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1 Introduction
Coding theory studies the property of codes, which are very important in a lot of applica-
tions in fields such as data compression, error detection and correction, cryptography and
networking. In my dissertation, I study families of cyclic codes and their generalizations.
These types of codes are special types of linear codes. Linear Codes are sets of codewords
such that any linear combination of codewords is still a codeword. These kind of codes are
very useful in error detection and correction. Error Detection and Correction is a technique
that first detects the corrupted data sent from some transmitter over unreliable communi-
cation channels and then corrects the errors and reconstructs the original data. The best
contribution for the linear codes was given by Richard W. Hamming who invented the so
called Hamming Codes. In 1968 he also won the Turing Award, which is an annual prize
given by Association for Computing Machinery. Unlike Hamming codes, cyclic codes are
used to correct errors where the pattern is not clear and the error occurs in a short segment
of the message.

One generalization of cyclic codes is the family of quasi cyclic codes, the length of
which is usually a big number. In order to make the study of these codes easier, one
approach is to break it down into cyclic codes with small length so that the structure of
quasi cyclic code can be understand from these cyclic codes.

One way of breaking down big codes is to write them down as matrix product of small
codes. However the structure of quasi cyclic codes is not right for that. That is why I
manipulated them by using a permutation. I called these new types of codes Permuted
Quasi Cyclic Codes .

From any permuted quasi cyclic code we can define some special cyclic codes. For my
thesis I will try to find sufficient and necessary conditions so any permuted quasi cyclic
code can be written as a matrix product of those codes.

Another generalization of cyclic codes is the family of multi cyclic codes. These types
of codes are more complicated than the previous one so I will propose to limit myself on
finding the structure of multi cyclic codes of length 4 over F3.

One technique of constructing new linear codes from a given linear code is by finding
the so called Euclidean dual of a linear code. In my thesis I will also analyze the euclidean
dual of the families above.
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2 Finite Fields
Finite Fields play a very important role in Coding Theory. In this chapter I will recall some
very important results about finite fields. Most of the work in this chapter is refereed to [4,
chapter 3].

2.1 Cardinality of Finite Fields.
Definition 1. Let F be a finite set and let ‘+‘ and ‘·‘ be two operations. We say (F,+, ·) is
a finite field (or simply F is a finite field) if and only if the following conditions are true:

1. (F,+) is an abelian group. Let us denote with 0 the additive neutral element.

2. (F∗, ·) is also an abelian group, where F∗ = F − {0}. Let us denote with 1 the multi-
plicative neutral element.

3. a · (b+ c) = a · b+ a · c for any a, b, c ∈ F.

Definition 2. A subset K of a finite field F is called a subfield of F if and only if K is a finite
field under the operations of F.

Lemma 1. If K is a subfield of a finite field F then F is a vector space over K.

Proof. Straightforward from definition.

Theorem 1. If F is a finite field then its cardinality is pm for some prime number p and
some positive integerm.

Proof. For any positive integer s, let 1s = 1+ 1+ ...+ 1, where the sum is taken s times.
Since F is finite, there exist positive integers p1, p2 such that, p1 < p2 and 1p1 = 1p2 .

It is easy to see that p0 = p2 − p1 is a positive integer and 1p0 = 0. Let p be the smallest
positive integer such that 1p = 0.

Since we want p to be prime, let us assume by contradiction that p = ab where a, b
are both positive integers strictly less than p. Because p is the smallest integer with above
property, we have 1a 6= 0 and 1b 6= 0. It follows that 1p = 1a · 1b 6= 0, which is a
contradiction. So the above p is a prime number.

Let P = {0, 1, 12, 13, ..., 1p−1}. It is easy to see that card(P) = p. We can also claim
that P is a subfield of F because for any two positive integers a and b such that a, b < p,
the following hold

1. 1a + 1b = 1(a+b)modp,

2. 1a1b = 1(ab)modp,

3. −1a = 1p−a,
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4. (1a)
−1 = 1αmodp where αa+ βp = 1.

From Lemma 1 we can say that F is a vector space over P. Ifm = dim(F) over P, then
m is finite since F is a finite set. Let b1, b2, ..., bm be a basis for F. Any element b ∈ F can
be written uniquely as b = α1b1 + α2b2 + ... + αmbm, for some αi ∈ P. Since for any
αi we have p choices it follows card(F) = pm.

The subfield P of the above theorem is called the the prime subfield of F. Also the prime
number p of the above theorem is called the characteristic of F, since we can show that for
any a ∈ F, a+ a+ ...+ a = 0, where the sum is taken p times.

The converse of the last theorem is also true. So for any prime number p and any
positive integer swe can find a finite field F such that its cardinality is ps. See ([4, Theorem
3.4.4, page 109]).

Another true fact about finite fields is that any two finite fields F and F ′ with the same
cardinality are isomorphic, i.e., there exists an one-to-one and onto map f from F to F ′ such
that for any a, b ∈ F , f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b). See ([4, Theorem
3.1.1, page 101]);

In this case we can consider both fields identical, therefore we can denote with Fq all
the finite fields with cardinality q.

The next theorem will give us more details about the multiplicative group of a finite
field.

Theorem 2. If Fq is a finite field then (F∗, ·) is a cyclic group.

Proof. For any a ∈ F∗ let us define with o(a) the smallest positive integer such that
ao(a) = 1. It exists because we are working on a finite field. If m = max{o(a)|a ∈ F∗}
thenm | (q− 1), from Lagrange’s Theorem.

Let b ∈ F∗ such that o(b) = m and let c be a random element in F∗. Since F∗ is a finite
abelian group, there exists d ∈ F∗ such that o(d) = lcm(o(b), o(c)) = lcm(m,o(c)). So
o(d) > m, but becausem is the maximum we have o(d) = m.

Fromm = lcm(m,o(c)), we have that o(c)|m, so for any c ∈ F∗, cm = 1.
Finally let us consider the equation xm−1 = 0. This equation has at least q−1 solutions

in F since all the elements of F∗ satisfy it, so m > q − 1. This inequality combined with
the fact that m | (q − 1) are enough to say that m = q − 1. Hence b is a generator of F∗,
which makes (F∗, ·) a cyclic group.

Observation 1. In order to find d of the above theorem do the following:

1. If gcd(o(b), o(c)) = 1, then let us take d = b · c. We can show that o(d) =
o(c) · o(b) = lcm(o(c), o(b)).

2. If o(c)|o(b) take d = b and if o(b)|o(c) take d = c.

3. Otherwise, let o(b) = m = pα11 p
αt
2 ...p

αt
t and o(c) = n = pβ11 p

β2
2 ...p

βt
t , where the

exponents may also be zero. Let us define:
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m ′ =
∏
αi>βi

pαii and n ′ =
∏
βi>αi

pαii .

Since the previous case is excluded, n ′ and m ′ are both well defined. We can easily
check the following:

n ′|n,m ′|m,m ′ · n ′ = lcm(m,n), gcd(m ′, n ′) = 1, o(c
n
n ′ ) = n ′, o(b

m
m ′ ) = m ′.

So in this case we can take d = c
n
n ′ · b m

m ′ .

2.2 Cardinality of Subfields
Theorem 3. Let Fq be a finite field with q = pm. Any subfield K of Fq has cardinality pl

where l|m.

Proof. Let P = {0, 1, 12, ..., 1p−1} be the prime subfield of Fq as in Theorem 1. Since
1 ∈ K we can say that P is also a subfield of K. So card(K) = pl for some positive integer
l.

If we use Lagrange’s Theorem on the fact that K is an additive subgroup of F we have
pl | pm. Also if we use the same theorem on the fact that K∗ is a multiplicative subgroup
of F∗ we have (pl − 1) | (pm − 1).

Letm = Q · l+ R with R < l. For some positive integer A,B we have

B(pl−1) = pm−1 = pQlpR−1 = pQlpR−pR+pR−1 = ((pl)Q−1)pR+(pR−1) = A(pl−1)+(pR−1).

It follows that (B − A)(pl − 1) = pR − 1, so (pl − 1) | (pR − 1). Unless R = 0 we
have l 6 R which is a contradiction. So l|m.

The converse of this theorem is also true, but in order to prove that we need a lemma
first.

Lemma 2. Let Fq be a finite field, a, b any two random elements in Fq and l a random
positive integer. The following hold:

1. (a+ b)p
l

= ap
l

+ bp
l

.

2. (−a)p
l

= −ap
l

.

Proof. 1. Let us show the first equality for l = 1 first. From the binomial theorem we
have that
(a + b)p = ap + k1a

p−1b + k2a
p−2b2 + ... + kp−2a

2bp−2 + kp−1ab
p−1 + bp,

where ki =
(
p

i

)
modp, for i = 1, 2, ..., p− 1.

Since
(
p

i

)
= p(p−1)...(p−i+1)

i!
is always a positive integer we have that i! divides

p(p − 1)...(p − i + 1). From the fact that p is prime we have that gcd(p, i!) = 1
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hence i! divides (p− 1)...(p− i+ 1). It follows that t = (p−1)...(p−i+1)
i!

is a positive
integer, therefore

ki =

(
p

i

)
modp = tpmodp = 0, for any i = 1, 2, ..., p− 1.

The first equality of the lemma can be proved using the method of mathematical
induction on l.

2. If p is odd then pl is still odd, therefore our second equality is true in this case.
If p is even then pl is also even so (−a)p

l

= ap
l

. Since p is also prime we have that
p = 2, so ap

l

= −ap
l

, hence (−a)p
l

= −ap
l

.

Theorem 4. Let F be any finite field of order q = pm and l any positive integer such that
l|m. Then there exist K a subfield of F such that card(K) = pl.

Proof. Let us define

K = {x ∈ F, xδ = x}, where δ = pl.

Thanks to the above Lemma we can easily show that K is a subfield of F. It is easy to
see that card(K) 6 δ = pl since the number of zeros of a polynomial can not exceed the
degree. In order to prove the other inequality let y be one of the generators of F∗, i.e. q− 1
is the smallest positive integer such that yq−1 = 1.

If z = y
pm−1

pl−1 we have that o(z) = pl − 1 = δ− 1. So the elements 0, 1, z, z2, ..., zδ−2

are all pairwise distinct and they are all in K because

(zs)δ = (zδ)s = (zδ−1z)
s
= zs.

So we can also say that card(G) > δ = pl which proves the Theorem.

2.3 The Minimal Polynomial
Definition 3. Let Fq ′ be an extension field of Fq (meaning that Fq is a subfield of Fq ′ ) and
let a ∈ F∗q ′ . A nonzero monic polynomialMa(x) ∈ Fq[x] is called the minimal polynomial
of a if and only ifMa(x) is the least degree polynomial in Fq[x] such that a is a zero.

Observation 2. From the above theorem we can show that q ′ = qt, for some positive
integer t.

Theorem 5. With the same notation as Definition 3 we have

1. The minimal polynomial always exists and it is unique.

2. The minimal polynomial is irreducible in Fq[x].

3. If s(x) ∈ Fq[x] with s(a) = 0 thenMa(x)|s(x).
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Proof. 1. Proof of existence: From Lagrange’s Theorem for groups we can easily see
m(a) = 0, where m(x) = xq

′
− x ∈ Fq[x]. Since Fq is finite, the number of monic

polynomials in Fq[x] with degree less than or equal to q ′ is finite, so we can always
select the monic smallest degree polynomial such that a is a zero.
Proof of uniqueness: Assume by contradiction that a has 2 non-identical minimal
polynomialsM1(x) andM2(x) with same degree d. LetM(x) =M1(x)−M2(x) ∈
Fq[x]. Since M1(x) and M2(x) are both monic with the same degree d, it follows
that degM(x) < d. Hence M(x) can not be a minimal polynomial for a. However
M(a) =M1(a)−M2(a) = 0− 0 = 0 which implies thatM(x) is equivalent to the
zero polynomial. That is a contradiction sinceM1(x) andM2(x) are non-identical.

2. Assume Ma(x) = f(x)g(x) is reducible in Fq[x]. Since Ma(a) = 0 then either
f(a) = 0 or g(a) = 0 which contradicts the minimality.

3. For the last one let s(x) = q(x)Ma(x)+r(x) in Fq[x] with deg(r(x)) < deg(Ma(x)).
Since s(a) = Ma(a) = 0 we have r(a) = 0 which contradicts the minimality of
Ma(x) unless r(x) = 0. SoMa(x)|s(x).

We do have an algorithm on how to find the minimal polynomial. First let us denote
with ω, one of the generators of F∗q ′ , where q ′ = qt for some positive integer t . Let s be
a positive integer such that a = ωs. With this notation we have

Ma(x) = (x− a)(x− aq)(x− a2q)(x− a3q)...(x− a(k−1)q)

where k is the smallest positive integer such that sqk ≡ s(mod(qt−1)). See ([4, Theorem
3.7.6, page 115]).
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3 Cyclic Codes
In this chapter I will talk about Cyclic Codes, which is a very important class of Linear
Codes. They are extremely useful in Coding Theory. Most of the work in this chapter is
refereed to [4, chapter 4].

3.1 Definition of Linear and Cyclic Codes
Definition 4. Let Fq be a finite field with cardinality q = pm. A linear code of length n
over Fq is a subspace of the vector space Fqn. Its elements are called codewords.

Definition 5. Generator Matrix of a linear code C is a matrix in which its rows are vectors
of any given basis. The generator matrix is not unique.

Definition 6. The minimum distance of a linear code C is defined as

dmin(C) = min{w(c), c ∈ C, c 6= 0},

wherew(c) is called the weight of a codeword c and it is the number of nonzero entries in c.

Any linear code C is characterized by 3 quantities. Its length n, its dimension (as a
linear subspace) k and its minimum distance d. We say C is a [n, k, d] linear code.

Definition 7. Let C be a [n, k, d] linear code over some finite field. C is called a cyclic
code if and only if (c0, c1, ..., cn−1) ∈ C implies (cn−1, c0, c1, ..., cn−2) ∈ C.

3.2 The Canonical Generator
Definition 8. For any positive integer n and any finite field Fq let Rn = Fq[x]/ < x

n−1 >
be the quotient ring modulo xn − 1. We can define a map π : Fq

n → Rn such that

π((c0, c1, ..., cn−1)) = c0 + c1x+ ...+ cn−1x
n−1.

It is obvious that π is an isomrphism of vector spaces, however π is important because
Rn is also a ring.

Theorem 6. Let C be a [n, k, d] cyclic code over some finite field Fq. The subset π(C) =
{π(c), c ∈ C} ⊆ Rn, is an ideal of Rn.

Proof. Since C is a subspace of Fnq , π(C) is a subspace of Rn, so it is enough to prove
that f(x) ∗ π(c) ∈ π(C) for any f(x) ∈ Rn and c ∈ C. With ∗ we denoted the usual
multiplication in Rn.
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Case 1
f(x) = x. If c = (c0, c1, ..., cn−1) then

x∗π(c) = x∗(c0+c1x+...+cn−1xn−1) = (c0x+c1x
2+...+cn−2x

n−1+cn−1·xn)(mod(xn−1))

= cn−1 + c0x+ ...+ cn−2x
n−1 = π(cn−1, c0, c1, ..., cn−2) ∈ π(C)

since C is a cyclic code.
Case 2
f(x) = xs for some positive integer s. The proof in this case can be done very easily by

using the method of mathematical induction on s.
Case 3
If f(x) = f0 + f1x+ ...+ fsxs then

f(x) ∗ π(c) = f0(π(c)) + f1(x ∗ π(c)) + ...+ fs(xs ∗ π(c)).

From the previous cases and the fact that π(C) is a subspace of Rn we can conclude that
f(x) ∗ π(c) ∈ π(C).

Note that since π is an isomorphism we can identify C and π(C).
It is well known that Rn is a principal ideal domain, which means that any ideal of Rn

can be generated by only one polynomial.
In other words, for any cyclic code C over some Fq, there exists a polynomial g0(x) ∈

C, such that C =< g0(x) >, where

< g0(x) >= {f(x) ∗ g0(x)|f(x) ∈ Rn}.

