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Hydrocarbons
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Manoj Kamalanathan1, Wei-Chun Chin5, Adrian B. Burd6, Andrew Wozniak7,8 and
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University at Galveston, Galveston, TX, United States, 4 Institute for the Study of Earth, Oceans and Space, University
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CA, United States, 6 Department of Marine Sciences, University of Georgia, Athens, GA, United States, 7 School of Marine
Science and Policy, University of Delaware, Lewes, DE, United States, 8 Department of Chemistry and Biochemistry, Old
Dominion University, Norfolk, VA, United States

Microbes (bacteria, phytoplankton) in the ocean are responsible for the copious
production of exopolymeric substances (EPS) that include transparent exopolymeric
particles. These materials act as a matrix to form marine snow. After the Deepwater
Horizon oil spill, marine oil snow (MOS) formed in massive quantities and influenced the
fate and transport of oil in the ocean. The processes and pathways of MOS formation
require further elucidation to be better understood, in particular we need to better
understand how dispersants affect aggregation and degradation of oil. Toward that
end, recent work has characterized EPS as a function of microbial community and
environmental conditions. We present a conceptual model that incorporates recent
findings in our understanding of the driving forces of MOS sedimentation and flocculent
accumulation (MOSSFA) including factors that influence the scavenging of oil into MOS
and the routes that promote decomposition of the oil post MOS formation. In particular,
the model incorporates advances in our understanding of processes that control
interactions between oil, dispersant, and EPS in producing either MOS that can sink
or dispersed gels promoting microbial degradation of oil compounds. A critical element
is the role of protein to carbohydrate ratios (P/C ratios) of EPS in the aggregation process
of colloid and particle formation. The P/C ratio of EPS provides a chemical basis for the
“stickiness” factor that is used in analytical or numerical simulations of the aggregation
process. This factor also provides a relative measure for the strength of attachment
of EPS to particle surfaces. Results from recent laboratory experiments demonstrate
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(i) the rapid formation of microbial assemblages, including their EPS, on oil droplets
that is enhanced in the presence of Corexit-dispersed oil, and (ii) the subsequent rapid
oil oxidation and microbial degradation in water. These findings, combined with the
conceptual model, further improve our understanding of the fate of the sinking MOS
(e.g., subsequent sedimentation and preservation/degradation) and expand our ability
to predict the behavior and transport of spilled oil in the ocean, and the potential effects
of Corexit application, specifically with respect to MOS processes (i.e., formation, fate,
and half-lives) and Marine Oil Snow Sedimentation and Flocculent Accumulation.

Keywords: marine oil snow, marine snow, exopolymers, MOSSFA, deepwater horizon, oil

INTRODUCTION

One of the significant new insights from the large research effort
launched after the Deepwater Horizon (DwH) oil spill in the
Gulf of Mexico in 2010 is the information gained on the fate
of oil and dispersants as they were transported to the seafloor
(see e.g., reviews of Daly et al., 2016; Passow and Overton, 2021;
Quigg et al., 2021a). In particular, it was found that the flocculent
material observed in surface waters for several weeks after the
incident formed as a result of microbial mucus production
(Passow et al., 2012). This material contained significant fossil
carbon as determined by the 13C technique (Passow, 2016). The
term MOSSFA (Marine Oil Snow Sedimentation and Flocculent
Accumulation) was coined to describe the combination of
biological, chemical and physical processes that lead to the
formation and sinking of this marine oil snow (MOS) material
and its accumulation on the seafloor (Daly et al., 2016, 2020;
Quigg et al., 2016, 2020; Burd et al., 2020). MOSSFA also includes
the fate of oil and the biochemical signature left in exudates and
sediments. It has since become clear that similar sedimentation
events of oil-laden marine snow have also occurred during
other spills, although they went largely undetected at the time
(Vonk et al., 2015). Recent estimates suggest that 5–31% of
oil reached the seafloor during DwH (Valentine et al., 2014;
Chanton et al., 2015; Romero et al., 2015; Xu et al., 2018a,b).
Interestingly, a similar proportion of oil (24%) reached the
seafloor during the Ixtoc-I oil spill in the Bay of Campeche in
1979–1980 (Boehm and Fiest, 1980; Jernelöv and Lindén, 1981),
emphasizing the importance of the MOSSFA process. Indeed,
MOSSFA events are now recognized as a potential pathway
for oil distribution in the marine environment, and the need
to integrate this process into spill response planning has been
recognized (Jacketti et al., 2020; Ross et al., 2021). Whereas
aggregation between suspended sediments and oil [e.g., oil-
sediment aggregations (OSA), also called oil-mineral-aggregates
(OMAs), mineral-oil-aggregates (MOA), oil-particle aggregates
(OPA) or oil-suspended-particulate-material-aggregates] form
predominately via direct coagulation between oil droplets and
particulates or sediments (Khelifa and Hill, 2006; Gong et al.,
2014; Zhao et al., 2016), exopolymers released by bacteria and
phytoplankton are an essential ingredient for the biologically
mediated formation of marine snow and MOS (see recent reviews
by Quigg et al., 2016; Burd et al., 2020; Santschi et al., 2020;
Gregson et al., 2021).

Formation of marine (oil) snow is complex, depending
on local conditions (light, UV, temperature, weathering, and
minerals) and by a multitude of drivers spanning from molecular
to organismal scales (Figure 1). This review examines the
relationship between the microbial community, their exudates,
oil, and dispersants in determining the major processes
(dispersion, aggregation, and sinking), which in turn determine
the fate of hydrocarbons in the ocean. It is known that
most marine microbes, whether auto- or heterotrophic, bacteria
or phytoplankton, are capable of producing mucilaginous
substances that have varying functional roles and physical
properties (Hoagland et al., 1993; Decho and Herndl, 1995;
Verdugo, 2012; Decho and Gutierrez, 2017). This frequently
leads to the formation of gelatinous mucus-like aggregates
(Baelum et al., 2012; Passow et al., 2012; Ziervogel et al., 2012;
Gutierrez et al., 2013a,b) such as biofilms and gels that facilitate
the development of complex, interacting communities that are
hotspots of microbial activity (Verdugo and Santschi, 2010;
Doyle et al., 2018, 2020). However, it remains important to
understand: (A) what are the general characteristics of EPS? (B)
how do microbes respond to oil and dispersants? (C) what are
the mechanisms by which EPS aids in the aggregation and/or
dispersion of oil or oil plus dispersant, and (D) how does the
presence of the resulting ternary system (oil-dispersant-EPS)
modify the fate of the oil?

