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A B S T R A C T

Satellite remote sensing offers an effective remedy to challenges in ground-based and aerial mapping that have
previously impeded quantitative assessments of global seagrass extent. Commercial satellite platforms offer fine
spatial resolution, an important consideration in patchy seagrass ecosystems. Currently, no consistent protocol
exists for image processing of commercial data, limiting reproducibility and comparison across space and time.
Additionally, the radiometric performance of commercial satellite sensors has not been assessed against the dark
and variable targets characteristic of coastal waters. This study compared data products derived from two
commercial satellites: DigitalGlobe's WorldView-2 and Planet's RapidEye. A single scene from each platform was
obtained at St. Joseph Bay in Florida, USA, corresponding to a November 2010 field campaign. A reproducible
processing regime was developed to transform imagery from basic products, as delivered from each company,
into analysis-ready data usable for various scientific applications. Satellite-derived surface reflectances were
compared against field measurements. WorldView-2 imagery exhibited high disagreement in the coastal blue
and blue spectral bands, chronically overpredicting. RapidEye exhibited better agreement than WorldView-2,
but overpredicted slightly across all spectral bands. A deep convolutional neural network was used to classify
imagery into deep water, land, submerged sand, seagrass, and intertidal classes. Classification results were
compared to seagrass maps derived from photointerpreted aerial imagery. This study offers the first radiometric
assessment of WorldView-2 and RapidEye over a coastal system, revealing inherent calibration issues in shorter
wavelengths of WorldView-2. Both platforms demonstrated as much as 97% agreement with aerial estimates,
despite differing resolutions. Thus, calibration issues in WorldView-2 did not appear to interfere with classifi-
cation accuracy, but could be problematic if estimating biomass. The image processing routine developed here
offers a reproducible workflow for WorldView-2 and RapidEye imagery, which was tested in two additional
coastal systems. This approach may become platform independent as more sensors become available.

1. Introduction

Seagrass meadows occupy less than 0.2% of the ocean floor, but
store approximately 10% of the ocean's carbon per year (Duarte et al.,
2013; Fourqurean et al., 2012). Despite their prominent role in the
global carbon cycle, carbon storage in these ecosystems is poorly
quantified, with estimates ranging from 4.2 to 19.9 Pg of total organic
carbon currently stored in seagrass ecosystems (Fourqurean et al.,
2012). This uncertainty results, to a large extent, from a poor under-
standing of global seagrass coverage, ranging between 150,000 and

4,320,000 km2 (Duarte, 2017). The 2016 Commission for Environ-
mental Cooperation report concluded that seagrasses represent the
greatest data gap in Blue Carbon habitat mapping, where Blue Carbon
represents carbon captured by ocean and coastal sediments (CEC,
2016).

Seagrass extent has been poorly quantified largely due to logistical
and labor challenges involved in aerial and ground-based efforts, in-
cluding the high cost of comprehensive mapping (Björk et al., 2008;
Dekker et al., 2006). In contrast, satellite remote sensing can offer an
effective approach for mapping and monitoring seagrass in coastal
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ecosystems (Baumstark et al., 2013). Several classification techniques
have been used for seagrass detection, including maximum likelihood,
object based image analysis (OBIA), support vector machines, and
random forests. These algorithms have been applied to a range of sa-
tellite platforms (Hill et al., 2014), with accuracies ranging from 73% to
85% (Traganos and Reinartz, 2017; Pasqualini et al., 2005; Pu et al.,
2014; Pu and Bell, 2013; Meyer and Pu, 2012; Traganos and Reinartz,
2018).

The Landsat series, which provides imagery at 30 m spatial re-
solution in five visible to near infrared spectral bands (Dekker et al.,
2005; Mumby et al., 1997; Ward et al., 2003; Hossain et al., 2015), and
other moderate-scale sensors such as Sentinel-2A at 10 m spatial re-
solution (Fauzan et al., 2017; Thalib et al., 2018), have been used to
monitor seagrass ecosystems. Commercial platforms such as RapidEye
at 5 m (Traganos and Reinartz, 2018), PlanetScope at 3 m (Wicaksono
and Lazuardi, 2018), Quickbird-2 at 2.4 m (Phinn et al., 2008a; Lyons
et al., 2011), and WorldView-2 at 2 m (Baumstark et al., 2016;
Roelfsema et al., 2014) offer finer spatial resolution, but have been
included in fewer studies due to costs associated with the imagery. High
spatial resolution (< 10 m) allows for improved seagrass biomass re-
trieval, productivity estimates, and patch size statistics (Hill et al.,
2014).

