumption (in kJ/s) required for the drone to maintain 

steady flight and operate on-board electronics in terms of the drone total mass, its speed, 

the lift-to-drag ratio, and the battery’s power transfer efficiency. The derivation of this 

model is given in Appendix 3.A. With no wind, D’Andrea (2014) provides the expression  

𝑃 =
∑ 𝑚𝑘𝑣3

𝑘=1

370𝑟𝜂
+ 𝑃𝑎𝑣𝑖𝑜 ,                                                   (1) 

where 𝑚𝑘 is the mass of drone component 𝑘 (𝑘 =1, 2, and 3 which correspond to drone 

body, drone battery, and payload (package), respectively), 𝑣  is the speed of the drone 

relative to the ground, 𝑃𝑎𝑣𝑖𝑜 is the power consumption of avionics, and the constant 370 

(370 = 3600/9.8) allows velocities to be expressed in km/h rather than meters per second. 

In this paper, we express all speeds in m/s if not otherwise specified, so the equivalent 

expression is  

𝑃 =
(∑ 𝑚𝑘

3
𝑘=1 )𝑔𝑣

𝑟𝜂
+ 𝑃𝑎𝑣𝑖𝑜.                                                (2) 

The energy consumed for steady flight over a distance 𝑑 is the power multiplied by the 

travel time 𝑑/𝑣, so the energy per meter of travel (𝐸𝑝𝑚) is the power divided by the speed 

𝐸𝑝𝑚 =
𝑃

𝑣
 ,                                                             (3) 

So, for D’Andrea (2014) including possible headwinds as indicated via the unitless factor 

𝜑 =
ℎ𝑒𝑎𝑑𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑

𝑑𝑟𝑜𝑛𝑒 𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑
, we have 

𝐸𝑝𝑚 =
1

1−𝜑
(

𝑔 ∑ 𝑚𝑘
3
𝑘=1

𝑟𝜂
+

𝑃𝑎𝑣𝑖𝑜

𝑣𝑎
),                                            (4) 
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where 𝑣𝑎 is the speed of the drone relative to the air, and 𝑣 = (1 − 𝜑)𝑣𝑎 . 

One example in D’Andrea (2014) with no headwind (𝜑 = 0), uses 𝑚1 = 𝑚2 =

𝑚3 = 2 kg, 𝑣𝑎 = 12.5 m/s (45 km/h), 𝑟 = 3, 𝜂 = 0.5 and 𝑃𝑎𝑣𝑖𝑜 = 100 J/s. This requires 

total power of 𝑃 = 590 J/s, or 𝐸𝑝𝑚 = 46.9 J/m. With an 8.33 m/s headwind (30 km/h) 

and other values as above, the energy consumption triples to 𝐸𝑝𝑚 = 140.8  J/m. In 

D’Andrea (2014), the avionics consume about 17% of the total power for steady flight. 

Without avionics, 𝐸𝑝𝑚 = 38.9 J/m when there is no headwind, and 𝐸𝑝𝑚 = 116.8 J/m 

with an 8.33 m/s headwind. 

The D’Andrea (2014) model has been used as a basis by several other researchers 

with variations in the parameters, including Troudi (2018), Figliozzi (2017), Lohn (2017), 

Xu (2017) and Gulden (2017). Troudi et al. (2018) use the same model as D’Andrea (2014), 

except they state that, “the consumption of the rest of the electrical equipment in the vehicle 

is insignificant in our study” (p.7), so they set 𝑃𝑎𝑣𝑖𝑜 = 0. The authors consider an MD4-

1000 drone with a battery of 1,040,400 Joules (289Wh), payload of  𝑚3 =  1.2  kg, 

maximum takeoff weight (𝑚1 +  𝑚2 +  𝑚3) of 5.55 kg, and speed 𝑣𝑎 = 13 m/s.  

Figliozzi (2017) extends the basic model from D’Andrea (2014) for “steady flight” 

to consider empty returns. This model does not include power for avionics (𝑃𝑎𝑣𝑖𝑜 = 0), 

models the lift-to-drag ratio as dependent on speed (with 𝑟(𝑣)), and provides a unitless 

parameter for battery recharging efficiency (𝜂𝑟). The overall energy consumption rate per 

unit distance (with no headwind) is given as 

𝐸𝑝𝑚 =
1

2
(

𝑔 ∑ 𝑚𝑘
3
𝑘=1

𝑟(𝑣)𝜂𝜂𝑟
+

𝑔 ∑ 𝑚𝑘
2
𝑘=1

𝑟(𝑣)𝜂𝜂𝑟
) .                              (5) 
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The first term in parentheses is the energy consumption rate with a package, and the second 

term is the energy consumption rate without a package on the return trip.   

The parameters used by Figliozzi (2017) are for a MicroDrones MD4-3000 and are 

as follows:  𝑚1 +  𝑚2 = 10.1 kg,  𝑚3 = 5 kg,  and the drone has a range of 36 km, though 

the paper suggests 70% of this, or 25 km, as the maximum range to provide a safety margin 

and allow for “unknown factors that can increase energy consumption such as headwinds”. 

The lift-to-drag ratio 𝑟(𝑣) is not specified; however the article reports an 𝐸𝑝𝑚 value of 

77.8 J/m “calculated utilizing manufacturer information” and an overall power efficiency 

product of 𝜂𝜂𝑟 = 0.9 ∗ 0.73 = 0.66 . From these values, the lift-to-drag ratio can be 

calculated in reverse as 𝑟 = 2.4. The article also assumes 𝐸𝑝𝑚 values for a future more 

efficient drone at 38.9 J/m (half of the baseline value) and for a drone in “adverse 

conditions” (e.g., high winds) at 116.7 J/m (50% above the baseline value). This article 

uses a battery of 2.8 million Joules (or 777Wh). 

The energy model used in the RAND Corporation studies (Lohn, 2017; Xu, 2017; 

Gulden, 2017) is based on D’Andrea (2014) and described in Lohn (2017). Lohn (2017) 

reports that for truck and drone delivery serving a city the size of Los Angeles (1500 km2) 

from a centrally located drone depot, the average energy use rate is 𝐸𝑝𝑚  =112.5 J/m 

(assuming uniformly distributed deliveries in a circular city). Xu (2017) models a complete 

drone delivery mission including ascending to 150 m of altitude, flying level at 22.2 m/s 

(80 km/h) into a 2.8 m/s (10 km/h) headwind and then descending to the delivery site, with 

30 seconds of hovering. The return trip is similar but without the payload and also includes 

flying into a 2.8 m/s (or 10 km/h) headwind. Results are provided for a baseline multicopter 

design based on an Amazon Prime Air VTOL drone with 8 lift rotors and 2 cruise motors 
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and the lift-to-drag ratio 𝑟 = 3. For this baseline hybrid drone (weighing 55 lbs with a 20 

mile range), Xu (2017) provides an energy consumption of 5.4 MJ for a 2.3 kg payload 

flying 32.2 km, resulting in 𝐸𝑝𝑚 = 168 J/m. Xu (2017) indicates for a small drone with 

an 8 km delivery range, the energy consumption would be 1.44 MJ for the same payload 

flying 16 km, resulting in 𝐸𝑝𝑚 = 90 J/m. He also considers an “advanced design” drone 

with future improvements in drone and battery design to achieve 𝑟 = 5.6, for which flying 

a 2.3-kg payload 32.2 km roundtrip provides 𝐸𝑝𝑚 = 29 J/m. 

3.2.3 Energy Models Using Component Approaches 

A different approach for modeling drone energy consumption is based on helicopter 

operations, with the assumption that the power consumed during level flight, takeoff, or 

landing is approximately equivalent to the power consumed while hovering. This model 

ignores the impact of drone speed on energy consumption. Dorling et al. (2017) provides 

a model for drone energy consumption based on hovering only (with the assumption that 

this is approximately equal to the energy for drone travel). During hover, the airspeed is 

zero, and the thrust balances the weight force, so 

𝑇 = 𝑔 ∑ 𝑚𝑘
3
𝑘=1  .                                                        (6) 

Based on helicopter theory (e.g., Leishman (2002)), the power required for the drone to 

hover is 

𝑃 =
𝑇3/2

√2𝑛𝜌𝜍
=

(𝑔 ∑ 𝑚𝑘
3
𝑘=1 )

3/2

√2𝑛𝜌𝜍
 ,                                              (7) 

where 𝜌 is the air density, 𝑛 is the number of rotors , and 𝜍 is the area of the spinning blade 

disc of one rotor.  

The 𝐸𝑝𝑚 can then be calculated as  
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𝐸𝑝𝑚 = 𝑃/𝑣𝑎 =
(𝑔 ∑ 𝑚𝑘

3
𝑘=1 )

3/2

𝑣𝑎√2𝑛𝜌𝜍
 .                                          (8) 

This does not include power for avionics or an adjustment for wind or power transfer 

efficiency 𝜂.  

Field tests conducted with the Hexa-B drone with no payload showed that hovering 

consumed 2.3% more power than steady flight at 6 m/s, and 4.7% more power than 

repeated altitude changes (vertical flight) from 0 to 25 m. Field test data while hovering 

with small payloads of 0.5-1.5 kg provided very different, and much larger power 

consumption levels than the theoretical model of eq. (7) (4.5 to 5 times larger!). 

 The authors also approximate the hover power consumption as a linear function of 

the battery and payload weight for an ArduCopter Hexa-B drone with 𝑛 =  6, 𝜍 = 0.2 m2, 

and a frame weight 𝑚1 = 1.5  kg as   

𝑃 = 𝛽1(𝑚2 + 𝑚3) + 𝛽0 ,                                                    (9) 

where 𝛽1 is the power consumed per kilogram of battery and package weight, and 𝛽0 is the 

power required to keep the drone frame of mass 𝑚1 in the air. Values of 𝛽1 = 46.7 J/s-kg 

and 𝛽0 = 26.9  J/s were generated from eq.(7) using linear regression with 𝑚2 + 𝑚3 

ranging from 0 to 3 kg in increments of 0.001 kg. Regression parameters for eq.(9) based 

on the field tests with small payloads provide much larger values of 𝛽1 and 𝛽0,   

𝐸𝑝𝑚 = 𝑃/𝑣𝑎 = [217(𝑚2 + 𝑚3) + 185]/𝑣𝑎                                (10) 

𝐸𝑝𝑚 = 𝑃/𝑣𝑎 = [171(𝑚2 + 𝑚3) + 187]/𝑣𝑎                                (11) 

for a large 14.8 V battery and a small 11.1 V battery, respectively.  

Jeong et al. (2019) adopt Dorling’s hovering model for a MikroKopter MK8-3500 

drone. They present a linear regression equation for power based only on payload mass, 

and state the “proposed energy consumption model provides realistic values that are 
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analogous to the experiment result”; however they do not provide any parameter values for 

the model.  

Because drones are very complicated flying vehicles subject to many different 

dynamic forces, detailed modeling of drone performance is not nearly as straightforward 

as modeling other delivery vehicles such as trucks. Stolaroff et al. (2018) provide a model 

based on the fundamental forces of flight, and also conduct field testing of drones. 

Fundamental forces opposing flight include the weight force of the aircraft (due to gravity) 

and the drag forces in the direction opposing the direction of travel. The two main drag 

forces acting on aircraft are parasite drag from the aircraft moving through the atmosphere 

and induced drag from redirecting the airflow to create the lift that keeps the aircraft aloft. 

Power is required to create the lift and thrust that overcome the weight and drag forces. For 

a hovering rotocopter, Stolaroff et al. (2018) provide the same power model as Dorling et 

al. (based on helicopters) in equation (7). But for forward flight, Stolaroff et al. (2018) 

present a model for thrust 

𝑇 = 𝑊 + 𝐷 = 𝑔 ∑ 𝑚𝑘
3
𝑘=1 +

1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 𝑣𝑎

2 ,                          (12) 

where the first term reflects the total drone weight and the second term is the parasite drag 

force, which depends on the drag coefficient 𝐶𝐷𝑘
 and the projected area perpendicular to 

travel 𝐴𝑘 of each drone component (airframe, battery and payload). Note that when the 

drone hovers, the airspeed equals zero (𝑣𝑎 = 0) and so 𝑇 = ∑ 𝑚𝑘𝑔3
𝑘=1 , as in eq. (7). 

With forward flight, or heavy wind, Stolaroff et al. (2018) use a power consumption 

formula adapted from Hoffman et al. (2007) 

𝑃 =
𝑇(𝑣𝑎𝑠𝑖𝑛𝛼+𝑣𝑖)

𝜂
 ,                                                        (13) 
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where 𝛼 is the angle of attack (i.e., the angle of the airspeed to the drone rotor) and 𝑣𝑖 is 

the induced speed, which can be found by solving (numerically) 

𝑣𝑖 =
𝑔 ∑ 𝑚𝑘

3
𝑘=1

2𝑛𝜌𝜍√(𝑣𝑎𝑐𝑜𝑠𝛼)2+(𝑣𝑎𝑠𝑖𝑛𝛼+𝑣𝑖)2
 .                                          (14) 

 The angle of attack 𝛼 is given by 

𝛼 = 𝑡𝑎𝑛−1 (
1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

2

𝑔 ∑ 𝑚𝑘
3
𝑘=1

) .                                             (15) 

For large values of 𝛼 the drone may become unstable, so in practice 𝛼 may be limited to 

maintain stable flight (Ai, 2019; DJI website, 2020). The overall energy per meter is then 

given as   

𝐸𝑝𝑚 =
𝑇(𝑣𝑎𝑠𝑖𝑛𝛼+𝑣𝑖)

𝑣𝑎𝜂
 ,                                                       (16) 

with 𝛼 from eq. (15) and 𝑣𝑖 being the solution of eq. (14). Empty returns are assumed. 

Stolaroff et al. (2018) consider a small quadcopter of total mass 2.57 kg, including 

a 0.5 kg payload (3D Robotics’ Iris), and a larger octocopter of total mass 24 kg, including 

a 7 kg payload (Turbo Ace’s Infinity 9). Field measurements consisting of 1073 flight 

segments with the small quadcopter in moderate winds (up to 7 m/s at random orientation 

to the direction of travel) are used to set some parameter values, including the power 

transfer efficiency 𝜂 = 0.7. See Stolaroff et al. (2018) for details and all parameter values.  

Stolaroff et al. (2018) also model the maximum range of a drone assuming that the 

drone carries the payload in one direction only (i.e., 𝑚3 = 0 on the return trip). This is 

expressed as a function of the battery mass (𝑚2), battery energy capacity per kg (𝑠𝑏𝑎𝑡𝑡), 

the depth of battery discharge (𝛾), a battery safety factor 𝑓 (assumed to be 1.2), and the 

energy consumption rate carrying the payload 𝐸𝑝𝑚𝑙𝑜𝑎𝑑𝑒𝑑  and on the empty return 

𝐸𝑝𝑚𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑 
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𝑅 =
𝑚2𝑠𝑏𝑎𝑡𝑡𝛾

(𝐸𝑝𝑚𝑙𝑜𝑎𝑑𝑒𝑑+𝐸𝑝𝑚𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑)𝑓
  .                                         (17) 

Liu et al. (2017) provide a more comprehensive and detailed energy consumption 

model for small quadrotor UAVs. The model has three components: (i) induced power to 

maintain lift, which is a function of the thrust and the vertical drone speed, (ii) parasite 

power as in Stolaroff et al. (2018), and (iii) profile power to overcome the rotational drag 

encountered by propeller blades, which is a function of the thrust and the airspeed (see 

Rotaru and Todorov (2017) for related details on power requirements for helicopters).  

The parasitic power is the same as in Stolaroff et al. (2018) and is given by 

 ∑
1

2
𝜌𝑣𝑎

3𝐶𝐷𝑘
𝐴𝑘

3
𝑘=1 , although the authors do not explicitly consider the drag forces for the 

battery and the payload. The other two power components depend on the thrust, which is 

given by  

𝑇 = √(𝑔 ∑ 𝑚𝑘
3
𝑘=1 − 𝑐5(𝑣𝑎𝑐𝑜𝑠𝛼)2)2 + (

1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

2)
2

 ,                    (18) 

where the term 𝑔 ∑ 𝑚𝑘
3
𝑘=1  is the weight to be lifted, the term 𝑐5(𝑣𝑎𝑐𝑜𝑠𝛼)2 reflects the lift 

generated from horizontal movements (likely to be especially important for hybrid drones 

with lifting surfaces), and the last term is again the parasitic drag. For a drone in steady 

level flight, the 𝐸𝑝𝑚, based on the total power from equation (14) in Liu et al. (2017), is   

𝐸𝑝𝑚 =
𝜅1

√2𝑛𝜌𝜍

𝑇3/2

𝑣𝑎
+

1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

2 + 𝑐2
𝑇3/2

𝑣𝑎
,                            (19) 

where the first term reflects the induced power, the second term reflects the parasitic power 

and the last term reflects the profile power, with parameter 𝑐2 depending on the air density 

and details of the rotors (including the efficiency of converting rotor angular speed to thrust, 

the number of blades in each propeller, the blade chord width, drag coefficient, and length).  

Based on field testing, Liu et al. (2017) report that with a 1.43-kg 3DR IRIS+ quadcopter, 
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𝜅1 = 0.8554  and 𝑐2 = 0.3177  (m/kg)1/2. Note that including the profile power in the 

component model requires detailed information on the drone rotors and motors (for 

calculating 𝑐2). 

Field tests of ascending/descending flight reported in Liu et al. (2017) showed that 

ascending takes 9.8% more power than hovering, and descending takes 8.5% less power 

than hovering. Di Franco and Buttazzo (2015) found similar results from field experiments 

with a 1.3 kg IRIS quadcopter. The most involved field experiment in Liu et al. (2017) 

required the drone with no payload to ascend to 70 m, then fly a horizontal rectangular loop 

for about 550 m, and descend and land back at the origin. Comparing the computed power 

and estimated power from the proposed models, results show that the model 

underestimated the energy consumed in ascending by 10.7%, underestimated the energy 

consumed in horizontal flight by 16.3%, and overestimated the energy consumed in 

descending by 2.2%. For the total flight, the model underpredicted the energy consumed 

by 11.4%. Because the horizontal portion of flight was small (550 m), ascending and 

descending consumed 39% of the total energy for the flight. If the performance for 

horizontal flight was extended to a 10 km horizontal trip, then ascending and descending 

would consume only 3.4% of the total trip energy. For the rectangular loop trip (of 

approximate length 712 m), the reported modeled energy consumption of 1.23×104 J for 

the horizontal flight portion equates to about 𝐸𝑝𝑚 = 17.3 J/m.  

Kirschstein (2020) provides a component model originally from Langelaan et al. 

(2017) based on an idealized delivery process (like Xu (2017)) with takeoff and ascent at 

45° to a cruising altitude (150 m), level flight, descent (at 45°) with hovering, then landing 

for delivery. The return is similar but without the payload. Like Liu et al. (2017) the model 
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includes energy consumed for induced power, parasite power, and profile power; but the 

model also includes power for climbing and avionics, and adjustments for power losses 

due to the electric motor, transmission and charging efficiencies. For steady flight, 

Kirschstein (2020) uses a thrust of 

𝑇 = √(𝑔 ∑ 𝑚𝑘
3
𝑘=1 )2 + (

1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

2)
2

+ 𝜌(∑ 𝐶𝐷𝑘
𝐴𝑘

3
𝑘=1 )𝑣𝑎

2𝑚𝑔 sin 𝜃,  (20) 

where the flight angle 𝜃 allows ascending and descending to be modeled. For hovering (i.e., 

𝑣𝑎 = 0), the thrust reduces to 𝑔 ∑ 𝑚𝑘
3
𝑘=1 . Kirschstein’s general energy model is detailed 

in Appendix 3.B and the 𝐸𝑝𝑚 for steady level flight (i.e., 𝜃 = 0) with no wind can be 

written as 

𝐸𝑝𝑚 =
1

𝜂
(

𝜅𝑇𝑤

𝑣𝑎
+

1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

2 +
𝜅2(𝑔 ∑ 𝑚𝑘

3
𝑘=1 )

1.5

𝑣𝑎
+ 𝜅3(𝑔 ∑ 𝑚𝑘

3
𝑘=1 )0.5𝑣𝑎) +

𝑃𝑎𝑣𝑖𝑜

𝜂𝑐𝑣𝑎
 .  

(21) 

The first term in the 𝐸𝑝𝑚 is for induced power with 𝜅 being the “lifting power markup” 

and 𝑤 the “downwash coefficient” (See Kirschstein (2020) for details). The second term 

in the 𝐸𝑝𝑚 is for parasite drag (as in Liu et al. (2017) and Stolaroff et al. (2018)). The third 

and fourth terms are for profile power where constants 𝜅2  and 𝜅3  reflect details of the 

rotors and environment (as in Liu et al. (2017)). The last term in the 𝐸𝑝𝑚 is for avionics. 

Kirschstein (2020) provides analyses for delivery in an urban region (comparing 

drones with diesel and electric trucks) with large octocopter drones (𝑚1+𝑚2 = 12 kg) that 

carry a 2.5 kg payload (𝑚3 = 2.5 kg), travel at 22.2 m/s, have a flight radius of 9 km (and 

the trips include 5 minutes of hovering), power transfer efficiency 𝜂 = 0.73 , battery 

charging efficiency 𝜂𝑐 = 0.9 and 𝑃𝑎𝑣𝑖𝑜 = 100 J/s (as in D’Andrea (2014)). For this drone, 
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the constants in eq.(20) are: 𝜅 = 1.15 , 𝜅2 =  0.502 and 𝜅3 = 0.118 ; and the loaded 

𝐸𝑝𝑚 =  131.5 J/m. 

Several authors have developed drone power and energy models for problems 

focused on drones used in wireless communication networks. These models are not for 

delivery drones, but rather consider drone energy consumption as it impacts the 

performance and endurance of drones in communication systems. See Appendix 3.C for 

brief discussion of these models.  

3.2.4 Energy Models Using Other Approaches 

Drone travel models generally impose a fixed time or distance limit constraint to 

reflect the drone’s limited battery capacity. Much of the research assumes a constant rate 

of energy consumption per unit time or unit distance, so that drone energy consumption is 

modeled as a linear function of time or distance traveled (e.g., Ferrandez et al., 2016; ; Ha 

et al., 2018; Moore 2019; Huang et al., 2020). However, there is considerable variance in 

the assumed consumption values; for example, Ferrandez et al. (2016) use a value of 46.1 

J/m (based on a 2013 Amazon delivery drone carrying 5 lbs packages at 70 km/h), while 

Moore (2019) uses 223.7 J/m (based on field tests with a DJI Matrice 600 Pro by the U.S. 

Department of Energy 2019, 2020). Rather than using a single fixed energy consumption 

rate, Goodchild and Toy (2018) consider energy consumption rates ranging from 22-223 

J/m (10-100 Wh/mile) to assess the sensitivity of the research findings to the energy 

efficiency of drones. Their results show how the emissions benefits of drones relative to 

trucks strongly depend on the drone energy consumption rate; however, they do not suggest 

a particular energy consumption rate to use.  
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A final approach to modeling drone energy consumption is with regression based 

on field experiments, as in some articles previously mentioned. Tseng et al. (2017a, 2017b) 

present a nine-term nonlinear regression model for drone power use that includes 

horizontal and vertical speeds and acceleration, as well as payload mass and wind speed, 

and provides a good fit to the reported field data. The regression model for steady flight 

with no wind reduces to 𝑃 = 𝛽1𝑣𝑎 + 𝛽7𝑚2 + 𝛽9 . They collected data to estimate the 

parameters based on test drone flights using a 3DR Solo drone (weighing 2 kg) with small 

payloads of 0 kg, 0.25 kg, and 0.5 kg, and a DJI Matrice 100 drone (weighing 2.8 kg) with 

small payloads of 0 kg, 0.3 kg, and 0.6 kg. The regression equation for 𝐸𝑝𝑚 in Tseng et al. 

(2017b) and Tseng (2020) for steady flight with speeds up to 5 m/s and no wind for the 

larger DJI Matrice 100 drone is 

𝐸𝑝𝑚 =
𝑃

𝑣𝑎
= −1.526 +

0.220𝑚2+433.9

𝑣𝑎
 ,                               (22) 

and for the smaller 3DR Solo drone it is 

𝐸𝑝𝑚 = −2.595 +
0.197𝑚2+251.7

𝑣𝑎
 .                                       (23) 

Murray and Raj (2020) design truck-drone tandem delivery routes with a three-

phase heuristic and is the only reference to consider multiple drone energy models, 

including the model of Liu et al. (2017), a simple regression model that is linear in payload, 

and other models with a fixed distance or time limit (essentially modeling energy 

consumption as a linear function of drone travel distance or time). Relevant findings for 

our study were that (i) the different energy models can produce very different routes, with 

several energy models leading to the creation of energy infeasible drone routes, and (ii) it 

is important to include the energy consumed outside the steady level flight portion of a 
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delivery trip (e.g., for launch, retrieval and  delivery), especially for any hovering needed 

for coordination with a truck or other drones prior to landing. 

3.4 Analysis and Results 

In this section, we compare results for key drone energy models described in 

Section 3.3 to explore the interrelated aspects of payload mass, speed, energy consumption 

per meter and maximum drone range. The energy use and drone range are outputs 

determined by (i) specifics of the drone and the battery modeled, (ii) operations, 

specifically speed and payload mass, and (iii) energy adjustments, such as, wind, avionics, 

and energy loss. Table 3.3 summarizes the 11 drone energy models examined in Section 

3.3, arranged in order of increasing drone weight. These are the baseline models presented 

in each reference (extensions to these models are presented later in Table 3.4).  

Columns 1-2 provide the color and ID used in later figures. The first part of the ID 

(1 or 2 characters) indicates the reference and model, where DH and DR respectively 

indicate the theoretical hovering and the regression models in Dorling et al. (2017), and T1 

and T2 indicate the two regression models from Tseng et al. (2017b). The second part of 

the ID is the number of rotors for the drone or the drone type. The third part of the ID 

indicates the drone size, with “L” for light drones (<4 kg), “M” for medium drones (4-15 

kg) and “H” for heavy drones (>15 kg). Note that the majority of models are for small 

rotocopter drones with small payloads. Column 3 identifies the reference. Column 4 

describes the model type (integrated, component or regression) as discussed in Section 3. 

Columns 5-8 provide information on the drone type, mass and airspeed for the baseline 

setting in the reference. Column 9 is the equation number in this paper for 𝐸𝑝𝑚. Column 

10 indicates if parameters in the equation were set based on field experiments with a 
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particular drone. Each of these articles provides at least one data point for 𝐸𝑝𝑚 based on a 

particular drone model, with the regression models based on multiple data points.    
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Table 3.3. Key drone energy models  

Color ID Reference  
Model 

Type1 
Drone Type (index) 

𝑚1 + 𝑚2 

(kg) 

Payload used 

in results (kg) 

Airspeed 

 𝑣𝑎 (m/s) 

Equation for 

𝐸𝑝𝑚 

Field tests 

to set 

parameters 

Blue L-4-L 
Liu et al. 

(2017) 
C Quadcopter (4) 1.46 (L) 0 8-23 (18-19) X 

Blue S-4-L 
Stolaroff et al. 

(2018) 
C Quadcopter (4) 2.07 (L) 0.5 10 (12-16) X 

Blue DH-6-L 
Dorling et al. 

(2017) 
C Hexacopter (6) 2 (L) 1 62 (8)  

Blue DR-6-L 
Dorling et al. 

(2017) 
R Hexacopter (6) 2 (L) 0 – 1 6 (10) X 

Blue T1-4-L 
Tseng et al. 

(2017b) 
R Quadcopter (4) 2 (L) 0 – 0.5 0-5 (22) X 

Blue T2-4-L 
Tseng et al. 

(2017b) 
R Quadcopter (4) 2.8 (L) 0 – 0.6 0-5 (23) X 

Blue A-G-L 

D'Andrea 

(2014) I General (G) 4 (L) 2 12.5 (4)  

Orange F-4-M 
Figliozzi 

(2017) 
I Quadcopter (4) 10.1 (M) 5 unknown (5)  

Orange K-8-M 
Kirschstein 

(2020) 
C Octocopter (8)  12 (M) 2.5 22.2 (20-21)  

Red S-8-H 
Stolaroff et al. 

(2018) 
C Octocopter (8) 17 (H) 7 10 (12-16) X 

Red X-H-H Xu (2017) I Hybrid-current (H) 25(H) 2.3 22.2 
Not 

available3 
 

 

1C = component model; R = regression model; I = integrated model 
2the setting in Dorling et al. (2017) uses a drone speed of 6 m/s although the energy equation (8) does not include speed 
3based on D’Andrea (2014) 
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3.4.1 𝑬𝒑𝒎 Results from the Literature 

Figure 3.3 shows a graph of 𝐸𝑝𝑚 versus payload mass for the models in Table 3.3 

using the parameter values and setting in the reference. There are three short lines for the 

regression models (DR-6-L, T1-4-L, T2-4-L), and one point each for the other eight models. 

We emphasize that these data are for the specific drone and the setting considered in each 

reference (i.e., the drone size, payload and speed shown in Table 3.3) in steady level flight 

with no wind or avionics, with the exception of Xu (2017) which includes a complete flight 

profile (ascent, level flight, hovering and descent on the forward and return trip). Xu (2017) 

does not provide a model that allows the steady level flight portion of the trip to be 

extracted (although the steady level flight for the baseline model in Xu (2017) would be 

98.8 J/m if steady level flight accounted for the same percentage of the total energy as in 

Kirschstein (2020), which uses a similar trip profile). 

The purpose of Figure 3.3 is to document the wide range of energy consumption 

values reported in the literature for essentially the same delivery mission, albeit with 

payloads that range from 0-7 kg. As expected, the general trend is that larger (heavier) 

drones and payloads have larger 𝐸𝑝𝑚 values; however, the range of 𝐸𝑝𝑚 values varies 

substantially, both across the payloads and for similar payloads. The models for light 

drones with payloads ≤1 kg (and airspeeds ≤6 m/s) cluster in the lower left of Figure 3 with 

𝐸𝑝𝑚 values ranging from 16 J/m to 107 J/m. The 𝐸𝑝𝑚 for drones with payloads of 2-5 kg 

(and airspeeds of 12-23 m/s) range from 39 J/m to 168 J/m, though as noted above X-H-H 

includes a complete delivery profile. The S-8-H model for the drone with the largest 

payload (7 kg) provides by far the largest 𝐸𝑝𝑚 of 436 J/m, which is more than 5 times 

larger than the energy for the drone with the next largest payload (the F-4-M model with a 
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5 kg payload). While Figure 3.3 displays 𝐸𝑝𝑚 values from the models or field tests for the 

baseline setting described in the corresponding article, these models could be used for other 

delivery settings, such as delivering lighter payloads. For example, using the Stolaroff et 

al. (2018) heavy drone S-8-H model with a small 2 kg payload would reduce the 𝐸𝑝𝑚 to 

322 J/m, which is still well above the values reported for the other models with similar 

payloads.  

Key findings revealed by Figure 3.3 are: (i) the energy consumption rates reported 

in the literature for steady level flight vary substantially with the payload, from under 20 

J/m to over 400 J/m for payloads up to 7 kg; and (ii) with similar payloads the energy 

consumption models differ by factors of several hundred percent. Other drone research that 

does not employ an energy model, but uses a fixed value for 𝐸𝑝𝑚, such as Ferrandez et al. 

(2016) (46.1 J/m), Moore (2019) (223 J/m) or Goodchild and Toy (2018) (23-223.1 J/m) 

also show a very wide range of energy consumption rates. This documents the lack of 

consensus in energy efficiency of drones, and has important implications when drawing 

conclusions from modeling drone operations.  
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Figure 3.3. 𝐸𝑝𝑚 results from baseline models in Table 3.3  

Some of the references in Table 3.3 consider adjustments to the baseline energy 

consumption rates due to factors such as wind and weather, avionics, flight profiles and 

future advances in technology. Tables 3.4 summarizes the 𝐸𝑝𝑚 values for these adjusted 

models from four of the references. The first row in each grouping for the same reference 

reflects the baseline setting (no avionics, or wind), with the other rows showing 

adjustments for various additional conditions. The format of the Table is similar to Table 

3.3, but with column 3 added to show the additional considerations, column 8 reporting the 

𝐸𝑝𝑚 values and column 9 showing the percentage change from the baseline.  

The first three rows for the D’Andrea (2014) model show the moderate increase 

(20%) in 𝐸𝑝𝑚 due to avionics, and the very large increase (261%) from including a strong 

wind (30 km/h). The next three rows show the assumed 50% increase in 𝐸𝑝𝑚 in Figgliozzi 

(2017) due to “adverse weather”, and the assumed 50% reduction for a future advanced 
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drone. The next four rows for Kirschstein (2020) show a very small increase (3.4%) in 

𝐸𝑝𝑚 from avionics, a very large increase (129%) due to strong winds of 45 km/h, and a 

substantial increase (70%) by having both moderate winds (10 km/h) and modeling energy 

for a complete flight profile. The final three rows for Xu (2017) show the very large 

increase in 𝐸𝑝𝑚 of 213% from using a larger drone with a 9.2 kg payload (and a shorter 

range due to using a fixed battery size), and a hypothetical large reduction in Epm of 83% 

from future advances in drones (especially in improving the lift-to-drag ratio). 

Table 3.4 shows that incorporating more realistic conditions (e.g., especially high 

winds) and a complete delivery profile (beyond just steady level flight) increases the 𝐸𝑝𝑚 

substantially, in several cases over 100%. This suggests that using 𝐸𝑝𝑚 values for steady 

level flight may significantly underestimate the total energy consumption of a drone trip. 

On the other hand, two researchers suggest that future developments have the potential to 

substantially reduce the energy requirements for drone travel. While future drone 

technology developments are difficult to predict, the large impact of strong winds on 

energy consumption is an area that needs further research, especially with field 

measurements in real operating environments. Some drone applications may allow flexible 

timing (such as inspections) to avoid wind and bad weather, while other applications (home 

delivery or surveillance) may have very limited time flexibility.   
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Table 3.4. Key drone energy models with additional conditions 

ID Reference  
Additional conditions to 

baseline 

𝑚1 + 𝑚2 
(kg) 

Payload used 

in results (kg) 

Airspeed 𝑣𝑎  
(m/s) 

Range1 

(km) 
𝐸𝑝𝑚 
(J/m) 

% 𝐸𝑝𝑚 

increase to 

baseline 

A-G-L D'Andrea (2014) 

Baseline 

4 (L) 
 

   39.2 - 

Avionics 2 12.5 10 47.2 20.0% 

Wind (30 km/h), avionics    141.6 261% 

F-4-M Figliozzi (2017) 

Baseline 

10.1 (M) 
 

5 unknown 25 

77.8 - 

Adverse weather 116.7 50.0% 

Advanced drone 38.9 -50.0% 

K-8-M Kirschstein (2020) 

Baseline 

12 (M) 2.5 22.2 9 

127.2 - 

Avionics 131.5 3.38% 

Wind (45 km/h), avionics 300.6 129% 

A complete flight profile 

with wind (10 km/h) & 

avionics 

216.4 70.1% 

X-H-H Xu (2017) 

Baseline: a complete 

flight profile with wind 

(10 km/h) & avionics 

25.0 (H) 2.3 

22.2 

16.1 168.0 - 

Large drone  70.8 (H) 9.2 12 525.0 213% 

Advanced drone 5.2 (M) 2.3 16.1 29.0 -82.7% 

1range = half of the round-trip distance. 
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In summary, the published literature on drone energy consumption shows a strong 

lack of consensus (and standards) on the appropriate energy consumption rates, even for 

similar drone sizes and operations. The lack of consensus shown in Figure 3.3 is further 

amplified by the results in Table 3.4 from including additional practical considerations. 

The energy consumption estimates of drones vary substantially from under 20 J/m to over 

500 J/m. Because these differences are partly due to the different drones (e.g., different 

sizes, motor and rotor details, etc.) and settings (speed, payload, wind, etc.) employed, and 

partly due to the different model structures, in the following section we compare the models 

in a common setting with a common set of data reflecting two prototypical drones. 

3.4.2 𝑬𝒑𝒎 Results Using a Common Drone and Operational Setting 

To assess the drone energy consumption models from the literature on a common 

basis, we evaluate five fundamental modeling approaches discussed in Section 3.3 using 

common drone design parameters and a common operational setting, where the payload 

and speed are allowed to vary. The modeling approaches are identified in Table 3.5, along 

with the key reference and the equation(s) for 𝐸𝑝𝑚. The first model, denoted LD, is the 

integrated model with a lift-to-drag ratio, based on eq.(4) from D’Andrea (2014). The 

second model, denoted RH, includes the energy use for rotocopter hovering only, as in 

eq.(8) from Dorling et al (2017). The third model, denoted R2, includes two rotocopter 

energy components to overcome the induced drag and parasite drag, as in Stolaroff et al. 

(2018). The fourth model, denoted R3, includes three rotocopter energy components, as it 

adds the profile drag to the induced and parasite drag, as in Kirschstein (2020). The final 

model, denoted LR, is the regression model from Tseng (2017b) that provides 𝐸𝑝𝑚 as a 

function of payload mass and airspeed.  
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Table 3.5. Five fundamental models for drone energy consumption of steady level 

flight 

Model  
Key 

Reference 
𝐸𝑝𝑚   

LD 
D’Andrea 

(2014) 

∑ 𝑚𝑘𝑔3
𝑘=1

𝑟𝜂
 

RH 
Dorling et 

al. (2017) 

(∑ 𝑚𝑘
3
𝑘=1 𝑔)3/2

𝜂𝑣𝑎√2𝑛𝜌𝜍
 

R2 
Stolaroff et 

al. (2018) 

𝑇(𝑣𝑎𝑠𝑖𝑛𝛼 + 𝑣𝑖)

𝑣𝑎𝜂
 

where 𝑇 = ∑ 𝑚𝑘𝑔3
𝑘=1 +

1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 𝑣𝑎

2  and 𝑣𝑖  is found from solving 

equations (14-15)  

R3 
Kirschstein 

(2020) 

1

𝜂
(

𝜅𝑇𝑤

𝑣𝑎

+
1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘

3

𝑘=1
𝑣𝑎

2 +
𝜅2(∑ 𝑚𝑘

3
𝑘=1 𝑔)1.5

𝑣𝑎

+ 𝜅3 (∑ 𝑚𝑘𝑔

3

𝑘=1

)

0.5

𝑣𝑎) 

where 𝑇 = √(∑ 𝑚𝑘𝑔3
𝑘=1 )2 + (

1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 𝑣𝑎

2)
2

 and 𝑤 is from solving 

equation (B2)  

LR 
Tseng 

(2017b) 

−2.595 +
0.197𝑚2 + 251.7

𝑣𝑎

 

(for small payloads and speeds less than 5 m/s) 

 

To compare the different modeling approaches on a common basis we use the set 

of parameters shown in Table 3.6 (based in part on those in Stolaroff et al. 2018). 

Environmental parameters (e.g., gravity, air density, etc.) independent of drone design are 

fixed to the common values shown in Panel 1 of Table 3.6. To model small and large drones, 

we use the associated parameters values shown in Panel 2 of Table 3.6. The first set of 

parameters in column 3 of Panel 2 is associated with a small quadcopter drone capable of 

carrying a payload of 0.5 kg, such as might be used for medicine deliveries. The second set 

of parameters in column 4 of Panel 2 is associated with a larger octocopter drone capable 

of carrying a payload of 7 kg, such as might be used for home delivery of consumer goods. 

For all models, we include a common value for the power transfer efficiency of the drone, 
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and we also assume empty returns so the 𝐸𝑝𝑚 values are the average of the loaded (with 

the payload) and unloaded (without the payload) 𝐸𝑝𝑚  values. We consider an 

environmental setting with no wind, and do not include energy consumption for avionics, 

vertical flight or hovering. We vary either the payload mass or the airspeed to explore their 

effects on 𝐸𝑝𝑚  and range. Thus, by using the same drone specification and flight 

conditions, we can document the 𝐸𝑝𝑚 and flight range variabilities due to the different 

model structures and assumptions (not due to different input data). The performance 

measures of interest are 𝐸𝑝𝑚 and flight range. Range is calculated from eq.(17) based on 

the 𝐸𝑝𝑚 calculated using the equations in Table 3.5. 
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Table 3.6. Parameter values used in drone energy use models in a common setting. 

Panel 1. Parameter values that are independent of drone type 

Term Symbol Value 

Air density [kg/m3] 𝜌 1.225 

Acceleration of gravity [m/s2] 𝑔 9.807 

Ratio of headwind to airspeed [unitless] 𝜑 0 

Empty return (1=yes; 0=no) 𝜙 1 

Specific energy of the battery [J/kg] 𝑠𝑏𝑎𝑡𝑡  540,000 

Battery power transfer efficiency (from battery to 

propeller) [unitless] 
𝜂 0.7 

Safety factor to reserve energy in the battery for 

unusual conditions [unitless] 
𝑓 1.2 

Maximum depth of discharge of the battery 

[unitless] 
𝛾 0.5 

Panel 2. Parameter values that depend on drone type 

Term Symbol Small Drone Large Drone 

Number of blades in one rotor [unitless] 𝑁 4 3 

Blade chord length [m] 𝑐 0.0157 0.1 

Blade lift coefficient [unitless] 𝑐𝑙 0.271 0.4 

Blade drag coefficient (depends on the airfoil) 𝑐𝑑 0.012 0.075 

Number of rotors [unitless] 𝑛 4 8 

Spinning area of one rotor [𝑚2] 𝜍 0.0507 0.027 

Mass of drone body [kg] 𝑚1 1.07 7 

Mass of battery [kg] 𝑚2 1 10 

Mass of payload [kg] 𝑚3 0.5 7 

Projected area of drone body [𝑚2] 𝐴1 0.0599 0.224 

Projected area of battery [𝑚2] 𝐴2 0.0037 0.015 

Projected area of payload [𝑚2] 𝐴3 0.0135 0.0929 

Drag coefficient of drone body [unitless] 𝐶𝐷1
 1.49 1.49 

Drag coefficient of battery [unitless] 𝐶𝐷2
 1 1 

Drag coefficient of payload [unitless] 𝐶𝐷3
 2.2 2.2 

Lift-to-drag ratio [unitless] 𝑟 3 3 

Power required for avionics [Watt=J/s] 𝑃𝑎𝑣𝑖𝑜  0 0 

Factor for induced power [unitless] 𝜅 1 1 

Factor for profile power (m/kg)1/2 𝜅2 0.790 0.683 

Factor for profile power associated with speed 

(m/kg)-1/2  
𝜅3 0.0042 0.0868 

Factor for parasite power with payload (kg/m) 𝜅4 0.075 0.339 

Factor for parasite power without payload (kg/m) 𝜅4 0.057 0.214 

Base case airspeed [m/s] 𝑣𝑎 10 10 
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3.4.2.1 Results for Small Drones 

In the small drone case, the delivery setting is a small quadcopter drone able to 

carry a payload up to 0.5 kg. We begin by examining the effect on 𝐸𝑝𝑚 of changes in the 

payload. Figure 3.4 shows for all models an approximately linear increase in 𝐸𝑝𝑚 with 

increased payload. Model LD provides the lowest 𝐸𝑝𝑚 values of about 10 J/m, with the 

RH model giving values about twice as large. The R2 and LR models give similar results, 

about 2.5 times the LD results. The largest 𝐸𝑝𝑚 comes from the more comprehensive R3 

model, where 𝐸𝑝𝑚 is 32-39 J/m. Note that a smaller lift-to-drag ratio in the LD model 

would provide very similar results to the other models, which implies that the LD model 

with 𝑟 = 3 is a more efficient drone than the others. The high energy consumption for the 

R3 model is in part due to it including the profile drag, while using the same power transfer 

efficiency (𝜂 = 0.7) as the other models. So, modelers could use a lower power transfer 

efficiency to reflect modeling of fewer components of power (e.g., a lower 𝜂 value could 

be used in R2 compared to R3 for not including the profile power directly in R2).  

 

Figure 3.4. Energy consumption rate versus payload for small drones. 
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Overall, Figure 3.4 shows the very wide variation in 𝐸𝑝𝑚  values for different 

modeling approaches (differing by a factor of 3) with the same drone operating in a 

common setting. These differences have strong implications for accurately modeling the 

energy and assessing the environmental impacts of drone delivery. These results also 

indicate that the selection of the lift-to-drag ratio 𝑟 and the power transfer efficiency 𝜂, 

both of which are difficult to assess without taking measurements in flight, can be crucial 

in accurately estimating drone energy consumption.  

Figure 3.5 shows the flight range for the five models as a function of the payload. 

As expected, the flight range decreases for all models as payload increases. The range 

decreases vary from 1.3 km (11%) for LD to 0.6 km (17%) for R3 when moving from no 

payload to 0.5 kg. The LD model provides the largest range of 10-12 km, and the other 

four models produce smaller ranges between 3-6 km, which are 28-50% of the range of the 

LD model. As with 𝐸𝑝𝑚, a smaller lift-to-drag ratio in the LD model, with 𝑟 between 1.5 

and 0.9 instead of 3, would produce range results between the lower limit from R3 and the 

upper limit from RH. As with 𝐸𝑝𝑚, the results show the large variability in ranges for the 

different models, and this has clear implications of the number of customers that could be 

served by drone, and the number of drone depots needed to serve a region.   
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Figure 3.5. Maximum range for small drones with payload varying from 0.0-0.5 kg 

Next, we fix the payload at 0.5 kg and allow the airspeed to vary from 1-25 m/s. 

Results for energy consumption and flight range are shown in Figures 3.6 and 3.7, 

respectively. The LR model is shown only for speeds up to 5 m/s as that is the relevant 

speed range for the regression (Tseng, 2017b). Note that 𝐸𝑝𝑚 of the LD model does not 

change with speed as it assumes the lift-to-drag ratio is constant. For all other models, the 

𝐸𝑝𝑚 is a decreasing function of airspeed for low speeds, with R3 providing the highest 

𝐸𝑝𝑚  and RH and R2 providing nearly identical lowest 𝐸𝑝𝑚  values (R2 and RH are 

remarkably similar for speeds up to 8 m/s). 𝐸𝑝𝑚 is a convex function of airspeed for the 

component models R2 and R3, as overcoming the parasite drag at high speeds requires a 

large increase in energy.  
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Figure 3.6. Energy consumption rate versus airspeed for small drones. 
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models follows a more complex pattern reflecting the convex 𝐸𝑝𝑚 graphs. The maximum 

range for the R2 and R3 models (which occurs with the energy-minimizing speed) is about 

4 km and 3 km, respectively, less than half the range from the LD model.  

 

Figure 3.7. Maximum flight range versus airspeed for small drones. 

We note that slower speeds quickly increase energy consumption, and the range for 

all models (except LD) falls quickly for slow drone speeds. For speeds below about 9 m/s, 
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efficient or more energy dense battery would increase the range. However, because the 
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3.4.2.2 Results for Large Drones  

This section considers the same analyses for a large drone able to carry payload up 

to 7 kg. For the LD model we retain the lift-to-drag ratio of 𝑟 = 3 from D’Andrea (2014). 

Because the LR regression model in Tseng et al. (2017b) was developed specifically for a 

small drone, we do not include that model in this section. Figures 3.8-3.11 provide results 

for the large drone energy consumption and flight range with models LD, RH, R2 and R3, 

similar to Figures 3.4-3.7 for the small drone. 

Figure 3.8 shows the 𝐸𝑚𝑝 versus payload results for the large drone with payloads 

up to 7 kg. As for the small drone, the 𝐸𝑝𝑚 increases linearly with payload, the LD model 

provides the lowest 𝐸𝑝𝑚 (80-96 J/m); the R3 model provides the largest 𝐸𝑝𝑚 (over 400 

J/m), about 5 times larger than that from the LD model; and the RH and R2 models provide 

very similar performance in between, and about 2-2.5 times the LD result. The 𝐸𝑝𝑚 

increases by 22-43% for the four models as the payload rises from 0 to 7 kg. The results 

show that using these large drones with small payloads requires about 6 times (for R2) to 

11 times (for R3) as much energy as using the corresponding model for a small drone 

(shown in Figure 3.4). The increased 𝐸𝑝𝑚 is mainly due to the increased drone weight 

(including battery), which shows the importance of using an appropriate drone for the items 

(and purpose of delivery). Overall, the results for large drones behave similarly to those for 

small drones, although the 𝐸𝑝𝑚 of R3 model is relatively much larger for the large drones.  
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Figure 3.8. Energy consumption rate versus payload for large drones. 
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Figure 3.9. Range versus payload for large drones. 
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m/s the 𝐸𝑝𝑚 values range from 96 J/m for LD, 235-243 for R2 and RH, to 539 for R3. 

Again, we note that the LD model uses much less energy, though adjusting the lift-to-drag 

ratio 𝑟 would produce results similar to the energy-minimizing values for the R2 and R3 

models.  

 

Figure 3.10. Energy consumption rate versus airspeed for large drones. 
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Figure 3.11. Maximum flight range versus airspeed for large drones. 
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sensitive to the choice of the lift-to-drag ratio and do not vary with airspeed. Thus, only 

with a properly calibrated lift-to-drag ratio (based on field experiments in the relevant 

setting) and operating airspeed will they provide accurate estimates of energy consumption. 

Models based only on energy consumption for drone hovering (like the RH model) may 

provide very good approximations at low airspeeds. However, at higher speeds they cannot 

capture the increased parasite drag that grows to dominate the energy consumption.  

Component models provide the most detail, but are the most difficult to develop and 

calibrate given the number of parameters involved. Component models capture the strong 

dependence of 𝐸𝑝𝑚  and range on airspeed, and allow identification of an energy-

minimizing airspeed. The two-component model (R2) and a three-component model (R3) 

highlighted the differences from modeling profile power directly and the importance of 

using a proper power transfer efficiency adjustment. All drone energy models include a 

power transfer adjustment to reflect losses due to a variety of sources, including battery 

charging efficiency, motor efficiency, drone blade performance, etc.; so it would be natural 

for a two component model to include a lower power transfer efficiency than a three 

component model to reflect power losses from the “missing” component. Our use of a 

common power transfer efficiency may explain in part the lower energy consumption for 

the R2 vs. R3 model.  

For published models, the energy consumption rate (𝐸𝑝𝑚) for steady level flight 

ranges from 16 J/m to over 400 J/m for different types of drones with different payloads. 

Even for small drones with payloads up to 1 kg, the literature provides 𝐸𝑝𝑚 values that 

differ by a factor of six. Note that many of these 𝐸𝑝𝑚 values reflect off-the-shelf drones 

(for both theoretical modeling and field experiments), not drones designed specifically for 
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package delivery, and thus may not reflect actual drone delivery operations. Furthermore, 

the large differences in 𝐸𝑝𝑚  values cannot be reconciled by using a common set of 

environmental, drone design and operating parameters. Even with the common sets of 

parameters, the energy consumption rate (𝐸𝑝𝑚) varies by a factor of 3-5 across the models 

(see Figures 3.4, 3.6, 3.8 and 3.10). The estimated drone flight ranges differ similarly for 

the models. 

Notably, published results for energy consumption from drone field tests often do 

not agree with results from theoretical energy models. We encourage modelers to account 

for the energy used in the entire drone delivery/trip profile (takeoff, ascent, hovering, 

descent, landing, and return), as well as for avionics and wind conditions to accurately 

estimate total energy consumption. There is a strong need for more field experiments to 

establish standards for drone energy consumption, analogous to vehicle fuel efficiency 

standards for trucks. This could include aggregate 𝐸𝑝𝑚 measures as well as parameter 

values for modeling various drone types, including new hybrid drones. Such a set of 

commonly accepted parameter values for effective delivery drones will be of great use in 

research on optimizing the design and operation of all types of drone operations, including 

delivery systems. 

As energy consumption is important to both drone cost and emissions, an important 

broad research area is to better link drone energy consumption models with route 

optimization and strategic drone delivery systems design to assess the tradeoffs between 

cost, energy, and emissions in drone delivery. For drones, the role of airspeed, as well as 

wind conditions, has a very important influence on energy consumption, more so than for 
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trucks and other ground delivery vehicles, and should also be included in energy use 

models. 

3.6 Conclusions 

In this study, we provide an assessment of key energy consumption models for 

drone delivery. We identify the important factors that influence drone energy consumption 

and discuss and highlight key similarities and differences in drone energy models. We also 

provide an understanding of why the energy consumption models differ from each other, 

and identify important parameters that contribute to these differences. Our results 

document wide differences in drone energy consumption rates, even for models of the same 

drones applied in common settings. The selection of the lift-to-drag ratio 𝑟 and the power 

transfer efficiency 𝜂, both of which are difficult to assess without taking measurements in 

flight, can be crucial in accurately estimating energy consumption for drones. 

The energy consumption differences we document have strong implications for 

accurately modeling the energy and environmental implications of all drone operations, 

including delivery. Given that the models can provide 𝐸𝑝𝑚 values that differ by a factor 

of 3-5 (or more), great care must be taken in translating results from transportation 

modeling (e.g., drone route modeling and optimization) to estimates and policy 

recommendations involving energy and emissions. The mixed research results regarding 

the energy and emissions efficiency of drone delivery are not surprising given the wide 

variability in energy consumption estimates produced from different 𝐸𝑝𝑚 models. This 

underscores the need for further research to build a consensus on accurate parameter values 

for different types of delivery drones and different settings. 
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Our goal is not to identify one preferred model, but rather to document the 

discrepancies between models and highlight the need for accurate calibration of whatever 

model is adopted. All models examined in this Chapter can produce similar results with an 

appropriate set of parameter values. Given the lack of widespread drone delivery operations 

that limit direct measurements in the field, it is not surprising there is no agreement on 

accurate parameter values in the academic research community. Further, with the rapid rate 

of evolution in drone technology, those parameter values will likely change frequently as 

the field matures, necessitating ongoing research.  

This research suggests a number of important areas for future research. Clearly, a 

better understanding of the accuracy of drone energy models is needed through comparing 

results to empirical data derived from comprehensive drone delivery field tests. These 

empirical tests might best be undertaken in a partnership between government agencies 

(e.g., the U.S. Department of Energy or EPA), academic institutions, and private sector 

firms. The importance of avionics and wind conditions on drone energy consumption is an 

area especially needing more attention, with particular care to the numbers, sizes and types 

of drones deployed. Future research can also help identify which type of model (complex 

or simple) is best in different settings, and whether or when more parsimonious models are 

“accurate enough” to use.  
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Chapter 4: Cost-Minimizing Drone Delivery Systems 

In chapter 3 we showed in depth the diverse drone energy consumption rates, which 

is one aspect of the uncertainties in drone delivery. In this chapter, we explore under what 

conditions will truck and drone delivery services provide lower delivery costs and how best 

to utilize each type of delivery service. A brief introduction is given in section 4.1. In 

section 4.2, we approximate the expected travel distances for each delivery service. Section 

4.3 approximates the expected delivery costs based on the expected travel distances. 

Section 4.4 examines the conditions that favor each type of delivery service by comparing 

the estimated costs of each delivery service. Selected performance measures are identified, 

defined and discussed in section 4.5. Section 4.6 presents the delivery system costs and 

modeling results for different operating settings. Conclusions are drawn in section 4.7. 

4.1 Introduction 

Incorporating drones into a conventional truck delivery system offers more delivery 

options as deliveries can be made by drone-only service, truck-only service, truck-drone 

service, or a combination of the three services. However, incorporating drones also 

complicates the optimal design of the delivery system.  