The formation of marine snow and MOS are usually modeled
using aggregation theory (Burd and Jackson, 2009; Dissanayake
et al., 2018). Some models explicitly focus on the physical
processes that bring particles together (e.g., Brownian motion,
fluid shear, and differential sedimentation), the probability that
particles adhere once a collision has occurred (stickiness), and
the sinking of particles through the water column (Kiørboe
et al., 1990; Burd and Jackson, 2009). Marine aggregates display
fractal properties, and so models use fractal scaling to relate
particle diameter to volume. Particle disaggregation is also
important and occurs by fluid shear, turbulence, or fragmentation
through animal-particle interactions. Although disaggregation
models are less well developed, simplified representations of
disaggregation are also often included in models which can
be sensitive to how disaggregation is parameterized (Burd and
Jackson, 2009; Dissanayake et al., 2018). Combining these factors
together leads to a system of non-linear, coupled differential
equations describing the evolution of the particle size distribution
(Burd and Jackson, 2009). Other models, e.g., the “Brownian
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FIGURE 1 | Schematic of potential interactions between the microbial community and the oil or oil plus dispersant. Microbial exudates are released in response to
the oil and dispersant, which then triggers a cascade of reactions. The binding between exudates and oil or oil plus dispersant impact the oil’s fate (dispersion versus
aggregation), which in turn determines its distribution between the water column and sediments (dispersion versus sinking), degradation and grazing rates. The
microbial community composition depends on oil and dispersant availability, which in turn determines the characteristics of microbial exudates and dictates the
method microbes interact with the oil (direct or via exudates).

Pumping” model of Honeyman and Santschi (1989) express
coagulation rates and extent as a non-linear function of
particle concentration, to simulate the widely observed particle
concentration effect on particle-water partition coefficients and
kinetics of radioactive and stable metal sorption coupled to
coagulation of colloids to particles. The Brownian Pumping
model was also verified in controlled laboratory experiments
using hematite particles (Honeyman and Santschi, 1991) and
natural particle assemblages (Stordal et al., 1996; Wen et al.,
1997).

In all formulations of marine snow formation, purely
physicochemical processes are included in models only in the
form of an empirical “stickiness” parameter (α) that takes a value
between 0 and 1. This is usually regarded as a constant and
depends on the amount of EPS particles (Passow, 2002). The
aggregation rate (R

(
di, dj

)
) between particles of diameter di and

dj is then written as:

R
(
di, dj

)
= αβ

(
di, dj

)
CiCj (1)

Where β(di, dj) is the coagulation kernel and is the sum of the
rates of the physical processes bringing particles together, and Ci
is the concentration of particles of diameter di.

In this review, we propose that the stickiness parameter
(α) should be modified to reflect the composition of EPS. In
particular, we have suggested that α should be a function of
the protein-to-carbohydrate ratio (ϑ) of the EPS which is in
turn a function of microbial biomass and the concentration of
oil and dispersant (Quigg et al., 2016; Santschi, 2018; Xu et al.,
2019; Chen et al., 2020; Santschi et al., 2020). This modification
will explicitly incorporate important biological and chemical
contributions into the coagulation models so that the aggregation
rate between particles becomes:

Rij = α (ϑ) βijCiCj (2)

In this review, we will focus on the above four questions (A–D)
as they lead us closer toward an understanding of the processes
and pathways of MOS formation in determining the fate of
hydrocarbons. Here in, we present a conceptual model that
incorporates this information, which is critical to developing
better predictions of hydrocarbon fate in the oceans. The reader
is referred to the many excellent reviews published to learn more
about other processes (e.g., role of zooplankton and food webs)
which are equally critical but beyond the scope of the current
paper in understanding MOS and MOSSFA (Beyer et al., 2016;
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Daly et al., 2016; Burd et al., 2020; Kujawinski et al., 2020; Quigg
et al., 2020; 2021a, b; Passow and Overton, 2021; Ross et al., 2021).
Nonetheless, additional studies would be invaluable to collecting
data which could be used to develop flux measures between
compartments and hence, the development of models to examine
the fate of hydrocarbons.

What Are the General Characteristics of
EPS?
Exopolymeric substances (EPS) represent a vast pool of reversibly
self-assembling porous micro-gels released by microbes (bacteria
and phytoplankton) that serve as a major source of dissolved
organic matter in the oceans. Marine micro- and nano-gels
are three-dimensional polymer networks reversibly formed from
EPS (Verdugo et al., 2004; Verdugo and Santschi, 2010); they
create microenvironments that interact with the surrounding
media (Chin et al., 1998) and are thought to be the precursors
to the more visible macro-gels. These high molecular weight
exopolymers are thought to physically protect microbes (e.g.,
from heavy metals and pollutants) as well as aid in their
attachment to different substrates by forming biofilms and gels
(Verdugo and Santschi, 2010; Quigg et al., 2013, 2016; Decho
and Gutierrez, 2017; Santschi, 2018; Santschi et al., 2020; and
references therein). These exopolymers are composed mainly
of polysaccharides and proteins, but also contain nucleic acids
and lipids (Azam, 1998; Verdugo et al., 2005; Verdugo, 2007;
Decho and Gutierrez, 2017; Santschi et al., 2020). Subclasses of
EPS are named depending on the method of characterization
(see review of Quigg et al., 2016). If alcian blue staining is
used with Xanthan as the standard, the particulate fraction
(retained on a filter) is named transparent exopolymer particles
(TEP) (Passow, 1995; Bar-Zeev et al., 2011; Xu et al., 2011).
If alginic acid is used as a standard, the particulate material is
called acid polysaccharides (APS) (Hung et al., 2003). Coomassie
Stained Particles (CSP) are proteinaceous particles made visible
with Coomassie Blue staining (Nagasaki et al., 2004; Verdugo
et al., 2008). It is important to note that often these different
measurements are detecting different moieties of the same
molecule(s). EPS, are therefore “operationally” defined based
upon their characteristics, size(s), and methods of quantification
(Bar-Zeev et al., 2015; Quigg et al., 2016). The majority of studies
measure one, perhaps two of these operationally defined EPS.
However, a recent study compared EPS, TEP, CSP, and microgels
in seawater from the Gulf of Mexico (Xu et al., 2019). The study
found that biopolymers making up EPS, TEP, and CSP consisted
primarily of polysaccharides and proteins, most likely as
proteoglycans and glycoproteins, and that overall, concentrations
ranked in the order of [gels] > [TEP] > [particulate EPS].
This ranking was the same in the presence of a water
accommodated fraction (WAF) of oil prepared with a Macondo
surrogate oil. The EPS that was electrostatically held onto
particle surfaces (operationally-defined as those extractable by
1% EDTA) accounted for a minor (∼4%) yet relatively constant
proportion of TEP.

