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ABSTRACT This study proposes a novel Bayesian hierarchical approach for online bus speed prediction
by explicitly accounting for the spatiotemporal interaction (STI) of speed observations. The use of Laplace
approximation can expedite the estimation of Bayesian models and enable the implementation of online
prediction. Large numbers of trials are carried out to identify significant predictors and the optimal length
of the look-back time window to achieve the highest prediction accuracy. The spatiotemporal interacting
patterns are also explored, and results show that the Type IV model assuming the structured spatial effect
interacts with the structured temporal effect can best accommodate the bus speed data. Besides, prediction
errors of the Type IV model randomly distribute over time and space. The proposed model can achieve
high prediction accuracy and computational efficiency without compromising the interpretability of the
contributing factors and the unobserved spatiotemporal heterogeneity. The proposed model can be used
to assist public transit operation and management, such as bus scheduling, congestion warning, and the
development of proactive measures to mitigate bus delays.

INDEX TERMS Bus speed prediction, Bayesian hierarchical approach, spatiotemporal interaction, Laplace
approximation, public transit operation.

I. INTRODUCTION
Travel speed is one of the effective and intuitive indicators
for the operation and management of transportation systems.
Large map service providers like Google Maps and Baidu
Maps use the travel speed to represent congestion informa-
tion. With travel speed, we can not only measure conges-
tion but also derive the travel time and delay. The same
holds true for the bus transit systems [1], [2]. Predicting
bus speeds in a timely and accurate manner contributes to
maximizing the benefits of an intelligent public transit sys-
tem [3]. Prediction approaches can be divided into offline
prediction and online prediction according to the utilization
of streaming data. The offline prediction approaches train
the model using static data and conduct prediction without
real-time adjustment. An extensive range of reported works
on traffic state prediction falls into this category [4]–[6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Michail Makridis .

On the other hand, the online prediction approaches update
the model recurrently when a new data stream is acquired
throughout the prediction horizon, making the prediction
models adaptive to the latest information. Previous studies
have recognized the adaptability advantage over the offline
prediction approaches [7], [8]. To successfully implement
the online prediction, the training process must be compu-
tationally efficient. However, there is limited research on the
development of online approaches for bus speed prediction.

In light of the propagation of congestion and the distur-
bance caused by traffic incidents, bus speeds can be both
spatially and temporally correlated. The investigation of spa-
tial and temporal effects in bus travel speed/time is gaining
increasing attention recently [6], [9]–[11]. However, most
existing studies address the spatial and temporal effects sepa-
rately without modeling the spatiotemporal interaction (STI)
effects [12]. STI represents the pattern of the spatial correla-
tions over time, or equivalently, the pattern of the temporal
correlations over space. For example, spatial correlations of
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bus speeds weaken in off-peak hours while strengthened in
peak hours. Addressing STI properly can better accommodate
the data and thus increase prediction performance.

A large number of related works in the literature utilize
machine learning models to predict the traffic state, such
as travel time, travel speed, and traffic volume [13]–[16].
Despite the superior predictive performance, machine learn-
ing models are criticized for the lack of interpretability [17].
Though spatial and temporal correlations can be captured
to a certain extent by some machine learning models (e.g.,
deep neural network [6], [18], attention network [5], [19],
convolutional neural network (CNN) [20], [21]), it is chal-
lenging to (i) explicitly interpret these correlations, and (ii)
quantify their impacts on outcomes and to make relevant
inferences. Few studies have developed models considering
both predictive performance and interpretability in the traffic
state prediction domain when STI is concerned [12], [17].
The Bayesian methods are widely used in the statistical
domain for their great interpretability of the results [17]. The
Markov Chain Monte Carlo (MCMC) simulation is com-
monly adopted to estimate the Bayesian models and takes
a long time to converge [11], [22], especially for complex
model specifications. Therefore, MCMC-based Bayesian
models fail to meet the computation efficiency criterion of
online prediction.

Motivated by the above challenges, this study aims to
develop a novel online bus speed prediction model based
on a Bayesian hierarchical framework that can fully capture
the STI of bus speed data. Various STI patterns are explic-
itly characterized and compared. Furthermore, the Integrated
Nested Laplace Approximation (INLA) technique is used to
replace theMCMCmethod to greatly speed up the estimation
of Bayesian models.

A. LITERATURE REVIEW AND RELATED WORK
1) BUS SPEED/TRAVEL TIME PREDICTION
Bus speed/arrival time prediction has been studied
widely [9], [12], [17]. Some researchers focus on the travel
time/speed of all links between two bus stops [13], [23],
assuming the homogeneity between each link. This assump-
tion can be easily violated due to different traffic conditions,
road designs, etc. Furthermore, considering the segmentation
of traffic flow by traffic signals, some researchers divide road
segments based on signalized intersections [6], [9]. This seg-
mentation method includes regular bus traveling, dwell at bus
stops, and unexpected stoppages into the travel speed/time.
We follow this segmentation method in this paper.

In the early stage, researchers utilized traffic flow the-
ory for bus traffic state prediction [24]–[26]. For instance,
Bie et al. [27] proposed an analytical model to predict bus
arrival time considering the impact of the signalized inter-
section. The proposed model utilized the shock wave the-
ory to characterize the impact of signals on travel time.
The proposed model was tested on two signalized intersec-
tions, and it was found that the proposed model outper-

formed existing models in the literature Zhang et al. [28]
proposed a prediction model for bus arrival time consid-
ering signalized control and surrounding traffic flow. The
authors adopted the speed-flow-density relationship to derive
the travel speed. The traffic flow theory-based models do
not explicitly account for spatial, temporal, and STI effects.
Later, researchers mainly utilize time series approaches or
simplemachine learning approaches for bus travel speed/time
prediction [10], [23], [29]–[31]. Kumar and Vanajakshi [32]
developed a pattern-specific model using time series data
to predict bus arrival time and tested the model with data
collected from a single bus route. Farooq et al. [33] developed
a time series model for bus arrival time prediction based on
GPS data and found that the prediction error decreases as
buses operate further. However, thesemethods consider either
the spatial effects or the temporal effects, which limits the
ability to fit the data.

