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ABSTRACT: Using a q+ atomic force microscopy at low temperature, a sexiphenyl
molecule is slid across an atomically flat Ag(111) surface along the direction parallel to
its molecular axis and sideways to the axis. Despite identical contact area and underlying
surface geometry, the lateral force required to move the molecule in the direction parallel
to its molecular axis is found to be about half of that required to move it sideways. The
origin of the lateral force anisotropy observed here is traced to the one-dimensional
shape of the molecule, which is further confirmed by molecular dynamics simulations.
We also demonstrate that scanning tunneling microscopy can be used to determine the comparative lateral force qualitatively. The
observed one-dimensional lateral force anisotropy may have important implications in atomic scale frictional phenomena on
materials surfaces.

KEYWORDS: Lateral Force, Friction, Scanning Tunneling Microscopy, Atomic Force Microscopy, Sexiphenyl, Ag(111)

The lateral force needed to move a molecule on a surface is
important for understanding dynamics as well as related

tribological phenomena at the atomic andmolecular scales.With
the advancement of surface science techniques, such as atomic
force microscopy (AFM)1−9 and scanning tunneling micros-
copy (STM),10,11 it has become possible to gain deeper insight
into the lateral forces and corresponding tribological phenom-
ena of the atoms, molecules, and nanoscale systems on surfaces.
Although a myriad of studies have been conducted to elucidate
the friction at the nano- and atomic scale,12−17 many tribological
phenomena are yet to be understood.18,19 At the atomic scale,
the potential energy landscape of surfaces plays a critical role in
friction.20 While barrier height diminishes under a constant load
in friction force microscopy, dynamic force microscopy enables
the investigation of barrier height contributions to friction.21

Since barrier height dictates dynamics of individual atoms and
molecules on surfaces, measuring the magnitude of lateral force
required to move them on a surface will impact the fundamental
understanding of friction at the single molecule level on periodic
atomic potential surfaces. Here, we unravel one-dimensional
anisotropic behavior in lateral forces to move a molecule on a
two-dimensional symmetric surface using a q+ atomic force
microscope (q+AFM) tip. Additionally, we show that scanning
tunneling microscopy can be used to qualitatively determine the
lateral force required to move a molecule on a surface.
Consider an atomically flat area of the single crystal surface of

Ag(111), which has a close-packed surface atomic layer with
trigonal symmetry. On this surface, an equal magnitude of lateral
force is expected to move an adsorbate along six equivalent
directions formed by the surface close-packed atomic rows.11

This is the case for lateral movement of individual atoms simply

due to the surface symmetry and the zero-dimensional nature of
the adsorbed atom (Figure 1a). But for a one-dimensional (1D)
adsorbate, moving it along six equivalent close-packed atomic
rows involves two directions; one is parallel to its long axis
(parallel direction), and the other is 60° with respect to its long
axis (sideways direction). If the adsorbate obeyed the micro-
scopic laws of friction,15 the lateral force required to move it
would be the same regardless of direction as its contact area with
the substrate is always the same (Figure 1a). Here, we
demonstrate that this is not necessarily the case at the atomic
scale.
We chose para-sexiphenyl (6P) molecules for this study

because they have a representative 1D shape. 6P is composed of
six π-rings connected as a linear chain (Figure 1b), and it is
widely investigated due to potential applications in optoelec-
tronic devices.22−26 The experiments were performed using a
low-temperature CreatecGmbH system in the q+AFMmodality
for lateral force measurements and the STMmodality for lateral
manipulation.27 For the substrate, a Ag(111) single crystal
surface was cleaned by repeated cycles of Ar+ ion sputtering and
annealing to ∼650 K. 6P molecules were deposited onto the
atomically clean Ag(111) substrate via thermal evaporation
using a custom built Knudsen cell. The sample was then
transferred to the q+AFM or STM scanner under ultrahigh
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vacuum (UHV) condition and cooled down to ∼5 K for the
measurements. In STM images, the molecule appears as a 2.7
nm long rodlike structure on the Ag(111) surface (Figure 1c),
and its long molecular axis is adsorbed parallel to the surface
close-packed rows,22 that is, the [110] surface directions. Figure
1d,e shows an STM image and corresponding schematic
drawing of a 6P molecule and a silver adatom on Ag(111)
surface for a comparison.
First, the lateral force measurements were performed with a q