Polysaccharides, one of the major constituents of EPS, are
mostly hydrophilic. Acid polysaccharides such as uronic acids

contain carboxyl or sulfate groups and provide bidentate inner-
sphere coordination sites for divalent (e.g., Ca2+ and Mg2+) or
trivalent (e.g., Fe3+) ions, thus causing supra-macromolecular
aggregation and Ca2+ bridging for structural stability (Verdugo
et al., 2004). Proteins, another major EPS component, are
amphiphilic and mediate the stability and aggregation of
the 3-D networks of biopolymers, through hydrophobic and
electrostatic interactions (Ding et al., 2008; Ortega-Retuerta
et al., 2009; Song et al., 2015; Sun et al., 2020), as well as light-
induced cross-linking (Sun et al., 2017, 2018, 2019, 2020). The
hydrophobic domains of EPS (mainly consisting of proteins)
were shown previously to absorb organic pollutants, such as
petroleum hydrocarbons phenanthrene (Liu et al., 2001) and
benzene (Spath et al., 1998). Particulate exudates, like TEP,
may promote coagulation of marine particles and provide
a matrix for marine snow (component particles > 0.5 mm)
(Alldredge et al., 1993; Passow, 2002; Verdugo et al., 2004;
Passow et al., 2012). The composition and characteristics of
EPS can therefore lead to differences in the interactions with
oil and/or dispersants, thus affecting petroleum hydrocarbons’
dispersion, degradation, and sedimentation pathways. Recent
studies reveal that the hydrophobic interaction between proteins
and hydrocarbons results from a selective partitioning with
hydrophilic polysaccharides preferentially associating with
sinking MOS (Xu et al., 2018a,b, 2019). Marine snow and MOS
were found to be extremely sticky; with particles readily attaching
in the water column. After losing their buoyancy, marine snow
and MOS sink toward the seafloor (Ziervogel et al., 2011; Passow
et al., 2012). Recent work by Ye et al. (2020) also shows that
when oil droplets are combined with more cohesive bentonite
clay, the aggregate density and settling velocity actually increase
compared to the clay alone. This is because droplets no longer
exist (observed microscopically) and oil is absorbed into the
larger aggregate structure. Their observations were carried out
at atypically high particle, EPS as Xanthan gum, and/or crude
oil concentrations (e.g., 500 mg/L) and should be regarded
with caution. However, these observations may be consistent
with observations using individual diatom species exposed to a
control and to WAF treatment in roller tanks by Passow et al.
(2019) who found that measured settling velocities increased in
the presence of oil.

How Do Microbes Respond to Oil and
Dispersants?
The release of hydrocarbons as a result of a spill triggers a
complex cascade of microbial responses (Figure 1), whereby
not a single species dominates, but complex microbial consortia
develop (Head et al., 2006; Baelum et al., 2012; Kleindienst
et al., 2015, 2016; Doyle et al., 2018, 2020). The microbial
response to oil-contamination and the fate of the oil varies, with
some bacteria having genes for hydrocarbon and/or n-alkane
degradation that can directly utilize components of the oil (Hazen
et al., 2010; Valentine et al., 2010; Kessler et al., 2011; Lu et al.,
2012; Redmond and Valentine, 2012; Ziervogel et al., 2014;
Doyle et al., 2020). Several studies have confirmed that microbes
(prokaryotes) indigenous to the Gulf of Mexico comprised largely
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of Gammaproteobacteria (Hazen et al., 2010; Baelum et al., 2012;
Mason et al., 2012; Rivers et al., 2013; Kleindienst et al., 2016)
played a significant role in the biodegradation of the oil during
and post DwH oil spill (Lu et al., 2012; Mason et al., 2012, 2014).
However, other microbial groups were also present (Gutierrez
et al., 2013a,b, 2016; Yang et al., 2016; Kamalanathan et al.,
2018, 2021) and have been shown to respond to oil spills in
other areas (McKew et al., 2007; Prince et al., 2010; McGenity
et al., 2012). Members of the genera Marinobacter, Alcanivorax,
Cycloclasticus, Neptuniibacter, and others dominated the surface
water column (Baelum et al., 2012; Kleindienst et al., 2015;
Dombrowski et al., 2016; Doyle et al., 2018), while the order
Oceanospirillales, and genus Colwellia dominated the deep sea
plume responses (Redmond and Valentine, 2012; Kimes et al.,
2013, 2014; Kleindienst et al., 2015, 2016). A change in microbial
community structure was also observed across time, with
groups such as Methylotrophs, Alteromonadales, Flavobacteria,
Rhodobacter, and Deltaproteobacteria increasing in abundance
following the succession of Cycloclasticus, Oceanospirillales,
Colwellia, and Alcanivorax (Kimes et al., 2013, 2014). These shifts
occur within a few hours of experiment initiation with surface
water studies (Doyle et al., 2018, 2020) showing the microbial
community response is also much faster in surface waters than
those performed at depth (Baelum et al., 2012; Kleindienst et al.,
2015). In mesocosms with oil (as a WAF), this manifested as
an increase in community diversity due to the outgrowth of
several aliphatic- and aromatic-hydrocarbon degrading species,
including phytoplankton-associated taxa (Doyle et al., 2020).
In contrast, microbial community diversity was reduced in
microcosms containing oil (Meng et al., 2016; Kamalanathan
et al., 2021) and dispersant (Meng et al., 2016), however,
this effect has been shown to be temperature dependent
(Techtmann et al., 2017).

Field samples from the site of DwH showed elevated levels of
respiration accompanied by higher levels of expression of genes
associated with chemotaxis, motility, hydrocarbon degradation
pathways such as n-alkane and cyclohexane oxidation, and
nutrient acquisition, especially denitrification in the prokaryotic
microbial community (Edwards et al., 2011; Lu et al., 2012; Mason
et al., 2012, 2014). Shifts in extracellular enzyme activities from
β-glucosidase (associated with polysaccharide degradation) to
lipase (often associated with hydrocarbon degradation) were also
observed in mesocosm studies (Kamalanathan et al., 2021). At the
sites of the DwH oil spill where both the sediments and their
overlying water samples were taken, elevated levels of alkaline
phosphatase were measured. This corresponded to a substantial
biomass growth in the water column yet a non-significant
biomass increase in the sediment (Edwards et al., 2011; Lu et al.,
2012). Taken together, these findings indicate oil exposure shifted
the metabolism toward hydrocarbon degradation which in-turn
drove nitrogen uptake (Mason et al., 2014; Zhao et al., 2020).

Dramatic shifts in heterotrophs, photoautotrophs, and grazers
altered the community structure in the water column with
diatoms and certain dinoflagellates dominating after exposure to
oil and/or oil plus dispersants in a variety of studies (Parsons
et al., 2015; Almeda et al., 2018; Bretherton et al., 2019; Finkel
et al., 2020; Quigg et al., 2021b). Some dinoflagellates have been

shown to directly ingest oil (Almeda et al., 2014), however,
the mechanism behind diatom oil tolerance remains unknown.
Many physiological studies in the last decade have examined the
response of the photosynthetic pathways, respiration, the reactive
oxygen system, morphological features and toxin production
(Bretherton et al., 2018, 2019, 2020; Kamalanathan et al., 2019)
as well as other parameters (see review by Quigg et al., 2021b).
Growth and photophysiological responses are often species
specific with some showing a tolerance and others a sensitivity
to oil or oil plus dispersants (Bretherton et al., 2018, 2020).
Reactive oxygen species concentrations have been shown to be
one of the major secondary factors leading to growth inhibition
in sensitive phytoplankton (Ozhan et al., 2015; Quigg et al.,
2021b). The presence of dispersant reduced the growth rate
and increased the level of the toxin domoic acid in the diatom
Pseudo-nitzschia (Bretherton et al., 2019). Nonetheless, a decrease
in microbial interactions was also observed in microcosm
studies in response to oil exposure, primarily due to a major
change in the composition of eukaryotic phototrophs and a
decrease in photosynthetic efficiency (Kamalanathan et al., 2021).
Surprisingly, the same study found a significant decrease in
heterotrophic EPS production with no changes to phototrophic
EPS levels, suggesting an indirect impact on phototrophs and
heterotroph interactions due to oil exposure.