To improve prediction performance, researchers have
focused on addressing spatial and temporal correlations in
predicting traffic state recently. Some researchers have com-
bined the spatiotemporal effects with conventional prediction
models mentioned above [34], [35]. In these papers, spa-
tiotemporal effects are often included as another feature along
with other explanatory variables. However, this approach
would lead to limited interpretability for the spatiotemporal
terms [36], [37]. Lately, researchers have utilized state-of-
the-art machine learning techniques to capture the spatial and
temporal characteristics in bus travel speed/time prediction.
For example, the recurrent neural network (RNN) models,
the long short-term memory (LSTM) model [4], [6], [18],
and the convolutional neural network (CNN)model [21], [38]
Treethidtaphat et al. [39] focused on bus arrival time predic-
tion using a deep neural network (DNN) model and com-
pared the results with the ordinary least square (OLS) method
Achar et al. [9] developed a spatial Kalman filter model
for bus arrival time prediction. The spatial and temporal
effects of the data were modeled in a linear state-space form.
Liu et al. [6] addressed the spatial and temporal effects
by combining LSTM and artificial neural network (ANN).
Despite the variety of the abovementioned studies, predicting
bus speed/travel time using Bayesian approaches is rarely
reported in the literature.

2) BAYESIAN SPATIOTEMPORAL APPROACHES
Spatial analysis under the Bayesian framework originates
from the work by Besag [40] Bernardinelli et al. [41]
first incorporated the temporal effects into spatial analysis.
Since then, this approach has been applied to many research
domains, such as medicines [42], social science [43], and
especially in the safety analysis domain [44]–[47]. The incor-
porated spatial and temporal effect terms in the Bayesian
spatiotemporal models ‘‘borrow strength’’ from neighboring
locations and contiguous time periods to better accommodate
the data [48], [49]. Compared to the trained spatiotemporal
features in the machine learning approaches, the Bayesian
statistical approaches usually specify a structure for the

105206 VOLUME 9, 2021



H. Cui et al.: Online Bus Speed Prediction With STI

spatial and/or temporal effect terms, which would greatly
increase the interpretability of the results [50]. The spec-
ified structures indicate how the data are spatially and/or
temporally correlated and how to specify the corresponding
probability distributions. As such, the Bayesian spatiotem-
poral models have superior performance in terms of both
results interpretation and model estimation. Researchers in
the transportation domain have applied this framework to
various fields [11], [51], [52].

The aforementioned studies focus on modeling spatial
and temporal correlations separately. However, these papers
neglect the potential existence of STI among data. Namely,
the spatial and temporal effects are considered independent
among all locations and time periods in current literature.
Besides, current Bayesian models are solved mainly by the
MCMC method. However, this method is criticized for its
high computation cost [17], which is unsuitable for online
prediction. Therefore, how to address the STI effects when
tackling the bus speed prediction problem with a fast solving
process is still a challenge.

B. GAPS AND CONTRIBUTIONS
The gaps and contributions are summarized as follows:

(i) Most of the existing studies only focus on spatial and/or
temporal effects of data, but the STI effects were rarely
addressed in studies regarding bus traffic state prediction.
This study adds to the literature by fully exploring the STI
effects of bus data.

(ii) Most of learning-based models are expected to deliver
satisfactory prediction accuracy but are often criticized due
to lack of interpretability. By contrast, without compromising
prediction accuracy, the proposed method allows us to assess
the significance of explanatory variables, spatial, temporal,
and STI effects and can infer to what extent each component
of the model contributes to the variation of the response
variable.

(iii) Bayesian statistical models are criticized for the
large computation burden due to the Markov Chain Monte
Carlo (MCMC) method used for estimation, which limits the
potentials for online prediction. We propose an integrated
nested Laplace approximation (INLA) technique to greatly
expedite the estimation of the Bayesian models for online
prediction.

In addition, this paper presents three major advancements
comparing to our previous work in Hu et al. [53]: (i) We
analyze all the four types of Bayesian spatiotemporal inter-
action (BSTI) patterns thoroughly by proposing new BSTI
models, which are not studied in Hu et al. [53]; (ii) This study
utilizes a novel computation method for Bayesian model esti-
mation, which is the INLA method; (iii) This paper focuses
on the potentials of the proposed BSTI model in online
prediction by proposing an online prediction framework and
conducting a large number of experiments regarding the
major hyperparameters. All these aspects are not mentioned
in Hu et al. [53].

The rest of the paper is organized as follows. In Section
II, we present the Bayesian spatiotemporal modeling frame-
work. Data and the studied region are described in Section III.
In Section IV, results and discussions are presented. Conclu-
sions are drawn in Section V.

II. METHODOLOGY
To investigate the characteristics of the STI and assess their
effects on bus speed prediction, six models under a three-
level Bayesian hierarchical framework are developed. These
models account for different spatiotemporal effects, from no
spatiotemporal effects to STI effects. A detailed introduction
regarding each model is given in the following subsections,
including the model specifications and the mathematical
definition of the STI effects (Section A and B). Secondly,
the framework of the Bayesian approach is presented, and
the Markov Chain Monte Carlo (MCMC) method is then
introduced to show how the Bayesian model is solved tra-
ditionally (Section C). Thirdly, the proposed INLA method
is introduced to highlight the advantage of fast computation
against the MCMC method while maintaining interpretabil-
ity. Lastly, the prediction workflow is presented to show how
the training and the testing process for bus speed prediction
are accomplished (Section D).