+AFM setup using a procedure demonstrated by Ternes et al.1 q
+AFMoperates as a noncontact AFMwhere a tip is attached to a
tuning fork with a high “Q” value that vibrates at a certain
frequency. To measure the lateral force required to move a 6P
molecule in the parallel direction, the tip with an oscillation
amplitude of 3.25 nm is scanned over a 4 nm line directly above
the molecule along its long molecular axis (Figure 2a) while
recording the change in sensor frequency (df) as a function of
lateral position (x). Initially, the tip is scanned at a larger height
and then the tip height is gradually reduced at subsequent scans.
When the tip approaches the molecule, the tip−sample force
increases. This leads to change in the sensor frequency and
corresponding vertical stiffness of the tuning fork (Kz). This
procedure is repeated until the molecule is laterally moved from
its initial position. The lateral movement of the molecule is
confirmed by acquiring a topographic image (Figure 2b). From
each scan of df versus x, the changes in vertical stiffness of the
tuning fork can be determined. In order to remove the
contribution of van der Waals forces, the background is

subtracted and the resultant Kz versus x scans are plotted as a
function of the tip height (Figure 2c). As the tip height is
reduced, a dip in Kz starts to appear over the molecule due to its
interaction with the tip until finally a discontinuity occurs, which
is associated with the lateral displacement of the 6P molecule.
The vertical force curves (Fz) are deconvoluted using the Sader-
Jarvis method (Figure 2d, and Supporting Information).28 The
potential (Uz) is then generated by integrating the vertical force
curves for each tip height (Figure 2e). The lateral force
component (FL) is then extracted by differentiatingUz along the
lateral distance, x (Figure 2f). The magnitude of the lateral force
(FLp) required to move the 6P molecule along the parallel
direction is determined to be 118.8 ± 15.8 pN. Next, this
procedure is repeated for the sideways displacement of 6P as
shown in Figure 2g−l. Here the tip is scanned for 4 nm along the
surface close-packed direction, which is 60° with respect to the
long molecular axis (Figure 2g). The lateral force (FLs) required
to move the 6Pmolecule in the sideways direction is determined
to be 252.4 ± 21.6 pN. To confirm the validity of the q+AFM
force measurements, we have performed an inflection point
test29,30 with the results showing that the measurements are
conducted in the well-posed regime (see Supporting Informa-
tion). From the measured force values, the ratio of required
lateral force between the parallel and sideways directions (FLs/
FLp) is determined to be ∼2.1. Thus, these measurements
indicate that the shape of the molecule plays a vital role in the
lateral force required to move the molecule where it takes about

Figure 1. (a) A drawing depicting two different shaped adsorbates on Ag(111): an atom as a symmetric ball and a rectangular adsorbate. The dashed
rectangles depicts after moving along parallel and sideway directions on Ag(111). (b) A ball and stick model of 6P. (c) An STM image showing
individual 6Pmolecules adsorbed on a Ag(111) surface at 5 K [13.3× 7.6 nm2, It = 1.0× 10−10 A,Vt =−2 V]. (d) STM image of a sexiphenyl molecule
and a silver atom on a Ag(111) surface [6.3 × 5.0 nm2, It = 4.9 × 10−10 A, Vt = 0.48 V]. (e) A drawing illustrating a 6P molecule and a silver atom on a
Ag(111) surface. The yellow arrows indicate lateral movement directions across the surface using scanning probe tip.
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twice as much force to move the molecule sideways as it does
parallel.
We supplement the q+AFM quantification of lateral force

with STM lateral manipulation, which offers a straightforward
method to observe the displacement of the manipulated
molecules. STM lateral manipulation of 6P molecules (Figure
3) are performed by using a tunneling resistance ranging from
0.1 to 2 MΩ.31,32 Here, the STM tip height is reduced from 3 to
4 Å toward themolecule to enhance the tipmolecule interaction,
and then the tip is scanned over the molecule along the surface
close-packed row directions. For the parallel direction, the
molecule is moved by pulling the front π-ring (Figure 3a). For
the sideways directions, the molecule is moved from the center
as well as front π-ring positions (Figure 3d). We find the same
result regardless of the tip positions over the molecule for the
sideways manipulations (see Supporting Information). During
this process, themoleculemoves across the surface together with
the tip, and the corresponding tip height signal is recorded. At
the final location, the tip is retracted back to the imaging height
while the molecule is left on the surface. Successful lateral
displacement of the molecule is confirmed by an STM
topographic image acquired after the manipulation (Figure
3b,e). In both the parallel and sideways directions, the 6P
moleculemoves across the surfacemostly by hopping over single
silver atomic sites (Figure 3c,f), and the molecule remains rigid
most of the time although occasional flipping of the alternate π-
rings could occur (Supporting Information). These manipu-
lation curves resemble stick−slip style movement33 in pulling
(attractive tip−molecule interactions). Interestingly, the lateral
manipulation signal (Figure 3c,f) from the sideways direction
reveals a larger tip height variation than that from the parallel