Suppose that items are to be delivered from a single depot to customers distributed 

over a compact delivery region. Each customer is assumed to demand one item (delivery) 

each day and is serviced by one of the following delivery services (or modes): drone-only 

delivery, truck-only delivery, or truck-drone delivery. We wish to design a delivery system 

that minimizes the delivery costs through the best utilization of the different delivery 

services.  
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To provide a strategic analysis for this problem, we assume the delivery region is 

circular with radius 𝑅, the depot is centrally located, and the customers are uniformly and 

randomly distributed with a spatial density of 𝛿  deliveries per unit area. Drones are 

assumed to have a capacity of delivering one item to one customer per drone trip, regardless 

of being used in drone-only delivery or truck-drone delivery, due to the current drone 

technology. The maximum drone flight range is 𝑅𝑑 (with 𝑅𝑑 ≤ 𝑅). Trucks used in truck-

only delivery and truck-drone delivery are assumed to have a capacity of 𝑚𝑡𝑜 and 𝑚𝑡𝑑 

items, respectively, which may be limited by the physical truck size, the desired service 

level (e.g., same-day delivery, 2-hour delivery), or regulations. We assume that the trucks 

are filled to full capacity and 𝑚𝑡𝑑 , 𝑚𝑡𝑜 ≫ 1 (both truck-only delivery and truck-drone 

delivery make many deliveries per truck route) and the number of customers in the region 

is large compared with 𝑚𝑡𝑑 and 𝑚𝑡𝑜 (there are many truck-only and truck-drone routes). 

Thus, the delivery region can be partitioned into multiple zones where there is one truck 

route covering each zone with the zone size determined by the capacity of the trucks and 

density of customers. For zones far from the depot, there is a linehaul travel distance that 

the truck travels from the depot to the delivery zone and back. For zones near (or that 

include) the depot, there is no linehaul travel. 

4.2 Modeling Expected Travel Distance 

The distances traveled are estimated using the continuous approximation (CA) 

method as described in Campbell et al. (2017), based on earlier work in Daganzo (1984a,b). 

Trucks are modeled to travel via the 𝐿1 metric for local travel and the 𝐿2 metric for linehaul 

travel, and drones are modeled to travel via the 𝐿2 metric (Murray and Chu, 2015; Carlsson 
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and Song, 2017). There are a few zones near the depot that would not require linehaul 

travel, and our models do not account for that lack of linehaul travel in those few zones.  

In the following models, we use subscripts “𝑑𝑜”, “𝑡𝑜”, and “𝑡𝑑” to denote the 

drone-only delivery, the truck-only delivery, and the truck-drone delivery, respectively. 

We use superscripts “𝑡” and “𝑑” to denote the truck and the drone portions of the truck-

drone delivery, respectively. 

4.2.1 Drone-only Travel Distance 

Drone-only delivery describes a delivery service where a drone departs from a 

central depot, makes one delivery, and returns back to the depot. The distance traveled to 

a customer delivery located 𝑑 units of distance from the depot is easily computed as the L2 

distance of the drone flying from the depot to the customer location and returning, which 

gives the drone travel distance per delivery for drone-only service, 𝑉𝑀𝑇𝐷𝑑𝑜 , (Vehicle 

Miles Traveled per Delivery=VMTD) for a customer at distance 𝑑 of  

𝑉𝑀𝑇𝐷𝑑𝑜 = 2𝑑,                                                       (4.1) 

where 𝑑 is within the flight range of the drone, i.e., 𝑑 ≤ 𝑅𝑑. For customers located beyond 

the maximum flight range of the drone, they cannot be served by the drone. 

4.2.2 Truck-only Travel Distance 

Truck-only delivery is the conventional delivery service where a truck departs from 

the depot, visits a number of customers along a route delivering one item to each customer, 

and then returns back to the depot. Extensive efforts have been devoted to estimating and 

minimizing the distance for a vehicle route that visit all customers, which is the well-known 

traveling salesman problem. However, we would like to estimate the distance traveled to a 
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customer located 𝑑 units of distance from the depot. An intuitive approach is to formulate 

the total expected distance of a truck route and then divide it by the total number of 

customers visited on the route. 

To estimate travel distance and also be applicable to truck-drone delivery, we adopt 

the expected distance approximation method using a delivery swath described in Campbell 

et al. (2017) and Daganzo (1984). The idea is to form a delivery zone of customers located 

near each other to be serviced in a single route, then have a truck travel along a swath of 

width w and visit all customers in the zone in order along the swath, like that shown in 

Figure 4.1. The zones are assumed to be compact and can be covered by a swath of width 

approximately w (interested readers are referred to Daganzo (1984) for details on different 

portioning for delivery zones). The expected horizontal distance between adjacent stops is 

𝑤

3
, and the expected vertical distance between adjacent stops is 

1

𝛿𝑤
, where 𝛿 represents the 

delivery density (in number of deliveries per square mile). Here “horizontal” refers to the 

direction across the swath and “vertical” refers to the direction along the swath. Combining 

the expected horizontal and vertical distances between two adjacent stops gives the 

expected truck local travel distance per delivery for truck-only service of 

𝑤

3
+

1

𝛿𝑤
.                                                        (4.2) 

The optimal swath width to minimize the expected truck-only delivery distance is 

 𝑤𝑡𝑜
∗ = √

3

𝛿
,                                                      (4.3) 

and the optimal expected truck local travel distance per delivery is then 

2

√3𝛿
.                                                            (4.4) 
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Figure 4.1. Four truck stops along a swath of width 𝑤 

For zones not including the depot, there is a linehaul travel distance associated with 

traveling to the delivery zone from the depot which is apportioned equally to all deliveries 

in the zone. For a customer locating at distance 𝑑 from the depot, we assume that the 

linehaul distance to the delivery zone of that customer is 𝑑. Since the truck makes 𝑚𝑡𝑜 

deliveries per route, the expected truck travel distance per delivery for truck-only service, 

𝑉𝑀𝑇𝐷𝑡𝑜, for a customer located at distance 𝑑 from the depot can be approximated as 

𝑉𝑀𝑇𝐷𝑡𝑜 =
2𝑑

𝑚𝑡𝑜
+

𝑤

3
+

1

𝛿𝑤
.                                                   (4.5) 

4.2.3 Truck-drone Travel Distance 

In hybrid truck-drone delivery, drones are used in conjunction with trucks to make 

deliveries. A drone is repeatedly launched from the truck, it makes a delivery, and then 

returns to the truck when the delivery is completed. The truck also makes deliveries 

concurrently with the drone. We extend the swath strategy to account for the truck to launch 

and recover drones at truck delivery stops. In our truck-drone model, we consider a 

situation where a truck carries one drone, and the truck and drone alternate deliveries, as 

shown in Figure 4.2. The dashed line depicts the drone travel and the circles depict the 
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drone deliveries; while the solid line depicts the truck travel and the squares depict the 

truck deliveries.  

 

Figure 4.2. Alternating truck and drone deliveries over two cycles 

Consider a delivery cycle that begins with the truck and drone together at a 

customer location (which is already visited by the truck in the previous delivery cycle), and 

contains one drone delivery and one truck delivery at the end of the cycle. A truck-drone 

delivery route can then be viewed as a collection of these cycles. The drone travels in a 

straight line and the truck and drone alternate deliveries; thus, the expected horizontal and 

vertical distances of one drone travel leg are 
𝑤

3
 and 

1

𝛿𝑤
, respectively. The total expected 

drone travel distance per cycle is then 2√(
𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

as the drone travels two legs in one 

cycle. Since we have two deliveries to be made in a cycle (i.e., a truck delivery and a drone 

delivery), the expected drone travel distance per delivery is 

√(
𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

.                                               (4.6) 

The optimal swath width for the drone travel portion is 



87 

 

𝑤𝑡𝑑
𝑑∗ = √

3

𝛿
 = 𝑤𝑡𝑜

∗ .                                                    (4.7) 

Since the truck and drone alternate deliveries, the expected vertical distance for the 

truck in one cycle is doubled relative to truck-only distance as 
2

𝛿𝑤
, while the expected 

horizontal distance remains the same as 
𝑤

3
. A simple explanation is that the expected 

vertical distance is calculated between two adjacent points because the points in the vertical 

order follow a Poisson distribution, while the expected horizontal distance is calculated 

between any two random points because the points in the horizontal order follow a uniform 

distribution. More detail can be found in Daganzo (1984a). The expected truck local travel 

distance per delivery in a cycle is then  

𝑤

6
+

1

𝛿𝑤
.                                                          (4.8) 

The optimal swath for the truck local travel portion is 

𝑤𝑡𝑑
𝑡∗ = √

6

𝛿
= √2𝑤𝑡𝑜

∗ .                                                 (4.9) 

Equation (4.9) indicates that having the drone make deliveries in parallel with the truck 

increases the optimal swath for the truck compared with that for truck-only delivery. 

Combining the expected drone and truck local travel distances per delivery in a 

cycle gives the expected truck and drone local travel distance per delivery in the zone of  

𝑤

6
+

1

𝛿𝑤
+ √(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

.                                        (4.10) 
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Note that expression (4.10) models the distance when an even number of deliveries is 

assumed in the zone. With an odd number of deliveries, the distance is very similar as long 

as the number of deliveries in a zone is ≫ 1. Details are presented in Appendix 4.A. 

Similar to the truck-only delivery, there is linehaul travel required for zones not 

near the depot which is apportioned equally to all deliveries within the zone. The truck 

makes 𝑚𝑡𝑑  deliveries per truck-drone route, thus, the expected truck and drone travel 

distance per delivery for truck-drone service, 𝑉𝑀𝑇𝐷𝑡𝑑, for a customer located at distance 

𝑑 from the depot can be approximated as 

𝑉𝑀𝑇𝐷𝑡𝑑 =
2𝑑

𝑚𝑡𝑑
+

𝑤

6
+

1

𝛿𝑤
+ √(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

.                              (4.11) 

Since the drone is restricted for use within its maximum flight range (𝑅𝑑), setting the 

expected drone trip distance at half the drone range or less, i.e., 2√(
𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

≤ 1

2
𝑅𝑑, helps 

ensure the large majority of drone trips would be within the drone range. (Detailed 

modeling of the distribution of drone flight distance in the swath is left for future research.) 

Based on equations (4.7) and (4.9), we have 
√2

√3𝛿
< 2√(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

<
√2.5

√3𝛿
. So, to have 

truck-drone as an available service option, we let 
√2.5

√3𝛿
≤

1

4
𝑅𝑑, i.e., the delivery density 𝛿 ≥

40

3𝑅𝑑
2. 

4.3 Modeling Expected Delivery Cost 

There are different types of costs incurred for delivering an item from an origin 

(e.g., depot, warehouse) to a customer’s home. They can be usefully classified into two 

categories: (1) costs attributable to each incremental vehicle mile traveled, which may 
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include the costs of transporting the item from the origin to the destination and the return 

of the delivery vehicle; and (2) costs attributable to each stop of the delivery vehicle, which 

may include the costs of (loading) unloading, handling and delivering the item to the 

customer. We use 𝑐𝑡 and 𝑐𝑑 to denote the traveling cost per unit distance ($/mile) for the 

truck and the drone, respectively. We let 𝑠𝑡 denote the stop cost per delivery ($/stop) for 

the truck, but let 𝑠𝑑 denote the marginal drone stop cost, i.e., the drone stop cost relative to 

the truck stop cost. Thus, the drone stop cost is 𝑠𝑡 + 𝑠𝑑. If the drone has the same stop cost 

as the truck, then 𝑠𝑑 = 0 and if 𝑠𝑑 = −𝑠𝑡, then a drone delivery (stop) has zero cost. 

4.3.1 Drone-only Delivery Cost 

Based on equation (4.1), the delivery cost of serving a customer at distance 𝑑 for 

drone-only delivery is 

𝐶𝑑𝑜 = 2𝑐𝑑𝑑 +  𝑠𝑡 +  𝑠𝑑.                                          (4.12) 

4.3.2 Truck-only Delivery Cost 

Based on equation (4.5), the expected delivery cost of serving a customer at 

distance 𝑑 for truck-only delivery is 

𝐶𝑡𝑜 = 𝑐𝑡 (
2𝑑

𝑚𝑡𝑜
+

𝑤

3
+

1

𝛿𝑤
) +  𝑠𝑡.                                   (4.13) 

The optimal cost (using the optimal swath width of equation (4.3)) is 

𝐶𝑡𝑜
∗ =

2𝑐𝑡𝑑

𝑚𝑡𝑜
+

2𝑐𝑡

√3𝛿
+ 𝑠𝑡.                                          (4.14) 
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4.3.3 Truck-drone Delivery Cost 

Based on equation (4.11), the expected cost of serving a customer at distance 𝑑 for 

truck-drone delivery is 

𝐶𝑡𝑑 = 𝑐𝑡 (
2𝑑

𝑚𝑡𝑑
+

𝑤

6
+

1

𝛿𝑤
) + 𝑐𝑑√(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

+  𝑠𝑡 +  
1

2
𝑠𝑑.               (4.15) 

The delivery stop cost in a cycle of one truck delivery and one drone delivery is 𝑠𝑡 + 𝑠𝑡 +

 𝑠𝑑 = 2𝑠𝑡 +  𝑠𝑑 , so the delivery stop cost per delivery is as in equation (4.15). 𝐶𝑡𝑑  is a 

convex function of the swath width 𝑤, and the optimal swath width (𝑤𝑡𝑑
∗ ) is between the 

optimal swath widths for the drone travel portion (𝑤𝑡𝑑
𝑑∗ = √

3

𝛿
) and the truck travel portion 

(𝑤𝑡𝑑
𝑡∗ = √

6

𝛿
), i.e.,  √

3

𝛿
< 𝑤𝑡𝑑

∗ < √
6

𝛿
. We can let 𝑤𝑡𝑑

∗ = 𝑘√
3

𝛿
, where 𝑘 is a factor determined 

by the ratio of  
𝑐𝑑

𝑐𝑡
 and 1 < 𝑘 < √2, see the proof in Appendix 4.B. We can then write the 

expected cost per delivery as  

𝐶𝑡𝑑 = 𝑐𝑡
2𝑑

𝑚𝑡𝑑
+

𝑐𝑡

√3𝛿
(

𝑘

2
+

1

𝑘
+

𝑐𝑑

𝑐𝑡
√𝑘2 +

1

𝑘2)  +  𝑠𝑡 +  
1

2
𝑠𝑑.                     (4.16) 

The optimal 𝑘 is determined by taking the first derivative of 𝐶𝑡𝑑(𝑘) and setting it equal to 

zero, which is given by  

𝐶𝑡𝑑
′(𝑘) =

𝑐𝑡

√3𝛿
(

1

2
−

1

𝑘2
+

1

2

𝑐𝑑

𝑐𝑡
(𝑘2 +

1

𝑘2
)

−1/2

(2𝑘 −
2

𝑘3
)) = 0.               (4.17) 

There is not a simple closed form solution for the cost-minimizing 𝑘∗ though it is a function 

of only 
𝑐𝑑

𝑐𝑡
. Equation (4.17) may then be solved for 

𝑐𝑑

𝑐𝑡
 as a function of 𝑘∗ , which is 

monotonically decreasing, see the proof in Appendix 4.B: 
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𝑐𝑑

𝑐𝑡
=

(2−(𝑘∗)2)√(𝑘∗)4+1

2((𝑘∗)4−1)
.                                                 (4.18) 

Substituting the expression in equation (4.18) for 
𝑐𝑑

𝑐𝑡
 into 𝐶𝑡𝑑, we obtain   

𝐶𝑡𝑑
∗ =

2𝑐𝑡𝑑

𝑚𝑡𝑑
+

𝑐𝑡

√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
+  𝑠𝑡 + 

1

2
𝑠𝑑.                                  (4.19) 

Note that 𝑘∗ is determined by 
𝑐𝑑

𝑐𝑡
, via equation (4.18). The optimal swath width (determined 

by 𝑘∗) does not lend itself (nor does 𝐶𝑡𝑑
∗ ) to a closed form solution, thus, we approximate 

the optimal cost (𝐶𝑡𝑑
∗ ) by using the optimal swath width for the truck travel portion (i.e., 

𝑘

2
+

1

𝑘
 in equation (4.16)) where 𝑘 = √2  and the optimal swath width for the drone travel 

portion (i.e., √𝑘2 +
1

𝑘2 in equation (4.16)) where 𝑘 = 1. This results in a lower bound on 

the optimal cost 𝐶̃𝑡𝑑
∗  which is given by 

𝐶̃𝑡𝑑
∗ = 𝑐𝑡

2𝑑

𝑚𝑡𝑑
+ (𝑐𝑡 + 𝑐𝑑)

√2

√3𝛿
 + 𝑠𝑡 +  

1

2
𝑠𝑑.                          (4.20) 

The cost using the approximation as described in equation (4.20) always underestimates 

the true optimal cost as 𝑘∗ ∈ (1, √2). The approximation is most accurate when either 𝑐𝑡 ≫

𝑐𝑑 or 𝑐𝑑 ≫ 𝑐𝑡 (i.e., 
𝑐𝑑

𝑐𝑡
 is extremely large or small), and is least accurate when 𝑐𝑡 and 𝑐𝑑 are 

close. 

The error due to the approximation can be expressed as 

𝑒𝑟𝑟 =
𝐶𝑡𝑑

∗ −𝐶̃𝑡𝑑
∗

𝐶𝑡𝑑
∗ =

𝑐𝑡

√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
−

𝑐𝑡

√3𝛿
√2(1+

𝑐𝑑
𝑐𝑡

)

2𝑐𝑡𝑑

𝑚𝑡𝑑
+

𝑐𝑡
√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
+ 𝑠𝑡+ 

1

2
𝑠𝑑

 .                               (4.21) 

Since both linehaul distance and stop costs are non-negative (i.e., 𝑑, 𝑠𝑡 +  
1

2
𝑠𝑑 ≥ 0), the 

maximum error can be written as 
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𝑒𝑟𝑟𝑚𝑎𝑥 =

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
−√2(1+

𝑐𝑑
𝑐𝑡

)

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1

 , 

𝑒𝑟𝑟𝑚𝑎𝑥 = 1 −
(𝑘∗)4−1

2(𝑘∗)3−𝑘∗ √2 (1 +
𝑐𝑑

𝑐𝑡
).                                (4.22) 

Since 𝑘∗is a function of only 
𝑐𝑑

𝑐𝑡
, the maximum error is a function of only 

𝑐𝑑

𝑐𝑡
 and can be 

found numerically, as shown in Figure 4.3. The maximum error in cost from using the 

approximation in (4.20) is about 2%, and Appendix 4.C provides more detail. 

 

Figure 4.3. The maximum approximation error as a function of 𝑐𝑑/𝑐𝑡 

4.4 Comparing Cost of Different Delivery Services 

In this section, we examine under what operating conditions will each of the three 

delivery services provide the lowest delivery costs in subregions of the circular delivery 

region of radius 𝑅 miles. Since all delivery services have a cost that is a function of the 

distance to the depot, we define a critical distance 𝑑∗𝑐 between two delivery services as the 

distance (or radius) from the depot that makes the cost functions of the two delivery 
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services equal. Within radius 𝑑∗𝑐  using one service generates lower delivery costs than 

using the other service whereas the opposite is true beyond radius 𝑑∗𝑐 . Thus, the total 

delivery costs for the entire delivery region are minimized if we partition the circular 

service region at radius 𝑑∗𝑐 and use the cost minimizing delivery service in each subregion. 

4.4.1 Drone-only Delivery vs Truck-only Delivery 

We first compare drone-only delivery (DO) with truck-only delivery (TO). We 

require that the drone-only delivery region is within the maximum flight range of the drone. 

The drone-only delivery is preferred at a point when its expected delivery cost is lower 

than the expected optimal cost per delivery of the truck-only delivery and the point is also 

within the maximum flight range of the drone. To find where drone-only is preferred we 

set 𝐶𝑑𝑜 < 𝐶𝑡𝑜
∗  and solve for the critical distance: 

2𝑐𝑑𝑑 +  𝑠𝑡 +  𝑠𝑑 < 𝑐𝑡 (
2𝑑

𝑚𝑡𝑜
+

2

√3𝛿
) + 𝑠𝑡,  

2(𝑐𝑑 − 𝑐𝑡/𝑚𝑡𝑜)𝑑 < 𝑐𝑡
2

√3𝛿
− 𝑠𝑑,  

𝑑 <
1

(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑜)
[𝑐𝑡

1

√3𝛿
−

𝑠𝑑

2
] for 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑜,                          (4.22a) 

𝑑 >
1

(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑜)
[𝑐𝑡

1

√3𝛿
−

𝑠𝑑

2
] for 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑜.                          (4.22b) 

Therefore, we can assess the utilization of drone-only and truck-only delivery in 

different parts of the service region based on the competitiveness of the drone operating 

cost per mile (𝑐𝑑 ) compared with the truck operating cost per mile per package (𝑐𝑡/𝑚𝑡𝑜) 

and of the drone marginal stop cost (𝑠𝑑) compared with the expected optimal truck local 

travel cost per delivery (𝑐𝑡
2

√3𝛿
), as shown in Figure 4.4(a). The horizontal axis represents 
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the drone marginal stop cost ($/delivery) and the vertical axis represents the drone 

operating cost ($/mile) (note this is also $/mile/delivery). Figure 4.4(b) shows where the 

delivery region is partitioned based on the cost conditions. In Figure 4.4(b), the horizontal 

axis measures distance from the depot 𝑑 and the vertical axis is the cost per delivery. The 

critical distance between drone-only and truck-only delivery is at a distance 𝑑∗𝑐. The black 

line labeled TO in Figure 4.4(b) with slope 
2𝑐𝑡

𝑚𝑡𝑜

 represents the truck-only cost.  

  

Figure 4.4. Drone-only vs Truck-only utilization conditions and delivery service dividing 

line  

Figure 4.4(a) is divided into four quadrants by the vertical line 𝑠𝑑 =
2𝑐𝑡

√3𝛿
 and the 

horizontal line 𝑐𝑑 =
𝑐𝑡

𝑚𝑡𝑜
  to identify the four possible combinations of the two delivery 

services: 

Quadrant (i): when 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑜  and 𝑠𝑑 ≤ 𝑐𝑡
2

√3𝛿
 (the bottom left quadrant of Figure 

4.4(a)), then drone-only delivery is preferred (provides a lower cost) everywhere in the 

𝑐𝑑 

𝑠𝑑 

𝑐𝑡

𝑚𝑡𝑜

 

2𝑐𝑡

√3𝛿
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everywhere 
(iv) (TO close, 

DO far) 

(iii) (DO 

close, TO far) 

(ii)  TO everywhere 

𝑠𝑑 + 𝑠𝑡 

2𝑐𝑡

√3𝛿
+ 𝑠𝑡 

2𝑐𝑑 

2𝑐𝑡

𝑚𝑡𝑜

 TO 

(iii) DO: 2𝑐𝑑 >
2𝑐𝑡

𝑚𝑡𝑜
 

𝑠𝑡 

𝑑∗𝑐 

𝑠𝑑 

Cost/ 

delivery 

(i) DO: 2𝑐𝑑 <
2𝑐𝑡

𝑚𝑡𝑜
 

 (b) Dividing Line 
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service region. The dashed red line in Figure 4.4(b) illustrates the cost for drone only 

delivery in this situation. This is likely if the truck makes only a few deliveries per route 

(i.e., 𝑚𝑡𝑜 is small) and/or the truck cost per mile is large, and the drone transport cost and 

marginal drone stop cost are small.  

Quadrant (ii): when 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑜 and 𝑠𝑑 > 𝑐𝑡
2

√3𝛿
 (the top right quadrant of Figure 4.4(a)), 

truck-only delivery is preferred (provides a lower cost) everywhere in the service region. 

This situation corresponds to moving the solid red line in Figure 4.4(b) for drone-only 

delivery (DO) above the black line for truck-only delivery (TO) (due to an increase in drone 

delivery cost 𝑠𝑑). This is likely if the truck makes many deliveries per route (i.e., 𝑚𝑡𝑜 is 

large) and/or the truck cost per mile is small, and the drone transport cost and marginal 

drone stop cost are large.  

Quadrant (iii): when 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑜 and 𝑠𝑑 ≤ 𝑐𝑡
2

√3𝛿
 (the top left quadrant of Figure 4.4(a)), 

drone-only delivery is preferred to serve customers close to the depot while truck-only 

delivery is preferred far from the depot, as indicated by inequality (4.22a). This situation 

corresponds to the solid red line in Figure 4.4(b) for DO that intersects the truck-only cost 

at a distance 𝑑∗𝑐 from the depot. In this setting, the delivery cost is optimized by using a 

combination of drone-only delivery near the depot and truck-only delivery farther away. 

The critical distance that optimizes the partitioning of the delivery region is given by 

𝑑∗𝑐 =
𝑐𝑡

2

√3𝛿
−𝑠𝑑

2(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑜)
.                                                   (4.23) 

The more competitive the drone (per delivery) operating cost per mile compared with the 

truck cost per mile per delivery, i.e., the smaller the difference of (𝑐𝑑 − 𝑐𝑡/𝑚𝑡𝑜), the 
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greater the delivery range for drone-only delivery. The smaller the delivery density and/or 

the smaller the marginal drone stop cost, the greater the delivery range for drone-only 

delivery. Thus, in rural areas where the delivery density is low and the truck makes a small 

number of deliveries per route, drone-only delivery would have a large delivery area 

extending out from the depot, if not constrained by its range (e.g., due to its battery life). 

Quadrant (iv): when 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑜  and 𝑠𝑑 > 𝑐𝑡
2

√3𝛿
 (the bottom right quadrant of Figure 

4.4(a)), truck-only delivery is preferred to serve customers close to the depot while drone-

only delivery is preferred far from the depot, with the dividing line indicated by inequality 

(4.22b). This situation corresponds to moving the dashed red line in Figure 4.4(b) for DO  

above the black line for TO (due to an increase in drone delivery cost 𝑠𝑑). Again, the 

delivery cost is optimized by utilizing a combination of drone-only and truck-only 

deliveries in the service region. The dividing line for drone-only and truck-only delivery 

services in the delivery region is given by the same equation (4.23), except that drone-only 

delivery serves customers beyond distance 𝑑∗𝑐  from the depot and truck-only delivery 

serves customers closer to the depot. This makes sense because the travel cost per mile for 

drone delivery is lower than the travel cost per mile per delivery for truck-only delivery, 

while the delivery stop cost for drone-only delivery is larger than the truck-only local 

delivery cost (
2𝑐𝑡

√3𝛿
), so truck-only delivery is more likely to be utilized in urban areas where 

there are many deliveries with high drone stop costs within short distances. 

4.4.2 Truck-drone Delivery vs Truck-only Delivery 

Comparing truck-drone delivery (TD) with truck-only delivery (TO), we use the 

approximate truck-drone delivery cost which is a lower bound on the actual optimal truck-
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drone cost, thus, truck-only delivery is “strictly” preferred when its delivery cost is lower 

than that of truck-drone delivery, i.e., 𝐶𝑡𝑜
∗ < 𝐶̃𝑡𝑑

∗  because 𝐶̃𝑡𝑑
∗  slightly underestimates 𝐶𝑡𝑑

∗ . 

2𝑐𝑡𝑑

𝑚𝑡𝑜
+ 𝑐𝑡

2

√3𝛿
+ 𝑠𝑡 <

2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑐𝑡 (1 +

𝑐𝑑

𝑐𝑡
)

√2

√3𝛿
+ 𝑠𝑡 +  

1

2
𝑠𝑑,  

2𝑐𝑡 (
1

𝑚𝑡𝑜
−

1

𝑚𝑡𝑑
) 𝑑 < 𝑐𝑡 (1 − √2 +

𝑐𝑑

𝑐𝑡
)

√2

√3𝛿
+  

1

2
𝑠𝑑,  

𝑑 <
1

(1/𝑚𝑡𝑜−1/𝑚𝑡𝑑)
[(1 − √2 +

𝑐𝑑

𝑐𝑡
)

√2

2√3𝛿
+  

𝑠𝑑

4𝑐𝑡
] for 𝑚𝑡𝑑 > 𝑚𝑡𝑜,               (4.24a) 

𝑑 >
1

(1/𝑚𝑡𝑜−1/𝑚𝑡𝑑)
[(1 − √2 +

𝑐𝑑

𝑐𝑡
)

√2

2√3𝛿
+  

𝑠𝑑

4𝑐𝑡
] for 𝑚𝑡𝑑 < 𝑚𝑡𝑜,               (4.24b) 

𝑑 = 0 for 𝑚𝑡𝑑 = 𝑚𝑡𝑜 , 𝑐𝑑 < (√2 − 1)𝑐𝑡 −
√3𝛿

2√2
𝑠𝑑,                        (4.24c) 

𝑑 = ∞ for 𝑚𝑡𝑑 = 𝑚𝑡𝑜 , 𝑐𝑑 > (√2 − 1)𝑐𝑡 −
√3𝛿

2√2
𝑠𝑑.                        (4.24d) 

We use Figure 4.5 to illustrate the conditions that favor truck-only or truck-drone 

delivery, which now depend on the sizes of the trucks used in the truck-only and truck-

drone routes. Here the 𝑐𝑑-𝑠𝑑 space is divided into two regions for each condition on route 

sizes by the line 

 𝑐𝑑 = (√2 − 1)𝑐𝑡 −
√3𝛿

2√2
𝑠𝑑.                (4.25) 

because this line has slope −
√3𝛿

2√2
, the increase in the drone delivery stop cost tends to 

require a decrease in the drone operating cost to make using truck-drone delivery 

everywhere the optimal service.  
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Figure 4.5. Truck-only vs Truck-drone utilization conditions and dividing line 

Figure 4.5(a) illustrates the case when truck-drone routes make at least the same 

number of deliveries as truck-only routes, which is likely to happen through the use of 

drones. Figure 4.5(a) identifies two regions for two service options:  

Region (i): when costs are such that 
√2

2
(𝑐𝑡 + 𝑐𝑑 − √2𝑐𝑡)

1

√3𝛿
+ 

𝑠𝑑

4
≤ 0 and 𝛿 ≥

40

3𝑅𝑑
2 (the 

bottom left triangle), then truck-drone delivery is preferred (provides a lower cost) 

everywhere in the service region. 

Region (ii): when costs are such that 
√2

2
(𝑐𝑡 + 𝑐𝑑 − √2𝑐𝑡)

1

√3𝛿
+  

𝑠𝑑

4
> 0 (the region above 

the diagonal line in Figure 4.5(a)), if 𝑚𝑡𝑑 > 𝑚𝑡𝑜 and 𝛿 ≥
40

3𝑅𝑑
2, then truck-only delivery is 

preferred to serve customers close to the depot, as indicated by (4.24a), while truck-drone 

delivery is preferred far from the depot. If 𝑚𝑡𝑑 = 𝑚𝑡𝑜, then truck-only delivery is preferred 

to serve customers everywhere in the service region as indicated by (4.24c). 

𝑐𝑑 

𝑠𝑑 

(√2 − 1)𝑐𝑡 

(2 − √2)
2𝑐𝑡

√3𝛿
 

 

(a) 𝑚𝑡𝑑 ≥ 𝑚𝑡𝑜 

(i)  TD 

everywhere 

(ii) (TO close, TD far) 

or TO everywhere 

𝑐𝑑 

𝑠𝑑 

(√2 − 1)𝑐𝑡 

(2 − √2)
2𝑐𝑡

√3𝛿
 

 

(b) 𝑚𝑡𝑑 ≤ 𝑚𝑡𝑜 

(iii) TO 

everywhere 

(iv) (TD close, 

TO far) or  

TD everywhere 
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Figure 4.5(b) illustrates the case when truck-drone routes make at most the same 

number of deliveries as truck-only routes, which may happen when some of the package 

space in truck-drone delivery is occupied by drones and associated equipment. Figure 4.5(b) 

also identifies two regions for two service options:  

Region (iii): when costs are such that 
√2

2
(𝑐𝑡 + 𝑐𝑑 − √2𝑐𝑡)

1

√3𝛿
+  

𝑠𝑑

4
> 0 (the region above 

the diagonal line in Figure 4.5(b)), then truck-only delivery is preferred (provides a lower 

cost) everywhere in the service region.  

Region (iv): when costs are such that 
√2

2
(𝑐𝑡 + 𝑐𝑑 − √2𝑐𝑡)

1

√3𝛿
+ 

𝑠𝑑

4
≤ 0 and 𝛿 ≥

40

3𝑅𝑑
2 (the 

region below the diagonal line in Figure 4.5(b)), if 𝑚𝑡𝑑 < 𝑚𝑡𝑜, then truck-drone delivery 

is preferred to serve customers close to the depot while truck-drone delivery is preferred 

far from the depot, as indicated by (4.24b). If 𝑚𝑡𝑑 = 𝑚𝑡𝑜, then truck-drone delivery is 

preferred to serve customers everywhere in the service region, as indicated by (4.24d). 

In conditions (ii) and (iv) and when 𝑚𝑡𝑑 ≠ 𝑚𝑡𝑜, the delivery cost is optimized by 

utilizing a combination of truck-only and truck-drone deliveries in the service region. The 

critical distance that optimizes the partitioning of the delivery region between the two 

services is given by 

𝑑∗𝑐 =
(𝑐𝑡+𝑐𝑑−√2𝑐𝑡)

2√2

√3𝛿
+ 𝑠𝑑

4(𝑐𝑡/𝑚𝑡𝑜−𝑐𝑡/𝑚𝑡𝑑)
 .                                               (4.26) 

4.4.3 Drone-only vs Truck-drone Deliveries 

In this section we compare drone-only delivery (DO) with truck-drone delivery (TD) 

using the approximated truck-drone delivery cost. Drone-only delivery is only available 

within it maximum flight range (𝑅𝑑); truck-drone delivery is only available when delivery 
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densities are not too small, so that the expected drone travel distance is within half of drone 

maximum flight range (i.e., 𝛿 ≥
40

3𝑅𝑑
2 ). Because the approximated truck-drone cost is a 

lower bound on the actual optimal truck-drone cost, drone-only delivery is “strictly” 

preferred when its delivery cost is lower than that of the truck-drone delivery, i.e., 𝐶𝑑𝑜
∗ <

𝐶̃𝑡𝑑
∗ , because 𝐶̃𝑡𝑑

∗  slightly underestimates 𝐶𝑡𝑑
∗ . 

2𝑐𝑑𝑑 +  𝑠𝑡 +  𝑠𝑑 <
2𝑐𝑡𝑑

𝑚𝑡𝑑
+ (𝑐𝑡 + 𝑐𝑑)

√2

√3𝛿
+ 𝑠𝑡 +  

1

2
𝑠𝑑,  

2(𝑐𝑑 − 𝑐𝑡/𝑚𝑡𝑑)𝑑 < (𝑐𝑡 + 𝑐𝑑)
√2

√3𝛿
− 

1

2
𝑠𝑑,  

𝑑 <
1

(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑑)
[(𝑐𝑡 + 𝑐𝑑)

√2

2√3𝛿
−

𝑠𝑑

4
] for 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑑.                       (4.27a) 

𝑑 >
1

(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑑)
[(𝑐𝑡 + 𝑐𝑑)

√2

2√3𝛿
−

𝑠𝑑

4
] for 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑑.                       (4.27b) 

Since the analyses are very similar as those described in subsection 4.4.1, we briefly 

describe them as follows. 

 

Figure 4.6. Drone-only vs Truck-drone utilization conditions and dividing line 
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2𝑐𝑡

𝑚𝑡𝑑
 

𝑠𝑡 

𝑑∗𝑐 

𝑠𝑑 

Cost/ 

delivery 

(i) DO: 2𝑐𝑑 <
2𝑐𝑡

𝑚𝑡𝑑
 

 (b) Dividing Line 



101 

 

Figures 4.6(a) and 4.6(b) are analogous to Figures 4.4(a) and 4.4(b). Figure 4.6(a) 

is divided into four quadrants by the positively sloped line 𝑠𝑑 = (𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
=

(𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
 (note this line is a function of 𝑐𝑑) and the horizontal line 𝑐𝑑 =

𝑐𝑡

𝑚𝑡𝑜
.  

Quadrant (i): when 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑑  and 𝑠𝑑 < (𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
 (the bottom left quadrant of 

Figure 4.6(a)), then drone-only delivery is preferred (provides a lower cost) everywhere in 

the service region.  

(ii) when 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑜  and 𝑠𝑑 ≥ (𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
  (the top right quadrant), truck-drone 

delivery is preferred (provides a lower cost) everywhere in the service region.  

(iii) when 𝑐𝑑 > 𝑐𝑡/𝑚𝑡𝑑 and 𝑠𝑑 ≤ (𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
(the top left quadrant), drone-only delivery 

is preferred to serve customers close to the depot while truck-only delivery is preferred far 

from the depot, as indicated by equation (4.27a).  

(iv) when 𝑐𝑑 < 𝑐𝑡/𝑚𝑡𝑑  and 𝑠𝑑 > (𝑐𝑡 + 𝑐𝑑)
2√2

√3𝛿
(the bottom right quadrant), truck-only 

delivery is preferred to serve customers close to the depot while drone-only delivery is 

preferred far from the depot, as indicated by equation (4.27b). 

In conditions (iii) and (iv), the delivery cost is optimized by utilizing a combination 

of drone-only and truck-drone deliveries in the service region. The critical distance that 

optimizes the partitioning of the delivery region is given by 

𝑑∗𝑐 =
(𝑐𝑡+𝑐𝑑)

2√2

√3𝛿
− 𝑠𝑑

4(𝑐𝑑−𝑐𝑡/𝑚𝑡𝑑)
.                                                     (4.28) 
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4.4.4 A General Form of Comparing Two Delivery Services 

Before presenting the general format for comparing the expected costs of two 

delivery services, we obtain a general form of the expected cost of each delivery service. 

We have expressions for the delivery cost as a function of the distance 𝑑 for drone-only, 

truck-only, and truck-drone as shown in equations (4.12), (4.14), and (4.20), respectively, 

in Section 4.3. 

𝐶𝑑𝑜 = 2𝑐𝑑𝑑 +  𝑠𝑡 +  𝑠𝑑.                                                  (4.12) 

𝐶𝑡𝑜
∗ =

2𝑐𝑡

𝑚𝑡𝑜
𝑑 +

2𝑐𝑡

√3𝛿
+ 𝑠𝑡.                                                   (4.14) 

𝐶̃𝑡𝑑
∗ =

2𝑐𝑡

𝑚𝑡𝑑
𝑑 +

√2(𝑐𝑡+𝑐𝑑)

√3𝛿
 +  𝑠𝑡 + 

1

2
𝑠𝑑.                              (4.20) 

We can provide a more general cost expression for each of the three delivery 

services as 

𝐶𝑠(𝑑) = 𝛽0
𝑠 + 𝛽1

𝑠𝑑                                                      (4.29) 

where 𝑠 ∈ {𝑑𝑜, 𝑡𝑜, 𝑡𝑑} , 𝛽0
𝑠 ∈ {𝑠𝑡 + 𝑠𝑑 ,

2𝑐𝑡

√3𝛿
+ 𝑠𝑡,

√2(𝑐𝑡+𝑐𝑑)

√3𝛿
 +  𝑠𝑡 +  

1

2
𝑠𝑑} and 𝛽1

𝑠 ∈

{2𝑐𝑑,
2𝑐𝑡

𝑚𝑡𝑜
,

2𝑐𝑡

𝑚𝑡𝑑
} . 𝛽0

𝑑𝑜  reflects the stop cost ($/delivery) for drone-only service and 𝛽1
𝑑𝑜 

reflects the travel cost per mile per delivery ($/mile/delivery) for drone-only service. 

𝛽0
𝑡𝑜 and 𝛽0

𝑡𝑑  reflect the local delivery cost (local travel plus stop cost) per delivery 

($/delivery) for truck-only and truck-drone service, respectively. 𝛽1
𝑡𝑜 and 𝛽1

𝑡𝑑 reflect the 

linehaul travel cost per mile per delivery ($/mile/delivery) for truck-only and truck-drone 

service, respectively. We observe that 𝛽0
𝑡𝑑 > min{𝛽0

𝑡𝑜 , 𝛽0
𝑑𝑜} as follows: 

𝛽0
𝑡𝑑 − 𝛽0

𝑡𝑜 =
1

2
{𝑠𝑑 −

2𝑐𝑡

√3𝛿
[2 − √2 (1 +

𝑐𝑑

𝑐𝑡
)]}.                              (4.30) 
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𝛽0
𝑡𝑑 − 𝛽0

𝑑𝑜 =
1

2
{

2𝑐𝑡

√3𝛿
√2 (1 +

𝑐𝑑

𝑐𝑡
) − 𝑠𝑑}.                                   (4.31) 

𝛽0
𝑡𝑜 − 𝛽0

𝑑𝑜 =
1

2
{

2𝑐𝑡

√3𝛿
− 𝑠𝑑}.                                               (4.32) 

If 𝛽0
𝑡𝑜 ≥ 𝛽0

𝑑𝑜 i.e., 𝑠𝑑 ≤
2𝑐𝑡

√3𝛿
, then 

2𝑐𝑡

√3𝛿
√2 (1 +

𝑐𝑑

𝑐𝑡
) − 𝑠𝑑 > 0 always holds, i.e., 𝛽0

𝑡𝑑 > 𝛽0
𝑑𝑜. 

If 𝛽0
𝑡𝑜 < 𝛽0

𝑑𝑜  i.e., 𝑠𝑑 >
2𝑐𝑡

√3𝛿
, then 𝑠𝑑 −

2𝑐𝑡

√3𝛿
[2 − √2 (1 +

𝑐𝑑

𝑐𝑡
)] > 0  always holds, i.e., 

𝛽0
𝑡𝑑 > 𝛽0

𝑡𝑜 . Thus, 𝛽0
𝑡𝑑 > min{𝛽0

𝑡𝑜 , 𝛽0
𝑑𝑜} . The relationship also holds using 𝐶𝑡𝑑

∗ . When 

choosing the low cost delivery service from the three services (i.e., truck-only, drone-only, 

and truck-drone), truck-drone delivery cannot serve customers very close to the depot. 

The cost difference between delivery services 𝑖 and 𝑗 at distance d from the depot 

can be written as: 

∆𝐶𝑖𝑗(𝑑) = 𝐶𝑖(𝑑) − 𝐶𝑗(𝑑) = 𝛽0
𝑖 + 𝛽1

𝑖𝑑 − (𝛽0
𝑗

+ 𝛽1
𝑗
𝑑),  

∆𝐶𝑖𝑗(𝑑) = (𝛽1
𝑖 − 𝛽1

𝑗
)𝑑 + (𝛽0

𝑖 − 𝛽0
𝑗
).                                (4.33) 

Let ∆𝛽1
𝑖𝑗

= 𝛽1
𝑖 − 𝛽1

𝑗
 and ∆𝛽0

𝑖𝑗
= 𝛽0

𝑖 − 𝛽0
𝑗
, we can rewrite equation (4.33) as 

∆𝐶𝑖𝑗(𝑑) = ∆𝛽1
𝑖𝑗

𝑑 + ∆𝛽0
𝑖𝑗

,                                        (4.34) 

where ∆𝛽1
𝑖𝑗

 reflects the difference of the linehaul travel cost per mile per delivery between 

services 𝑖 and 𝑗, and ∆𝛽0
𝑖𝑗

 reflects the difference of the local delivery costs per delivery 

between services 𝑖 and 𝑗. A critical distance where the delivery costs of the two services 

are equal is determined by setting ∆𝐶𝑖𝑗 = 0, which exists only when a higher linehaul travel 

cost per mile per delivery of service 𝑖 (i.e., ∆𝛽1
𝑖𝑗

> 0) is compensated by a lower local 

delivery cost per delivery of that service (i.e., ∆𝛽0
𝑖𝑗

< 0) compared with service 𝑗, and vice 
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versa. In Figure 4.7, we show the cost difference as a function of the critical distance. Note 

that service 𝑖 and service 𝑗 are symmetric because we assume the vehicles are not restricted 

by their travel range. 

In Figure 4.7, we clearly see how the utilization of a delivery service is determined 

by the cost rates and the size (radius) of the delivery region. If both linehaul travel and 

local delivery cost rates of service 𝑖 are no greater than those of service 𝑗, i.e., ∆𝛽1
𝑖𝑗

≤ 0, 

∆𝛽0
𝑖𝑗

≤ 0, then service 𝑖 is preferred everywhere in the delivery region (e.g., graphs (f) and 

(i)), and vice versa. Another case when one service is preferred everywhere is when the 

dividing line between the two services is beyond the delivery region (e.g., graphs (a) and 

(d)). In other situations, the delivery costs are optimized by utilizing a combination of 

services 𝑖 and 𝑗 in the region. 

 

Figure 4.7. Cost dividing line between two delivery services 
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4.5 Performance Measures 

We are interested in the following five performance measures associated with 

delivery service combinations: the expected total delivery cost (ETC), the expected cost 

per delivery (EC), the expected number of truck routes (NR), the expected truck route 

length (RL) and the expected truck route time (RT). Based on our observations that a 

combination of at most two services can provide an expected delivery cost within 1% of 

the optimal expected delivery cost of combining all three delivery services, thus we 

generate performance measures for comparing two services. We develop the performance 

measures in absolute values first, and then in percentage values compared with the identical 

measure of the performance of the truck-only delivery service. 

4.5.1 Performance Measures in Absolute Values 

To obtain the absolute performance measures, we define the following variables: 

𝑚𝑠: the truck capacity of delivery service 𝑠, for 𝑠 ∈ {𝑑𝑜, 𝑡𝑜, 𝑡𝑑} and 𝑚𝑑𝑜 = ∞. (Although 

there is no trucks used within drone-only delivery, defining an infinite truck capacity for 

drone-only allows a unified model to be developed for all three services.) 

𝑝𝑠: the proportion of drone deliveries to total deliveries of service 𝑠. 𝑝𝑡𝑜 = 0, 𝑝𝑡𝑑 = 0.5, 

𝑝𝑑𝑜 = 1. 

𝐸𝐿𝐷𝑠 : the expected local truck distance per truck route of service 𝑠 . 𝐸𝐿𝐷𝑡𝑜 =
2𝑚𝑡𝑜

√3𝛿
, 

𝐸𝐿𝐷𝑡𝑑 =
√2𝑚𝑡𝑑

√3𝛿
, 𝐸𝐿𝐷𝑑𝑜 = 0. 

𝐸𝐿𝐻𝑠 : the expected linehaul truck distance per truck route of service 𝑠 . 𝐸𝐿𝐻𝑑𝑜 = 0 . 

𝐸𝐿𝐻𝑡𝑜 = 𝐸𝐿𝐻𝑡𝑑 =
4

3
𝑑 if the truck-only delivery or truck-drone delivery serves customers 
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up to 𝑑 distance from the depot. 𝐸𝐿𝐻𝑡𝑜 = 𝐸𝐿𝐻𝑡𝑑 = (
4

3
)

𝑅3−𝑑3

𝑅2−𝑑2
 if the truck-only delivery or 

truck-drone delivery serves customers beyond distance 𝑑 of the delivery region of radius 

𝑅. (Note that the expected round trip distance is 4/3 times the radius.) 

𝜏𝑡: the truck stop time. 

𝑣𝑡: the truck local travel speed. 

𝑣𝑡𝑙: the truck linehaul travel speed. 

4.5.1.1 Service 𝒊 Everywhere, Service 𝒋 Nowhere 

When the entire region is served by delivery service 𝑖, such as in Figures 4.7(a), 

4.7(f) and 4.7(i) in subsection 4.4.4, the expected total delivery cost (ETC) over the region 

is given by 

∫ 𝐶𝑖(𝑟)(2𝜋𝑟𝛿)𝑑𝑟 =  ∫ (𝛽0
𝑖 + 𝛽1

𝑖𝑟)(2𝜋𝑟𝛿)𝑑𝑟
𝑅

0

𝑅

0
,  

𝐸𝑇𝐶𝑖 = [𝛽0
𝑖 + 𝛽1

𝑖 (
2

3
𝑅)] (𝜋𝑅2𝛿).                                    (4.35) 

The expected cost per delivery (EC) over the region is thus 

𝐸𝐶𝑖 =
[𝛽0

𝑖 +𝛽1
𝑖 (

2

3
𝑅)](𝜋𝑅2𝛿)

𝜋𝑅2𝛿
= 𝛽0

𝑖 + 𝛽1
𝑖 (

2

3
𝑅).                              (4.36) 

The expected number of truck routes (NR) is given by 

𝑁𝑅𝑖 =
𝜋𝑅2𝛿

𝑚𝑖
.                                                     (4.37) 

The expected truck route length (RL) is given by 

𝑅𝐿𝑖 = 𝐸𝐿𝐻𝑖 + 𝐸𝐿𝐷𝑖,                                           (4.38) 



107 

 

where 𝐸𝐿𝐻𝑡𝑜 = 𝐸𝐿𝐻𝑡𝑑 =
4

3
𝑅. 

The expected truck route time (RT) is given by 

𝑅𝑇𝑖 =
𝐸𝐿𝐻𝑖

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑖

𝑣𝑡
+ (1 − 𝑝𝑖)𝑚𝑖𝜏𝑡.                              (4.39) 

4.5.1.2 Service 𝒊 Nowhere, Service 𝒋 Everywhere  

When the entire region is served by service 𝑗, which corresponds to Figures 4.7(c), 

4.7(d) and 4.7(g) in subsection 4.4.4, then the performance measures have the same form 

as in equations (4.35) through (4.39), except that index 𝑖 is replaced with index 𝑗.  

4.5.1.3 Service 𝒊 Close, Service 𝒋 Far  

When the entire region is served by a combination of service 𝑖 and service 𝑗, where 

service 𝑖 delivers close to the depot (within distance 𝑑 of the depot) while service 𝑗 serves 

the rest of the region, which corresponds to Figure 4.7(b) in subsection 4.4.4, then the 

expected total delivery cost over the region is given by 

∫ 𝐶𝑖(𝑟)(2𝜋𝑟𝛿)𝑑𝑟 + ∫ 𝐶𝑗(𝑟)(2𝜋𝑟𝛿)𝑑𝑟
𝑅

𝑑

𝑑

0
= ∫ (𝛽0

𝑖 + 𝛽1
𝑖𝑟)(2𝜋𝑟𝛿)𝑑𝑟 +  ∫ (𝛽0

𝑗
+

𝑅

𝑑

𝑑

0

𝛽1
𝑗
𝑟)(2𝜋𝑟𝛿)𝑑𝑟,  

𝐸𝑇𝐶𝑖𝑗 = [∆𝛽0
𝑖𝑗

+ ∆𝛽1
𝑖𝑗

(
2

3
𝑑)] (𝜋𝑑2𝛿) + [𝛽0

𝑗
+ 𝛽1

𝑗
(

2

3
𝑅)] (𝜋𝑅2𝛿).              (4.40) 

Since 𝐸𝑇𝐶𝑖𝑗 is a function of the distance 𝑑 where delivery service i is replaced by delivery 

service j, taking the first derivative of 𝐸𝑇𝐶𝑖𝑗(𝑑) with respect to d, we have  

𝐸𝑇𝐶𝑖𝑗′(𝑑) = 2𝜋𝛿𝑑(∆𝛽0
𝑖𝑗

+ ∆𝛽1
𝑖𝑗

𝑑) = 0, 

𝑑 = 0 or 𝑑 = 𝑑∗𝑐 = −∆𝛽0
𝑖𝑗

/∆𝛽1
𝑖𝑗

. 
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Since ∆𝛽1
𝑖𝑗

> 0, 𝑑 > 0, thus, 𝐸𝑇𝐶𝑖𝑗(𝑑) ≥ 𝐸𝑇𝐶𝑖𝑗(𝑑′), i.e., the minimum total delivery cost 

is achieved when 𝑑 = 𝑑∗𝑐. Thus, we have 

𝐸𝑇𝐶𝑖𝑗
∗ = [∆𝛽0

𝑖𝑗
+ ∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)] (𝜋𝑑∗𝑐2𝛿) + [𝛽0

𝑗
+ 𝛽1

𝑗
(

2

3
𝑅)] (𝜋𝑅2𝛿).             (4.41) 

The optimal expected cost per delivery over the region is thus 

𝐸𝐶𝑖𝑗
∗ =

[∆𝛽0
𝑖𝑗

+∆𝛽1
𝑖𝑗

(
2

3
𝑑∗𝑐)](𝜋𝑑∗𝑐2

𝛿)+[𝛽0
𝑗

+𝛽1
𝑗

(
2

3
𝑅)](𝜋𝑅2𝛿)

𝜋𝑅2𝛿
,  

𝐸𝐶𝑖𝑗
∗ = [∆𝛽0

𝑖𝑗
+ ∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)] (

𝑑∗𝑐

𝑅
)

2

+ 𝛽0
𝑗

+ 𝛽1
𝑗

(
2

3
𝑅).                   (4.42) 

The expected number of truck routes (NR) is given by 

𝑁𝑅𝑖𝑗 =
𝜋𝑑∗𝑐2

𝛿

𝑚𝑖
+

𝜋(𝑅2−𝑑∗𝑐2
)𝛿

𝑚𝑗
.                                     (4.43) 

The expected truck route length (RL) is given by 

𝑅𝐿𝑖𝑗 =
𝜋𝛿

𝑁𝑅𝑖𝑗
[

𝑑∗𝑐2

𝑚𝑖
(𝐸𝐿𝐻𝑖 + 𝐸𝐿𝐷𝑖) +

𝑅2−𝑑∗𝑐2

𝑚𝑗
(𝐸𝐿𝐻𝑗 + 𝐸𝐿𝐷𝑗)],                 (4.44) 

where 𝐸𝐿𝐻𝑖 =
4

3
𝑑∗𝑐 and 𝐸𝐿𝐻𝑗 = (

4

3
)

𝑅3−𝑑∗𝑐3

𝑅2−𝑑∗𝑐2 when 𝑖, 𝑗 ∈ {𝑡𝑜, 𝑡𝑑}. 

The expected truck route time (RT) is given by 

𝑅𝑇𝑖𝑗 =
𝜋𝛿

𝑁𝑅𝑖𝑗
[

𝑑∗𝑐2

𝑚𝑖
(

𝐸𝐿𝐻𝑖

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑖

𝑣𝑡
+ (1 − 𝑝𝑖)𝑚𝑖𝜏𝑡) +

𝑅2−𝑑∗𝑐2

𝑚𝑗
(

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+ (1 − 𝑝𝑗)𝑚𝑗𝜏𝑡)]. 