A. BASIC MODELS
In the first level, for each road segment, bus speeds can be
modeled using a Gaussian distribution as follows [11], [54]:

Y ti ∼ Normal(µti , σ
2
it ) (1)

where i denotes the road segment, i = 1, 2, . . . , n, n is the
total number of road segments, t denotes the time period, t =
1, 2, . . . ,T , T is the total number of time periods, µti is the
mean bus speed for road segment i at time period t , and σit is
the standard deviation of the bus speed for road segment i at
time period t .
In the second level, the linear predictor µti is further for-

mulated as a linear combination of observed covariates and
spatial/temporal effects.

1) MODEL 1: PURE LINEAR MODEL (PL MODEL)
By breaking µti down into intercept and covariates (i.e., fixed
effects), the benchmark model is formulated as follows:

µti = β0 +

P∑
p=1

βpX tpi (2)

where β0 is the average bus speed when all covariates equal
to 0, X tpi denotes the p

th observed covariate of road segment
i in time period t , and P denotes the number of observed
covariates. β0 and βp are the regression coefficients to be
estimated. This model does not consider spatial or temporal
correlations among bus speed data.
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2) MODEL 2: SPATIOTEMPORAL MODEL WITHOUT
INTERACTION (ST MODEL)
Spatial effects have been widely recognized as adjacent
locations tend to present similar values at a given time
period [48], [55]. Analogously, temporal effects are recog-
nized as for a given location, previous time periods tend
to present similar values [6], [56]. Following a classical
framework by Knorr-Held [48], spatial/temporal effects are
divided into two parts: the structured part and the unstruc-
tured part. The structured effect indicates that a predefined
variance-covariance structure of spatial/temporal effects is
used to restrict the estimation of hyperparameters, while the
unstructured effect means that the variance and covariance of
spatial/temporal effects are all freely estimated from the data.
Random effect term u is included to capture the structured
spatial effects. To further capture the unstructured spatial
effects, a random effect term λ is included. Similarly, a ran-
dom effect term γ is included to characterize the structured
temporal effects, while a random effect term ζ is added to
characterize the unstructured temporal effects. Intuitively,
the spatial effects mentioned at the beginning of this para-
graph represent the spatial structure. This spatial structure
is captured by the structured spatial effect term u. On the
contrary, the unstructured spatial effects can be considered
as the noise of the structured spatial effect and are captured
by λ. Similar understandings can be applied to the struc-
tured/unstructured temporal effects. Therefore, the ST model
without interaction can be expressed as:

µti = β0 +

P∑
p=1

βpX tpi + (ui + λi)+ (γt + ζt ) (3)

where ui denotes the structured spatial effect for road segment
i and λi represents the unstructured spatial effect for road
segment i. Similarly, γt and ζt are respectively the structured
and unstructured temporal effect at time period t . These
components account for spatial effects and temporal effects
separately.

In the third level, prior distributions are assigned to each
component in the linear predictor µti for each model sepa-
rately. Prior distributions proposed by Besag et al. [55] are
widely utilized in the literature due to better interpretabil-
ity and simplicity [48], [57]. Following Besag et al. [55],
the intrinsic conditional autoregressive (ICAR) model is
selected for ui. The full conditional distribution of ui given
u−i follows a normal distribution and can be expressed as
follows:

ui|u−i ∼ Normal

 1
Ni

∑
j∈i∼j,j6=i

uj,
σ 2
u

Ni

 (4)

where u−i is the set of uj that j 6= i, i ∼ j denotes road segment
j is a neighbor of road segment i. Ni is the number of the
neighboring road segments of i and σ 2

u is the global variance
of u. In practice, road segments with numerous neighbors
have more accurate estimates of ui than those isolated. There-
fore, for an arbitrary road segment i, the variance of ui is set

to the global variance σ 2
u divided by the number of neighbors.

The unstructured spatial effects λi are assumed independent
and identically distributed (i.i.d.) among different locations.

For the structured temporal effects γt , we follow Clay-
ton [58] by using a first-order random walk (RW) model to
characterize the temporal dependence for better interpretabil-
ity [48]. This specification assumes that the state for a time
point depends on the previous one as follows:

γt |γt−1 ∼ Normal
(
γt−1, σ

2
γ

)
(5)

where σ 2
γ is the global variance of γ . The unstructured tempo-

ral effects ζt are assumed i.i.d. among different time periods.

B. BAYESIAN SPATIOTEMPORAL INTERACTION MODELS
Most of the works regarding spatiotemporal modeling
in (transit) traffic state prediction propose their models with
the idea similar to the ST model in Eq. (2) [9], [34], [35].
Namely, the spatial and temporal effects are included sepa-
rately without considering their interactions. In this section,
we propose four BSTI models. The BSTI model can further
consider the interaction effects between the spatial and tem-
poral effects.

Based on the independent spatial and temporal effects
introduced in Eq. (3), STI can be formulated as a combi-
nation of one spatial effect and one temporal effect [48].
Consequently, given that two types of effects exist for either
spatial or temporal effects (structured and unstructured), four
types of interactions can be expected. STI characterizes the
relations between the temporal effects in different spaces,
or equivalently, the relations between the spatial effects at
different time periods. Based on the ST model (Model 2),
an STI random effect term δit is further introduced into the
ST model as follows:

µti = β0 +

P∑
p=1

βpX tpi + (ui + λi)+ (γt + ζt )+ δit (6)

where δit accounts for the interaction effect of road segment
i in time period t . For computational convenience, ui, λi, γt ,
ζt and δit are assumed to follow Gaussian distribution with
separate precision matrix ηK , where η is an unknown scalar
and K is a structure matrix.