The above g0(x) is called a generator of C, but it may not be the only generator. In the
next theorem we will try to find the generator that best describes the cyclic code. We will
call that the canonical generator and will denote it with g(x).

Theorem 7. If C be a cyclic code of length n over some Fq then:

1. There exists a unique g = g(x) ∈ C, such that g(x) is monic and deg(g(x)) 6
deg(c(x)) for any non-zero c = c(x) ∈ C.

2. C =< g(x) >.

This g(x) is called the canonical generator.

Proof. 1. The existence of g(x) is obvious because we are working with finite sets. In
case g(x) is not monic, we can multiply g(x) by the inverse of the leading coeficient
and this new polynomial it is monic and will still be in C, because C is linear.

For the uniqueness part, we can use the same trick we used before. Assume we have
2 such non-identical polynomials g1(x) and g2(x) with above properties. So they
are both monic and deg(g1(x)) = deg(g2(x)) = d. If g(x) = g1(x) − g2(x) then
we can easily see that deg(g(x)) < d. From the linearity of C, g(x) ∈ C. Also
since g1(x), g2(x) have minimal degree in C, it follows that g(x) is identically the 0
polynomial. In that case we would have g1(x) ≡ g2(x), which is a contradiction.
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2. Since C is an ideal it is obvious that < g(x) >⊆ C.

In order to prove the other inclusion let f(x) ∈ C. We can write f(x) = q(x)g(x) +
r(x) where deg(r(x)) < deg(g(x)). Since deg(r(x)) < n and deg(f(x)) < n

we have deg(q(x)g(x)) = deg(f(x) − r(x)) < n, so g(x)q(x) = g(x) ∗ r(x).
It follows that r(x) = f(x) − g(x) ∗ q(x) ∈ C. Since g(x) is the non-zero smallest
degree polynomial inCwe have r(x) = 0, therefore f(x) = g(x)∗q(x) ∈< g(x) > .

Next we will use the canonical generator in order to find a basis and the dimension of a
cyclic code.

Lemma 3. The canonical generator g(x) of the previous theorem divides xn − 1.

Proof. Write xn − 1 = g(x)h(x) + r(x) with deg(r(x)) < deg(g(x)). r(x) does not
belong in C unless it is the zero polynomial.

But r(x) = −g(x)h(x) + (xn − 1) = g(x) ∗ (−h(x)) ∈ C. So r(x) = 0 and that
concludes the proof.

Definition 9. Let g(x) be a canonical generator of some cyclic code C with length n. The
polynomial h(x) = xn−1

g(x)
is called the check polynomial.

Lemma 4. Let C be a cyclic code of length n. Let g(x) and h(x) be respectively the
canonical generator and check polynomial. Then

C = {g(x)f(x), deg(f(x)) < deg(h(x))}.

Proof. It is enough to show C ⊆ {g(x)f(x), deg(f(x)) < deg(h(x))}.
Let p(x) = g(x) ∗ l(x) ∈ C for some l(x) ∈ Rn. Now let l(x) = q(x)h(x) + r(x)

where deg(r(x)) < deg(h(x)). So

p(x) = g(x)∗(q(x)h(x)+r(x)) = g(x)∗q(x)∗h(x)+g(x)∗r(x) = (xn−1)∗q(x)+g(x)∗r(x)

= 0+ g(x) ∗ r(x) = g(x)r(x).

This finishes the proof since deg(r(x)) < deg(h(x)).

Lemma 5. Let C be a cyclic code with length n, and let g(x) and h(x) be as above. Then
dim(C) = k where k = deg(h(x)) and a basis for C will be the set

∆ = {g(x), x ∗ g(x), x2 ∗ g(x), ..., xk−1 ∗ g(x)}.

Observation 3. We can show that x ∗g(x) = xg(x), x2 ∗g(x) = x2g(x),...,xk−1 ∗g(x) =
xx−1g(x) that is why card(∆) = k.
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Proof. The above lemma tells us that ∆ spans C. So it is enough to prove that ∆ is linearly
independent.

Let f0g(x)+f1x∗g(x)+ ...+fk−1xk−1 ∗g(x) = 0. The last equation can be written in
the form f(x) ∗ g(x) = 0, where f(x) = f0 + f1x+ ...+ fk−1xk−1. So (xn − 1)|f(x)g(x).

Unless f(x) = 0, we have

n = deg(xn−1) 6 deg(f(x)g(x)) = deg(f(x))+deg(g(x)) < deg(h(x))+deg(g(x)) =

deg(h(x)g(x)) = deg(xn − 1) = n

This contradiction proves f(x) = 0 i.e. f0 = f1 = ... = fk−1 = 0. So ∆ is linearly
independent.

The next theorem will describes all the generators of a cyclic code.

Theorem 8. Let g(x) be the canonical generator of a [n, k, d] cyclic code C, with check
polynomial h(x). Another polynomial t(x) ∈ C is a generator for C if and only if
t(x) = g(x) · p(x) for some polynomial p(x) with gcd(p(x), h(x)) = 1 and deg(p(x)) <
deg(h(x)).

Proof. Necessary condition
Since C =< t(x) >=< g(x) > and g(x) is the canonical generator of C we have

t(x) = g(x) ∗ p(x) = g(x)p(x) where p(x) can be chosen such that deg(p(x)) <
deg(h(x)). Now let us prove that gcd(p(x), h(x)) = 1.
t(x) = g(x) ∗ p(x) but also g(x) = t(x) ∗ u(x) for some polynomial u(x). So g(x) =

g(x) ∗ p(x) ∗ u(x). i.e.

g(x) = g(x)p(x)u(x) + s(x)(xn − 1) = g(x)p(x)u(x) + s(x)h(x)g(x)

Since Fq[x] has no zero-divisors, we can cancel g(x) on both sides, so
1 = p(x)u(x) + s(x)h(x), which implies that gcd(h(x), p(x)) = 1.
Sufficient condition
Say t(x) = g(x) · p(x) with gcd(p(x)), h(x)) = 1. Because we also have that

deg(p(x)) < deg(h(x)) we can write t(x) = g(x) ∗ p(x). Let us show now that C =<
t(x) >.

First let us take f(x) ∈< t(x) > so f(x) = t(x) ∗ v(x) = g(x) ∗ p(x) ∗ v(x) ∈<
g(x) >= C.

Now let us prove the other inclusion by taking f(x) ∈ C =< g(x) >, f(x) = f0(x) ∗
g(x), for some f0(x).

Since gcd(p(x), h(x)) = 1we can find polynomials p0(x), h0(x) such that p(x)p0(x)+
h(x)h0(x) = 1. Multiplying both sides by g(x), we have

g(x) = p(x)p0(x)g(x) + h0(x)h(x)g(x) = p(x)g(x)p0(x) + h0(x)(x
n − 1).

So g(x) = p(x) ∗ g(x) ∗ p0(x) = [p(x) ∗ g(x)] ∗ p0(x) = t(x) ∗ p0(x).
Finally f(x) = f0(x) ∗ g(x) = f0(x) ∗ p0(x) ∗ t(x) ∈< t(x) >.
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Lemma 6. Let g(x) be a monic polynomial with coeficients in Fq such that g(x)|(xn − 1).
Define C to be the linear code generated by g(x). C is cyclic and its canonical generator
is g(x).

Proof. It is very easy to check that C is a cyclic code. Now we need to show that g(x) has
the least degree in C.

Assume that g0(x) is the canonical generator of C. Since both g(x) and g0(x) are
generators for the same code C we have g0(x) = f(x) ∗ g(x), for some f(x) ∈ Rn. Also if
h(x) = xn−1

g(x)
then g0(x) ∗ h(x) = g(x) ∗ f(x) ∗ h(x) = 0.

So g0(x)h(x) = s(x)(xn−1) = h(x)g(x)s(x) i.e. g0(x) = g(x)s(x), hence g(x)|g0(x).
In an identical way we can prove that g0(x)|g(x). Because g(x), g0(x) are both monic we
have g(x) = g0(x) which is exactly what we need to show.

3.3 Factorizing xn − 1
From before, in order to find cyclic codes, we need to find divisors of xn − 1 over some
Fq[x]. The following theorem will show us how to factorize xn−1 into irreducible factors.

Theorem 9. Let Fq be a finite field and n a positive integer with gcd(q, n) = 1. xn − 1
can be factorized into linear factors over some extension field Fqt of Fq.

Proof. Since gcd(q, n) = 1 we can say that qmod(n) has a multiplicative inverse in ring
Zn, thus qmod(n) is an element of the group Z∗n. Here Z∗n is the subset of Zn containing
only those elements which admit multiplicative inverse.

Since Z∗n is finite, there exists a positive integer t such that qt ≡ 1mod(n). For
example t = card(Z∗n) will work. With no loss of generality we can assume t to be the
smallest positive integer with the above property. The notation for t is t = ordnq.

Now let us look at the field Fqt . Recall that (F∗qt , ·) is a cyclic multiplicative group,

hence there exists g0 a generator of (F∗qt , ·). Let us define g = g0
qt−1
n . It is easy to check

that gn = 1. Furthermore n is the smallest positive integer such that gn = 1 otherwise g0
would not be a generator. In this case we say the order of g under the multiplicative group
(F∗qt , ·) is equals to n.

Let analyze the set Λ = {gi, 0 6 i 6 n − 1}. Because the order of g under the above
multiplicative group is n, all the elements in Λ are pairwise distinct and (gi)

n
= (gn)i =

1n = 1 for any i, 0 6 i 6 n − 1. This tells us that the polynomial xn − 1 has n distinct
roots, which are g0 = 1 g, g2, g3,...,gn−1. So

(xn − 1) = (x− 1)(x− g)(x− g2)...(x− gn−1).
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Since x− 1 is irreducible in Fq, in order to factorize xn − 1 as a product of irreducible
polynomials in Fq[x] first let us analyze the minimal polynomial of g, denoted byMg(x).

From the properties of the minimal polynomials we know that Mg(x) is irreducible in
Fq[x] andMg(x)|x

n − 1. SoMg(x) contains some of the terms of the above xn − 1. Next
we will find the minimal polynomial of gs, where s is the first index such that (x − gs) is
not inMg(x).We will keep doing that until all the terms of xn − 1 are taken.
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4 Euclidean and Hermitian Dual of Linear Codes
It is well known that for any subspace M of some Real/Complex vector space W we can
define the so called Euclidean Dual Space/Hermitian Dual Space. It is seen that if we apply
the same ideas on linear codes we can obtain other, very interesting linear codes. Most of
the work in this Chapter is refereed to [4, chapter 1.3].

4.1 Euclidean Dual of Linear Codes
Definition 10. Let Fq be a finite field and letu = (u0, u1, ..., un−1) and v = (v0, v1, ..., vn−1)
be two elements of Fnq . The inner product of those two vectors is the scalar in Fq denoted
by < u, v > and defined as

< u, v >= u0v0 + u1v1 + ...+ un−1vn−1.

There is only one property that the inner product satisfies over the field of real numbers,
but not over finite fields. We may find a non-zero codeword u ∈ Fnq such that < u,u >= 0
. For example, in Fqq take u = (1, 1, 1, ..., 1).

Definition 11. If C is a linear code of length n over Fq we can define

C⊥ = {x ∈ Fnq , such that < x, c >= 0, for any c ∈ C}

.
C⊥ is called the Euclidean dual or simply the dual of the linear code C.

Over finite fields, because the failed property of the inner product, the intersection of C
and C⊥ is not necessarily {0}, however the other properties are satisfied.

Proposition 1. If C is a linear of length n over Fq then:

1. C⊥ is a linear code of length n over Fq.

2. dim(C⊥) = n− dim(C).

3. (C⊥)⊥ = C.

4. If C1 and C2 are linear codes such that C1 ⊆ C2 then C⊥2 ⊆ C⊥1 .

Proof. Properties 1,3 and 4 are straight forward from the definition. For property 2, let
k = dim(C) and let B = {b1...., bk} be a basis for C. We know that x ∈ C⊥ if and only
if < x, bi >= 0 for any i = 1, 2, .., k. If we consider x to be a variable, the equations
< x, bi >= 0 will give us an homogeneous linear system. The rank of the coefficients
matrix of the above linear system is k (since B is a basis) and C⊥ is the solution space the
same linear system. Hence dim(C⊥) = n− k.
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Next we will recall a result that says the dual of a cyclic code is still a cyclic code.

Notation 1. For any codeword f = (f0, f1, ..., fn−1) in Fnq let

f[1] = (fn−1, f0, f1, ...fn−2),

f[2] = (f[1])[1] = (fn−2, fn−1, f0, ..., fn−3),

f[3] = (f[2])[1] = (fn−3, fn−2, fn−1, ..., fn−4),

...

f[n] = (f[n−1])[1] for any positive integer n .

Proposition 2. The following statements are true:

1. Let C be a linear code of length n over Fq. C is a cyclic code if and only if f ∈ C
implies f[1] ∈ C.

2. Let C be a cyclic code of length n over Fq. If f ∈ C, then f[m] ∈ C for any positive
integerm.

3. If f is an element in Fnq , then f[n] = f. Also for any two positive integers s, t we have
f[p+s] = (f[p])[s].

4. If f and g are two elements in Fnq , then < f, g >=< f[1], g[1] >. Furthermore for
any positive integerm we have < f, g >=< f[m], g[m] >.

5. Let π be the vector space isomorphism of Definition 8 from Fnq to Rn and let ∗ be the
multiplication in Rn. For any c ∈ Fnq let us define π(c) = c(x). If d, t ∈ Fnq and j is
a positive integer, then

t(x) = xj ∗ d(x) if and only if t = d[j].

Proof. Properties 1 through 4 are obvious. Property 5 is proved first for j = 1, using the
same technique as in Case 1 of Theorem 6. After that we can use the method of mathemat-
ical induction.

Theorem 10. Let C be a cyclic code of length n over some finite field Fnq . Then C⊥ is also
a cyclic code of length n over the same Fq.

Proof. It is enough to show that f ∈ C⊥ implies f[1] ∈ C⊥. In other words we have to
show that, for any c ∈ C, < f[1], c >= 0

From the property 2 of Proposition 2 we can say that c[n−1] ∈ C. Since f ∈ C⊥ we have
< f, c[n−1] >= 0. From property 4 of Proposition 2 we have < f[1], (c[n−1])[1] >= 0.
Finally if we apply both conclusions of property 3 of Proposition 2 we have < f[1], c >=
0.
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4.2 Hermitian Dual of Linear Codes
Definition 12. Let Fq2 , be a finite field with cardinallity q2 where q is a prime power. Also
let a ∈ Fq2 . The element aq is called the conjugate of a.

This conjugate satisfies all the properties of the conjugate in the field of complex num-
bers.

1. (a+ b)q = aq + bq. This is true from Lemma 2.

2. (−a)q = −aq. Also true from Lemma 2.

3. (ab)q = aqbq and (a
b
)q = aq

bq

4. If a ∈ Fq, where Fq is the subfield of Fq2 of cardinallity q, then aq = a. This is true
from Lagrange’s theorem for groups.

With the above information we can now define the Hermitian dual code of a linear code.

Definition 13. Let Fq2 be a finite field as above and let u = (u0, u1, ..., un−1) and v =
(v0, v1, ..., vn−1) be two elements of Fn

q2
. The Hermitian inner product is the scalar in Fq2

denoted by < u, v >H and defined as

< u, v >H= u
q
0v0 + u

q
1v1 + ...+ u

q
n−1vn−1.

Definition 14. If C is a linear code of length n over Fq2 then we can define

C⊥H = {x ∈ Fnq2 , such that < x, c >H= 0, for any c ∈ C}.

This C⊥H is called the Hermitian Dual of the linear code C.

The properties we had for the Euclidean dual work fine for the Hermitian dual too. So
if C is a linear code of length n over some Fq2 then

1. C⊥H is a linear code of length n over Fn
q2

.

2. dim(C⊥H) = n− dim(C).