(4.45)                                                                                  

4.5.1.4 Service 𝒊 Far, Service 𝒋 Close 

When the entire region is served by a combination of service 𝑖 and service 𝑗, where 

service 𝑖 serves far from the depot while service 𝑗 serves close to the depot, corresponding 
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to Figure 4.7(e) in subsection 4.4.4, the expected total delivery cost and cost per delivery 

over the region are given by 

𝐸𝑇𝐶𝑗𝑖
∗ = [∆𝛽0

𝑗𝑖
+ ∆𝛽1

𝑗𝑖
(

2

3
𝑑∗𝑐)] (𝜋𝑑∗𝑐2𝛿) + [𝛽0

𝑖 + 𝛽1
𝑖 (

2

3
𝑅)] (𝜋𝑅2𝛿).              (4.46) 

𝐸𝐶𝑗𝑖
∗ = [∆𝛽0

𝑗𝑖
+ ∆𝛽1

𝑗𝑖
(

2

3
𝑑∗𝑐)] (

𝑑∗𝑐

𝑅
)

2

+ 𝛽0
𝑖 + 𝛽1

𝑖 (
2

3
𝑅).                            (4.47) 

The expected number of truck routes (NR) is given by 

𝑁𝑅𝑗𝑖 =
𝜋(𝑅2−𝑑∗𝑐2

)𝛿

𝑚𝑖
+

𝜋𝑑∗𝑐2
𝛿

𝑚𝑗
 .                                             (4.48) 

The expected truck route length (RL) is given by 

𝑅𝐿𝑗𝑖 =
𝜋𝛿

𝑁𝑅𝑗𝑖
[

𝑅2−𝑑∗𝑐2

𝑚𝑖
(𝐸𝐿𝐻𝑖 + 𝐸𝐿𝐷𝑖) +

𝑑∗𝑐2

𝑚𝑗
(𝐸𝐿𝐻𝑗 + 𝐸𝐿𝐷𝑗)],                     (4.49) 

where 𝐸𝐿𝐻𝑖 = (
4

3
)

𝑅3−𝑑∗𝑐3

𝑅2−𝑑∗𝑐2 and 𝐸𝐿𝐻𝑗 =
4

3
𝑑∗𝑐 when 𝑖, 𝑗 ∈ {𝑡𝑜, 𝑡𝑑}. 

The expected truck route time (RT) is given by 

𝑅𝑇𝑗𝑖 =
𝜋𝛿

𝑁𝑅𝑗𝑖
[

𝑅2−𝑑∗𝑐2

𝑚𝑖
(

𝐸𝐿𝐻𝑖

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑖

𝑣𝑡
+ (1 − 𝑝𝑖)𝑚𝑖𝜏𝑡) +

𝑑∗𝑐2

𝑚𝑗
(

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+ (1 − 𝑝𝑗)𝑚𝑗𝜏𝑡)]. 

(4.50)                                                                                                                                          

4.5.2 Performance Measures in Percentage Values 

The performance measures in percentage values are measured relative to the truck-

only delivery service which we designate as service 𝑖. To provide a general form for the 

relative performance measures, we define the following variables: 
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𝑢 : the utilization of delivery service 𝑗  in the delivery region, which is defined as the 

proportion of area serviced by service 𝑗 over the area of the entire delivery region (this is 

also equal to the proportion of the deliveries as well). 

𝜎: the ratio of the critical distance 𝑑∗𝑐 to the radius of the entire delivery region, i.e., 𝜎 =

𝑑∗𝑐

𝑅
, where 𝑑∗𝑐 is the distance where the cost of delivery service 𝑗 equals that of delivery 

service 𝑖, or vice versa. 

𝜆: the ratio of the truck capacity of service 𝑗 to the truck capacity of the truck-only service 

(i.e., service 𝑖), i.e., 𝜆 =
𝑚𝑗

𝑚𝑖
. 

𝛼: the ratio of drone operating cost to truck operating cost per unit of distance, i.e., 𝛼 =
𝑐𝑑

𝑐𝑡
. 

4.5.2.1 Service 𝒊 Everywhere, Service 𝒋 Nowhere 

Since service 𝑖 is designated as the truck-only service, the percentage differences 

between the performance measures of service 𝑖 and itself are thus zero. The utilization of 

service 𝑗 is therefore 𝑢 = 0. 

4.5.2.2 Service 𝒊 Nowhere, Service 𝒋 Everywhere  

When the delivery service 𝑗 is used everywhere, the utilization of service 𝑗 is 𝑢 =

1. The percentage performance measures are as follows: 

The percentage savings in the expected cost per delivery (𝑃𝑆𝐴𝑉𝐸𝐶) of service 𝑗 relative to 

service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝐸𝐶𝑗

𝐸𝐶𝑖
, 
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𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝛽0

𝑗
+𝛽1

𝑗
(

2

3
𝑅)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

.                                        (4.51) 

The percentage savings in the expected number of truck routes (𝑃𝑆𝐴𝑉𝑁𝑅) relative to 

service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝑁𝑅 = 1 −
𝑁𝑅𝑗

𝑁𝑅𝑖
, 

𝑃𝑆𝐴𝑉𝑁𝑅 = 1 −
1

𝜆
.                                                (4.52) 

The percentage savings in the expected truck route length (𝑃𝑆𝐴𝑉𝑅𝐿) relative to service 

𝑖 is given by 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑅𝐿𝑗

𝑅𝐿𝑖
, 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝐸𝐿𝐻𝑗+𝐸𝐿𝐷𝑗

𝐸𝐿𝐻𝑖+𝐸𝐿𝐷𝑖
.                                         (4.53) 

The percentage savings in the expected truck route time (𝑃𝑆𝐴𝑉𝑅𝑇) relative to service 𝑖 

is given by 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑅𝑇𝑗

𝑅𝑇𝑖
, 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+(1−𝑝𝑗)𝑚𝑗𝜏𝑡

𝐸𝐿𝐻𝑖
𝑣𝑡𝑙

+
𝐸𝐿𝐷𝑖

𝑣𝑡
+(1−𝑝𝑖)𝑚𝑖𝜏𝑡

.                                 (4.54) 

4.5.2.3 Service 𝒊 Close, Service 𝒋 Far   

In this service combination, service 𝑗 is utilized beyond the critical distance 𝑑∗𝑐 to 

the edge of the delivery region, thus, the utilization of service 𝑗 is 𝑢 =
𝜋𝑅2−𝜋𝑑∗𝑐2

𝜋𝑅2
= 1 − 𝜎2. 

The percentage performance measures are as follows: 
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The percentage savings in the expected cost per delivery (𝑃𝑆𝐴𝑉𝐸𝐶) of  service 𝑖 + 𝑗 relative 

to delivery by service 𝑖 only is given by 

𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝐸𝐶𝑖𝑗

𝐸𝐶𝑖
, 

𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝛽0

𝑗
+𝛽1

𝑗
(

2

3
𝑅)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

−
∆𝛽0

𝑖𝑗
+∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

(1 − 𝑢).                    (4.55) 

The percentage savings in the expected number of truck routes (𝑃𝑆𝐴𝑉𝑁𝑅) relative to 

service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝑁𝑅 = 1 −
𝑁𝑅𝑖𝑗

𝑁𝑅𝑖
, 

where 𝑁𝑅𝑖𝑗 = (1 − 𝑢)𝑁𝑅𝑖 + 𝑢𝑁𝑅𝑗 as described in equation (4.43), thus, we have 

𝑃𝑆𝐴𝑉𝑁𝑅 = (1 −
1

𝜆
) 𝑢.                                            (4.56) 

The percentage savings in the expected truck route length (𝑃𝑆𝐴𝑉𝑅𝐿) relative to service 

𝑖 is given by 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑅𝐿𝑖𝑗

𝑅𝐿𝑖
, 

where 𝑅𝐿𝑖𝑗 =
1

1−(1−
1

𝜆
)𝑢

[(1 − 𝑢)(𝐸𝐿𝐻𝑖 + 𝐸𝐿𝐷𝑖) +
𝑢

𝜆
(𝐸𝐿𝐻𝑗 + 𝐸𝐿𝐷𝑗)]  as described in 

equation (4.44); thus, we have 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗+𝐸𝐿𝐷𝑗

𝐸𝐿𝐻𝑖+𝐸𝐿𝐷𝑖
−

(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                     (4.57) 

The percentage savings in the expected truck route time (𝑃𝑆𝐴𝑉𝑅𝑇) relative to service 𝑖 

is given by 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑅𝑇𝑖𝑗

𝑅𝑇𝑖
, 
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where 𝑅𝑇𝑖𝑗 =
1

1−(1−
1

𝜆
)𝑢

[(1 − 𝑢) (
𝐸𝐿𝐻𝑖

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑖

𝑣𝑡
+ (1 − 𝑝𝑖)𝑚𝑖𝜏𝑡) +

𝑢

𝜆
(

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+ (1 −

𝑝𝑗)𝑚𝑗𝜏𝑡)]; thus, we have 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+(1−𝑝𝑗)𝑚𝑗𝜏𝑡

𝐸𝐿𝐻𝑖
𝑣𝑡𝑙

+
𝐸𝐿𝐷𝑖

𝑣𝑡
+(1−𝑝𝑖)𝑚𝑖𝜏𝑡

−
(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                     (4.58) 

4.5.2.4 Service 𝒊 Far, Service 𝒋 Close  

In this situation, service 𝑗 is utilized from the depot to the critical distance 𝑑∗𝑐, thus, 

the utilization of service 𝑗 is 𝑢 =
𝜋𝑑∗𝑐2

𝜋𝑅2 = 𝜎2. The percentage performance measures are as 

follows: 

The percentage savings in the expected cost per delivery (𝑃𝑆𝐴𝑉𝐸𝐶) of delivery service 𝑖 +

𝑗 relative to only delivery service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝐸𝐶𝑖𝑗

𝐸𝐶𝑖
, 

𝑃𝑆𝐴𝑉𝐸𝐶 =
∆𝛽0

𝑖𝑗
+∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

𝑢.                                     (4.59) 

The percentage savings in the expected number of truck routes (𝑃𝑆𝐴𝑉𝑁𝑅) relative to 

service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝑁𝑅 = 1 −
𝑁𝑅𝑗𝑖

𝑁𝑅𝑖
, 

where 𝑁𝑅𝑖𝑗 = (1 − 𝑢)𝑁𝑅𝑖 + 𝑢𝑁𝑅𝑗 as described in equation (4.48), thus, we have 

𝑃𝑆𝐴𝑉𝑁𝑅 = (1 −
1

𝜆
) 𝑢.                                           (4.60) 
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The percentage savings in the expected truck route length (𝑃𝑆𝐴𝑉𝑅𝐿) relative to service 

𝑖 is given by 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑅𝐿𝑗𝑖

𝑅𝐿𝑖
, 

where 𝑅𝐿𝑗𝑖 =
1

1−(1−
1

𝜆
)𝑢

[(1 − 𝑢)(𝐸𝐿𝐻𝑖 + 𝐸𝐿𝐷𝑖) +
𝑢

𝜆
(𝐸𝐿𝐻𝑗 + 𝐸𝐿𝐷𝑗)]  as described in 

equation (4.44); thus, we have 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗+𝐸𝐿𝐷𝑗

𝐸𝐿𝐻𝑖+𝐸𝐿𝐷𝑖
−

(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                        (4.61) 

The percentage savings in the expected truck route time (𝑃𝑆𝐴𝑉𝑅𝑇) relative to service 𝑖 

is given by 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑅𝑇𝑗𝑖

𝑅𝑇𝑖
, 

where 𝑅𝑇𝑗𝑖 =
1

1−(1−
1

𝜆
)𝑢

[(1 − 𝑢) (
𝐸𝐿𝐻𝑖

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑖

𝑣𝑡
+ (1 − 𝑝𝑖)𝑚𝑖𝜏𝑡) +

𝑢

𝜆
(

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+ (1 −

𝑝𝑗)𝑚𝑗𝜏𝑡)]; thus, we have 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+(1−𝑝𝑗)𝑚𝑗𝜏𝑡

𝐸𝐿𝐻𝑖
𝑣𝑡𝑙

+
𝐸𝐿𝐷𝑖

𝑣𝑡
+(1−𝑝𝑖)𝑚𝑖𝜏𝑡

−
(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                    (4.62) 

4.5.2.5 A General Form 

Based on the observations of the previous four subsections that describe the 

percentage performance measures for four different service combinations; we provide 

a general form of all the relative performance measures with the exception of the 

percentage saving in the expected cost per delivery (𝑃𝑆𝐴𝑉𝐸𝐶). For service 𝑖 close and 
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service 𝑗 far, the percentage savings in the expected cost per delivery (𝑃𝑆𝐴𝑉𝐸𝐶) relative 

to service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝐸𝐶 = 1 −
𝛽0

𝑗
+𝛽1

𝑗
(

2

3
𝑅)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

−
∆𝛽0

𝑖𝑗
+∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

(1 − 𝑢),                       (4.63) 

For service 𝑖 far and service 𝑗 close, the percentage savings in the expected cost per 

delivery (𝑃𝑆𝐴𝑉𝐸𝐶) relative to service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝐸𝐶 =
∆𝛽0

𝑖𝑗
+∆𝛽1

𝑖𝑗
(

2

3
𝑑∗𝑐)

𝛽0
𝑖 +𝛽1

𝑖 (
2

3
𝑅)

𝑢.                                         (4.64) 

Both equations (4.63) and (4.64) include situations when only one service is used. 

The percentage savings in the expected number of truck routes (𝑃𝑆𝐴𝑉𝑁𝑅) relative to 

service 𝑖 is given by 

𝑃𝑆𝐴𝑉𝑁𝑅 = (1 −
1

𝜆
) 𝑢.                                            (4.65) 

The percentage savings in the expected truck route length (𝑃𝑆𝐴𝑉𝑅𝐿) relative to service 

𝑖 is given by 

𝑃𝑆𝐴𝑉𝑅𝐿 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗+𝐸𝐿𝐷𝑗

𝐸𝐿𝐻𝑖+𝐸𝐿𝐷𝑖
−

(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                       (4.66) 

The percentage savings in the expected truck route time (𝑃𝑆𝐴𝑉𝑅𝑇) relative to service 𝑖 

is given by 

𝑃𝑆𝐴𝑉𝑅𝑇 = 1 −
𝑢

(1−𝑢)𝜆+𝑢

𝐸𝐿𝐻𝑗

𝑣𝑡𝑙
+

𝐸𝐿𝐷𝑗

𝑣𝑡
+(1−𝑝𝑗)𝑚𝑗𝜏𝑡

𝐸𝐿𝐻𝑖
𝑣𝑡𝑙

+
𝐸𝐿𝐷𝑖

𝑣𝑡
+(1−𝑝𝑖)𝑚𝑖𝜏𝑡

−
(1−𝑢)𝜆

(1−𝑢)𝜆+𝑢
.                   (4.67) 
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4.6 Illustrations of Minimum-Cost Delivery Systems 

The purpose of this section is to determine (i) the optimal use of drone delivery 

(including truck-drone and drone-only services) as a complement to traditional truck-only 

delivery to minimize the expected total delivery costs and (ii) to assess the effect of drone 

delivery on other associated performance metrics (e.g., reductions in vehicle miles traveled, 

number of vehicles required, driver-hours worked, energy consumption, and emissions). 

Table 4.1 shows the operating environment assumed in the base case, derived from data in 

Gulden (2017) who modeled a circular delivery region with a 10-mile radius and a central 

depot for drone-only delivery in Minneapolis, Minnesota. The Minneapolis delivery area 

has a total of 7,740 delivery locations, yielding a delivery density of 23.8 stops per square 

mile, which is similar to the 25 stops per square mile in our base case. This delivery density 

is representative of a typical suburban environment that features single family (or 

standalone) homes that often have yards or porches that are convenient and efficient for a 

package to be delivered (USPS report, 2020). The USPS report further shows that 76% of 

the US population lives in suburban areas which accounts for 14% of the US land area and 

has delivery densities ranging from about 1-725 packages per square mile.  

Table 4.2 shows the vehicle characteristics data for the truck and the drone we 

employ in the base case. Data is obtained from Campbell et al. (2017). The truck consumes 

diesel fuel and the drone consumes electricity. We differentiate the truck types in truck-

only delivery (Truck-1) and truck-drone delivery (Truck-2) by the truck carrying capacities 

𝑚𝑡𝑜 and 𝑚𝑡𝑑 (measured in packages, where each delivery is one package). A typical UPS 

driver makes about 100-150 stops (including both deliveries and pickups) in a typical 8 to 

9 hour truck route (Holland et al., 2017; Stolaroff et al., 2018; Perez, 2018). However, the 
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actual number of stops in a route depends on the time of week, month, and season as well 

as the delivery area. For example, UPS drivers disclosed that the number of stops can surge 

to 300-800 during holiday seasons (with several helpers assisting the driver to make the 

deliveries). In contrast, rural routes can have as low as 20-30 stops (deliveries) while routes 

in New York City can have over 120 stops without the delivery vehicle moving a 

mile(Quora, 2020). Note that some of these deliveries are likely to include the delivery of 

multiple packages to a single stop. However, we treat one stop as one package or one 

delivery in this dissertation.  

Driver working hours in the United States transportation industry are limited by 

Department of Transportation regulations. One requirement is that drivers can work no 

more than 60 hours in 7 days, another requirement is that drivers work no more than 70 

hours in 8 days (Freightwaves, 2019). Thus, the number of stops a driver can make is 

limited by his (her) allowable work hours rather than the capacity of the truck. In the base 

case we use a truck capacity of 𝑚𝑡𝑜 =100 deliveries for Truck-1, and 𝑚𝑡𝑑 = 150 deliveries 

for truck-drone delivery (Truck-2), as more deliveries can be made with the parallel use of 

drones to complete deliveries. Although the main analyses focus on cost-related metrics, 

we also explore associated energy consumption and emissions metrics. The data for 

lifecycle carbon intensity of fuels, energy consumption rates and emissions are from 

Stolaroff et al. (2018).  

Table 4.1. Base case parameter values for the operating environment 

Specification Value 

Delivery radius (miles) 10 

Delivery density (# stops/ square mile) 25 

Total number of deliveries 7,854 
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Table 4.2. Base case parameter values for the drone and the truck 

Specification  Drone Truck-1 Truck-2 

Fuel type electricity diesel diesel 

Travel cost rate ($/mile) 0.1 1.25 1.25 

Stop cost rate ($/stop) 0.4 0.4 0.4 

Travel range (miles) 10 unlimited unlimited 

Linehaul speed (mph) 40 40 40 

Local speed (mph) 40 20 20 

Stop time (minute) 1 1 1 

Work duration (hours) 8 8 8 

Capacity (# of packages) 1 100 150 

Lifecycle carbon intensity of fuel  

(kg CO2e/kWh) 

0.654 0.335 0.335 

Energy consumption rate (kWh/mile) 0.0181 3.272 3.272 

Travel emissions rate (kg CO2e/mile) 0.012 1.09 1.09 

Stop emissions rate (kg CO2e/stop) 0 0 0 

1Drone energy consumption rate = 40 Joules/meter; 2Truck energy consumption rate = 11.5 MPG. 

To make the cost illustrations clear, we define and distinguish two terms “delivery 

service” and “delivery service combination”. We model three delivery services: truck-only 

(TO), drone-only (DO), and truck-drone (TD). These delivery services can be combined, 

using different services in different subregions, to create a delivery service combination. 

We require each geographic subregion of the service region to be served by a single 

delivery service, but allow different parts of the service region to be served with different 

services. Thus, we have seven delivery service combinations: TO, DO, TD, TO+DO, 

TO+TD, DO+TD, and TO+DO+TD. Note that for a service option consisting of two or 

more delivery services, there is an infinite collection of realizations of the delivery services, 

depending on where each service is used. Even with a fixed fraction of the region served 

by each delivery service (e.g., 20% by TO and 80% by TD), the region can be 

geographically partitioned into 20% and 80% subregions in an infinite number of ways.   

However, in most cases, we care more about the realization that optimizes delivery costs, 
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or possibly other performance measures of interest. In the following analyses, we define 

“drone delivery” to refer to a service combination that includes drones for some part of the 

service region. 

4.6.1. Base Case 

4.6.1.1 Minimum-cost Division of Delivery Region by Different Delivery Services 

In the base case, the minimum-cost delivery system has drone-only (DO) serve 

deliveries up to 1.2 miles from the depot, and truck-drone (TD) serve the rest of the delivery 

region (from 1.2 miles to 10 miles away from the depot). Figure 4.8(a) illustrates the 

delivery cost of each of the three delivery services as a linear function of distance from the 

depot. The vertical axis is the delivery cost and the horizontal axis shows the distance from 

the depot. Truck-only (TO) is represented by the blue solid line, drone-only (DO) by the 

orange dashed line, and truck-drone (TD) by the green long-dash line. The red triangles 

indicate the delivery service that provides the lowest cost at each distance from the depot. 

Drone-only delivery (i.e., the orange dashed line) provides the lowest delivery cost for all 

deliveries within 1.2 miles of the depot, where the number of DO deliveries is 115 (about 

1.5% of total deliveries) and the delivery cost is $64 (about 1.1% of total costs), on an 

average of about 56 cents per delivery. Beyond 1.2 miles, truck-drone delivery (i.e., the 

green long-dash line) provides the lowest delivery cost, and drone-only delivery becomes 

much more expensive than truck-drone and truck-only deliveries, as the orange dashed line 

is far above the green long-dash line and the solid blue line. However, we note that the 

green long-dash line is only slightly below the solid blue line and becomes a little farther 

below as deliveries are farther from the depot, which indicates that the savings from using 
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truck-drone relative to truck-only delivery is not very large when the serving area is not 

too large. 

Figure 4.8(b) demonstrates how the delivery region is partitioned by the optimal 

services described in Figure 4.8(a). We use one quarter of the circular region to illustrate 

the optimal partition. The area shaded in orange shows that drone-only delivery serves 

customers within 1.2 miles of the depot, and the rest of the area (shaded in green) is served 

by truck-drone. 

      

Figure 4.8: (a) Delivery cost of each delivery service as a function of distance from the 

depot (left); (b) Partition of delivery region by optimal delivery services (right) 

4.6.1.2 Cost Savings of Drone Delivery to Truck-only Delivery  

Figure 4.9(a) shows the minimum expected total delivery cost of five different 

service combinations. The first three bars show the cost for using a single delivery service 

throughout the service region (i.e., truck-only, drone-only, truck-drone), and the other two 

bars show the cost for the optimal (cost minimizing) combinations of truck-only and drone-
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only, and of truck-drone and drone-only. From Figure 4.8 we observed that the 

combination of drone-only service (up to 1.2 miles) and truck-drone service (beyond 1.2 

miles) gives the lowest expected total delivery cost among all service combinations. 

However, we see that using truck-drone for the entire delivery region is almost as good (in 

terms of total expected delivery cost) as using the optimal combination of delivery services. 

This is because drone-only accounts for just 1.1% of the total delivery cost (due to there 

being very few, low cost DO deliveries all near the depot). Likewise, using TO alone is 

nearly as good as using DO+TO. It might be economical to use a smaller number of 

services whenever possible if there are incremental costs associated with managing 

additional delivery services. 

Figure 4.9(b) shows the percentage expected cost savings of the four other service 

combinations relative to truck-only delivery. Positive cost savings indicate that this other 

service combination provides lower delivery cost than truck-only delivery. The largest 

expected cost savings are over 14% and are provided by using truck-drone alone or the 

optimal combination of drone-only and truck-drone. Using a combination of truck-only 

and drone only services provides very little expected cost savings (only 0.3%). Using 

drone-only alone is much more expensive than truck-only in the base case, over 100% more 

expensive. 
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Figure 4.9: (a) Expected total delivery cost of different delivery service combinations 

(left); (b) Percentage cost savings of different delivery service combinations relative to 

truck-only delivery (right) 

4.6.1.3 Other Benefits of Drone Delivery in addition to Cost Savings 

Table 4.3 shows selected other relevant performance measures, in addition to 

delivery cost for truck-only and the optimal service combination (i.e., DO+TD) in the base 

case. Columns 4 and 5 indicate the absolute and the percentage changes in performance for 

the selected measures, respectively. 
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Table 4.3. Performance comparisons for truck-only and the optimal delivery service 

combination in the base case 

Performance (Expected value) TO DO+TD Change %Change 

% Area (customers) Served by TO 100.0% 0.0% -100.0% -100% 

% Area (customers) Served by DO 0.0% 1.5% 1.5% - 

% Area (customers) Served by TD 0.0% 98.5% 98.5% - 

Total Delivery Cost ($) 6717.8 5750.3 -967.5 -14% 

         Truck Delivery Cost 6717.8 4000.2 -2717.6 -40% 

         Drone Delivery Cost - 1750.1 1750.1 - 

Total GHG Emissions (kg CO2e) 3132.2 2166.4 -965.8 -31% 

         Truck Emissions 3132.2 2148.0 -984.2 -31% 

         Drone Emissions - 18.4 18.4 - 

Truck Miles Traveled (mile) 2861.0 1962.0 -899.0 -31% 

Drone Miles Traveled (mile) - 1562.1 1562.1 - 

Driver Hours Worked (hour) 247.8 145.2 -102.6 -41% 

Drone Hours Operated (hour) - 105.5 105.5 - 

#Trucks Required (SL1 = 8 hrs) 31.0 18.1 -12.8 -41% 

#Drones Required (SL1 = 8 hrs) - 19.0 19.0 - 

Number of Truck Routes 78.5 51.6 -26.9 -34% 

Truck Route Length (mile) 36.4 38.0 1.6 4% 

Truck Route Time (hour) 3.2 2.8 -0.3 -11% 

Drone Stops - 3984.6 3984.6 - 

1SL= Service Level, which is one day in the base case 

Rows 2-4 indicate the percentage of the total delivery area (or customers) served 

by TO, DO, and TD in each service combination, respectively. Row 5 indicates the 

expected total delivery costs (including both truck and drone delivery costs) of the two 

service options. Expected total delivery costs are reduced from $6,718 (for TO) to $5,750 

(for DO+TD), with truck delivery cost reduced by $2,718 (about a 40% reduction) afforded 

by drone operating costs of  $1,750. The associated emissions (produced from the 

minimum-cost routes), in row 6, are reduced from 3,132 kg CO2e (for TO) to 2,166 kg 

CO2e (for DO+TD), with truck emissions reduced by 984 kg CO2e and drone emissions 

increased by only 18 kg CO2e, which indicates that the emissions-efficiency of drones 
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relative to trucks is much greater than the operating cost efficiency of drones relative to 

trucks. The expected truck travel miles (in row 11) are reduced by 899 miles (about a 31% 

reduction). However, the expected drone travel miles (in row 12) are increased by 1,562 

miles. In row 13, the expected number of hours that drivers work is reduced by 103 hours 

to only 145 hours using DO+TD rather than TO, which is about a 41% reduction. In row 

14, we also show the number of hours that drones operate (not including hours that the 

drones ride on the trucks). We compute the number of trucks and drones required (in rows 

15-16) based on the driver hours required and a work day of 8 hours. Thus, the expected 

number of trucks required to serve the delivery region is 31 for TO and 18.1 for DO+TD. 

The expected number of drones required is 18.1 for those that make deliveries from the 

truck and 0.8 for those that make deliveries from the depot. The number of truck routes (in 

row 17) is reduced from 79 (for TO) to 52 (for DO+TD), about a 34% reduction. The truck 

route length increases slightly (about 1.6 miles) for DO+TD relative to TO. This is because 

having one half of the TD deliveries made by the drone increases the swath width of the 

truck-drone route so much that it offsets the miles reduced by having the truck make fewer 

deliveries in one route. However, we could also view it as although the truck-drone route 

makes 50% more deliveries than the truck-only route, the truck travel miles is increased 

only 4.4% for DO+TD. The truck route time decreases by 21 minutes as the drone works 

in parallel with the truck to make one half of the TD deliveries.  

4.6.1.4 Allocation of Selected Performance Measures to Each Component 

Figure 4.10 shows the allocation of the expected total delivery cost to each 

component (i.e., truck linehaul and local travel cost, truck and drone stop cost, and drone 

travel cost) of TO (solid blue bars) versus DO+TD (mixed dotted orange and green bars). 
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We also include TD (hatched green bars) to demonstrate that the near-optimal service 

option, TD, is about as good as the optimal service option, TO+TD. The expected total 

delivery cost of TO includes costs for truck linehaul travel (about 19%), truck local travel 

(about 34%) and truck delivery stops (about 47%) – the largest cost proportion comes from 

delivery stops, i.e., making the deliveries. For DO+TD and TD, two additional cost 

components, i.e., drone travel and drone stop, are incurred. Comparing DO+TD with TO, 

the delivery costs for truck linehaul travel, truck local travel, and truck stop are reduced by 

33%, 30%, and 51%, respectively. Although the largest cost reduction comes from the 

reduction of truck delivery stops, the same amount of cost ($1,594) is now added by the 

drone delivery stops as the total number of deliveries does not change and the truck and 

the drone have the same unit stop cost in the base case (i.e., $0.4/stop). In Figure 4.10, we 

see that the expected cost of each component of TD is about the same as that of DO+TD. 

Using TD alone might be more appealing as it reduces the possible complexity of managing 

multiple delivery services. 

 

Figure 4.10. The allocation of expected cost to each component in TO, DO+TD, and TD 
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Although not the main focus in the cost analysis, Figure 4.11 shows how 

environmentally friendly drone travel is in the base case compared with truck travel. 

Delivery stop emissions are zero for both drone and truck delivery so they are not shown 

in the graph. For TO, the expected emissions include truck linehaul travel (about 34%) and 

truck local travel (about 66%). Replacing TO with DO+TD (or TD) has a similar impact 

on total emissions as on delivery costs, except that drone emissions account for only 0.85% 

of emissions vs drone delivery costs accounting for 30% in DO+TD (or TD), due to the 

high drone stop cost 

 

Figure 4.11. The allocation of emissions to each component in TO, DO+TD, and TD 
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slightly more than half of the deliveries are replaced by drones with DO+TD (vs TO), this 

does not reduce truck local travel miles by 50% for DO+TD or TD compared with TO, as 

shown in Figure 4.12. Comparing TD with DO+TD, we see truck local travel miles are 

slightly higher while drone travel miles are significantly lower. Together, these changes 

may indicate that having truck and drone alternate deliveries as in our TD model may not 

be the most efficient way of using drones with trucks. When drone travel is much lower 

cost than truck travel, it might be more beneficial to have drones make more deliveries, 

such as by allowing more than one drone per truck or having drones make multiple 

deliveries per truck delivery. 

 

Figure 4.12. The allocation of expected vehicle miles traveled to each component in TO, 

DO+TD, and TD  

Figure 4.13 shows the allocation of total expected driver hours worked to each 

component of TO (solid blue bars) versus DO+TD (mixed dotted orange and green bars) 

versus TD (hatched green bars). The components of driver hours worked in TO include 
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37%), and truck delivery stops (131 hours or 53%). Compared with TO, DO+TD 

significantly reduces the truck stop time by 66 hours (or 51%) thanks to the parallel 

operation of drone delivery from the truck. It also reduces driver hours spent in truck 

linehaul and local travel by 33% and 30%, respectively. 

 

Figure 4.13. The allocation of expected driver hours worked to each component in TO, 

DO+TD, and TD 
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with equipment purchase prices greatly reduced and operating technologies improved that 

allow regulation to be loosened for efficiency purposes. 

4.6.2.1 Performance Effects of Drone Delivery 

Table 4.4 shows the performance measures of interest for TO, TD, and the optimal 

service option for three different levels of 𝑐𝑑 , i.e., DO+TO+TD (𝑐𝑑 = $0.625 /mile), 

DO+TD (base case 𝑐𝑑 =$0.1/mile), and DO (𝑐𝑑 = $0.01/mile), showing in columns 4,6,8, 

respectively.  

Table 4.4 provides several interesting observations:  

(1) in the optimal service combination, the lower the drone travel cost (𝑐𝑑), the higher the 

percentage of customers served by DO (in row 5) and the lower the percentage of customers 

served by TD (row6). We note that TD use decreases with decreasing drone travel cost (𝑐𝑑) 

for intermediate values of 𝑐𝑑 not displayed in Table 4.4. For example, TD use is reduced 

from 98.5% to 49.6% (~50% reduction) when 𝑐𝑑 is reduced from 0.1 to 0.023 $/mile (~77% 

reduction); and reduced from 49.6% to 0% (~50% reduction) when 𝑐𝑑 is reduced from 

0.023 to 0.018 $/mile (~22% reduction). 

(2) when 𝑐𝑑 = $0.625/mile, the optimal service combination has DO serve only those 

customers who are within 0.24 miles of the depot, which account for less than 0.1% of total 

customers; TO serves customers who are between 0.24 and 2.84 miles of the depot 

accounting for 8% of total customers; and TD serves the rest of the delivery area (about 

92% of the customers). The cost savings compared to truck-only service is only 3.8%. 

However, the emissions savings is 28%. Compared with the base case optimal service 

combination DO+TD, there are only slight changes in other performance measures, 
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especially measures associated with truck use (e.g., truck route length and time, number of 

trucks required). 

(3) with low-cost drone travel, 𝑐𝑑 = $0.01/mile, the optimal service combination has DO 

delivery serve all customers, which provides the largest cost savings of 37.6% relative to 

TO. The emissions are reduced even more by 60.6%. However, drone travel miles are 

increased from 0 to 104,720 miles. The total system time is 2,749 hours for the drone to 

complete all the deliveries. If we assume the service level is one day and the drone can 

work 8 hours, the number of drones required is 344. If in the future the drones are allowed 

to work 24 hours per day, the number of drones required is reduced to 115. If the service 

level is increased to 2-hour delivery (vs 8-hour in the base case) (e.g., for on-demand 

grocery delivery), and we assume the orders are evenly distributed throughout the day (e.g., 

from 8AM to 8 PM), then the number of drones required is reduced to 230.  

(4) In both the expensive 𝑐𝑑 case and the base case, TD performs very similarly to the 

optimal service combination. This is because all these service combinations consist of a 

large proportion of TD use (more than 92%), which indicates that TD may be an important 

type of service when the drone travel cost is not at very low level. However, when drone 

travel cost becomes extremely low ( 𝑐𝑑 = $0.01 /mile), then TD provides about 50% 

smaller cost savings and emissions reductions than using the optimal service combination 

(i.e., just DO). However, comparing TD with DO for other performance measures shows: 

the total travel miles are 97% less (3,263.2 vs 104,719.8), total system time is 94% less 

(147 vs 2,618), the number of drones required is 95% less (15 vs 344) given the same 

service level.  
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(5) By changing drone travel cost alone, we cannot obtain a case where all three services 

(i.e., TO, DO, TD) serve approximately the same number of customers. However, by 

changing other parameters at the same time, we can find such cases. 
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Table 4.4. Performance for TO, TD, and the optimal delivery service combinations for three levels of 𝑐𝑑 

Performance Measure Status Quo Expensive 𝒄𝒅 Case Base Case Inexpensive 𝒄𝒅 Case 

𝑐𝑑 ($/mile) ∞ 0.625 0.1 0.01 

Service Option TO TD DO+TO+TD* TD DO+TD* TD DO* 

% Area (customers) Served by TO 100.0% - 8.0% - 0.0% - - 

% Area (customers) Served by DO - - 0.1% - 1.5% - 100.0% 

% Area (customers) Served by TD - 100.0% 92.0% 100.0% 98.5% 100.0% - 

Total Delivery Cost (TDC) ($) 6717.8 6467.1 6461.7 5758.8 5750.3 5631.8 4188.8 

% TDC Change to TO - -3.7% -3.8% -14.3% -14.4% -16.2% -37.6% 

         Truck Delivery Cost 6717.8 4070.4 4255.2 4048.4 4000.2 4046.7 - 

         Drone Delivery Cost - 2396.7 2206.5 1710.4 1750.1 1585.1 4188.8 

Total GHG Emissions (kg CO2e) 3132.2 2204.8 2256.3 2186.4 2166.4 2185.3 1232.8 

% Emissions Change to TO - -29.6% -28.0% -30.2% -30.8% -30.2% -60.6% 

        Truck Emissions 3132.2 2189.3 2242.0 2170.0 2148.0 2168.5 - 

        Drone Emissions - 15.6 14.3 16.4 18.4 16.8 1232.8 

Truck Miles Traveled (mile) 2861.0 1999.7 2047.8 1982.1 1962.0 1980.7 - 

Drone Miles Traveled (mile) - 1321.4 1216.5 1396.3 1562.1 1429.4 104719.8 

Driver Hours Worked (hour) 247.8 148.0 155.4 147.1 145.2 147.0 - 

Drone Hours Operated (hour) - 98.5 90.7 100.4 105.5 101.2 2748.9 

#Trucks Required (SL = 8 hrs) 31.0 18.5 19.4 18.4 18.1 18.4 - 

#Drones Required (SL = 8 hrs) - 18.5 19.4 18.4 19.0 18.4 343.6 

Number of Truck Routes 78.5 52.4 54.4 52.4 51.6 52.4 - 

Truck Route Length (mile) 36.4 38.2 37.6 37.9 38.0 37.8 - 

Truck Route Time (hour) 3.2 2.8 2.9 2.8 2.8 2.8 - 

Drone Stops - 3927.0 3615.5 3927.0 3984.6 3927.0 7854.0 

*The optimal service combination that minimizes total delivery cost. 
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4.6.2.2 Allocation of Selected Performance Measures to Each Component 

To understand the mechanisms by which drones improve delivery performance, we 

show the components of delivery cost (Figure 4.14), travel miles (Figure 4.15), and system 

time (Figure 4.16) of the optimal service combination with the three different levels of 𝑐𝑑. 

In each figure, colors light blue, blue, and dark blue represent the expensive 𝑐𝑑 case, the 

base case, and the inexpensive 𝑐𝑑 case, respectively. TO is represented by solid bars, TD 

by dotted bars, and the optimal service option by hatched bars. We include TD to 

demonstrate that this single delivery service is a near-optimal service alternative. 

Figure 4.14 shows the allocation of the total expected cost in truck linehaul travel, 

truck local travel and drone travel of the different service combinations with the three levels 

of 𝑐𝑑. We do not include stop costs in the figure as the total delivery stop costs are the same 

for all alternatives. For each level of 𝑐𝑑, the same pattern appears as evident in the base 

case. The delivery costs for truck linehaul and local travel are reduced by increasing the 

cost for drone travel. Comparing the optimal delivery service combination of expensive 

drones (𝑐𝑑 = $0.625/mile), i.e., DO+TO+TD, with the optimal service combination of the 

base case, i.e., DO+TD, the linehaul truck travel cost stays almost the same (about 1.3% 

increase), the local truck travel cost increases slightly by 6.1%, while the drone travel cost 

increases most noticeably from $156 to $760, which is more than a 387% increase. 

Comparing the optimal delivery service combination of inexpensive drones ( 𝑐𝑑 =

$0.01/mile), i.e., DO, with the optimal delivery service combination of the base case, i.e., 

DO+TD, the cost components associated with truck travel are reduced to zero and drone 

travel cost is increased by $1,047, which provides a 60% reduction in the total travel cost 

(including truck linehaul, truck local and drone travel). However, the inexpensive drones 
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provide only a 27% reduction in overall costs (including stop costs). The high stop cost per 

delivery reduces the percentage decrease in operating costs. Similarly, the noticeable 

differences in drone travel cost of TD for different 𝑐𝑑  levels make TD a very good 

alternative to the optimal delivery service combination consisting of more than one service 

when 𝑐𝑑 is high, and not as good an alternative as the optimal delivery service combination 

when 𝑐𝑑 is extremely low. 

 

Figure 4.14. Cost allocation in TO, TD, and the optimal delivery service combination for 

three levels of 𝑐𝑑 
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about a 6,600% increase. The drone travel miles are decreased by 22% when 𝑐𝑑  is 

increased from 0.1 to 0.625. For TD, we see the truck linehaul travel miles stay the same, 

and there are slight decreases in truck local travel miles and some increases in drone travel 

miles when 𝑐𝑑 decreases from 0.625 to 0.1 to 0.01, which is due to the swath width change 

in truck-drone routes. However, the swath width change is not enough to make TD used 

for low 𝑐𝑑. 

 

Figure 4.15. Allocation of vehicle miles traveled in TO, TD, and the optimal delivery 

service combinations for three levels of 𝑐𝑑 
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truck hours operated does not change much when 𝑐𝑑 increases from 0.1 to 0.625 compared 

with the optimal delivery service combinations. 

 

Figure 4.16. Allocation of vehicle hours operated in TO, TD, and the optimal delivery 

service combination for three levels of 𝑐𝑑 
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wealthier neighborhoods, very rural areas), and thus the marginal drone stop cost is 

negative, indicating that drone stop cost is lower than that of the truck. Because the drone 

stop time 𝜏𝑑 and the marginal drone stop cost 𝑠𝑑 may be correlated, we change drone stop 

time accordingly with the costs and increase drone stop time by 50% to 90 seconds per stop 

under the expensive 𝑠𝑑 case; and decrease the drone stop time by 50% to 30 seconds per 

stop under the inexpensive 𝑠𝑑 case. 

4.6.3.1 Performance Effects of Drone Delivery 

Table 4.5 shows the performance measures of interest for TO, TD, and the optimal 

delivery service combination for three different levels of 𝑠𝑑  and associated 𝜏𝑑 , i.e., 

DO+TO+TD (𝑠𝑑 = $0.2/stop, 𝜏𝑑 = 90 seconds/stop), DO+TD (base case 𝑠𝑑 = $0/stop, 

𝜏𝑑 = 60 seconds/stop), and DO+TD (𝑠𝑑 = −$0.2/stop, 𝜏𝑑 = 30 seconds/stop), in columns 

4,6,8, respectively. 

Like the impact of different drone travel costs (𝑐𝑑), the lower the marginal drone 

stop cost (𝑠𝑑), the higher the percentage of customers served by DO (0.3%, 1.5%, and 3.1% 

when 𝑠𝑑 =  0.2, 0, and -0.2 $/stop, respectively) and the larger the number of drone 

deliveries (3314, 3985, and 4048 when 𝑠𝑑 = 0.2, 0, and -0.2 $/stop, respectively) in the 

optimal delivery service combinations. It is interesting that when 𝑠𝑑 is high, the utilization 

of each service in the optimal delivery service combination responds similarly to when 𝑐𝑑 

is high. In both cases, three delivery services are used, with similar DO utilization (less 

than 0.3%) but different TO and TD utilizations. TO is used for about 16% of deliveries 

for the expensive 𝑠𝑑  case, and for about 8% of deliveries for the expensive 𝑐𝑑  case. 

Accordingly, TD is used for about 84% of deliveries for the expensive 𝑠𝑑 case, and for 

about 92% of deliveries for the expensive 𝑐𝑑  case. Like the base case, DO+TD is the 
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optimal service combination when 𝑠𝑑 = −$0.2/stop, with the service provided by DO 

increased from 1.2 to 1.8 miles.  

Although the total operating hours of drones are less than those of trucks, in some 

cases (e.g., TD when 𝑠𝑑 = 0.2 $/stop), the total time for drones in the system, which 

includes the time drones ride on trucks during linehaul travel, may exceed the total time 

for trucks in the system, thus, the use of drones for such cases does not improve the overall 

service level. In all cases, the cost savings of TD and the optimal delivery service 

combination relative to TO are very similar, which indicates that TD is a good alternative 

to the optimal delivery service combination for a wide range of marginal drone stop costs. 
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Table 4.5. Performance for TO, TD, and the optimal delivery service combinations under three levels of 𝑠𝑑 and associated 𝜏𝑑 

Performance Measure Status Quo Expensive 𝒔𝒅 Case Base Case Inexpensive 𝒔𝒅 Case 

Drone cost ($/) & time (sec) per stop ∞ 𝑠𝑑 = 0.2, 𝜏𝑑 = 90 𝑠𝑑 = 0, 𝜏𝑑 = 60 𝑠𝑑 = -0.2, 𝜏𝑑 = 30 

Service Option TO TD DO+TO+TD* TD DO+TD* TD DO+TD* 

% Area (customers) Served by TO 100.0% - 15.9% - 0.0% - 0.0% 

% Area (customers) Served by DO - - 0.3% - 1.5% - 3.1% 

% Area (customers) Served by TD - 100.0% 83.9% 100.0% 98.5% 100.0% 96.9% 

Total Delivery Cost (TDC) ($) 6717.8 6544.2 6529.5 5758.8 5750.3 4973.4 4947.4 

% TDC Change to TO - -2.6% -2.8% -14.3% -14.4% -26.0% -26.4% 

         Truck Delivery Cost 6717.8 4048.4 4422.4 4048.4 4000.2 4048.4 3945.6 

         Drone Delivery Cost - 2495.8 2107.1 1710.4 1750.1 925.0 1001.8 

Total GHG Emissions (kg CO2e) 3132.2 2186.4 2296.9 2186.4 2166.4 2186.4 2145.1 

% Emissions Change to TO - -30.2% -26.7% -30.2% -30.8% -30.2% -31.5% 

        Truck Emissions 3132.2 2170.0 2282.9 2170.0 2148.0 2170.0 2122.4 

        Drone Emissions - 16.4 13.9 16.4 18.4 16.4 22.6 

Truck Miles Traveled (mile) 2861.0 1982.1 2085.2 1982.1 1962.0 1982.1 1938.7 

Drone Miles Traveled (mile) - 1396.3 1185.0 1396.3 1562.1 1396.3 1921.2 

Driver Hours Worked (hour) 247.8 147.1 161.9 147.1 145.2 147.1 143.0 

Drone Hours Operated (hour) - 133.1 112.5 100.4 105.5 67.6 81.8 

Drone Total Time in System (hour) - 150.5 130.5 117.8 122.9 85.1 99.1 

#Trucks Required (SL = 8 hrs) 31.0 18.4 20.2 18.4 18.1 18.4 17.9 

#Drones Required (SL = 8 hrs) - 18.4 20.3 18.4 19.0 18.4 19.9 

Number of Truck Routes 78.5 52.4 56.4 52.4 51.6 52.4 50.7 

Truck Route Length (mile) 36.4 37.9 37.0 37.9 38.0 37.9 38.2 

Truck Route Time (hour) 3.2 2.8 2.9 2.8 2.8 2.8 2.8 

Drone Stops - 3927.0 3314.4 3927.0 3984.6 3927.0 4048.2 

*The optimal delivery service combination that minimizes total delivery cost. 
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4.6.3.2 Allocation of Selected Performance Measures to Each Component 

Figure 4.17 shows the cost per delivery of each delivery service combination for 

the three levels of 𝑠𝑑. Again, colors dark blue, blue, and light blue represent the inexpensive 

𝑠𝑑 case, the base case, and the expensive 𝑠𝑑 case, respectively. The figure shows that TD 

is nearly as good as the optimal delivery service combination in terms of cost per delivery 

in all cases. The lower the marginal drone stop cost 𝑠𝑑, the lower the cost per delivery for 

all service combinations. It is interesting to see that the cost per delivery decreases by $0.2 

for DO (as the marginal drone delivery cost  𝑠𝑑 decreases by $0.2), while it decreases by 

only $0.1for TD when 𝑠𝑑 decreases by $0.2. This is because only half of the deliveries on 

TD routes are made by drones. 

 

Figure 4.17. Cost per delivery of all delivery service combinations for three levels of 𝑠𝑑  

Figure 4.18 shows the allocation of vehicle hours operated. For the optimal delivery 

service combinations (bars 2-4 in each set), the hours spent on truck linehaul travel, local 

travel and delivery stops decrease as the marginal drone stop cost (𝑠𝑑) decreases, with 
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reductions (3% in truck linehaul travel, 7% in truck local travel, and 15% in truck delivery 

stops) from the expensive 𝑠𝑑 case to the base case being greater than those (0.4% in truck 

linehaul travel, 1.6% in truck local travel, and 1.6% in truck stop) from the base case to the 

inexpensive 𝑠𝑑 case. This is because TO serves more customers when 𝑠𝑑 is expensive, thus 

truck linehaul and local travel increase; and the truck stop time increases because drone 

stop time increases as 𝑠𝑑 increases. Hours spent on drone travel increase while drone stop 

time decreases as 𝑠𝑑 decreases. However, the decrease in drone travel and stop time may 

indicate that it is beneficial in terms of both cost and time to have more customers served 

by drones. For TD under these three cases (the last 3 bars in each set), the only change is 

in drone stop time, which naturally decreases as 𝑠𝑑  decreases (due to the assumed 

correlation of drone stop time and marginal drone stop cost). 

 

Figure 4.18. Allocation of vehicle hours operated in TO, TD, and the optimal delivery 

service combinations for three levels of 𝑠𝑑 and associated 𝜏𝑑 
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Figure 4.19 shows the allocation of vehicle miles traveled. It is interesting to see 

that all components of TD remain the same across the three cases (last 3 bars in each set). 

This is because 𝑠𝑑 has no impact on the swath width of truck-drone route. However, we 

see the vehicle miles change in the optimal services, which is because 𝑠𝑑 has an impact on 

the optimal sub-delivery partitioning distance, i.e., the utilization of each service when 

more than one service is used. 

 

Figure 4.19. Allocation of vehicle miles traveled in TO, TD, and the optimal delivery 

service combination for three levels of 𝑠𝑑 and associated 𝜏𝑑 
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4.6.4. Large vs Small Truck Capacity for Truck-drone Delivery (𝒎𝒕𝒅) 

In this section we consider two other levels of truck capacity for truck-drone 

delivery in addition to the base case level where 𝑚𝑡𝑑 = 150 deliveries per route: a large 

truck capacity with 𝑚𝑡𝑑 = 300 deliveries per route and a small truck capacity with 𝑚𝑡𝑑 =

75 deliveries per route. The truck capacity has an impact on delivery economies of scale 

for the multi-stop routes through altering the truck linehaul travel cost per delivery. The 

larger the capacity, the smaller the amount of linehaul cost associated with each delivery. 

4.6.4.1 Performance Effects of Drone Delivery 

Table 4.6 shows the performance measures of interest for TO, TD, and the optimal 

delivery service combination for three different levels of 𝑚𝑡𝑑, i.e., DO+TD+TO (𝑚𝑡𝑑 =

75), DO+TD (base case 𝑚𝑡𝑑 = 150), and DO+TD (𝑚𝑡𝑑 = 300), in columns 4,6, and 8, 

respectively. 

There are several interesting observations from Table 4.6:  

(1) for the optimal delivery service combination for the three levels of 𝑚𝑡𝑑, the larger the 

truck capacity for truck-drone delivery, the lower the percentage of customers served by 

DO (in row 5) and the higher the percentage of customers served by TD (in row 6). We 

note that the impact of 𝑚𝑡𝑑 on the increasing utilization of TD is marginally diminishing. 

For example, when 𝑚𝑡𝑑  increases from 75 to 150, TD utilization (i.e., the percentage 

number of customers served by TD) increases from 62% to 98.5% (a 36.5% increase); 

when 𝑚𝑡𝑑 is further doubled (from 150 to 300), TD utilization increases only 0.2% (from 

98.5% to 98.7%). 
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Table 4.6. Performance for TO, TD, and the optimal delivery service combinations for three levels of 𝑚𝑡𝑑  

Performance Measure Status Quo Small TD Capacity Base Case Large TD Capacity 

Truck-drone capacity 𝑚𝑡𝑑 𝑚𝑡𝑑 = 0 𝑚𝑡𝑑 = 75 𝑚𝑡𝑑 = 150 𝑚𝑡𝑑 = 300 

Service Option TO TD DO+TD+TO* TD DO+TD* TD DO+TD* 

% Area (customers) Served by TO 100.0% - 36.2% - - - - 

% Area (customers) Served by DO - - 1.8% - 1.5% - 1.3% 

% Area (customers) Served by TD - 100.0% 62.0% 100.0% 98.5% 100.0% 98.7% 

Total Delivery Cost (TDC) ($) 6717.8 6631.5 6596.4 5758.8 5750.3 5322.5 5314.7 

% TDC Change to TO - -1.3% -1.8% -14.3% -14.4% -20.8% -20.9% 

         Truck Delivery Cost 6717.8 4921.1 5455.3 4048.4 4000.2 3612.1 3568.7 

         Drone Delivery Cost - 1710.4 1141.0 1710.4 1750.1 1710.4 1745.9 

Total GHG Emissions (kg CO2e) 3132.2 2950.7 2941.4 2186.4 2166.4 1804.3 1786.5 

% Emissions Change to TO - -5.8% -6.1% -30.2% -30.8% -42.4% -43.0% 

        Truck Emissions 3132.2 2934.3 2928.3 2170.0 2148.0 1787.8 1768.3 

        Drone Emissions - 16.4 13.1 16.4 18.4 16.4 18.1 

Truck Miles Traveled (mile) 2861.0 2680.2 2674.8 1982.1 1962.0 1633.0 1615.2 

Drone Miles Traveled (mile) - 1396.3 1113.6 1396.3 1562.1 1396.3 1540.6 

Driver Hours Worked (hour) 247.8 164.6 191.2 147.1 145.2 138.4 136.6 

Drone Hours Operated (hour) - 100.4 70.7 100.4 105.5 100.4 104.8 

#Trucks Required (SL = 8 hrs) 31.0 20.6 23.9 18.4 18.1 17.3 17.1 

#Drones Required (SL = 8 hrs) - 20.6 25.0 18.4 19.0 17.3 17.8 

Number of Truck Routes (NTR) 78.5 104.7 93.4 52.4 51.6 26.2 25.8 

% NTR Change to TO - 33.3% 18.9% -33.3% -34.3% -66.7% -67.1% 

Truck Route Length (mile) 36.4 25.6 28.6 37.9 38.0 62.4 62.5 

Truck Route Time (hour) 3.2 1.6 2.0 2.8 2.8 5.3 5.3 

Drone Stops - 3927.0 2574.2 3927.0 3984.6 3927.0 3979.7 

*The optimal delivery service combination that minimizes total delivery cost. 
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(2) when 𝑚𝑡𝑑 = 75, the optimal service combination has DO serve those deliveries that 

are within 1.3 miles of the depot, which account for about 1.8% of total customers; TD 

serves customers who are between 1.3 and 8.0 miles of the depot and account for 62% of 

total customers; and TO serve the rest of the delivery area (about 36.2% of customers). The 

cost and emissions savings compared to truck-only delivery are both small, about 1.8% and 

6.1%, respectively. When we extend the radius of the delivery region (to 20 or 30 miles), 

since the regions where DO and TD are used will not change, these cost and emissions 

savings from drone delivery will be even lower, as more deliveries further from the depot 

are made by TO. However, the service level might be improved by using a smaller truck-

drone capacity, as the truck route time is 2 hours, which is about 35% less than that of TO. 

(3) with large truck capacity for truck-drone delivery, 𝑚𝑡𝑑 = 300, the optimal service 

combination has DO serve customers who are within 1.2 miles of the depot and TD serve 

the rest of the customers. Although the set and the utilization of services are almost 

identical to those in the base case (𝑚𝑡𝑑 = 150), the optimal delivery service combination 

for 𝑚𝑡𝑑 = 300 provides a larger cost savings of about 21% (vs 14.4% in the base case) 

and emissions savings of 43% (vs ~31% in the base case) relative to truck-only. This is 

because the truck linehaul travel is greatly reduced due to a larger truck capacity. However, 

the route time is 5.3 hours, which is about a 68% increase compared with TO and a 88% 

increase compared with the optimal delivery service combination of the base case. 

(4) in both the large truck capacity case (𝑚𝑡𝑑 = 300) and the base case (𝑚𝑡𝑑 = 150), TD 

performs very similarly to the optimal delivery service combination. This is because all 

these service combinations consist of a large proportion of TD (more than 98%). But even 

in the small truck capacity case (𝑚𝑡𝑑 = 75), TD does not perform too differently than the 
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optimal delivery service combination. This may indicate that TD is an important delivery 

service when the number of deliveries it makes is not too small. 