Amongst the eukaryotes, the community composition shifted
more toward fungi in the benthos (Bik et al., 2012) and salt
marshes (Lumibao et al., 2018). This is not surprising as fungi
have been shown to tolerate and degrade oil either directly
(Davies and Westlake, 1979; Al-Nasrawi, 2012) or in conjunction
with extracellular enzymes (Verdin et al., 2004; Asemoloye et al.,
2018). There is also evidence that marine fungi play a role in oil
degradation (Burd et al., 2020; Finkel et al., 2020). Fungi are well-
known for their ability to metabolize biochemical compounds
including lignin and complex carbohydrates (Hedges et al., 1985),
and they have recently been shown to dominate biomass on
marine snow in the deep sea (Bochdansky et al., 2017) suggesting
their importance to marine organic matter degradation.

After the DwH oil spill, large, EPS-rich, marine snow, and
MOS formed with elevated hydrolytic enzyme activities in
association with the surface oil layer (Baelum et al., 2012;
Passow et al., 2012; Ziervogel et al., 2012; Kleindienst et al.,
2015; Kamalanathan et al., 2018). In addition to the above
changes in microbial community activity, it was also found
that the mucus-like EPS harbored a very distinct community
of interacting microbes, with a specific functionality that was
different from those persisting in the surrounding seawater
(Ziervogel et al., 2012; Arnosti et al., 2015). These eukaryotic
microbes and fungi can transform and degrade oil, sometimes
in association with bacteria and dispersants including Corexit
(Mishamandani et al., 2016; Severin and Erdner, 2019). Thus,
marine snow is a hot spot for microbial activity (Azam, 1998;
Arnosti et al., 2015; Doyle et al., 2018, 2020) and serves
as a transport vehicle for hydrocarbons to the seafloor as
well as the associated microbial communities (Kowalewska
and Konat, 1997; Kowalewska, 1999; Ziervogel et al., 2012;
Ziervogel et al., 2014, 2016; Arnosti et al., 2015). Collectively,
these processes directly influence microbial community
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composition and structure, indirectly influence the quantity
and quality of produced exudates, and ultimately influence
both remineralization and mobilization of oil-derived carbon,
by determining its fate (sinking versus dispersion versus
aggregation) and transport (exudates).

Some data also indicates Corexit may serve as a microbial
substrate (Baelum et al., 2012; Bacosa et al., 2018) while others
show toxicity (Zahed et al., 2010; Hamdan and Fulmer, 2011;
Paul et al., 2013). These differences may be due to a dissimilar
experimental design, as Baelum et al. (2012) used deep-water
samples, while Hamdan and Fulmer (2011) used hydrocarbon
degrading isolates. Regardless, it is apparent that the impact
of Corexit on microbial community function, in general, and
on EPS production and function specifically, is still largely
unconstrained. In addition, oceanic regions have distinctly
different indigenous microbial communities than coastal regions
(Doyle et al., 2020); these populations responded to oil/dispersant
intrusion differently as also reflected in the EPS production and
composition (Xu et al., 2019). For example, EPS produced by
the natural consortia in the coastal seawater was generally more
hydrophobic (with a higher P/C ratio, and thus higher α factor,
see above) than that produced in the offshore waters. Nutrient
status and particle concentrations in these oceanic regions
(nearshore versus offshore) could have also been factors that
directly affect EPS production and oil-laden aggregate formation
(the latter serves as ballast). Such information needs to be taken
into consideration when evaluating post-spill MOS formation
and sedimentation.

Lastly, most of the research on microbial oil spill toxicology
tend to highlight the most enriched microbial species, with less
abundant ones grouped together as “others.” However, studies
have shown that members belonging to order Burkholderiales,
and Enterobacteriales, and phylum Planctomycetaceae,
Hyphomonadaceae, Saprospiraceae, and Teridinibacter decreased
in abundance in response to oil and dispersant exposure
(Kleindienst et al., 2016; Meng et al., 2016; Kamalanathan
et al., 2018). Amongst eukaryotes, Amoebozoa, dinoflagellates,
diatoms such as Coscinodiscus, Thalassiosira, Stephanopyxis,
and Thalassionema decreased in response to oil and dispersant
exposure (Bretherton et al., 2018; Finkel et al., 2020). However,
future studies with more emphasis on the oil and dispersant
sensitive microbial species would be beneficial, e.g., using
them as indicator species of unpolluted areas or areas that
recovered post-spill.

What Are the Mechanisms by Which EPS
Aids in the Aggregation and/or
Dispersion of Oil or Oil Plus Dispersant,
Thereby Influencing the Fate of Oil?
Exopolymeric substances acting as biosurfactants can emulsify oil
and its breakdown products (Head et al., 2006). For example,
EPS produced by Halomonas sp. has amphiphilic properties,
thereby interacting easily with hydrophobic substrates like
hydrocarbons, leading to the solubilization and biodegradation
of oil components (Gutierrez et al., 2013a). The exopolymer
concentrations with entrained oil droplets grow to form networks

that also act as an energy and carbon source to other
members of the microbial community (Sinsabaugh et al., 2009;
Kamalanathan et al., 2020). In addition, the production of EPS
may facilitate attachment of specific microbes (e.g., Pseudomonas
putida) to polycyclic aromatic hydrocarbons (McGenity et al.,
2012). In this way, a complex network of microbes utilizing
the different components of oil and the metabolites of the
oil degraders will develop (McGenity et al., 2012). Such
networks may enhance the formation of aggregates and biofilms
(Gärdes et al., 2011).

Most petroleum hydrocarbons are insoluble in seawater so
that biodegradation can only take place at the hydrocarbon-
water interface. Dispersion or emulsification of oil increases
the bioavailability of oil products to biodegradation as these
processes introduce fine droplets of oil into the water column
by wave action or sea turbulence and keep it dispersed. Given
dispersants are designed to form emulsions to prevent oil droplets
from coalescing and stabilize them in a suspension, Corexit and
other dispersant products are a mixture of nonionic (∼48%) and
anionic (∼35%) surfactants with enough solvent or petroleum
distillate (∼17%) to make a homogeneous dispersant mixture
of the surfactants and aid in their penetration onto and into
the oily aggregate (John et al., 2016; Quigg et al., 2021b). As
shown in Figure 2 (Phase 1), surfactants are long amphiphilic
molecules that can arrange themselves at an interface such
that the hydrophilic head interacts with the water and the
hydrophobic tail shuns the water and crosses the interfacial
boundary interacting with the air or another hydrophobic
substance, such as oil. The presence of these molecules on the
surface disrupts the cohesive energy and lowers the surface
tension (Figure 2, Phase 2).