3. (C⊥H)⊥H = C.

4. If C1, C2 are linear codes such that C1 ⊆ C2 then C⊥H2 ⊆ C⊥H1 .

The following theorem is also true.

Theorem 11. Let C be a cyclic code of length n over some finite field Fq2 . Then C⊥H is
also a cyclic code of length n over the same Fq2 .

Proof. Since property 4 of Proposition 2 is also true for the Hermitian inner product, the
proof of this theorem can be done in the same way as in the Euclidean case.
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5 Matrix Product Codes
One way of constructing linear codes is by combining existing codes. In 2001, Blackmore
and Norton [13] introduced the interesting and useful construction of matrix-product codes
over finite fields. Some previously well-known constructions such as the Plotkins construc-
tion and the Reed-Muller ternary construction are special cases of such construction.

5.1 Definition and Dimension of Matrix Product Codes
Definition 15. Let C1, C2, ..., Cn be linear codes of length m over some Fq and A be an
nxnmatrix. Let us denoted byC the set of all elements of the type (c1, c2, ..., cn)A, where
for i = 1, 2, .., n, ci ∈ Ci and it is taken as a column. It is obvious that the elements of C
aremxn matrices, but we can see them as rows by reading them in column-major order.

Column major-order means that if d1, d2, ..., dn are the columns in order of some ma-
trix D, then D can be identified with the row matrix d = (dT1d

T
2 ...d

T
n).

With this agreement C is a linear code of length mn over Fq and it called the Matrix
Product Code. The notation we are using for C is (C1, C2, ..., Cn)A.

The idea of matrix product code comes from some well-known examples.
Example 1. Plotkin’s construction. Let C1, C2 be respectively (n, k1, d1) and (n, k2, d2)
linear codes. Plotkin’s construction is the linear code C = {(c1, c1 + c2), c1 ∈ C1, c2 ∈
C2}. It is known that C is a (2n, k1 + k2,min{2d1, d2}) linear code. It turns out that

C = (C1, C2)

(
1 1

0 1

)
.

Example 2. Reed-Muller ternary construction. LetC1, C2, C3 be respectively (n, k1, d1),
(n, k2, d2) and (n, k3, d3) linear codes. Reed-Muller ternary construction is the code
C = {(c1 + c2 + c3, 2c1 + c2, c1), c1 ∈ C1, c2 ∈ C2, c3 ∈ C3}. It is known that C is

a (3n, k1 + k2 + k3,min{3d1, 2d2, d3}) linear code. It turns out that C = (C1, C2, C3)1 2 1

1 1 0

1 0 0

.

The first theorem is about the dimension of matrix product code.

Theorem 12. Let C1, ..., Cn, be linear codes of length m with dim(Ci) = ki. Also let
C = (C1, ..., Cn)A, whereA is an nxn matrix. With this notation we have that dim(C) 6
k1 + k2 + ... + kn. Furthermore if A is non-singular we have that dim(C) = k1 + k2 +
...+ kn.

Proof. Let us define the linear transformation σ : C1 × C2 × ...× Cn → C with

σ(c1, c2, ..., cn) = (c1, c2, ..., cn)A.

It is easy to see that σ is onto, therefore from the rank nullity theorem we have dim(C) 6
dim(C1×C2× ...×Cn) = k1+k2+ ...+kn. It is obvious that if A is non-singular then
σ is also one to one, hence the above inequality holds as equality.
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5.2 Non-Singular by Column Matrices
Next we will prove a theorem for the minimum distance of matrix product code, but it
requires the matrix A to be as in definition below.

Definition 16. A square nxn matrix M is said to be Non-Singular by Columns (NSC) if
and only if, for any t = 1, 2, ..., n the minor obtained from ”intersecting” the first t rows
with any t columns has a non-zero determinant.

Theorem 13. Let C1, ..., Cn, be linear codes of length m with dmin(Ci) = di. Also let
C = (C1, ..., Cn)A where A is an nxn NSC matrix. If d = dmin(C) then
d > d∗ = min{nd1, (n− 1)d2, ..., 2dn−1, dn}.

Proof. We need to show that for any c ∈ C, c 6= 0 the number of non-zero entries in c
(called theweight(c)) is bigger than or equal to d∗. Since c ∈ C there exist ci ∈ Ci, such
that c = (c1, c2, ..., cn)A. Remember that those c ′is are taken in column therefore we can
denote them as follows.

c1 = (c11, c21, c31, ..., cm1)
T ,

c2 = (c12, c22, c32, ..., cm2)
T ,

...

cn = (c1n, c2n, c3n, ..., cmn)
T .

With this notation we can see (c1, c2, ..., cn) as an mxn matrix with cij the (i, j) − th
entry. If we define the (i, j)− th entry of A with aij and the (i, j)− th entry of C with dij
we have
dij = ci1a1j + ci2a2j + ... + cinanj. Here we are considering the elements of C as

mxn matrices.
We need to show now that dij 6= 0 for more then d∗ values of i = 1, 2, ...,m and

j = 1, 2, ..., n.
Since c 6= 0 we can define t = max{h ∈ {1, 2, ..., n}, ch 6= 0}. With this notation it is

easy to check that dij = ci1a1j + ci2a2j + ...+ citatj.

Claim: If for some i = 1, 2, ..., n, cit 6= 0 then dij 6= 0 for at least n− t+ 1 values of
j = 1, 2, ..., n.

Let us finish the proof of the theorem assuming the claim is true. Since dmin(Ct) = dt
we have that cit 6= 0 for at least dt values of i = 1, 2, ..., n. Therefore dij 6= 0

for at least dt values of i = 1, 2, .., n and n − t + 1 values of j = 1, 2, .., n. Hence
weight(c) > (n− t+ 1)dt > d∗. Let now prove the claim.

Prove of the Claim: Fix i, such that cit 6= 0 and assume by contradiction that there
exist n − (n − t + 1) + 1 = t values of j = 1, 2, ..., n such that dij = 0. If we call them
j1, j2, ..., jt we have the following homogeneous linear system
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dij1 = ci1a1j1 + ci2a2j1 + ...+ citatj1 = 0
dij2 = ci1a1j2 + ci2a2j2 + ...+ citatj2 = 0

...........................
dijt = ci1a1jt + ci2a2jt + ...+ citatjt = 0

with variables ci1, ci2, ..., cit. The coefficient matrix of this linear system is
a1j1 a1j2 ... a1jt
a2j1 a2j2 ... a2jt
... ... ... ...

atj1 atj2 ... atjt

.

Since A is NSC the above matrix has a non-zero determinant; hence from Kramer’s rule
the trivial solution is the only solution. This contradicts the fact that cit 6= 0.

5.3 The Dual of Matrix Product Codes
The next theorem will give us a formula for the dual of the matrix product code.

Theorem 14. Let C = (C1, C2, ..., Cn)A as above, and let us assume that A is a non-
singular nxn matrix. The dual of C is given by the formula

C⊥ = (C⊥1 , C
⊥
2 , ..., C

⊥
n)(A

−1)T .

Observation 4. In this proof I will assume that the elements of C,C⊥ arem× n matrices
and for any 2 matrices P,Q with the same size, say t × s we can define the dot product
< P,Q > in the same way as codewords. So

< P,Q >=

t,s∑
i,j=1

pijqij, (1)

where pij and qij are respectively the (i, j) − th entry of matrices P and Q.

Proof. Let W = (C⊥1 , C
⊥
2 , ..., C

⊥
n)(A

−1)T . In order to prove that W = C⊥ we need to
show two things.

1. dim(C⊥) = dim(W).

2. For any c ∈ C and w ∈W, < c,w >= 0.

Let start with the first one.

1. dim(C⊥) = mn− dim(C) = mn− dim(C1) − dim(C2) − ...− dim(Cn)=

(m− dim(C1)) + (m− dim(C2)) + ...+ (m− dim(Cn))=

dim(C⊥1 ) + dim(C⊥2 ) + ...+ dim(C⊥n) = dim(W).
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2. Let c = (c1, c2, ..., cn)A ∈ C, for some ci ∈ Ci. Also letw = (w1, w2, ..., wn)B ∈
W, for some wi ∈ C⊥i and B = (A−1)T .

Let R1, R2, ...Rn be the rows of A in order, also let Q1, Q2, ..., Qn be the rows of B
in order ( QT1 , Q

T
2 , ..., Q

T
n are the columns of A−1 in order). It is easy to check that

c = c1R1 + c2R2 + ...+ cnRn and w = w1Q1 +w2Q2 + ...+wnQn. If we show
that for any i, j = 1, 2, ..., n, < ciRi, wjQj >= 0 then < c,w >= 0.

Case 1: Let i 6= j. If ci=


α1
α2
...

αm

 andwj=


β1
β2
...

βm

 then ciRi=


α1Ri
α2Ri
...

αmRi

 andwjQj=


β1Qj
β2Qj
...

βmQj

. Since < Ri, Qj >= (AA−1)(i, j) = 0 it follows < ciRi, wjQj >= 0.

Case 2: Let i = j. In this case if Ri = (α1, α2, ..., αn) and Qi = (β1, β2, ..., βn)
then ciRi = (α1ci, α2ci, ..., αnci) and wiQi = (β1wi, β2wi, ..., βnwi). Since
ci ∈ Ci and wi ∈ C⊥i we have < ci, wi >= 0, therefore < ciRi, wiQi >= 0.

In the last theorem if we take A to be non-singular by columns, (A−1)T may not be
non-singular by columns. In order to fix that, for any positive integer n we can define the

square nxn matrix Jn =


0 0 ... 0 1

0 0 ... 1 0

... ... ... ... ...

0 1 ... 0 0

1 0 ... 0 0

.

We can easily check that (C⊥1 , C
⊥
2 , ..., C

⊥
n) = (C⊥n , C

⊥
n−1, ..., C

⊥
1 ) · Jn, therefore the

above theorem transforms to

((C1, C2, ..., Cn)A)
⊥ = (C⊥n , C

⊥
n−1, ..., C

⊥
1 ) · Jn · (A−1)T .

It turns out that the next theorem is true.

Theorem 15. If A is a given NSC square matrix, then J · (A−1)T is also NSC.

Observation 5. In the following we will drop the index n from Jn for simplicity. There
will be no confusion since the index n will be understood from the given data. In the above
theorem the size of J will have be the same as the size of A.

Before we prove Theorem 15 we need to prove some Lemmas first.

Lemma 7. Let B = JA and C = AJ, where J is the above n×n matrix and A is a random
nxn matrix. If αij, βij and γij are respectively the (i, j) − th entry of A,B and C, then
for any i, j = 1, 2, ..., n, βij = αn−i+1,j and γij = αi,n+1−j.
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Observation 6. In other words, if R1, R2, ..., Rn are the rows ofA in order andC1, C2, ..., Cn
are the columns of A in order, then the rows of B in order would be Rn, Rn−1, ..., R1 and
the columns of C in order would be Cn, Cn−1, ..., C1.

Proof. The proof is straightforward from the definition of matrix multiplication and the
fact that the (i, j) − th term of J is equals to 1 if i+ j = n+ 1 and 0 otherwise.

Lemma 8. Let A be a non-singular n × n matrix and π a permutation of {1, 2, 3, ..., n}.
Also let C1, ..., Cn be the columns of A in order and let R1, R2, ..., Rn be the rows of
A−1 in order. Let us denote by B the n × n matrix such that its columns in order would
be Cπ(1), Cπ(2), ..., Cπ(n) and B0 the n × n matrix such that its rows in order would be
Rπ(1), Rπ(2), ..., Rπ(n). From these conditions we can say that B0 = B−1.

Proof. The proof will be done by evaluating B0 ·B in blocks. The blocks for B0 will be its
Rows and the blocks for B will be its columns.

B0 · B =


Rπ(1)
Rπ(2)
...

Rπ(n)

 · (Cπ(1) Cπ(2) ... Cπ(n)
)
=


< Rπ(1), Cπ(1) > < Rπ(1), Cπ(2) > ... < Rπ(1), Cπ(n) >

< Rπ(2), Cπ(1) > < Rπ(2), Cπ(2) > ... < Rπ(2), Cπ(n) >

... ... ... ...

< Rπ(n), Cπ(1) > < Rπ(n), Cπ(2) > ... < Rπ(n), Cπ(n) >


Remember that C ′is are the columns of A and R ′js are the rows of A−1, therefore <
Rπ(j), Cπ(i) > is equals to 1 when i = j and 0 when i 6= j. So B0 · B = I.

Lemma 9. The idea of this lemma is taken from the Schur’s Complement of a block matrix.
See [21, page 6, relations (17) (18) and (19)].

Let X =

(
P Q

R S

)
be a non-singular matrix of size (n+m)×(n+m), where P,Q, R, S

are matrices with sizes respectively n× n,n×m,m× n,m×m.

Let X−1 =

(
P0 Q0
R0 S0

)
where the sizes of matrices P0, Q0, R0, S0 are respectively the

same as of P,Q, R, S. If P is non-singular then S0 is also non-singular.

Observation 7. Note that if Y =

(
P ′ Q ′

R ′ S ′

)
is a matrix of size (n + m) × (n + m),

where P ′, Q ′, R ′, S ′ are matrices with same size as respectively P,Q, R, S then it possible
to multiply XY in blocks and the sizes of the blocks of XY will be the same as the sizes of
the blocks of X.

Proof. Let us define L1 =
(
In P−1Q

0 Im

)
, L2 =

(
P 0
0 −RP−1Q+ S

)
and L3 =

(
In 0
RP−1 Im

)
Note that matrices L1, L2, L3 have the same size asX and also their blocks have identical

sizes as the blocks of X.
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It is easy to check by definition that L1, L3 are non-singular and L−11 =

(
In −P−1Q
0 Im

)
,

L−13 =

(
In 0

−RP−1 Im

)
. Now let us show that X = L3L2L1.

L3 · L2 · L1=
(
In 0
RP−1 Im

) (
P 0
0 −RP−1Q+ S

) (
In P−1Q

0 Im

)
=
(
P 0
R −RP−1Q+ S

) (
In P−1Q

0 Im

)
=
(
P Q

R S

)
=X

Since X, L1, L3 are non-singular then L2 is non-singular. L2 non-singular implies that

−RP−1Q+ S is also non-singular and L−12 =

(
P−1 0
0 (−RP−1Q+ S)−1

)
.

From X = L3L2L1 we have

X−1 = L−11 L
−1
2 L

−1
3 =

(
In −P−1Q
0 Im

) (
P−1 0
0 (−RP−1Q+ S)−1

) (
In 0

−RP−1 Im

)
=
(
P−1 −P−1Q(−RP−1Q+ S)−1

0 (−RP−1Q+ S)−1

) (
In 0

−RP−1 Im

)
=
(
P−1 + P−1Q(−RP−1Q+ S)−1RP−1 P−1Q(−RP−1Q+ S)−1

−(−RP−1Q+ S)−1RP−1 (−RP−1Q+ S)−1

)
It follows S0 = (−RP−1Q+ S)−1, so S0 is non-singular.

Now it is time to prove Theorem 15

Proof. A is a given nxn non-singular by columns (NSC) matrix. We need to prove that
D = J(A−1)T is also NSC.

The proof will be done using the definition, but first let us denote by αij, βij, δij re-
spectively the (i, j) − th entry of A,A−1and D.

Let t ∈ {1, 2, ..., n} be a random integer and let j1, j2, ..., jt be the indices in increasing
order of t random chosen columns ofD. Also letM be the minor obtain from ”intersecting”
the first t rows of D with columns j1, j2, ..., jt. All we need to prove is det(M) 6= 0.

From Lemma 7 we have

M =


δ1j1 δ1j2 ... δ1jt
δ2j1 δ2j2 ... δ2jt
... ... ... ...

δtj1 δtj2 ... δtjt

=


βj1,n βj2,n ... βjt,n
βj1,n−1 βj2,n−1 ... βjt,n−1
... ... ... ...