(5) to assess how smaller number of deliveries that each truck-drone route can make affects 

the performance of TD, we select and evaluate two other smaller levels of 𝑚𝑡𝑑 (not shown 

in Table 4.6): 𝑚𝑡𝑑 = 50 and 𝑚𝑡𝑑 = 35. When 𝑚𝑡𝑑 = 50, the optimal delivery service 

combination has TD serve customers between 1.5-2.7 miles of the depot (about 5% of total 

customers). The cost and emissions savings relative to truck-only delivery is small (0.4% 

and 1.7%, respectively). For TD alone, the cost and emissions savings compared to truck-

only delivery are 12% and 19% greater, respectively. However, the truck route time is only 

1.2 hours (vs 3.8 hours for TO). When 𝑚𝑡𝑑 = 35, the optimal delivery service combination 

does not include TD. For TD alone, the cost and emissions savings compared to truck-only 

delivery are 28.4% and 50% greater, respectively. However, the truck route time is less 

than one hour, which is a 71% reduction compared to TO. 

4.6.4.2 Allocation of Select Performance Measures to Each Component 

Figure 4.20 shows the cost per delivery of each delivery service combination for 

the three levels of 𝑚𝑡𝑑. Colors darker blue, blue, and lighter blue represent the large  𝑚𝑡𝑑 

case, the base case, and the small 𝑚𝑡𝑑  case, respectively. The figure shows that TD is 

nearly as good as the optimal delivery service combination in terms of cost per delivery in 

all different truck size cases. The larger the 𝑚𝑡𝑑, the lower the cost per delivery for service 

combinations consisting of TD, but that impact is marginally diminishing as evidenced by 

the smaller difference between the blue and darker blue lines than the difference between 

the lighter blue and blue lines given the same scale of 𝑚𝑡𝑑 change. In addition,  𝑚𝑡𝑑 has 

no impact on other service combinations that do not include TD. 
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Figure 4.20. Cost per delivery of all delivery service combinations for three levels of 𝑚𝑡𝑑  

Figure 4.21 shows the allocation of vehicle hours operated for TO, TD, and the 

optimal delivery service combination for the three levels of 𝑚𝑡𝑑. For the optimal delivery 

service combinations, the hours allocated on truck linehaul travel decrease noticeably as 

the truck capacity for truck-drone delivery (𝑚𝑡𝑑) increases. Truck linehaul travel hours are 

reduced by 43% when 𝑚𝑡𝑑 is doubled from 75 to 150, and are further reduced by 50% 

when 𝑚𝑡𝑑 is doubled again from 150 to 300. However, compared to truck-only delivery 

(the blue bar), truck hours allocated on the linehaul travel increase (about 17%) for  𝑚𝑡𝑑 =

75 (which is ¾ of the truck capacity for truck-only) and decrease for the other two cases. 

Compared to truck-only delivery, the hours spent on truck local travel and delivery stops 

decrease as 𝑚𝑡𝑑 increases, with reductions (about 20% in truck local travel, and 33% in 

truck delivery stops) for the small 𝑚𝑡𝑑 case being less than those for the other two cases 

which have very similar reductions (30% in truck local travel, and 51% in truck delivery 

stops) due to the similar utilization of DO and TD services. For TD under these three cases 
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(the last 3 bars in each set), the only change is in truck linehaul travel, which naturally 

decreases as 𝑚𝑡𝑑 increases (due to the reduced truck routes).    

 

Figure 4.21. Allocation of vehicle hours operated in TO, TD, and the optimal delivery 

service combinations for three levels of 𝑚𝑡𝑑  

The impact of 𝑚𝑡𝑑 on each component of the vehicle miles traveled is very similar 

to that on vehicle hours operated, thus, we do not describe them further.  In summary, the 

truck capacity for truck-drone delivery 𝑚𝑡𝑑 has a large impact on reducing truck linehaul 

travel but increase the truck route time, and has a marginal impact on increasing the 

utilization of TD as 𝑚𝑡𝑑 increases. 

4.6.5. Low vs High Delivery Density (𝜹) 

In this section, we explore the impact of delivery density on the performance 

measures of using drones. We consider two levels of delivery density in addition to the 
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three delivery densities represent suburban areas that feature standalone houses with yards 

or porches that are convenient and efficient for a package to be dropped (USPS, 2020). 

Moreover, the majority of the US population (76%) lives in suburban areas. In addition to 

geographic areas, we note that the delivery density also varies by time of the 

day/week/season/year. Thus, our low delivery density may represent areas where houses 

are far apart from each other and/or deliveries for off-season periods. Our high delivery 

density may represent dense areas where houses are located very near to each other and/or 

peak delivery periods. 

4.6.5.1 Performance Effects of Drone Delivery 

Table 4.7 shows the performance measures of interest for TO, TD, and the optimal 

delivery service combination for three different levels of 𝛿. Since the number of deliveries 

linearly increases as 𝛿 increases (e.g., the number of deliveries are 314, 7854, and 196,350 

for 𝛿 = 1, 25, and 625 in the circular region, respectively), we normalize some of the 

performance measures by the number of deliveries. 

There are several interesting observations from Table 4.7: 

(1) In all three density cases, DO+TD is the optimal service combination and DO serves 

customers who are close to the depot. However, the utilization of DO and TD differs in 

each case. The lower the delivery density, the larger the percentage of customers served by 

DO (36.7%, 1.5%, and 0.1% for 𝛿 =  1, 25, and 625 deliveries per square mile, 

respectively). The higher the delivery density, the higher percentage of customers served 

by TD (63.3%, 98.5%, and 99.9% for 𝛿 = 1, 25, and 625 deliveries per square mile, 

respectively).  

  



150 

 

Table 4.7. Performance for TO, TD, and the optimal service combination for three levels of 𝛿  

Performance Measure Low Density (𝜹 = 𝟏) Medium Density (𝜹 = 𝟐𝟓) High Density (𝜹 = 𝟔𝟐𝟓) 

Service option TO TD DO+TD* TO TD DO+TD* TO TD DO+TD* 

% Area (customers) Served by TO 100.0% - 0.0% 100.0% - 0.0% 100.0% - 0.0% 

% Area (customers) Served by DO - - 36.7% - - 1.5% - - 0.1% 

% Area (customers) Served by TD - 100.0% 63.3% - 100.0% 98.5% - 100.0% 99.9% 

% Deliveries by Drone 0.0% 50.0% 68.3% 0.0% 50.0% 50.7% 0.0% 50.0% 50.0% 

Cost per Delivery ($/delivery) 2.01 1.62 1.49 0.86 0.73 0.73 0.62 0.56 0.56 

Total Delivery Cost ($) 631.5 509.5 466.8 6717.8 5758.8 5750.3 122601.0 109079.3 109077.6 

           Truck Portion 1.00 0.82 0.58 1.00 0.70 0.70 1.00 0.63 0.63 

           Drone Portion - 0.18 0.42 - 0.30 0.30 - 0.37 0.37 

Absolute Cost Change to TO ($)  -122.0 -164.7  -959.0 -967.5 - -13521.7 -13523.4 

% Cost Change to TO - -19.3% -26.1% - -14.3% -14.4% - -11.0% -11.0% 

Emissions per Delivery  

(kg CO2e/delivery) 
1.41 1.00 0.68 0.40 0.28 0.28 0.20 0.13 0.13 

Total Emissions (kg CO2e) 443.0 315.0 214.8 3132.2 2186.4 2166.4 38590.4 26218.3 26214.3 

           Truck Portion 1.00 0.99 0.94 1.00 0.99 0.99 1.00 1.00 1.00 

           Drone Portion - 0.01 0.06 - 0.01 0.01 - 0.00 0.00 

Absolute Emissions Change to TO (kg CO2e)  -128.0 -228.2 - -945.8 -965.8 - -12372.1 -12376.1 

% Emissions Change to TO - -28.9% -51.5% - -30.2% -30.8% - -32.1% -32.1% 

#Truck Deliveries/Truck Mile 0.78 0.55 0.54 2.75 1.98 1.97 5.57 4.11 4.11 

#Truck Deliveries/Driver Hour 12.86 9.72 9.63 31.70 26.70 26.65 44.82 41.02 41.01 

#Trucks Required (SL = 8 hrs) 3.1 2.0 1.3 31.0 18.4 18.1 547.6 299.2 299.1 

#Drones Required (SL = 8 hrs) - 2.0 4.4 - 18.4 19.0 - 299.2 299.4 

Number of Truck Routes 3.1 2.1 1.3 78.5 52.4 51.6 1963.5 1309.0 1308.2 

Truck Route Length (mile) 128.8 135.9 139.0 36.4 37.9 38.0 18.0 18.2 18.2 

Truck Route Time (hour) 7.8 7.7 7.8 3.2 2.8 2.8 2.2 1.8 1.8 

*The optimal delivery service combination that minimizes total delivery cost. 
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(2) The cost per delivery for TO decreases as the delivery density increases (in row 7). This 

is because the denser the deliveries, the shorter the distance per delivery. In other words, 

the denser the deliveries, the higher the number of deliveries being made per mile. The 

costs per delivery are $2.01, $0.86, and $0.62 for 𝛿 = 1, 25, and 625, respectively. The 

costs increase by 135% for low density (𝛿 = 1) and decrease by 35% for high density (𝛿 = 

625) compared with the base density (𝛿 = 25). The number of deliveries per mile are 0.78, 

2.75, and 5.57 for 𝛿 = 1, 25, and 625, respectively. The deliveries per mile decrease by 72% 

for low density (𝛿 = 1) and increase by 103% for high density (𝛿 = 625) compared with 

the base density (𝛿 = 25).  

It costs less per delivery for the optimal delivery service combination than for TO 

for all three density levels, and the absolute per delivery cost differences (between the 

optimal delivery service combination and TO) become smaller as the delivery density 

increases. For example, it costs $0.52, $0.12, and $0.07 less per delivery with the optimal 

service combination than for TO for 𝛿 = 1, 25, and 625, respectively. In row 12, the 

percentage cost savings of the optimal service combination relative to TO also decreases 

as delivery density increases, 26.1%, 14.4%, 11.0% for 𝛿 = 1, 25, and 625, respectively. 

However, row 11 shows that the absolute total cost differences (between the optimal 

delivery service combination and TO) become larger as the delivery density increases, 

which is due to the increased number of deliveries. For example, although the optimal 

service combination saves only $0.07 per delivery for 𝛿 = 625, which is about 44% less 

than that for the base density 𝛿 = 25, the total cost savings is $13,526, which is about 14 

times greater than that for the base density 𝛿 = 25. 
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(3) We observe similar patterns for emissions performance as for delivery costs. Emissions 

per delivery decrease as delivery density increases for all service combinations. Like the 

pattern observed for costs, the absolute total emissions savings of optimal service 

combination relative to TO increase as delivery density increases, 228, 966, and 12,376 kg 

CO2e for 𝛿 = 1, 25, and 625, respectively. But we no longer observe a decreasing trend 

for percentage emissions savings relative to TO as delivery density increases, 51.5%, 

30.8%, and 32.1% for 𝛿 =  1, 25, and 625, respectively. We also observe that drone 

operations constitute a much larger portion of delivery costs than their contributions to 

emissions for all three density cases. For example, drone operations constitute 42% (about 

$0.63 ) of the $1.49 per delivery cost, whereas they constitute only 6% (about 0.04 kg 

CO2e) of the 0.68 kg CO2e emissions per delivery for the low density case (𝛿 = 1). We 

observe the drone portion of emissions decreases as density increases, but we do not 

observe such a trend for that of cost.  

(4) Rows 7 and 6 show the number of truck deliveries per truck mile and per driver hour 

for TO increase as delivery density increases, which again shows that the higher the 

delivery density, the more mileage and time efficient TO is. Compared with TO, the 

number of truck deliveries per truck mile for the optimal service combination decreases for 

all three density cases (0.54 vs 0.78, 1.97 vs 2.75, 4.11 vs 5.57 for 𝛿 = 1, 25, and 625, 

respectively). The largest percentage decrease is 30.5% for low density 𝛿 = 1. The same 

patterns are observed for the number of truck deliveries per truck mile for the optimal 

service combination compared with TO. The reason why these two measures decrease for 

the optimal service combination is that although some of the truck deliveries are replaced 
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by drone deliveries, some of these drones are launched by the truck, thus it still requires 

the driver to drive the truck.  

(5) The final two rows show the truck route length and truck route time for TO decreases 

as the delivery density increases. Note that the number of deliveries for truck-only routes 

is fixed at 100 deliveries. Again, these two measures show that the denser the deliveries, 

the shorter and faster the truck route. Compared with TO, the truck route is slightly longer 

but quite a bit faster for the optimal service combination for the medium and high-density 

cases. Not shown in Table 4.7 but evident in the data, the percentage truck route length 

increase relative to TO are 7.9%, 4.4%, and 1.6%, and the percentage truck route time 

reduction relative to TO are -0.2%, 10.8%, and 18% for 𝛿 = 1, 25, and 625, respectively. 

(6) For the optimal delivery service combination for the three levels of delivery density, 

the lower the delivery density, the higher the percentage of deliveries made by drone (in 

row 6). For example, for 𝛿 = 1, 25, and 625 deliveries per square mile, the percentages of 

deliveries made by drone are 63.3%, 50.7%, and 50.0%, respectively.  

4.6.5.2 Allocation of Selected Performance Measures to Each Component 

To understand the impact of delivery density on the performance of drone delivery, 

we show how the vehicle miles (Figure 4.22) and vehicle time (Figure 4.23) are allocated 

for three different levels of 𝛿. Please note all those measures are converted to per delivery. 

In all the figures, lighter blue, blue and darker blue colors represent the base case (𝛿 = 25), 

the low density case (𝛿 = 1), and the high density case (𝛿 = 625), respectively. TO is 

represented by solid bars, TD by dotted bars, and the optimal service option by hatched 

bars. We include TD to demonstrate that this single delivery service is near-optimal for 

some density levels. 



154 

 

Figure 4.22 shows the allocation of the expected vehicle miles per delivery to truck 

linehaul travel, truck local travel and drone travel for the three density levels. The patterns 

are very noticeable. As density increases, truck local travel and drone travel miles per 

delivery are greatly reduced whereas truck linehaul travel miles (though a little difficult to 

see) remain roughly the same for all corresponding service combinations. For example, 

compared with TO of the base case (𝛿 = 25), truck local travel miles are 5 times greater 

for TO of the low density case (𝛿 = 1) and is 1/5 times less for TO of the high density case 

(𝛿 = 625). The same trend is observed for the optimal service combination (and TD only) 

for the three density levels. Truck local travel is more than 3 times greater for DO+TD of 

the low-density case (𝛿 = 1) and is over 1/5 for DO+TD of the high-density case (𝛿 = 625) 

than for the base case. Compared with TO, the optimal service combination reduces both 

truck linehaul and local travel miles and increases drone travel miles for all three delivery 

density levels. By replacing truck deliveries with drone deliveries, the truck linehaul travel 

miles are reduced by 48%, 33%, and 33% for  𝛿 = 1, 25, and 625, respectively; and the 

truck local travel miles are reduced by 55%, 30%, and 29% for  𝛿 = 1, 25, and 625, 

respectively. One truck mile is replaced by 5, 1.7, and 0.6 drone miles for  𝛿 =

 1, 25, and 625, respectively . TD only performs very similarly to the optimal service 

combination when density is not very low. 
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Figure 4.22. Allocation of vehicle miles traveled per delivery in the optimal service 

combinations for three levels of delivery density 𝛿 

Figure 4.23 shows the allocation of the expected vehicle time spent per delivery in 

truck linehaul travel, truck local travel, truck delivery stops, drone travel, and drone 

delivery stops for the three levels of 𝛿. Like vehicle travel miles, noticeable changes occur 

in truck local travel and drone travel time. As density increases, the time spent on truck 

local travel and drone travel per delivery are greatly reduced whereas the time spent on 

truck linehaul travel does not change much for all corresponding service combinations. For 

example, compared with TO of the base case (𝛿 = 25), truck local travel time is 5 times 

greater for TO of the low density case (𝛿 = 1) and is 1/5 times less for TO of the high 

density case (𝛿 = 625). The same trend is observed for the optimal service combination 

and TD only for the three density levels. Compared with TO, the optimal service 

combination reduces both truck linehaul and local travel time and increases drone travel 

time for all three delivery density levels. TD only performs very similarly to the optimal 

service combination when density is not very low. 
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Figure 4.23. Allocation of vehicle time per delivery in the optimal service combinations 

for three levels of delivery density 𝛿 

Figure 4.24(a) shows that the delivery density 𝛿 has an impact on the “cost per 

delivery” measure for service combinations that include truck deliveries, i.e., the higher 

the delivery density, the lower the cost per delivery for service combinations that include 

truck deliveries. Comparing the same service combinations for each density level, we 

observe that the difference between the lighter blue line (i.e., 𝛿 = 1) and the base blue line 

(i.e., 𝛿 = 25) is much (more than 3 times) greater than the difference between the base blue 

line (i.e., 𝛿 = 25) and the darker blue line (i.e., 𝛿 = 625). This shows that delivery density 

𝛿  has a marginally diminishing effect on reducing cost per delivery as 𝛿  increases. 

Interestingly, the cost per delivery for DO remain the same ($1.73 per delivery) for all three 

cases, which might indicate that delivery method DO does not have economies of scale as 

delivery volumes increase. When delivery density becomes high, using DO alone becomes 

much more expensive than just using TO. 
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Figures 4.24(a) and 4.24(b) indicate that cost per delivery in the low-density case 

is high, although the percentage cost savings to truck-only delivery is also high. Positive 

percentage cost savings indicate that the delivery cost of the other service combinations is 

lower than that of TO and vice versa. We note that some service combinations provide the 

same cost per delivery or percentage cost savings, for example, TD and TO+TD in all three 

cases, which is because TO is not used. We also observe that using TD is almost as good 

as the optimal service combination for the medium and high delivery density cases (i.e., 

𝛿 =25 and 625) in terms of cost per delivery and percentage cost savings relative to TO. 

  

Figure 4.24: (a) Cost per delivery of each service combination (left); (b) Percentage cost 

savings of each service combination relative to TO for three levels of delivery density 𝛿 

4.6.6. Large vs Medium Delivery Region Size (𝑹) 

To assess the performance impacts of the size of the delivery region, we consider 

two other delivery region sizes in addition to the base case size where 𝑅 = 10 miles: a 

medium delivery region size with 𝑅 = 20 miles and a large delivery region size with 𝑅 =
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30 miles. The base level 𝑅 = 10 miles was chosen based on the common assumption in 

the literature that delivery drones have a limited flight range of 10-15 miles and are at first 

envisioned for the point-to-point delivery of small packages from a fixed depot to customer 

homes (e.g., Amazon). Xu (2017) indicates that the radii of the vast majority of U.S. cities 

(i.e., all cities with more than 100,000 people) is in a 2 to 6 mile range (by assuming the 

areas of these cities are circles), thus, a central depot of 10-mile radius is often sufficient 

to cover a city and suburbs. Having a small depot in each city is ideal but depots are not 

constructed and operated without cost. This is the reality of many logistics and e-commerce 

firms who usually operate larger depots (to achieve economies of scale in inventory, space, 

and maintenance) that can cover larger areas than that a 10-mile radius. For example, UPS 

has about 1,000 package operating centers for the pick-up and delivery of packages in the 

U.S. (UPS, 2020). To cover the entire US land area (3.797 million square mile), the average 

radii of the package operating centers is about 35 miles. However, we understand that those 

centers are usually not evenly spatially distributed. Many small depots may be positioned 

in urban areas while a few large depots may be positioned in rural areas. So, we choose 

𝑅 = 20 miles and 𝑅 = 30 miles to represent different types of depots. We also test 𝑅 = 5 

miles as Lyon-Hill et al. (2020) assume that drones have a flight range of up to 5 miles and 

a 5-mile radius might meet also customer’s demand for faster delivery. 

4.6.6.1 Performance Effects of Drone Delivery 

Since the number of deliveries quadratically increases as the delivery region size 

increases, we normalize the performance measures by the base region size. For example, 

the region of 𝑅 = 30 miles is equivalent in area to having 9 regions of 𝑅 = 10 miles, so 

we divide the total costs (and other performance measures) by 9 to obtain a common 
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measure that is comparable to the base case. Table 4.8 shows the normalized performance 

measures of interest for TO, TD, and the optimal delivery service combination for three 

different levels of 𝑅.  

There are several interesting observations based on Table 4.8: 

(1) For all three deliver region size cases, DO+TD is the optimal combination of delivery 

services and DO serves the same number of customers up to 1.2 miles from the depot with 

TD serving the rest of the delivery region (rows 3-5). Because the number of deliveries (or 

customers) increases as the delivery region size increases, the utilization of DO decreases 

from 1.5% to 0.4% to 0.2% for 𝑅 = 10, 20, and 30 miles, respectively. 

(2) In row 6 as the delivery region size 𝑅 increases, the total delivery cost (of the base 

region size) for TO increases. This is because the truck has to travel longer distances to get 

to more remote areas (e.g., for 𝑅 = 30 compared to 𝑅 = 10, i.e., the average linehaul 

distance is longer for 𝑅 = 30 than 𝑅 = 10). The delivery costs are increased by 19% and 

39% for the medium (𝑅 = 20) and large (𝑅 = 30) region size, respectively, compared with 

the base region size (𝑅 = 10). In addition, the truck route length (last row 3) and the truck 

route time (last row 2) are 73% and 19% longer, respectively, for 𝑅 = 30 than for 𝑅 = 10, 

and are 37% and 9% longer for 𝑅 = 20 than for 𝑅 = 10, respectively. Considering only 

delivery cost, there is clearly evident an incentive to have many small depots rather than a 

few large ones as the former can reduce both delivery time and delivery cost. 
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Table 4.8. Normalized performance (by base region size) for TO, TD, and the optimal delivery service combination for three 

levels of 𝑅 

Performance Measure Small Region (R= 𝟏𝟎) Medium Region (R= 𝟐𝟎) Large Region (R= 𝟑𝟎) 

Service option TO TD DO+TD* TO TD DO+TD* TO TD DO+TD* 

% Area (customers) Served by TO 100.0% - 0.0% 100.0% - 0.0% 100.0% - 0.0% 

% Area (customers) Served by DO - - 1.5% - - 0.4% - - 0.2% 

% Area (customers) Served by TD - 100.0% 98.5% - 100.0% 99.6% - 100.0% 99.8% 

Total Delivery Cost ($) 6717.8 5758.8 5750.3 8026.8 6631.5 6629.4 9335.8 7504.2 7503.2 

           Truck Portion 1.00 0.70 0.70 1.00 0.74 0.74 1.00 0.77 0.77 

           Drone Portion - 0.30 0.30 - 0.26 0.26 - 0.23 0.23 

TDC Change to TO - -959.0 -967.5 - -1395.3 -1397.5 - -1831.7 -1832.6 

% TDC Change to TO - -14.3% -14.4% - -17.4% -17.4% - -19.6% -19.6% 

Total GHG Emissions (kg CO2e) 3132.2 2186.4 2166.4 4278.7 2950.7 2945.7 5425.1 3715.0 3712.8 

           Truck Portion 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

           Drone Portion - 0.01 0.01 - 0.01 0.01 - 0.00 0.00 

% Emissions Change to TO - -30.2% -30.8%  -31.0% -31.2% - -31.5% -31.6% 

Truck Miles Traveled (mile) 2861.0 1982.1 1962.0 3908.2 2680.2 2675.2 4955.4 3378.3 3376.1 

Drone Miles Traveled (mile) - 1396.3 1562.1 - 1396.3 1437.7 - 1396.3 1414.7 

Driver Hours Worked (hour) 247.8 147.1 145.2 273.9 164.6 164.1 300.1 182.0 181.8 

Drone Hours Operated (hour) - 100.4 105.5 - 100.4 101.6 - 100.4 100.9 

#Trucks Required (SL = 8 hrs) 31.0 18.4 18.1 34.2 20.6 20.5 37.5 22.8 22.7 

#Drones Required (SL = 8 hrs) - 18.4 19.0 - 20.6 20.7 - 22.8 22.8 

Number of Truck Routes (NTR) 78.5 52.4 51.6 78.5 52.4 52.2 78.5 52.4 52.3 

%NTR to TO - -33% -34% - -33% -34% - -33% -33% 

Truck Route Length (mile) 36.4 37.9 38.0 49.8 51.2 51.3 63.1 64.5 64.6 

Truck Route Time (hour) 3.2 2.8 2.8 3.5 3.1 3.1 3.8 3.5 3.5 

Drone Stops - 3927.0 3984.6 - 3927.0 3941.4 - 3927.0 3933.4 

*The optimal delivery service combination that minimizes total delivery cost. 
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(3) Compared with TO, the optimal service combination provides lower delivery costs for 

all three region sizes. Unlike the impact of density, both the absolute and the percentage 

cost savings relative to TO increase as the delivery region size increases. For example, the 

absolute cost savings relative to TO are $968, $1,398, and $1,833, and the percentage cost 

savings relative to TO are 14.4%, 17.4%, and 19.6% for 𝑅 =  10, 20, and 30 miles, 

respectively. As the delivery region size increases, we observe that the contribution of the 

drone to the total delivery cost decreases in the optimal service combination. For example, 

the cost contributions of the drone (row 8) are 30%, 26%, and 23% for 𝑅 = 10, 20, and 30 

miles, respectively. Although the optimal service combination slightly increases truck 

route length, it reduces the truck time by about 8%-12%. 

(4) We observe exactly the same patterns for emissions as for delivery cost. Emissions 

increase as the delivery region size increases for all service combinations. For the optimal 

service combination, the absolute and the percentage emissions savings relative to TO 

increase and the emissions reduction contributions of the drone decrease as the delivery 

region size increases.  

(5) In all cases, TD performs very similarly to the optimal service combination. This is 

because all these service options consist of a large proportion of TD use (more than 98%), 

which may indicate that TD is an important type of service when the delivery region size 

is not extremely small (e.g., 1.2 miles where DO is preferred everywhere). 

(6) Not shown in Table 4.8, we also examined a case with 𝑅 = 5 miles, and we observed 

consistent behaviors compared with the base case: DO+TO is the optimal service 

combination and DO serves the same number of customers but its relative utilization 
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increases as the total number of customers decreases; the total delivery costs, emissions, 

and truck route time and length all decrease as well. 

4.6.6.2 Allocation of Selected Performance Measures to Each Component 

To understand the impact of delivery region size on the performance of drone 

delivery, we show how the vehicle miles (Figure 4.25) and vehicle time (Figure 4.26) are 

allocated for the three different levels of 𝑅. Please note all those measures are converted to 

a region size of the base case 𝑅 = 10. In all figures, colors blue, darker and darkest blue 

represent the base case (𝑅 = 10), the medium region size (𝑅 = 20), and the large region 

size (𝑅 = 30). TO is represented by solid bars, TD by dotted bars, and the optimal service 

option by hatched bars. We include TD to demonstrate that this single service is near-

optimal for most delivery region sizes. 

Figure 4.25 shows the allocation of the expected vehicle miles (per base region size) 

in truck linehaul travel, truck local travel and drone travel for the three levels of 𝑅. The 

patterns are very noticeable. As delivery region size increases, truck linehaul miles increase 

significantly whereas truck local and drone travel miles remain roughly the same for all 

corresponding delivery service combinations. For example, compared with the base case 

(𝑅 = 10) TO, the linehaul travel miles are doubled and tripled for the medium region case 

(𝑅 = 20) TO and the large region case (𝑅 = 30) TO, respectively. A similar relationship 

applies to the optimal service combination and TD service. Compared with TO, the optimal 

service combination reduces both truck linehaul and local travel miles and increases drone 

travel miles for all three delivery region sizes. The truck linehaul and local travel miles are 

reduced by 33% and 30%, respectively, through replacing TO with the optimal service 

combination (i.e., DO+TD) for all three delivery region sizes; and one truck mile is 



163 

 

replaced by 1.7, 1.2, and 0.9 drone miles for 𝑅 = 10, 20, and 30 miles, respectively. In all 

cases, TD performs very similarly to the optimal service combination. 

 

Figure 4.25. Allocation of vehicle miles traveled (per base region size) for TO, TD and 

the optimal service combination for three levels of delivery region 𝑅 

Figure 4.26 shows the allocation of the expected vehicle time spent (per base region 

size) in truck linehaul travel, truck local travel, truck delivery stops, drone travel, and drone 

delivery stops for the three different radii of 𝑅. Like vehicle miles, truck time spent on 

linehaul is doubled (and tripled) when the delivery region size is doubled (and tripled) for 

all corresponding service combinations. However, delivery region size has little to no 

impact on the time spent on other components when comparing the same service 

combination. Compared with TO, DO+TD significantly reduces the truck delivery stop 

time by about 51%, truck linehaul travel time by about 33%, and truck local travel time by 

about 30% for all three delivery region sizes. Unlike vehicle miles, the increased drone 
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travel and drone delivery stop time often does not increase the total system time due to the 

parallel operation of truck and drone deliveries in TD service. 

 

Figure 4.26. Allocation of vehicle operating hours (per base region size) for TO, TD and 

the optimal service combination for three levels of delivery region 𝑅 

Figures 4.27(a) and 4.27(b) show the larger the delivery region size, the higher the 

cost per delivery for each service combination and the higher the percentage cost savings 

of other service combinations relative to TO. We do not include DO in the figures because 

when 𝑅 > 10, it is beyond the flight range of drones, thus, DO is not used in the 𝑅 = 20 

and 𝑅 = 30 cases. We observe a linear relationship between cost per delivery and the 

delivery region size and between percentage cost savings relative to TO and the delivery 

region size. 
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Figure 4.27: (a) Cost per delivery of each service combination (left); (b) Percentage cost 

savings of each service combination relative to TO for three levels of delivery region 

radius 𝑅 

4.6.7 Summary of Impacts of Key Parameters on Selected Performance Measures 

We explored the impacts of unit drone operating cost (𝑐𝑑), marginal drone stop cost 

(𝑠𝑑 ), truck capacity for truck-drone delivery (𝑚𝑡𝑑 ), delivery density (𝛿), and the size 

(radius) of the delivery region (𝑅) on a number of performance measures (e.g., utilization 

of delivery service, delivery costs, delivery emissions, vehicle miles traveled, vehicle hours 

operated, number of vehicles required). The key findings are summarized in Table 4.9. 

Column 1 indicates the cases. Column 2-3 show the utilization of DO and TD, respectively. 

Columns 4-5, 6-7, 8-9, 10-11, and 12-11 show the absolute and percentage reductions 

(relative to truck-only) in delivery costs, GHG emissions, truck travel distances, driver 

work hours, and the number of trucks required, respectively. Columns 13-14 show the 

absolute increase in drone travel distances and the number of drones required, respectively.   
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Table 4.9. Summary of the performance of the optimal service combination relative to truck-only delivery for different parameter 

values 

 

Case 
DO  

Use 

TD  

Use 

Cost  

Savings 

Emissions  

Savings 

Truck Miles 

Reduced 

Driver 

Hours 

Reduced 

#Truck 

Reduced 

Drone 

Miles 

Increased 

#Drones 

Increased 

 (%) (%) ($) (%) (kg CO2e) (%) (mile) (%) (hour) (%) - (mile) - 

Base case 1.5 98.5 968 14.4 967 30.8 899 31 103 41 12.8 1,562 19.0 

6.25𝑐𝑑 0.1 92.0 256 3.8 876 28.0 813 28 91 37 11.5 1,217 19.4 

0.1𝑐𝑑 100.0 0.0 2,529 37.6 1,899 60.6 2,861 100 248 100 31.0 104,720 343.6 

𝑠𝑑 + 0.2 0.3 83.9 188 2.8 835 26.7 776 27 86 35 10.7 1,185 20.3 

𝑠𝑑 − 0.2 3.1 96.9 1,770 26.4 987 31.5 922 32 105 42 13.1 1,921 19.9 

2𝑚𝑡𝑑 1.3 98.7 1,403 20.9 1,346 43.0 1,246 44 111 45 13.9 1,541 17.8 

𝑚𝑡𝑑/2 1.8 62.0 121 1.8 191 6.1 186 7 57 23 7.1 1,114 25 

25𝛿 0.1 99.9 13,523 11.0 12,376 32.1 11,380 32 1,988 45 248.5 7,015 299.4 

𝛿/25 36.7 63.3 165 26.1 228 51.5 220 56 24 58 1.8 1,108 4.4 

2𝑅 0.4 99.6 5,590 17.4 5,332 31.2 4,932 32 407 40 54.9 5,751 82.9 

3𝑅 0.2 99.8 16,494 19.6 15,411 31.6 14,214 32 1,065 39 133.1 12,733 205.3 

𝑅/2 5.9 94.1 194 12.8 209 32.6 196 34 30 44 3.3 515 4.9 
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In most cases, truck-drone delivery (TD) is the dominant delivery service which 

serves at least 62% of the deliveries in the entire delivery region, whereas drone-only 

delivery (DO) serves very small percentages of customers (0.1-6%) who are located close 

to the depot. Only when drone travel cost is very inexpensive and/or the delivery density 

is very low is DO used extensively. Only when drone operating cost per mile is very high, 

drone stop cost is high, and/or truck-drone capacity is low is truck-only delivery (TO) used 

to some extent.  

The percentage cost savings in Table 4.9 range from about 2% (or $0.02/delivery) 

to 38% (or $0.32/delivery), and the percentage associated emissions savings range from 

about 6% (or 0.02 kg CO2e) to 61% (or 0.24 kg CO2e), with both of the lowest savings 

results for the low truck-drone capacity case (50% of the base case), and both of the highest 

savings results for the very inexpensive drone case (10% of the base case). The potential 

savings are huge even for the worst case we considered, which would represent for UPS 

about $96 million and 96,000 metric tonnes CO2e savings per year in the U.S. (assuming 

the daily package volume of 16 million (Holland et al., 2017) and 300 days in a year). 

Using the same assumption for the best case, the savings would increase to $1.5 billion and 

1.2 million metric tonnes CO2e per year for UPS in the U.S.  

The drone operating cost per mile, marginal drone stop cost, and truck-drone 

capacity seem to have much greater impact on the percentage cost and emissions savings 

than do delivery density and delivery region size. For example, the cost savings decrease 

from 14% to only 2% when the truck capacity decreases to 50% of the base case, whereas 

it decreases from 14% to about 13% when the radius of delivery region decreases to 50% 

of the base case. However, both absolute savings are less than $200 because a smaller 
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region size covers a much smaller number of deliveries although the savings per delivery 

is high. So, it is important to have both percentage and absolute performance measures. 

Even in circumstances when drone delivery does not provide substantial cost 

savings but is use extensively, it can considerably reduce GHG emissions, truck miles 

traveled, driver work hours, and the number of trucks required. In all cases with the 

exception of the small truck-drone capacity case, the percentage emissions savings can be 

at least 26%, the percentage reduction in truck miles traveled can be at least 27%, and 

percentage reduction in driver hours worked as well as the number of trucks required can 

be at least 35%. This re-emphasizes the importance and large potential benefits from drone 

delivery in addition to cost savings. 

4.7 Conclusions 

In this chapter, we developed rigorous strategic delivery models to analyze the cost 

and other performance of  truck-drone delivery (TD), along with truck-only delivery (TO) 

and drone-only delivery (DO). We partitioned the delivery region based on the best use of 

different delivery services (i.e., DO, TD, and TO) that minimize delivery costs. We 

provided both theoretical analyses and numerical scenarios to illustrate the circumstances 

in which drone delivery (i.e., DO and TD) provides large and small cost savings relative to 

truck-only delivery and quantified the scale of the savings. The potential cost savings from 

DO and TD can be huge, but depend strongly on the drone operating parameters (i.e., drone 

operating cost per mile, marginal drone stop cost, and truck drone capacity) and the 

operating environment (i.e., the delivery region size and the delivery density). Under most 

circumstances, TD is a very important delivery method.
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Chapter 5: Emissions-Minimizing Drone Delivery Systems 

In this chapter, we explore the impacts of the parameters of interest on greenhouse 

gas (GHG) emissions by integrating drones into the delivery system. In section 5.1, we 

introduce the importance of minimizing GHG emissions. In section 5.2, we develop 

emissions-optimizing models for truck-only, drone-only, and truck-drone delivery. Section 

5.3 presents the illustrations of delivery system emissions and modeling results for different 

operating settings. Conclusions are presented in section 5.4. 

5.1 Introduction 

In Chapter 4, we have explored the optimal delivery system designs that minimize 

merely the delivery costs, which roughly represents the status quo in the transportation 

industry. However, we see strong trends toward green transportation that focuses on 

minimizing GHG emissions (or carbon footprint) and other pollutants to the environment. 

Cachon (2014) argues that failing to account for GHG emissions may lead to a poor 

delivery system design as it affects the climate and poses a serious challenge to the 

environment and ultimately the global economy. In their annual sustainability report, UPS 

state that their “main economic risk currently related to climate change is a regulatory risk 

– the possibility that countries or regions of the world will increase regulation of GHG 

emissions to include significant new taxes, fees, or other costs for transportation and 

logistics companies” (UPS, 2019).  

The policy pressure is increasing. Countries and regions of the world are not only 

imposing new carbon taxes or fees but also announcing plans to phase out internal 

combustion vehicles (Bloomberg, 2020). For example, California announced that gas-
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powered vehicles would be banned after 2035 to drastically reduce demand for fossil fuel 

in California’s fight to slow climate change as more than 50% of GHG emissions are 

generated by transportation in California (Office of Governor, 2020). The key for the 

transportation industry to reduce GHG emission is to shift from petroleum to cleaner 

alternative fuels with advanced vehicle technology that makes economic sense. Findings 

in Chapter 3 (on energy consumption models for delivery drones) reveal that the energy 

consumption rates used in research studies for drone operations vary widely by a factor of 

20 or more. Thus, it is important to design a drone delivery system with GHG emissions in 

mind. 

5.2 Modeling Expected GHG Emissions 

Like the cost expressions formulated in Chapter 4, we classify the lifecycle 

greenhouse gas (GHG) emissions into two categories: (1) GHG emissions attributable to 

each incremental vehicle mile, which may include the emissions that occur when 

transporting items from the origin to the destination and the ultimate return of the vehicle 

back to the origin; and (2) GHG emissions attributable to each delivery stop of the vehicle, 

which may include the emissions for stopping, idling, and restarting the vehicle. We use 𝑒𝑡 

and 𝑒𝑑 to denote the traveling GHG emissions per unit distance (kg CO2e/mile) for the 

truck and the drone, respectively; 𝜉𝑡  to denote the stop emissions per delivery (kg 

CO2e/stop) for the truck, and 𝜉𝑑 to denote the marginal drone stop emissions per delivery 

(kg CO2e/stop) relative to a truck stop. 

Since battery powered drones have no tailpipe emissions but instead shift those 

emissions to the upstream power plant where the electricity is generated, we consider the 

lifecycle GHG emissions for both generating electricity (used by drones) and burning 
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diesel fuel (used by trucks). This helps provide a more complete picture of the 

environmental impacts and avoids shifting impacts from one phase of the life cycle to 

another, or from one region or one environmental problem to another. We use 𝐶𝐼𝑒 and 𝐶𝐼𝑓 

to denote the lifecycle carbon intensity, i.e., the GHG emissions per unit energy (kg CO2e/ 

kWh), of electricity and diesel fuel, respectively. We use 𝐸𝑝𝑚𝑡 and 𝐸𝑝𝑚𝑑 to denote the 

energy consumption per unit distance (kWh/mile) for the truck and the drone, respectively. 

Thus, the truck operating emissions per mile 𝑒𝑡 = 𝐶𝐼𝑓 × 𝐸𝑝𝑚𝑡, and the drone operating 

emissions per mile  𝑒𝑑 = 𝐶𝐼𝑒 × 𝐸𝑝𝑚𝑑 . Thus the emissions rates incorporate both the 

carbon intensity of the vehicle fuel/electricity and the energy efficiency of the vehicles. 

5.2.1 Drone-only Delivery Emissions 

Based on the expected distance equation (4.1), the expected GHG emissions of 

serving a customer at distance 𝑑 for drone-only delivery is 

𝐸𝑑𝑜 = 2𝑒𝑑𝑑 + 𝜉𝑑 + 𝜉𝑡.                                                  (5.1) 

5.2.2 Truck-only Delivery Emissions 

Based on the expected distance equation (4.5), the expected GHG emissions of 

serving a customer at distance 𝑑 for truck-only delivery is 

𝐸𝑡𝑜 = 𝑒𝑡 (
2𝑑

𝑚𝑡𝑜
+

𝑤

3
+

1

𝛿𝑤
) + 𝜉𝑡.                                              (5.2) 

The expected emissions when the swath width is optimal (using the optimal swath width 

of equation (4.3)) is 

𝐸𝑡𝑜
∗ =

2𝑒𝑡

𝑚𝑡𝑜
𝑑 +

2𝑒𝑡

√3𝛿
+ 𝜉𝑡.                                                    (5.3) 
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5.2.3 Truck-drone Delivery Emissions 

Based on the expected distance equation (4.11), the expected GHG emissions of 

serving a customer at distance 𝑑 for truck-drone delivery is 

𝐸𝑡𝑑 = 𝑒𝑡 (
2𝑑

𝑚𝑡𝑑
+

𝑤

6
+

1

𝛿𝑤
) + 𝑒𝑑√(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

+ 
𝜉𝑑

2
+ 𝜉𝑡.                 (5.4) 

Like the delivery cost 𝐶𝑡𝑑, expression, 𝐸𝑡𝑑 is also a convex function of the swath width 𝑤, 

and we let the optimal swath width of the truck-drone route 𝑤𝑡𝑑
∗ = 𝜅√

3

𝛿
, where 𝜅 is a factor 

determined by the ratio of  
𝑒𝑑

𝑒𝑡
 and 1 < 𝜅 < √2. The expected emissions when the swath 

width is optimal is 

𝐸𝑡𝑑
∗ =

2𝑒𝑡

𝑚𝑡𝑑
𝑑 +

𝑒𝑡

√3𝛿

2(𝜅∗)3−𝜅∗

(𝜅∗)4−1
+

𝜉𝑑

2
+ 𝜉𝑡,                                     (5.5) 

where 𝜅∗ is given by the solution of 
𝑒𝑑

𝑒𝑡
 =

(2−(𝜅∗)2)√(𝜅∗)4+1

2((𝜅∗)4−1)
. 

5.2.3 A General Delivery Emissions Model 

A general expected GHG emissions model for all delivery services to a customer 

located at 𝑑 unit distances from the depot can be expressed as 

𝐸𝑠 = 𝑎𝑠𝑑 + 𝑏𝑠,                                                   (5.6) 

where 𝑠 ∈ {𝑑𝑜, 𝑡𝑜, 𝑡𝑑} , 𝑎𝑠 ∈ {2𝑒𝑑 ,
2𝑒𝑡

𝑚𝑡𝑜
,

2𝑒𝑡

𝑚𝑡𝑑
} , and  𝑏𝑠 ∈ {𝜉𝑑 + 𝜉𝑡 ,

2𝑒𝑡

√3𝛿
+ 𝜉𝑡 ,

𝑒𝑡

√3𝛿
(

𝑘

2
+

1

𝑘
+

𝑒𝑑

𝑒𝑡
√𝑘2 +

1

𝑘2
) +

𝜉𝑑

2
+ 𝜉𝑡}. 



173 

 

5.3 Illustration of Emissions-Minimizing Delivery Systems 

Similar to the delivery cost illustrations presented in Chapter 4, the purpose of this 

section is to determine and illustrate the optimal, use of drone delivery (including truck-

drone and drone-only) as a possible substitute for some or all traditional truck deliveries to 

minimize the expected total lifecycle greenhouse gas (GHG) emissions for a delivery 

region. The base case data remains the same as described in Chapter 4 and is displayed 

again for convenience in Table 5.1. 

To make the expected emissions illustrations clear, we again define and distinguish 

the terms “delivery service” and “delivery service combination”. We model three different 

delivery services: truck-only delivery (TO), drone-only delivery (DO), and truck-drone 

delivery (TD). These delivery services can be combined, using different services in 

different subregions, to create a delivery service combination. We require each geographic 

subregion of the service region to be served by a single delivery service, but allow different 

areas of the entire service region to be served with different services. We denote the 

combination of two or more delivery services with a “+” (e.g., TO+DO), where the 

combination generates lower GHG emissions than any of its component services. For 

example, if services TO and DO are to be combined as TO+DO, the GHG emissions 

generated from using TO+DO must be lower than those generated from using TO and DO 

alone. Note that for a service combination consisting of two or more delivery services, 

there is an infinite collection of possible realizations of the delivery services, depending on 

where each service is used. However, in most cases, we are interested in the allocation that 

optimizes GHG emissions. In the following analyses, we define “drone delivery” to refer 

to a service combination that includes drones for some part of the service region.  
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Table 5.1. Parameters definition and parameter values for the base case 

Parameter Unit Definition Baseline Reference 

𝑅  mile The radius of the circular delivery region 10 Xu (2017) 

𝛿 #deliveries/mile^2 The number of deliveries per square mile 25 Gulden (2017) 

𝐶𝐼𝑒 kg CO2e/kWh 
Carbon intensity of electricity, i.e., the quantity of lifecycle* 

CO2e emissions produced by consuming 1 kWh of electricity 
0.654 Stolaroff et al. (2018) 

𝐶𝐼𝑓 kg CO2e/kWh 

Carbon intensity of diesel fuel, i.e., the quantity of lifecycle* 

CO2e emissions produced by consuming (1/37.6) gallon of 

diesel 

0.335 Stolaroff et al. (2018) 

𝑐𝑡 $/mile The cost to move a truck one mile 1.25 Campbell et al. (2017) 

𝑠𝑡 $/stop The cost to make a truck delivery 0.4 Campbell et al. (2017) 

𝑓𝑡 miles per gallon Truck fuel economy 11.5 Stolaroff et al. (2018) 

𝐸𝑝𝑚𝑡 kWh/mile 
𝐸𝑝𝑚𝑡 = 37.6/𝑓𝑡 , 1 gallon of diesel = 37.6 kWh 

(the conversion factor is from Stolaroff et al. (2018)) 
3.26 Stolaroff et al. (2018) 

𝑒𝑡 kg CO2e/mile 
Truck operating emissions per mile 

𝑒𝑡 = 𝐶𝐼𝑑 × 37.6/𝑓𝑡 = 𝐶𝐼𝑑 × 𝐸𝑝𝑚𝑡  
1.09 Stolaroff et al. (2018) 

𝜉𝑡 kg CO2e/stop Truck emissions per stop 0 
Figliozzi (2017), Stolaroff et al. 

(2018), Goodchild and Toy (2018) 

𝑚𝑡𝑜 #deliveries/route Number of total deliveries per truck-only route 100  
Assumed based on Holland et al. 

(2017), Stolaroff et al. (2018) 

𝑐𝑑 $/mile Drone operating cost per mile 0.1 Campbell et al. (2017) 

𝑠𝑑 $/stop Marginal drone stop cost relative to truck stop cost 0 Campbell et al. (2017) 

𝐸𝑝𝑚𝑑 kWh/mile 
The amount of electricity consumed by drones flying one 

mile 
0.018 Stolaroff et al. (2018) 

𝑒𝑑 kg CO2e/mile 
The amount of CO2e emitted by drones flying one mile 

𝑒𝑑 = 𝐶𝐼𝑒 × 𝐸𝑝𝑚𝑑  
0.01 Stolaroff et al. (2018) 

𝜉𝑑 kg CO2e/stop Marginal stop emissions of drone relative to truck 0 
Figliozzi (2017), Stolaroff et al. 

(2018), Goodchild and Toy (2018) 

𝑅𝑑 mile Maximum drone flight range per full battery charge 10 Xu (2017) 

𝑚𝑡𝑑 #deliveries/route Number of total deliveries per truck-drone route 150  Assumed 

*
Lifecycle CO2e emissions includes emissions from the resource extraction, transportation of the resource to the production facility, the creation of the 

fuel or electricity from various raw materials, the transportation of the fuel or electricity to a fuel or charging station, and then its use to power the vehicle  
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5.3.1 Base Case 

5.3.1.1 Minimum-emissions Portioning of the Delivery Region 

In the base case, the minimum expected emissions delivery system has drone-only 

delivery (DO) serve all the customers in the entire 10-mile radium delivery region. Figure 

5.1(a) illustrates the expected GHG emissions of each of the three delivery services as a 

function of distance from the depot. The vertical axis is the expected GHG emissions per 

delivery and the horizontal axis shows the distance from the depot. Truck-only delivery 

(TO) is represented by the blue solid line, drone-only delivery (DO) by the green dashed 

line, and truck-drone delivery (TD) by the orange long-dash line. Note that each delivery 

service’s expected GHG emissions increases linearly with distance from the depot. The red 

triangles indicate the delivery service that produces the lowest emissions at any distance 

from the depot.  

DO (i.e., the green dashed line) produces the lowest expected GHG emissions for 

all deliveries within 10 miles of the depot, therefore the number of DO deliveries is 7,854 

and the expected total GHG emissions is 1,233 kg CO2e, which is an average of about 0.16 

kg CO2e per delivery. We observe that the orange long-dash line is moving closer to the 

green dashed line with increasing distance, which indicates that eventually TD will produce 

lower GHG emissions than DO for customers located very far (beyond 20 miles) from the 

depot. The slope of the blue solid line is slightly lower than that of  the green dashed line 

and much higher than that of the orange long-dash line, which indicates that TO is never a 

good choice in terms of reducing emissions and that the emissions savings relative to truck-

only from drone delivery will be even greater if the delivery region size is extended. 
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Figure 5.1(b) shows that the entire delivery region is served by DO to minimize 

emissions in the base case. We use the upper right quadrant composed of one quarter of 

the circular region to illustrate the emissions-minimizing service(s).  

  

Figure 5.1: (a) Expected GHG emissions of each delivery service as a function of 

distance from the depot; (b) Emissions-minimizing service(s) in the delivery region 

5.3.1.2 Emissions Savings of Drone Delivery to Truck-only Delivery  

Figure 5.2(a) shows the expected total GHG emissions of the different services. We 

note that drone-only delivery (DO) generates lower GHG emissions than truck-drone 

delivery (TD), and TD generates lower GHG emissions than truck-only delivery (TO), 

across the entire delivery region. Figure 5.2(b) shows the percentage GHG emissions 

savings of drone-only and truck-drone delivery relative to truck-only delivery. The largest 

expected GHG emissions savings is about 61%, provided by using drone-only everywhere 

in the delivery region. Although using truck-drone significantly reduces GHG emissions 

by 30% compared with truck-only, it produces less than half of the emissions savings from 

drone-only delivery for the entire region. 
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Figure 5.2: (a) Expected total GHG emissions of different delivery services; (b) 

Percentage GHG emissions savings of different services relative to truck-only delivery 

5.3.1.3 Other Benefits of Drone Delivery in addition to Emissions Savings 

Table 5.2 shows other selected performance measures in addition to the expected 

GHG emissions for truck-only delivery (column 2), the cost-minimizing delivery services 

combination identified in Chapter 4 (column 3), and the emissions-minimizing service 

“combination” (DO only) (column 4) for the base case. Columns 5 and 6 indicate the 

absolute and the relative changes in performance of the emissions-minimizing service (DO) 

relative to truck-only. We show column 3 as a reference, but defer discussion of the 

comparison of cost-minimizing and emissions-minimizing services to the Chapter 6. Please 

note that all the performance measures are expressed in expected values. 
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Table 5.2. Performance comparisons for truck-only delivery and the optimal service 

combination in the base case 

Performance Measures TO DO+TD*c DO*e 
Change 

(DO*e vs TO) 
%Change 

% Area (customers) Served by TO 100.0% 0.0% 0.0% -100.0% -100% 

% Area (customers) Served by DO 0.0% 1.5% 100.0% 100.0% - 

% Area (customers) Served by TD 0.0% 98.5% 0.0% 0.0% - 

Total Delivery Cost ($) 6717.8 5750.3 13613.6 6895.7 103% 

         Truck Delivery Cost 6717.8 4000.2 0.0 -6717.8 -100% 

         Drone Delivery Cost - 1750.1 13613.6 13613.6 - 

Total GHG Emissions (kg CO2e) 3132.2 2166.4 1232.8 -1899.0 -61% 

         Truck Emissions 3132.2 2148.0 0.0 -3131.8 -100% 

         Drone Emissions - 18.4 1232.8 1232.8 - 

Truck Miles Traveled (mile) 2861.0 1962.0 0.0 -2861.0 -100% 

Drone Miles Traveled (mile) - 1562.1 104719.8 104719.8 - 

Driver Hours Worked (hour) 247.8 145.2 0.0 -247.8 -100% 

Drone Hours Operated (hour) - 105.5 2748.9 2748.9 - 

#Trucks Required (SL1 = 8 hrs) 31.0 18.1 0.0 -31.0 -100% 

#Drones Required (SL1 = 8 hrs) - 19.0 343.6 343.6 - 

Number of Truck Routes 78.5 51.6 0.0 -78.5 -100% 

Truck Route Length (mile) 36.4 38.0 0.0 -36.4 -100% 

Truck Route Time (hour) 3.2 2.8 0.0 -3.2 -100% 

Drone Stops - 3984.6 7854.0 7854.0 - 

1SL= Service Level, which is one day in the base case; *c indicates the optimal service combination that 

minimize delivery costs; *e indicates the optimal service combination that minimizes GHG emissions 

Rows 2-4 show the percentage of the delivery area (or customers) served by TO, 

DO, and TD in each service combination, respectively. When GHG emissions are 

minimized, DO is used in 100% of the delivery region. Row 5 indicates that the associated 

expected total delivery costs effectively double from $6,718 for TO to $13,614 for DO*e 

when GHG emissions are minimized. The total expected GHG emissions (row 6) are 

reduced by 61% from 3,132 kg CO2e for TO to 1,233 kg CO2e for DO*e, with truck 

emissions reduced by 3,132 kg CO2e (a 100% reduction) and drone emissions increased 

by 1,233 kg CO2e (about one third of the reduction in truck emissions). The incremental 



179 

 

delivery costs of $6,896 incurred to reduce 1,899 kg CO2e in emissions imply an implicit 

“carbon price” of $3,600/tCO2e. As a reference, “the United Nations Global Compact has 

called for businesses to adopt an internal carbon price of at least $100/tCO2e by 2020, 

which will be needed to keep GHG emissions consistent with a 1.5-2°C pathway” (The 

World Bank). Thus, for the base case, a carbon price of $100/tCO2e might be too low to 

incentivize businesses to adopt the emissions minimizing but much more expensive 

delivery method (DO*e vs. TO). 

 The expected truck travel miles (row 11) are reduced by 2,861 miles (a 100% 

reduction). However, the expected drone travel miles (row 12) are increased by 104,720 

miles. This indicates that on average one truck mile is replaced by about 37 drone miles. 

The relative cost and emissions efficiencies of drone travel to truck travel are 12.5 (i.e., 
𝑐𝑡

𝑐𝑑
) 

and 93 (i.e., 
𝑒𝑡

𝑒𝑑
), respectively. So, if we can replace one truck mile with less than 12.5 drone 

miles, we can reduce emissions and cost at the same time (which we have observed for the 

base case in Chapter 4). This suggests that when all truck deliveries are replaced by drone 

deliveries, if we can find ways to replace one truck mile with fewer drone miles, both 

emissions and cost savings relative to truck-only will increase. On the other hand, when 

not all truck deliveries are replaced by drone deliveries, and one truck mile is replaced with 

less than 𝑚𝑖𝑛 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
} drone miles, the more we increase the use of drones, the more 

emissions and cost savings we can obtain. 