The purpose of dispersant application is to lower the oil/water
interfacial tension to promote entrainment of oil droplets
(<100 µm) into the water column (Chen and Yapa, 2007;
Testa et al., 2016). The critical micelle concentration (CMC)
is the concentration of dispersant at which the surfactant
molecules form a uniform monolayer at the oil/water interface
(Figure 2, Phase 3). The effectiveness of a dispersing agent
increases the magnitude of the interfacial tension reduction to
CMC (shown as the difference between the surface tension of
Phase 1 and that of Phase 2, the greater the difference is, the
higher the effectiveness). However, the efficiency is highest when
the lowest concentration of dispersing agent is used after the
CMC is reached (the surface tension of Phase 3, the lower
the value, the higher the efficiency). Recent studies have tested
the hypothesis that the exudates of bacteria and phytoplankton
may also serve as biosurfactants (Quigg et al., 2016, 2020,
Decho and Gutierrez, 2017; Ward et al., 2018). Schwehr et al.
(2018) characterized EPS as biosurfactants by determining their
effectiveness and efficiency through interfacial tension and
CMC rheology measurements. They investigated mechanisms
governing the self-assembly and phase separation for protein-
polysaccharide-oil-dispersant interactions, thereby adding to our
understanding of what is known about the CMC of oil/Corexit
mixtures. With hydrophilic and hydrophopic moieties, EPS
increases the bioavailability of certain oil components to the
microbial community. In this sense, the biosurfactant properties
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FIGURE 2 | Surface tension as a function of surfactant concentration
(logarithmic scale) in three separate phases. (1) low concentration of
surfactant, with the round hydrophilic end of the molecule in the water and the
long carbon chain or tail interacting with a hydrophobic substance, i.e., air or
oil; (2) as the surfactant concentration increases, the interfacial surface tension
decreases between the hydrophobic and hydrophilic moieties; and (3) when
the concentration of surfactant increases to the critical micelle concentration
(CMC) an emulsion is formed where the oil is entrained in the biosurfactant
and can be dispersed or form networks or gel.

of EPS are similar to those of dispersants used for oil
spill remediation.

Exopolymeric substances with enhanced protein to
carbohydrate (P/C) ratios (thus higher sticky factor α, see
above) was present in oil and oil plus dispersant treatments,
suggesting efficient bioemulsifying effects of proteins in the
presence of Corexit (Schwehr et al., 2018; Xu et al., 2018a,b,
2019; Shiu et al., 2020). In addition, bovine serum albumin
(used as a model protein) was found to slightly increase surface
tension at low concentrations (<few mg/L), but decreased it at
higher concentrations of >8 mg/L (Schwehr et al., 2018). These
model molecules (including uronic acids such as glucuronic acid
with carboxyl moieties and carrageenan with sulfate groups)
appeared to be more efficient than Corexit in inducing the
self-assembly of micelles in the seawater even when only very low
concentrations were present. Schwehr et al. (2018) found Corexit
is more effective, i.e., lowers the surface tension more than the
EPS constituents, however, the EPS can emulsify oil at far lower
concentrations, thus is more efficient (Figure 2). In several
mesocosm experiments mimicking different environmental
settings, the relative petro-carbon concentration (%, petro-
carbon to total organic carbon) in the sinking MOS, as
determined by 14C method, was found to be positively correlated
with both the P/C ratio of colloidal EPS and sinking MOS-EPS
(Xu et al., 2019). This result corroborates that EPS plays a similar
role to that of Corexit in reducing the surface tension of oil but

could have been more efficient than Corexit in forming oil-EPS
micelles. This behavior was related to their relative hydrophilicity
(i.e., P/C ratio). Passow et al. (2019) suggested that oil droplets
may allow for tighter packaging of cells, which decreases porosity
and results in faster sinking. Santschi et al. (2020) suggested using
the data from Passow et al. (2019) which showed that decreased
aggregate diameters and settling velocities were correlated with
increased P/C ratios of EDTA extractable EPS to understand
how P/C ratios affect stickiness. That is, the presence of oil not
only seems to cause a tighter packaging of cells, it also facilitates
the production of EPS with higher P/C ratios and incorporation
of more hydrophobic biopolymers (shown as higher P/C ratio).
Incorporation of these high P/C ratio EPS moieties into the
aggregate resulted in a slower sinking velocity of aggregates.
P/C ratios of EPS could be different from that of whole EPS
(including attached EPS), while P/C ratios of non-attached EPS
affect whole oil incorporation, aggregate porosity, buoyancy, and
sinking velocity, but the exact relationships in the complex web
of processes is not entirely clear.

How Does the Presence of the Resulting
Ternary System (Oil-Dispersant-EPS)
Modify the Fate of the Oil?
In the last few years, considerable effort has been directed
toward understanding how the ternary system (oil-dispersant-
EPS) determines the fate and transport of oil (hydrocarbons)
in the ocean, particularly considering the role of dispersants.
Studies of oil, Corexit and organic matter, including exudates
(EPS and TEP) may lead to conflicting observations as to
the question of whether Corexit application promotes or
hinders MOS formation and/or the subsequent sedimentation
unless the findings are carefully dissected (Chiu et al., 2017;
Passow et al., 2017, 2019). On one hand, Corexit application
leads to significantly more oil droplets, thereby increasing the
probability that oil is incorporated into marine snow. On the
other hand, Corexit disperses whole oil-laden exudates, thus
aggregation and subsequent sedimentation processes decrease
(Passow, 2016, Passow et al., 2017). Also, Corexit application to
oil appears to result in the formation of fewer but more oil-
rich aggregates (Passow et al., 2017). If Corexit fully disperses
oil-laden exudates more effectively compared to the scenario
in which no Corexit is applied, all MOS formation would be
inhibited and no sedimentation would be observed. In contrast
to MOS, the formation of oil-sediment aggregates is independent
of exudates, and not negatively affected by exudate dispersion
(Henry et al., 2020). This finding was reflected in mesocosm
studies that showed while the formation of oil-laden aggregates
in the colloidal fraction increased, deposition of marine (oil)
snow/particles decreased (Xu et al., 2018a,b). This is because
each aggregate included higher concentrations of oil droplets thus
increasing its buoyancy. In contrast to this, oil-sedimentation
rates are less affected (over controls) when no dispersant is
applied (Passow et al., 2012; Xu et al., 2018a).

The input of oil/dispersant fueled the microbial community
by promoting EPS production and modifying their composition
as observed by the positive correlations between EPS production
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and the reduction of oil/PAH/n-alkane when oil/dispersant was
present in several mesocosm systems with various environmental
settings (Xu et al., 2019). Some interesting patterns were
observed: (1) more EPS preferably partitioned into suspended
particulate matter (SPM) when dispersant was applied compared
to treatments without oil/dispersant or only with oil; (2) riverine
particle input in the coastal region enhanced EPS partitioning
into the SPM fraction compared to the offshore water which has
less terrestrial influence; (3) the coastal microbial communities
tend to produce EPS with higher P/C ratio (thus higher α, see
above) compared to those in offshore waters, indicating their
potentially higher hydrophobicity and thus stronger tendency
to form aggregates; (4) a contrasting pattern of consistently
higher P/C ratio in sinking aggregate-EPS than in SPM-EPS in
all treatments of the offshore region, with an opposite result in all
treatments of the coastal water, suggesting EPS was from different
sources in these two size fractions (SPM and sinking aggregates)
and that different mechanisms regulated MOS formation and
sedimentation in these two environmental settings.

