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Generative Adversarial Networks 
for Visible to Infrared Video 
Conversion 

Mohammad Shahab Uddin and Jiang Li 
Department of ECE, Old Dominion     University, Norfolk, VA 
 

Abstract 

Deep learning models are data driven. For example, the most popular 
convolutional neural network (CNN) model used for image classification or object 
detection requires large labelled databases for training to achieve competitive 
performances. This requirement is not difficult to be satisfied in the visible domain 
since there are lots of labelled video and image databases available nowadays. 
However, given the less popularity of infrared (IR) camera, the availability of 
labelled infrared videos or image databases are limited. Therefore, training deep 
learning models in infrared domain is still challenging. In this chapter, we applied 
the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN 
(Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN 
model requires visible-infrared image pairs for training while the Cycle GAN relaxes 
this constraint and requires only unpaired images from both domains. We applied 
the two models to an open-source database where visible and infrared videos 
provided by the signal multimedia and telecommunications laboratory at the 
Federal University of Rio de Janeiro. We evaluated conversion results by 
performance metrics including Inception Score (IS), Frechet Inception Distance 
(FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-
consistent GAN is more effective than pix2pix GAN for generating IR images from 
optical images.  

 
Keywords: Image Conversion, Generative Adversarial Network, Cycle-consistent 
Loss, IR Image, Pix2Pix, Cycle GAN    

1. Introduction 

Image-to-image conversion such as data augmentation [1] and style transfer [2] 
has been applied to recent computer vision applications. Traditional image 
conversion models had been investigated for specific applications [3-14]. Since the 
creation of the GAN model [15], it opened a new door to train generative models for 
image conversion. For example, computer vision researchers have successfully 
developed GAN models for day-to-night and sketch-to-photograph image 
conversions [16].  Two recent popular models that can perform image-to-image 
translations are Pix2Pix GAN [2] and Cycle GAN [16]. Pix2Pix GAN needs paired 
images for training whereas Cycle GAN relaxes this constraint and can be trained 
with unpaired images. In practice, paired images from different domains are often 
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difficult to obtain. Therefore, Cycle GAN is a better choice for image to image 
translation where paired images are not available.  

IR image datasets are not largely available as compared to optical images. As a 
result, we face the shortage of data when we train models for object detection in IR 
domain. This problem can be mitigated by using the Cycle GAN model to covert 
labelled optical images to IR images. In this chapter, we evaluate two models, 
Pix2Pix GAN and Cycle GAN, for image conversion from optical domain to IR 
domain. We used four different datasets to perform the conversion and three 
metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel 
Inception Distance (KID) to assess quality of the converted IR images.  

2. Image to Image Conversion Models 

2.1 Generative Adversarial Network 

 
Figure 1. Structure of Generative Adversarial Network 

 
GAN consists of one generative model and one discriminative model to generate 

images from noise as shown in Fig. 1. The generator ‘G’ tries to generate images 
from the input noise ‘z’ as realistic as possible to misguide the discriminator ‘D’ 
whereas ‘D’ is trained to discriminate the fake image ‘G(z)’ from the real one ‘x’. 
During training, errors at output ‘D’ are backpropagated to update parameters in ‘G’ 
and ‘D’, and the following loss function is optimized [15]: 

 
  𝑉𝑉(𝐷𝐷;𝐺𝐺) = 𝐸𝐸x∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(x)[log𝐷𝐷(𝑥𝑥)]  + 𝐸𝐸z∼𝑝𝑝𝑧𝑧(z)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))] 𝐺𝐺          𝐷𝐷   

min𝑚𝑚𝑚𝑚𝑚𝑚                  (1) 
 

where x and z represent training data and input noise, respectively. pdata(x) and pz(z) 
are distributions of training data and input noise. The discriminator ‘D’ is trained to 
minimize the probability of the generated fake image to be real so that it can 
correctly assign labels to ‘G(z)’ and ‘x’ in Fig. 1. The generator ‘G’ is trained to 
maximize D(G(z)) or equivalently to minimize log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))] in equ (1),  
generating realistic images. Essentially, the generator learns to generate real data’s 
distribution given by the training dataset. Once the goal is achieved, the generator 
can be used to generate realistic images by sampling from the learned probability 
distribution.  