βj1,n−t+1 βj2,n−t+1 ... βjt,n−t+1


Next we put {k1, k2, ..., kn−t}={1, 2, ..., n}− {j1, j2, ..., jt} with k1 < k2 < ... < kn−t and
let us define

A0 =


α1k1 α1k2 ... α1kn−t α1j1 α1j2 ... α1jt
α2k1 α2k2 ... α2kn−t α2j1 α2j2 ... α2jt
... ... ... ... ... ... ... ...

αnk1 αnk2 ... αnkn−t αnj1 αnj2 ... αnjt
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It is easy to see that A0 is a column permutation of A, therefore A0 is NSC. From Lemma
8 we have

A−1
0 =



βk1,1 βk1,2 ... βk1,n
βk2,1 βk2,2 ... βk2,n
... ... ... ...

βkn−t,1 βkn−t,2 ... βkn−t,n
βj1,1 βj1,2 ... βj1,n
βj2,1 βj2,2 ... βj2,n
... ... ... ...

βjt,1 βjt,2 ... βjt,n


Now we will apply Lemma 9 for X = A0 and P the intersection of the first n − t rows
with n − t columns of A0. X = A0 and P are non-singular because A0 is NSC. Using
the above Lemma we can say that also S0 is non-singular, where S0 is obtained from A−1

0

intersecting the last t rows with the last t columns. If we do that we obtain

S0 =


βj1,n−t+1 βj1,n−t+2 ... βj1,n
βj2,n−t+1 βj2,n−t+2 ... βj2,n

... ... ... ...

βjt,n−t+1 βjt,n−t+2 ... βjt,n


Finally again from Lemma 7 we can say thatM = JST0 , henceM is non-singular, therefore
det(M) 6= 0.
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6 Quasi Cyclic Code (QCC)
Quasi Cyclic Codes is a very useful generalization of cyclic codes. Zahra Sepasdar [11]
introduced some very interesting ideals/cyclic codes, defined from a given quasi-cyclic
codes. She used this ideals in order to find generator polynomials for such codes.

6.1 Definition and Polynomial Representation of a Quasi Cyclic Code
Let s, l be two positive integers. If c ∈ Fslq , it can be written in the form c = (A0, A1, ..., Al−1)
where Ai’s are codewords with length s. So Ai = (ai,0, ai,1, ..., ai,s−1) ∈ Fsq.

Definition 17. A linear code C of length sl over Fq is called Quasi Cyclic Code (QCC) of
index s if and only if (A0, A1, ..., Al−1) ∈ C implies (Al−1, A0, ..., Al−2) ∈ C.

As before we will identify codewords of a QCC with polynomials, but this time we will
use two variable polynomials.

Let Fq[x, y] be the set of all two variables polynomials with coefficients in a finite field
Fq and let Rs,l be the subset of Fq[x, y] containing all polynomials of degree less then s
with respect to x and degree less then l with respect to y. Note that the order of s and l is
important here.

It is well known that Rs,l is a vector space over the field Fq with dimension n = ls.
Furthermore in Rs,l we also have the multiplication modulo (xs − 1, yl − 1). As before I
will denote with ∗ this multiplication, so for any f(x, y) and g(x, y) in Rs,l we have

f(x, y) ∗ g(x, y) = f(x, y) · g(x, y)|xs=1,yl=1.

Definition 18. Let c ∈ Flsq with c = (A0, A1, ..., Al−1) and Ai = (ai,0, ai,1, ..., ai,s−1)
as above. We can define

1. Ai(x) = ai,0 + ai,1x+ ai,2x2 + ...ai,s−1xs−1 ∈ Rs = F[x]/ < xs − 1 >.

2. c(x, y) = A0(x) +A1(x)y+A2(x)y
2 + ...+Al−1(x)y

l−1 ∈ Rs,l.

3. π : Fsl → Rs,l with π(c) = c(x, y).

It is easy to check that the map π is an isomorphism of vectors spaces, but as in the case
of cyclic codes Rs,l is also a ring. Because of the isomorphism any linear code of length sl
can be seen as a subspace of Rs,l.

Theorem 16. Let C be a quasi cyclic code of index s and length n = sl. For any c =
c(x, y) ∈ C and any p(y) ∈ Fq[y], we have c(x, y) ∗ p(y) ∈ C.

Proof. First let us prove for p(y) = y. If c = c(x, y) ∈ C then

c(x, y) ∗ y = (A0(x) +A1(x)y+A2(x)y
2 + ...+Al−1(x)y

l−1) ∗ y



6 QUASI CYCLIC CODE (QCC) 25

= A0(x) ∗ y+A1(x) ∗ y2 +A2(x) ∗ y3 + ...+Al−1(x) ∗ yl

= Al−1(x) +A0(x)y+A2(x)y
2 + ...+Al−2(x)y

l−1

= π(Al−1, A0, A1, ...Al−2) ∈ π(C) ≡ C.

The last codeword is in C, because C is quasi cyclic.
Using the method of mathematical induction we can prove that c(x, y) ∗ yk ∈ C for

any positive integer k and for any c = c(x, y) ∈ C.
Finally, using the fact that C is linear we can conclude that c(x, y) ∗ p(y) ∈ C for any

c = c(x, y) ∈ C and any p(y) ∈ F[y], by taking p(y) = α0+α1y+α2y2+...+αryr.

6.2 The Generators of a Quasi Cyclic Code
In the following, we will try to find generators for quasi cyclic codes. Let C be a quasi
cyclic code of index s and length n = sl, and let f(x, y) ∈ C be any random element. We
can easily verify that f(x, y) can be written in the form

f(x, y) = f0(y) + f1(y)x+ f2(y)x
2 + ...+ fs−1(y)x

s−1

where fi(y) ∈ Sl = F[y]/ < yl− 1 >. In other words fi(y) are polynomials with variable
y and degree strictly less then l. Let

I0 = {g0(y) ∈ Sl, such that g0(y) + g1(y)x+ ...+ gs−1(y)xs−1 ∈ C for some,
g1(y), g2(y), ..., gs−1(y) ∈ Sl}

Proposition 3. I0 is an ideal in Sl.

Proof. It is easy to check that I0 is a subspace of Sl. All we have to do now is prove that
p(y) ∗ g0(y) ∈ I0 for any g0(y) ∈ I0 and p(y) ∈ F[y].

Since g0(y) ∈ I0, there exists g(x, y) = g0(y) + g1(y)x + ... + gs−1(y)x
s−1 ∈ C.

From Theorem 16, we have g(x, y) ∗ p(y) ∈ C, but

p(y)∗g(x, y) = (p(y)∗g0(y))+(p(y)∗g1(y))x+(p(y)∗g2(y))x2+...+(p(y)∗gs−1(y))xs−1.

It follows p(y) ∗ g0(y) ∈ I0.

We know that Sl is a principal ideal domain. So I0 =< p00(y) > and p00(y) | (y
l − 1).

Recall that f(x, y) = f0(y)+f1(y)x+f2(y)x2+...+fs−1(y)xs−1 is a random element
in C so f0(y) ∈ I0 =< p00(y) >. Therefore f0(y) = p00(y)q0(y), for some q0(y) ∈ Sl.

Note that we don’t have to use ∗ for f0(y) because q0(y) can be chosen such that
deg(p00(y)q0(y)) < l.

Since p00(y) ∈ I0, there exists

p0(x, y) = p
0
0(y) + p

0
1(y)x+ p

0
2(y)x

2 + ...+ p0s−1(y)x
s−1 ∈ C.
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Let h1(x, y) = f(x, y) − p0(x, y) ∗ q0(y). From Theorem 16 and linearity of C we can
say h1(x, y) ∈ C. Now let’s try to evaluate it.

h1(x, y) = f(x, y)−p0(x, y)∗q0(y) = (f0(y)−p
0
0(y)q0(y))+(f1(y)−q0(y)∗p01(y))x+

(f2(y) − q0(y) ∗ p02(y))x2 + ...+ (fs−1(y) − q0(y) ∗ p0s−1(y))xs−1.

Since f0(y) = p00(y)q0(y) we can say that the term x0 is missing in h1(x, y). So it can be
written in the form

h1(x, y) = h
1
1(y)x+ h

1
2(y)x

2 + ...+ h1s−1(y)x
s−1 ∈ C.

Let us define with

I1 = {g1(y) ∈ Sl, such that g1(y)x+ ...+ gs−1(y)xs−1 ∈ C for some,
g2(y), g3(y), ..., gs−1(y) ∈ Sl}

As before, we can prove that I1 is also an ideal in Sl = F[y]/ < yl − 1 > and I1 =<
p11(y) > with p11(y) | (y

l − 1). As h1(x, y) has no x0 term, h11(y) ∈ I1, so h11(y) =
p11(y)q1(y). Since p11(y) belongs to I1 as its generator there exists

p1(x, y) = p
1
1(y)x+ p

1
2(y)x

2 + ...+ p1s−1(y)x
s−1 ∈ C.

Let us define h2(x, y) = h1(x, y) − p1(x, y) ∗ q1(y). As before we can say h2(x, y) ∈ C
and of the form

h2(x, y) = h
2
2(y)x

2 + h23(y)x
3 + ...+ h2s−1(y)x

s−1.

If we put together h1(x, y) = f(x, y) − p0(x, y) ∗ q0(y) and h2(x, y) = h1(x, y) −
p1(x, y) ∗ q1(y), we can find

f(x, y) = p0(x, y) ∗ q0(y) + p1(x, y) ∗ q1(y) + h2(x, y).

We can keep going like this by defining ideals I2, I3, ..., Is−1, and at the end we have

f(x, y) = p0(x, y) ∗ q0(y) + p1(x, y) ∗ q1(y) + ...+ ps−1(x, y) ∗ qs−1(y).

pi(x, y) are called the generators of the quasi cyclic code C, since they only depend on
C and not on the choice of f(x, y). The x0, x1, ..., xi−1 terms are missing in each pi(x, y).
We obtain the code C be multiplying those generators with polynomials in Sl = F[y]/ <
yl − 1 >.
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7 Permuted Quasi Cyclic Codes (PQCC)
We know from the previous chapter that from any QCC of length sl and index s over some
we can define s ideals/cyclic codes of length l. I was thinking if it is possible to write down
any QCC as a matrix-product of the cyclic codes defined above?

It turned out that the structure of a QCC is not right to be written as a matrix-product.
That is why I manipulated those code a little bit. I called this new type Permuted Quasi
Cyclic Codes since they can be obtained from a quasi cyclic code using a permutation.

7.1 Definition Dimension and Basis
Definition 19. Let s, l be positive integers and let C be a linear code of length s · l over
some finite field Fq. Any codeword f ∈ C can be written in the form f = (f1, f2, ..., fs),
where fi ∈ Flq, for any i = 1, 2, ...s. We say C is a Permuted Quasi Cyclic Code of length
sl and index s over Fq if and only if f = (f1, f2, ..., fs) ∈ C implies (f[1]1 , f

[1]
2 , ..., f

[1]
s ) ∈ C.

Recall that for any element x = (x1, x2, ..., xl) ∈ Flq, x[1] = (xl, x1, x2, ..., xl−1).

It is obvious from both definitions that there exist a permutation of the set {1, 2, 3, ..., l ·
s} such that every quasi cyclic code becomes a permuted quasi cyclic code and viceversa.
It is not easy to find a mathematical formula for this permutation that is why I will illustrate
that with an example.

Example 3. Let us define the isomorphism δ : F12q → F12q such that

δ(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) = (a1, a4, a7, a10, a2, a5, a8, a11, a3, a6, a9, a12).

It is easy to check that if C is a quasi cyclic code of length 12 and index 3, then δ(C) is a
permuted quasi cyclic code of length 12 and index 3.
Viceversa, if C is a permuted quasi cyclic code of length 12 and index 3, then δ−1(C) is a
quasi cyclic code of length 12 and index 3.

In the quasi cyclic codes we had ideals I0, I1, ..., Is−1. In the permuted quasi cyclic
codes we will define cyclic codesC1, C2, ..., Cs that represent respectively the ideals I0, I1, ..., Is−1.

Definition 20. Let C be a PQCC of length sl and index s over Fq. Let us define the
following
C1 = {a1 ∈ Flq, such that (a1, a2, ..., as) ∈ C, for some a2, a3, ..., as ∈ Flq},

C2 = {a2 ∈ Flq, such that (0, a2, ..., as) ∈ C, for some a3, a4, ..., as ∈ Flq},

C3 = {a3 ∈ Flq, such that (0, 0, a3, ..., as) ∈ C, for some a4, a5, ..., as ∈ Flq},

...
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Cs = {as ∈ Flq, such that (0, 0, ..., 0, as) ∈ C}.
Since I couldn’t come up with a nice formula for the permutation, I will prove the

following theorem.

Theorem 17. Let C be a PQCC of length sl and index s over Fq. Every C1, C2, ..., Cs
defined as above is a linear and cyclic code.

Proof. The proof will be done for C1 and it can be generalized for all the others.

1. First I will prove linearity for C1. So let a1, b1 ∈ C1 and t ∈ Fq. From the
definition of C1 there exist two codewords a, b ∈ C of the form a = (a1, a2, ..., as)
and b = (b1, b2, ..., bs). Since C is linear we have that

a+ tb = (a1 + tb1, a2 + tb2, ..., as + tbs) ∈ C.

From the definition of C1 we have a1 + tb1 ∈ C1, so C1 is a linear code.

2. Now let us prove that C1 is cyclic. If a1 ∈ C1 there exist a ∈ C of the form
a = (a1, a2, ..., as). Since C is a PQCC we have (a

[1]
1 , a

[1]
2 , ..., a

[1]
s ) ∈ C, therefore

a
[1]
1 ∈ C1 which makes C1 a cyclic code.

Observation 8. If the above linear code C of length sl is not a PQCC we can still define
C1, ...Cs but they will just be linear codes of length l.

The next theorem will give us a formula for the dimension of a linear code C of length
sl in terms of the dimensions of the above C1, C2, ...Cs.

Theorem 18. Let C be a linear code of length sl over Fq and let C1, C2, ..., Cs be the
above linear codes. The dimension of C is given by

dim(C) = dim(C1) + dim(C2) + ...+ dim(Cs).

Proof. The proof of this formula will be done using the method of mathematical induction
on s.

1. Base Step s = 2.

In this case we only have C1, C2 as in Definition 20 and we will have to show that

dim(C) = dim(C1) + dim(C2).

Let us define the linear transformation

ϕ : C→ C1, ϕ(a1, a2) = a1.

It is very easy to see thatϕ is onto and kern(ϕ) = {0}×C2, where× is the Cartesian
Product of two sets.

So dim(kern(ϕ)) = dim(C2), therefore from the Rank-Nullity Theorem we have
dim(C) = dim(C1) + dim(C2).
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2. Next we will assume that this theorem is true for any linear codeD of length (s−1)l.

3. Let us prove the theorem for any linear code C of length sl. We can define

D = {(a1, a2, ..., as−1) ∈ F
(s−1)l
q , such that (a1, a2, ..., as−1, as) ∈ C, for

some

as ∈ Flq}.
D satisfies following properties.

(a) D is a linear code of length (s− 1)l over Fq.

(b) dim(C) = dim(D) + dim(Cs).
The proof is identical as in the case of s = 2. This time we will define

ϕ : C→ D,ϕ(a1, a2, ..., as−1, as) = (a1, a2, ..., as−1)

and as before we will apply the Rank-Nullity Theorem.

(c) If D1, D2, ..., Ds−1 are the linear codes defined from D as in Definition 20,
then it is easy to check that C1 = D1, C2 = D2,...,Cs−1 = Ds−1.

We can assume that dim(D) = dim(D1) + ...+ dim(Ds−1) since the length of D
is l(s− 1), so

dim(C) = dim(D) + dim(Cs) = dim(D1) + dim(D2) + ...dim(Ds−1) +
dim(Cs), so

dim(C) = dim(C1) + dim(C2) + ...dim(Cs−1) + dim(Cs).