direction. Consequently, averaged manipulation curves provide
a smaller force angle (ϕ) in moving 6P along the sideways
direction than it does for the parallel direction (Figure 3g and
Supporting Information).34 Note that the aperiodicity in the
manipulation curves (Figure 3c,f) is caused by a slight deviation
(∼1 to 3°) of the manipulation paths from the exact [110]
surface direction11 inducing flipping of the π-rings (Supporting
Information). Only single surface-atom site hopping signals are
counted for the force measurement and aperiodic manipulation
signals are discarded in force analysis. From the STM lateral
manipulation signal, the magnitude of FL required to move the
6P molecule can be estimated by using a directional cosine
relationship34

ϕ=F F cosL T (1)

where FT is the total tip-molecule force. When ϕ = 90°, FT is
along the direction normal to the surface and thus equals to the
vertical force. When ϕ deviates from 90°, the direction of FT
changes but its magnitude can be assumed to remain the same.
For the same tip height, the same magnitude of FT is exerted on
the molecule and therefore a smaller force angle will produce a
larger lateral force.
In order to clarify the observed phenomenon, we perform

STM lateral manipulation at different tip heights between ∼2
and 3 Å for both directions. The measured force angles, ϕ, are
plotted as a function of tip heights in Figure 3h. Within the
measured tip height range, the force angle decreases with
increasing tip height for both directions. However, the force
angles from the sideways direction appear consistently smaller
than those from the parallel direction. Since the vertical tip set-
point (tip height) for the manipulation is the same for both

Figure 2. (a) A STM image of 6P molecules on Ag(111). The molecule is laterally moved to the direction parallel to its long molecular axis (indicated
with an arrow) with the q+AFM tip. (b) The image after the manipulation confirms its lateral displacement. (c) Vertical stiffness as a function of lateral
distance. Repeated plots are recorded at different tip heights as labeled. (d,e) Vertical force (Fz) and potential (Uz) as a function of lateral distance plots
for different tip heights, respectively. (f) Lateral force as a function of lateral distance. (g,h) STM images of before and after manipulation of a 6P
molecule along a sideway direction (indicated with an arrow). The dashed ovals in the images mark the manipulated molecule. (i,j,k) The vertical
stiffness (Kz), vertical force (Fz), and potential (Uz) functions of lateral distance for the sideway manipulation. (l) Lateral force as a function of lateral
distance for sideway manipulation. The color coded labels indicate the vertical tip approach distance from the initial tip height on Ag(111). Arrows in
(c−f,i−l) indicate discontinuity occurs upon the molecule movement.
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directions, the magnitude of FT is the same. Thus, eq 1 can be
restructured as

ϕ ϕ
= =F

F F
cos cosT

Lp

p

Ls

s (2)

Here, FLp and FLs are the lateral forces for the parallel and
sideways directions whileϕp andϕs are the force angles for these
two directions, respectively. From eq 2, the ratio of the two
lateral forces (FLs/FLp) will be equal to the ratio of the
directional cosine of the two force angles. From the average
manipulation signals recorded at different tip heights for the
parallel and sideways directions, the FLs/FLp is determined to be
∼1.9 ± 0.3. This means that the lateral force required to move
the molecule along the sideways direction is about twice as large
as compared to the parallel direction in agreement with the
direct lateral force measurement performed by q+AFM.
To unravel the observed lateral force phenomenon, we have

performed density functional theory (DFT) and classical
molecular dynamics (CMD) calculations. Geometrically relaxed
DFT calculations including vdW interactions of the 6P adsorbed
on a Ag(111) surface (Supporting Information) confirm the
adsorption of the molecule along the [110] surface directions, in
agreement with the experimental finding (Figure 4a). The
calculations also reveal twisting of alternate π-rings (indicated
with arrows in Figure 4a) with a torsional angle of ∼18°
(Supporting Information).
Next, using DFT computed adsorption structure of 6P on