2.2 Conditional GAN  

GAN can be converted into a conditional model with auxiliary information that is 
used to impose condition on generator and discriminator [17]. In the conditional 
GAN model, additional data are fed into the generator and discriminator so that data 
generation can be controlled. The loss function in conditional GAN becomes [17]:  
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  𝑉𝑉(𝐷𝐷;𝐺𝐺) = 𝐸𝐸y∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(y)[log𝐷𝐷(𝑦𝑦|𝑥𝑥)]  + 𝐸𝐸z∼𝑝𝑝𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑥𝑥)))] 𝐺𝐺          𝐷𝐷   
min𝑚𝑚𝑚𝑚𝑚𝑚        (2) 
 

where y and z are training data and input noise, respectively. The input noise z 
combined with extra information x generate the output G(z|x). Fig. 2 shows the 
diagram of conditional GAN. 
 

 
Figure 2. Architecture of Conditional GAN. Extra information x is given to both G 
and D. The discriminator trains itself to distinguish between real and fake image. 
The generator trains itself to fool discriminator by generating images similar to real 
images. Here both G and D get x as input. 

2.3 Pix2Pix GAN 

 
 

Figure 3. Block Diagram of Pix2Pix GAN. 
 

The Pix2Pix GAN model is built upon the concept of conditional GAN and it has been 
a common platform for various image conversion tasks. The diagram of Pix2Pix GAN 
model is given in Fig. 3. Pix2Pix GAN consists of a “U-Net” [18] based generator and 
a “PatchGAN” discriminator [2]. The “U-Net” generator passes low level information 
of input image to output image, and the “PatchGAN” discriminator helps capture 
statistics of local styles.  The loss function of pix2pix GAN is: 

  𝑉𝑉(𝐷𝐷;𝐺𝐺) = 𝐸𝐸x,y[log𝐷𝐷(𝑥𝑥, 𝑦𝑦)]  + 𝐸𝐸x,z[log(1 − 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥, 𝑧𝑧)))] + 𝐸𝐸x,y,z[||y − G(𝑥𝑥, 𝑧𝑧)||1] 𝐺𝐺         𝐷𝐷   
min𝑚𝑚𝑚𝑚𝑚𝑚  

(3) 
Pix2Pix GAN learns to map input image x and random noise z to output image y. The 
generator tries to minimize the loss function while the discriminator tries to 
maximize the loss function. The L1 loss between real image and fake one is included 
to achieve pixel level matching. Pix2Pix GAN had been applied to many applications 
including edges-to-photo conversion, sketch-to-photo conversion, map-to-aerial 
photo conversion etc. The main drawback of Pix2Pix GAN is that it needs paired 
images in both domains for training, which is not always possible in practice.  
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2.4 Cycle GAN 

In many cases, it is difficult to get paired images from different domains. Cycle 
GAN [16] addressed this challenge by introducing the cycle-consistent loss function 
as shown in Fig 4. There are two generator G and F in Cycle GAN along with two 
adversarial discriminator Dx and Dy. X and Y are input domain and target domain, 
respectively. While Dx helps G to generate images from X domain to Y domain, F is 
trained to generate images from Y domain to X domain. G: X→Y and F:Y→X are two 
mappings that are trained in Cycle GAN and these are kept consistent by two cycle-
consistency losses.  The total loss function of Cycle GAN is given by: 
 

𝐿𝐿(𝐺𝐺,𝐹𝐹,𝐷𝐷𝑚𝑚 ,𝐷𝐷𝑦𝑦) = 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹,𝐷𝐷𝑚𝑚 ,𝑌𝑌,𝑋𝑋)  + 𝜆𝜆𝐿𝐿𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹)𝐺𝐺,𝐹𝐹     𝐷𝐷𝑥𝑥,𝐷𝐷𝑦𝑦   
min      max     (4) 
where 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) = 𝐸𝐸y∼pdata(y)[log𝐷𝐷𝑌𝑌(𝑦𝑦)]  + 𝐸𝐸x∼pdata(x)[log(1 − 𝐷𝐷𝑌𝑌(𝐺𝐺(𝑥𝑥)))]  
 
𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹,𝐷𝐷𝑚𝑚 ,𝑌𝑌,𝑋𝑋) = 𝐸𝐸x∼pdata(x)[log𝐷𝐷𝑋𝑋(𝑥𝑥)]  + 𝐸𝐸y∼pdata(y)[log(1 − 𝐷𝐷𝑋𝑋(𝐺𝐺(𝑦𝑦)))]  