Row 13 shows that the expected number of driver work hours is reduced from 248 

to zero because drivers are all replaced by drones in this emissions-minimizing base case. 

Row 14 shows the number of hours that drones operate is increased from zero to 2,749. 
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One nice thing about drones is that they are much smaller and less expensive than trucks; 

thus, it may be more affordable to have a large number of drones work in parallel to replace 

a large number of trucks. We compute the number of trucks and drones required (in rows 

15-16) based on total driver hours and a work-day of 8 hours for both truck (driver) and 

drone. The expected number of trucks required to serve the delivery region is reduced from 

31 to zero; and the expected number of drones required is increased from zero to 344 when 

switching from TO to DO*e. We anticipate the number of drones required to be smaller if 

drones are allowed to work longer than the 8 hours assumed in the base case. The number 

of truck routes (row 17), truck route length (row 18) and truck route time (row 19) are all 

reduced to zero when switching from TO to DO*e. 

5.3.1.4 Allocation of Selected Performance to Each Component 

Figure 5.3 shows the allocation of the expected total GHG emissions to each 

component of travel (i.e., truck linehaul travel, truck local travel, and drone travel) for TO 

(blue bars), DO*e (hatched green bars) and TD (hatched orange bars). It shows that TD is 

significantly more environmentally friendly than TO, but much less environmentally 

friendly than DO. Consequently, in the emissions-minimizing base case, we do not have a 

near-optimal solution using TD delivery alone, as we did for the nearly cost minimizing 

solution in the base case (see Figure 4.10). Note that in the base case there are no emissions 

per delivery stop (𝜉𝑡 = 𝜉𝑑 = 0) as in prior research, which differs from the cost model in 

Chapter 4 where there is a non-zero delivery stop cost for trucks and drone. Thus, the 

expected GHG emissions of TO include emissions for truck linehaul travel (about 37%) 

and truck local travel (about 63%). For DO*e, both truck linehaul and local travel are 

completely replaced by drone travel. Comparing TD with TO, the emissions for truck 
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linehaul travel and truck local travel are reduced by 33% and 29%, respectively, and the 

emissions from drone travel are increased by only 16.8 kg CO2e. 

 

Figure 5.3. Expected total GHG emissions of travel components in TO, DO*e, and TD 

Figure 5.4 highlights that although DO*e is the most environmentally friendly 

delivery service, it is also by far the most expensive service. The delivery costs of DO*e 

include costs for drone travel (about 77% of the total) and drone delivery stops (about 23% 

of the total). Compared with TO, the increased cost for drone delivery stops is the same as 

the reduced cost for truck delivery stops due to truck and drone have the same stop cost per 

delivery. However, the increased cost for the drone travel is much greater than the cost 

reduction for truck linehaul and local travel. Comparing TD with TO, delivery costs are 

reduced and the GHG emissions are reduced by replacing some truck travel with drones. 
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Figure 5.4. The expected total costs of each travel component in TO, DO*e, and TD 

Figure 5.5 shows the allocation of the expected total travel miles to each component 

of travel (i.e., truck linehaul, truck local travel and drone travel) for TO (blue bars), DO*e 

(hatched green bars) and TD (hatched orange bars). One of the benefits of using drones 

(i.e., truck-drone and drone-only) is the reduction in truck travel miles. This is because on 

a per mile basis truck travel generates much more GHG emissions (about 93 times) and is 

also much more expensive (about 12.5 times) than drone travel. Thus, reducing truck travel 

miles has a large impact on reducing total emissions and costs. However, there is a 

threshold on how much the drone miles can be increased and still have a net emissions or 

cost benefit. Assuming equal stop costs and emissions per delivery, if the ratio of the 

increased drone travel miles and the reduced truck travel miles (i.e., the “mile-replace 

ratio”) is less than 𝑚𝑖𝑛 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
} , both emissions and delivery costs will be reduced. 

However, if the mile-replace ratio is between 𝑚𝑖𝑛 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
}  and 𝑚𝑎𝑥 {

𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
} , reducing 

emissions will increase delivery costs and decreasing delivery costs will increase emissions. 
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The mile-replace ratio should always be less than 𝑚𝑎𝑥 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
}, otherwise, drones should 

not be used at all or not used very much. In the base case, 𝑚𝑖𝑛 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
} = 12.5 , 

𝑚𝑎𝑥 {
𝑒𝑡

𝑒𝑑
,

𝑐𝑡

𝑐𝑑
} = 93, and the mile-replace ratio of DO*e is 37, which is between 12.5 and 93, 

whereas the mile-replace ratio of TD is 1.6, which is lower than 12.5. This explains why 

DO*e reduces emissions but increases delivery costs a large amount, whereas TD reduces 

emissions and delivery costs simultaneously. Furthermore, there is a huge room for 

improvement for TD because drones are used for only 50% of deliveries, and the mile-

replace ratio is fairly low. 

 

Figure 5.5. The expected miles traveled of each travel component in TO, DO*e, and TD 

5.3.2. Relatively Inefficient vs Efficient Drone Energy Consumption Rates (𝑬𝒑𝒎𝒅) 

To assess the impact of the drone energy consumption rate on the performance 

measures of drone delivery, we consider two other drone energy consumption rates in 
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EPM case) and 𝐸𝑝𝑚𝑑 = 9  Wh/mile (efficient EPM case). Please note that even 36 

Wh/mile might be a very efficient drone energy consumption rate. We use the terms 

efficient and inefficient to distinguish the two cases. In subsection 5.3.2.3, we show the 

impact of a much wider Epm range on the performance metrics, especially emissions 

savings, of drone delivery relative to truck-only delivery. 

5.3.2.1 Performance Effects of Drone Delivery 

Table 5.3 shows selected performance measures of interest for TO, TD, and the 

emissions-minimizing service combination for three different levels of 𝐸𝑝𝑚𝑑 , i.e., 

DO+TD*e minimizes GHG emissions for 𝐸𝑝𝑚𝑑 = 36 Wh/mile, DO*e minimizes GHG 

emissions for  the base case 𝐸𝑝𝑚𝑑 = 18 Wh/mile, and DO*e minimizes GHG emissions 

for 𝐸𝑝𝑚𝑑 = 9 Wh/mile. The optimal combinations are in columns 4, 6, and 8, respectively.  

Table 5.3 provides several interesting observations:  

(1) in the emissions-minimizing service combinations, the lower the drone energy 

consumption rate (𝐸𝑝𝑚𝑑), the higher the percentage of customers served by DO (row 5) 

and the lower the percentage of customers served by TD (row 6). Not shown in Table 5.3 

but evident in an exploration of a wider range of drone energy consumption rates on the 

percentage of customers served by DO versus TD, when 𝐸𝑝𝑚𝑑 < 25 Wh/mile, DO is used 

everywhere in the delivery region to minimize emissions. However, when 630 ≥ 𝐸𝑝𝑚𝑑 ≥

25 Wh/mile, as 𝐸𝑝𝑚𝑑 increases the utilization of DO decreases at a diminishing rate. For 

example, at 𝐸𝑝𝑚𝑑 =27 Wh/mile, DO utilization is 77%; at 𝐸𝑝𝑚𝑑 = 36 Wh/mile, DO 

utilization is under 32%; and at 𝐸𝑝𝑚𝑑 = 72 Wh/mile, DO utilization is only about 4%. For 

all these cases, DO makes deliveries close to the depot, and TD serves the rest of the 

delivery region.   
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Table 5.3. Performance for TO, TD, and the emissions-minimizing delivery service combinations for three levels of 𝐸𝑝𝑚𝑑 

Performance Measure Status Quo Inefficient 𝑬𝒑𝒎𝒅 Case Base Case Efficient 𝑬𝒑𝒎𝒅 Case 

𝐸𝑝𝑚𝑑 (Wh/mile) − 36 18 9 

Service Option TO TD DO+TD*e TD DO*e TD DO*e 

% Area (customers) Served by TO 100.0% - 0.0% - 0.0% - 0.0% 

% Area (customers) Served by DO - - 31.7% - 100.0% - 100.0% 

% Area (customers) Served by TD - 100.0% 68.3% 100.0% 0.0% 100.0% 0.0% 

Total Delivery Cost (TDC) ($) 6717.8 5759.8 6921.8 5760.3 13613.6 5760.5 13613.6 

         Truck Proportion 1.00 0.70 0.42 0.70 0.00 0.70 0.00 

         Drone Proportion 0.00 0.30 0.58 0.30 1.00 0.30 1.00 

Cost per Delivery ($/delivery) 0.86 0.73 0.88 0.73 1.73 0.73 1.73 

% Cost Change to TO - -14.3% 3.0% -14.3% 102.6% -14.3% 102.6% 

Total GHG Emissions (kg CO2e) 3131.8 2201.8 2049.7 2185.0 1232.8 2176.6 616.4 

         Truck Proportion 1.00 0.98 0.77 0.99 0.00 1.00 0.00 

         Drone Proportion 0.00 0.02 0.23 0.01 1.00 0.00 1.00 

Emissions per Delivery (kg CO2e/delivery) 0.40 0.28 0.26 0.28 0.16 0.28 0.08 

% Emissions Change to TO - -29.7% -34.6% -30.2% -60.6% -30.5% -80.3% 

Truck Miles Traveled (mile) 2861.0 1980.8 1449.0 1980.7 0.0 1980.7 0.0 

Drone Miles Traveled (mile) - 1422.2 19690.0 1427.9 104719.8 1430.9 104719.8 

Mile-replace Ratio - 1.6 13.9 1.6 36.6 1.6 36.6 

Driver Hours Worked (hour) 247.8 147.0 102.8 147.0 0.0 147.0 0.0 

Drone Hours Operated (hour) - 101.0 578.5 101.1 2748.9 101.2 2748.9 

#Trucks Required (SL = 8 hrs) 31.0 18.4 12.8 18.4 0.0 18.4 0.0 

#Drones Required (SL = 8 hrs) - 18.4 76.5 18.4 343.6 18.4 343.6 

Number of Truck Routes 78.5 52.4 35.7 52.4 0.0 52.4 0.0 

Truck Route Length (mile) 36.4 37.8 40.5 37.8 0.0 37.8 0.0 

Truck Route Time (hour) 3.2 2.8 2.9 2.8 0.0 2.8 0.0 

Drone Stops - 3927.0 5173.1 3927.0 7854.0 3927.0 7854.0 

*e The optimal service combination that minimizes total GHG emissions. 
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(2) Comparing the emissions-minimizing service combinations with TO, as 𝐸𝑝𝑚𝑑 

decreases, the total GHG emissions (row 12) decrease at a diminishing rate. However, the 

total delivery costs (row 7) increase as 𝐸𝑝𝑚𝑑  decreases, because drone-only is an 

environmentally friendly, but not cost-efficient, delivery method for the entire delivery 

region. The mile-replace ratios of the emissions-minimizing service combination are 13.9, 

36.6, and 36.6 for 𝐸𝑝𝑚𝑑 = 36, 18, and 9 Wh/mile, respectively, which all exceed the 

corresponding truck to drone cost ratio (i.e., 
𝑐𝑡

𝑐𝑑
= 12.5). The more the mile-replace ratio 

exceeds the truck to drone cost ratio, the greater the delivery costs of the emissions-

minimizing service combination. For example, compared with TO, the delivery costs of 

the emissions-minimizing service combination increase by about 3%, 103%, and 103% for 

𝐸𝑝𝑚𝑑 = 36, 18, and 9 Wh/mile, respectively. The truck to drone emissions ratios (i.e., 
𝑒𝑡

𝑒𝑑
) 

of the emissions-minimizing service combination are 46, 93, and 186 for 𝐸𝑝𝑚𝑑 = 36, 18, 

and 9 Wh/mile, respectively, which are well above their corresponding mile-replace ratio. 

The greater the difference, the greater the emissions savings. For example, the percentage 

emissions savings of the emissions-minimizing service combination relative to TO are 35%, 

61%, and 80% for 𝐸𝑝𝑚𝑑 = 36, 18, and 9 Wh/mile, respectively. The difference between 

the mile-replace ratio and the truck-to-drone emissions ratio suggests there is room for 

further reducing emissions. For service combinations with less than 100% drone deliveries, 

finding ways to replace more truck deliveries with drone deliveries would further reduce 

emissions. For service combinations with 100% drone deliveries, finding ways to reduce 

the drone travel distance without decreasing drone utilization would reduce emissions.  
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(3) When 𝐸𝑝𝑚𝑑  is fairly low (e.g., <25 Wh/mile), the emissions-minimizing service 

combination is the same as that in the base case, and emissions are reduced as 𝐸𝑝𝑚𝑑 

decreases.  

(4) In all 𝐸𝑝𝑚𝑑 cases, TD performs very similarly, with about 14.3% cost reductions and 

about 30% emissions reductions compared with TO. The truck travel miles decrease very 

slightly and the drone travel miles increase slightly as 𝐸𝑝𝑚𝑑 decreases, which is due to the 

fact that the truck-drone swath width is designed more toward minimizing truck travel 

when 𝐸𝑝𝑚𝑑 gets smaller. However, the impact of the swath width through 𝐸𝑝𝑚𝑑 on the 

truck-drone travel is small and can be ignored. When 𝐸𝑝𝑚𝑑 = 36 Wh/mile, the delivery 

costs of TD are about 17% less and the emissions of TD are only about 7% greater than 

that of DO+TD*e. This might indicate that TD is a well-balanced delivery service when 

𝐸𝑝𝑚𝑑 is not relatively low. 

(5) Decreasing 𝐸𝑝𝑚𝑑 affects emissions savings and other performance measures in two 

ways: a) by reducing emissions through changing the optimal set and utilization of 

individual delivery services, which also has an impact on other performance measures; and 

b) by directly reducing emissions without changing the optimal set and utilization of 

delivery services, which does not have an impact on other performance measures. 

5.3.2.2 Allocation of Selected Performance to Each Component 

Similar to the analyses above for the base case, to further understand the mechanism 

through which drones improve delivery performance, we identify the contributing 

components of expected total GHG emissions (Figure 5.6), the vehicle miles traveled 

(Figure 5.7), and the vehicle travel times (Figure 5.8) of the optimal service combination 

for the three different levels of 𝐸𝑝𝑚𝑑. In each figure, colors light blue, blue, and dark blue 
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represent the inefficient 𝐸𝑝𝑚𝑑  case, the base case, and the efficient 𝐸𝑝𝑚𝑑  case, 

respectively. TO delivery is represented by solid bars, TD delivery by dotted bars, and the 

optimal service combination by hatched bars. We include TD to demonstrate how this 

single delivery service compares with the emissions-minimizing service combinations. 

Figure 5.6 shows the allocation of the expected total GHG emissions to truck 

linehaul travel, truck local travel and drone travel of TO, TD, and the emissions-

minimizing service combination for the three selected levels of 𝐸𝑝𝑚𝑑. As in the base case, 

both the linehaul and local travel of trucks in TO are completely replaced with drone travel 

of DO*e for 𝐸𝑝𝑚𝑑 = 9 Wh/mile (see bars 1 and 4 in each grouping in Fig. 5.6). However, 

the emissions increase with DO*e is only 20% (vs. 39% in the base case) of the emissions 

reductions in truck travel, due to drones being more energy efficient than in the base case. 

Unlike the complete replacement of truck delivery in the base case, for 𝐸𝑝𝑚𝑑 = 36 

Wh/mile, the combination of DO+TD*e deliveries minimizes emissions with the emissions 

from the truck linehaul and local travel reduced by 45% and 52%, respectively, compared 

to TO. For 𝐸𝑝𝑚𝑑 = 36 Wh/mile the emissions increase from drone travel is 464 kg CO2e 

(about 30% of the emissions reduction in truck travel). Consequently, DO+TD*e reduces 

overall emissions by 34% compared with TO when 𝐸𝑝𝑚𝑑 = 36 Wh/mile. This indicates 

that an energy consumption rate of 36 Wh/mile still makes drones more energy- and 

emissions- efficient than trucks. 

In all three 𝐸𝑝𝑚𝑑 levels, TD service performs very similarly in terms of reducing 

emissions, with the emissions contribution from drone travel very small and decreasing as 

𝐸𝑝𝑚𝑑 increases (but it might be difficult to observe due to the scale of Figure 5.6). The 

drone travel emissions are only 34, 17, and 8 kg CO2e for 𝐸𝑝𝑚𝑑 = 36, 18, and 9 Wh/mile, 
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respectively. In terms of total GHG emissions, TD performs similarly to DO+TD*e for 

𝐸𝑝𝑚𝑑 = 36  Wh/mile, creating only 7% more emissions. However, TD creates much 

higher emissions than the emissions minimizing service (DO*e) for 𝐸𝑝𝑚𝑑 =18 and 9 

Wh/mile. This shows how emissions are reduced by increasing drone utilization when 

𝐸𝑝𝑚𝑑 is low; but that truck-drone delivery can be a better way to use drones than drone-

only when 𝐸𝑝𝑚𝑑 is not as low.  

 

Figure 5.6. Emission allocation in TO delivery, TD delivery  and the emissions-

minimizing service combination for three selected levels of 𝐸𝑝𝑚𝑑 

Figure 5.7 shows the allocation of vehicle miles traveled for the same three drone 

energy consumption rates as in Fig. 5.6. The trends of truck travel miles are very similar to 

those shown in Figure 5.6, but due to the scale are difficult to discern as clearly in Figure 

5.7. We observe that as the drone energy consumption rate decreases, DO becomes the 

dominant delivery service, and the drone travel miles increase dramatically, exactly like 

what we observed in the base case. For both 𝐸𝑝𝑚𝑑 =18 and 9 Wh/mile, drone travel miles 
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remain the same at 104,720 miles for DO*e, which is about 37 times the mileage reduction 

for truck travel of TO. For 𝐸𝑝𝑚𝑑 =36 Wh/mile, the drone travel mileage is still relatively 

high, about 14 times the mileage reduction for truck linehaul and local travel when 

comparing DO+TD*e with TO. Comparing TD with DO+TD*e for 𝐸𝑝𝑚𝑑 =36 Wh/mile, 

the drone travel mileage is 1,431 miles for TD, which is about only 7% of the 19,690 miles 

for DO+TD*e; and the truck linehaul and local travel mileage for TD are just about 1.2 and 

1.5 times as great as those for DO+TD*e.  

This again shows how the use of very efficient drones can lead to a very large 

increase in drone travel mileage, much greater than the reduction in truck travel mileage. 

It also suggests that truck-drone delivery is a better way of using drones than drone-only 

delivery when the relative energy efficiency of drones to trucks decreases.  

 

Figure 5.7. Allocation of vehicle miles traveled in TO, TD, and the emissions-minimizing 

service combination for three selected levels of 𝐸𝑝𝑚𝑑 
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The large amount of travel miles of DO*e shown in Fig 5.7 lead to the large amount 

of travel hours of DO*e as shown in Figure 5.8. This is important because the number of 

drone travel hours affects the number of drones required. For a work day of 8 hours, the 

number of drones required is 344. If we double the work day to 16 hours for drones, then 

the number of drones required is halved to 172. For service combinations that include both 

truck and drone deliveries, the total delivery time is usually determined by the truck hours 

operated, and drones help reduce that time by making deliveries in parallel with the truck. 

For example, comparing DO+TD*e with TO for 𝐸𝑝𝑚𝑑 =36 Wh/mile, the hours spent on 

truck linehaul travel, truck local travel and truck delivery stops are reduced by 45% (or 12 

hours), 52% (or 47 hours) and 66% (82 hours), respectively. Drone operating hours spent 

on drone travel and drone delivery stops are increased by 492 and 86 hours, respectively. 

The expected number of drones required is 76.5 including 12.8 drones that make deliveries 

from the truck and 63.7 drones that make deliveries from the depot. 

 

Figure 5.8. Allocation of vehicle hours operated in TO, TD, and the emissions-

minimizing service combination for three selected levels of 𝐸𝑝𝑚𝑑 
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5.3.2.3 The Impact of 𝑬𝒑𝒎𝒅 and 𝒄𝒅 on Emissions and Costs 

The energy consumption rates of drones (i.e., 𝐸𝑝𝑚𝑑) evident in the drone delivery 

literature have a very large range, from under 9 Wh/mile (or 20 J/m) to over 225 Wh/mile 

(or 500 J/m) (Zhang et al. 2021). Large 𝐸𝑝𝑚𝑑 values might indicate the drones are large 

(heavy), able to carry large (heavy) payloads and can fly long distances with a single battery 

charge. These drones might also be expensive to purchase and operate. Small 𝐸𝑝𝑚𝑑 values 

might indicate the drones are small (light), able to carry only small (light) payloads and 

have very limited flight range. These drones might be relatively inexpensive to purchase 

and operate. To further explore the impact of 𝐸𝑝𝑚𝑑 and drone type, we vary the 𝐸𝑝𝑚𝑑 

value from the base case (𝐸𝑝𝑚𝑑 =18 Wh/mile) by multiplying it by the factors 20, 10, 7.5, 

5, 3, 2, and 0.5 to assess how the wide range of 𝐸𝑝𝑚𝑑 affects the emissions reduction from 

using drones. We first explore results with 𝐸𝑝𝑚𝑑 ranging from 9 Wh/mile to 360 Wh/mile 

with the drone operating cost held constant at $0.1/mile. 

Figures 5.9 (a) and (b) show the percentage emissions and cost savings of drone 

delivery relative to truck-only delivery as a function of the drone energy consumption rate, 

respectively. This is for the emissions minimizing service combination TO+DO+TD*e 

(which might include only one service). DO is represented by a light green solid line with 

circles, TD is represented by an orange solid line with triangles, and the optimal service 

combination TO+DO+TD*e is represented by a dark green dashed line with diamonds. The 

enlarged circle, triangle, and diamond for the corresponding lines indicate the baseline 

value (to provide a reference). Figure 5.10 (a) and (b) are truncated versions of Figure 5.9 

(a) and (b) and included for the purpose of seeing the effects of a smaller variation in 𝐸𝑝𝑚𝑑 

more clearly. 
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In Figures 5.9(a) and 5.10(a), we observe that the larger the 𝐸𝑝𝑚𝑑, the smaller the 

percentage emissions savings. However, the decreasing rate of that savings depends on 

both 𝐸𝑝𝑚𝑑 and the service combination. For the single delivery services DO and TD, the 

decreasing rates of the percentage emissions savings are constant across all 𝐸𝑝𝑚𝑑 values, 

with the slope of DO being much steeper than that of TD. If the 𝐸𝑝𝑚𝑑 value increases by 

100 Wh/mile, the percentage emissions savings decreases by 219% and 3% for DO and 

TD, respectively. The emissions-minimizing service combination TO+DO+TD*e coincides 

with DO for low 𝐸𝑝𝑚𝑑 (≤25 Wh/mile) as TD and TO are not used; and it nearly coincides 

with TD for high 𝐸𝑝𝑚𝑑 (≥54 Wh/mile) as DO is very lightly used. Figure 5.9(a) suggests 

that DO delivery is a good way to use drones to reduce emissions for low 𝐸𝑝𝑚𝑑 (≤25 

Wh/mile). But for larger 𝐸𝑝𝑚𝑑 values, DO alone is not enough and using drones through 

TD is very helpful to reduce emissions. Even for 𝐸𝑝𝑚𝑑 = 360 Wh/mile (20 times greater 

than the base level), TD reduces emissions by about 20% whereas DO increases emissions 

by 687% compared with TO. 

Comparing Figure 5.9 (a) and (b) (or Figure 5.10 (a) and (b)), we observe the 

percentage cost savings of DO and TD remain the same across all 𝐸𝑝𝑚𝑑 values, with DO 

being about 103% more and TD being about 14.3% less expensive than TO. The percentage 

cost savings of the emissions-minimizing service combination TO+DO+TD*e ranges 

between the values for DO and TD, and thus TO+DO+TD*e can be very expensive (relative 

to TO) for small values of 𝐸𝑝𝑚𝑑. As 𝐸𝑝𝑚𝑑 increases, TO+DO+TD*e becomes similar to 

TD, and using drones in TD is very helpful to reduce both cost and emissions.  



194 

 

   

Figure 5.9. Percentage GHG emissions and delivery cost savings relative to truck-only as 

a function of drone energy consumption rate with 𝑐𝑑 = $0.1/mile (as in the base case) 

  

Figure 5.10. Zoom-in figures of Figure 5.9 

Finally, in Table 5.4 we report results where the values of 𝑐𝑑  and  𝐸𝑝𝑚𝑑  are 

correlated so that larger values of 𝐸𝑝𝑚𝑑 are associated with a larger value of 𝑐𝑑. Thus, 

each row moving down through the table reflects a more expensive and less energy 

efficient (e.g., larger) drone. Table 5.4 shows the percentage emissions (columns 3, 6, and 
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9) and cost (columns 4,7, and10) savings of DO, TD, and TO+DO+TD*e relative to truck-

only delivery for each 𝐸𝑝𝑚𝑑 and 𝑐𝑑 pair in columns 1 and 2. The percentage emissions 

savings remain the same as described in Figure 5.8 for all service combinations. However, 

the percentage cost savings of DO and TD decrease now as the 𝑐𝑑 increases along with the 

increasing 𝐸𝑝𝑚𝑑. When both 𝑐𝑑 and 𝐸𝑝𝑚𝑑 are very low (i.e., 𝑐𝑑 =$0.01/mile, 𝐸𝑝𝑚𝑑 = 9 

Wh/mile), DO provides the largest percentage emissions reductions of 80.3% and the 

largest percentage cost savings of 37.6%. However, DO provides the worst percentage 

emissions and cost savings when both 𝑐𝑑 and 𝐸𝑝𝑚𝑑 increase. Another possibility to note 

is that TD and the emissions-minimizing service combination may increase delivery costs 

when 𝐸𝑝𝑚𝑑  gets large if 𝑐𝑑  increases with 𝐸𝑝𝑚𝑑 . Table 5.4 also shows the implied 

“Carbon Price” (the cost to reduce one metric ton of CO2e) of DO, TD, and TO+DO+TD*e 

whenever there is a savings in emissions (a reduction in “carbon”) and an increase in costs. 

These are reported in columns 5, 8, and 11. The implied carbon prices for TD are much 

lower than that of DO, which indicates that TD might be a more cost efficient way of 

reducing emissions than DO. The magnitude of the implied carbon price relative to current 

global standards (e.g., $100/tCO2e) suggests that the implied carbon prices for TD and 

TO+DO+TD are not far from the global standards. However, the implied carbon prices for 

DO might be much higher than these standards, and thus, might not provide enough 

incentive for companies to adopt a cleaner but more expensive delivery method. We will 

further discuss the impact of carbon prices in Chapter 6. 
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Table 5.4. Percentage emissions and cost savings of DO, TD, and TO+DO+TD*e  relative to truck-only with 𝐸𝑝𝑚𝑑 and 𝑐𝑑 

varying in the same direction. 

𝐸𝑝𝑚𝑑 𝑐𝑑 

DO TD TO+DO+TD*e 

Emissions 

Savings 

Cost 

Savings 

Carbon 

Price 

Emissions 

Savings 

Cost 

Savings 

Carbon 

Price 

Emissions 

Savings 

Cost 

Savings 

Carbon 

Price 

(Wh/mile) ($/mile) (%) (%) ($/tCO2e) (%) (%) ($/tCO2e) (%) (%) ($/tCO2e) 

9 0.01 80.3 37.6 - 30.5 16.2 - 80.3 37.6 - 

18 0.1 60.6 -102.6 3,630 30.2 14.3 - 60.6 -102.6 3,630 

36 0.1 21.3 -102.6 1,030 29.7 14.3 - 34.6 -3.0 190 

54 0.15 -18.1 -180.6 - 29.2 13.2 - 30.9 8.2 - 

90 0.25 -97.8 -336.5 - 28.1 11.1 - 28.6 9.8 - 

135 0.375 -195.2 -531.3 - 26.8 8.6 - 27.0 8.0 - 

180 0.5 -293.6 -726.2 - 25.5 6.0 - 25.6 5.7 - 

360 1 -687.2 -1,505.6 - 20.3 -4.0 420 20.4 -4.0 420 
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5.3.3. High vs Low Carbon Intensity of Electricity (𝑪𝑰𝒆) 

A change in the carbon intensity of electricity (e.g., from different electricity 

generation methods) has the same effect as changing the drone energy consumption rate, 

since 𝑒𝑡  and 𝑒𝑑  are proportional to the carbon intensity (see Table 5.1). Doubling or 

halving 𝐶𝐼𝑒 is equivalent to doubling or halving 𝐸𝑝𝑚𝑑 . Because of the variation in the 

carbon intensity of electricity, both over geography and over time (especially in the future), 

we follow Stolaroff et al. (2018) who use four carbon intensity values from “the U.S. 

Environmental Protection Agency’s estimate of regional, non-baseload GHG emissions in 

the United States”, reflecting California (a low-carbon region), the U.S. average (the base 

case), Missouri (a region with the current highest value), and “a low-GHG case about half 

as carbon intensive as California.” We show the results in Table 5.8 in the summary section. 

5.3.4. Large vs Jumbo Truck Capacity for Truck-drone Delivery (𝒎𝒕𝒅) 

In the base case, since drone-only is the dominant emissions reducing delivery 

service, decreasing the truck-capacity for truck-drone deliveries will not change the 

emissions-minimizing service, thus, we increase the truck-drone capacity to two higher 

levels than the base case level of 𝑚𝑡𝑑 = 150 deliveries per route: large truck capacity with 

𝑚𝑡𝑑 = 300 deliveries per route and jumbo truck capacity with 𝑚𝑡𝑑 = 750 deliveries per 

route. Increasing the capacity of truck-drone service distributes the emissions and costs of 

truck travel over greater numbers of deliveries. 

5.3.4.1 Performance Effects of Drone Delivery 

Table 5.5 shows the performance measures of interest for TO (column 2), TD 

(columns 3, 5 and 7), and the optimal delivery service combinations (DO*e in column 4, 



198 

 

DO*e in column 6 , and DO+TD*e in column 8) for the three different levels of 𝑚𝑡𝑑, i.e., 

(the base level 𝑚𝑡𝑑 = 150), 𝑚𝑡𝑑 = 300 and  𝑚𝑡𝑑 = 750). 

There are several interesting observations from Table 5.5:  

(1) for TD to be used as part of the emissions-minimizing service combination  (e.g., TD 

is used 23% with the jumbo truck capacity), the truck capacity for truck-drone delivery 

needs to be very large (e.g., 750). Moreover, the impact of 𝑚𝑡𝑑 on increasing TD utilization 

appears to be marginally diminishing. For example, when 𝑚𝑡𝑑 is increased from 300 to 

750, TD utilization (i.e., the percentage of customers served by TD) increases from 0 to 

23% (a 23% increase) as shown in the Table 5.5; when 𝑚𝑡𝑑 is further doubled (from 750 

to 1,500, which is not shown in Table 5.5), TD utilization increases by only 10% (from 23% 

to 33%). 

(2) When 𝑚𝑡𝑑 ≤ 300 the emissions-minimizing service combination has DO serve all the 

customers in the delivery region of 10-mile radius. In fact, the truck capacity for truck-

drone delivery (𝑚𝑡𝑑 ) has no impact on the performance of the emissions-minimizing 

service combination when 𝑚𝑡𝑑 ≤ 400. 

(3) With the jumbo truck capacity in Table 5.5 (𝑚𝑡𝑑 = 750), the emissions-minimizing 

service combination has DO serve customers who are within 8.8 miles of the depot (77% 

of the deliveries) with TD serving the remaining more distant customers (23%). The 

emissions-minimizing service combination for 𝑚𝑡𝑑 = 750  provides a slightly larger 

emissions savings (61.4% vs 60.6%) and a much smaller cost increase (59% vs 103%) than 

using DO*e for the base case (with 𝑚𝑡𝑑 = 150). 

  



199 

 

Table 5.5. Performance for TO, TD, and the emissions-minimizing delivery service combinations for three levels of 𝑚𝑡𝑑 

Performance Measure TO Base Case Large 𝒎𝒕𝒅 Case Jumbo 𝒎𝒕𝒅 Case 

𝑚𝑡𝑑 (#deliveries/truck route) 0 150 300 750 

Service Option TO TD DO*e TD DO*e TD DO+TD*e 

% Area (customers) Served by TO 100.0% - 0.0% - 0.0% - 0.0% 

% Area (customers) Served by DO - - 100.0% - 100.0% - 76.9% 

% Area (customers) Served by TD - 100.0% 0.0% 100.0% 0.0% 100.0% 23.1% 

Total Delivery Cost (TDC) ($) 6717.8 5760.3 13613.6 5323.9 13613.6 5062.1 10667.1 

         Truck Portion 1.00 0.70 0.00 0.68 0.00 0.66 0.07 

         Drone Portion 0.00 0.30 1.00 0.32 1.00 0.34 0.93 

Cost per Delivery ($/delivery) 0.86 0.73 1.73 0.68 1.73 0.64 1.36 

% Cost Change to TO - -14.3% 102.6% -20.7% 102.6% -24.6% 58.8% 

Total GHG Emissions (kg CO2e) 3131.8 2185.0 1232.8 1802.9 1232.8 1573.6 1209.3 

         Truck Portion 1.00 0.99 0.00 0.99 0.00 0.99 0.31 

         Drone Portion 0.00 0.01 1.00 0.01 1.00 0.01 0.69 

Emissions per Delivery (kg CO2e/delivery) 0.40 0.28 0.16 0.23 0.16 0.20 0.15 

% Emissions Change to TO - -30.2% -60.6% -42.4% -60.6% -49.8% -61.4% 

Truck Miles Traveled (mile) 2861.0 1980.7 0.0 1631.6 0.0 1422.2 341.3 

Drone Miles Traveled (mile) - 1427.9 104719.8 1427.9 104719.8 1427.9 70988.7 

Mile-replace Ratio - 1.6 36.6 1.2 36.6 1.0 28.2 

Driver Hours Worked (hour) 247.8 147.0 0.0 138.3 0.0 133.1 31.0 

Drone Hours Operated (hour) - 101.1 2748.9 101.1 2748.9 101.1 1890.5 

#Trucks Required (SL = 8 hrs) 31.0 18.4 0.0 17.3 0.0 16.6 3.9 

#Drones Required (SL = 8 hrs) - 18.4 343.6 17.3 343.6 16.6 237.3 

Number of Truck Routes 78.5 52.4 0.0 26.2 0.0 10.5 2.4 

Truck Route Length (mile) 36.4 37.8 0.0 62.3 0.0 135.8 141.3 

Truck Route Time (hour) 3.2 2.8 0.0 5.3 0.0 12.7 12.8 

Drone Stops - 3927.0 7854.0 3927.0 7854.0 3927.0 6948.0 

*e The optimal service combination that minimizes total GHG emissions. 
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(4) Unlike the emissions-minimizing service combination, TD reduces both emissions and 

delivery costs for all three levels of 𝑚𝑡𝑑, and the emissions and cost savings increase as 

𝑚𝑡𝑑 increases. The percentage emissions savings relative to TO are 30%, 42%, and 50% 

for 𝑚𝑡𝑑 = 150, 300, and 750, respectively. The percentage cost savings relative to TO are 

about 14%, 21%, and 25% for 𝑚𝑡𝑑 = 150 , 300, and 750, respectively. Many other 

performance measures (e.g., truck travel miles, driver hours, number of trucks and drones) 

improve as 𝑚𝑡𝑑 increases, and again the improvement is marginally diminishing. However, 

the truck routes become longer as 𝑚𝑡𝑑  increases. Larger trucks reduce both cost and 

emissions, but provide worse service in terms of truck route time. For example, the jumbo 

trucks (𝑚𝑡𝑑 = 750) have over 12-hour truck routes. 

5.3.5. Low vs High Delivery Density (𝜹) 

In this section, we explore the impact of delivery density on the emissions for 

delivery with  drones. We consider two levels of delivery density in addition to the base 

case level of 𝛿 = 25: a low delivery density with 𝛿 = 1 and a high delivery density with 

𝛿 = 625 . According to USPS (2020), all three of these delivery density values can 

represent “suburban areas that feature standalone houses with yards or porches that are 

convenient and efficient for leaving a package”. Because delivery density varies by time 

of the day/week/season/year (as well as over geographic regions), the low delivery density 

may represent areas where houses are far from each other and/or off-peak periods, and the 

high delivery density may represent dense areas where houses are next to each other and/or 

peak periods. 
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5.3.5.1 Performance Effects of Drone Delivery 

Table 5.6 shows the performance measures of interest for TO (columns 2, 5 and 8), 

TD (columns 3, 6 and 9), and the optimal delivery service combination for three different 

levels of 𝛿, i.e., DO*e for 𝛿 = 1, DO*e for the base level 𝛿 = 25, and DO+TD*e for 𝛿 =

625, in columns 4, 7, and 10, respectively. 

There are several interesting observations from Table 5.6: 

(1) when delivery density is low, with 𝛿 ≤ 25 deliveries per square mile, the emissions-

minimizing service combination is for DO to serve all the customers in the delivery region 

of 10-mile radius. In fact, but not shown in the table, DO is optimal to minimize emissions 

in the base case for 𝛿 ≤ 100 deliveries per square mile. If we measure the performance on 

the per delivery level (rows 10 and 15), the delivery density has no impact on the 

performance of DO; however, the relative performance of DO to TO deteriorates as 

delivery density increases, which is due to the fact that the per delivery performance of TO 

improves as delivery density increases. The denser the deliveries, the shorter the distance 

per delivery for truck deliveries (including TO and TD), and thus the greater the number 

of deliveries per truck mile. Therefore, TO and TD become more attractive than DO as 

delivery density increases. 

 

  



202 

 

Table 5.6. Performance for TO, TD, and the emissions-minimizing delivery service combinations for three levels of 𝛿 

Performance Measure Low Density Base Case High Density 

𝛿 (#deliveries/square mile) 1 25 625 

Service Option TO TD DO*e TO TD DO*e TO TD DO+TD*e 

% Area (customers) Served by TO 100.0% - 0.0% 100.0% - 0.0% 100.0% - 0.0% 

% Area (customers) Served by DO - - 100.0% - - 100.0% - - 16.3% 

% Area (customers) Served by TD - 100.0% 0.0% - 100.0% 0.0% - 100.0% 83.7% 

Total Delivery Cost (TDC) ($) 631.5 509.8 544.5 6717.8 5760.3 13613.6 122601.0 109086.5 123519.9 

         Truck Portion 1.00 0.82 0.00 1.00 0.70 0.00 1.00 0.63 0.49 

         Drone Portion 0.00 0.18 1.00 0.00 0.30 1.00 0.00 0.37 0.51 

Cost per Delivery ($/delivery) 2.01 1.62 1.73 0.86 0.73 1.73 0.62 0.56 0.63 

% Cost Change to TO - -19.3% -13.8% - -14.3% 102.6% - -11.0% 0.7% 

Total GHG Emissions (kg CO2e) 442.9 314.7 49.3 3131.8 2185.0 1232.8 38585.3 26209.2 25822.1 

         Truck Portion 1.00 0.99 0.00 1.00 0.99 0.00 1.00 1.00 0.92 

         Drone Portion 0.00 0.01 1.00 0.00 0.01 1.00 0.00 0.00 0.08 

Emissions per Delivery (kg 

CO2e/delivery) 
1.41 1.00 0.16 0.40 0.28 0.16 0.20 0.13 0.13 

% Emissions Change to TO - -28.9% -88.9% - -30.2% -60.6% - -32.1% -33.1% 

Truck Miles Traveled (mile) 404.6 284.4 0.0 2861.0 1980.7 0.0 35248.9 23866.2 21664.4 

Drone Miles Traveled (mile) 0.0 285.6 4188.8 - 1427.9 104719.8 0.0 7139.5 178995.1 

Mile-replace Ratio - 2.4 10.4 - 1.6 36.6 - 0.6 13.2 

Driver Hours Worked (hour) 24.4 16.1 0.0 247.8 147.0 0.0 4380.4 2393.2 2044.5 

Drone Hours Operated (hour) 0.0 9.8 110.0 - 101.1 2748.9 0.0 1814.7 6378.6 

#Trucks Required (SL = 8 hrs) 3.1 2.0 0.0 31.0 18.4 0.0 547.6 299.2 255.6 

#Drones Required (SL = 8 hrs) 0.0 2.0 13.7 - 18.4 343.6 0.0 299.2 863.1 

Number of Truck Routes 3.1 2.1 0.0 78.5 52.4 0.0 1963.5 1309.0 1095.0 

Truck Route Length (mile) 128.8 135.8 0.0 36.4 37.8 0.0 18.0 18.2 19.8 

Truck Route Time (hour) 7.8 7.7 0.0 3.2 2.8 0.0 2.2 1.8 1.9 

Drone Stops - 157 314 - 3927 7854 - 98175 114223 

*e The optimal service combination that minimizes total GHG emissions. 
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(2) When delivery density 𝛿 > 100, TD utilization increases as delivery density increases. 

For example, TD utilization increases from 0 to 84% when the density increases from 100 

to 625 deliveries per square mile. DO always serves customers who are close to the depot 

although the number of customers becomes smaller as delivery density becomes greater. 

This might imply that truck-drone and/or truck-only might be a better delivery method (in 

terms of minimizing emissions) for dense suburban and urban areas whereas drone-only 

delivery is better for the majority of sparse suburban and rural areas and a small proportion 

of urban areas that are within walking distance from the depot (or retail store) because 

drone-only provides lower emissions than TD and TO serving customers that are very close 

the depot. 

(3) The emissions per delivery of TO (row 15) decreases as delivery density increases, and 

so does the cost per delivery of TO (row 10). The expected emissions per delivery is 1.41, 

0.4, and 0.2 kg CO2e for 𝛿 = 1, 25, and 625, respectively. It is increased by 253% for low 

density (𝛿 = 1) and decreased by 50% for high density (𝛿 = 625) compared with the base 

density (𝛿 = 25). The expected cost per delivery is $2.01, $0.86, and $0.62 for 𝛿 = 1, 25, 

and 625, respectively. It is increased by 135% for low density (𝛿 = 1) and decreased by 

35% for high density (𝛿 = 625) compared with the base density (𝛿 = 25).  The truck route 

length and time decrease as delivery density increases given that each truck makes 100 

deliveries per route. The truck route time is increased by more than 4 hours for low density 

(𝛿 = 1) and decreased by 36 minutes for high density (𝛿 = 625) compared with the base 

density (𝛿 = 25). 

(4) The emissions-minimizing service combination produces less GHG emissions per 

delivery than TO for all three density levels, and the absolute per delivery emissions 
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differences (between the emissions-minimizing service combination and TO) become 

smaller as the delivery density increases. For example, the emissions-minimizing service 

combination produces 1.25, 0.24, and 0.07 less kg CO2e per delivery than TO for 𝛿 = 1, 

25, and 625, respectively. Row 16 shows that the percentage emissions savings relative to 

TO also decreases as delivery density increases, which are 89%, 61%, and 33% for 𝛿 = 1, 

25, and 625, respectively. However, the absolute total GHG emissions differences 

(between the emissions-minimizing service combination and TO) become greater as 

delivery density increases, which is due to the increased number of deliveries. For example, 

although DO+TD*e reduces only 0.07 kg CO2e per delivery (relative to TO) for 𝛿 = 625, 

which is just 29% of the reduction for the base density 𝛿 = 25, the total GHG emissions 

reduction is 12,763 kg CO2e, which is about 7 times greater than that for the base density 

𝛿 = 25. 

(5) The emissions-minimizing service combination also reduces delivery costs for low 

density but increases delivery costs for medium and high delivery density areas. For low 

and medium density levels, the cost and the emissions per delivery for DO remain the same, 

however, the cost and the emissions per delivery for TD decrease as delivery density 

increases. Therefore, the percentage cost and emissions savings of DO relative to TO 

increase as delivery density decreases. For medium and high density delivery levels, we 

see a tradeoff between cost and emissions due to the different use of delivery services that 

minimize cost and that minimize emissions. More details regarding cost and emissions 

tradeoffs are provided in Chapter 6. 
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5.3.6. Large vs Medium Delivery Region Size (𝑹) 

To assess the impact of the delivery region size, we consider two other delivery 

region sizes in addition to the base case level where 𝑅 = 10 miles: a medium delivery 

region with 𝑅 = 20 miles and a large delivery region with 𝑅 = 30 miles. The base level 

𝑅 = 10 miles was chosen based on the assumption that delivery drones have a limited 

roundtrip flight range of 10-15 miles first envisioned for the point-to-point delivery of 

small packages from a fixed depot to customer homes (e.g., Amazon). Having a small depot 

near the center of each city may be ideal, but finding feasible locations (including the cost 

for central locations) is likely to be a challenge in many cities. It is not surprising that many 

logistics and e-commerce firms operate larger depots (to achieve economies of scale in 

inventory, space, and maintenance) that can cover larger areas than a 10-mile radius, and 

that are located around the periphery of urban areas. We use 𝑅 = 20 miles and 𝑅 = 30 

miles to represent different types of depots. 

5.3.6.1 Performance Effects of drone delivery 

Since the number of deliveries for a fixed density (and area served) increases 

quadratically as the delivery region size increases, we normalize the performance measures 

to the number of deliveries in the base region. For example, the region of 𝑅 = 30 miles is 

equivalent in area and deliveries to 9 regions of 𝑅 = 10 miles, so we divide the total costs 

(and other performance measures) by 9 to obtain a measure that is comparable to the base 

case. Table 5.7 shows the normalized performance measures of interest for TO, TD, and 

the optimal delivery service combination for three different levels of 𝑅.  
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Table 5.7. Normalized performance (by base region size) for TO, TD, and the optimal service combination for three levels of 𝑅 

Performance Measure Base Case Medium Region Size Large Region Size 

𝑅 (mile) 10 20 30 

Service Option TO TD DO*e TO TD DO+TD*e TO TD DO+TD*e 

% Area (customers) Served by TO 100.0% - 0.0% 100.0% - 0.0% 100.0% - 0.0% 

% Area (customers) Served by DO - - 100.0% - - 25.0% - - 11.1% 

% Area (customers) Served by TD - 100.0% 0.0% - 100.0% 75.0% - 100.0% 88.9% 

Total Delivery Cost (TDC) ($) 6717.8 5760.3 13613.6 8026.8 6632.9 8596.3 9335.8 7505.6 8378.2 

         Truck Portion 1.00 0.70 0.00 1.00 0.74 0.45 1.00 0.77 0.64 

         Drone Portion 0.00 0.30 1.00 0.00 0.26 0.55 0.00 0.23 0.36 

Cost per Delivery ($/delivery) 0.86 0.73 1.73 1.02 0.84 1.09 1.19 0.96 1.07 

% Cost Change to TO - -14.3% 102.6% - -17.4% 7.1% - -19.6% -10.3% 

Total GHG Emissions (kg CO2e) 3131.8 2185.0 1232.8 4278.1 2949.2 2711.1 5424.4 3713.4 3607.6 

         Truck Portion 1.00 0.99 0.00 1.00 0.99 0.88 1.00 1.00 0.96 

         Drone Portion 0.00 0.01 1.00 0.00 0.01 0.12 0.00 0.00 0.04 

Emissions per Delivery (kg CO2e/delivery) 0.40 0.28 0.16 0.54 0.38 0.35 0.69 0.47 0.46 

% Emissions Change to TO - -30.2% -60.6% - -31.1% -36.6% - -31.5% -33.5% 

Truck Miles Traveled (mile) 2861.0 1980.7 0.0 3908.2 2678.8 2183.7 4955.4 3377.0 3156.9 

Drone Miles Traveled (mile) - 1427.9 104719.8 - 1427.9 27250.9 0.0 1427.9 12904.8 

Mile-replace Ratio - 1.6 36.6 - 1.2 15.8 - 0.9 7.2 

Driver Hours Worked (hour) 247.8 147.0 0.0 273.9 164.5 127.7 300.1 181.9 165.6 

Drone Hours Operated (hour) - 101.1 2748.9 0.0 101.1 763.1 0.0 101.1 395.3 

#Trucks Required (SL = 8 hrs) 31.0 18.4 0.0 34.2 20.6 16.0 37.5 22.7 20.7 

#Drones Required (SL = 8 hrs) - 18.4 343.6 0.0 20.6 101.9 0.0 22.7 58.9 

Number of Truck Routes 78.5 52.4 0.0 78.5 52.4 39.3 78.5 52.4 46.5 

Truck Route Length (mile) 36.4 37.8 0.0 49.8 51.2 55.6 63.1 64.5 67.8 

Truck Route Time (hour) 3.2 2.8 0.0 3.5 3.1 3.3 3.8 3.5 3.6 

Drone Stops - 3927 7854 0 3927 4909 0 3927 4363 

*e The optimal service combination that minimizes total GHG emissions. 
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There are several interesting observations from Table 5.7: 

(1) for all three cases, the emissions-minimizing service combination has DO serve all 

customers who are within 10 miles from the depot, and TD serve the rest of the delivery 

region (rows 4-6). The utilization of DO decreases from 100% to 25% to 11% for 𝑅 = 10, 

20, and 30 miles, respectively. This is because the number of deliveries (or customers) 

increases as the delivery region size increases. In all cases, the flight range of drones is 10 

miles. If drone flight range can be increased to 20 miles, the emissions-minimizing service 

combination will have DO serve all customers who are within 20 miles from depot. If we 

can further increase drone flight range, it will not affect the emissions-minimizing service 

combination, because TD produces lower GHG emissions per delivery than DO beyond 20 

miles, thus, TD is the dominant delivery service beyond 20 miles.  

(2) Rows 7 and 12 show that the total delivery costs and GHG emissions (of the base region 

size) for TO increase as the delivery region size 𝑅 increases, respectively. This is because 

the trucks travel longer distances to get to more remote areas with the larger values of 𝑅, 

i.e., the average linehaul distance is longer for 𝑅 = 30 than for 𝑅 = 10. The delivery costs 

are increased by 19% and 39% for the medium (𝑅 = 20) and large (𝑅 = 30) region sizes, 

respectively; and the GHG emissions are increased by 37% and 73% for the medium (𝑅 =

20) and large (𝑅 = 30) region sizes, respectively, compared with the base region size (𝑅 =

10). Furthermore, the truck route length (row 25) and the truck route time (row 26) are 73% 

and 19% longer, respectively, for 𝑅 = 30 than for 𝑅 = 10, and are 37% and 9% longer for 

𝑅 = 20  than for 𝑅 = 10 , respectively. Considering only delivery costs and GHG 

emissions, there is an incentive for companies to have many small depots rather than a few 

large ones as the former can reduce both delivery costs, GHG emissions, and delivery times. 
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On the other hand, the costs of operating 9 small depots (e.g., fixed facility costs, operating 

costs, etc.) may be larger than the costs of operating one large depot serving the same 

number of customers. 

(3) Comparing with TO, the emissions-minimizing service combination reduces GHG 

emissions for all three region sizes. Like the impact of density, the percentage emissions 

reductions relative to TO decrease as the region size increases. For example, the percentage 

emissions reductions relative to TO are 61%, 37%, and 34% for 𝑅 = 10, 20, and 30 miles, 

respectively. This is due to the fact that DO is much more emissions-efficient than any 

other services for a delivery region of a 10-mile radius, so, the larger the DO utilization, 

the larger the percentage emissions reductions relative to TO. Unlike the impact of density, 

the absolute emissions reductions relative to TO first decrease and then increase as the 

regional size increases. For example, the absolute emissions reduction relative to TO are 

1899, 1567, and 1817 kg CO2e for 𝑅 =10, 20, and 30 miles, respectively. 

(4) Although not shown in Table 5.7, it is interesting to look at the number of drone 

launches per depot per minute as the delivery region size increases. With a drone flight 

range equal to 10 miles, there are 7,854 drone launches for the DO portion in all optimal 

solutions, which equates to about 16.3 drone launches per minute or one every 3.7 seconds. 

Therefore, three launchers per depot are needed if we assume a drone can be launched 

every 10 seconds. For a delivery region size of 𝑅 =30 miles, 27 drone launchers or launch 

stations are required if 9 small depots covering a delivery region size of 10 miles are 

employed. In contrast, with one large depot serving the entire delivery region of 𝑅 =30 

miles would require only three drone launchers or launch stations. Thus, using small depots 
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requires 9 times as many staff (e.g., drone personnel) and facilities (e.g., drone launch 

station) as using one large depot. 

5.3.7. Summary of Impacts of Key Parameters on Selected Performance Measures 

We have explored the impacts of drone energy consumption rates (𝐸𝑝𝑚𝑑), the 

correlation between 𝐸𝑝𝑚𝑑 and the unit drone operating cost (𝑐𝑑), the carbon intensity of 

electricity (𝐶𝐼𝑒), the truck capacity for truck-drone delivery (𝑚𝑡𝑑), the delivery density (𝛿), 

and the size (radius) of the delivery region (𝑅) on a number of performance measures (e.g., 

utilization of delivery service, delivery costs, delivery emissions, vehicle miles traveled, 

vehicle hours operated, number of vehicles required). Some of the key findings are 

summarized in Table 5.8. Column 1 indicates the selected 14 cases (the changes of the 

parameters relative to the base case level). Column 2-3 show the utilization of DO and TD, 

respectively. Columns 4-5, 6-7, 8-9, 10-11, and 12-11 show the absolute and percentage 

reductions (relative to truck-only) in delivery costs, GHG emissions, truck travel distances, 

driver work hours, and the number of trucks required, respectively. Columns 13-14 show 

the absolute increase in drone travel distances and the number of drones required, 

respectively. 

 

  

  



210 

 

Table 5.8. Summary of the performance of the optimal service combination relative to truck-only delivery for different parameter 

values 

 

Case 
DO  

Use 

TD  

Use 

Cost  

Savings 

Emissions  

Savings 

Truck Miles 

Reduced 

Driver Hours 

Reduced 

#Truck 

Reduced 

Drone 

Miles 

Increased 

#Drones 

Increased 

 
(%) (%) ($) (%) 

(kg 

CO2e) 
(%) (mile) (%) (hour) (%) - (mile) - 

Base case 100.0 0.0 -6,896 -102.6 1,899 60.6 2,861 100.0 248 100.0 31.0 104,720 343.6 

𝐸𝑝𝑚𝑑/2 100.0 0.0 -6,896 -102.6 2,515 80.3 2,861 100.0 248 100.0 31.0 104,720 343.6 

10𝐸𝑝𝑚𝑑 0.8 99.2 966 14.4 802 25.6 889 31.1 102 41.0 12.7 1,453 18.6 

𝐸𝑝𝑚𝑑/2, 0.1𝑐𝑑 100.0 0.0 2,529 37.6 2,515 80.3 2,861 100.0 248 100.0 31.0 104,720 343.6 

10𝐸𝑝𝑚𝑑, 5𝑐𝑑 0.8 99.2 385 5.7 802 25.6 889 31.1 102 41.0 12.7 1,453 18.6 

𝐶𝐼𝑒/2 100.0 0.0 -6,896 -102.6 2,515 80.3 2,861 100.0 248 100.0 31.0 104,720 343.6 

1.5𝐶𝐼𝑒 77.1 22.9 -4,197 -62.5 1,306 41.7 2,342 81.9 212 85.8 26.6 71,253 238.7 

2𝑚𝑡𝑑 100.0 0.0 -6,896 -102.6 1,899 60.6 2,861 100.0 248 100.0 31.0 104,720 343.6 

5𝑚𝑡𝑑 76.9 23.1 -3,949 -58.8 1,922 61.4 2,520 88.1 217 87.5 27.1 70,989 237.3 

𝛿/5 100.0 0.0 87 13.8 394 88.9 405 100.0 24 100.0 3.1 4,189 13.7 

25𝛿 16.3 83.7 -919 -0.7 12,763 33.1 13,584 38.5 2336 53.3 292.0 178,995 863.1 

2𝑅 25.0 75.0 -2,278 -7.1 6,268 36.6 6,898 44.1 585 53.4 73.1 109,003 407.5 

3𝑅 11.1 88.9 8,619 10.3 16,351 33.5 16,186 36.3 1211 44.8 151.3 116,143 529.9 

𝑅/2 100.0 0.0 -579 -38.2 486 75.9 584 100.0 59 100.0 7.3 13,090 45.0 
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The partitioning of the delivery region that minimizes GHG emissions can be very 

different from that that minimizes delivery costs presented in Chapter 4. In many cases, 

drone-only delivery (DO) is the dominant delivery service and it serves at least 77% of the 

deliveries in the entire delivery region, whereas truck-drone delivery (TD) serves small 

percentages of customers (0-23%) who are located far from the depot. However, TD is 

used extensively when the drone energy consumption rate, the delivery density, and/or the 

delivery region size are large. In all cases, truck-only delivery (TO) is not used at all.  