Radiocarbon and 13C NMR results have further shown
that the presence of dispersants enhances the amount of oil
products incorporated into MOS (Hatcher et al., 2018; Xu
et al., 2018b). These authors observed that after less than a
week of mesocosm conditions replicating an oil spill, most of
the chemically-dispersed oil preferentially partitioned into the
colloidal and suspended particulate fractions rather than to the
sinking MOS. Thus, the oil sedimentation efficiency in treatments
with a dispersant was considerably lower than those in the
control and oil only treatments, which is almost a universal
observation irrespective of environmental settings (nutrients or
algae particle addition, oceanic regions, etc.) (Xu et al., 2019). It
was determined that 28–93% of sinking organic carbon consisted
of petro-carbon in the oil plus dispersant treatment compared to
a range of 17–42% for oil-alone treatment, yet the sedimentation
efficiency was significantly and consistently lower in the oil
plus dispersant treatment (0.1–8% of initial oil carbon) relative
to the oil-alone treatment (1.4–27% of initial oil carbon) (Xu
et al., 2019). However, in the long term (in a scale of >2-
weeks), these above mentioned differences (relative petro-carbon
concentration and petro-carbon sedimentation efficiency) of the
sinking MOS in oil plus dispersant versus oil-alone treatments
diminished indicating that dispersants simply postponed MOS
sedimentation. In a parallel effort, estimated oil equivalents
used as a proxy for changing oil concentrations in seawater
unassociated with MOS, exponentially decreased at rates ranging
from –0.013 to –0.027/h (Wade et al., 2017). These were slightly
higher than the rate of –0.0066/h reported by Gearing et al.
(1979), a MERL mesocosm study in which 12% of added oil was
transported to the sediments (Wade and Quinn, 1980).

A clear signal for oil incorporation into MOS comes from
a mesocosm study in which oil was observed in aggregate
materials (Hatcher et al., 2018). MOS (as bottom particles)
was analyzed by a solid-state 13C NMR CPMAS multi-pulse
technique (Johnson and Schmidt-Rohr, 2014) modified to
allow quantitative characterization of carbon functional groups
(Hatcher et al., 2018). The latter study showed oil in chemically
enhanced (with Corexit) WAF (CEWAF) treatments to have a

very large peak in the aliphatic chemical shift region (Figure 3B)
relative to controls (no oil added) (Figure 3A) indicative of
inputs of highly aliphatic oil components. Extraction with
dichloromethane (DCM), a solvent frequently used to extract oil,
efficiently removed the aliphatic oil component from CEWAF
MOS (Figures 3B,D); the control spectrum by contrast did not
show appreciable changes (Figures 3A,C). A molecular mixing
model adapted from Baldock et al. (2004) was then used to
estimate the contributions of proteins, carbohydrates, lipids, and
carbonyl carbon in the samples. After DCM extraction, control
particles showed little to no change in the relative contributions
of lipids suggesting that the losses in the operationally-defined
lipid component for the oil treatment MOS could be attributed
to the removal of oil (1 lipid = oil contribution; Hatcher et al.,
2018). Oil contributions were estimated to be 4, 27, and 26%
for WAF, CEWAF, and diluted CEWAF (DCEWAF) treatments,
respectively, using this technique. The 13C NMR-derived
estimates for oil contributions to the sinking MOS matched well
with relative oil contributions found in particles collected from
the same mesocosm treatments as measured using a 114C tracer
technique (Xu et al., 2018b). The agreement between these two
approaches confirmed the ability to quantitatively extract oil from
MOS using DCM for further characterization and assessment of
oil degradation.

Oil associated with marine snow appears to be rapidly oxidized
(timescales of days rather than years) (Hatcher et al., 2018;
Wozniak et al., 2019). DCM extracts of the sunken MOS
showed the control treatment to have vastly different molecular
characteristics from that in the DCEWAF treatments (Figure 4;
Wozniak et al., 2019). The sunken MOS DCM extracts show
unique formulas at relatively high O/C and low H/C ratios
indicating the oxygenation and solubilization of oil components
that are not found in either the control sample or the Macondo
oil sample (Figure 4B) and more likely are produced via
degradation processes in the mesocosms. After just 4 days of
processing, the oil isolated from the DCEWAF and CEWAF
treatments showed a pattern in their CHO-containing molecular
formulas that was very different from the Macondo oil which
showed most of the spectral signal for CHO formulas to be
accounted by CHO2 formulas (Figure 4C). The DCEWAF and
CEWAF CHO spectral signal shows reduced contributions from
CHO2 formulas due to contributions from CHO3 and CHO4
formulas with increasingly smaller contributions from higher
oxygenated formulas. The distribution of CHO formulas in
the degraded MOS (CEWAF and DCEWAF) was very similar
to oils exposed to weathering processes on Gulf of Mexico
beaches for several months (Figures 4C,D; Chen et al., 2016;
Wozniak et al., 2019). Similar results were found by Hatcher
et al. (2018) using GC× GC Mass Spectrometry. Oil degradation
has been demonstrated for surface slicks and oiled sands (Aeppli
et al., 2012; Ruddy et al., 2014; Chen et al., 2016) but not
within complex MOS aggregates. These results suggest that
oil degradation in the mesocosm experiments was rapid and
facilitated by the microbial community over time scales of
hours to days. We also observed significant changes in the
fingerprint of the oil in MOS including high relative abundance
of oxygenated hydrocarbons (O = 2–4) with likely aliphatic and
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FIGURE 3 | Solid-state 13C NMR spectra using a quantitative multiple cross polarization magic angle spinning pulse sequence for marine oil snow particles collected
from the bottom of tanks in mesocosm control (A,C) and chemically-enhanced water accommodated fraction (B,D) treatments before (A,B) and after (C,D)
extraction with dichloromethane to remove oil components. Shaded portions of the spectra represent chemical shift regions where signal for carbonaceous functional
groups typically appear (blue: 0–45 ppm, aliphatic C; white: 46–60 ppm, α C in peptides; gray: 60–95 ppm, carbohydrate HCOH; green: 90–110 ppm, carbohydrate
anomeric C; yellow: 110–145 ppm, Aromatic-C; orange: 145–165 ppm, Aromatic-O; brown: 165–215 ppm, Amide, Carbonyl C). Adapted from Hatcher et al. (2018).

aromatic molecular structures (Wozniak et al., 2019). We were,
however, not able to observe progressive stepwise changes in the
oil fingerprint toward aromatic ring oxidation and enrichment
in oxygen-containing molecules in polar fractions, changes
analogous to those observed during oxidation influenced by air-
exposure (Ruddy et al., 2014; Chen et al., 2016). Such information
would be invaluable for understanding the rate of oil degradation
in the marine environment.