Non-diagonal elements in K are equal to −1 for neighbor-
ing road segments/time periods, while diagonal elements are
equal to the number of adjacent road segments/time periods.
The other elements in K are filled with zero [48]. Note that
for the structure matrix of the structured spatial effects ui,
the number of neighbors of a road segment is determined
by the road network, while for the structure matrix of the
structured temporal effects γt , given a first-order RW prior,
each time period has at most two neighbors: (i) for the first
or last time period, only one neighbor exists, while (ii) for
the other time periods, two neighbors exist for each time
period. Given the i.i.d. assumptions, the structure matrix of
the unstructured spatial effects λi is an identity matrix I ,
and the same applies to the unstructured temporal effects
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ζt . For the STI effects δit , Clayton [58] suggested that the
corresponding structure matrix can be obtained by producing
the Kronecker product of the K of the interacting spatial
effects and temporal effects. Further details can be found in
Clayton [58] and Stone et al. [59].

1) MODEL 3: ST MODEL WITH TYPE I INTERACTION (TYPE I
MODEL)
Type I model assumes the interactions exist between the two
unstructured effects λi and ζt . Thus, their Kronecker product
with Type I interaction can be given as follows:

Kδ = Kλ ⊗ Kζ = I ⊗ I = I (7)

whereKδ denotes the structure matrix of the STI term δ, ‘‘⊗’’
denotes the Kronecker product, Kλ represents the structure
matrix of the unstructured spatial term λ, and Kζ denotes the
structure matrix of the unstructured temporal effect term ζ .
The prior distribution (abbreviate as ‘‘prior’’) of δ with Type
I interaction is under the Gaussian family and can be given
below:

p(δ|ηδ) ∝ exp

(
−
ηδ

2

n∑
i=1

T∑
t=1

(δit )2
)

(8)

Type I interactions account for the unobserved noise of
each data in the spatial and temporal dimensions. No spatial
or temporal structures exist in the Type I interactions. This
distinguishes the Type I Model from the ST Model.

2) MODEL 4: ST MODEL WITH TYPE II INTERACTION (TYPE II
MODEL)
Type II interaction assumes the interactions exist between
the structured temporal effect γt and the unstructured spatial
effect λi. Since γt follows an RW distribution, δi also follows
this distribution which is independent of all other road seg-
ments. Their Kronecker product is:

Kδ = Kλ ⊗ Kγ = I ⊗ Kγ = Kγ (9)

where Kγ denotes the structure matrix of the structured tem-
poral term γ . Therefore, the prior of δ with Type II interaction
can be written as:

p(δ|ηδ) ∝ exp

(
−
ηδ

2

n∑
i=1

T∑
t=1

(δit − δi,t−1)2
)

(10)

A Type II interaction denotes that temporal dependency
exists in each road segment, and these dependencies are not
spatially correlated.

3) MODEL 5: ST MODEL WITH TYPE III INTERACTION (TYPE
III MODEL)
Type III interaction assumes the interactions exist between
the structured spatial effect ui and the unstructured temporal
effect ζt . Following ui, δi yields an intrinsic autoregression.
Note that δi is independent of all other road segments. Their
Kronecker product is given below:

Kδ = Ku ⊗ Kζ = Ku ⊗ I = Ku (11)

where Ku denotes the structure matrix of the structured spa-
tial term u. Therefore, the prior of δ with Type III interaction
can be written as:

p(δ|ηδ) ∝ exp

−ηδ
2

T∑
t=1

n∑
i=1

∑
j∈i∼j

(δit − δjt )2

 (12)

A Type III interaction denotes that spatial dependency
exists among each road segment, and these spatial dependen-
cies are not temporally correlated.

4) MODEL 6: ST MODEL WITH TYPE IV INTERACTION (TYPE
IV MODEL)
Type IV interaction assumes that the interactions exist
between the structured spatial effect ui and the structured
temporal effect γt . Since ui yields an ICAR and γt yields an
RW distribution, δit is utterly dependent on space and time.
Therefore, the Kronecker product of δ is given below:

Kδ = Ku ⊗ Kγ (13)

Therefore, the prior of δ with Type IV interaction can be
written as:

p(δ|ηδ) ∝ exp

−ηδ
2

T∑
t=2

n∑
i=1

∑
j∈i∼j

((δit − δjt )

− (δi,t−1 − δj,t−1))2

 (14)

A Type IV interaction indicates that spatial dependency
exists among each road segment for a time period, and these
spatial dependencies from all time periods are temporally
correlated. Equivalently, it can also indicate that temporal
dependency exists among time periods for a certain road
segment, and these temporal dependencies from all segments
are spatially correlated. TABLE 1 summarizes these four
types of STI.

With the cooperation of both predictors (covariates) and
spatiotemporal effect terms, the model has been given the
flexibility to interpret the contributing predictors that affect
the bus speed and capture the STI effects simultaneously.

C. BAYESIAN MODELS USING INLA
1) ESTIMATIONS IN BAYESIAN FRAMEWORK
Two approaches can be consideredwhen estimating statistical
models, i.e., the frequentist method and the Bayesian method.
Compared to the former, the latter aims to derive a probability
distribution for each variable, where the estimates obtained
in the former are the mean of the distribution [60]. With the
distributions of the parameters derived, more comprehensive
inferences on those parameters can be generated. Therefore,
in this paper, we estimated the proposed models using the full
Bayesian framework.