The percentage emissions savings relative to truck-only delivery in Table 5.8 range 

from about 26% (or 0.1 kg CO2e/delivery) to 89% (or 1.25 kg CO2e/delivery), with the 

lowest savings from the high drone energy consumption rate case (10 times the base case) 

and the highest savings from the very low density case (1/25 of the base case). To put a 

26% savings in perspective, it would represent for UPS about 480,000 metric tonnes CO2e 

savings per year in the U.S. (assuming the daily package volume of 16 million (Holland et 

al., 2017) and 300 days for a year), which is equivalent to removing more than 100,000 

cars from the road for one year (USEPA, 2020). 

However, high percentage emissions savings might be achieved by considerably 

increasing or decreasing the delivery costs, depending on the drone energy consumption 

rate, the carbon intensity of electricity, the unit drone operating cost, the delivery density, 

and the delivery region size. The percentage emission and cost savings are both high when 

drone energy consumption and the unit drone operating cost are both low, and/or the 

delivery density is low. However, the delivery costs are substantially increased when the 

drone energy consumption rate and/or the carbon intensity of electricity are low while the 

unit drone operating cost is as high as the base case level. For example, the 61% emissions 
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savings (or 0.24 kg CO2e) in the base case is achieved by increasing the delivery costs by 

about 103% (or $0.88/delivery). Using the same assumption, it would represent for UPS 

reducing more than one million metric tonnes CO2e per year but at the expense of $5 billion. 

This suggests a clear tension between the environmental and the financial performance. 

If TD is used exclusively for the 14 selected cases, the cost savings relative to TO 

range from about 11% to 25%, and the emissions savings relative to TO range from about 

26% to 50%. This might indicate that the cost and the emissions savings are more balanced 

by using TD than the emission-minimizing service combination (which largely uses DO) 

under most circumstances. 

5.4 Conclusions 

In this chapter, we used a partition of the delivery region based on the best use of 

different delivery services (i.e., DO, TD, and TO) to minimize GHG emissions. We 

provided numerical scenarios to illustrate the circumstances in which drone delivery (i.e., 

DO and TD) provides large and small emissions savings relative to truck-only delivery and 

quantified the scale of the savings. The potential emissions savings from DO and TD can 

be huge but depend strongly on the drone energy consumption rate and the carbon intensity 

of electricity, the delivery density, and the size of the delivery region. The high emissions 

savings might come at the expense of the delivery costs, which suggests the need to  

examine the cost and emissions tradeoffs when designing a delivery system. 

 



213 

 

Chapter 6: Emissions and Cost Tradeoffs of Drone Delivery 

Systems 

 In Chapters 4 and 5 we have shown how delivery costs and greenhouse gas (GHG) 

emissions depend on the use of different delivery services and the key parameters that 

determine the relative cost and emissions of each delivery service. In this chapter, we 

explore the tradeoff between the delivery costs and emissions for delivery systems with 

drones. In section 6.1, we discuss the possible tradeoffs and define the Pareto frontier. In 

section 6.2, to obtain the Pareto frontier we present an integer programming (IP) model 

using the cost and emissions expressions derived earlier. In section 6.3, we provide several 

illustrations of the tradeoff through varying key parameters. Section 6.4 presents the 

conclusions. 

6.1 Definition of Tradeoff and Pareto Frontier 

A tradeoff is a balance or compromise achieved between two desirable but 

incompatible objectives, where one objective improves and the other degrades. The Pareto 

frontier (or Pareto front, Pareto set) is the set of all Pareto efficient solutions in which no 

objective can be better off without making another objective worse off. We use the Pareto 

frontier to graphically evaluate the cost and emissions tradeoff.  

The cost and emissions tradeoff is largely driven by the extent of use of drones in 

drone-only and truck-drone delivery, which is primarily determined by the relative cost- 

and emissions-efficiencies of drones to trucks. Drone-only delivery is especially important 

in determining the tradeoff, because it has a larger travel distance per delivery compared 
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with truck-only and truck-drone delivery due to the drones being assumed to make only 

one delivery per flight.  

6.2 An Integer Programming Model for Computing Cost-Emissions Tradeoffs 

In order to construct the Pareto frontier to elucidate the tradeoff between the 

delivery costs and the GHG emissions, we develop an integer programming model with 

two objectives, i.e., minimizing the expected total delivery costs (or delivery costs for short) 

and minimizing the expected total GHG emissions (or GHG emissions for short). This bi-

objective optimization model can have an infinite number of Pareto efficient solutions. The 

Pareto frontier (i.e., a set of all Pareto efficient solutions) can be obtained by the 𝜀 -

constraint method, i.e., by bounding one of the objectives and adding it as a constraint 

(Turkensteen and Heuvel, 2019).  

6.2.1 Assumptions 

To develop the IP model, we consider a circular delivery region of radius 𝑅, and 

discretize this by dividing it into a set of non-overlapping rings of the same width. Each 

ring is served by one type of delivery service so as to minimize the expected total delivery 

costs or the expected total GHG emissions. Therefore, the delivery region is partitioned 

into several subregions with each served by one type of delivery service. The IP model 

solution provides the optimal partitioning of the service region, and the associated delivery 

cost and emissions.  

With the IP model, we need to ensure the service partitioning is such that (near) 

optimal swath widths can be used for truck-only and truck-drone delivery. Thus, we require 

enough consecutive rings to be assigned to define the truck-only and truck-drone 

subregions, termed a “service region ring”, so that the collective width of the service region 
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ring exceeds the (near) optimal swath width. Suppose the (near) optimal swath for truck-

only delivery is 𝑤 (=0.22 mile), and the width of a single ring is ∆ (=0.05 mile), thus, a 

minimum number of ⌈
𝑤

∆
⌉ (=5) consecutive rings must be assigned to truck-only. A “service 

region ring” for truck-only is the number of consecutive rings that is no less than ⌈
𝑤

∆
⌉ (=5). 

Figure 6.1 shows a “service region ring” in green comprised of five adjacent rings of width 

∆ each, where the collective width of the 5 rings (equal to 5∆) is equal or greater than the 

swath width. This service region ring would be served with the same delivery  service (e.g., 

TO). For truck-only and truck-drone delivery we use the same truck capacities throughout 

the service region. We also need to ensure that each service region ring is large enough to 

include at least as many deliveries as the truck capacity. However, we note that in some 

cases a lower cost and/or emissions level may be achieved with swath widths and the 

service region ring width less than the optimal swath widths.  

 

Figure 6.1 An illustration of a service region ring (in green) of radial width 5∆ 

. . . 

. . . 

𝑅 

∆ 
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The drone is restricted for use within its maximum flight range 𝑅𝑑  which is 

generally less than the radius of the service region (𝑅𝑑 ≤ 𝑅), and we require the expected 

drone trip distance to be at most half the drone range for truck-drone delivery. This provides 

the constraint 𝛿 ≥
40

3𝑅𝑑
2 (details see subsection 4.2.3 in Chapter 4) and helps ensure that the 

drone delivery trip length with truck-drone delivery is not too long. 

6.2.2 Notation and Mathematical Formulation 

The following parameter notations are used in the integer programming (IP) 

formulation . Let 𝑅 represents the radius of the circular service region which is divided into 

a set of rings of small radial width ∆. Each ring is indexed by its sequence when counting 

from the “ring” that includes the depot. Note the “ring” that includes the depot is actually 

a small circle with radius of ∆, but for notation convenience we call it ring 0 or the 0th ring. 

We use 𝑁 = {0, 1, … , 𝑛, … } to represent the set of all rings. Therefore, the distance from 

the depot to the far-edge of the 𝑛 th ring can be computed as 𝑑𝑛 = (𝑛 + 1)∆ . Since 

customers (deliveries) are assumed to be randomly and uniformly distributed over the 

service region with density 𝛿, the number of deliveries in the 𝑛th ring can be computed as 

𝑀𝑛 = 𝛿𝜋(𝑑𝑛
2 − 𝑑𝑛−1

2), thus, 𝑀𝑛 = 𝛿𝜋(2𝑛 + 1)∆2. 

Let 𝑆 = {𝑑𝑜, 𝑡𝑜, 𝑡𝑑} represent the set of the delivery services, where 𝑑𝑜, 𝑡𝑜, and 𝑡𝑑 

indicate drone-only delivery, truck-only delivery, and truck-drone delivery, respectively. 

Let 𝑃 = {𝑐, 𝑒} represent the set of objectives, where 𝑐 indicates the delivery costs, and 𝑒 

indicates the GHG emissions. The truck capacity of service 𝑠 ∈ {𝑡𝑜, 𝑡𝑑} is denoted by 𝑚𝑠. 

The near-optimal swath width of service 𝑠 ∈ {𝑡𝑜, 𝑡𝑑} for objective 𝑝 ∈ {𝑐, 𝑒} is denoted by 

𝑤𝑝𝑠. Since the radial width of a “service region ring” is at least 𝑤𝑝𝑠 to ensure the near-
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optimal swath width, the minimum number of rings of a “service region ring” is then 𝐿𝑝𝑠 =

⌈
𝑤𝑝𝑠

∆
⌉ and ⌈𝑋⌉ is the ceiling function that maps 𝑋 to the least integer greater than or equal 

to 𝑋. The minimum number of truck routes of service 𝑠 ∈ {𝑡𝑜, 𝑡𝑑} is denoted by 𝑁𝑠.  

Based on equations (4.29) and (5.6) in Chapters 4 and 5, the cost and the emissions 

per delivery of delivery service 𝑠 ∈ {𝑑𝑜, 𝑡𝑜, 𝑡𝑑} at distance 𝑑𝑛 can be modeled as 𝐶𝑠𝑛 =

𝑎𝑐𝑠 + 𝑏𝑐𝑠𝑑𝑛 and 𝐸𝑠𝑛 = 𝑎𝑒𝑠 + 𝑏𝑒𝑠𝑑𝑛, respectively. Note we assume the linehaul distance is 

𝑑𝑛 for customers in the 𝑛th ring instead of the expected linehaul distance described in 

subsection 4.5. Detailed formulations of 𝑎𝑐𝑠, 𝑎𝑒𝑠, 𝑏𝑐𝑠 and 𝑏𝑒𝑠 are given in Table 6.1. 𝑈𝑐 

and 𝑈𝑒 represent the constants that set the upper bounds of the expected total delivery costs 

and GHG emissions, respectively. 

With the defined parameters , we now define the decision variables and objective 

functions. Let 𝑥𝑠𝑛 ∈ {0,1} equal one if delivery service 𝑠 is assigned to the customers in 

ring𝑛; and 0 otherwise. The expected delivery cost for ring 𝑛 with delivery service 𝑠 is 

modeled as 𝑀𝑛𝐶𝑠𝑛𝑥𝑠𝑛, the cost at the far edge of the ring. Thus. the expected total delivery 

cost for the service region is 𝑧𝑐 = ∑ ∑ 𝑀𝑛𝐶𝑠𝑛𝑛∈𝑁𝑠∈𝑆 𝑥𝑠𝑛 , and the expected total GHG 

emissions of the service region is 𝑧𝑒 = ∑ ∑ 𝑀𝑛𝐸𝑠𝑛𝑛∈𝑁𝑠∈𝑆 𝑥𝑠𝑛 . The IP model for the 

delivery system design problem, denoted DSDP, is defined as follows: 

Minimize 𝑧𝑐 or 𝑧𝑒                                                                                                           (6.1) 

𝑠. 𝑡.      𝑧𝑒 = ∑ ∑ 𝑀𝑛𝐸𝑠𝑛𝑛∈𝑁𝑠∈𝑆 𝑥𝑠𝑛 ≤  𝑈𝑒 , or     

            𝑧𝑐 = ∑ ∑ 𝑀𝑛𝐶𝑠𝑛𝑛∈𝑁𝑠∈𝑆 𝑥𝑠𝑛 ≤ 𝑈𝑐                                                                         (6.2) 

          ∑ 𝑥𝑠𝑛𝑠∈𝑆 = 1,   ∀𝑛 ∈ 𝑁                                                                                        (6.3) 
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          ∑ 𝑥𝑠𝑖
𝑛+𝐿𝑝𝑠−1

𝑖=𝑛
≥ 𝐿𝑝𝑠(𝑥𝑠𝑛 − 𝑥𝑠(𝑛−1)),  ∀𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, 1 ≤ 𝑛 ≤ |𝑁| − 𝐿𝑝𝑠 + 1     (6.4) 

         ∑ 𝑥𝑠𝑖
|𝑁|
𝑖=|𝑁|−𝐿𝑝𝑠+1 ≥ 𝐿𝑝𝑠(𝑥𝑠(𝑛+1) − 𝑥𝑠𝑛),  

                                             ∀𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, |𝑁| − 𝐿𝑝𝑠 + 1 < 𝑛 ≤ |𝑁| − 1                   (6.5)    

         ∑ 𝑥𝑠𝑖
𝑛
𝑖=𝑛−𝐿𝑝𝑠+1 ≥ 𝐿𝑝𝑠(𝑥𝑠𝑛 − 𝑥𝑠(𝑛+1)),    

          ∀𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, 𝐿𝑝𝑠 − 1 ≤ 𝑛 ≤ |𝑁| − 1              (6.6) 

   ∑ 𝑥𝑠𝑖
𝐿𝑝𝑠−1

𝑖=0
≥ 𝐿𝑝𝑠(𝑥𝑠(𝑛−1) − 𝑥𝑠𝑛),  ∀𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, 1 ≤ 𝑛 < 𝐿𝑝𝑠 − 1                     (6.7) 

          ∑ 𝑀𝑛𝑥𝑠𝑖
|𝑁|
𝑖=𝑛 ≥ 𝑁𝑠𝑚𝑠𝑥𝑠𝑛,  ∀𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, ∀𝑛 ∈ 𝑁                                                             (6.8) 

𝑥𝑠𝑛 ∈ {0,1},  ∀𝑠 ∈ 𝑆, ∀𝑛 ∈ 𝑁                                                                               (6.9) 

The objective function (6.1) minimizes the expected total delivery costs (𝑧𝑐) or the 

expected total GHG emissions (𝑧𝑒). The GHG emissions or the delivery costs is bounded 

by constraint (6.2). Constraint (6.3) ensures that each delivery ring is assigned to exactly 

one delivery service. Constraints (6.4)-(6.7) ensure that the collection of service region 

rings can fit the (near) optimal swath width for truck-only or truck-drone delivery. 

Specifically, constraint (6.4) ensures that if ring 𝑛 is served by service 𝑡𝑜 or service 𝑡𝑑, 

while the preceding ring 𝑛 − 1 is not served by the same service, then the succeeding 

adjacent 𝐿𝑝𝑠 rings are served by the same service as ring 𝑛. Constraint (6.5) ensures that 

the last 𝐿𝑝𝑠 adjacent rings are the same 𝑡𝑜 or 𝑡𝑑 delivery service if any of them are that 

service type. Similarly, constraint (6.6) ensures that if ring 𝑛 is served by service 𝑡𝑜 or 

service 𝑡𝑑, while the succeeding ring 𝑛 + 1 is not served by the same service, then the 

preceding adjacent 𝐿𝑝𝑠  rings are served by the same service as ring 𝑛. Constraint (6.7) 
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ensures that the first 𝐿𝑝𝑠 adjacent rings are served by the same 𝑡𝑜 or 𝑡𝑑 delivery service if 

any of them are that service type. Constraints (6.8) ensure that there are adequate number 

of deliveries in a service region ring for the truck routes. Constraint (6.9) specifies the 

domain of the decision variables.    
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Table 6.1. The sets and parameters for the IP model 

Notation Definition Range/Expression 

𝑆 The set of delivery services. 𝑠 ∈ 𝑆 = {𝑑𝑜, 𝑡𝑜, 𝑡𝑑}  

𝑃 The set of performance measures. 𝑝 ∈ 𝑃 = {𝑐, 𝑒}  

𝑁 The set of number of rings of width ∆.   𝑁 = {0, 1, … , 𝑛}  

𝑅 The radius of the delivery region.  

𝑅𝑑 The flight range of the drone. 𝑅𝑑 ≤ 𝑅  

∆ The width of each ring.  

𝛿 Delivery density.  

𝑑𝑛 
The distance between the far edge of the 𝑛th ring and 

the depot.  
𝑑𝑛 = (𝑛 + 1)∆  

𝑀𝑛 The number of deliveries within the 𝑛th ring. 𝑀𝑛 = 𝛿𝜋[𝑑𝑛
2 − 𝑑𝑛−1

2], and 𝑀𝑛 = 𝛿𝜋(2𝑛 + 1)∆2 

𝑚𝑠 The truck capacity of delivery service 𝑠.  𝑚𝑠, 𝑠 ∈ {𝑡𝑜, 𝑡𝑑}  

𝑁𝑠 
The minimum number of truck routes of delivery 

service 𝑠. 
𝑠 ∈ {𝑡𝑜, 𝑡𝑑} , 𝑝 ∈ {𝑐, 𝑒} 

𝑤𝑝𝑠 
The optimal swath width of the truck route of 

delivery service 𝑠. 
𝑠 ∈ {𝑡𝑜, 𝑡𝑑} , 𝑝 ∈ {𝑐, 𝑒} 

𝐿𝑝𝑠 
The minimum number of adjacent rings for service 𝑠 

that uses truck to optimize objective 𝑝. 

𝐿𝑝𝑠 = [
𝑤𝑝𝑠

∆
]

+

, 𝑠 ∈ {𝑡𝑜, 𝑡𝑑}, where [𝑋]+takes the integer of 𝑋 + 1. We define a 

collection of these rings as the service region ring. 

𝑏𝑝𝑠 
The slope of the linear line of  objective 𝑝 using 

service 𝑠. 

𝑏𝑐𝑠 ∈ {2𝑐𝑑 ,
2𝑐𝑡

𝑚𝑡𝑜
,

2𝑐𝑡

𝑚𝑡𝑑
},   

𝑏𝑒𝑠 ∈ {2𝑒𝑑 ,
2𝑒𝑡

𝑚𝑡𝑜
,

2𝑒𝑡

𝑚𝑡𝑑
}. 

𝑎𝑝𝑠 
The intercept of the linear line of objective 𝑝 using 

service 𝑠. 

𝑎𝑐𝑠 ∈ {𝑠𝑡 + 𝑠𝑑 ,
2𝑐𝑡

√3𝛿
+ 𝑠𝑡 , 𝑠𝑡 (

𝑤𝑐𝑠

6
+

1

𝛿𝑤𝑐𝑠
) + 𝑠𝑑√(

𝑤𝑐𝑠

3
)

2

+ (
1

𝛿𝑤𝑐𝑠
)

2

+ 𝜉𝑡 +
𝜉𝑑

2
}, 

𝑎𝑒𝑠 ∈ {𝜉𝑡 + 𝜉𝑑 ,
2𝑒𝑡

√3𝛿
+ 𝜉𝑡 , 𝑒𝑡 (

𝑤𝑒𝑠

6
+

1

𝛿𝑤𝑒𝑠
) + 𝑒𝑑√(

𝑤𝑒𝑠

3
)

2

+ (
1

𝛿𝑤𝑒𝑠
)

2

+ 𝜉𝑡 +
𝜉𝑑

2
} . 

𝐶𝑠𝑛 The cost per delivery of service 𝑠 at the 𝑛th ring. 𝐶𝑠𝑛 = 𝑎𝑐𝑠 + 𝑏𝑐𝑠𝑑𝑛   

𝐸𝑠𝑛 The emission per delivery of service 𝑠 at the 𝑛th ring. 𝐸𝑠𝑛 = 𝑎𝑒𝑠 + 𝑏𝑒𝑠𝑑𝑛   

𝑈𝑐 Upper bound of total delivery costs.  

𝑈𝑒 Upper bound of total GHG emissions.  
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6.2.3 The Pareto Frontier and Its Characteristics 

The Pareto frontier is a set of all Pareto efficient solutions, and to find the Pareto 

frontier we solve the DSDP with the following procedure: 

Steps 1 and 2 find the two extreme points along the Pareto frontier. 

1. Solve DSDP to minimize costs ( 𝑧𝑐 ) without bounding the emissions 𝑧𝑒  (i.e., 

without constraint (6.2)) to obtain the cost-minimizing solution 𝑠𝑐
∗ and the optimal 

costs 𝑧𝑐
∗.  Then solve DSDP to minimize emissions (𝑧𝑒) with cost constraint (6.2) 

where 𝑈𝑐 = 𝑧𝑐
∗ to obtain the solution that minimizes emissions with the minimum 

cost level 𝑧𝑒(𝑠𝑐
∗). The point (𝑧𝑒(𝑠𝑐

∗), 𝑧𝑐
∗) is a Pareto efficient solution. 

2. Similarly, solve DSDP to minimize emissions (𝑧𝑒) without bounding the costs 𝑧𝑐, 

(i.e., without constraint (6.2)) to obtain the emissions-minimizing solution 𝑠𝑒
∗ and 

the optimal emissions 𝑧𝑒
∗. Then solve DSDP to minimize costs (𝑧𝑐) with emissions 

constraint (6.2) where 𝑈𝑒 = 𝑧𝑒
∗  to obtain the solution that minimizes cost with the 

minimum emissions level 𝑧𝑐(𝑠𝑒
∗). The point (𝑧𝑒

∗, 𝑧𝑐(𝑠𝑒
∗) ) is another Pareto efficient 

solution. 

Steps 3 finds intermediate points along the Pareto frontier. 

3. To calculate 𝑛 points spaced along the Pareto frontier, first calculate the step size 

∆𝑧𝑐 =
𝑧𝑐(𝑠𝑒

∗)−𝑧𝑐
∗

𝑛+1
  (the difference between the optimal cost 𝑧𝑐

∗  and the cost at the 

emissions-minimizing point 𝑧𝑐(𝑠𝑒
∗) divided by 𝑛 + 1). For 𝑘 = 1  to 𝑛 , we first 

solve DSDP to minimize emissions ( 𝑧𝑒 ) with the cost constraint where 𝑈𝑐 =

𝑧𝑐(𝑠𝑒
∗) − 𝑘∆𝑧𝑐 . This provides the minimum emissions, denoted 𝑧𝑒𝑘

∗   for a 

constrained level of cost. Then we solve DSDP to minimize cost with the added 
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emissions constraint (6.2), where 𝑈𝑒 = 𝑧𝑒𝑘
∗ . This provides the minimum cost 

solution, denoted 𝑧𝑐𝑘
∗ , that is constrained by the emissions level  𝑧𝑒𝑘

∗ . (This ensures 

there is no lower cost solution achievable for that level of emissions, nor a lower 

emissions solution for that level of cost.) The point found with cost 𝑧𝑐𝑘
∗  is then on 

the Pareto frontier. Repeating this 𝑛 times (for 𝑘 = 1 to 𝑛) provides 𝑛 points along 

the Pareto frontier (some of which may coincide). 

Figure 6.2 gives an example of a Pareto frontier (in red) and a set of Pareto efficient 

solutions. The boxed points show a set of selected feasible solutions (i.e., combinations of 

delivery services in the service region), and smaller values of costs and emissions are 

preferred to larger ones. Each feasible solution reflects a certain utilization of truck-only, 

drone-only, and truck-drone delivery services. The Pareto frontier is constructed by those 

feasible solutions that are not strictly dominated by any other. For example, point A (the 

cost-minimizing solution (𝑧𝑒(𝑠𝑐
∗), 𝑧𝑐

∗ )) and point B (the emissions-minimizing solution 

(𝑧𝑒
∗, 𝑧𝑐(𝑠𝑒

∗)) represent the extreme points for the Pareto frontier. The feasible solutions that 

form the Pareto frontier are called the Pareto efficient solutions (or Pareto optimal solutions, 

non-dominated solutions) which reflect the best utilization of all delivery services. Point C 

is a feasible solution but not a Pareto efficient solution because it is dominated by both 

point C1 and point C2. Therefore, the Pareto frontier shows the best options a decision 

maker can choose from based on his/her preference for costs and emissions, and provides 

opportunities for improving current non-efficient solutions. 
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Figure 6.2 An example of a Pareto frontier and a set of Pareto efficient solutions 

Solutions along the Pareto frontier can help businesses select the most appropriate 

delivery services based on their internal assessment of the cost and emissions tradeoffs. It 

may also be useful to help an agency design regulations or markets to incentivize 

businesses to move to systems with lower emissions. Since the Pareto frontier in Figure 

6.2 is convex, the marginal delivery costs of reducing one extra unit of GHG emissions is 

non-decreasing (i.e., it is more and more expensive to reduce one more unit of GHG 

emissions) when moving up the frontier from right to left. This implies a dynamic cost of 

reducing a given amount of emissions depending on where the initial solution lies on the 

Pareto frontier. We define this dynamic cost as the marginal emission reduction cost 

(MERC). 

6.3 Illustrations of the Cost and Emissions Tradeoff 

 A number of feasible scenarios are examined in this section to illustrate the cost 

and emissions tradeoff by solving the DSDP model with different parameter settings. We 

consider a delivery region with a radius of 10 miles divided into 200 rings of width 0.05 

miles. All computational work was conducted on an Lenovo ThinkPad X1 Carbon 5th 
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laptop PC with a dual-core Intel i7-7600 CPU and 16 GB RAM running Microsoft 

Windows 10 Pro in 64-bit mode. The DSDP model was coded using Python version 3.6.3 

and solved via GUROBI version 9.0.3 on Spyder IDE. The solution times are all less than 

0.1 seconds for 600 decision variables (i.e., with 200 rings for a delivery region with a 

radius of 10 miles). 

The base case results are described in subsection 6.3.1. In subsection 6.3.2, we 

examine an inexpensive to operate, but energy-intensive drone, and in subsection 6.3.3 we 

assess the impact of the drone energy consumption rate on the cost and emissions tradeoff. 

In subsection 6.3.4, we examine the impact of the delivery density on the cost and 

emissions tradeoff for the inexpensive, but energy-intensive drone. The impact of truck-

drone capacity is presented in subsection 6.3.5. 

6.3.1 The Base Case 

The data for the base case is the same as described in Chapters 4 and 5, and is 

displayed again for convenience in Table 6.2. 
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Table 6.2. Definitions and values of parameters for the base case 

Parameter Unit Definition Baseline Reference 

𝑅  mile The radius of the circular delivery region 10 Xu (2017) 

𝛿 #deliveries/mile^2 The number of deliveries per square mile 25 Gulden (2017) 

𝐶𝐼𝑒 kg CO2e/kWh 
Carbon intensity of electricity, i.e., the quantity of lifecycle* 

CO2e emissions produced by consuming 1 kWh of electricity 
0.654 Stolaroff et al. (2018) 

𝐶𝐼𝑓 kg CO2e/kWh 

Carbon intensity of diesel fuel, i.e., the quantity of lifecycle* 

CO2e emissions produced by consuming (1/37.6) gallon of 

diesel 

0.335 Stolaroff et al. (2018) 

𝑐𝑡 $/mile The cost to move a truck one mile 1.25 Campbell et al. (2017) 

𝑠𝑡 $/stop The cost to make a truck delivery 0.4 Campbell et al. (2017) 

𝑓𝑡 miles per gallon Truck fuel economy 11.5 Stolaroff et al. (2018) 

𝐸𝑝𝑚𝑡 kWh/mile 
𝐸𝑝𝑚𝑡 = 37.6/𝑓𝑡 , 1 gallon of diesel = 37.6 kWh 

(the conversion factor is from Stolaroff et al. (2018)) 
3.26 Stolaroff et al. (2018) 

𝑒𝑡 kg CO2e/mile 
Truck operating emissions per mile 

𝑒𝑡 = 𝐶𝐼𝑑 × 37.6/𝑓𝑡 = 𝐶𝐼𝑑 × 𝐸𝑝𝑚𝑡  
1.09 Stolaroff et al. (2018) 

𝜉𝑡 kg CO2e/stop Truck emissions per stop 0 

Figliozzi (2017), Stolaroff et al. 

(2018), Goodchild and Toy 

(2018)… 

𝑚𝑡𝑜 #deliveries/route Number of total deliveries per truck-only route 100  

Assumed based on Holland et al. 

(2017), Stolaroff et al. (2018), 

Quora 

𝑐𝑑 $/mile Drone operating cost per mile 0.1 Campbell et al. (2017) 

𝑠𝑑 $/stop Marginal drone stop cost relative to truck stop cost 0 Campbell et al. (2017) 

𝐸𝑝𝑚𝑑 kWh/mile The electricity consumption of drones flying one mile 0.018 Stolaroff et al. (2018) 

𝑒𝑑 kg CO2e/mile 
The quantity of CO2e emitted by drones flying one mile 

𝑒𝑑 = 𝐶𝐼𝑒 × 𝐸𝑝𝑚𝑑  
0.01 Stolaroff et al. (2018) 

𝜉𝑑 kg CO2e/stop Marginal stop emissions of drone relative to truck 0 
Figliozzi (2017), Stolaroff et al. 

(2018), Goodchild and Toy (2018) 

𝑅𝑑 mile Maximum drone flight range per full battery charge 10 Xu (2017) 

𝑚𝑡𝑑 #deliveries/route Number of total deliveries per truck-drone route 150  Assumed 

*
Lifecycle CO2e emissions includes emissions from the resource extraction, transportation of the resource to the production facility, the creation of the 

fuel or electricity from various raw materials, the transportation of the fuel or electricity to a fuel or charging station, and then its use to power the vehicle.
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Table 6.3 reports 12 Pareto efficient solutions found by solving the DSDP model 

with the procedure described earlier. Columns 1 and 2 show the utilization of DO and TD 

in the system designs. Column 3 shows the GHG emissions and column 4 shows the 

delivery costs. Column 5 shows the marginal emission reduction cost (MERC) for adjacent 

solutions along the Pareto frontier. The final two rows of Table 6.3 show the cost and 

emissions pairs for using only TO or TD. Figure 6.3 shows the Pareto frontier (the blue 

line) created by joining the Pareto efficient solutions (the blue circles). The vertical axis is 

the expected total delivery cost ($) and the horizontal axis is the expected total GHG 

emissions (kg CO2e). Table 6.3 shows the MERC changes over the Pareto frontier and that 

it tends to be increasingly expensive per unit reduction of emissions when moving up Table 

6.3 (or moving left in Figure 6.3) from the cost-minimizing solution towards the emissions-

minimizing solution. However, rows 6 and 8 in Table 6.3 show two (small) exceptions.  

Table 6.3 Pareto efficient solutions for the base case 

u(DO) u(TD) Emissions Cost 
Marginal Emission 

Reduction Cost 

(%) (%) (kg CO2e) ($) ($/tCO2e) 

100.0 0.0 1,237 13,653  

91.2 8.8 1,302 12,565 16,738 

86.7 13.3 1,337 12,060 14,429 

80.1 19.9 1,387 11,275 15,700 

72.6 27.5 1,450 10,492 12,429 

65.0 35.0 1,513 9,702 12,540 

56.6 43.5 1,587 8,911 10,689 

47.7 52.3 1,666 8,123 9,975 

37.4 62.6 1,766 7,332 7,910 

28.1 71.9 1,860 6,720 6,511 

25.1 74.9 1,892 6,544 5,500 

1.4 98.6 2,170 5,754 2,842 

0.0 100.0 2,186 5,759  

0.0 0.0 3,132 6,718  
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The Pareto frontier in Figure 6.3 appears to be convex and nearly linear for lower 

levels of expected GHG emissions (high values of expected cost). The absolute value of 

the slope of the Pareto frontier could be interpreted as the marginal cost of reducing 

emissions which indicates the incremental change in delivery costs per unit change in GHG 

emissions (i.e., MERC), which is generally non-decreasing as also evidenced in Column 5 

of Table 6.3. This indicates that it is lowest cost per unit to reduce GHG emissions when 

emissions are at the highest level on the Pareto frontier.  

 

Figure 6.3. An illustration of the Pareto frontier for the base case drone (i.e., 𝑐𝑑 = 

$0.1/mile, 𝐸𝑝𝑚𝑑 =18 Wh/mile) 

Figure 6.3 also shows the current operation (red diamond) that reflects the baseline 

delivery service (i.e., truck-only delivery), which is far to the right of the Pareto frontier 

(i.e., it has much higher emissions). The blue shaded area highlights Pareto superior 

improvements from moving from truck-only delivery toward the Pareto frontier. Any 

solution in the shaded area dominates the truck-only solution, i.e., both the GHG emissions 
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and the delivery costs can be reduced compared with truck-only. The maximum amount of 

costless emission reduction (i.e., the amount of GHG emissions that can be reduced with 

no increase in the delivery costs) relative to truck-only delivery is about 1,272 kg CO2e 

(i.e., a 41% reduction). The maximum amount of cost reduction in the shaded region is 

$964 (i.e. a 14.3% reduction) which can be achieved by reducing GHG emissions 

simultaneously by 962 kg CO2e (or 31%). Moving away from the existing truck-only 

delivery solution to other Pareto efficient solutions outside of the shaded area on the Pareto 

frontier involves an increase in delivery costs to reduce GHG emissions. For example, 

moving to the emissions-minimizing solution (upper left point of Figure 6.3) increases the 

expected total delivery costs by $6,935 (or 103%) and reduces the expected total GHG 

emissions by 1,895 kg CO2e (or 61%). 

Figure 6.4 shows exactly how much DO and TD services are used for each Pareto 

efficient solution on the Pareto frontier in Figure 6.3. The secondary vertical axis on the 

right shows the utilization of DO and TD as percentages of total deliveries. The green 

shaded area represents the percent utilization of DO, and the hatched orange striped area 

represents the percent utilization of TD. As the Pareto efficient solution moves from left to 

right (i.e., from the emission-minimizing solution to the cost-minimizing solution), the 

utilization of drone-only delivery decreases from 100% to 1.5%, whereas the utilization of 

truck-drone delivery increases from 0% to 98.5%. 
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Figure 6.4 The Pareto frontier with the utilization of truck-drone and drone-only for the 

base case drone (i.e., 𝑐𝑑 = $0.1/mile, 𝐸𝑝𝑚𝑑 =18 Wh/mile) 

Figures 6.5 (a) and (b) provide more detail on the two extreme Pareto efficient 

solutions, i.e., the cost- and the emissions-minimizing solutions. These figures show the 

expected delivery cost and the expected GHG emissions of each of the three delivery 

services as a linear function of distance from the depot. Truck-only (TO) delivery is 

represented by the blue solid line, drone-only (DO) delivery by the green dashed line, and 

truck-drone (TD) delivery by the orange long-dash line. The red triangles indicate the 

optimal services that make up the cost- and the emission- minimizing delivery systems. 

This shows for the base case how TD delivery is more cost-efficient than TO delivery 

except near the depot (within 1.7 miles) and how TD delivery is much more 

environmentally-friendly than TO delivery at any distance from the depot. Note that TO is 

the most expensive service beyond about 2 miles for the depot (Figure 6.5(a)), but it is by 

far the most environmentally-friendly delivery service at all distances (Figure 6.5(b)). Thus 

the heavy use of DO to minimize emissions, leads to a very high level of cost.  
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Figure 6.5: (a) Expected delivery costs and (b) expected GHG emissions of each delivery 

service as a function of distance from the depot 

Some other findings from the analysis of the base case are: 

 (1) Comparing the emissions minimizing system (100% drone-only) with the cost 

minimizing system (98.6% truck-drone and 1.4% drone-only) shows that the expected total 

delivery costs are increased by $7,854 from $5,760 to $13,614 (a 136% increase), whereas 

the expected total GHG emissions are reduced by 933 kg CO2e from 2,166 to 1,233 kg 

CO2e (a 43% reduction). This indicates that the emissions are very expensive to reduce in 

the base case, an emissions reduction cost per ton of $8,418 between the two extreme points 

of the Pareto frontier. 

(2) Compared with truck-only delivery (the baseline service), moving to the cost-

minimizing services (98.6% truck-drone and 1.4% drone-only) reduces both the expected 

total delivery costs and GHG emissions, by $968 (or 14.4%) and 966 kg CO2e (or 30.8%), 

respectively;  
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(3) Compared with truck-only delivery (the baseline service), moving to the emissions-

minimizing service (100% DO) increases the expected total delivery costs by $6,896 (or 

102.6%) and reduces the expected total GHG emissions by 1,899 kg CO2e (or 60.6%), an 

emissions reduction cost per ton of $3,631/tCO2e. 

 (4) Shifting from TO to a greater use of DO and TD reduces the number of deliveries by 

truck, and the work hours for truck drivers, and the number of trucks required. For example, 

the number of trucks required is reduced from 31 for 100% TO to 19 for the cost-

minimizing services (98.6% truck-drone and 1.4% drone-only) and to zero for the 

emissions-minimizing service (100% DO). This shift increases the number of drones 

required from zero for 100% TO, to 19 for the cost-minimizing services (98.6% truck-

drone and 1.4% drone-only) and to 344 for the emissions-minimizing service (100% DO), 

assuming drones work for 8-hours per day.  

6.3.2 An Inexpensive, but Energy-intensive Drone 

In this section, we consider a drone that is very inexpensive to operate, but energy-

intensive. The drone operating cost is only 20% of the base case, i.e., 𝑐𝑑 = $0.02/mile, 

whereas the drone energy consumption rate is 10 times the base case, i.e., 𝐸𝑝𝑚𝑑 =180 

Wh/mile. This setting might reflect drone deliveries operated fully autonomously at scale, 

where the drones might be large in size with sophisticated functionalities, and/or powered 

by electricity from “dirty” generation, and/or operated at high speeds (to meet the ever 

increasing demand for fast delivery). All other parameter values remain the same as for the 

base case. 

Similar to Table 6.3, Table 6.4 reports the Pareto efficient solutions from solving 

the DSDP model. Columns 1 and 2 shows the utilization of DO and TD, respectively. 
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Column 3 shows the GHG emissions and column 4 shows the delivery costs. Column 5 

shows the marginal emission reduction cost (MERC). The final two rows show the cost 

and emissions pairs for TO and TD. Figure 6.6 shows the estimated Pareto frontier created 

by joining the Pareto efficient solutions presented in Table 6.4. As the Pareto efficient 

solution moves closer to the cost-minimizing solution (moving down in Table 6.4 and 

moving towards the right in Fig. 6.6), the MERC decreases. This again shows how the 

MERC changes and that it is less expensive per unit reduction in GHG emissions when the 

emissions level is relatively high than when the level is relatively low. However, the 

magnitudes of the MERC presented in Table 6.4 ($12 - $705) are much lower than that 

presented for the base case in Table 6.3 ($2,842 - $16,738). Thus, it is much more 

affordable to reduce emissions with the inexpensive, but energy-intensive drone, compared 

to the base case. This highlights the importance of drone technology, drone operations and 

electricity generation. 

Table 6.4 Pareto efficient solutions for the inexpensive but energy-intensive drone case 

u(DO) u(TD) Emissions Cost 
Marginal Emission 

Reduction Cost 

(%) (%) (kg CO2e) ($) ($/tCO2e) 

0.8 99.2 2,335 5,637  

7.0 93.0 2,447 5,558 705 

7.6 92.4 2,464 5,552 353 

11.6 88.4 2,617 5,509 281 

15.6 84.4 2,813 5,471 194 

20.7 79.3 3,112 5,428 144 

26.5 73.5 3,513 5,385 107 

33.1 66.9 4,032 5,344 79 

41.0 59.0 4,744 5,303 58 

51.8 48.2 5,863 5,262 37 

79.2 20.8 9,280 5,222 12 

0.0 100.0 2,336 5,646  

0.0 0.0 3,132 6,718  
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The shape of the Pareto frontier in Fig. 6.6 is very different than that for the base 

case in Fig. 6.3, although both appear to be convex. Moving from right to left, Fig. 6.6 

starts much flatter than Fig. 6.3 but then gets steep when approaching the left end. This 

shows how drone operating cost and energy consumption per mile can change the shape of 

the Pareto frontier and the underlying cost and emissions tradeoff. 

 

Figure 6.6 An illustration of the Pareto frontier for an inexpensive but energy-intensive 

drone (i.e., 𝑐𝑑 = $0.02/mile, 𝐸𝑝𝑚𝑑 =180 Wh/mile) 

Figure 6.6 also shows baseline solution of 100% truck-only delivery with the red 

diamond. The shaded blue area indicates the Pareto superior improvements available to the 

baseline solution when moving toward the Pareto frontier. Contrary to the base case 

observation in Fig. 6.3, Fig. 6.6 has the emissions-minimizing solution under the blue 

shaded area which indicates it is a Pareto superior improvement for truck-only delivery, 

whereas the cost-minimizing solution is not Pareto superior to truck-only delivery as it 

involves much greater emissions. The maximum emissions reduction compared to truck-
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only delivery is about 797 kg CO2e (a 25% reduction) which can be achieved by reducing 

delivery costs simultaneously by $1,065 (or 16%). The maximum amount of cost reduction 

from 100% truck-only with no increase in GHG emissions is $1,496 (a 22% reduction). A 

tradeoff of costs and emissions is required when shifting from the 100% truck-only delivery 

system to a Pareto efficient solution outside the shaded area. For example, moving to the 

cost-minimizing solution from truck-only delivery reduces the delivery costs by $1,496 (or 

29%) at the expense of increasing GHG emissions by 6,148 kg CO2e (or 196%). 

Figure 6.7 shows the utilization of drone-only and truck-drone for the Pareto 

efficient solutions in Figure 6.6. The secondary vertical axis shows the utilization of drone-

only delivery and truck-drone delivery as percentages of the total deliveries. The green 

shaded area represents the percent utilization of drone-only, and the orange striped area 

represents the percent utilization of truck-drone. As the Pareto efficient solution moves 

from left to right (i.e., from the emission-minimizing solution to the cost-minimizing 

solution), the utilization of drone-only delivery increases from 0.8% to 79.2%, whereas the 

utilization of truck-drone delivery decreases from 99.2% to 20.8%.  
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Figure 6.7 The Pareto frontier with the utilization of truck-drone and drone-only for an 

inexpensive, but energy-intensive drone (i.e., 𝑐𝑑 = $0.02/mile, 𝐸𝑝𝑚𝑑 =180 Wh/mile) 

6.3.3 The Impact of Drone Operating Cost and Energy Consumption Rates 

 This section examines the impact of the drone operating cost and energy 

consumption rate on the cost, emissions and delivery services used. The cost and emissions 

savings relative to truck-only delivery and the Pareto frontier strongly depend on the drone 

operating cost per mile (𝑐𝑑) and the drone energy consumption per mile (𝐸𝑝𝑚𝑑). Both 𝑐𝑑 

and 𝐸𝑝𝑚𝑑 are very uncertain, therefore, we fix the two levels of 𝑐𝑑 discussed in previous 

subsections (i.e., 𝑐𝑑 =  $0.1/mile and 𝑐𝑑 =  $0.02/mile) and vary 𝐸𝑝𝑚𝑑  from 9 to 360 

Wh/mile. We also fix the two levels of 𝐸𝑝𝑚𝑑  discussed in previous subsections (i.e., 

𝐸𝑝𝑚𝑑 =  18 Wh/mile and 𝐸𝑝𝑚𝑑 =  180 Wh/mile) and vary 𝑐𝑑  from $0.01/mile to 

$0.5/mile. 

 Figures 6.8(a) and (b) show the Pareto frontiers associated with the different levels 

of 𝐸𝑝𝑚𝑑  for 𝑐𝑑 =  $0.1/mile and 𝑐𝑑 =  $0.02/mile, respectively. Each Pareto efficient 
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solution reflects a certain utilization of drone-only delivery and truck-drone delivery. The 

lines with squares, circles, triangles, diamonds, and multiplication signs represent the 

Pareto frontiers for 𝐸𝑝𝑚𝑑 =9, 18, 60, 180, and 360 Wh/mile, respectively. The darker the 

color, the greater the 𝐸𝑝𝑚𝑑  value. Figures 6.8(c) and (d) show the Pareto frontiers 

associated with the different levels of 𝑐𝑑  for 𝐸𝑝𝑚𝑑 =  18 Wh/mile and 𝐸𝑝𝑚𝑑 =  180 

Wh/mile, respectively. The lines with squares, circles, triangles, diamonds, and 

multiplication signs represent the Pareto frontiers for 𝑐𝑑 = 0.5, 0.1, 0.05, 0.02, and 0.01 

$/mile, respectively. The lighter the color, the greater the 𝑐𝑑  value. The red diamond 

represents the delivery system that uses 100% truck-only delivery. Please note that the 

vertical and horizontal scales of Figures 6.8(a)-(d) can be very different. 

 Figures 6.8(a)-(d) reveal very interesting phenomena about the impacts of 𝑐𝑑 and 

𝐸𝑝𝑚𝑑  on the Pareto frontier and the cost and emissions savings relative to truck-only 

delivery. We first present an overview of the results and then elaborate with more detail 

for each graph. Figures 6.8(a)-(d) indicate that a relatively high 𝑐𝑑 with a relatively high 

𝐸𝑝𝑚𝑑  or a relatively low 𝑐𝑑  with a relatively low 𝐸𝑝𝑚𝑑  can generate solutions that 

provide both cost and emissions savings relative to truck-only delivery (e.g., the Pareto 

efficient solutions below and to the left of the red diamond and red dashed line in Fig. 6.8(a) 

and (b), respectively). However, a relatively high 𝑐𝑑  with a relatively low 𝐸𝑝𝑚𝑑  or a 

relatively low 𝑐𝑑 with a relatively high 𝐸𝑝𝑚𝑑 can generate solutions that involve a tradeoff 

between cost and emissions (e.g., the Pareto efficient solutions above or to the right of the 

red dashed line in Fig. 6.8(a) and (b), respectively). For a relatively high 𝑐𝑑 and low 𝐸𝑝𝑚𝑑 

(see Fig. 6.8(a) and Fig. 6.8(c), emissions can be reduced to a certain extent but at a 

considerable expense from increasing delivery costs relative to truck-only delivery. For a 
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relatively low 𝑐𝑑  and high 𝐸𝑝𝑚𝑑  (see Fig. 6.8(b) and Fig. 6.8(d)), emissions can be 

reduced only modestly but with a cost savings!  

The Pareto frontiers are narrower (or involve smaller cost and emissions tradeoffs) 

for relatively high 𝑐𝑑 and high 𝐸𝑝𝑚𝑑, or relatively low 𝑐𝑑 and low 𝐸𝑝𝑚𝑑, compared with 

those for relatively high 𝑐𝑑  and low 𝐸𝑝𝑚𝑑  or relatively low 𝑐𝑑  and high 𝐸𝑝𝑚𝑑 . For 

example, in Fig. 6.8(a) the line with diamonds, i.e., the Pareto frontier for 𝐸𝑝𝑚𝑑 = 180 

Wh/mile, appears to be just one point, whereas the line with squares, i.e., the Pareto frontier 

for 𝐸𝑝𝑚𝑑 = 9 Wh/mile, is a much longer line. Furthermore, the higher the 𝑐𝑑 and 𝐸𝑝𝑚𝑑, 

the closer the Pareto frontier moves toward a 100% TO  delivery system (the red diamond), 

indicating smaller (or even negative) cost and emission savings relative to truck-only 

delivery. The lower the 𝑐𝑑 and 𝐸𝑝𝑚𝑑, the farther the Pareto frontier moves away from the 

baseline operation of TO, indicating greater cost and emission savings relative to truck-

only delivery. 
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Figure 6.8: The impact of 𝑐𝑑 and 𝐸𝑝𝑚𝑑 on the cost and emissions tradeoff and savings 

relative to truck-only delivery  

Figure 6.8 (a) shows that when drone operating cost per mile (𝑐𝑑) is relatively high, 

the Pareto frontiers are to the left of  the baseline operation of TO and that these involve 

only drone-only delivery (DO) and truck-drone delivery (TD) for the plausible range of 

𝐸𝑝𝑚𝑑  (9-360 Wh/mile). This indicates that drone delivery can reduce GHG emissions 

compared with truck-only delivery (TO) but the emission reduction might be achieved by 

increasing or decreasing delivery costs depending on 𝐸𝑝𝑚𝑑 and the utilization of DO and 

TD. The emission reduction relative to truck-only increases as 𝐸𝑝𝑚𝑑  decreases for the 

same use of services (i.e., moving horizontally to the left across different Pareto frontiers 

in Fig. 6.8(a)) or as the utilization of DO increases for the same 𝐸𝑝𝑚𝑑 (i.e., moving along 

the same Pareto frontier to the left in Fig. 6.8(a)), whereas the associated cost reduction 

relative to truck-only is non-increasing (negative cost reduction indicates cost increase). 

The minimum emission reduction is about 617 kg CO2e (or 20%) with the maximum cost 

reduction of $969 (or 14%) relative to truck-only at 𝐸𝑝𝑚𝑑 = 360 Wh/mile where TD 
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serves 98.6% of the deliveries. For relatively high 𝐸𝑝𝑚𝑑 values (≥ 60 Wh/mile) or for 

relatively low 𝐸𝑝𝑚𝑑  values with high utilizations of TD delivery (≥72%), the Pareto 

efficient solutions are below the red dashed line in Fig. 6.8(a) which indicates they provide 

both cost and emission reductions relative to truck-only delivery. The maximum cost 

reduction relative to truck-only is about $969 (or 14%) regardless of 𝐸𝑝𝑚𝑑, as we have 

observed for the base case. This is because the same utilization of services are used to 

minimize delivery costs regardless of 𝐸𝑝𝑚𝑑. The maximum emission reduction with no 

increase in delivery costs is about 1,376 kg CO2e (or 44%) relative to truck-only delivery 

with 𝐸𝑝𝑚𝑑 = 9 Wh/mile.  

However, there is a tradeoff of cost and emission when moving from truck-only 

delivery towards the Pareto efficient solutions above the red dashed line, which correspond 

to relatively low 𝐸𝑝𝑚𝑑  values with high utilizations of DO delivery. Interestingly, the 

maximum increase in delivery costs relative to truck-only delivery is about $6,930 (or 

103%) for both 𝐸𝑝𝑚𝑑 =  9 and 18 Wh/mile where DO is 100% used. This indicates 

emissions can be further reduced without increasing delivery costs when the utilization of 

services that minimize emissions does not change as 𝐸𝑝𝑚𝑑 decreases.  

Figure 6.8(b) shows that when drone operating cost per mile is relatively low (i.e., 

𝑐𝑑 = $0.02/mile), the Pareto frontiers are below the current operation and again these 

solutions involve only DO and TD for the plausible range of 𝐸𝑝𝑚𝑑 (9-360 Wh/mile). This 

indicates that drone delivery can reduce delivery costs compared with truck-only delivery, 

and that the cost reduction might be achieved by increasing or decreasing GHG emissions 

depending on 𝐸𝑝𝑚𝑑 and the utilization of DO and TD. The cost reduction relative to truck-

only delivery stays almost the same as 𝐸𝑝𝑚𝑑 decreases for the same use of services (i.e., 
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moving horizontally to the left across different Pareto frontiers in Fig. 6.8(b)) or increases 

as the utilization of DO increases for the same 𝐸𝑝𝑚𝑑 (i.e., moving along the same Pareto 

frontier to the right in Fig. 6.8(b)), whereas the associated emission reduction relative to 

truck-only delivery increases as 𝐸𝑝𝑚𝑑 decreases for the same use of services, or decreases 

as the utilization of DO increases for the same 𝐸𝑝𝑚𝑑  (negative reduction indicates an 

emissions increase). The maximum cost reduction is about $1,501 (or 22%) relative to 

truck-only regardless of 𝐸𝑝𝑚𝑑. This is because the same utilization of services are used to 

minimize delivery costs regardless of 𝐸𝑝𝑚𝑑. The minimum cost reduction to reach a Pareto 

frontier is about $1,077 (or 16%) with the associate emissions reduction of 631 kg CO2e 

(or 20%) relative to truck-only delivery with 𝐸𝑝𝑚𝑑 = 360 Wh/mile where TD delivery 

serves 99.8% of the deliveries. For relatively low 𝐸𝑝𝑚𝑑  values ( <  60 Wh/mile) or 

relatively high 𝐸𝑝𝑚𝑑 values with modest to high utilizations of TD delivery (≥32%), the 

Pareto efficient solutions are to the left of the red dashed line in Fig. 6.8(b) which indicate 

that both cost and emission reductions relative to truck-only delivery can be achieved. The 

emissions reduction relative to truck-only delivery increases as 𝐸𝑝𝑚𝑑  decreases. The 

maximum emission reduction is about 2,518 kg CO2e (or 80%) with the associated near-

maximum cost reduction of $1,479 (or 22%) relative to truck-only delivery with 𝐸𝑝𝑚𝑑 = 

9 Wh/mile. However, There is a tradeoff of cost and emission when moving from truck-

only delivery towards the lowest cost Pareto efficient solutions to the right of the red dashed 

line that are generated from relatively high 𝐸𝑝𝑚𝑑  values with high utilizations of DO 

delivery (and large emissions). 

Similar to Fig. 6.8(a), Figure 6.8(c) shows that when drone energy consumption per 

mile (𝐸𝑝𝑚𝑑) is relatively low, the Pareto frontiers are to the left of truck-drone delivery 
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and again involve only DO and TD for the plausible range of 𝑐𝑑  ($0.01 - $0.5/mile), 

indicating that drone delivery can reduce GHG emissions compared with truck-only 

delivery, but the emissions reduction might be achieved by increasing or decreasing 

delivery costs depending on 𝑐𝑑 and the utilization of DO and TD. The emissions reduction 

relative to truck-only delivery stays almost the same as 𝑐𝑑 decreases for the same use of 

services (i.e., moving vertically down across different Pareto frontiers in Fig.6.8(c)) or 

increases as the utilization of DO increases for the same 𝑐𝑑 (i.e., moving along the same 

Pareto frontier up and to the left in Fig. 6.8(c)), whereas the associated cost reduction 

relative to truck-only delivery increases as 𝑐𝑑 decreases for the same use of services or 

decreases as the utilization of DO increases for the same 𝑐𝑑 (negative reduction indicates 

cost increase). The maximum emissions reduction is about 1,899 kg CO2e (or 61%) 

relative to truck-only regardless of 𝑐𝑑. This is because the same utilization of services is 

employed to minimize emissions regardless of 𝑐𝑑. The minimum emissions reduction is 

about 934 kg CO2e (or 30%) with the associate cost reduction of $419 (or 6%) relative to 

truck-only delivery with 𝑐𝑑 = $0.5/mile. For relatively low 𝑐𝑑  values (< $0.05/mile) or 

relatively high 𝑐𝑑  values with modest to high utilizations of TD delivery (≥41%), the 

Pareto efficient solutions are below the red dashed line in Fig. 6.8(c) which indicates that 

both cost and emissions savings relative to truck-only delivery can be achieved. The cost 

reduction relative to truck-only delivery increases as 𝑐𝑑  decreases. The maximum cost 

reduction of $2,530 (or 38%) with the maximum emission reduction of 1,899 kg CO2e (or 

61%) relative to truck-only deliver is achieved simultaneously with 𝑐𝑑 =  $0.01/mile. 