A comparison of PAH composition in MOS from laboratory
roller table (Genzer et al., 2020) and mesocosm experiments
[Bacosa et al., 2020; and GRIIDC dataset (10.7266/ER1EGZ8E)]
with the PAH composition examined in the sediment samples
of Gulf of Mexico (Romero et al., 2015), revealed interesting
findings (Figure 5). Using non-metric multidimensional scaling
(NMDS), the data points of both WAF and DCEWAF from

roller table and mesocosm experiments clustered together with
the sediment samples, suggesting some level of consistency in the
PAHs that tend to remain in marine snow. While the DCEWAF
samples from a mesocosm experiment clustered relatively closer
to the sediment samples, a major fraction of the WAF samples
from a mesocosm experiment clustered away, suggesting a
slight effect (lower concentration of acenapthene) of the use of
dispersant on the PAH composition of the marine snow leading
to heterogeneity amongst marine snow composition. One clear
pattern that emerged from this analysis, however, is the depletion
of naphthalene and fluorene in nearly all the marine snow and
the sediment samples relative to the composition of the original
Macondo oil and the surrogate oil used in the roller table and
mesocosm experiments. This is not surprising, as studies have
shown rapid depletion and degradation of water soluble, light,
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FIGURE 4 | Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) data for dichloromethane extracts of sinking particles collected from the
bottom of tanks in mesocosm treatments displayed as van Krevelen diagrams (A,B) for control (A) and diluted chemically-enhanced water accommodated fraction
(DCEWAF) treatments (B), and as isoabundance plots of oxygen (CHO1−14) (C,D) for Macondo oil and Mesocosm 1 water accommodated fraction treatments (C)
and Mesocosm 2 control and water accommodated treatments (D). DCEWAF formulas also found in Macondo oil and the control treatments are noted as black
circles and gray triangles, respectively, in panel (B). Adapted from Wozniak et al. (2019).

volatile, low-molecular weight PAHs such as naphthalene and
fluorene (Kappell et al., 2014; Bacosa et al., 2020). Overall, this
analysis shows that the marine snow formed in the laboratory
experiments such as roller table and mesocosm experiments
closely mimicked the material found to be sedimenting in the
field, further underscoring the role of MOSSFA phenomena
during the DwH oil spill. It also shows that the use of dispersants
might not have played a significant role in determining the PAH
composition of the MOS.

The changing fingerprints of aliphatic and aromatic
hydrocarbons documented preferential loss on n-alkanes
(Morales-McDevitt et al., 2020) and lower molecular weight
PAH (Shi et al., 2020) in mesocosm studies further indicating
that biodegradation occurred within the first 24 h. In a recent
mesocosm experiment designed to measure the rate of loss of
n-alkanes over the time period of several days by GC × GC
mass spectrometry found that the concentrations of nC17 and
nC18 alkanes in extracts of MOS decreased with half-lives
of 0.9 and 1.0 days, respectively. Such a rapid diminution
of alkanes is remarkable but indicative of extremely rapid
biodegradation of oil that becomes dispersed within the MOS
and enhanced by the presence of Corexit that serves to finely
disperse the oil within the MOS (Hatcher, pers. comm).

Toward a Synthesis of Processes and
Pathways of MOS Formation in
Determining the Fate of Hydrocarbons
Predictive numerical models of MOS formation and fate
balance processes, such as aggregation, (that produce MOS)
and disaggregation (processes that alter and remove MOS, e.g.,
microbial respiration and sinking) have been attempted. A recent
study adapted models of marine snow formation and fate to
include oil (Dissanayake et al., 2018). They found that the fraction
of oil reaching the seafloor in the model was most sensitive to two
factors: the structure of the MOS particles (as measured using the
fractal dimension) and the way in which particle stickiness was
represented in the model. The values of stickiness of individual
components (e.g., oil, phytoplankton, mineral particles, etc.) were
held constant, but different ways of combining them to calculate
the stickiness of an MOS aggregate were used.

To accurately model these processes requires realistic
measures of (i) sinking velocities, (ii) stickiness, (iii)
disaggregation kinetics of MOS, and (iv) processes that transform
oil. There has been considerable work done over many decades
to determine parameterizations of sinking velocities of marine
snow (Alldredge and Gotschalk, 1998; Iversen and Lampitt, 2020;
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FIGURE 5 | Non-metric multidimensional scaling (NMDS) plot showing clustering of marine snow samples from various mesocosm, roller table studies and field
sediment samples from Gulf of Mexico based on PAH composition. Data points clustered to the right are sample from the original Deepwater Horizon (DWH)
Macondo oil and the Day 1 sample from surrogate oil used in the laboratory mesocosm and roller table studies, whereas the points clustered largely to the left are
marine snow samples from the field and laboratory experiments. Only PAHs such as Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene,
Anthracene, Fluoranthene, Pyrene, Benz[a]anthracene, Chrysene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene,
Dibenz[a,h]anthracene, and Benzo[ghi]perylene were used for the analysis, with concentrations of each PAH normalized to percentage of total PAHs in each sample.
More details on the PAH extraction, sample collection, field site and design of the roller table and mesocosm studies can be found in Genzer et al. (2020); Bacosa
et al. (2020), Romero et al. (2015) and GRIIDC dataset (10.7266/ER1EGZ8E).

Laurenceau-Cornec et al., 2020; and the review by Silver, 2015).
In contrast, measurements of stickiness and disaggregation are
less ubiquitous (Alldredge et al., 1990; Engel, 2000; De La Rocha
and Passow, 2007; Burd and Jackson, 2009).

Accurately modeling the settling velocity of marine snow
and MOS is difficult. This is because there appears to be no
clear, universal relationship between marine snow characteristics
(e.g., size and density, etc.) and settling velocity. For example,
recent laboratory experiments have suggested that Stokes’ Law
modified using the particle fractal dimension provides a good
parameterization (Laurenceau-Cornec et al., 2020), but even
this parameterization does not account for the considerable
scatter in measured settling velocities. Conversely, a recent
in-situ field study of sinking particles concluded that there is no
relationship between marine snow sinking velocity and particle
size (Iversen and Lampitt, 2020). Compounding the confusion
further, laboratory studies indicate that the incorporation of oil
into marine snow can increase settling velocities even though the

oil is positively buoyant, and this may be due to a restructuring
of the aggregate via capillary bridging (Passow et al., 2019).
Current models of MOS formation and fate use modified forms
of Stokes’ Law to calculate particle settling velocities and take into
account the overall density of the aggregate (Dissanayake et al.,
2018) producing average settling velocities that are consistent
with laboratory observations but do not reproduce the higher
velocities seen in those studies.