Next we will try to find a basis for C assuming this time that C is a permuted quasi
cyclic code. Recall that in this case the above C1, ..., Cs are cyclic codes.

Let gi be the canonical generator of Ci taken as a codeword and let ki = dim(Ci). We
know from Lemma 5 and statement 5 of Proposition 2 that a basis for C1 is the set

B1 = {g1, g
[1]
1 , g

[2]
1 , ..., g

[k1−1]
1 },

where for any positive integer m, g[m]
1 is obtained from g1 as in Notation 1. In the same

way we can say that the basis for Ci, i = 1, 2, ..., s is the set

Bi = {gi, g
[1]
i , g

[2]
i , ..., g

[ki−1]
i }.

Since g1 ∈ C1 we have that (g1, p12, p13, ..., p1s) ∈ C for some p1j ∈ Flq, j = 2, 3, ..., s−
1. Furthermore there exists pij ∈ Flq, 1 6 i < j 6 s such that the following codewords
belong in C.

(0, g2, p23, p24, ..., p2s),

(0, 0, g3, p34, p35, ..., p3s),
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...

(0, 0, ..., 0, gs−1, ps−1,s),

(0, 0, ..., 0, gs).

.
We can claim that the following codewords form a basis for C.

(g1, p12, p13, ..., p1s), (g
[1]
1 , p

[1]
12 , p

[1]
13 , ..., p

[1]
1s ), ...., (g

[k1−1]
1 , p

[k1−1]
12 , p

[k1−1]
13 , ..., p

[k1−1]
1s ),

(0, g2, p23, ..., p2s), (0, g
[1]
2 , p

[1]
23 , ..., p

[1]
2s ), ...., (0, g

[k2−1]
2 , p

[k2−1]
23 , ..., p

[k2−1]
2s ),

(0, 0, g3, p34, ..., p3s), (0, 0, g
[1]
3 , p

[1]
34 , ..., p

[1]
3s ), ...., (0, 0, g

[k3−1]
3 , p

[k3−1]
34 , ..., p

[k3−1]
3s ),

.... .... ....

(0, 0, ..., 0, gs), (0, 0, ..., 0, g
[1]
s ), ...., (0, 0, ..., 0, g

[ks−1]
s ).

Proof. Since the number of the above codewords is k1+k2+...+ks = dim(C) all we have
to do is prove that all those vectors are linearly independent. This can be done by using
the definition of linearly independent codewords. We can set the “famous equation“ and
let α0, α1, ..., αk1−1 be the scalars in order of the codewords in the first row. Equalizing
only the first entries on both sides of the “famous equation“ we obtain α0g0+α1g1+ ...+
αk1−1gk1−1 = 0. Since B1 above is a basis for C1 we have α0 = α1 = ... = αk1−1 = 0.

Next we can cut off all the first row codewords from the “famous equation“ and equalize
the second entries on both sides of the same equation. After doing that all the scalars of
the vectors in the second row will be zero. Repeating this procedure s times we can prove
that all the scalars of “famous equation“ are zero, which implies linear independence of the
above codewords.

Next we will prove a theorem that we are going to apply later.

Theorem 19. Let C be a PQCC of length sl and index s over some finite field. Let
(a1, a2, ..., as) be a random codeword in C, with ai ∈ Flq for all i = 1, 2, ...s. Also let p
be a random element in Flq and let us define bi(x) = p(x) ∗ ai(x). With these conditions
we can show that (b1, b2, ..., bs) ∈ C.

Remark 1. For any element d ∈ Flq, d(x) is the polynomial in F[x]/ < xl − 1 > that
represents d using isomorphism π as in Definition 8. Meanwhile “∗“ is the multiplication
modulo (xl − 1).

Proof. If p = (α0, α1, ..., αl−1) ∈ Flq, then p(x) = α0+α1x+ ... = αl−1xl−1. Therefore
for i = 1, ..., s we have bi(x) = α0ai(x) + α1x ∗ ai(x) + ...+ αl−1xl−1 ∗ ai(x).

From statement 5 of Proposition 1 we have bi = α0ai + α1a
[1]
i + α2a

[2]
i + ... +

αl−1a
[l−1]
i . So

(b1, b2, ..., bs) = α0(a1, a2, ..., as) + α1(a
[1]
1 , a

[1]
2 , ..., a

[1]
s )

+α2(a
[2]
1 , a

[2]
2 , ..., a

[2]
s ) + ...+ αl−1(a

[l−1]
1 , a

[l−1]
2 , ..., a[l−1]

s ).

Since C is PQCC and (a1, a2, ..., as) ∈ C we have that for any j = 1, 2, ..., l − 1 ,
(a

[j]
1 , a

[j]
2 , ..., a

[j]
s ) ∈ C. Finally from the linearity of C we have (b1, b2, ..., bs) ∈ C.
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Corollary 1. Let C be a PQCC of length sl and index s over some finite field and let
C1, C2, ..., Cs be the cyclic codes defined as above. Also for i = 1, 2, ..., s let gi be a
generator of Ci taken as a codeword.

If for some scalarsβ1, β2, ..., βs ∈ Fq and for some i = 1, 2, .., swe have (β1gi, β2gi, ..., βsgi) ∈
C then for any ci ∈ Ci we have (β1ci, β2ci, ..., βsci) ∈ C.

7.2 Permuted Quasi Cyclic Codes as Matrix Product of Cyclic Codes
In this section I will try find a necessary and a sufficient condition so any PQCC C can be
written as matrix-product of the cyclic codes C1, C2, ..., Cs as in Definition 20.

Theorem 20. Let D1, D2, ..., Ds be cyclic codes of length l over some Fq and let A be an
s× s matrix with entries in Fq. The linear code C, defined as C = (D1, D2, ..., Ds)A is a
PQCC of length sl and index s.

Proof. Let αij be the (i, j)th entry of matrix A. For any (b1, b2, ..., bs) ∈ C (where
bj ∈ Flq), there exists di ∈ Di, i = 1, 2, ..., s such that (b1, b2, ..., bs) = (d1, d2, ..., ds)A.
So for any j = 1, 2, ..., s we have

bj = α1jd1 + α2jd2 + ...+ αsjds.

Therefore
b
[1]
j = α1jd

[1]
1 + α2jd

[1]
2 + ...+ αsjd

[1]
s .

Since this last equation is true for any j = 1, 2, .., s we can say that

(b
[1]
1 , b

[1]
2 , ..., b

[1]
s ) = (d

[1]
1 , d

[1]
2 , ..., d

[1]
s )A.

Since Dj is cyclic and dj ∈ Dj we have that d[1]j ∈ Dj, for any j = 1, 2, ..., s. Hence

(b
[1]
1 , b

[1]
2 , ..., b

[1]
s ) ∈ (D1, D2, ..., Ds)A = C.

In the following we will try to find conditions in which any PQCC code of index s can
be written as a matrix product of those cyclic codes C1, C2, ..., Cs as in Definition 20.

Theorem 21. Let C be a PQCC of length sl and index s over some Fq. Let C1, C2, ..., Cs
be as above with gi the canonical generator of Ci. Let us assume that for any positive
integers i, j with 1 6 i < j 6 s there exist scalars αij in Fq such that

(g1, α12g1, α13g1, ..., α1sg1) ∈ C,

(0, g2, α23g2, α24g2, ..., α2sg2) ∈ C,

(0, 0, g3, α34g3, α35g3, ..., α3sg3) ∈ C,
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...

(0, 0, ..., gs−1, αs−1,sgs−1) ∈ C.
Under these conditions C = (C1, C2, ..., Cs)A where

A =


1 α12 α13 α14 ... α1,s−1 α1s
0 1 α23 α24 ... α2,s−1 α2s

0 0 1 α34 ... α3,s−1 α3s

... ... ... ... ... ... ...

0 0 0 0 ... 1 αs−1,s
0 0 0 0 ... 0 1


Proof. Since det(A) 6= 0 we have that

dim((C1, C2, ..., Cs)A) = dim(C1) + dim(C2) + ...+ dim(Cs) = dim(C),

therefore all we have to do is prove that C ⊆ (C1, C2, ..., Cs)A.
Let (a1, a2, ..., as) ∈ C for some ai ∈ Flq. We can define c1, c2, ..., ck in a recursive

way as follows

c1 = a1,
c2 = a2 − α12c1,
c3 = a3 − α13c1 − α23c2,
c4 = a4 − α14c1 − α24c2 − α34c3,
...
cs = as − α1sc1 − α2sc2 − ...− αs−1,scs−1.

After solving the above equations for a1, a2, ..., as in terms of c1, c2, ..., cs we can see
that (a1, a2, ..., as) = (c1, c2, ..., cs)A. In order to finish the proof we have to show that
ci ∈ Ci for any i = 1, 2, ..., s.

The proof will be done step by step starting with c1 ∈ C1. Then we will show c2 ∈ C2,
c3 ∈ C3 and so on until we finish with cs ∈ Cs. The proof of each step will require the
results of the previous steps.

1. Since (a1, a2, ..., as) ∈ C then c1 = a1 ∈ C1.

2. From Corollary 1 of Theorem 19 and the fact that (g1, α12g1, α13g1, ..., α1sg1) ∈ C
we have that (c1, α12c1, α13c1, ..., α1sc1) ∈ C. Since C is linear, if we subtract the
last codeword from (a1, a2, ..., as), the result will still be in C. Therefore we can
write

(a1 − c1, a2 − α12c1, a3 − α13c1, ..., as − α1sc1) =
(0, c2, a3 − α13c1, ..., as − α1sc1) ∈ C.

From the definition of C2 we have c2 ∈ C.
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3. Again from Corollary 1 of Theorem 19 and the fact that (0, g2, α23g2, α24g2, ..., α2sg2) ∈
C we have (0, c2, α23c2, α24c2, ..., α2sc2) ∈ C. But from the above step we also
have that (0, c2, a3−α13c1, ..., as−α1sc1) ∈ C. If we do once again the difference
of the last two codewords we have that

(0, 0, a3 − α13c1 − α23c2, a4 − α14c1 − α24c2, ..., as − α1sc1 − α2sc2) =
(0, 0, c3, a4 − α14c1 − α24c2, ..., as − α1sc1 − α2sc2) ∈ C.

So c3 ∈ C3.

4. Let us do it quickly for c4 too.

From above we have (0, 0, c3, a4 − α14c1 − α24c2, ..., as − α1sc1 − α2sc2) ∈ C
and as above we can show that (0, 0, c3, α34c3, α35c3, ..., α3sc3) ∈ C.

If we do the difference of the last two codewords again and use the fact that c4 = a4−
α14c1−α24c2−α34c3 we have (0, 0, 0, c4, w5, ..., ws) ∈ C, for somew5, ..., ws ∈
Flq. So c4 ∈ C4.

Repeating this process s times will end the proof of this theorem.

If the index of PQCC is s = 2 then the hypothesis of this theorem is satisfied.

Theorem 22. Let C be a PQCC of length 2l index 2 over some Fq. Let C1, C2 and g1, g2
be as above. If for some matrix A, C = (C1, C2)A, then (g1, αg1) ∈ C for some scalar
α ∈ Fq.

Proof. Since the length of C1, C2 is l and the length of C is 2l, then our matrix A has to

be a 2× 2 matrix. So let A =

(
α1 α2
α3 α4

)
.

Case 1: α1 6= 0.
In this case (g1,

α2
α1
g1) = ( 1

α1
g1, 0)A ∈ (C1, C2)A = C. So we can take α = α2

α1
.

Case 2: α1 = 0, so A =

(
0 α2
α3 α4

)
.

Since g1 ∈ C1 there exist p ∈ Flq such that (g1, p) ∈ C = (C1, C2)A, therefore
(g1, p) = (c1, c2)A, for some c1 ∈ C1 and c2 ∈ C2. If we work the last matrix

multiplication we have

g1 = α3c2 and p = α2c1 + α4c2.

From the first equality we have g1 ∈ C2. Since g1 generates C1 and C2 is cyclic we can
show that C1 ⊆ C2. It is easy to see now that also p ∈ C2 from the second equality.

Applying the definition of C2 we have (0, p) ∈ C. Since C is linear the difference of
(g1, p) with (0, p) will still be in C, so (g1, 0) ∈ C. In this case we can take α = 0.

Note that if we have C = (C2, C1)A, then let B be the matrix obtained from A inter-
changing rows. It is easy to check that C = (C1, C2)B.
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The following Lemmas will help us understand better the structure of PQCC of index
s = 2 that satisfy the above condition.

Since the generator of the last cyclic code Cs is not used, we can denote the generator
of C1 with g if the index of C is s = 2.

Lemma 10. Let C be a PQCC of length 2l index 2 over some Fq. Let C1, C2 be as above
and let g be the canonical generator of C1 with (g, αg) ∈ C for some scalar α ∈ Fq. If α
is not unique the following hold:

1. (g, 0) ∈ C (i.e α = 0 works).

2. C1 ⊆ C2.

3. For any γ ∈ Fq, (g, γg) ∈ C (i.e any α works).

Proof. 1. Let (g, α1g) ∈ C and (g, α2g) ∈ Cwith α1 6= α2. With no loss of generality
we can assume α1 6= 0 and because C is linear we have α2

α1
(g, α1g) = (α2

α1
g, α2g) ∈

C.

If we subtract (α2
α1
g, α2g) from (g, α2g), the result will is still in C. Therefore

(ηg, 0) ∈ C, where η = 1− α2
α1

.

Since α1 6= α2 we have η 6= 0, so 1
η
(ηg, 0) = (g, 0) ∈ C.

2. Since (g, α1g) ∈ C and (g, α2g) ∈ C for some scalars α1 6= α2, from the linearity
of C we have that (0, (α2 − α1)g) ∈ C for some α1 6= α2.
It follows 1

α2−α1
(0, (α2 − α1)g) = (0, g) ∈ C. From the definition of C2 we have

g ∈ C2. Since g generates C1 and C2 is cyclic we can show that C1 ⊆ C2.

3. From above we have that (g, 0) ∈ C and (0, g) ∈ C. Since C is linear, for any scalar
γ ∈ Fq we have

(g, 0) + γ(0, g) = (g, γg) ∈ C.

The following is a converse.

Lemma 11. Let C be a PQCC of length 2l index 2 over some Fq. Let C1, C2, g be as above
with (g, αg) ∈ C for some scalar α ∈ Fq. If C1 ⊆ C2 then for any γ ∈ Fq, (g, γg) ∈ C.

Proof. Since g ∈ C1 ⊆ C2 we have (0, g) ∈ C.
Again using the fact that C is linear, for any γ ∈ Fq we have

γ(0, g) + (g, αg) − α(0, g) = (g, γg) ∈ C.
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Lemma 12. Let D1, D2 be two cyclic codes of length l over some Fq and let α be any

scalar in Fq. Also let A =

(
1 α

0 1

)
and C = (D1, D2)A. From Theorem 20 we know that

C is a PQCC of index 2 and length 2l. So let C1, C2 be the usual cyclic codes defined from
C and let g be the canonical generator of C1. Under these conditions we have.

1. D1 = C1 and D2 = C2.

2. (g, αg) ∈ C.

Proof. 1. From what is given it is easy to check that

C = {(d1, αd1 + d2), d1 ∈ D1, d2 ∈ D2}.

It is obvious that D1 = C1.

In order to proveD2 = C2 let c2 ∈ C2, so (0, c2) ∈ C. Since (0, c2) ∈ C there exist
d1 ∈ D1 and d2 ∈ D2 such that (0, c2) = (d1, αd1+d2). It follows c2 = d2 ∈ D2,
hence C2 ⊆ D2.
For the other inclusion let d2 ∈ D2 and d1 = 0 ∈ D1. It follows that (d1, αd1 +
d2) = (0, d2) ∈ C, therefore d2 ∈ C2.

2. We can easily check that (g, αg) = (g, 0)A ∈ (C1, C2)A = (D1, D2)A = C.

The last Lemma can be generalized as follows.