 
𝐿𝐿𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) = 𝐸𝐸x∼pdata(x)[[||G(F(x)) − x ||1]  + 𝐸𝐸y∼pdata(y)[||G(F(y)) − y ||1]  

 
There are two terms in the loss function of Cycle GAN: adversarial losses and cycle-
consistency losses. The adversarial losses 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹,𝐷𝐷𝑚𝑚,𝑌𝑌,𝑋𝑋) for G: X →
Y and F: Y → X mapping, respectively, ensure that target images’ distribution and 
generated images’ distribution are close. The cycle-consistency loss, 
𝐿𝐿𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹), ensures that the two mappings have no contradictions. λ is a weight 
controlling balance between the two categories of losses.  

Cycle GAN has been used in different applications including season transfer, style 
transfer, etc [16]. In addition, Cycle GAN has resolved the mode collapse problem in 
training if only the adversarial loss is used [19]. Mode collapse happens when the 
generator outputs the same image for different inputs. Though other methods [2, 8, 
10-2, 20-24] can also offer image-to-image translation with unpaired images, Cycle 
GAN has become a common platform for many image translation related tasks.  

 
Figure 4. Overall Architecture of Cycle GAN 

3. Experimental Setups 

3.1 Datasets  

For training Pix2Pix GAN and Cycle GAN, we have used images pairs from the 
open-source visible and infrared video database from the signal multimedia and 
telecommunications laboratory at the Federal University of Rio de Janeiro [25]. IR 
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and visible-light video pairs in the database are synchronized and registered. We 
utilized 80% of frames in the “Guanabara Bay_take_1” video pair for training and the 
remaining 20% frames for testing. In addition, we evaluated the trained model on 
other three image pairs named “Guanabara Bay_take_2”, “Camouflage_take_1” and 
“Camouflage_take_2”. Detailed information of the four video pairs are listed in Table 
1 and some example pairs are shown in Fig. 5. 
 

Table 1. Detailed Information of Video Pairs Used in Our Experiments. 
 

Dataset Name Description [25] 
Guanabara Bay_take_1 • Contains scenes of “the Guanabara Bay and 

the Rio de Janeiro-Niteroi bridge”. 
• Taken during Nighttime. 
• Contains 1 scene plane at approximately 500m 

distance. 
Guanabara Bay_take_2 • Contains scenes of “the Guanabara Bay and 

the Rio de Janeiro-Niteroi bridge”. 
• Taken during nighttime.  
• Contains 1 scene plane at approximately 500m 

distance. 
Camouflage_take_1 • Contains outdoor scenes. 

• Taken during bright sunlight.  
• Contains 2 scene planes at approximately 10m 

and 300m distances. 
• Contains people who are hiding behind 

vegetation. 
Camouflage_take_2 • Contains outdoor scenes. 

• Taken during bright sunlight.  
• Contains 2 scene planes at approximately 10m 

and 300m distances. 
• Contains people who are hiding behind 

vegetation. 
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a) Visible Images                            b) IR Images 

Figure 5. Visible-IR Images from Guanabara Bay_take_1 Video Pair used for Training 
Pix2Pix GAN and Cycle GAN Models. 

3.2 Performance Metrics 

3.2.1 Inception Score  

Inception score (IS) is widely used for evaluating GANs [26]. IS considers quality 
and diversity of generated images by evaluating the entropy of probability 
distribution created by the pre-trained ‘Inception v3’ model on the generated data 
[27]. A large inception score represents high quality of the generated images. One 
drawback of the inception score is that it does not consider information in the real 
images used for training the GAN model. Therefore, it is not clear how the generated 
images compare to the real training images.  

3.2.2 Frechet Inception Distance 

Frechet Inception Distance (FID) indicates the similarity between two sets of 
datasets and is often used for evaluating GANs [28-29]. FID is the Wasserstein-2 
distance between feature representations of real and fake images computed by the 
Inception v3 model [27]. We used the coding layer of the Inception model to obtain 
feature representation of each image. FID is consistent with the human-judgement 
of image quality and it can also detect intra-class mode collapse. A lower FID score 
indicates that the two groups of images are similar so that the generated fake 
images are of high quality. 
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3.2.3 Kernel Inception Distance 

Kernel Inception Distance (KID) is another metric often used to assess quality of 
GAN generated images relative to real images [30]. KID first uses the Inception v3 
model to obtain representations of generated images. It then calculates the squared 
maximum mean discrepancy (MMD) between the representations of real training 
images and generated images. KID score is also consistent with human judgement of 
image quality. A small KID value indicates high quality of the generated images.  