Ag(111) as input, we perform CMD calculations to investigate
the lateral forces required to move 6P along the parallel and

sideways directions (Supporting Information). The calculations
provide the threshold lateral force to displace themolecule along
the parallel direction, FLP, as ∼125 pN while that along the
sideways direction, FLS, as ∼200 pN (Figure 4b). Thus,
threshold lateral force along the sideways direction is larger
than that of the parallel direction, and the ratio of the lateral
forces, FLS/FLP, is 1.6. This ratio relatively agrees with the
experiments. Additionally, to estimate the effect of temperature
fluctuations on the observed threshold lateral force, we have
performed five independent simulations over a temperature
range of 5−15 K for both the directions. Variations of ±8 and
±10 pN in the magnitude of the lateral force in the sideways and
parallel directions are found, respectively, and the ratio of lateral
forces remains the same.
The directional lateral force phenomenon observed here can

be explained as follow: When the 6P adsorbs on the surface, the
molecule−surface attractive interactions lower the potential
energy underneath the molecule. When moving toward the
parallel direction, only the front π-ring will encounter the
potential barrier imposed by the bare Ag(111) surface area
(depicted with blue color in Figure 4c). However, when the 6P is
moved along the sideways directions, all the π-rings will have to
overcome the barrier imposed by the bare Ag(111) surface (red
color in Figure 4c). Therefore, although the number of surface
atoms interacting with the molecule is the same in both cases, a
higher barrier exists in the sideways direction.
The q+AFM and STM experiments as well as CMD

simulations described so far is for the threshold lateral force to
move the molecule from rest, which may be considered as a

Figure 3. STM image of 6Pmolecule before (a) and after lateral manipulation (b) along a direction parallel to its longmolecular axis (indicated with an
arrow) [Image parameters for (a,b):14.5 × 6.3 nm2, It = 1.3 × 10−9 A, Vt = 0.42 V]. (c) A typical pulling manipulation curve recorded during a
manipulation along parallel direction. (d,e) STM images correspond to before and after lateral manipulation of 6P along a sideways direction
(indicated with an arrow) [Image parameters for (d,e): 11.4× 4.9 nm2, It = 1.3× 10−9 A,Vt = 0.42 V]. (f) A typical pullingmanipulation curve recorded
during manipulation along sideways direction. [Manipulation parameters for (c,f): Rt = 1.2 MΩ, Vt = 0.12 V]. (g) During manipulation with the STM
tip, the sexiphenyl molecule moves in a rest-hopmanner producing a typical pulling manipulation signal (black curve). Total and lateral forces (FT, and
FL) as well as the force angle “ϕ” are illustrated. (h) Force angle as a function of tip height plots for parallel and sideways directions. The error bars
describe the mean statistical distributions and the straight lines are the linear fits.
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static friction force for the molecule. In addition, the CMD
simulations further reveal the dynamic of 6P propagation. On
Ag(111) surface 6P propagates by transferring its energy back
and forth between the potential energy (π-ring flipping) and the
kinetic energy (the translational motion); see SIMovie 1. This is
in agreement with a previous report of 6P movement across the
same surface.22 Furthermore, the CMD simulations on the
sideways direction shows that the molecule first rotates to align
its long molecular axis with the underlying close-packed surface
direction before moving across the surface along its long parallel
axis. This indicates that a higher threshold value of sideways
force is required to surmount the additional energetic barriers.
In the experiments, the molecule is forced to move with the
STM or AFM tip along the sideways direction, and thus
manipulation mostly results in displacement of the molecule
without rotation, and consequently it costs a higher lateral force
than theory. Indeed, rotation of themolecule can be occasionally
observed in STM manipulation of 6P along the sideways
direction if the tip is positioned at the end of the molecule
(Supporting Information).
In summary, we have determined the lateral forces required to

move a 1D molecule across a 2D symmetric surface. We have
found that the lateral force required to move the 6P molecule
along the sideways direction is almost twice as large as it is to
move it along the parallel direction.While AFM is generally used
for the force measurements, we have also demonstrated that
STMmanipulation can be used for the qualitative comparison of
lateral forces as well. Our work demonstrates that the lateral

force required to move the nanoscale features such as molecules
can be influenced by their shapes, and this directional force
anisotropy will impact on the fundamental understanding of
friction for the nanoscale objects such as in the movement of
molecules on a surface at the atomic scale.
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