The Bayesian framework can be formulated as follows:

P(θ |y) =
p(θ ) · L(y|θ )

p(y)
(15)
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TABLE 1. Summary of STI structures.

where y denotes the bus speeds, θ denotes the model param-
eters, P(θ |y) denotes the posterior probability distribution of
θ conditioned on y, p(θ) denotes the prior distribution of θ ,
L(y|θ ) denotes the likelihood of y given θ , and p(y) denotes
the marginal probability distribution of the y.
For better understanding, the likelihood of the STI models

of road segment i at time period t is given as follow: (16), as
shown at the bottom of the next page.

2) ALTERNATIVE TO MCMC METHOD: INLA METHOD
MCMCmethod [61]–[63] functions by performing a massive
amount of simulation until the Markov chain is converged,
and Bayesian inference can subsequently be produced, yet
its computational cost is enormous [48]. As an alternative,
Rue et al. [64] proposed the INLA method to estimate the
Bayesian models. The INLA approach functions in a deter-
ministic way and can significantly reduce the computation
time [64].

To grasp the merit of the INLA method, here we demon-
strate the deduction of the Laplace approximation. Given a
random variable X and its density function f (x), and suppose
we are interested in the following integration:∫

f (x)dx =
∫

exp(log(f (x)))dx (17)

By representing log(f (x)) using a Taylor series expansion
evaluated in x = x∗ = argmaxx log(f (x)), Eq. (17) becomes:∫

f (x)dx ≈ exp(log(f (x∗)))
∫

exp
(
(x − x∗)2

2

×
∂ log(f (x))

∂x2

∣∣∣∣
x=x∗

)
dx, (18)

By setting σ 2∗
= −1/ ∂ log(f (x))

∂x2

∣∣∣
x=x∗

, Eq. (18) becomes:∫
f (x)dx ≈ exp(log(f (x∗)))

∫
exp

(
−
(x − x∗)2

2σ 2∗

)
dx (19)

where inside the integration is a Normal distribution
Normal(x∗, σ 2∗ ) with mean equal to x∗ and variance equal
to σ 2∗ . Finally, we have:∫ m

n
f (x)dx ≈ f (x∗)

√
2πσ 2∗ (F(m)− F(n)) (20)

where F(·) denotes the cumulative density function of
Normal(x∗, σ 2∗ ).

We can see that this method can approximate any density
function using the normal distribution, which can reduce the
computation time compared to the MCMC method [64].

D. WORKFLOW OF ONLINE PREDICTION
Offline prediction is usually performed using a static model
trained with a massive amount of historical data. This leads to
several disadvantages: (i) the computational cost for training
a model is high. Thus (ii) it is not easy to update the model
frequently when its performance drops. Besides, (iii) due to
the extensive coverage in space and/or time dimension of the
historical data, the ability to capture real-time data charac-
teristics is limited. Compared to offline prediction, online
prediction is usually performed by continuously updating
the model with a smaller amount of real-time data. Online
prediction ensures that the model is capable of utilizing the
latest information at all times.

In this paper, the prediction procedure is divided into a
training procedure and a testing procedure [34], [65]–[67].
Suppose there are n road segments and T time periods cov-
ered in the dataset. Time window (denoted as w), step ahead
(denoted as a), starting period (denoted as p), the number
of time periods extracted (denoted as c) and the sliding step
(denoted as s) are the five critical hyperparameters defined
in the prediction procedure. Concretely, time window (w)
is defined as the number of consecutive time periods used
to generate the training data. Step ahead (a) represents the
prediction horizon and is defined as the number of time
periods used for prediction testing. a = 1 indicates that the
model predicts one time period into the future, i.e., the data
from the first time period following the training set is used
for testing. Starting period (p) is defined as the starting time
period of w. For example, w = 3 and p = 1 indicate that the
training dataset consists of all the data in the first three time
periods. The number of time periods extracted (c) is defined
as the total number of time periods needed to form training
and test dataset, i.e., c = w+ a. Sliding step (s) is a constant
which equals 1 at all time, meaning that the time window

105210 VOLUME 9, 2021



H. Cui et al.: Online Bus Speed Prediction With STI

FIGURE 1. Time window (denoted as the bold box) sliding from p = 1 to
p = 2 with w = 3 and a = 1. The data inside the time window are used as
the training data, while the data in the next time period following the
time window (a = 1) are used as test data.

will only slide one time period at a time to form new training
dataset and test dataset.

Figure 1 illustrates how the time window slides to form
the training dataset and test datasets. In Figure 1, the time
window (denoted as the bold box) equals 3 (w = 3) and is
sliding from p = 1 to p = 2. The step ahead equals 1 (a = 1).
The data inside the bold box are the training dataset, and the
data in the next time period following the bold box are the
test dataset. To ensure a consistent spatial structure during
the whole prediction process, data from all the road segments
are chosen in each prediction procedure.

In order to achieve the best prediction performance, all the
combinations of p, w and a for the six proposed models are
tested. Each combination is considered a scenario. ALGO-
RITHM 1 describes the procedures in detail.

III. DATA AND STUDY AREA
Shennan Avenue in Shenzhen city is selected as the test
road (Figure 2). This road is one of the major arterial roads
that communicate between different districts. The test road
reaches 17 km in mileage. Following Achar et al. [9] and
Liu et al. [6], the test road is divided into 11 road segments
separating at consecutive signalized intersections. The aver-
age length for road segments is 1,632 m. In practice, differ-
ent travel directions of the same road segment may present
distinct travel states, and thus should be treated separately.
In this study, different directions of the same road segment are
treated as two road segments. Therefore, 20 segments were

Algorithm 1 Online Prediction Process
1. Input: Complete dataset
2. for w in min(w): max(w) do
3. for a in min(a): max(a) do
4. c = w+ a;
5. for p in 1: T − c+ 1 do
6. Extract column p to column p+w− 1 from

the complete dataset as training dataset;
7. Extract column p+ w to column p+ c− 1

from the complete dataset as test dataset;
8. Perform training on each of the six

proposed models;
9. Compute prediction performance indexes

for each model using test dataset and store
the results;

10. Summarize all the output results for further analysis;

FIGURE 2. Location of the test road in Shenzhen city, with road segment
displayed respectively.

generated in the dataset (data for two segments were missing
due to quality issue).