Lemma 13. Let D1, D2, ..., Ds be cyclic codes of length l over some Fq. Let C be the
PQCC of index s and length sl defined as C = (D1, D2, ..., Ds)A, where A is a given
s× s matrix of the form

A =


1 α12 α13 α14 ... α1,s−1 α1s
0 1 α23 α24 ... α2,s−1 α2s

0 0 1 α34 ... α3,s−1 α3s

... ... ... ... ... ... ...

0 0 0 0 ... 1 αs−1,s
0 0 0 0 ... 0 1


Under these conditions we have.

1. C1 = D1, C2 = D2, ..., Cs = Ds, where C1, ..., Cs are cyclic codes obtained from
C as in Definition 20.

2. The below codewords are all in C.

(g1, α12g1, α13g1, ..., α1sg1),

(0, g2, α23g2, α24g2, ..., α2sg2),

(0, 0, g3, α34g3, α35g3, ..., α3sg3),
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...

(0, 0..., 0, gs−1, αs−1,s),

(0, 0..., 0, gs).

where g1, g2, ..., gs are respectively the canonical generators of C1, C2, ..., Cs.

Now it is time to generalize at a certain point Theorem 21.

Theorem 23. Let C be a PQCC of length sl, index s over some finite field Fq. Also let
C1, C2, ..., Cs be the cyclic of length l as described above. If C = (C1, C2, ..., Cs)A
where A is an s × s matrix with all Principal Minors non zero, then there exist αij with
2 6 i < j 6 s such that the following codewords

(g1, α12g1, α13g1, ..., α1sg1),

(0, g2, α23g2, α24g2, ..., α2sg2),

(0, 0, g3, α34g3, α35g3, ..., α3sg3),

...

(0, 0, ..., gs−1, αs−1,sgs−1),

belong in C. Here gi is the canonical generator of Ci taken as a codeword.

Observation 9. LetM be an n×n matrix. For any i = 1, 2, ..., n, the Principal Minor of
order i is the determinant of the matrix obtained from M intersecting the first i rows with
the first i columns.

Proof. The proof will be done using the method of mathematical induction on the index s.

1. If s=2 this theorem is true thanks to Theorem 22.

2. Let us assume that this theorem holds for any PQCC of index s− 1.

3. Now we can prove the theorem for the above C.

Let βij be the (i, j)− th entry of A. Since all the principal minors of A are non-zero
then β11 6= 0. It is easy to check that

(g1,
β21

β11
g1,

β31

β11
g1, ...,

βs1

β11
g1) = (

1

β11
g1, 0, ..., 0)A ∈ (C1, C2, ..., Cs)A = C.

So if we take α1,j =
β1j
β11

for any j = 2, 3, ..., s we have that

(g1, α12g1, α13g1, ..., α1sg1) ∈ C.

In order to prove that the other codewords also belong in C, first let us define
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D = {(p2, p3, ..., ps) ∈ Fl(s−1)q , such that (0, p2, ..., ps) ∈ C}.
It is easy to check thatD is PQCC of length l(s− 1) and index s− 1. Also it is very
easy to check that D1 = C2, D2 = C3, ..., Ds−1 = Cs, where D1, ..., Ds−1 are the
cyclic codes obtained from D as in Definition 20.

Now it is time to write down D as a matrix product so we can use step 2.

Let us take random (p2, p3, ..., ps) ∈ D, so (0, p2, p3, ..., ps) ∈ C = (C1, C2, ..., Cs)A.
Therefore there exists ci ∈ Ci such that

(0, p2, p3, ..., ps) = (c1, c2, ..., cs) ·


β11 β12 ... β1s
β21 β22 ... β2s
... ... ... ...

βs1 βs2 ... βss

.

So we can write

0 = β11c1 + β21c2 + ...+ βs1cs,

p2 = β12c1 + β22c2 + ...+ βs2cs,

p3 = β13c1 + β23c2 + ...+ βs3cs,

...

ps = β1sc1 + β2sc2 + ...+ βsscs.

Since β11 6= 0 we can solve for c1 on equation 1 and substitute it to the other
equations. If we do that we have

p2 = η11c2 + η12c3 + ...+ η1,s−1cs,

p3 = η21c2 + η22c3 + ...+ η2,s−1cs,

...

ps = ηs−1,1c2 + ηs−1,2c3 + ...+ ηs−1,s−1cs.

where ηij = −βi+1,1
β11
· β1,j+1 + βi+1,j+1, for any i, j = 1, 2, .., s− 1.

Let us denote by B the s− 1× s− 1 matrix such that its (i, j) − th entry is ηi,j. It is
easy to check from above that (p2, p3, ..., ps) = (c2, c3, ..., cs)B, hence

D ⊆ (C2, ..., Cs)B = (D1, ..., Ds−1)B.

Since dim(D) = dim(D1) + ... + dim(Ds−1) > dim((D1, ..., Ds−1)B) we have
that

D = (D1, ..., Ds−1)B.
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In order to apply step 2, we will have to prove that B has all its principal minors
non-zero.

Since β11 6= 0 we can apply Gauss elimination process on matrix A until all the
entries below β11 become 0. If we do that we obtain

A v


β11 β12 β13 ... β1s
0 η11 η12 ... η1,s−1
0 η21 η22 ... η2,s−1
... ... ... ...

0 ηs−1,1 ηs−1,2 ... ηs−1,s−1

.

It is easy to see now that also B has all its principal minors non-zero.

Since D is PQQC of index s − 1 we can assume that this theorem is true for D.
Recall that for any t = 2, 3, ..., s, gt is the generator of Ct = Dt−1, therefore for
any i, j = 2, 3, .., s− 1 with i < j there exist scalars αi,j ∈ Fq such that

(g2, α23g2, α24g2, ..., α2sg2) ∈ D,

(0, g3, α34g3, α35g3, ..., α3sg3) ∈ D,

...

(0, 0, ..., gs−1, αs−1,sgs−1) ∈ D.

The above relations and the definition of D end the proof of this theorem, since we
also have (g1, α12g1, α13g1, ..., α1sg1) ∈ C.

Theorem 24. LetD1, ..., Ds be linear code of length l over some Fq andA an s×s matrix
with all its principal minors non-zero.

Let C = (D1, D2, ..., Ds)A be the linear code of length sl. If D1 ⊇ D2 ⊇ ... ⊇ Ds,
then C1 = D1, C2 = D2, ..., Cs = Ds, where C1, C2, ..., Cs are the linear codes of length
l obtained from C as in Definition 20.

In order to prove this theorem we need to prove a Lemma first.

Lemma 14. LetD1, D2, ..., Ds be linear codes such thatDi ⊆ D1, for any i = 2, 3, ..., s.
Also let A be a random s× s matrix with rows in order R1, R2, ..., Rs and α2, α3, ..., αs be
random scalars.

If B is the s × s matrix with rows in order R1, α2R1 + R2, α3R1 + R3, ..., αsR1 + Rs,
then (D1, D2, ..., Ds)A = (D1, D2, ..., Ds)B.
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Proof. Let d = (d1, d2, ..., ds)A ∈ (D1, D2, ..., Ds)A. So d = d1R1+d2R2+ ...+dsRs.
It is easy to check that

d = d ′1R1 + d2(α2R1 + R2) + d3(α3R1 + R3) + ...+ (αsR1 + Rs)

where d ′1 = d1 − α2d2 − ...− αsds ∈ D1. That is why d ∈ (D1, D2, ..., Ds)B, so

(D1, D2, ..., Ds)A ⊆ (D1, D2, ..., Ds)B.

In the same way we can show the other inclusion too.

Now it is time to prove Theorem 24

Proof. The proof again will be done by induction on s.

1. For s = 2 we have C = (D1, D2)A, whereA =

(
α1 α2
α3 α4

)
with α1 6= 0, det(A) 6=

0 and D1 ⊇ D2. From the above Lemma we can choose A such that α3 = 0, hence
α4 6= 0.
Let us show first that D1 = C1.

If d1 ∈ D1 we have that (d1, 0)A ∈ (D1, D2)A = C, hence (α1d1, α2d1) ∈ C,
therefore α1d1 ∈ C1. Since α1 6= 0 we have d1 ∈ C1.
If c1 ∈ C1 then there exists f2 ∈ Flq such that (c1, f2) ∈ C = (D1, D2)A. There-
fore there exist d1 ∈ D1, d2 ∈ D2 ⊆ D1 such that (c1, f2) = (d1, d2)A =
(α1d1, α2d1 + α4d2). It follows c1 = α1d1 ∈ D1.
Now it is time to show D2 = C2.

If d2 ∈ D2 we have (0, d2)A ∈ (D1, D2)A = C, which implies that (0, α4d2) ∈ C.
By definition d2 ∈ C2 because α4 6= 0.
If c2 ∈ C2 then (0, c2) ∈ C = (D1, D2)A, hence there exist d1 ∈ D1 and d2 ∈ D2
such that (0, c2) = (d1, d2)A. Working out the last matrix multiplication we get
0 = α1d1, which implies d1 = 0 and c2 = α2d1 + α4d2 = α4d2 ∈ D2.

2. Let us assume that this theorem is true for any linear code with length (s− 1)l.

3. Now we can prove the theorem for our linear code C.

So we have C = (D1, D2, ..., Ds)A, where D1 ⊇ D2 ⊇ ... ⊇ Ds and A is s × s
matrix with all principal minors non-zero. From the above Lemma we can choose

A to be of the form A =

(
α11 b

0 B

)
where α11 is a non-zero scalar, 0 is a column

matrix of length s − 1 with all the entries 0, b is some row matrix with length s − 1
and B is an (s− 1× s− 1) matrix with all principal minors non-zero.

As before we can define
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F = {(p2, p3, ..., ps) ∈ Fl(s−1)q , such that (0, p2, ..., ps) ∈ C}.

F is a linear code of length (s − 1)l and if F1, ..., Fs−1 are the linear codes obtained
from F as in Definition 20 we have F1 = C2, F2 = C3,...,Fs−1 = Cs.

From the structure of the matrix A, the fact that C = (D1, D2, ..., Ds)A and the fact
that α11 6= 0 we can show easily that C1 = D1.

Now let (p2, ..., ps) ∈ F, it follows (0, p2, ..., ps) ∈ C = (D1, D2, ..., Ds)A. So for
any i = 1, 2, ..., s, there exists di ∈ Di such that

(0, p2, ..., ps) = (d1, d2, ..., ds)A.

Note that we can multiply (d1, d2, ..., ds)A in blocks such that the blocks in A
would be α11, b, 0, B as above and the blocks of (d1, d2, ..., ds) would be d1 and
(d2, d3, ..., ds). If we do that we have

(0, (p2, p3, ..., ps)) = (α11d1, d1b1 + (d2, d3, ..., ds)B).

Therefore d1 = 0 and (p2, p3, ..., ps) = d1b1+(d2, d3, ..., ds)B = (d2, d3, ..., ds)B.
Since (p2, p3, ..., ps) was random in F we can say that

F ⊆ (D2, ..., Ds)B

.

In order to prove the other inclusion, first we apply Theorem 18. So

dim(C) = dim(C1) + dim(C2) + ... + dim(Cs) = dim(C1) + dim(F1) + ... +
dim(Fs−1),

dim(C) = dim(C1) + dim(F) = dim(D1) + dim(F).

Since the matrices A and B are non-singular we also have

dim((D2, D3, ..., Ds)B) = dim(D2) + dim(D3) + ... + dim(Ds) = dim(C) −
dim(D1), dim((D2, D3, ..., Ds)B) = dim(D1)+dim(F)−dim(D1) = dim(F).

It follows F = (D2, D3, ..., Ds)B, so we can assume that the theorem holds for F.
For any i = 2, 3, ..., s we have Di = Fi−1 = Ci. This ends the proof since also
C1 = D1.
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7.3 The Dual of a Permuted Quasi Cyclic Code
Recall that if C is a linear code of length sl we can still define linear codes C1, C2, ..., Cs
of length l as in Definition 20. We also know that C⊥ is a linear code of length sl, so
also for C⊥ we can define linear codes of length l as in Definition 20. Let us call them
(C⊥)1, (C

⊥)2, ..., (C
⊥)s.

A question arises. Is there a connection between (C⊥)1, (C
⊥)2, ..., (C

⊥)s andC1, C2, ..., Cs?
The answer in general is no, however there is a connection between (C⊥)1, (C

⊥)2, ..., (C
⊥)s

and some other codes defined from C in a similar way as C1, C2, ..., Cs.

Definition 21. Let C be a linear code of length sl over Fq. Let us define the following:
C01 = {as ∈ Flq, such that (a1, a2, ..., as) ∈ C, for some a1, a2, ..., as−1 ∈ Flq},
C02 = {as−1 ∈ Flq, such that (a1, ...as−2, as−1, 0) ∈ C, for some a1, ..., as−2 ∈

Flq},
C03 = {a3 ∈ Flq, such that (a1, ..., as−3, as−2, 0, 0) ∈ C, for some a1, ..., as−3 ∈

Flq},

...

C0s = {a1 ∈ Flq, such that (a1, 0, 0, ..., 0) ∈ C}.

Observation 10. As in Theorems 17 and 18 we can show that:

1. C0i ’s are linear codes of length l for any i = 1, 2, ..., s.

2. They are cyclic codes if C is PQCC of index s.

3. dim(C) = dim(C01) + dim(C02) + ...+ dim(C0s)

Theorem 25. Let C a linear code of length sl over some Fq. Let C⊥ be its dual and let
(C⊥)1, (C

⊥)2, ..., (C
⊥)s andC01, C

0
2, ..., C

0
s be the linear codes of length l as above. Under

these condition we have:

(C⊥)1 = (C0s)
⊥, (C⊥)2 = (C0s−1)

⊥, ..., (C⊥)s−1 = (C02)
⊥ and (C⊥)s = (C01)

⊥.

Proof. The proof will be done using the method of mathematical induction on s.

1. Base step s = 2.

In this case we only have C01, C
0
2 and (C⊥)1, (C

⊥)2. Let us now show that (C⊥)2 =
(C01)

⊥ and (C⊥)1 = (C02)
⊥ by starting with the first equality.

If s ∈ (C⊥)2 we have (0, s) ∈ C⊥. For any b2 ∈ C01 there exists b1 ∈ Flq such that
(b1, b2) ∈ C. Therefore we have

0 =< (0, s), (b1, b2) >=< 0, b1 > + < s, b2 >=< s, b2 > .

Since the last equality is true for any b2 ∈ C01 we have s ∈ (C01)
⊥.
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In order to prove the other inclusion let s ∈ (C01)
⊥. For any (b1, b2) ∈ C we have

b2 ∈ C01, therefore < s, b2 >= 0. So

< (0, s), (b1, b2) >=< 0, b1 > + < s, b2 >= 0+ 0 = 0.

Since the last equality is true for any (b1, b2) ∈ C we can say that (0, s) ∈ C⊥,
hence s ∈ (C⊥)2.

Now it is time to prove (C⊥)1 = (C02)
⊥. First we will show that (C⊥)1 ⊆ (C02)

⊥

and then dim[(C⊥)1] = dim[(C02)
⊥].

If s ∈ (C⊥)1, there exist p ∈ Flq such that (s, p) ∈ C⊥. Since for any c1 ∈ C02 we
have (c1, 0) ∈ C we can write

0 =< (s, p), (c1, 0) >=< s, c1 > + < p, 0 >=< s, c1 > .

Since the above is true for any c1 ∈ C02 we have s ∈ (C02)
⊥.

We also have to prove that the dimensions of (C02)
⊥ and (C⊥)1 are the same.

dim[(C⊥)1] = dim[C⊥] − dim[(C⊥)2] = (2n− dim[C]) − dim[(C01)
⊥],

dim[(C⊥)1] = (2n− dim[C]) − (n− dim[C01]) = n− (dim[C] − dim[C01]),

dim[(C⊥)1] = n− dim[C02] = dim[(C02)
⊥].