Marine snow and MOS formation and fragmentation is
strongly dependent on particle stickiness (see above). This is
defined as the probability that particles adhere once they have
collided, varies from 0 to 1, and depends on the chemical and
physical nature of the particles. SterlingJr., Bonner et al. (2005)
used a particle coagulation model combined with laboratory
measurements to determine stickiness between oil and mineral
particles, but no corresponding measurements exist for oil and
marine snow. Stickiness is thought to be mainly dependent on
the composition and concentration of EPS in the water column
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(Passow, 2002). This has led to the proposal to use the P/C
ratio of EPS as a practical proxy for stickiness (Santschi, 2018;
Chen et al., 2020; Santschi et al., 2020). The P/C ratio, and hence
stickiness of EPS, varies with the community composition of
organisms producing EPS and with the presence of dispersants
such as Corexit (Shiu et al., 2020). For example, in mesocosm
studies using both Corexit and oil, the P/C ratio of sinking
MOS was found to be consistently lower than that of both
SPM and colloidal particles. This suggested that Corexit and
oil affect the partitioning of different components of EPS (e.g.,
polysaccharides versus protein) between the water column and
sinking material (Xu et al., 2018a,b, 2019; Santschi et al., 2020).
Oil-laden aggregates partition more strongly into the colloidal
fraction because oil droplets increase the buoyancy of the
resulting aggregates, thus temporarily slowing their sinking out
of the water. Current models of marine snow and MOS formation
use constant stickiness values for different types of particles, but
it is not known how the stickiness of a heterogeneous aggregate
depends on the stickiness of its components such as oil, mineral
particles, and biological detrital material. The recent work by
Chen et al. (2020), however, sheds more light and provides a
novel magnetic tweezer technique to directly and quantitatively
determine the relative stickiness of different EPS fractions to each
other or to the solid substrates.

Marine particles can be eroded (small pieces being eroded
from the surface of a larger particle), or fragmented (an aggregate
breaking up into particles of a range of sizes), potentially affecting
their sinking rate and their interactions with organisms in
the water column. Adhesive forces between components of a
single aggregate contribute to the strength of that aggregate
and its ability to resist being broken up. Fragmentation of
marine particles can result from turbulent fluid motion (Parker
et al., 1972; Alldredge et al., 1990) and mechanical breakage
arising from interactions between particles and zooplankton
(Dilling and Alldredge, 2000). Indeed, a variety of physical
and biological processes (Briggs et al., 2020) can result in
particle breakup, including shear stress (Karl et al., 1988; Ruiz,
1997) as well as zooplankton swimming and sloppy feeding
(Banse, 1995; Steinberg et al., 1997; Dilling and Alldredge,
2000; Goldtwhait et al., 2004; Giering et al., 2016). However,
direct observations of aggregate fragmentation are limited to
a few laboratory studies that demonstrate a relation between
the particle type/composition and its physical strength under
controlled small-scale turbulence (Alldredge et al., 1990; Rau
et al., 2018). Conducting a turbulence experiment similar to the
one by Alldredge et al. (1990), we found evidence that MOS is
physically stronger compared to marine snow (Ziervogel, 2020).
The presence of oil in marine snow aggregates will likely affect
the particle’s cohesiveness (Passow et al., 2019), but this has yet
to be quantified.

Existing models of marine snow and MOS fate use ad hoc
representations of disaggregation, which can be parameterized
for individual scenarios but which lack generality and
mechanistic foundations (Burd and Jackson, 2009; Dissanayake
et al., 2018). For example, the model used by Dissanayake
et al. (2018) allows for particles to fragment when their size is
greater than the Kolmogorov length scale and the fragmented

particle produces two smaller, equally sized particles. This is an
oversimplification because we have very little knowledge of the
size distribution of fragmentation products and how the presence
of oil and dispersants might affect them. A greater understanding
of particle disaggregation and how it is affected by oil is needed
in order to constrain the fraction of MOS lost during transit from
the point of formation to the point of deposition in sediments,
e.g., the fraction that reaches the seafloor, compared to the
amount leaving the surface ocean. For example, understanding if
the P/C ratio affects the cohesiveness of an aggregate and thereby
its resistance to fragmentation would provide a more accurate
model representation.

Lastly, as MOS sinks through the water column, it is
affected by consumption and remineralization by organisms.
Current models use only simple representations of microbial
consumption of oil and particles (Dissanayake et al., 2018).
To accurately model the fate of MOS will require the use of
microbial respiration rates of oil and non-oil components and the
corresponding changes in particle density. Models combining the
aggregation processes with multiple particle types (e.g., mineral
particles, biological particles, and oil) have the potential to
synthesize our understanding of the fate of MOS. They also
reveal where gaps remain in our understanding. Initial models
are able to broadly reproduce evolution of MOS size distributions
as material sinks from the surface to the deep ocean, but more
work needs to be done to refine these results and be able to
follow MOS from when oil is introduced into the system (e.g.,
from surface spill to deep-sea blow out) to when it settles on
the seafloor. Recently developed in-situ methods that allow direct
observations of the aggregation state of marine particles with
respect to the aggregates’ physical strength (Ackleson and Rau,
2020) could fill the current data gap on aggregate fragmentation
rates in the ocean.

A FEW FINAL WORDS ON AGGREGATE
FORMATION

Equation 2 is a mathematical formulation of the conceptual
model given in Figures 1, 2. It expresses the idea that it should
be possible, based on the current results, to relate the stickiness
factor and aggregate formation rate to relevant chemical or
biological processes. In this context it needs to be mentioned
that EPS concentration, microbial biomass, as well as oil
concentration are changing on time scales of hours to days. Thus,
an improved formulation of these coupled processes would need
to also include the kinetics of each of these processes. In addition,
it is not clear which of the possible attachment processes are
truly reversible (e.g., disaggregation is only occurring when fluid
shear can overcome the binding strength). However, one could
safely assume that hydrophobic interactions are less reversible
than electrostatic interactions due to their stronger interaction
forces (Chen et al., 2020). And, if conditions are favorable,
hydrophobic moieties (e.g., in proteins, where they reside in
the interior of the macromolecule) can also become exposed
(e.g., in case of proteins, upon unfolding) and attach themselves
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more strongly to other hydrophobic surface moieties, mostly
irreversibly, as has been reported recently by Chen et al. (2020).
Thus, due to the complexity of the biochemical and biophysical
interactions during aggregate formation, the use of a simple
predictor of the stickiness or attachment strength of marine
snow or MOS, e.g., the P/C ratio, is recommended, with the
caveat that aggregate formation can occur in both the colloidal
and particulate fractions, depending on their relative buoyancy
or excess density.

Overall, this review highlights recent insights into the
processes that control interactions between oil, dispersant,
microbes, and microbially-produced EPS in producing MOS
or dispersed gels that promote microbial degradation of oil
compounds. The role of P/C ratios in the aggregation process
of colloid and particle formation was also reviewed. We also
discuss the factors affecting rapid oil oxidation and microbial
degradation, such as indigenous microbes, especially the
potential role of microbial succession through time and depth,
possible role of nutrient limitation and changes to the physiology
and community structure of eukaryotes including phytoplankton
and fungi. Other phenomenon such as the processes that result
in the sedimentation and preservation/degradation of oil in the
sinking MOS are also discussed. This improved understanding
has expanded our ability to predict the behavior and transport
of released oil, and the potential effects of Corexit application,
specifically with respect to MOS (i.e., formation, fate, and half-
lives) and MOSSFA processes.
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