4 Results 

4.1 Testing Results on “Guanabara Bay_take_1”  

We trained the Pix2Pix GAN and Cycle GAN on 80% of the frames in “Guanabara 
Bay_take_1” video pair and tested the trained models on the remaining 20% frames. 
Some visible and IR images that we have used for training are shown in Fig. 5. After 
training, we applied both models to the testing frames and Fig. 6 shows some 
generated IR images.  By visual inspection, Cycle GAN can generate better results 
than Pix2Pix GAN does. In addition, we observe that IR images generated by Cycle 
GAN are similar to the real IR images. Table 2 lists the quantitative performance 
metrics of the generated images by the two models. Cycle GAN outperforms Pix2Pix 
GAN in terms of all the metrics including IS, FID and KID on this dataset.  

 

 
 

  

   
                                               a) Generated IR Images by Pix2Pix GAN  
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                                                b) Generated IR Images by Cycle GAN 
Figure 6. Fake IR Images generated by Pix2Pix GAN and Cycle GAN from the visible 
images in the Guanabara Bay_take_1 dataset.  

        

 
 

  

   
a) Generated IR Images by Pix2Pix GAN Cycle GAN 
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                   b) Generated IR Images by cycle GAN 

Figure 7. Fake IR Images generated by Pix2Pix GAN and Cycle GAN from the visible 
images of Guanabara Bay_take_2 dataset.  

4.3 Testing Results on “Camouflage_take_1” and “Camouflage_take_2” 

       We have applied the trained models to “Camouflage_take_1” and 
“Camouflage_take_2” datasets and results are shown in Figs. 8 and 9. Both models 
did not generate good quality IR images though the quantitative metrics as shown in 
Table 2. Cycle GAN is slightly better than Pix2Pix GAN. One possible reason is that 
the data in the two sets have different distributions as those in the training data, 
making both models failed.  

 

 
 

  

   
a) Generated IR Images by Pix2Pix GAN 
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                                                       b) Generated IR Images by Cycle GAN   
Figure 8. Fake IR Images generated by Pix2Pix GAN and Cycle GAN from the visible 
images of Camouflage_take_1 dataset. 

 

 
 

  

   
a) Generated IR Images by Pix2Pix GAN 
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                                                    b) Generated IR Images by Cycle GAN   
Figure 9. Fake IR Images generated by Pix2Pix GAN and Cycle GAN from the visible 
images of Camouflage_take_2 dataset 
 
Table 2. Evaluation Metrics on Generated IR Images of Different Datasets using 
Pix2Pix GAN and Cycle GAN. 

 
Metrics 

Datasets 
Guanabara 
Bay_take_1 

Guanabara 
Bay_take_2 

Camouflage 
take_1 

Camouflage 
take_2 

 
IS Score 

PixPix 
GAN 

Cycle 
GAN 

PixPix 
GAN 

Cycle 
GAN 

PixPix 
GAN 

Cycle 
GAN 

PixPix 
GAN 

Cycle 
GAN 

2.70 2.88 1.85 3.61 1.02 2.72 1.02 2.66 
FID 0.90 0.84 2.33 1.12 3.64 1.51 3.35 1.52 
KID 4.24 2.42 24.00 7.10 48.61 9.13 43.55 9.15 

4. Conclusion 

In this chapter, we have investigated visible-to-IR image conversion using Pix2Pix 
GAN and Cycle GAN. Cycle GAN is a better model than Pix2Pix GAN and both can 
generate good visual quality IR images based on visible images, if training data and 
test data are similar.  Overall, IR images generated by Cycle GAN have sharper 
appearances and better quantitative performance metrics than those by Pix2Pix 
GAN. However, if testing data have significant distribution shift as compared to 
training data, both models cannot generate quality IR images. Therefore, our 
recommendations are 1). Cycle GAN appears to be a better tool to convert optical 
images to IR images if training and testing datasets have similar distributions and 2) 
Both models are sensitive to distribution shift and additional techniques are needed 
to address the challenge.  
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