2. Let us assume that this theorem is true for any linear codeW with length l(s− 1).

3. Now we can show the theorem for our linear code C. First we can define the follow-
ing sets

P = {(a1, ..., as−1) ∈ Fl(s−1)q , such that (a1, ..., as−1, as) ∈ C⊥, for some
as ∈ Flq}.

B = {(b1, ..., bs−1) ∈ Fl(s−1)q , such that (b1, ..., bs−1, 0) ∈ C}.
The following statements are true

(a) P, B are linear codes of length s(l− 1) over Fq.

(b) dim[C⊥] = dim[P] + dim[(C⊥)s] and dim[C] = dim[C01] + dim[B].
The proof of the first one can be done by defining the linear transformation

η : C⊥ → P, η(a1, ..., as−1, as) = (a1, ..., as−1)

and applying the rank-nullity theorem.
For the second one we can still apply the same theorem on the linear transfor-
mation

ν : C→ C01, ν(b1, b2, ..., bs) = bs.
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(c) P = B⊥ and (C⊥)s = (C01)
⊥.

The proof of this one can be done in an identical way as in the case of s = 2.

(d) P1 = (C⊥)1, P2 = (C⊥)2,...,Ps−1 = (C⊥)s−1 andB01 = C
0
2, B

0
2 = C

0
3,...,B

0
s−1 =

C0s. These are obvious from the definitions.

Finally let us defineW = P⊥ = B. Since the length ofW is l(s− 1) this theorem is
true forW, so

(W⊥)1 = (W0
s−1)

⊥, (W⊥)2 = (W0
s−2)

⊥, ..., (W⊥)s−1 = (W0
1)
⊥ .

Therefore

(C⊥)1 = P1 = (W⊥)1 = (W0
s−1)

⊥ = (B0s−1)
⊥ = (C0s)

⊥.

In the same way, usingW we can show that

(C⊥)2 = (C0s−1)
⊥, ..., (C⊥)s−1 = (C02)

⊥.

This ends the proof of the theorem since from part b) we also have (C⊥)s = (C01)
⊥.

If we pose some strong condition on C we can write down (C⊥)1, ..., (C
⊥)s in terms

of C1, ..., Cs, but before we have the following Lemma.

Lemma 15. If C is a PQCC with length sl, index s over some Fq, then C⊥ is also PQCC
with the same length and index over the same Fq.

Proof. The proof is the same way as in the theorem of the dual of a cyclic code.

Theorem 26. Let C be a PQCC of length 2l, index s = 2 over some Fq and g be the
canonical generator of the cyclic code C1 as in Definition 20.

Also let us assume that for some α ∈ Fq we have (g, αg) ∈ C. Under these conditions
we have:

1. If α = 0 then (C⊥)1 = C
⊥
1 and (C⊥)2 = C

⊥
2 .

2. If α 6= 0 then (C⊥)1 = C
⊥
1 + C⊥2 and (C⊥)2 = C

⊥
1

⋂
C⊥2 .

Proof. The condition (g, αg) ∈ C implies that C = (C1, C2)A where

A =

(
1 α

0 1

)
.

1. When α = 0 we have that C = C1×C2, where× represents the Cartisian product of
two sets. It is easy to show C⊥ = C⊥1 × C⊥2 , hence (C⊥)1 = C

⊥
1 and (C⊥)2 = C

⊥
2 .
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2. In the case of α 6= 0, we can apply the theorem of the dual of matrix product code,
so C⊥ = (C⊥1 , C

⊥
2 )(A

−1)T . But

(A−1)T =

(
1 0

−α 1

)
,

therefore C⊥ = {(d1 − αd2, d2), d1 ∈ C⊥1 , d2 ∈ C⊥2 }.

Since α 6= 0 it follows that (C⊥)1 = C⊥1 + C⊥2 .

In order to prove (C⊥)2 = C⊥1
⋂
C⊥2 let start with s ∈ (C⊥)2, equivalent with

(0, s) ∈ C⊥. So there exist d1 ∈ C⊥1 , d2 ∈ C⊥2 such that d1 − αd2 = 0 and d2 = s.
It follows s = d2 = 1

α
d1, so s ∈ C⊥1

⋂
C⊥2 .

In order to prove the other inclusion let s ∈ C⊥1
⋂
C⊥2 . If we set d1 = αs ∈ C⊥1 and

d2 = s ∈ C⊥2 then (d1 − αd2, d2) = (0, s) ∈ C⊥. Therefore s ∈ (C⊥)2.

After this theorem a question arises. If C is a PQCC of index 2 such that (g, αg) ∈ C
for some α ∈ Fq and g as above, then is this condition also true for C⊥?

Theorem 27. Let C be a PQCC of length 2l, index s = 2 over some Fq and let g be the
generator of the cyclic code C1 as above.

Also let us assume that there exists α ∈ Fq such that (g, αg) ∈ C. If s is the generator
of (C⊥)1 then

(s, βs) ∈ C⊥ for some β ∈ Fq if and only if (g, 0) ∈ C or C2 ⊆ C1.

Proof. 1. Let us prove this (⇐) direction first.

If (g, 0) ∈ C then (g, 0g) ∈ C, therefore with no loss of generality we can assume
that α = 0. It follows C = (C1, C2)I2 = C1 × C2, hence C⊥ = C⊥1 × C⊥2 , so
(C⊥)1 = C

⊥
1 . If we take β = 0 then

(s, βs) = (s, 0) ∈ C⊥1 × C⊥2 = C⊥.

If C2 ⊆ C1 we may assume that α 6= 0. In this case we will show that β = − 1
α

works just fine.

From the above theorem and the fact thatC2 ⊆ C1 we have s ∈ (C⊥)1 = C
⊥
1 +C

⊥
2 =

C⊥2 .

Since (g, αg) ∈ C, we have C = (C1, C2)

(
1 α

0 1

)
from Theorem 21.

Therefore for any (a1, a2) ∈ C, there exists c1 ∈ C1, c2 ∈ C2 such that a1 = c1
and a2 = αc1 + c2. So we can write
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< (s, βs), (a1, a2) >=< s, a1 > +β < s, a2 >=< s, c1 > +β < s, αc1 + c2 >,

< (s, βs), (a1, a2) >=< s, c1 > +βα < s, c1 > +β < s, c2 > .

Since β = − 1
α

we have < s, c1 > +βα < s, c1 >= 0, furthermore since s ∈ C⊥2
and c2 ∈ C2 we also have < s, c2 >= 0.

So for any (a1, a2) ∈ C, < (s, βs), (a1, a2) >= 0. It follows (s, βs) ∈ C⊥.

2. Now let us prove the other (⇒) direction.

In this case it is given that there exists β ∈ Fq such that (s, βs) ∈ C⊥.

We have to show either C2 ⊆ C1 or (g, 0) ∈ C.
Case 1: β 6= 0. In this case I will show that C2 ⊆ C1.
Let c2 ∈ C2 and f1 ∈ C⊥1 be a random codewords. From the above theorem we can
say that C⊥1 ⊆ (C⊥)1, hence f1 ∈ (C⊥)1.

Since s is the generator of (C⊥)1 and (s, βs) ∈ C⊥ we have that (f1, βf1) ∈ C⊥,
from Corollary 1 of Theorem 19. Note that (0, c2) ∈ C since c2 ∈ C2, therefore we
can write

0 =< (f1, βf1), (0, c2) >= β < f1, c2 > .

Since β 6= 0, we have that for any f1 ∈ C⊥1 , < f1, c2 >= 0 which is equivalent with
c2 ∈ (C⊥1 )

⊥ = C1.

Case 2: β = 0, so (s, 0) ∈ C⊥. In this case we will show that (g, 0) ∈ C.
As in the previous theorem we can show that

C⊥ = {(d1 − αd2, d2), d1 ∈ C⊥1 , d2 ∈ C⊥2 }.

Therefore there exist d1 ∈ C⊥1 , d2 ∈ C⊥2 such that d2 = 0 and s = d1 − αd2 = d1,
so s ∈ C⊥1 .

Because s is also the generator of (C⊥)1 and C⊥1 is a cyclic code we have that
(C⊥)1 ⊆ C⊥1 .

If α = 0 there is nothing to prove.

If α 6= 0, from Theorem 26 we have that C⊥1 + C⊥2 = (C⊥)1 ⊆ C⊥1 , therefore
C⊥2 ⊆ C⊥1 which implies C1 ⊆ C2.
Note that this is not what we want to prove, however from Lemma 11 we have that
for any γ ∈ Fq, (g, γg) ∈ C. If we choose γ = 0 then (g, 0) ∈ C.

We can generalize this theorem even more determining whether or not the above β is
unique.

Corollary 2. With all the notations of Theorem 27 we have



7 PERMUTED QUASI CYCLIC CODES (PQCC) 46

1. If α is unique then:(Note that in this case C1 * C2)

(a) If α = 0 and C2 * C1 then β = 0 is unique.

(b) If α = 0 and C2 ⊆ C1 then for any β ∈ Fq we have (s, βs) ∈ C⊥.

(c) If α 6= 0 and C2 * C1 then there is no β ∈ Fq such that (s, βs) ∈ C⊥.
(d) If α 6= 0 and C2 ⊆ C1 then β = − 1

α
is the only scalar in Fq such that

(s, βs) ∈ C⊥.

2. If α is NOT unique then: (Note that in this case C1 ⊆ C2 and for any α ∈ Fq,
(g, αg) ∈ C⊥)

(a) If C2 * C1 then β = 0 is unique.

(b) If C2 ⊆ C1 then for any β ∈ Fq we have (s, βs) ∈ C⊥.

Proof. 1. Let start the proof by assuming α is unique

(a) Let α = 0 and C2 * C1.
We know from Theorem 27 that if α = 0 then β = 0 works. If we use case 1
of Theorem 26 we also have that (C⊥)1 = C⊥1 and (C⊥)2 = C

⊥
2 .

If we assume by contradiction then β is not unique then we can apply Lemma
10 on C⊥. It follows C⊥1 ⊆ C⊥2 , i.e. C2 ⊆ C1, which is a contradiction.

(b) Let α = 0 and C2 ⊆ C1.
As in part a) we have β = 0 works, (C⊥)1 = C⊥1 and (C⊥)2 = C⊥2 . Since
C2 ⊆ C1 implies C⊥1 ⊆ C⊥2 we can apply Lemma 11 on C⊥, therefore for any
β ∈ Fq we have (s, βs) ∈ C⊥.

(c) This case is obvious from Theorem 27. Note that since α 6= 0 and α unique we
have that (g, 0) /∈ C⊥.

(d) From theorem 27 we know that if α 6= 0 and C2 ⊆ C1 then β = − 1
α

works.
If we assume by contradiction that β is not unique we can apply Lemma 10 on
C⊥. It follows that for any β including β = 0 we have (s, βs) ∈ C⊥. But again
from theorem 27 if β = 0 works then α = 0 works too. This contradicts the
fact that α is unique.

2. When α is not unique we know form Lemma 10 that for any α ∈ Fq, (g, αg) ∈ C.
Here, with no loss of generality we can take α = 0, so the proof of sub-cases a) and
b) of this case can be done in an identical way as sub-cases a) and b) of case 1.

Generalizing Theorem 26 it is not easy at all, however we have the following theorem.

Theorem 28. Let C be a linear code with length sl and let C1, C2, ..., Cs be the linear
codes of length l as in Definition 20. If C1 ⊇ C2 ⊇ ... ⊇ Cs and for some non singu-
lar by columns matrix A we have C = (C1, C2, ..., Cs)A, then (C⊥)1 = C⊥s , (C⊥)2 =
C⊥s−1,...,(C

⊥)s = C
⊥
1 .
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Proof. From the structure of matrix Js and Theorem 14 we have

C⊥ = (C⊥1 , C
⊥
2 , ..., C

⊥
s )(A

−1)T = (C⊥s , C
⊥
s−1, ..., C

⊥
1 )Js(A

−1)T .

Theorem 15 allows us to say that that J(A−1)T is non-singular by columns matrix, therefore
all its principal minors are non-zero. Finally if we apply Theorem 24 we get exactly what
we wanted to prove.
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8 Multi Cyclic Codes (MCC)
Let q be a prime power and letm be a positive integer. Let us consider the quotient ring

R = Fq[x1, x2, ..., xm]/ < x
q−1
1 − 1, xq−12 − 1, ..., xq−1m − 1 > .

The elements of this quotient ring will be of the form Σcxα11 x
α2
2 ...x

αm
m , where αj =

0, 1, 2, ..., q − 2 for j = 1, 2, ...,m. It is obvious that the number of terms, including
those with a zero coefficient in every element of that quotient ring is (q− 1)m.

For some order of the set {(α1, α2, ..., αm), αj ∈ Fq, j = 1, 2, ..,m} = Fmq we can very
easily define an isomorhism of vector spaces π : R→ F

(q−1)m

q , such that any element of the
quotient ring is mapped to the codeword build from the coefficients of every xα11 x

α2
2 ...x

αm
m

term taken in order defined before.

Example 4. If q = 3 and m = 2 every element of F3[x1, x2]/ < x21 − 1, x
2
2 − 1 > can be

written as k0 + k1x1 + k2x2 + k3x1x2. Therefore we can define

π : F3[x1, x2]/ < x
2
1 − 1, x

2
2 − 1 >:→ F43

such that π(k0 + k1x1 + k2x2 + k3x1x2) = (k0, k1, k2, k3).

Definition 22. A linear code C of length (q − 1)m over Fq is said to be a Multi Cyclic
Code (MCC) if and only if π−1(C) is an ideal of Fq[x1, x2, ..., xm]/ < x

q−1
1 − 1, xq−12 −

1, ..., xq−1m − 1 >.

Since π is an ismorphism in the following we can identify C with π−1(C) with no
confusion.

8.1 Multi Cyclic Code of length 4 over F3
In this Chapter we find all multi cyclic codes when q = 3 and m = 2. We call them Multi
Cyclic Code of length 4 over F3. Since these type of codes will be the only multi cyclic
code I will work with, sometimes I will just call them multi cyclic codes.

First I will find all the above MCC that are generated by only one polynomial.

Theorem 29. Let F43 and F3[x1, x2]/ < x21 − 1, x22 − 1 > be as above and let C =<
k0+k1x1+k2x2+k3x1x2 > be a random MCC generated by only one polynomial. Let δ be
a permutation of the set {0, 1, 2, 3} and letCδ =< kδ(0)+kδ(1)x1+kδ(2)x2+kδ(3)x1x2 >.
Under theses conditions we have

(c0, c1, c2, c3) ∈ C⇐⇒ (cδ(0), cδ(1), cδ(2), cδ(3)) ∈ Cδ.

In other words this theorem tells us that the linear code obtained from some permutation
of the coefficients k0, k1, k2, k3 can also be obtained by applying the same permutation on
all the codewords of C.



8 MULTI CYCLIC CODES (MCC) 49

Proof. The proof of this theorem will be done in several steps.
Step 1 consists of finding the generator matrix of C. If p = p(x1, x2) ∈ C then
p(x1, x2) = (k0 + k1x1 + k2x2 + k3x1x2)(a0 + a1x1 + a2x2 + a3x1x2) for some

ai ∈ F3, i = 0, 1, 2, 3. If we work out this multiplicationmod(x21 − 1, x
2 − 1) we have

p(x1, x2) = (k0a0 + k1a1 + k2a2 + k3a3) + (k0a1 + k1a0 + k2a3 + k3a2)x1+
(k0a2 + k1a3 + k2a0 + k3a1)x2 + (k0a3 + k1a2 + k2a1 + k3a0)x1x2. If

A0 = (k0a0 + k1a1 + k2a2 + k3a3),
A1 = (k0a1 + k1a0 + k2a3 + k3a2),
A2 = (k0a3 + k1a2 + k2a1 + k3a0),
A3 = (k0a3 + k1a2 + k2a1 + k3a0)

we have that p = (A0, A1, A2, A3) = (a0, a1, a2, a3)MC where,

MC =


k0 k1 k2 k3
k1 k0 k3 k2
k2 k3 k0 k1
k3 k2 k1 k0


So, C = {(a0, a1, a2, a3)MC, ai ∈ F3, i = 0, 1, 2, 3}.