The test road is covered with dedicated bus lanes (DBLs).
DBLs are implemented on the roadside of all selected road
segments and are only enabled during themorning peak hours
7:30-9:30 a.m. and the evening peak hours 05:30-07:30 p.m.
on weekdays. DBLs are exclusively used by buses during the
eligible periods.

A. GPS DATA PROCESSING
Bus GPS data was collected on 2015-06-03 from all the
operating buses. The average bus speeds of selected road
segments were calculated in 15-minute intervals. Thus, bus
speedswere classified into 64 consecutive time periods cover-
ing from 6:00 to 22:00 and are denoted from 1 to 64. Varying

L ti (y|θ ) =
1

√
2πσit

exp

−
(yti − (β t0 +

Pt∑
p=1

β tpX
t
pi + (ui + λi)+ (γt + ζt )+ δit ))2

2σ 2
it

 (16)
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generating intervals apply to different bus route categories
(e.g., major, express, branch) with the range from 1 s to 59 s.
Over 90% of the GPS records are generated with intervals
under 30 s. In this study, GPS records with intervals under
30 s were used.

Map matching was conducted to match GPS data to road
segments. To reduce computation workload, a grid-based
searching algorithm was implemented to find the road seg-
ments within the grid of each GPS record. The grid size was
100 m ∗ 100 m. After locating the road segments, we identify
the GPS records that were located within the range of 30 m
of an intersection and tagged them for further verification
using the subsequent matching records of the same vehicle.
If the record was located outside the range of an intersection,
it was then appended to the processed dataset with respect
to plate number and timestamp. Another detection algorithm
was then executed to deal with irregular circumstances like
reverse driving by skipping to the next regular GPS record.
The processed GPS records were eventually matched to the
nearest road segments if they passed the anomaly detection,
and match results were generated for speed calculation. The
tagged records were verified using those match results. Com-
pared to the ground truth, the matching accuracy reaches
98%, the 2% error is caused due to the lack of subsequent
data for verification.

B. VARIABLE EXTRACTION
Road infrastructure data and bus service data are also
included in this study, where road infrastructure data includes
driveway density and the number of lanes. Driveway is
defined as the set of property entrances and non-signalized
intersections. Bus service data consists of the number of
bus routes, bus stop density, bus stop configuration (harbor-
shaped or not), bus stop location (near an intersection or not),
and bus density. The bus volumes used for density computing
were extracted using bus GPS data. The detailed information
regarding these variables is summarized in TABLE 2. The
abovementioned data were obtained from field surveys and
the Baidu Street Map. For further details, please refer to
Cui et al. [11].

IV. RESULTS AND DISCUSSIONS
Based on previous work, speed data with time intervals sep-
arated over 2 hours presents little temporal correlations [11].
Thus, the look-back timewindow (w) was set within the range
of 1 to 8, and the step ahead (a) for prediction was also set
within the range of 1 to 8. T was set to 64.

Over 4,000 scenarios were analyzed to characterize the
model performance and to discover the best model and sce-
nario. Using the INLA method, the average run time for
the Bayesian spatiotemporal models is 5.3 seconds. Three
evaluation metrics were used, including mean absolute error
(MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE). Each metric quantifies the error
from a distinctive perspective. Using all of them provides a
comprehensive evaluation regarding the prediction results.

TABLE 2. Data description and descriptive statistics.

The testing environment for the proposed models was
macOS version 10.14.3 with 2.6 GHz processors and 16 GB
random access memory.

A. PREDICTOR SELECTION AND INTERPRETATION
A sense-making statistic inference on predictors is the proof
for properly accounted for the relations between the inde-
pendents and the dependent. Two criteria were used to
select predictors: (i) the coefficient must have the correct
positive/negative sign, and (ii) the coefficient should be
statistically significant. The 95% Bayesian Confidence Inter-
val (BCI) was used in this study. Based on these rules,
the variable selection was performed. Results show that only
density met the criteria and was thus included into the model.

B. MODEL SELECTION
1) MODEL PERFORMANCE CHANGING PATTERN OVER
STARTING PERIOD p
In order to discover both the best model and combination of
p and w, step ahead should be controlled. In this case, a is
set to 1, meaning that the testing procedure is only performed
on the next time period following the training time periods.
Density is included in the model as a predictor.

Figure 3 shows the 3D distribution of the one-step-ahead
prediction MAPE versus start time and time window. Both
the Type II model and the Type III model present severe
prediction errors, where the maximum error of the Type III
model reaches 1,000%, while its average error yields around
100%. The Type II model presents a completely different
distribution pattern, and its maximum error reaches 100%.
This indicates that the Type II model interaction and the Type
III model interaction are not a good fit for the data. For the
other models, the PL model and the Type I model have a
similar maximumMAPE error of 50%. The STmodel and the
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FIGURE 3. One-step ahead prediction MAPE vs. start time and time window in 3D for different models. MAPE over 50% shares the
same displaying color as MAPE equals 50%.

Type IV model present smaller MAPE, where the maximum
MAPE is 45% for the ST model and 30% for the Type IV
model. In summary, the Type IV model presents the smallest
MAPE.