Although commercial platforms have been successfully employed
for seagrass delineation, previous studies have not presented a con-
sistent nor transparent processing regime, limiting reproducibility.

Atmospheric correction, for example, is an essential step for creating
separability in spectra (Huang et al., 2016), required for both classifi-
cation (Knudby and Nordlund, 2011) and comparison across space and
time (Coppin et al., 2004). However, optimization of atmospheric
correction parameters specific to commercial satellite platforms re-
mains largely an ad hoc process, limited at least in part by the low
signal to noise ratio of commercial platforms over dark pixels.

Moreover, radiometric performance of commercial imagery in
coastal environments has not been quantitatively assessed. Analyzing
agreement of radiometric measurements is important for increasing
user confidence, determining appropriate applications, and to allow
informed use of the imagery (Mélin et al., 2016). An understanding of
radiometric performance is necessary for tasks such as merging dif-
ferent datasets (Pottier et al., 2006) and performing trend analyses
(Vantrepotte and Mélin, 2011).

Machwitz et al. (2014) found RapidEye reflectance values to be
higher than field observations in land-based applications. Less quanti-
tative validation exists for WorldView-2 data. Looking into the litera-
ture of the radiometric performance of WorldView-2 in terrestrial sys-
tems, Latif et al. (2012) quantified disagreement between WorldView-2
reflectance measurements and field measurements of a forest habitat.
The two datasets varied by about 5%, and reflectance measurements in
shorter shorter wavelengths were higher in WorldView-2 imagery as
compared to field observations and lower in longer wavelengths.

We used DigitalGlobe's WorldView-2 satellite platform, which

Fig. 1. St. Joseph Bay is located along the Florida panhandle in the northern Gulf of Mexico (29.797°N, 85.353°W). Hyperspectral field measurements were taken at
24 locations throughout the bay (red points) on 2, 6, and 9 Nov 2010. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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collects imagery in eight multispectral bands at 2 m resolution, and
Planet's RapidEye satellite constellation, which collects imagery in five
multispectral bands at 6.5 m resolution. Here we report our efforts to:

1. Develop a reproducible workflow for processing commercial sa-
tellite imagery from DigitalGlobe's WorldView-2 satellite platform
and Planet's RapidEye satellite constellation.

2. Evaluate and compare radiometric performance of each sensor by
analyzing agreement between satellite-derived reflectance mea-
surements and field-derived reflectance measurements.

3. 3. Apply a deep learning approach presented in Islam et al. (2020) to
estimate seagrass coverage and assess classification agreement with
an aerial photointerpretation.

2. Data and methods

2.1. Study area

St. Joseph Bay is located along the Florida panhandle in the
northern Gulf of Mexico (29.797°N, 85.353°W; Fig. 1). Selection of St.
Joseph Bay was motivated by the presence of existing field data and
extensive familiarity with the site (i.e., Hill et al., 2014). St. Joseph Bay
is approximately 24 km long and 10 km wide, opening in the north to
the Gulf of Mexico. The Gulf County Canal flows into the northeast
portion of the bay at the town of Port St. Joe. Water depth ranges up to
12 m at the center of the bay. At the southern end, an extensive shallow
area less than 3 m deep occupies about a third of the entire bay (Hill
et al., 2014).

Waters in St. Joseph Bay are characterized by moderately high
concentrations of phytoplankton, colored dissolved organic matter
(CDOM), and suspended nonalgal particulate (detritus and sediment),
creating a potentially challenging optical environment (Conmy et al.,
2017). The seagrass within the bay is dominated by turtlegrass (Tha-
lassia testudinum) which forms dense meadows at depths less than 2 m

(Hill et al., 2014). Manateegrass (Syringodium filiforme), shoalgrass
(Halodule wrightii), widgeongrass (Ruppia maritima), and stargrass (Ha-
lophila engelmannii) are also present in lower densities. Manateegrass
can reach depths of up to 2 m while the other species tend to dominate
at shallower depths.