In other word, any element in C is a linear combination of the rows of MC. However
we can not claim thatMC is a generator matrix for C, because its rows may not be linearly
independent. In order to find the generator matrix we can find the Reduced Row Echelon
Form (RREF) ofMC and only take the rows with pivots.

Step 2: In this step we will recall some some properties of the permutation matrix.

Definition 23. Let θ be some permutation of the set {0, 1, 2, ..., n − 1}, where n is a
fixed positive integer. Also let e0 = (1, 0, 0..., 0)T , e1 = (0, 1, 0, ..., 0)T , ..., en−1 =
(0, 0, ..., 0, 1)T be column matrices with n rows.

The permutation matrix of the permutation θ, denoted by Pθ, is the n× n matrix such
that its columns in order are eθ(0), eθ(1), ..., eθ(n−1).

Proposition 4. The following properties are true for the permutation matrix.

1. Let F be a field (not necessary finite) and let θ be as above. For any (x0, x1, ..., xn−1) ∈
Fn we have (xθ(0), xθ(1), ..., xθ(n−1)) = (x0, x1, ..., xn−1)Pθ.

2. Let α,β be two permutations of the set {0, 1, 2, ..., n− 1}. If βα is their composition
then Pβα = Pα · Pβ.

3. Let A be an nxn matrix with rows in order R0, R1, ..., Rn−1 and let θ be as above.

If B is the n×n matrix such that its rows in order are Rθ(0), Rθ(1), ..., Rθ(n−1), then
we can show that B = PTθ ·A.

4. For any permutation θ we have PTθ = P−1θ = Pθ−1 .
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Proof. 1. The first property is a simple matrix multiplication.

2. Thanks to the above property, for any row vector (x0, x1, ..., xn−1) with real entries
we have

(x0, x1, ..., xn−1)PαPβ = (xα(0), xα(1), ..., xα(n−1))Pβ =

(xβ(α(0)), xβ(α(1)), ..., xβ(α(n−1))) = (x0, x1, ..., xn−1)Pβα.

The last equality is equivalent to

(Pβα − Pα · Pβ)T ·


x1
x2
...

xn

 = 0.

It followsNull(Pβα−Pα ·Pβ)T = Rn, therefore from rank-nullity theorem we have
rank(Pβα − Pα · Pβ)T = n− n = 0. Hence Pβα = Pα · Pβ.

3. This property can be proved by multiplying PTθ ·A in blocks. The blocks of PTθ would
be its entries and the blocks of A would be its rows.

4. It is easy to see that any permutation matrix is an orthonormal matrix, hence PTθ =
P−1θ .

From property 2 we can say that Pθ · Pθ−1 = Pθ−1θ = Pid = In. Therefore we also
have P−1θ = Pθ−1 .

Step 3: In this step I will analyze the rows of the matrixMC defined in step 1.
Let R0, R1, R2, R3 be the rows of MC in order and let p1, p2, p3 be the following per-

mutations

p1 =

(
0 1 2 3

1 0 3 2

)
, p2 =

(
0 1 2 3

2 3 0 1

)
, p3 =

(
0 1 2 3

3 2 1 0

)
.

It is obvious that R1, R2, R3 are obtained from R0 applying respectively the permutations
p1, p2, p3. Therefore if we denote with P1, P2, P3 respectively the permutation matrix of
p1, p2, p3 we have R1 = R0P1, R2 = R0P2, R3 = R0P3.

Step 4: In this step I will recall a very important property of S4.
Let S4 be the set of all permutations of the set {0, 1, 2, 3}. We know that S4 is a group

under the usual operation of composition.
Since p21 = p22 = p23 = id and for any i, j, k ∈ {1, 2, 3} pairwise distinct pipj =

pjpi = pk we can conclude that the set G = {id, p1, p2, p3} is a subgroup of S4.
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We can also check thatG is a normal subgroup of S4. If we apply the property of normal
subgroups for the permutation δ ∈ S4 of this theorem we have p1δ = δpγ1 , p2δ = δpγ2
and p3δ = δpγ3 . It is easy to check that

γ =

(
0 1 2 3

0 γ1 γ2 γ3

)
is a permutation in S4.

Step 5: In this step we will find a relation between MC and MCδ , where MCδ is the
matrix obtained from Cδ, in the same way asMC is obtained from C.

If for Cδ we do the same work we did for C in step 1 we have that

MCδ =


kδ(0) kδ(1) kδ(2) kδ(3)
kδ(1) kδ(0) kδ(3) kδ(2)
kδ(2) kδ(3) kδ(0) kδ(1)
kδ(3) kδ(2) kδ(1) kδ(0)


Let us define with R

′

0, R
′

1, R
′

2, R
′

3 the rows ofMCδ in order. As above it is easy to check that

R
′

0 = R0Pδ,

R
′

1 = R
′

0P1 = R0PδP1 = R0Pγ1Pδ = Rγ1Pδ,

R
′

2 = R
′

0P2 = R0PδP2 = R0Pγ2Pδ = Rγ2Pδ,

R
′

3 = R
′

0P3 = R0PδP3 = R0Pγ3Pδ = Rγ3Pδ.

Note that the first relation is true from property 1 of the permutation matrix and the
others are true for the relations we have in step 3, step 4 and property 3 of the permutation
matrix. Now it is time to evaluate P−1γ MCPδ.

P−1γ MCPδ = P
T
γMCPδ = P

T
γ ·


R0
R1
R2
R3

 · Pδ.
From property 3 of the permutation matrix we have that

PTγ ·


R0
R1
R2
R3

 =


R0
Rγ1
Rγ2
Rγ3

 ,
therefore

P−1γ MCPδ =


R0
Rγ1
Rγ2
Rγ3

Pδ =

R ′0
R ′1
R ′2
R ′3

 =MCδ.
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SoMCPδ = PγMCδ.
Step 6 Finally it is time to prove the theorem.
Let us prove this (⇒) direction first. We need to show that if (c0, c1, c2, c3) ∈ C then

(cδ(0), cδ(1), cδ(2), cδ(3)) ∈ Cδ. From step 1 and 2 we can write

(cδ(0), cδ(1), cδ(2), cδ(3)) = (c0, c1, c2, c3)Pδ = (a0, a1, a2, a3)MCPδ,

for some a0, a1, a2, a3 in F3. From step 5 we have

(cδ(0), cδ(1), cδ(2), cδ(3)) = (a0, a1, a2, a3)PγMCδ = (b0, b1, b2, b3)MCδ ∈ Cδ,

where (b0, b1, b2, b3) = (a0, a1, a2, a3)Pγ.
Let us prove now the other direction (⇐). We need to show that if (cδ(0), cδ(1), cδ(2), cδ(3)) ∈

Cδ then (c0, c1, c2, c3) ∈ C. Using the above properties for θ−1 we have

(c0, c1, c2, c3) = (cδ(0), cδ(1), cδ(2), cδ(3))P
−1
δ = (a0, a1, a2, a3)MCδP

−1
δ ,

for some scalars a0, a1, a2, a3 in F3.
From step 5 we can say thatMCδP

−1
δ = P−1γ MC, so finally we have

(c0, c1, c2, c3) = (a0, a1, a2, a3)P
−1
γ MC = (b0, b1, b2, b3)MC ∈ C,

where (b0, b1, b2, b3) = (a0, a1, a2, a3)P
−1
γ .

Thanks to this theorem and the fact that we are working on F3 the only multi cyclic
codes of length 4 over F3 generated by one polynomial are the following codes and their
permutations.

1. C0 =< 1 >.

2. C1 =< 1+ x1 >.

3. C2 =< 2+ x1 >.

4. C3 =< 1+ x1 + x2 >.

5. C4 =< 2+ x1 + x2 >.

6. C5 =< 1+ x1 + x2 + x1x2 >.

7. C6 =< 2+ x1 + x2 + x1x2 >.

8. C7 =< 2+ 2x1 + x2 + x1x2 >.

Proposition 5. We can show that.



8 MULTI CYCLIC CODES (MCC) 53

1. C0 = F43.

2. C1 = {(a, a, b, b), a ∈ F3, b ∈ F3}.

3. C2 = {(a, 2a, b, 2b), a ∈ F3, b ∈ F3}.

4. C3 = {(a, b, c, 2a+ 2b+ 2c), a ∈ F3, b ∈ F3, c ∈ F3}.

5. C4 = {(a, b, c, 2a+ b+ c), a ∈ F3, b ∈ F3, c ∈ F3}.

6. C5 = {(a, a, a, a), a ∈ F3}.

7. C6 = F43.

8. C7 = {(a, a, 2a, 2a), a ∈ F3}.

Proof. We will do the proof for C4 and for the other we can apply the same idea.

Let MC4 =


2 1 1 0

1 2 0 1

1 0 2 1

0 1 1 2

 be the matrix as described in step 1 of the previous theo-

rem. The rows with pivots of the reduced raw echelon form of MC4 will give us the basis
for C4. Since we are working on F3 we can find

MC4 ∼


1 0 0 2

0 1 0 1

0 0 1 1

0 0 0 0

 ,
hence the first three rows of the last matrix will form a basis for C4. It follows
C4 = {a(1, 0, 0, 2) + b(0, 1, 0, 1) + c(0, 0, 1, 1), a, b, c ∈ F3},
C4 = {(a, b, c, 2a+ b+ c), a, b, c ∈ F3}.

Next we will show that F3[x]/ < x21 − 1, x
2
2 − 1 > is principal ideal domain (all its

ideals are generated by one element), but before we will find all MCC of length 4 over F3
generated by only one polynomial.

From the above theorem, all we have to do is find all the permutations ofC0, C1, ..., C7.

1. It is easy to see that if we permute C0 = C6 = F43 and C5 we do not obtain any thing
new.

2. Also if we permute C3 we do not obtain new linear codes. Recall that (a, b, c, d) ∈
C3 if and only if d = 2a + 2b + 2c. Since we are working in F3 the last equality is
equivalent to a = 2b + 2c + 2d which is equivalent to b = 2a + 2c + 2d which is
equivalent to c = 2a+ 2b+ 2d.
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3. It is easy to check that if we permute C1 we obtain the following linear codes

C ′1 = {(a, b, a, b), a ∈ F3, b ∈ F3} and C ′′1 = {(a, b, b, a), a ∈ F3, b ∈ F3}.

4. If we permute C2 we obtain

C ′2 = {(a, b, 2a, b), a ∈ F3, b ∈ F3} and C ′′2 = {(a, b, 2b, 2a), a ∈ F3, b ∈ F3}.

5. If we permute C7 we have

C ′7 = {(a, 2a, a, 2a), a ∈ F3} and C ′′7 = {(a, 2a, 2a, a), a ∈ F3}.

6. Finally if we permute C4 we will have

C ′4 = {(a, b, c, a+ 2b+ c), a ∈ F3, b ∈ F3, c ∈ F3} and

C ′′4 = {(a, b, c, a+ b+ 2c), a ∈ F3, b ∈ F3, c ∈ F3}
The reason we have no others is the following:

(a, b, c, d) ∈ C4 is equivalent to d = 2a + b + c, which is equivalent to a =
b+c+2d, which is equivalent to b = a+d+2c, which is equivalent to c = a+d+2b.

Codes C ′4 and C ′′4 cover all the other possibilities.

So

∆ = {0, F43, C1, C
′
1, C

′′
1 , C2, C

′
2, C

′′
2 , C3, C5, C4, C

′
4, C

′′
4 , C7, C

′
7, C

′′
7 }

is the set of all MCC with length 4 over F3 generated by only one polynomial.

We can check that ∆ is closed under the addition of vector spaces. As an example lets
see what we get if we do C1 + C ′1.

It is easy to see that a basis for C1 is B1 = {(1, 1, 0, 0), (0, 0, 1, 1)} and a basis for C ′1
is B ′1 = {(1, 0, 1, 0), (0, 1, 0, 1)}.

In order to find a basis for C1 + C ′1 first we build the matrix

M =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1


and apply the reduced raw echelon form on it. If we do that we have

M ∼


1 0 0 2

0 1 0 1

0 0 1 1

0 0 0 0

 .
The first 3 rows of the above matrix will give us a basis for C1 + C ′1. So we have
C1 + C

′
1={a(1, 0, 0, 2) + b(0, 1, 0, 1) + c(0, 0, 1, 1), a, b, c ∈ F43},

C1 + C
′
1 = {(a, b, c, 2a+ b+ c), a, b, c ∈ F3}=C4.
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Theorem 30. F3[x]/ < x21 − 1, x22 − 1 > is a principal ideal domain.

Proof. Let I ⊂ F3[x]/ < x21 − 1, x22 − 1 > be a random ideal. Since we are working on F3,
I is generated by finite polynomials of F3[x]/ < x21 − 1, x

2
2 − 1 >.

So we have I =< p1, p2, ..., ps >=< p1 > + < p2 > +...+ < ps >.
Since pi ∈ F3[x]/ < x21 − 1, x22 − 1 > we have < pi >∈ ∆ for any i = 1, 2, 3..., s.

Because ∆ is closed under the addition of vector spaces we have I ∈ ∆.

We can conclude that ∆ contains all the multi cyclic codes of length 4 over F3.

8.2 Matrix Product Structure and the Dual of MCC of length 4 over
F3

It turns out that all the linear codes C0, C1, ..., C7 defined above, can be written as ma-
trix product of cyclic code of length 2 over F3. Let V = {(a, a), a ∈ F3} and let W =
{(a, 2a), a ∈ F3}. Since we are working in F3, the above V andW are cyclic codes.

Proposition 6. We can show that

1. C0 = C6 = F43 = (F23, F
2
3)

(
1 1

0 1

)
.

2. C1 = (V, V)

(
1 1

0 1

)
.

3. C2 = (W,W)

(
1 1

0 1

)
.

4. C3 = (F23,W)

(
2 1

0 2

)
.

5. C4 = (F23, V)

(
1 1

0 2

)
.

6. C5 = (V, 0)

(
1 1

0 1

)
.

7. C7 = (V, 0)

(
1 2

0 2

)
.

Proof. The proof once again will be done for C4 and the same idea can be applied for the
others.

Since

dim((F23, V)
(
1 1

0 2

)
)=2+1=3= dimC4
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all we have to do is prove that (F23, V)
(
1 1

0 2

)
⊆ C4.

Let (c1, c2, c3, c4) ∈ (F23, V)

(
1 1

0 2

)
. From the definition of matrix product there

exists (a, b) ∈ F23 and (c, c) ∈ V such that(
c1 c3
c2 c4

)
=
(
a c

b c

) (
1 1

0 2

)
.

So we can write c1 = a, c2 = b, c3 = a+ 2c, c4 = b+ 2c.
Recall that (c1, c2, c3, c4) ∈ C4 if and only if c4 = 2c1+ c2+ c3, but 2c1+ c2+ c3 =

2a+ b+ a+ 2c = 3a+ b+ 2c = 0+ b+ 2c = c4.

It turns out that the dual of a MCC of length 4 over F3 is still a MMC of the same length
over the same F3.We can show that

1. (0)⊥ = F43.

2. C⊥1 = C2.

3. (C ′1)
⊥ = C ′2.

4. (C ′′1)
⊥ = C ′′2 .

5. C⊥3 = C5.

6. C⊥4 = C ′′7 .

7. (C ′4)
⊥ = C ′7.

8. (C ′′4)
⊥ = C7.

Example 5. As an example i will prove that C⊥4 = C ′′7 .

Proof. Since dim(C4) + dim(C ′′7 ) = 3 + 1 = 4 = dim(F43), it is enough to show
that for any x ∈ C4 and y ∈ C ′′7 , < x, y >= 0. Since x = (a, b, c, 2a + b + c) and
y = (d, 2d, 2d, d) for some a, b, c, d ∈ F3 we have < x, y >= ad+ 2bd+ 2dc+ 2ad+
bd+ dc = 3(ad+ bd+ cd) = 0.
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