2) MODEL PERFORMANCE CHANGING PATTERN OVER TIME
WINDOW w
Figure 3 presents an intuitive way for model evaluation, and
the Type IVmodel should be considered the best model based
on this intuitive evaluation. This section presents more quan-
titative evaluation results for a drawn conclusion on model
selection.

In the time series analysis framework, the number of time
periods used for training a time series model is essential to
the performance of the prediction. A window tracing back
too much historical data can disrupt the actual pattern hidden
in the time series data, misleading the model to learn from
a false pattern. On the contrary, a window not connecting
enough history data will lead to the incapability of prediction
performance [68]. As such, the time window w plays a vital
role in prediction performance.

TABLE 3 summarizes the MAPE, MAE, and RMSE
results for the test dataset. The smallest MAPE is represented
in bold. It is found that the PL model, the ST model, the Type
I model, and the Type III model are inferior to the Type IV
model and the Type II model due to more significant pre-
diction errors for each evaluation measure. The abnormally
high MAPE of the Type_III model indicates that the structure
of the Type_III model cannot well accommodate the data.
Comparing the Type II model with the Type IVmodel, we can
see that the prediction performance of the Type II model is

FIGURE 4. MAPE values of the Type IV Model versus time window from
1 to 8 using both training dataset and test dataset.

much less stable than the Type IV model. For example, for
the Type II model, the MAPE values for cases with w equals
4 and 6 are much larger than the MAPEs for other w cases.
This fluctuation is also observed in the MAE and RMSE for
the Type II model. Instead, the performance of the Type IV
model is rather stable. Therefore, the Type IVmodel is chosen
as the best model.

Subsequently, we determine the best choice of the time
window (w). Figure 4 shows the MAPE values of the Type
IV model versus the time window from 1 to 8 using the test
dataset and training dataset. In both cases, the Type IV model
achieved the lowest prediction MAPE when the time window
equals 2 (the MAPE is 11.48% for the test dataset).
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To conclude, the Type IV model is chosen as the best
model, which denotes that spatial trends exist among differ-
ent road segments, and these spatial trends are temporally
correlated as well. Besides, time window 2 is proven to be
the optimal time window for prediction. The above analysis
proves that specifying a proper STI model on data will greatly
improve the prediction performance. In addition, this finding
will also provide new insights for transit agencies to form new
policies regarding zonal management.

C. MODEL INTERPRETATION
The interpretability of a model can be defined as the ability
to quantify to what extent each component (e.g., explanatory
variables, spatial, temporal, and STI effects) of the model
contributes to the variation of the response variable.

In this study, the response variable, i.e., the bus speed,
is formulated using Eq. (6). Based on Section IV.A, density
is selected as the explanatory variable. Therefore, Eq. (6)
becomes:

µti = β0 + β1 · Density+ (ui + λi)+ (γt + ζt )+ δit (21)

Based on the above definition of interpretability, the pro-
posed BSTI model can quantitatively describe the contribu-
tion of each component on the right-hand side of Eq. (21).

For the explanatory variable, this interpretability can be
achieved by analyzing the regression coefficients of the vari-
ables. The coefficient of density is −0.65 for morning peak
hours, which indicates that one bus increment per kilometer
would lead to a decrease of 0.65 km/h in bus speed. For
non-peak hours from 14:00-16:00, the average coefficient for
density is −1.15, while for evening peak hours, the average
coefficient is −0.45.
For the random effects, including spatial, temporal, and

STI effects, this interpretability can be achieved by ana-
lyzing the variance of estimated values of each effect.
TABLE 4 summarizes the mean and variance of the estimates
of each random effect. From TABLE 4, only the STI effect
is significant at the 85% confidence level, and other spa-
tial/temporal effects are not statistically significant. The con-
tribution of each component on bus speeds can be explained
by comparing the variances. For example, let fSTI denote the
ratio of the variance of the STI effect to the variance of all the
random effects, and fSTI is calculated as follows:

fSTI =
σ 2
δ

σ 2
δ + σ

2
u + σ

2
λ + σ

2
γ + σ

2
ζ

(22)

Based on TABLE 4, fSTI equals 99.94%. This finding
indicates that the STI effect dominates other random effects
in addressing the speed variance.

D. BUS SPEED ONLINE PREDICTION
In this subsection, we explore the results of the Type IV
model for online prediction. The results for the step ahead
(a) equals 1 are discussed. In time series analysis, prediction
performance usually decreases as the time period of interest

FIGURE 5. Distributions of the prediction errors of the bus speeds.

for prediction extends further in time [68]. Thus, the impacts
of the step ahead (a) on the prediction accuracy of Bayesian
spatiotemporal models are also investigated.

Figure 5 shows the distributions of the prediction errors
of the bus speeds in both directions using a heat map. Fig-
ure 5(a) shows the absolute differences (residuals) between
observed bus speeds and predicted bus speeds. Most of the
prediction errors are limited to a small range of 0 to 4 km/h
(denoted as bright green), which affirms the prediction per-
formance of the proposed model. Another valuable finding is
that the prediction residuals are randomly distributed, which
indicates that the proposed Type IV model accounts for the
spatiotemporal effects properly. Similar results are found for
the westbound in Figure 5(b).

Compared to the conventional statistic approaches, the pro-
posed model can interpret the significant dependent variables
correctly and make precise predictions based on them (with
a prediction MAPE of 11.48%). Furthermore, compared with
classic ‘‘black-box’’ like machine learning models, the pro-
posed model can adjust statistical inference and subsequently
improve prediction performance based on the spatiotemporal
effects. These edges again proved the superiority of the pro-
posed model.