Again, there is a tradeoff of cost and emissions when moving from truck-only delivery 
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toward the Pareto efficient solutions above the red dashed line that are generated from 

relatively high 𝑐𝑑 values with modest to high utilizations of DO delivery. 

Figure 6.8(d) shows that when drone energy consumption per mile (𝐸𝑝𝑚𝑑 ) is 

relatively high (180 Wh/mile), the Pareto frontiers are below the current operation and 

involve only DO and TD for the plausible range of 𝑐𝑑 ($0.01 - $0.5/mile), indicating that 

drone delivery can reduce the delivery costs compared with truck-only delivery but the cost 

reduction might be achieved by increasing or decreasing GHG emissions depending on 𝑐𝑑 

and the utilization of DO and TD. The cost reduction relative to truck-only delivery 

increases as 𝑐𝑑 decreases for the same use of services (i.e., moving vertically down across 

different Pareto frontiers in Fig.6.8(d)) or as the utilization of DO increases for the same 

𝑐𝑑  (i.e., moving down and to the right along the same Pareto frontier in Fig. 6.8(d)), 

whereas the associated emissions reduction relative to truck-only delivery is non-

increasing (negative reduction indicates cost increase). The maximum emissions that can 

be reduced is about 800 kg CO2e (or 26%) relative to truck-only delivery regardless of 𝑐𝑑. 

This is because the same utilization of services are used to minimize emissions regardless 

of 𝑐𝑑. For relatively high 𝑐𝑑 values (≥ $0.05/mile) or relatively low 𝑐𝑑 values with high 

utilizations of TD delivery (≥79%), the Pareto efficient solutions are to the left of the red 

dashed line in Fig. 6.8(d) which indicates that both cost and emissions savings relative to 

truck-only delivery can be achieved. The minimum cost reduction of $419 (or 6%) with 

the maximum emission reduction of 793 kg CO2e (or 25%) relative to truck-only delivery 

is achieved at 𝑐𝑑 = $0.5/mile. The maximum cost reduction with no increase in GHG 

emissions is about $1,408 (or 21%) relative to truck-only delivery with 𝑐𝑑 = $0.01/mile 

where TD serves 79% of the deliveries. Once again, there is a tradeoff of cost and emissions 
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when moving from truck-only delivery towards the Pareto efficient solutions to the right 

of the red dashed line that are generated from relatively low 𝑐𝑑 values with modest to high 

utilizations of DO delivery. 

Table 6.5 summarizes the cost and emission savings relative to truck-only delivery 

for 𝑐𝑑 = $0.1/mile and $0.01/mile with 𝐸𝑝𝑚𝑑 varying from 9 to 360 Wh/mile. Table 6.6 

summarizes the cost and emission savings relative to truck-only delivery for 𝐸𝑝𝑚𝑑 = 18 

Wh/mile and 180 Wh/mile with 𝑐𝑑 varying from $0.01/mile to $1.0/mile. Row 1 of Tables 

6.5 and 6.6 shows 𝐸𝑝𝑚𝑑 and 𝑐𝑑, respectively. Row 2 shows the ratio of the operating cost 

per mile to the operating emissions per mile for drone (i.e., 
𝑐𝑑

𝑒𝑑
) in $/kg CO2e. The reason 

for showing this ratio is that we observe that there is no tradeoff between cost and emission 

when the cost rate to emissions rate  ratio for drone (
𝑐𝑑

𝑒𝑑
) is close to that for truck (

𝑐𝑡

𝑒𝑡
, which 

is 1.14 for the base case). Rows 3 and 4 show the maximum absolute and percentage 

emissions reductions relative to truck-only delivery, respectively. Rows 5 and 6 show the 

absolute and percentage cost reductions relative to truck-only delivery that are associated 

with the solutions in rows 3 and 4, respectively. Rows 7 and 8 show the maximum absolute 

and percentage cost reductions relative to truck-only delivery, respectively. Rows 9 and 10 

show the absolute and percentage emission reductions relative to truck-only delivery that 

are associated with the solutions in rows 7 and 8, respectively. Rows 11-19 correspond to 

rows 2-10. 

Table 6.5 shows that the maximum emission reduction relative to truck-only 

delivery decreases as 𝐸𝑝𝑚𝑑  increases, whereas the maximum cost reduction relative to 

truck-only delivery does not change. The cost reduction associated with the maximum 
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emissions reduction is maximized when 
𝑐𝑑

𝑒𝑑
=

𝑐𝑡

𝑒𝑡
= 1.14 . Table 6.6 shows that the 

maximum emissions reduction relative to truck-only delivery stays almost the same as 𝑐𝑑 

increases, whereas the maximum cost reduction relative to truck-only delivery decreases. 

The emissions reduction associated with the maximum cost reduction is maximized when 

the cost rate to emissions are ratio for drone and truck are equal, i.e., 
𝑐𝑑

𝑒𝑑
=

𝑐𝑡

𝑒𝑡
. When 

𝑐𝑑

𝑒𝑑
 is 

considerably smaller than 
𝑐𝑡

𝑒𝑡
, minimizing delivery costs will result in huge tradeoffs 

between cost and emissions. When 
𝑐𝑑

𝑒𝑑
 is considerably greater than 

𝑐𝑡

𝑒𝑡
, minimizing GHG 

emissions will result in huge tradeoffs between cost and emissions. This indicates that 

whenever there is a considerable asymmetry between 
𝑐𝑑

𝑒𝑑
 and 

𝑐𝑡

𝑒𝑡
, very different utilizations 

of services are used to minimize delivery costs and GHG emissions, which results in large 

cost and emission tradeoffs. 
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Table 6.5 The cost and emission savings relative to truck-only delivery for 𝑐𝑑 = $0.1/mile and $0.02/mile with 𝐸𝑝𝑚𝑑 varying 

from 9 to 360 Wh/mile. 
 𝑬𝒑𝒎𝒅 (Wh/mile) 9 18 26.8 30 36 45 60 90 134 180 360 

𝒄
𝒅

=
$

0
.1

/m
il

e
 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 16.99 8.49 5.71 5.10 4.25 3.40 2.55 1.70 1.14 0.85 0.42 

Max 

Emission 

Reduction  

(kg CO2e) 2,518 1,899 1,314 1,195 1,081 1,004 949 897 848 803 636 

(%) 80.3 60.5 41.9 38.1 34.5 32.0 30.3 28.6 27.0 25.6 20.3 

Associate 

Cost 

Reduction 

($) -6,930 -6,930 -4,453 -1,994 -189 569 870 960 969* 967 963 

(%) -103.1 -103.1 -66.2 -29.7 -2.8 8.5 12.9 14.3 14.4 14.4 14.3 

Max Cost 

Reduction  

($) 969 969 969 969 969 969 969 969 969 969 969 

(%) 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 

Associate 

Emission 

Reduction 

(kg CO2e) 976 967 958 954 948 939 924 893 848 801 617 

(%) 31.1 30.8 30.5 30.4 30.2 29.9 29.5 28.5 27.0 25.5 19.7 

𝒄
𝒅

=
$

0
.0

2
/m

il
e 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 3.40 1.70 1.14 1.02 0.85 0.68 0.51 0.34 0.23 0.17 0.08 

Max 

Emission 

Reduction  

(kg CO2e) 2,518 1,899 1,314 1,196 1,081 1,005 949 897 847 801 631 

(%) 80.3 60.5 41.9 38.1 34.5 32.0 30.3 28.6 27.0 25.5 20.1 

Associate 

Cost 

Reduction 

($) 1,479 1,479 1,501* 1,467 1,369 1,266 1,180 1,119 1,095 1,086 1,077 

(%) 22.0 22.0 22.3 21.8 20.4 18.8 17.6 16.6 16.3 16.1 16.0 

Max Cost 

Reduction  

($) 1,501 1,501 1,501 1,501 1,501 1,501 1,501 1,501 1,501 1,501 1,501 

(%) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 

Associate 

Emission 

Reduction 

(kg CO2e) 2,180 1,742 1,314 1,158 866 428 -302 -1,763 -3,900 -6,144 -14,906 

(%) 69.5 55.5 41.9 36.9 27.6 13.6 -9.6 -56.2 -124.3 -195.9 -475.3 
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Table 6.6 The cost and emission savings relative to truck-only delivery for 𝐸𝑝𝑚𝑑 = 18 Wh/mile and 180 Wh/mile with 𝑐𝑑 

varying from $0.01/mile to $1.0/mile. 
 𝒄𝒅 ($/mile) 0.01 0.013 0.02 0.03 0.04 0.05 0.1 0.13 0.5 0.8 1.0 

𝑬
𝒑

𝒎
𝒅

=
𝟏

𝟖
 W

h
/m

il
e
 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 0.85 1.14 1.70 2.55 3.40 4.25 8.49 11.38 42.47 67.96 84.95 

Max 

Emission 

Reduction  

(kg CO2e) 1,899 1,899* 1,899 1,899 1,899 1,899 1,899 1,899 1,899 1,899 1,899 

(%) 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5 

Associate 

Cost 

Reduction 

($) 2,530 2,173 1,479 428 -623 -1,675 -6,930 -10,504 -48,975 -80,508 -101,530 

(%) 37.6 32.3 22.0 6.4 -9.3 -24.9 -103.1 -156.2 -728.5 -1197.6 -1510.3 

Max Cost 

Reduction  

($) 2,530 2,173 1,501 1,185 1,105 1,066 969 978 418 77 0 

(%) 37.6 32.3 22.3 17.6 16.4 15.9 14.4 13.7 6.2 1.2 0.0 

Associate 

Emission 

Reduction 

(kg CO2e) 1,899 1,899* 1,742 1,223 1,086 1,032 967 957 934 608 0 

(%) 60.5 60.5 55.5 39.0 34.6 32.9 30.8 30.5 29.8 19.4 0.0 

𝑬
𝒑

𝒎
𝒅

=
𝟏

𝟖
𝟎

 W
h

/m
il

e
 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 0.08 0.11 0.17 0.25 0.34 0.42 0.85 1.14 4.25 6.80 8.49 

Max 

Emission 

Reduction  

(kg CO2e) 801 801 801 802 802 802 803 803* 796 788 784 

(%) 25.5 25.5 25.5 25.6 25.6 25.6 25.6 25.6 25.4 25.1 25.0 

Associate 

Cost 

Reduction 

($) 1,101 1,096 1,086 1,071 1,056 1,041 967 918 397 -19 -295 

(%) 16.4 16.3 16.1 15.9 15.7 15.5 14.4 13.7 5.9 -0.3 -4.4 

Max Cost 

Reduction  

($) 2,530 2,215 1,501 1,185 1,105 1,066 969 918 418 77 0 

(%) 37.6 32.9 22.3 17.6 16.4 15.9 14.4 13.7 6.2 1.2 0.0 

Associate 

Emission 

Reduction 

(kg CO2e) -9,238 -9,238 -6,144 -129 549 706 801 803* 793 525 0 

(%) -294.5 -294.5 -195.9 -4.1 17.5 22.5 25.5 25.6 25.3 16.7 0.0 
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Similar to Cachon (2014) that characterizes the cost and emission tradeoff between 

the cost and the emission minimizing solutions, we define the cost penalty for minimizing 

emissions as 
𝑧𝑐(𝑠𝑒

∗)−𝑧𝑐
∗

𝑧𝑐
∗ . The denominator is the optimal delivery costs and the numerator is 

the maximum cost reduction gap between the emissions and the cost minimizing solutions. 

This term can be interpreted as the percentage increase in delivery costs that a delivery 

system incurs when the emissions minimizing design is chosen. This provides a measure 

of the explicit cost to adopt an objective that minimizes emissions relative to the cost 

minimizing objective. Similarly, the emission penalty for minimizing costs is defined as 

𝑧𝑒(𝑠𝑐
∗)−𝑧𝑒

∗

𝑧𝑒
∗ . The denominator is the optimal emissions and the numerator is the maximum 

emission reduction gap between the cost and the emission minimizing solutions.  

Table 6.7 summarizes the cost and emission reduction gaps and penalties for 𝑐𝑑 = 

$0.1/mile and $0.01/mile with 𝐸𝑝𝑚𝑑  varying from 9 to 360 Wh/mile. Table 6.8 

summarizes the cost and emission reduction gaps and penalties for 𝐸𝑝𝑚𝑑 = 18 Wh/mile 

and 180 Wh/mile with 𝑐𝑑 varying from $0.01/mile to $1.0/mile. Row 1 of Tables 6.7 and 

6.8 shows 𝐸𝑝𝑚𝑑 and 𝑐𝑑, respectively. Row 2 shows the ratio of the operating cost per mile 

to the emissions rate per mile for drone (i.e., 
𝑐𝑑

𝑒𝑑
) in $/kg CO2e. Rows 3-4 show the 

maximum emissions and cost reduction gaps between the cost and the emissions 

minimizing solutions, respectively. Row 5 shows the emissions penalty for minimizing 

delivery costs, and row 6 shows the cost penalty for minimizing emissions. Rows 7-11 

correspond to rows 2-6. 

Table 6.7 shows that the maximum emission and cost reduction gaps, the emissions 

penalty for minimizing costs, and the cost penalty for minimizing emissions all decrease 
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to zero as 𝐸𝑝𝑚𝑑 increases to the critical 𝐸𝑝𝑚𝑑 value where 
𝑐𝑑

𝑒𝑑
=

𝑐𝑡

𝑒𝑡
= 1.14, and then these 

performance measures increase as 𝐸𝑝𝑚𝑑 increases further above the critical 𝐸𝑝𝑚𝑑 value. 

Interestingly, the cost penalty increases more dramatically than the emissions penalty for 

𝑐𝑑 =$0.1/mile as 𝐸𝑝𝑚𝑑 decreases to 18 Wh/mile. When 𝐸𝑝𝑚𝑑 further decreases below 18 

Wh/mile, the emissions penalty continues to increase, whereas the cost penalty stays the 

same. Both the emissions and cost penalties can be high for 𝑐𝑑 =$0.1/mile with low 𝐸𝑝𝑚𝑑, 

which indicates a clear tension between environmental and financial performance. 

However, the emissions penalty increases much more dramatically than the cost penalty 

for 𝑐𝑑 =$0.02/mile as 𝐸𝑝𝑚𝑑 increases. The maximum cost penalty seems to be around just 

8%, whereas the emissions penalty can be as high as 620%.  

Similarly, Table 6.8 shows that the maximum emissions reduction gap, the 

maximum cost reduction gap, the emissions penalty for minimizing costs, and the cost 

penalty for minimizing emissions all decrease to zero as 𝑐𝑑  increases to the critical 𝑐𝑑 

value where 
𝑐𝑑

𝑒𝑑
=

𝑐𝑡

𝑒𝑡
= 1.14, and then these performance measures increase as 𝑐𝑑 increases 

further above the critical 𝑐𝑑 value. However, there is an exception for 𝐸𝑝𝑚𝑑 = 18 Wh/mile 

at the critical 𝑐𝑑 =$0.013/mile that there is no cost and emissions tradeoff even as 𝑐𝑑 

further decreases. This is because drone-only delivery minimizes both cost and emissions 

when 𝑐𝑑 and 𝐸𝑝𝑚𝑑 are both low. While both emissions and cost penalties can be high for 

𝐸𝑝𝑚𝑑 =18 Wh/mile with high 𝑐𝑑, the cost penalty increases much more dramatically than 

the emissions penalty as 𝑐𝑑 increases. The emission penalty increases more dramatically 

than the cost penalty for 𝐸𝑝𝑚𝑑 = 180 Wh/mile as 𝑐𝑑  dramatically deviates from the 

critical value.   
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Table 6.7 The cost and emissions reduction gaps and penalties between the cost and the emissions minimizing solutions for 𝑐𝑑 = 

$0.1/mile and $0.01/mile with 𝐸𝑝𝑚𝑑 varying from 9 to 360 Wh/mile. 
 𝑬𝒑𝒎𝒅 (Wh/mile) 9 18 26.8* 30 36 45 60 90 134* 180 360 

𝒄
𝒅

=
$

0
.1

/m
il

e
 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 16.99 8.49 5.71 5.10 4.25 3.40 2.55 1.70 1.14 0.85 0.42 

Max Emission 

Reduction Gap 
(kg CO2e) 1,542 932 356 241 133 65 25 4 0 2 19 

Max Cost 

Reduction Gap 
($) 7,899 7,899 5,422 2,962 1,158 400 98 9 0 1 5 

Emission Penalty 

for Minimizing Cost 
 (%) 249.2 75.3 19.5 12.4 6.5 3.1 1.1 0.2 0.0 0.1 0.7 

Cost Penalty for 

Minimizing 

Emission 

(%) 137.3 137.3 94.2 51.5 20.1 6.9 1.7 0.2 0.0 0.0 0.1 

𝒄
𝒅

=
$

0
.0

2
/m

il
e 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 3.40 1.70 1.14 1.02 0.85 0.68 0.51 0.34 0.23 0.17 0.08 

Max Emission 

Reduction Gap 
(kg CO2e) 337 157 0 38 216 577 1,252 2,660 4,747 6,945 15,536 

Max Cost 

Reduction Gap 
($) 22 22 0 34 132 235 321 382 406 415 424 

Emission Penalty 

for Minimizing Cost 
 (%) 54.5 12.7 0.0 1.9 10.5 27.1 57.2 118.8 207.4 297.4 620.0 

Cost Penalty for 

Minimizing 

Emission 

(%) 0.4 0.4 0.0 0.6 2.5 4.5 6.1 7.3 7.8 8.0 8.1 
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Table 6.8. The cost and emissions reduction gaps and penalties between the cost and the emissions minimizing solutions for  

𝐸𝑝𝑚𝑑 = 18 Wh/mile and 180 Wh/mile with 𝑐𝑑 varying from $0.01/mile to $1.0/mile. 
 𝒄𝒅 ($/mile) 0.01 0.013 0.02 0.03 0.04 0.05 0.1 0.13 0.5 0.81 1.02 

𝑬
𝒑

𝒎
𝒅

=
𝟏

𝟖
 W

h
/m

il
e

 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 0.85 1.14 1.70 2.55 3.40 4.25 8.49 11.38 42.47 67.96 84.95 

Max Emission 

Reduction Gap 
(kg CO2e) 0 0 157 676 813 866 932 942 965 1,291 1,899 

Max Cost 

Reduction Gap 
($) 0 0 22 758 1,729 2,741 7,899 11,422 49,393 80,586 101,530 

Emission Penalty 

for Minimizing 

Cost 

 (%) 0.0 0.0 12.7 54.6 65.7 70.0 75.3 76.1 78.0 104.4 153.5 

Cost Penalty for 

Minimizing 

Emission 

(%) 0.0 0.0 0.4 13.7 30.8 48.5 137.3 196.8 783.5 1212.7 1510.3 

𝑬
𝒑

𝒎
𝒅

=
𝟏

𝟖
𝟎

 W
h

/m
il

e
 

𝑐𝑑/𝑒𝑑 ($/kg CO2e) 0.08 0.11 0.17 0.25 0.34 0.42 0.85 1.14 4.25 6.80 8.49 

Max Emission 

Reduction Gap 
(kg CO2e) 10,038 10,038 6,945 931 253 96 2 0 3 264 784 

Max Cost 

Reduction Gap 
($) 1,429 1,119 415 115 49 25 1 0 21 97 295 

Emission Penalty 

for Minimizing 

Cost 

 (%) 429.8 429.8 297.4 39.9 10.8 4.1 0.1 0.0 0.1 11.2 33.3 

Cost Penalty for 

Minimizing 

Emission 

(%) 34.1 24.8 8.0 2.1 0.9 0.4 0.0 0.0 0.3 1.5 4.4 

1Truck-only and truck-drone are used to minimize delivery cost. 2Truck-only is used exclusively to minimize delivery costs. 
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Given the tradeoff between financial and environmental performance, one approach 

to combine them is to associate a cost rate with emissions, and add emissions into the 

financial objective function. With an explicit price for carbon, a “carbon price”, the 

negative externalities and the regulation risks associated with GHG emissions can be 

appropriately accounted for in the delivery system design that minimizes total delivery plus 

emissions costs. Estimates of carbon prices vary considerably, but generally fall in the 

range between $20 and $1,000 per metric ton of CO2e (Cachon, 2014) with low carbon 

prices being more common in practice (e.g., the United Nations Global Compact calls for 

$100/tCO2e). Therefore, we choose three levels of carbon prices, i.e., $50/tCO2e, 

$100/tCO2e, and $200/tCO2e, to show how the optimal delivery system design depends 

on carbon prices. This is shown for the base case scenario in Figure 6.9(a) and for the 

inexpensive, but energy intensive drone scenario in Figure 6.9(b). We also plot the carbon 

price of zero to reflect the delivery system that merely minimizes delivery costs and ignores 

the cost of emissions. 

In Figure 6.9, the horizontal axis is the utilization of drone-only delivery (DO) 

because DO and TD are the only two services used, thus we could use DO utilization to 

represent the system design. The vertical axis is the expected total costs (in thousands of 

dollars) which includes the delivery costs and the cost of emissions by multiplying the 

carbon price by the quantity of the emissions. The lines with circles, triangles, squares, and 

diamonds represent the carbon prices of 0, $50/tCO2e, $100/tCO2e, and $200/tCO2e, 

respectively. The darker the line color, the greater the carbon price. Figure 6.9(a) shows 

that the carbon price has very little impact on the total delivery costs and the delivery 

system design in the base case. Even with a carbon price of $200/tCO2e, the incentive is 
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not sufficient enough for a delivery system to significantly reduce emissions. However, 

Figure 6.9(b) shows that for the inexpensive energy intensive drone, with a carbon price of 

$50/tCO2e, there is a significant change in the utilization of DO compared with no carbon 

price. For example, DO is reduced from about 80% to 41% when the carbon price increases 

from zero to $50/tCO2e. The GHG emissions is reduced by 4,536 kg CO2e (or 49%). This 

indicates that a relatively small carbon price would induce a significant shift in the delivery 

system and allow a large portion of the potential emissions reduction to be achieved. Higher 

carbon prices encourage a greater shift to TD delivery and at a $200/tCO2e carbon price, 

TD is used for 84% of the deliveries (DO is used for 16%).  Results show the impact of 

carbon price is marginally diminishing. For example, the emission reduction is 49%, 62%, 

and 70% for carbon prices of $50/tCO2e, $100/tCO2e, and $200/tCO2e relative to carbon 

price of zero, respectively. 

  

Figure 6.9 the impact of carbon price on total costs and DO utilization for (a) the base 

case 𝑐𝑑 = $0.1/mile and 𝐸𝑝𝑚𝑑 = 18 Wh/mile and (b) 𝑐𝑑 = $0.02/mile and 𝐸𝑝𝑚𝑑 = 180 
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 Appendix 6.A demonstrates more discussions on the impacts of carbon prices on 

the optimal delivery system designs with drone operating cost rate, drone energy 

consumption rate, and/or delivery density varying. 

6.3.4 The Impact of Delivery Density (𝜹) 

 In Chapters 4 and 5 we observed that the cost and emission savings depend on 

delivery density. The delivery costs and the GHG emissions per delivery for truck-only 

delivery (TO) and truck-drone delivery (TD) decrease as delivery density increases, as the 

deliveries become closer together. However, delivery density does not affect drone-only 

delivery (DO). This is because the expected distance per delivery for multi-stop routes (i.e., 

TO and TD) decreases as deliveries get close to each other, whereas it is the same for the 

point-to-point delivery (i.e., DO). To assess the impact of delivery density on the cost and 

emissions tradeoff, we consider two other levels of delivery density in addition to the base 

case density of 𝛿 = 25  deliveries per square mile: a relatively higher density of 𝛿 =

125 deliveries per square mile , and a relatively lower delivery density of 𝛿 = 5 

deliveries per square mile. Those densities might represent different geographic locations 

(e.g., suburban, rural) or different times of the year (e.g., holiday season, off-season). 

 We explore four type of drones as shown in Figures 6.10(a)-(d): (a) a “current” 

drone with an operating cost per mile 𝑐𝑑 = $0.1/mile and energy consumption per mile of 

𝐸𝑝𝑚𝑑 =  180 Wh/mile; (b) a more energy-efficient drone with 𝑐𝑑 =  $0.1/mile and 

𝐸𝑝𝑚𝑑 = 18 Wh/mile; (c) a more cost efficient drone with 𝑐𝑑 = $0.02/mile and 𝐸𝑝𝑚𝑑 = 

180 Wh/mile; and (d) a both cost and energy efficient drone with 𝑐𝑑 = $0.02/mile and 

𝐸𝑝𝑚𝑑 = 18 Wh/mile. In Figures 6.10(a)-(d), the lines with squares, circles, and triangles 
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represent the Pareto frontiers for delivery densities of 5, 25, and 125 deliveries per square 

mile, respectively. The darker the color, the greater the delivery density. 

 Overall, Figure 6.10 reveals that (i) the impact of delivery density on the cost and 

emissions tradeoff depends on the characteristics of the drone; (ii) for drones with relatively 

high 𝑐𝑑  and 𝐸𝑝𝑚𝑑  (Fig. 6.10(a)) or relatively low 𝑐𝑑  and 𝐸𝑝𝑚𝑑  (Fig. 6.10(d)), delivery 

density in the range between 5-125 has very little impact on the cost and emissions tradeoff; 

(iii) the Pareto frontier moves down and to the left as delivery density increases; (iv) the 

utilization of TD increases as delivery density increases, and the Pareto frontiers for 

different density levels become farther apart as TD utilization increases (this is because the 

cost and emission per delivery of TD decreases as density increases), whereas they are 

close to each other as DO utilization increases (this is because density has no impact on the 

cost and emission per delivery of DO).  
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Figure 6.10 The impact of delivery density on cost and emission tradeoffs for different 

drone operations 

 Figure 6.10(a) shows that the Pareto frontier is reduced to nearly a single point 

(indicating no tradeoff between costs and emissions) for all three levels of delivery density. 

The higher the delivery density, the lower the cost and the emissions per delivery. This is 

because TD is largely used to minimize both cost and emissions when 𝑐𝑑 and 𝐸𝑝𝑚𝑑 are 

both high, and both the cost and emissions per delivery of TD decrease as the delivery 

density increases. Although a low delivery density makes DO relatively more competitive 

compared with TD (and TO), 𝛿 = 5  is not low enough to significantly change the 

utilization of DO and TD. Interestingly, we observe a similar “little cost and emission 

tradeoff” phenomenon in Figure 6.10(d) when 𝑐𝑑 and 𝐸𝑝𝑚𝑑 are both low. Although TD is 

heavily used (serving 84% of the deliveries) to minimize delivery costs for 𝛿 = 125, the 

cost and emissions per delivery do not differ significantly (<10%) from those for 𝛿 = 5 

and 25 where DO is heavily used (for ≥ 79% of the deliveries). This indicates that for 

relatively low 𝑐𝑑 and 𝐸𝑝𝑚𝑑, DO is at least as good as TD even for a relatively high density 

𝛿 = 125. 
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 Figure 6.10(b) shows that as delivery density increases, the Pareto frontiers appear 

to be steeper, and the maximum emissions reduction gap per delivery decreases, which 

indicates that with higher delivery density there is only very small room for improvement 

in emissions per delivery, and lower density has large potential improvements in emissions 

per delivery. For example, the maximum emissions reduction gaps per delivery are 0.317, 

0.119, and 0.022 kg CO2e/delivery for 𝛿 =  5, 25, 125, respectively. Although the 

emissions reduction gap for 𝛿 = 5 is about 2.7 times greater than that for 𝛿 = 25, the 

number of deliveries for 𝛿 = 5 is only 1/5 of that for 𝛿 = 25, thus, the total potential 

emission reduction is greater for density 𝛿 =  25 versus 𝛿 =  5. This highlights the 

difference between a “per delivery” view and a “total” view. Unlike the maximum 

emissions reduction gap, the maximum cost reduction gap per delivery for different density 

levels does not seem to dramatically differ from each other. It is only about 26% and 18% 

less for 𝛿 = 5 and 125, relative to that for 𝛿 = 25, respectively. The marginal emissions 

reduction cost (MERC)  in Figure 6.10 (b) is lower for 𝛿 = 5 than for 𝛿 = 25 and 125, but 

it is well above $800/tCO2e. This indicates that the carbon price needs to very high to 

effectively incentivize a delivery system when 𝑐𝑑 = $0.02/mile and 𝐸𝑝𝑚𝑑 = 180 Wh/mile 

to reduce emissions, which we have discussed in previous subsection (e.g., Figure 6.9(a)).  

Unlike Figure 6.10(b), Figure 6.10(c) shows as delivery density increases, the 

Pareto frontiers become flatter, which suggests a large emission reduction is possible at 

relatively little cost. However, the maximum cost and emission reduction gaps per delivery 

both decrease as delivery density increases, indicating that higher delivery densities have 

smaller cost and emission tradeoffs than lower densities. For example, the maximum cost 

reduction gaps are $0.291, $0.053, and $0.005 per delivery for 𝛿 = 5, 25, 125, respectively. 
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The maximum emission reduction gaps are 1.036, 0.884, 0.078 kg CO2e/delivery for 𝛿 = 

5, 25, 125, respectively. Although it still requires a very high carbon price ($1148/tCO2e) 

to induce the emissions minimizing delivery system design even for a relatively high 

density 𝛿 = 125, a carbon price of $100/tCO2e can induce a delivery system design that 

reduces emissions by about 85% for 𝛿 = 25 and 125 but 0% for 𝛿 =5. It would require a 

carbon price of about $350/tCO2e to achieve the same emission reduction of 85% for 𝛿 =5. 

 Figures 6.11(a)-(d) adds the performance for truck-only delivery to Figures 6.10(a)-

(d) to show the impacts of delivery density on the cost and emissions savings (and tradeoffs) 

of drone delivery relative to truck-only delivery. To be consistent, the square, the circle, 

and the triangle points represent truck-only delivery for a delivery density of 5, 25, and 125 

deliveries per square mile, respectively. The darker the color, the greater the delivery 

density. For each delivery density level, the observations in Fig. 6.11 are consistent with 

what we have observed in Fig. 6.8 and Tables 6.5 and 6.6: (i) drone delivery provides both 

cost and emission savings (with very little tradeoff) relative to truck-only delivery when  

𝑐𝑑  and 𝐸𝑝𝑚𝑑  are both relatively high or both relatively low (see Figures 6.11(a) and 

6.11(d)); (ii) some emissions savings can be achieved with a concurrent reduction in cost 

when  𝑐𝑑  is  relatively high and 𝐸𝑝𝑚𝑑  is low (Figure 11(b)), but greater reductions in 

emissions require an increase in costs; (iii) some cost savings can be achieved with a 

concurrent reduction in emissions when  𝑐𝑑 is relatively low and 𝐸𝑝𝑚𝑑  is high (Figure 

11(c)), but greater reductions in costs require an increase in emissions.   

In Figures 6.11(a)-(d), the cost and the emission per delivery for truck-only delivery 

decreases with delivery density as indicated by the nearly linear dashed line fitting the 

points of truck-only delivery for the three levels of density. As density increases, both cost 
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and emission per delivery of truck-only delivery decrease, but at a marginally diminishing 

rate as evidenced by the decreasing distance between two adjacent truck-only delivery 

points. The impacts of delivery density on the cost and emissions savings relative to truck-

only delivery are: (i) the maximum cost and emission savings per delivery increase as 

delivery density decreases, but the total maximum cost and emission savings increase as 

delivery density increases because the decrease in savings per delivery is much slower than 

the increase in the number of deliveries as delivery density increases. For example, in Fig. 

6.11(a), the maximum cost savings per delivery are $0.55, $0.24, and $0.1, whereas the 

total maximum cost savings are $340, $969, and $3,362 for 𝛿 = 5, 25, 125, respectively. 

This again shows the need to consider both a “per delivery” view and a “total” view. 

 In Figure 6.11(b), as delivery density increases the maximum percentage emissions 

savings relative to TO decrease, whereas the associated percentage increase in delivery 

costs increases. The maximum cost savings and the associated emissions savings relative 

to TO decrease as delivery density increases. There is a clear tradeoff between cost and 

emission when the emissions minimizing objective is chosen. In Figure 6.11(c), the 

maximum percentage emission savings relative to TO increases, whereas the associated 

percentage cost savings relative to TO decreases as delivery density increases. The 

maximum percentage cost savings relative to TO decrease as delivery density decreases, 

and the associated percentage increase in emission is the greatest for 𝛿 = 25. There is a 

clear tradeoff between cost and emissions when the cost minimizing objective is chosen 

for relatively medium to low density 𝛿 <125. For example, the maximum percentage cost 

savings are 45%, 22%, and 14%, whereas the associated percentage increase in emissions 

are 121%, 196%, and 2% for 𝛿 = 5, 25, 125, respectively. 
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Figure 6.11 The impact of delivery density on cost and emissions savings and tradeoffs 

relatively to truck-only delivery 

6.3.5 The Impact of Truck Capacity for Truck-drone Delivery (𝒎𝒕𝒅) 

 The truck capacity for truck-drone delivery also has an impact on the utilization of 

services and the cost and emissions savings based on the findings in Chapters 4 and 5. In 

addition to the base case truck capacity level (i.e., 𝑚𝑡𝑑 =150 deliveries per truck), we 
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examine a relatively lower capacity level (i.e., 𝑚𝑡𝑑 = 75 deliveries per truck) and a 

relatively higher capacity level  (i.e., 𝑚𝑡𝑑 =300 deliveries per truck). All those deliveries 

can be done within the 8-hour work limit (see Chapters 4 and 5 for more detail on the route 

time for truck-drone delivery with a high capacity level).  

 Once again, we explore four type of drones as discussed in the previous subsection: 

(a) a drone with relatively high operating cost per mile of 𝑐𝑑 = $0.1/mile and energy 

consumption per mile of 𝐸𝑝𝑚𝑑 = 180 Wh/mile; (b) a more energy-efficient drone with 

𝑐𝑑 =  $0.1/mile and 𝐸𝑝𝑚𝑑 =  18 Wh/mile; (c) a more cost efficient drone with 𝑐𝑑 = 

$0.02/mile and 𝐸𝑝𝑚𝑑 = 180 Wh/mile; and (d) a both more cost and energy efficient drone 

with 𝑐𝑑 =  $0.02/mile and 𝐸𝑝𝑚𝑑 = 18 Wh/mile. In Figures 6.12(a)-(d), the lines with 

squares, circles, and triangles represent the Pareto frontiers for truck-drone capacity 𝑚𝑡𝑑 = 

75, 150, and 300, respectively. The darker the color, the greater the truck capacity for truck-

drone delivery. The orange dot represents truck-only delivery with a capacity of 150 

deliveries. 

 The shapes of the Pareto frontiers in Figures 6.12(a)-(d) are very similar to those in 

Figures 6.11(a)-(d) correspondingly. This might indicate that the truck capacity for truck-

drone delivery has the similar impact on the cost and emissions tradeoff as the delivery 

density does. Overall, Figure 6.12 reveals that (i) the impact of truck capacity for truck-

drone delivery on the cost and emissions tradeoff depends on the characteristics of the 

drone; (ii) for drones with relatively high 𝑐𝑑 and 𝐸𝑝𝑚𝑑 (Fig. 6.12(a)) or relatively low 𝑐𝑑 

and 𝐸𝑝𝑚𝑑 (Fig. 6.12(d)), truck capacity for truck-drone delivery ranging between 75-300 

has limited impact on the cost and emissions tradeoff; (iii) the Pareto frontier moves down 

and to the left as truck capacity for truck-drone delivery increases; (iv) the utilization of 
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TD increases as the truck capacity for truck-drone delivery increases, and the Pareto 

frontiers for different capacity levels become farther apart as TD utilization increases, 

whereas they are close to each other as DO utilization increases (this is because truck-drone 

capacity has no impact on the cost and emission of DO).  

  

   

Figure 6.12 The impact of  truck-drone capacity on the cost and emission savings and 

tradeoffs  for different drone operations 
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 Compared with truck-only delivery, we again see behaviors in Figure 6.12 that are 

consistent with what we observed in Figure 6.8 and Tables 6.5 and 6.6: (i) drone delivery 

provides both cost and emissions savings (with very little tradeoff) relative to truck-only 

delivery when 𝑐𝑑  and 𝐸𝑝𝑚𝑑  are both relatively high or both relatively low; (ii) the 

emissions savings are achieved by increasing or decreasing delivery costs when  𝑐𝑑  is 

relatively high and 𝐸𝑝𝑚𝑑 is relatively low; (iii) the cost savings are achieved by increasing 

or decreasing GHG emissions when  𝑐𝑑  is relatively low and 𝐸𝑝𝑚𝑑  is relatively high. 

However, we do see that the cost and emissions savings per delivery decrease as the truck 

capacity for truck-drone delivery decreases as the Pareto frontiers move closer to the 

orange dot. 

 In Figure 6.13, we show how minimizing cost and minimizing emissions affect the 

utilization of drone-only delivery (DO), truck-drone delivery (TD), and truck-only delivery 

(TO) with the four types of drones and the three levels of truck capacity for truck-drone 

delivery. In all 12 panels of Figure 6.13, the vertical axis is the utilization of DO, TD, and 

TO in percentages. Each bar represents a Pareto efficient solution with the left most bar 

being the cost-minimizing solution and the right most bar being the emissions-minimizing 

solution. The colors blue, orange, and gray represent DO, TD, and TO, respectively (see 

the electronic version for a better visualization). Each row of Figure 6.13 has four sub-

figures representing the four types of drones with the same level of truck capacity for truck-

drone. Each column Figure 6.13 has three sub-figures representing the three levels of truck 

capacity for truck-drone delivery for the same type of drone.  

 Moving down the columns of Figure 6.13, we observe that the utilization of TD 

increases as truck capacity for truck-drone delivery increases. For the relatively low truck-
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drone capacity of 75, TO serves for up to about 50% of the deliveries when 𝑐𝑑 and 𝐸𝑝𝑚𝑑 

are relatively high (top left panel of Fig. 6.13). When 𝑐𝑑 and 𝐸𝑝𝑚𝑑 are both high (column 

1 of Fig. 6.13) or both low (column 4 of Fig. 6.13), then one of the three services dominates 

the other two (except for the low truck capacity for truck-drone delivery where TO and TD 

are used about half-and-half), and this is explains why we observe little cost and emission 

tradeoff in the corresponding Figures 6.12(a) and (d). Columns 2 and 3 of Figure 6.13 

correspond to Figures 6.12(b) and (c), and they explain why we observe considerable cost 

and emissions tradeoffs in Figures 6.12(b) and (c), because the utilization of delivery 

services that minimize cost and minimizes emissions are very different. Note that the two 

center panels in the top row include solutions that utilize all three delivery services.  

 

Figure 6.13 The utilization of DO, TD, and TO for different drone operations and system 

objectives 
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6.4 Conclusions 

This chapter examines the tradeoff of cost and emissions for drone delivery, 

including drone-only delivery (DO), truck-drone delivery (TD), and truck-only delivery 

(TO). A delivery system design problem (DSDP) IP model was formulated to partition the 

delivery region and assign delivery services to subregions, based on minimizing the 

delivery costs, minimizing the GHG emissions or finding Pareto efficient solutions. The 

DSDP model developed in this chapter allows an assessment of the potential tradeoffs 

between the delivery costs and the GHG emissions and the magnitude of the potential cost 

and emission savings relative to the truck-only delivery when different system designs are 

chosen. 

The magnitude of the cost and emissions tradeoff depend strongly on the drone 

operating cost per mile and the drone operating emissions per mile (including the drone 

energy consumption rate and the carbon intensity of the electricity). The truck capacity for 

truck-drone delivery and the delivery density have very similar, but more limited impacts 

on the magnitude of the cost and emissions tradeoff. The cost and emissions savings 

relative to truck-only depend strongly on drone operating cost per mile, drone operating 

emissions per mile, truck-drone capacity, and delivery density. 

There are cases in which there is a very small, or no, cost and emissions tradeoff  

(i.e., the delivery system design is the same for minimizing delivery costs and minimizing 

GHG emissions). For example, this very small tradeoff occurs when the drone operating 

cost per mile and the drone operating emissions per mile are both low or both high. In each 

case, this result occurs because similar utilizations of delivery services minimize both 

delivery costs and minimize GHG emissions. If drone operating cost and emissions are 
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both low, then drone-only delivery is extensively used for both objectives. If drone 

operating cost and emissions are both high (but still much lower than those for truck-only 

delivery), then truck-drone delivery is extensively used for both objectives. We identify 

that when the ratio of drone operating cost to drone emissions rate is close to the ratio for 

trucks ($1.14/kg CO2e), then the magnitude of the cost and emissions tradeoff is small. 

There are cases, however, when the ratio of drone operating cost to drone emissions 

rate differs from the ratio for trucks. For example, if the drone operates very cost efficiently, 

but is energy intensive (e.g., from a particular drone design or from operating at very high 

speed, as for the case described in subsection 6.3.2), then its cost to emissions ratio can be 

much smaller than that for a truck.  In this case, the delivery system that minimizes delivery 

costs largely uses drone-only delivery to exploit the low operating cost of drones through 

high drone utilization, whereas the delivery system that minimizes emissions largely uses 

truck-drone delivery to exploit the cost (and distance) efficient way of using drones relative 

to drone-only. Results for this setting showed that minimizing emissions increases delivery 

costs by only 8%, whereas minimizing delivery costs increases emissions by 297%. Further, 

the results showed that a carbon price of $100/tCO2e may be effective to induce a delivery 

system design that considerably reduces emissions (by about 85%). 

However, if the cost rate to emissions rate ratio for drones is much greater than that 

for trucks, we observe a considerable cost and emission tradeoff but in the opposite order 

to that above. The cost minimizing delivery system largely uses truck-drone delivery, 

whereas the emission minimizing delivery system largely uses drone-only delivery. Results 

showed that minimizing emissions increases delivery costs by about 137%, and minimizing 

delivery costs increases emissions by 75%. In this situation, a carbon price of 
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$1,000/tCO2e is still too low to incentivize a delivery system to reduce emissions. This 

indicates that the projection for the operating cost and emissions properties of drones is 

very important for determining how drones would be used in light of different carbon prices.  

The magnitude of cost and emissions savings relative to truck-only delivery depend 

strongly on the drone operating cost per mile, the drone operating emission per mile, the 

truck-drone capacity, and the delivery density. As drone operating cost per mile and drone 

operating emissions per mile both decrease, the cost and emissions savings relative to 

truck-only both increase. For the most cost- and emissions-efficient drone considered (i.e., 

𝑐𝑑 =  $0.02/mile and 𝐸𝑝𝑚𝑑 =  18 Wh/mile) where truck-drone delivery makes 150 

deliveries per route, the cost and the emissions savings relative to truck-only delivery are 

22% (or $0.19/delivery) and 61% (or 0.24 kg CO2e/delivery), respectively. These savings 

would increase as truck-drone capacity increases or the delivery density decreases. To put 

the numbers in perspective, it would represent for UPS about $1.1 billion and 1.4 million 

metric tonnes of CO2e savings per year in the U.S. (assuming the daily package volume is 

16 million (Holland et al., 2017) for 365 days in a year). A 1.4 million metric tonnes CO2e 

reduction is equivalent to removing more than 300,000 cars (or 0.1% of U.S. registered 

cars) from the road for one year (Bureau of Transportation Statistics, 2021), or switching 

more than 800,000 cars (or 0.3% of U.S. registered cars) from 20 mpg to 25 mpg, or 

removing 2% of Missouri’s coal fired electricity plants which generated about 75 million 

tonnes of CO2 in 2010 (Schneider et al., 2013). For the least cost- and emissions-efficient 

drone considered (i.e., 𝑐𝑑 =  $0.1/mile and 𝐸𝑝𝑚𝑑 =  180 Wh/mile) where truck-drone 

delivery makes 75 deliveries per route, the cost and the emissions savings relative to truck-

only delivery are much smaller, at only 2% (or $0.01/delivery and 0.015 kg CO2e/delivery, 
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respectively). Based on the same assumptions above, this would represent for UPS about 

$58 million and 87,600 metric tonnes CO2e savings per year in the U.S.  

Drones have great potential to reduce GHG emissions and delivery costs if they are 

used appropriately. The delivery system design that minimizes cost can be very different 

from the design that minimizes emissions, or very similar, depending on the drone 

characteristics and operating environment, which might result in a very small or a very 

considerable cost and emissions tradeoff. Truck-drone capacity tends to be a very important 

factor in providing savings relative to conventional truck-only delivery when the drones 

are not considerably more cost and emissions efficient than trucks. In addition to further 

improvements in drone technology, improvements in drone operations might also be 

fruitful to: (i) increase truck-drone capacity; (ii) increase the number of drones operated 

per truck; (iii) reduce drone-only travel distances by building more drone centers; and (iv) 

allow drones to make multiple deliveries. 
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Chapter 7: Conclusions and Future Research 

This dissertation examines the economic and the environmental impacts of using 

drones for home delivery. Three delivery services are modeled: (i) drone-only delivery 

(DO) where the drone departs from and returns to a depot after each delivery, (ii) hybrid 

truck-drone delivery (TD) where the drone departs from and returns to a delivery truck, 

and the drone and the truck make deliveries in parallel, and (iii) conventional truck-only 

delivery (TO) where a truck departs from and returns to a depot after making a number of 

deliveries. Consistent with the findings in the literature, this research suggests that drones 

have great potential to reduce greenhouse gas (GHG) emissions and delivery costs if they 

are used appropriately. In addition, this research also identifies that the delivery system 

design that minimizes cost can be very different from the design that minimizes emissions, 

or very similar, depending on the drone characteristics (e.g., drone energy consumption 

rate, drone operating cost rate, marginal drone stop cost) and operating environment (e.g., 

the carbon intensity of electricity, the delivery density, the size of the delivery region), 

which might result in a very small or a very considerable cost and emissions tradeoff. 

Truck-drone capacity tends to be a very important factor in providing savings relative to 

conventional truck-only delivery when the drones are not considerably more cost and 

emissions efficient than trucks.  

7.1 Conclusions 

Energy consumption is a critical constraint for drone delivery operations to achieve 

their full potential of reducing cost, cutting emissions, and providing fast delivery. An 

accurate estimation of drone energy consumption ensures feasible as well as efficient 

operating decisions. In Chapter 3, we classify and evaluate five fundamental energy 
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consumption models for drone delivery using a uniform framework. We discuss and 

highlight key similarities and differences in drone energy models. We also provide an 

understanding of why the energy consumption models differ from each other, and identify 

important parameters that contribute to these differences. Our results document a wide 

variability in the published academic literature on drone energy consumption rates, due to 

different drone types, operating conditions and fundamental assumptions of drone energy 

consumption models. The selection of the lift-to-drag ratio and the power transfer 

efficiency, both of which are difficult to assess without taking measurements in flight, can 

be crucial in accurately estimating energy consumption for drones. The energy 

consumption differences we document have strong implications for accurately modeling 

the energy and environmental implications of all drone operations, including delivery. 

Given that the models in the literature can provide drone energy consumption rates that 

differ by a factor of 3-5 (or more), great care must be taken in translating results from 

transportation modeling (e.g., drone route modeling and optimization) to estimates and 

policy recommendations involving energy and emissions. Any of the five fundamental 

drone energy consumption models could be used, but whatever model is adopted needs to 

be calibrated appropriately to accurately reflect drone operations and performance in the 

setting of interest. 

Incorporating drones into a conventional truck delivery system offers more delivery 

options as deliveries can be made by drone-only service, truck-only service, truck-drone 

service, or a combination of the three services. However, incorporating drones also 

complicates the optimal design of the delivery system. Chapter 4 lays the theoretical 

foundation for modeling the expected delivery costs and GHG emissions that facilitates a 
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strategic analysis of the design of truck and drone delivery systems. Continuous 

approximation models are derived for estimating the expected delivery costs for DO, TD, 

and TO delivery services. The delivery region is then partitioned based on the best use of 

different delivery services (i.e., DO, TD, and TO) that minimize delivery costs. Both 

theoretical analyses and numerical scenarios are provided to illustrate the circumstances in 

which drone delivery (i.e., DO and TD) provides large and small cost savings relative to 

truck-only delivery and to quantify the scale of the savings. Results suggest that the 

potential cost savings from DO and TD can be huge, but depend strongly on the drone 

operating parameters (i.e., drone operating cost rate, marginal drone stop cost, and truck 

drone capacity) and the operating environment (i.e., the delivery region size and the 

delivery density). In most cases, truck-drone delivery is the dominant delivery service, 

whereas drone-only delivery serves very small percentages of customers who are located 

close to the depot. However, drone-only delivery tends to be used more intensively when 

the drone operating cost is very inexpensive and/or the delivery density is very low. Only 

when drone operating cost is very high, drone stop cost is high, and/or truck-drone capacity 

is low will truck-only delivery be used to some extent. 

In Chapter 5, we extend the continuous approximation models and analyses for 

expected GHG emissions for estimating DO, TD and TO delivery services. We conduct a 

similar analysis to Chapter 4 to examine the emissions savings relative to truck-only 

delivery. Results suggest that the percentage emissions savings of the emission-minimizing 

delivery system relative to truck-only delivery can be much more substantial than the 

percentage cost savings of the cost-minimizing delivery system with the base case setting. 

However, high percentage emissions savings might be achieved by considerably increasing 
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or decreasing the delivery costs, depending on the drone energy consumption rate, the 

carbon intensity of electricity, the drone operating cost rate, the delivery density, and the 

delivery region size. Furthermore, the partitioning of the delivery region that minimizes 

GHG emissions is very different from that which minimizes delivery costs. Drone-only 

delivery is often the dominant delivery service, whereas truck-drone delivery serves small 

percentages of customers who are located far from the depot. But truck-drone delivery can 

be used extensively when the drone energy consumption rate is relatively high, the delivery 

density is very high, and/or the size of the delivery region is large.  

For both cost-minimizing and emissions-minimizing delivery systems, a signal for 

very large savings is when DO can be used extensively, whereas a signal for very small 

savings is when TO is used. Even if drone delivery provides a small percentage cost and/or 

emissions savings relative to truck-only delivery, where the delivery density is high, then 

using drones can substantially reduce truck travel distances, driver work hours, and the 

number of trucks required and, thus, improve the delivery service level. In most cases, 

truck-drone delivery is a very important delivery approach that can provide both cost and 

emissions savings. 

Based on the models in Chapters 4 and 5, Chapter 6 examines the potential 

tradeoffs between cost and emissions for the drone-based delivery systems that include DO, 

TD and TO delivery services. A delivery system design problem (DSDP) IP model is 

formulated to partition the delivery region and assign delivery services to subregions, based 

on minimizing the delivery costs, minimizing the GHG emissions or finding Pareto 

efficient solutions. Analysis of the Pareto frontier is presented for several scenarios. Results 

suggest that the magnitude of the cost and emissions tradeoffs depends strongly on the 
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drone operating cost rate and the drone operating emissions rate (including the drone 

energy consumption rate and the carbon intensity of the electricity). The truck capacity for 

truck-drone delivery and the delivery density have very similar, but more limited impacts 

on the magnitude of the cost and emissions tradeoff.  

When the ratio of drone operating cost rate to drone emissions rate differs from the 

ratio for trucks (e.g., in the base case setting), there are considerable tradeoffs between the 

delivery costs and emissions savings because very different delivery services are used to 

minimize delivery costs or GHG emissions. However, when the ratio of drone operating 

cost rate to drone emissions rate is close to the ratio for trucks, there are small tradeoffs 

between the delivery costs and emissions savings because the same delivery system nearly 

minimizes both delivery costs and emissions. Therefore, the projections for the operating 

cost and emissions properties of drones are very important for determining how drones 

might be used in light of different carbon prices (and regulations). If the cost rate to 

emissions rate ratio for drones is much smaller than that for trucks, a carbon price of 

$100/tCO2e may be effective to induce a delivery system design that considerably reduces 

emissions. However, if the cost rate to emissions rate ratio for drones is much larger than 

that for trucks, a carbon price of $1,000/tCO2e may still be too low to incentivize a delivery 

system to just slightly reduce emissions.  

7.2 Future Research 

Drone delivery is an exciting new transportation option and it provides great 

potential for improved delivery service levels with reduced costs, energy consumption and 

GHG emissions. This dissertation suggests a number of important areas for future research. 

Clearly, a better understanding of the accuracy of drone energy models is needed through 
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comparing results to empirical data derived from comprehensive drone delivery field tests. 

These empirical tests might best be undertaken in a partnership between government 

agencies (e.g., the U.S. Department of Energy or EPA), academic institutions, and private 

sector firms. The importance of avionics and wind conditions on drone energy consumption 

is an area especially needing more attention, with particular care to the numbers, sizes and 

types of drones deployed. Future research can also help identify which type of model 

(complex or simple) is best in different settings, and whether or when more parsimonious 

models are “accurate enough” to use. 

In addition to further improvements in drone technology and related regulation, 

improvements in drone operations might also be fruitful to: 

• Explore drone use in high service level circumstances (e.g., one-hour delivery, two-

hour delivery), as higher service levels involves higher truck operating costs per 

mile and lower capacities. 

• Model alternate utilization of drones in truck-drone delivery (TD): (i) relax the 

assumption that the truck and the drone make alternate deliveries; (ii) extend the 

model to allow multiple drones to be launched from the truck; (iii) design new 

delivery swaths where the truck makes deliveries in the middle part of the swath 

(to further reduce truck travel distances) and the drones make the more distant 

deliveries; (iv) allow drones to make more than one delivery per flight; (v) 

explicitly model truck drone synchronization and waiting time. 

• Model alternate utilization of drones in drone-only delivery (DO): (i) allow drones 

to make multiple deliveries per flight; (ii) model multiple drone operational 

locations at which drones can be launched and recovered, (iii) include explicit fixed 
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and variable costs for drone centers to determine the optimal number of drone 

centers and examine the tradeoff between reduced transportation costs and 

increased facility costs and the costs for operating the drone centers. 

• Other model extensions could: (i) allow drones to “ride” with public transit or 

shared vehicles (e.g., Uber); (ii) model queueing aspects of operations at 

takeoff/landing locations when using multiple drones; or (iii) model the need for 

drone air traffic control systems if drone delivery is used at scale. 

• Compare different technologies (e.g., drones, autonomous ground vehicles, 

alternative-fuel vehicles) that can reduce cost and/or emissions in transportation, 

and design delivery systems that best utilize those emerging technologies. 

• Develop more accurate data on drone operating cost and energy consumption, 

including impacts of different drone delivery methods (e.g., parachuting, landing 

on ground, tethering) to help develop better delivery system designs. 