Figure 6 demonstrates the prediction MAPE using the
Type IV model with w = 2 versus step ahead. In Figure 6(a),
the Type II model and the Type III model present largeMAPE
values, where the former has a MAPE over 50% while the
latter has a MAPE that nearly reaches 90%. Based on the
aforementioned analysis, a possible reason is that the assump-
tions of the STI are incompatible with the data.

Figure 6(b) excludes the Type II model and the Type III
model. From Figure 6(b), prediction MAPE increases when
the step ahead increases. This finding is consistent with
Das [68]. The Type IV model presents smaller MAPE at
all possible values of the step ahead than any other models,
which further proves that the Type IV model has superior
compatibility with data. Another finding is that the ST model
and the Type IV model present larger MAPE increments than
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TABLE 3. One-step ahead prediction assessment results for test dataset.

TABLE 4. Estimate results of Type_IV model.

the PLmodel and the Type I model as the step ahead increases
from 1 to 8. This increment for the former two models is
8.3% on average, while that of the latter two models is 7.1%.
A possible reason is that the STmodel and the Type IVmodel
account for structured temporal effects, which is no doubt
sensitive to time changing; while the PLmodel and the Type I

model do not account for structured temporal effects (See
TABLE 1 for detail about four types of interaction).

Aside from the proposed model, three benchmark mod-
els are also tested, i.e., autoregressive integrated moving
average (ARIMA) model [69], CNN model [70], and the
back-propagation neural network (BPNN) model [69]. The
hyperparameters for the benchmark models are listed in
TABLE 5. CNN has two convolution layers, while BPNN
has five regular layers. The input data of CNN is organized
as a matrix, where each row represents a road segment, and
each column denotes a time period, while the input of the
BPNN is organized as a vector. The kernel size of the CNN
model is set to 3×3, indicating that each convolution involves
three connected road segments and three consecutive time
periods. Note that BPNNdoes not perform convolution. Thus,
‘‘Kernel size’’, ‘‘Pooling’’, and ‘‘Stride’’ do not apply for
BPNN. The dropout rate of the BPNN is larger than CNN
due to more parameters are trained in the BPNN model. For
ARIMA, the order of autoregression (p), difference (d), and
moving average (q) are tuned to obtain the smallest Akaike
information criterion (AIC), where AIC estimates the predic-
tion error and is widely used for model selection [71]. After
tuning, p, d, and q equal to 1, 0, and 1, respectively.

Based on the methodology of each model, CNN utilizes
both spatial and temporal information via a 2-dimensional
kernel filter. ARIMA utilizes temporal information and
assumes linear relations between historical data and future
data. BPNN addresses the non-linearity among data and can-
not learn spatial or temporal features.

TABLE 6 summarizes the comparison results on MAPE,
MAE, RMSE, and the computation time between the pro-
posed Type IV model and three benchmark methods. Based
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FIGURE 6. Prediction MAPE with w = 2 versus step ahead (a) categorized
by different models: (a) Results for all models; (b) Zoom-in view on
models with MAPE smaller than 30%.

TABLE 5. Specifics of benchmark models.

on TABLE 6, our model outperforms the benchmark methods
by presenting the lowest MAPE, MAE, and RMSE. Besides,
our proposed model runs faster than the benchmark models.

TABLE 6. Bus speed prediction comparisons.

TABLE 7. Bus traffic state prediction accuracy in literature.

The average computation time for our model is 5.3 seconds.
Even a simple model like ARIMA costs more time than our
model. In addition, the computation time for the MCMC
method is 1044 seconds, which is much larger than that of our
model. Furthermore, we conduct a two-sample t-test on the
prediction results of the proposed model and ARIMA model.
Based on the results, the p-value is 0.054 < 0.1. Therefore,
we can conclude that the proposed model performs signifi-
cantly better than the ARIMA model at the 90% confidence
level.

TABLE 7 presents the prediction MAPEs of the reviewed
papers. Based on TABLE 7, the prediction MAPE observed
in the literature is between 14.8% and 23.17%. Our proposed
model reaches the MAPE of 11.48%.

V. CONCLUSION
This paper introduces a novel Bayesian hierarchical approach
for bus speed prediction, which explicitly accounts for the STI
of bus speed observations. Large-scale bus GPS data from
Shenzhen, China are used to obtain bus speeds. All the devel-
oped Bayesian models are estimated using the integrated
nested Laplace approximation technique, which expedites
the estimation process. The optimal model specification is
then identified. Predictor selection is conducted based on the
sensibility of coefficient signs and their statistical signifi-
cance. The most suitable STI pattern is identified based on
prediction performance.

Key findings are summarized as follows: (1) The proposed
Type IV model can best accommodate the bus speed data.
The lowest MAPE for one-step-ahead prediction is 11.48%
using data from two previous time intervals; (2) MAPE of
the Type IV model grows as the steps ahead for prediction
increases, and the Type IV model consistently outperforms
the others; (3) Prediction errors of the Type IV model tend
to be randomly distributed over time and space, indicating
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that our proposed model is capable of addressing the spatial
and temporal correlations among data; (4) The average run
time for the Bayesian spatiotemporal models using Laplace
approximation is 5.3 s, while the MCMC-based algorithm
takes 17.4 mins; (5) Our model outperforms the benchmark
statistical and machine learning models by a range from
0.95% to 11.26% in MAPE.

The proposed approach can achieve high prediction accu-
racy and computational efficiency without compromising
its interpretability regarding the effects of contributing fac-
tors and the unobserved spatiotemporal heterogeneity. Given
these advantages, the proposed model is expected to be able
to handle arbitrary data with spatiotemporal correlations and
STI effects and has the potential to be widely utilized for
online bus speed prediction in intelligent public transit sys-
tems. In the future study, the proposed model will be further
examined using bus speed data from a more extensive urban
network. The transferability of the proposed model will also
be tested using data from other cities
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