275 

 

References 

Abbasi, M. and Nilsson, F., 2016. Developing environmentally sustainable logistics: 

Exploring themes and challenges from a logistics service providers’ 

perspective. Transportation Research Part D: Transport and Environment, 46, pp.273-283. 

Adams E., 2016. DHL's Tilt-Rotor ‘Parcelcopter’ is both awesome and actually useful. 

WIRED. Retrieved January 23rd, 2020 from: https://www.wired.com/2016/05/dhls-new-

drone-can-ship-packages-around-alps/. 

Agatz, N., Bouman, P. and Schmidt, M., 2018. Optimization approaches for the traveling 

salesman problem with drone. Transportation Science, 52(4), pp.965-981. 

Ai S., 2019. Personal communication,  December 1st, 2019.  

Ansari, S., Başdere, M., Li, X., Ouyang, Y. and Smilowitz, K., 2018. Advancements in 

continuous approximation models for logistics and transportation systems: 1996–

2016. Transportation Research Part B: Methodological, 107, pp.229-252. 

Apex Insight, 2020, Retrieved February 28th, 2021 from: https://apex-

insight.com/product/global-parcel-delivery-market/.  

Barth, M., Younglove, T. and Scora, G., 2005. Development of a heavy-duty diesel modal 

emissions and fuel consumption model. UC Berkeley Research Reports. Permalink 

https://escholarship.org/uc/item/67f0v3zf. 

Beardwood, J., Halton, J. H. and Hammersley, J. M., 1959. The shortest path through many 

points. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 55, No. 

4, pp. 299-327). Cambridge University Press. 

Bektaş, T. and Laporte, G., 2011. The pollution-routing problem. Transportation Research 

Part B: Methodological, 45(8), pp.1232-1250. 

BloombergNEF, 2020. Electric Vehicle Outlook 2020. Retrieved February 5th, 2021 from: 

https://about.bnef.com/electric-vehicle-outlook/. 

Bouman, N., Agatz, N., and Schmidt, M., 2018. Dynamic programming approaches for the 

traveling salesman problem with drone. Networks, 72(4), 528–542. 

Braekers, K., Ramaekers, K. and Van Nieuwenhuyse, I., 2016. The vehicle routing problem: 

State of the art classification and review. Computers & Industrial Engineering, 99, pp.300-

313. 

Brander, M., 2012. Greenhouse gases, CO2, CO2e, and carbon: What do all these terms 

mean? Ecometrica, Bethesda, MD. https://ecometrica. com/assets/GHGs-CO2-CO2e-and-

Carbon-What-Do-These-Mean-v2, 1. 

Bureau of Transportation Statistics, 2021. Number of U.S. Aircraft, Vehicles, Vessels, and 

Other Conveyances. Retrieved February 5th, 2021 from: 

https://www.bts.gov/content/number-us-aircraft-vehicles-vessels-and-other-conveyances.  

CA.GOV, 2020. Governor Newsom Announces California Will Phase Out Gasoline-

Powered Cars & Drastically Reduce Demand for Fossil Fuel in California’s Fight Against 

Climate Change. Retrieved February 5th, 2021 from: https://www.gov.ca.gov/2020/09/23/ . 

https://www.wired.com/2016/05/dhls-new-drone-can-ship-packages-around-alps/
https://www.wired.com/2016/05/dhls-new-drone-can-ship-packages-around-alps/
https://apex-insight.com/product/global-parcel-delivery-market/
https://apex-insight.com/product/global-parcel-delivery-market/
https://escholarship.org/uc/item/67f0v3zf
https://about.bnef.com/electric-vehicle-outlook/
https://www.bts.gov/content/number-us-aircraft-vehicles-vessels-and-other-conveyances
https://www.gov.ca.gov/2020/09/23/


276 

 

Campbell, J.F., 1993. One-to-many distribution with transshipments: An analytic 

model. Transportation Science, 27(4), pp.330-340. 

Campbell, J. F., Sweeney, D. and Zhang, J., 2017. Strategic design for delivery with trucks 

and drones. Supply Chain Analytics Report SCMA (04 2017). 

Capgemini Research Institute, 2019. The last-mile delivery challenge. Retrieved December 

12th, 2020 from: https://www.capgemini.com/wp-content/uploads/2019/01/.   

Chauhan, D., Unnikrishnan, A. and Figliozzi, M., 2019. Maximum coverage capacitated 

facility location problem with range constrained drones. Transportation Research Part C: 

Emerging Technologies, 99, pp.1-18. 

Cheng, C., Adulyasak, Y. and Rousseau, L.M., 2020. Drone routing with energy function: 

Formulation and exact algorithm. Transportation Research Part B: Methodological, 139, 

pp.364-387. 

Chiang, W. C., Li, Y., Shang, J. and Urban, T. L., 2019. Impact of drone delivery on 

sustainability and cost: Realizing the UAV potential through vehicle routing 

optimization. Applied energy, 242, pp.1164-1175. 

Choudhury, S., Solovey, K., Kochenderfer, M.J. and Pavone, M., 2019. Efficient large-

scale multi-drone delivery using transit networks, arXiv preprint arXiv:1909.11840. 

Chung, S.H., Sah, B. and Lee, J., 2020. Optimization for drone and drone-truck combined 

operations: A Review of the State of the Art and Future Directions, Computers and 

Operations Research, doi: https://doi.org/10.1016/j.cor.2020.105004. 

Coelho, B.N., Coelho, V.N., Coelho, I.M., Ochi, L.S., Haghnazar, R., Zuidema, D., Lima, 

M.S. and da Costa, A.R., 2017. A multi-objective green UAV routing problem. Computers 

& Operations Research, 88, pp.306-315. 

Cohen, J. K., 2019. WakeMed Health & Hospitals joins forces with UPS, FAA for drone 

pilot. Modern Healthcare. Retrieved January 23rd, 2020 from: 

https://www.modernhealthcare.com/care-delivery/wakemed-health-hospitals-joins-

forces-ups-faa-drone-pilot. 

Cordeau, J. F., Laporte, G., Savelsbergh, M. W. and Vigo, D., 2007. Vehicle 

routing. Handbooks in operations research and management science, 14, pp.367-428. 

Costello, B. and Karickhoff A., 2019. Truck driver shortage analysis 2019. Arlington, VA: 

The American Trucking Associations. 

Daganzo, C. F., 1984. The length of tours in zones of different shapes. Transportation 

Research Part B: Methodological, 18(2), pp.135-145. 

Daganzo, C. F., 1984. The distance traveled to visit N points with a maximum of C stops 

per vehicle: An analytic model and an application. Transportation science, 18(4), pp.331-

350. 

Daganzo, C. F., 2005. Logistics systems analysis. Springer Science & Business Media. 

Daganzo, C.F. and Newell, G.F., 1986. Configuration of physical distribution 

networks. Networks, 16(2), pp.113-132. 

https://www.capgemini.com/wp-content/uploads/2019/01/
https://doi.org/10.1016/j.cor.2020.105004
https://www.modernhealthcare.com/care-delivery/wakemed-health-hospitals-joins-forces-ups-faa-drone-pilot
https://www.modernhealthcare.com/care-delivery/wakemed-health-hospitals-joins-forces-ups-faa-drone-pilot


277 

 

Dantzig, G. B. and Ramser, J. H., 1959. The truck dispatching problem. Management 

science, 6(1), pp.80-91. 

D'Andrea, R., 2014. Guest editorial can drones deliver?. IEEE Transactions on Automation 

Science and Engineering, 11(3), pp.647-648. 

Dekker, R., Bloemhof, J. and Mallidis, I., 2012. Operations Research for green logistics–

An overview of aspects, issues, contributions and challenges. European journal of 

operational research, 219(3), pp.671-679. 

Demir, E., Bektaş, T. and Laporte, G., 2014. A review of recent research on green road 

freight transportation. European Journal of Operational Research, 237(3), pp.775-793. 

Di Franco, C. and Buttazzo, G., 2015. Energy aware coverage path planning of UAVs, 

2015 IEEE International Conference on Autonomous Robot Systems and Competitions. 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7101619 

DJI website, 2020. Phantom 4 specifications. Retrieved May 3rd, 2020 from:  

https://www.dji.com/phantom-4-pro-v2/specs retrieved May 3rd, 2020 

Dorling, K., Heinrichs, J., Messier, G. G. and Magierowski, S., 2017. Vehicle routing 

problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: 

Systems, 47(1), pp.70-85. 

Drones in HealthCare. A role for drones in healthcare. Retrieved January 23rd, 2020 from: 

https://www.dronesinhealthcare.com/. 

Edenhofer, A., 2018. DHL Parcelcopter. Retrieved March 15th, 2021 from: 

https://www.dpdhl.com/en/media-relations/specials/dhl-parcelcopter.html. 

Eilon, S., Watson-Gandy, C. D. T. and Christofides, N., 1971. Expected distances in 

distribution problems. In: Distribution management: Mathematical Modeling and Practical 

Analysis. London: Griffin. 

Ellegood, W.A., Campbell, J.F. and North, J., 2015. Continuous approximation models for 

mixed load school bus routing. Transportation Research Part B: Methodological, 77, 

pp.182-198. 

Ferrandez, S.M., Harbison, T., Weber, T., Sturges, R. and Rich, R., 2016. Optimization of 

a truck-drone in tandem delivery network using k-means and genetic algorithm. Journal of 

Industrial Engineering and Management (JIEM), 9(2), pp.374-388.Figliozzi, M.A., 2007. 

Analysis of the efficiency of urban commercial vehicle tours: Data collection, methodology, 

and policy implications. Transportation Research Part B: Methodological, 41(9), 

pp.1014-1032. 

Figliozzi, M.A., 2017. Lifecycle modeling and assessment of unmanned aerial vehicles 

(Drones) CO2e emissions. Transportation Research Part D: Transport and 

Environment, 57, pp.251-261. 

Filippone, A., 2006. Flight performance of fixed and rotary wing aircraft. Washington, DC, 

USA: AIAA, 2006. 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7101619
https://www.dji.com/phantom-4-pro-v2/specs
https://www.dronesinhealthcare.com/


278 

 

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., ... and 

Suh, S., 2009. Recent developments in life cycle assessment. Journal of environmental 

management, 91(1), pp.1-21. 

Franceschetti, A., Jabali, O. and Laporte, G., 2017. Continuous approximation models in 

freight distribution management. TOP, 25(3), pp.413-433. 

Freightwaves, 2019. UPS Mandates Maximum 70 Hours in 8 Days for Package Drivers. 

Retrieved February 5th, 2021 from: https://www.freightwaves.com/news/ups-mandates-

longer-workweeks. 

Goodchild, A. and Toy, J., 2018. Delivery by drone: An evaluation of unmanned aerial 

vehicle technology in reducing CO2 emissions in the delivery service industry. 

Transportation Research Part D: Transport and Environment, 61, pp.58-67.  

Guinée, J. B., De Haes, H. U. and Huppes, G., 1993. Quantitative life cycle assessment of 

products: 1: Goal definition and inventory. Journal of Cleaner Production, 1(1), pp.3-13. 

Guinee, J.B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, 

T. and Rydberg, T., 2011. Life cycle assessment: past, present, and future. 

Gulden, T. R., 2017. The energy implications of drones for package delivery. RAND 

Corporation, Santa Monica, CA. 

Ha, Q. M., Deville, Y., Pham, Q. D. and Hà, M. H., 2018. On the min-cost traveling 

salesman problem with drone. Transportation Research Part C: Emerging 

Technologies, 86, pp.597-621. 

Heath N., 2018. Project Wing: A cheat sheet on Alphabet's drone delivery project. 

Retrieved January 23rd, 2020 from: https://www.techrepublic.com/article/project-wing-a-

cheat-sheet/. 

Ho, H.W. and Wong, S.C., 2006. Two-dimensional continuum modeling approach to 

transportation problems. Journal of Transportation Systems Engineering and Information 

Technology, 6(6), pp.53-68. 

Hoffmann, G., Huang, H., Waslander, S. and Tomlin, C., 2007. Quadrotor helicopter flight 

dynamics and control: Theory and experiment. In AIAA Guidance, Navigation and Control 

Conference and Exhibit (p. 6461). 

Hong, I., Kuby, M. and Murray, A.T., 2018. A range-restricted recharging station coverage 

model for drone delivery service planning. Transportation Research Part C: Emerging 

Technologies, 90, pp.198-212. 

Horvath, A., 2006. Environmental Assessment of Freight Transportation in the US (11 

pp). The International Journal of Life Cycle Assessment, 11(4), pp.229-239. 

Huang, H., Savkin, A.V. and Huang, C., 2020a. Reliable Path Planning for Drone Delivery 

using a Stochastic Time-Dependent Public Transportation Network. IEEE Transactions on 

Intelligent Transportation Systems. 

Huang, H., Savkin, A.V. and Huang, C., 2020b. A new parcel delivery system with drones 

and a public train. J Intell Robot Syst.  https://doi.org/10.1007/s10846-020-01223-yJeong, 

H. Y., Song, B. D., and Lee, S., 2019. Truck-drone hybrid delivery routing: Payload-energy 

https://www.freightwaves.com/news/ups-mandates-longer-workweeks
https://www.freightwaves.com/news/ups-mandates-longer-workweeks
https://www.techrepublic.com/article/project-wing-a-cheat-sheet/
https://www.techrepublic.com/article/project-wing-a-cheat-sheet/
https://doi.org/10.1007/s10846-020-01223-y


279 

 

dependency and No-Fly zones, International Journal of Production Economics 214 (2019) 

220–233. 

Intergovernmental Panel on Climate Change (IPCC), 2018. IPCC Special Report on Global 

Warming of 1.5𝑜C. https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf. 

ISO, 2006a. ISO 14040: environmental management–lifecycle assessment–principles and 

framework. International Organization for Standardization, Geneva. 

Josephs L., 2019. UPS wins first broad FAA approval for drone delivery. CNBC. Retrieved 

January 23rd, 2020 from: https://www.cnbc.com/2019/10/01/ups-wins-faa-approval-for-

drone-delivery-airline.html. 

Kellermann, R., Biehle, T. and Fischer, L., 2020. Drones for parcel and passenger 

transportation: A literature review. Transportation Research Interdisciplinary 

Perspectives, 4, 100088. 

Keeney, T., 2015. Amazon Drones Could Deliver a Package in Under Thirty Minutes for 

One Dollar. Retrieved June 30th, 2016 from: https://ark-invest.com/research/amazon-

drone-delivery#fn-5091-4.  

Keeney, T., 2020. Parcel Drone Delivery Should Supercharge Ecommerce. Retrieved 

March 3rd, 2021 from: https://ark-invest.com/articles/analyst-research/parcel-drone-

delivery/.  

Keyes, D., 2020. Target’s digital sales grew 282% annually in April. Business Insider. 

Retrieved February 28th, 2021 from: https://www.businessinsider.com/target-digital-sales-

skyrocketed-during-pandemic-2020-5.  

Khoufi, I., Laouiti, A. and Adjih, C., 2019. A survey of recent extended variants of the 

traveling salesman and vehicle routing problems for unmanned aerial 

vehicles. Drones, 3(3), pp.66. 

Kirchstein, T., 2020. Comparison of energy demands of drone-based and ground-based 

parcel delivery services. Transportation Research Part D: Transport and Environment 

78, 1-18. https://doi.org/10.1016/j.trd.2019.102209 

Kithacharoenchai, P., Min, B-C. and Lee, S., 2020. Two echelon vehicle routing problem 

with drones in last mile delivery. International journal of Production Economics 225, 

107598.  

Koiwanit, J., 2018. Contributions from the Drone Delivery System in Thailand to 

Environmental Pollution. In Journal of Physics: Conference Series (Vol. 1026, No. 1, p. 

012020). IOP Publishing. 

Lammert, M., 2009. Twelve-month evaluation of UPS diesel hybrid electric delivery 

vans (No. NREL/TP-540-44134). National Renewable Energy Lab.(NREL), Golden, CO 

(United States). 

Langelaan, J.W., Schmitz, S., Palacios, J. and Lorenz, R.D., 2017. Energetics of rotary-

wing exploration of titan. In: Aerospace Conference, 2017 IEEE, pages 1–11. IEEE. 

https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
https://www.cnbc.com/2019/10/01/ups-wins-faa-approval-for-drone-delivery-airline.html
https://www.cnbc.com/2019/10/01/ups-wins-faa-approval-for-drone-delivery-airline.html
https://ark-invest.com/research/amazon-drone-delivery#fn-5091-4
https://ark-invest.com/research/amazon-drone-delivery#fn-5091-4
https://ark-invest.com/articles/analyst-research/parcel-drone-delivery/
https://ark-invest.com/articles/analyst-research/parcel-drone-delivery/
https://www.businessinsider.com/target-digital-sales-skyrocketed-during-pandemic-2020-5
https://www.businessinsider.com/target-digital-sales-skyrocketed-during-pandemic-2020-5
https://doi.org/10.1016/j.trd.2019.102209


280 

 

Langevin, A., Mbaraga, P. and Campbell, J. F., 1996. Continuous approximation models 

in freight distribution: An overview. Transportation Research Part B: 

Methodological, 30(3), pp.163-188. 

Laporte, G., 2007. What you should know about the vehicle routing problem. Naval 

Research Logistics (NRL), 54(8), pp.811-819. 

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science, 43(4), pp.408-

416. 

Lee, D., 2019. Amazon to deliver by drone ‘within months’. Retrieved July 12th, 2019 from: 

https://www.bbc.com/news/technology-48536319. 

Lee, D. Y., Thomas, V. M. and Brown, M. A., 2013. Electric urban delivery trucks: Energy 

use, greenhouse gas emissions, and cost-effectiveness. Environmental science & 

technology, 47(14), pp.8022-8030. 

Leishman, J. G., 2002. Principles of helicopter aerodynamics (Vol. 12). Cambridge 

University Press. 

Li, X., Ma, J., Cui, J., Ghiasi, A. and Zhou, F., 2016. Design framework of large-scale one-

way electric vehicle sharing systems: A continuum approximation model. Transportation 

Research Part B: Methodological, 88, pp.21-45. 

Lin, C., Choy, K. L., Ho, G. T., Chung, S. H. and Lam, H. Y., 2014. Survey of green vehicle 

routing problem: past and future trends. Expert systems with applications, 41(4), pp.1118-

1138. 

Lin, J., Zhou, W. and Du, L., 2018. Is on-demand same day package delivery service 

green? Transportation Research Part D: Transport and Environment, 61, pp.118-139. 

Liu, Y., 2019. An optimization-driven dynamic vehicle routing algorithm for on-demand 

meal delivery using drones. Computers & Operations Research, 111, pp.1-20. 

Liu, Z., Sengupta, R. and Kurzhanskiy, A., 2017. A power consumption model for multi-

rotor small unmanned aircraft systems. In 2017 International Conference on Unmanned 

Aircraft Systems (ICUAS) (pp. 310-315). IEEE. 

Lohn, A. J., 2017. What's the buzz? The city-scale impacts of drone delivery (No. RR-

1718-RC). 

Macrina, G., Pugliese, L. D. P., Guerriero, F. and  Laporte, G., 2020. Drone-aided routing: 

A literature review. Transportation Research Part C: Emerging Technologies, 120, 

102762. 

Moore, A.M., 2019. Innovative scenarios for modeling intra-city freight delivery. Moore 

Transportation Research Interdisciplinary Perspectives 3, doi: 

http://dx.doi.org/10.1016/j.trip.2019.100024. 

Murray, C. C. and Chu, A. G., 2015. The flying sidekick traveling salesman problem: 

Optimization of drone-assisted parcel delivery. Transportation Research Part C: 

Emerging Technologies, 54, pp.86-109. 

https://www.bbc.com/news/technology-48536319


281 

 

Murray, C. C. and Raj, R., 2020. The multiple flying sidekicks traveling salesman problem: 

Parcel delivery with multiple drones. Transportation Research Part C: Emerging 

Technologies, 110, pp.368-398. 

Novaes, A.G., de Cursi, J.E.S. and Graciolli, O.D., 2000. A continuous approach to the 

design of physical distribution systems. Computers & Operations Research, 27(9), pp.877-

893. 

Otto, A., Agatz, N., Campbell, J., Golden, B. and Pesch, E., 2018. Optimization approaches 

for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A 

survey. Networks, 72(4), pp.411-458. 

Ouyang, Y., Nourbakhsh, S.M. and Cassidy, M.J., 2014. Continuum approximation 

approach to bus network design under spatially heterogeneous demand. Transportation 

Research Part B: Methodological, 68, pp.333-344. 

Palmer, A., 2020. Amazon wins FAA approval for Prime Air drone delivery fleet. CNBC. 

Retrieved February 27th, 2021 from: https://www.cnbc.com/2020/08/31/amazon-prime-

now-drone-delivery-fleet-gets-faa-approval.html.  

Park, J., Kim, S., and Suh, K., 2018. A comparative analysis of the environmental benefits 

of drone-based delivery services in urban and rural areas. Sustainability, 10(3), 888. 

Plumer B., 2018. New U.N. Climate Report Says Put a High Price on Carbon. Retrieved 

on February 7th, 2021 from: https://www.nytimes.com/2018/10/08/ . 

Poikonen, S. and Golden, B., 2020. Multi-visit drone routing problem. Computers & 

Operations Research, 113, pp.104-802.Quora, 2020. How many stops does a UPS driver 

do. Retrieved February 5th, 2021 from: https://www.quora.com/How-many-stops-does-a-

UPS-driver-do. 

Rehkopf, T., 2019. DHL launches its first regular fully-automated and intelligent urban 

drone delivery service. Retrieved March 15th, 2021 from: 

https://www.dpdhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-

regular-fully-automated-and-intelligent-urban-drone-delivery-service.html. 

Rojas Viloria, D., Solano‐Charris, E. L., Muñoz‐Villamizar, A. and Montoya‐Torres, J. R., 

2020. Unmanned aerial vehicles/drones in vehicle routing problems: a literature 

review. International Transactions in Operational Research. 

Rotaru, C. and Todorov, M., 2017. Helicopter flight physics, DOI: 

10.5772/intechopen.71516, https://www.intechopen.com/books/flight-physics-models-

techniques-and-technologies/helicopter-flight-physics. 

Schermer, D., Moeini, M. and Wendt, O., 2019. A hybrid VNS/Tabu search algorithm for 

solving the vehicle routing problem with drones and en route operations. Computers & 

Operations Research, 109, pp.134-158. 

Schneider, J., Madsen, T. and Boggs, J., 2013. America’s dirtiest power plants: Their 

oversized contribution to global warming and what we can do about it. Environment 

American Research and Policy Center. 

Shavarani, S.M., Nejad, M.G., Rismanchian, F. and Izbirak, G., 2018. Application of 

hierarchical facility location problem for optimization of a drone delivery system: a case 

https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html
https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html
https://www.nytimes.com/2018/10/08/
https://www.quora.com/How-many-stops-does-a-UPS-driver-do#:~:text=maximum%20of%2014-,UPS%20Drivers%20typically%20make%20200%20or%20more%20stops%20per%20day,back%20end%20of%20their%20day
https://www.quora.com/How-many-stops-does-a-UPS-driver-do#:~:text=maximum%20of%2014-,UPS%20Drivers%20typically%20make%20200%20or%20more%20stops%20per%20day,back%20end%20of%20their%20day
https://www.intechopen.com/books/flight-physics-models-techniques-and-technologies/helicopter-flight-physics
https://www.intechopen.com/books/flight-physics-models-techniques-and-technologies/helicopter-flight-physics


282 

 

study of Amazon prime air in the city of San Francisco. The International Journal of 

Advanced Manufacturing Technology, 95(9-12), pp.3141-3153. 

Sheffi, Y., 2020. The New (Ab) Normal: Reshaping Business and Supply Chain Strategy 

Beyond Covid-19. MIT CTL Media. 

Smilowitz, K.R. and Daganzo, C.F., 2007. Continuum approximation techniques for the 

design of integrated package distribution systems. Networks: An International 

Journal, 50(3), pp.183-196. 

Stolaroff, J. K., Samaras, C., O’Neill, E. R., Lubers, A., Mitchell, A. S. and Ceperley, D., 

2018. Energy use and life cycle greenhouse gas emissions of drones for commercial 

package delivery. Nature communications, 9(1), 409. 

Swoop Aero, 2019. Drones for medical deliveries: the value of using technology for good. 

Retrieved January 23rd, 2020 from: https://swoop.aero/2019/10/21/drones-technology-for-

good/. 

Szplett, D.B., 1984. Approximate procedures for planning public transit systems: a review 

and some examples. Journal of Advanced Transportation, 18(3), pp.245-257. 

The World Bank, 2020, What is carbon pricing? Retrieved February 5th, 2021 from: 

https://carbonpricingdashboard.worldbank.org/what-carbon-pricing. 

The World Health Organization, 2018. Climate change and health. Retrieved July 12th, 

2019 from: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. 

Troudi, A., Addouche, S. A., Dellagi, S. and Mhamedi, A., 2018. Sizing of the drone 

delivery fleet considering energy autonomy. Sustainability, 10(9), 3344. 

Tseng, C-M., Chau, C-K., Elbassioni, K. and Khonji, M., 2017a. Flight Tour Planning with 

recharging optimization for battery-operated autonomous drones, 29 March 2017, 

https://pdfs.semanticscholar.org/76d2/307395999118ca3fb406c1d95e337bf3953b.pdf 

Tseng, C-M., Chau, C-K., Elbassioni, K. and Khonji, M., 2017b. Autonomous recharging 

and flight mission planning for battery-operated autonomous drones, 12 September 2017, 

https://arxiv.org/pdf/1703.10049.pdf 

Tseng, C-M., 2020. Personal communication , January 22 and 25, 2020. 

U.S. Department of Energy, 2019. FY2018 Energy Efficient Mobility Systems Annual 

Progress Report. United States Department of Energy, Office of Energy Efficiency and 

Renewable Energy, Vehicle Technologies Office, doi:10.2172/1525359.   

U.S. Department of Energy, 2020. FY2019 Energy Efficient Mobility Systems Annual 

Progress Report. United States Department of Energy, Office of Energy Efficiency and 

Renewable Energy, Vehicle Technologies Office, doi:10.2172/1525359.  

U.S. Environmental Protection Agency, 2020. Greenhouse gas emissions of typical 

passenger vehicle. Retrieved February 5th, 2021 from: 

https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle. 

U.S. Environmental Protection Agency, 2020. Greenhouse Gas Emissions from a Typical 

Passenger Vehicle. Retrieved February 5th, 2021 from: 

https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle. 

https://swoop.aero/2019/10/21/drones-technology-for-good/
https://swoop.aero/2019/10/21/drones-technology-for-good/
https://carbonpricingdashboard.worldbank.org/what-carbon-pricing
https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health
https://pdfs.semanticscholar.org/76d2/307395999118ca3fb406c1d95e337bf3953b.pdf
https://arxiv.org/pdf/1703.10049.pdf
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle


283 

 

U.S. Global Change Research Program, 2018. The Fourth National Climate Assessment. 

Retrieved July 12th, 2019 from: 

https://nca2018.globalchange.gov/downloads/NCA4_2018_FullReport.pdf. 

Vaughan, R., 1984. Approximate formulas for average distances associated with zones. 

Transportation science, 18(3), pp.231-244. 

Williams, N. and Murray, D., 2020. An Analysis of the Operational Costs of Trucking: 

2020 Update. 

Wu, F., Yang, D., Xiao, L. and Cuthbert, L., 2019. Energy consumption and completion 

time tradeoff in rotary-wing UAV enabled WPCN, IEEE Access 7, 79617-

79635,10.1109/ACCESS.2019.2922651  

Xu, J., 2017. Design perspectives on delivery drones. RAND. 

Yurek, E. E., and Ozmutlu, H. C., 2018. A decomposition-based iterative optimization 

algorithm for traveling salesman problem with drone. Transportation Research Part C: 

Emerging Technologies, 91, pp.249-262. 

Zeng, Y. and Zhang, R., 2017. Energy-efficient UAV communication with trajectory 

optimization. IEEE Transactions on Wireless Communications, 16(6), pp.3747-3760. 

Zeng, Y., Xu, J. and Zhang, R., 2019. Energy minimization for wireless communication 

with rotary-wing UAV. IEEE Transactions on Wireless Communications, 18(4), pp.3747-

3760. 

Zhang, J., Campbell, J. F., Sweeney II, D. C. and Hupman, A. C., 2021. Energy 

consumption models for delivery drones: A comparison and assessment. Transportation 

Research Part D: Transport and Environment, 90, p.102668. 

Zhang, J., Zhao, Y., Xue, W. and Li, J., 2015. Vehicle routing problem with fuel 

consumption and carbon emission. International Journal of Production Economics, 170, 

pp.234-242. 

 

 

 

 

https://nca2018.globalchange.gov/downloads/NCA4_2018_FullReport.pdf


284 

 

Appendix 

Appendix 3.A 

This appendix provides a derivation of the energy consumption for a battery 

powered aircraft in steady level flight (i.e. at a constant altitude and constant speed), as in 

D’Andrea (2014), based on fundamental principles of flight. Four fundamental forces 

acting on an aircraft in steady flight are thrust to move forward, weight from gravity acting 

on the aircraft mass, lift in the direction opposing gravity, and drag in the direction 

opposing travel (from aerodynamic effects of the shape of the aircraft, such as friction with 

air). The amount of energy in joules needed to fly a distance 𝑑 (measured in meters) at 

constant altitude can be modeled as  

𝐸𝑓𝑙𝑦 = 𝑇 × 𝑑 ,           (3.A1) 

where 𝑇  is the thrust force measured in Newtons (kg-m/sec2). Note that this does not 

account for the energy involved with the vertical travel components to lift the aircraft from 

the ground to a cruising altitude and to lower it back to the ground. For drone delivery, this 

may occur twice each trip, once at takeoff/landing and once for the delivery; however, 

drone deliveries may not require landing, as the package may be lowed via a tether or 

dropped via parachute.   

An important factor for aircraft performance is the lift-to-drag ratio 𝑟, a unitless 

parameter which captures the efficiency of the aircraft design in keeping the aircraft 

airborne. Values of the lift-to-drag ratio range widely from about 10-20 for commercial 

passenger aircraft to about 4 for helicopters in cruising flight, to typically smaller values 

for UAV rotocopters. The lift-to-drag ratio varies with aircraft speed due to drag and the 



285 

 

aerodynamic affects from lifting surfaces, but is constant in steady flight. To keep the 

aircraft in steady flight, lift is equal to weight and thrust is equal to drag, so 

𝑇 = 𝑑𝑟𝑎𝑔 =  
𝑙𝑖𝑓𝑡

𝑟
=

𝑤𝑒𝑖𝑔ℎ𝑡

𝑟
=

𝑚𝑎𝑠𝑠×𝑔

𝑟
 ,   (3.A2) 

where 𝑔 is the acceleration due to gravity (9.8 m/sec2) and 𝑚𝑎𝑠𝑠 is the total weight of the 

aircraft (body, battery and payload) in kg. Combining (3.A1) and (3.A2) gives 

𝐸𝑓𝑙𝑦 =
(𝑚1+𝑚2+𝑚3)×𝑔

𝑟
× 𝑑 ,    (3.A3) 

where 𝑚1is the mass of the aircraft structure, 𝑚2 is the mass of the aircraft battery and 𝑚3 

is the mass of the payload.  

An important parameter for battery powered drones is the efficiency for converting 

battery power to “flight” power delivered by the rotors, denoted 𝜂 (unitless), where 𝜂 < 1. 

Thus, the energy required from the battery for steady flight is  

𝐸𝑓𝑙𝑦 =
(𝑚1+𝑚2+𝑚3)×𝑔

𝜂𝑟
× 𝑑 .    (3.A4) 

Additional energy is consumed by the drone avionics required for safe flight, 

including communications, sensing, computation, etc. Let 𝑃𝑎𝑣𝑖𝑜 be the power required for 

the aircraft (drone) avionics in joules per second of flight. The energy for avionics (in 

joules) for a flight of distance 𝑑  is then  

𝐸𝑎𝑣𝑖𝑜 = 𝑃𝑎𝑣𝑖𝑜 ×
𝑑

𝑣
 .                               (3.A5) 

The total energy expended by the aircraft battery (in joules) on a flight of distance 

𝑑 is from equations (3.A4) and (3.A5):   

𝐸𝑡𝑜𝑡 =
(𝑚1+𝑚2+𝑚3)𝑔

𝑟𝜂
𝑑 + 𝑃𝑎𝑣𝑖𝑜 ×

𝑑

𝑣
  .   (3.A6) 

The total energy expended per meter of flight 𝐸𝑝𝑚 is then 

𝐸𝑝𝑚 =
(𝑚1+𝑚2+𝑚3)𝑔

𝑟𝜂
+

𝑃𝑎𝑣𝑖𝑜

𝑣
  .         (3.A7) 
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This is equivalent to the formula presented in D’Andrea (2014) for power  

(𝑚1+𝑚2+𝑚3)𝑣

370 𝑟𝜂
+ 𝑃𝑎𝑣𝑖𝑜             

because power equals 𝐸𝑝𝑚 × 𝑣, and the constant 370 in the denominator of the first term 

results from substituting in 9.81 for 𝑔 and measuring speed in km/hr rather than m/sec 

(3600/9.81 = 367). 

Appendix 3.B  

The model in Kirschstein (2020) for steady flight is based on the power model in 

Langelaan et al. (2017) where the power for constant speed flight includes four components 

for: induced power for lift, power to overcome parasite drag, profile power, and 

ascending/descending power (based on flight angle 𝜃).  This is expressed as a function of 

the mass and flight angle:   

𝑃(𝑚𝑘, 𝑣𝑎 , 𝛾) =  𝜅𝑤𝑇 +
1

2
𝜌(∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 )𝑣𝑎

3 +
𝜌√𝜍/𝜋𝑛𝑁𝑐𝑐𝑑

8
𝑣𝑇

3 (1 + 3 (
𝑣𝑎

𝑣𝑇
)

2
) +

 (𝑔 ∑ 𝑚𝑘
3
𝑘=1 )𝑣𝑎 sin 𝜃     (3.B1) 

where 𝑣𝑇 = √
6

𝑛𝑁𝑐𝑐𝑙𝜌√𝜍/𝜋
 √𝑔 ∑ 𝑚𝑘

3
𝑘=1  is the blade tip speed. The parameter 𝑤, like the 

induced velocity in Stolaroff et al. (2018), is found by solving the following equation 

𝑤 =
𝑇

2𝑛𝜌𝜍√(𝑣𝑎𝑐𝑜𝑠𝛼)2+(𝑣𝑎𝑠𝑖𝑛𝛼+𝑤)2
 ,   (3.B2) 

where 𝑇 is from equation (20) and 𝛼 is from equation (15) in chapter 3. 

The energy per meter for steady level flight (𝜃 = 0) for a total drone mass of 𝑚 

(including battery and payload if any) with avionics power 𝑃𝑎𝑣𝑖𝑜 is  

𝐸𝑝𝑚 =  
𝑃(𝑚,𝑣𝑎,0)

𝜂𝑣𝑎
+

𝑃𝑎𝑣𝑖𝑜

𝜂𝑐𝑣𝑎
 .     (3.B3) 
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Kirschstein (2020) uses a total energy efficiency 𝜂 for drone flight power that includes the 

motor, transmission and battery charging efficiency, but only the charging efficiency 𝜂𝑐 

for the avionics.  

For a delivery by a drone moving at speed 𝑣𝑎 with no wind to a distance 𝑑 from the 

depot, the total energy including take-off and ascent at 45° to an altitude of 𝑎𝑙𝑡, level flight, 

hovering for time 𝑡ℎ𝑜𝑣𝑒𝑟, and then landing, is 

 𝐸𝑝𝑚 =  
1

𝑣𝑎
[

𝑃(𝑚,𝑣𝑎,0)

𝜂
+

𝑃𝑎𝑣𝑖𝑜

𝜂𝑐
] +

1

𝑣𝑎

𝑎𝑙𝑡

𝑑

1

𝜂
[𝑃(𝑚, 𝑣𝑎 , 45°) + 𝑃(𝑚, 𝑣𝑎, −45°) − 2𝑃(𝑚, 𝑣𝑎 , 0)] 

+
𝑡ℎ𝑜𝑣𝑒𝑟

𝑑
[

𝑃(𝑚,0,0)

𝜂
+

𝑃𝑎𝑣𝑖𝑜

𝜂𝑐
] .     (3.B4) 

The return trip would be the same, but without the payload (𝑚 = 𝑚1 + 𝑚2). The first term 

in (3.B4) is for the level flight, which will usually be the majority of the trip (unless the 

delivery is for a very short distance), the second term is for the ascending and descending, 

and the last term is for hovering.   

  



288 

 

Appendix 3.C 

Zeng and Zhang (2017) formulate the power for a fixed wing drone in steady flight 

to overcome the induced drag and parasitic drag based on Filippone (2006) as  

𝑃 =
1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 𝑣𝑎

3 +
2(∑ 𝑚𝑘

3
𝑘=1 )2𝑔2

(𝜋𝑒𝑜𝐴𝑅)𝜌𝑆𝑣𝑎
 ,                               (3.C1) 

where 𝑒𝑜 is the Oswald (wing span) efficiency, and 𝐴𝑅 is the aspect ratio of the wing. For 

this model  

𝐸𝑝𝑚 =
1

2
𝜌 ∑ 𝐶𝐷𝑘

𝐴𝑘
3
𝑘=1 𝑣𝑎

2 +
2(∑ 𝑚𝑘

3
𝑘=1 )2𝑔2

(𝜋𝑒𝑜𝐴𝑅)𝜌𝑆𝑣𝑎
2  .                          (3.C2) 

In a related article, Zeng et al. (2019) formulate the power for a rotorcopter drone 

in steady flight. Similar to Liu et al. (2017) power is modeled to overcome induced drag, 

parasite drag and the blade profile drag. The authors provide a general formula, then 

simplify it (see equation (13) in Zeng et al. (2019)) to 

𝑃 =
𝑊3/2

√2𝑛𝜌𝜍
[

1.1√𝑊

𝑣𝑎√2𝑛𝜌𝜍
] + ∑

1

2
𝜌𝑣𝑎

3𝐶𝐷𝑘
𝐴𝑘

3
𝑘=1 + 𝑃0(1 +

3𝑣𝑎
2

𝑈𝑡𝑖𝑝
2),             (3.C3) 

where 𝑈𝑡𝑖𝑝 is the tip speed of the rotor blade and 𝑃0 depends on the air density and details 

of the rotors (similar to the parameter 𝑐2 in Liu et al (2017)). The situation being modeled 

is essentially the same as in Liu et al. (2017) and so the models are quite similar (compare 

equation (20) vs. equation (17)).  Wu et al (2019) use this same drone energy consumption 

formula to model the use of a drone to wirelessly recharge ground stations via radio 

frequency energy sent from the drone. 
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Appendix 4.A  

Suppose we have an odd number of deliveries in a truck-drone route that 𝑛 cycles 

contain both a truck and a drone delivery and the (𝑛 + 1)𝑡ℎ cycle contain only a truck 

delivery. The distance per delivery is given by 

𝑉𝑀𝑇𝑡𝑑 =
𝑤

6
+

1

𝛿𝑤
+ √(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

+
1

2𝑛+1
(

𝑤

3
− √(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

)                  (4.A1) 

As long as 𝑛 ≫ 1, eq.(1.A) is approximately equivalent to eq.(10).  

Appendix 4.B: Optimal Swath Width for Truck-drone Delivery 

A nonnegative linear combination of a set of convex functions is a convex function 

(Boyd and Vandenberghe (2004)). Suppose both 𝑓(𝑥) and 𝑔(𝑥) are convex functions, then 

ℎ(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) is a convex function, which has a global minimum. Suppose 𝑓(𝑥) is 

minimized at 𝑥1, 𝑔(𝑥) is minimized at 𝑥2, and 𝑥1 < 𝑥2. 

ℎ′(𝑥1) = 𝑓′(𝑥1) + 𝑔′(𝑥1) = 𝑔′(𝑥1) < 0 

ℎ′(𝑥2) = 𝑓′(𝑥2) + 𝑔′(𝑥2) = 𝑓′(𝑥2) > 0 

Thus, the 𝑥 that minimizes ℎ(𝑥) should be 𝑥1 < 𝑥 < 𝑥2. Thus, the minimum of the sum of 

two convex functions is between the two minimums of the component convex functions. 

As described in Section 4.3.3, the expected cost of serving a customer at distance 

𝑑 for truck-drone delivery is given by 

𝐶𝑡𝑑 =
2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑐𝑡 (

𝑤

6
+

1

𝛿𝑤
) + 𝑐𝑑√(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

+ 𝑠𝑡 +  
1

2
𝑠𝑑.                (4.B1) 

Let  
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𝑓(𝑤) = 𝑐𝑡 (
𝑤

6
+

1

𝛿𝑤
),                                           (4.B2) 

𝑓(𝑤) is a convex function and is minimized at 𝑤𝑡𝑑
𝑡∗ = √

6

𝛿
= √2𝑤𝑡𝑜

∗ , and 𝑓(𝑤𝑡𝑑
𝑡∗) = 𝑐𝑡

√2

√3𝛿
. 

Let 

𝑔(𝑤) = 𝑐𝑑√(
𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

 ,                                    (4.B3) 

𝑔(𝑤) is a convex function and is minimized at 𝑤𝑡𝑑
𝑑∗ = 𝑤𝑡𝑜

∗ = √
3

𝛿
, and 𝑔(𝑤𝑡𝑑

𝑑∗) = 𝑐𝑑
√2

√3𝛿
. 

Suppose that ℎ(𝑤) = 𝑓(𝑤) + 𝑔(𝑤), so 

ℎ(𝑤) = 𝑐𝑡 (
𝑤

6
+

1

𝛿𝑤
) + 𝑐𝑑√(

𝑤

3
)

2

+ (
1

𝛿𝑤
)

2

 ,                       (4.B4) 

and ℎ(𝑤) is also a convex function and is minimized at 𝑤𝑡𝑑
∗  where 𝑤𝑡𝑜

∗ < 𝑤𝑡𝑑
∗ < √2𝑤𝑡𝑜

∗ . 

To simplify ℎ(𝑤𝑡𝑑
∗ ), we assume 𝑤𝑡𝑑

∗ = 𝑘𝑤𝑡𝑜
∗  where 1 < 𝑘 < √2, and 𝛼 =

𝑐𝑑

𝑐𝑡
, then 

we have 

ℎ(𝑘) =
𝑐𝑡

√3𝛿
(

𝑘

2
+

1

𝑘
+ 𝛼√𝑘2 +

1

𝑘2) ,                               (4.B5) 

and 𝑘 is solved by taking the first derivative of ℎ(𝑘) and setting it equal to zero, which is 

shown as follows: 

                                     ℎ′(𝑘) =
𝑐𝑡

√3𝛿
(

1

2
−

1

𝑘2
+

1

2
𝛼 (𝑘2 +

1

𝑘2
)

−1/2

(2𝑘 −
2

𝑘3
)) = 0 , 

(𝑘2 − 2)√𝑘2 +
1

𝑘2 + 2𝛼 (𝑘3 −
1

𝑘
) = 0 , 
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𝛼 =
(2−(𝑘∗)2)√(𝑘∗)4+1

2((𝑘∗)4−1)
  .                                           (4.B6) 

There is not simple closed form solution for 𝑘∗ though it is a function of only 𝛼 (the ratio 

of drone and truck operating costs) Equation (4.B6) solves for 𝛼 as a function of 𝑘∗. The 

optimal value 𝑘∗  is a decreasing function of 𝛼 which can be found numerically and is 

shown in Figure 4.B1. 

 

Figure 4.B1. Optimal 𝑘∗ versus the ratio of drone to truck operating cost rate 
𝑐𝑑

𝑐𝑡
 

It can be proved mathematically that 𝑘∗ is a monotonically decreasing function of 

𝛼 so there is a unique 𝑘∗ for each 𝛼. 

We rewrite equation (4.B6) in order to use properties of monotonicity of function 

𝛼
2(𝑘4−1)

(2−𝑘2)
= √𝑘4 + 1   .                                      (4.B7) 
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𝑓(𝑘) =
2(𝑘4−1)𝛼

(2−𝑘2)
 ,                                           (4.B8) 

𝑔(𝑘) = √𝑘4 + 1  ,                                         (4.B9) 

1 < 𝑘1 < 𝑘2 < √2 , then we have the following: 

𝑓(𝑘2)

𝑓(𝑘1)
=

2(𝑘2
4−1)𝛼

(2−𝑘2
2)

(2−𝑘1
2)

2(𝑘1
4−1)𝛼

=
(𝑘2

4−1)

(𝑘1
4−1)

(2−𝑘1
2)

(2−𝑘2
2)

> 1                    (4.B10) 

Thus, 𝑓(𝑘1) < 𝑓(𝑘2), 𝑓(𝑘) is monotonically increasing in 𝑘 ∈ (1, √2). 

Similarly, 

𝑔(𝑘2)

𝑔(𝑘1)
=

√𝑘2
4+1

√𝑘1
4+1

> 1.                                          (4.B11) 

Thus, 𝑔(𝑘1) < 𝑔(𝑘2), 𝑔(𝑘) is also monotonically increasing in 𝑘 ∈ (1, √2). 

For 𝑓(𝑘) = 𝑔(𝑘), there is only one 𝑘 for any given 𝛼. 

Substituting the expression in (4.B6) for 𝛼 into ℎ(𝑘), we obtain the optimal local 

transportation cost per delivery   

ℎ(𝑘∗) =
𝑐𝑡

√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
 ,                                          (4.B12) 

ℎ(𝑘) is a monotonically decreasing function on 𝑘 ∈ (1, √2). For each given 𝛼, we can 

calculate the optimal cost per delivery  𝐶𝑡𝑑
∗  as given by 

𝐶𝑡𝑑
∗ =

2𝑐𝑡𝑑

𝑚𝑡𝑑
+

𝑐𝑡

√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
+  𝑠𝑡 + 

1

2
𝑠𝑑 ,                       (4.B13) 

(4.B13) provides the benchmark for us to check how good are any approximations for 𝑘∗, 

which will be shown in appendix 4.C. 
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Appendix 4.C: Approximation for the Optimal Truck-drone Swath Width 

The optimal swath width (determined by 𝑘∗ in Appendix 4.B) does not lend itself 

(nor does the optimal truck-drone delivery cost 𝐶𝑡𝑑
∗ ) to a closed form solution, thus, we 

approximate the optimal cost (𝐶𝑡𝑑
∗ ) to facilitate the analyses. 

Based on equations (4.B1), (4.B2) and (4.B3), the cost function can be written as 

𝐶𝑡𝑑 =
2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑓(𝑤) + 𝑔(𝑤) + 𝑠𝑡 +  

1

2
𝑠𝑑 >

2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑓(𝑤𝑡𝑑

𝑡∗) + 𝑔(𝑤𝑡𝑑
𝑑∗) + 𝑠𝑡 +  

1

2
𝑠𝑑, 

Substituting 𝑓(𝑤𝑡𝑑
𝑡∗) = 𝑐𝑡

√2

√3𝛿
 and 𝑔(𝑤𝑡𝑑

𝑑∗) = 𝑐𝑑
√2

√3𝛿
, we have  

𝐶𝑡𝑑
∗ >

2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑐𝑡

√2

√3𝛿
+ 𝑐𝑑

√2

√3𝛿
+ 𝑠𝑡 +  

1

2
𝑠𝑑 =

2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑐𝑡(1 + 𝛼)

√2

√3𝛿
+ 𝑠𝑡 +  

1

2
𝑠𝑑.    (4.C1) 

The inequality always holds true because functions 𝑓(𝑤) and 𝑔(𝑤) cannot reach their 

minimums simultaneously. We approximate 𝐶𝑡𝑑
∗  by this lower bound  

𝐶̃𝑡𝑑
∗ =

2𝑐𝑡𝑑

𝑚𝑡𝑑
+ 𝑐𝑡(1 + 𝛼)

√2

√3𝛿
+ 𝑠𝑡 +  

1

2
𝑠𝑑.                           (4.C2) 

Note that the approximation in (4.C2) essentially replaces the exact optimal local delivery 

cost  
𝑐𝑡

√3𝛿

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
 in (4.B13) by an approximation 

𝑐𝑡

√3𝛿
(1 + 𝛼)√2  in (4.C7), which makes 

the model more elegant and easier for further analyses. Figure 4.C1 shows the very close 

agreement between the two coefficients of 
𝑐𝑡

√3𝛿
  in the exact optimal (

2(𝑘∗)3−𝑘∗

(𝑘∗)4−1
) and 

approximated ((1 + 𝛼)√2)local delivery cost.  
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Figure 4.C1. The approximated versus the optimal coefficients of the local delivery cost 

as a function of 
𝑐𝑑

𝑐𝑡
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Appendix 6.A: The Impact of Carbon Prices on Optimal Delivery System 

Designs 

This appendix considers the impact of carbon prices on the total cost and the 

optimal delivery system design. The base case drone has an operating cost of $0.1/mile and 

an energy consumption of 18 Wh/mile. This appendix considers situations where: (1) drone 

operating cost per mile is fixed at $0.1/mile and drone energy consumption per mile has 

six levels (i.e., 9, 18, 36, 60, 90, and 180 Wh/mile); (2) drone energy consumption per mile 

is fixed at 18 Wh/mile and drone operating cost per mile has six levels (i.e., $0.01/mile, 

$0.02/mile, $0.03/mile, $0.05/mile, $0.1/mile, and $0.5/mile), and (3) drone energy 

consumption per mile is fixed at 180 Wh/mile and drone operating cost per mile has six 

levels (i.e., $0.01/mile, $0.02/mile, $0.03/mile, $0.05/mile, $0.1/mile, and $0.5/mile). For 

each situation, I consider four levels of carbon prices (i.e., 0, $50/tCO2e, $100/tCO2e, and 

$200/tCO2e) to show how the optimal delivery system design depends on carbon prices.  

For each figure, the horizontal axis is the utilization of drone-only delivery (DO) 

because DO and TD are the only two services used, thus we could use DO utilization to 

represent the system design. The vertical axis is the expected total costs (in thousands of 

dollars) which includes the delivery costs and the cost of emissions by multiplying the 

carbon price by the quantity of the emissions. The solid, round dot, short dashed, and long 

dashed lines represent the carbon prices of 0, $50/tCO2e, $100/tCO2e, and $200/tCO2e, 

respectively. The darker the line color, the greater the carbon price. The round dot indicates 

the optimal utilization of DO that minimizes total costs. 

Figure 6A.1 consists of a panel of six sub-figures (a)-(f), with each associated with 

a different drone energy consumption rate to show the total cost-service utilization 
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relationship under varying carbon prices (i.e., the impact of carbon price on the optimal 

delivery system design). An overview of Figure 6A.1 shows that the total cost – service 

utilization relationship is not very sensitive to drone energy consumption rates when the 

drone operating cost is not very low. Figures 6A.1(a)-(f) show that the carbon price has 

very little impact on the delivery system design. This is because the delivery costs account 

for a large portion of the total costs due to a relatively high drone operating cost per mile. 

Even with a carbon price of $200/tCO2e, the incentive is not sufficient enough for a 

delivery system to significantly reduce emissions. In other words, emissions is a small part 

of total costs, so the optimal utilization of DO is the same for the range of carbon prices 

considered (0-200 $/tCO2e). 
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Figure 6A.1. The impact of carbon price on the optimal delivery system design with 

drone energy consumption per mile varying 

 Figure 6A.2 also consists of a panel of six sub-figures (a)-(f), with each associated 

with a different drone operating cost rate to show the total cost-service utilization 

relationship under varying carbon prices (i.e., the impact of carbon price on the optimal 

delivery system design). An overview of Figure 6A.2 shows that the total cost-service 

utilization relationship is significantly impacted by different levels of drone operating cost 

rate, as the shape of the total cost curves dramatically change with respect to drone 

operating cost rates. Figures 6A.2(a)-(f) also show little impact of the carbon price on the 

optimal delivery system design (i.e., the position of the round dots do not change much for 

each figure). This is because drone-only is 100% used to minimize greenhouse gas (GHG) 

emissions with this very energy efficient drone. When drone operating cost per mile is low, 

drone-only is also the service that minimizes delivery costs, thus, the carbon price provides 

no incentive to change the delivery services. However, when drone operating cost per mile 

is just greater than $0.03/mile, drone-only delivery service becomes very expensive to 

operate, thus, it requires a very high carbon price to incentivize an emissions-minimizing 
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delivery system design. A carbon price of $200/tCO2e is not sufficient enough to cause 

that change. 

 

 

 

Figure 6A.2. The impact of carbon price on the optimal delivery system design with 

drone energy consumption per mile varying 
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Figure 6A.3 demonstrates situation (3) where drone energy consumption per mile 

is fixed at 180 Wh/mile and drone operating cost per mile has six levels (i.e., $0.01/mile, 

$0.02/mile, $0.03/mile, $0.05/mile, $0.1/mile, and $0.5/mile). Everything else stays the 

same. It consists of a panel of six sub-figures (a)-(f), with each associated with a different 

drone operating cost rate to show the total cost-service utilization relationship under 

varying carbon prices. Figure 6A.3 shows that the total cost-service utilization relationship 

is significantly impacted by different level of drone operating cost rate, as the shape of the 

total cost curves dramatically change with respect to different drone operating cost rates. 

For this relatively energy inefficient drone, we see that the impact of carbon price (on the 

optimal delivery system design) and how it depends on the drone operating cost per mile. 

When drone operating cost per mile is very low, the carbon price needs to be relatively 

high to incentivize an emissions-minimizing delivery system design (e.g., Figure 6A.3(a)). 

Figure 6A.3(b) shows that for a very inexpensive but energy intensive drone, there is a 

significant change in the utilization of DO with a carbon price of $50/tCO2e compared to 

no carbon price. When drone operating cost continues to increase, the carbon price has 

little impact on the optimal delivery system design. 
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Figure 6A.3. The impact of carbon price on the optimal delivery system design with 

drone operating cost per mile varying 
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energy inefficient drone as described in Figure 6A.3(b) (i.e., drone operating cost of 
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the number of deliveries increases, therefore the expected total costs increase. Figure 6A.4 
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the impact of delivery density on the optimal system design with carbon price varying for 

the base case drone. It shows that delivery density has very little impact on the optimal 

delivery system design except with low delivery density. The impact of carbon price on 

the optimal delivery system design is very little except with low delivery density as well. 

 

 

Figure 6A.4. The impact of carbon price on the optimal delivery system design with 

delivery density varying. 
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Similarly, Figure 6A.5 consists of five sub-figures, with each associated with a 

different delivery density to show the impact of delivery density on the optimal delivery 

system design with carbon price varying for the very cost efficient, but energy inefficient 

drone. When the drone is very cost efficient but energy inefficient, DO is very inexpensive 

to operate but is relatively environmentally unfriendly. When delivery density is low (i.e., 

5 deliveries per square mile), the optimal delivery system design changes only when carbon 

price is as high as $200/tCO2e. Carbon price has the most impact on the optimal delivery 

system design when delivery density is moderate (e.g., between 5-125), whereas its impact 

is very little for both very low and very high delivery density. 
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Figure 6A.5. The impact of carbon price on the optimal delivery system design with 

delivery density varying. 

Based on Figures 6A.4-5, the impact of delivery density (and carbon price) on the 

optimal delivery system design also depends on drone operating cost per mile and drone 

energy consumption per mile. 
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