2.2. Satellite data

Satellite data were obtained from two commercial platforms,
WorldView-2 and RapidEye (Supplementary Table S1). DigitalGlobe
launched WorldView-2 in October 2009, offering multispectral data at a
1.84 m ground sample distance (GSD) at nadir. Basic level 1B data were
obtained from DigitalGlobe's EnhancedView Web Hosting Service
(evwhs.digitalglobe.com) at a spatial resolution of 2 m for 14 Nov 2010
(Maxar, 2019), which was the closest cloud-free overpass to field data
collection.

RapidEye was a constellation of five satellite sensors launched in
August 2008 and decomissioned in December 2019 (Planet Team,
2017). While new imagery will not be collected from the RapidEye
constellation, over a decade of archived imagery exists and Planet has
announced a plan to launch Super-Dove platforms with similar re-
solutions as RapidEye. Each Planet's RapidEye satellite offered multi-
spectral data at a 6.5 m GSD at nadir. Basic level 1B data were obtained
for the RapidEye-2 satellite through Planet Explorer (https://www.
planet.com/explorer/) for 11 Nov 2010 (Planet Labs Inc, 2019), which,
again, was the closest cloud-free overpass to field data collection. Off-
nadir images were intentionally selected to avoid challenges presented
with sunglint. View angles for the selected images ranged from 10° to
16°.

RapidEye offered five multispectral bands with four in the visible
and one in the near infrared (NIR). WorldView-2 offers six bands in the
visible, two in the NIR, and an order-of-magnitude finer spatial re-
solution than RapidEye (Fig. 2, Table 1). The dynamic range, which
describes the amount of information that can be measured within a

Fig. 2. (A) Spectral response function (SRF) of visible and near infrared (NIR) channels for DigitalGlobe's WorldView-2 satellite and (B) a true color image of 2 m
WorldView-2 data. (C) SRF of Planet's RapidEye satellite constellation and (D) a true color image of 6.5 m RapidEye data (copyright Planet Laboratories Inc. 2019 all
rights reserved).
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pixel, was higher in RapidEye (12-bit) than WorldView-2 (11-bit).
Signal to noise ratio (SNR) was computed following Dadon et al.
(2011). WorldView-2 offered improved SNR compared to RapidEye in
shorter wavelengths; RapidEye offered improved SNR compared to
WorldView-2 in longer wavelengths (Table 1).

2.3. Data processing

WorldView-2 and RapidEye scenes were processed to produce or-
thorectified, radiometrically calibrated, and atmospherically corrected
images from the Level 1B data products. The order of some steps is
important (e.g., atmospheric correction must be applied after radio-
metric calibration), but the sequence of other steps is interchangeable.
Each scene was delivered as multiple tiles. The WorldView-2 scene was
divided into three tiles, and the RapidEye scene into two. Data pro-
cessing was performed for each tile before being mosaicked into a single
scene. Satellite data processing was performed in ENVI 8.7.0 and IDL
8.7.2 (Exelis Visual Information Solutions, Boulder, Colorado).

2.3.1. Radiometric calibration
The radiometric calibration values provided with WorldView-2

imagery were adjusted using updated vicarious calibration factors
provided by Kuester (2017). Radiometric calibration required the ad-
justed and raw calibration coefficients for WorldView-2 and RapidEye,
respectively. Next, all pixel values were divided by π to convert di-
mensionless reflectance values to remote sensing reflectance (Rrs) in
units of inverse steradians (sr−1).

2.3.2. Atmospheric correction
A dark object subtraction (DOS) approach was used to remove

atmospheric contamination from the Rrs signal (Chavez, 1988). Three
parameters can be optimized when performing DOS: the starting
spectral band, the threshold at which pixels are considered to represent
dark objects, and the value of the exponent used to correct shorter
wavelengths. This study employed the red edge band as the starting
spectral band, a threshold of the median of lowest 5% of the distribu-
tion of red edge pixel values, and a Rayleigh exponent of 4.75. NIR
bands are commonly used to establish DOS adjustment values (Green
et al., 2000); however, the signal to noise ratio of WorldView-2 and
RapidEye were insufficient such that radiometrically calibrated values
over the darkest water pixels in the image frequently yielded negative
radiances in the NIR bands before atmospheric correction, preventing
their use for DOS (Table 1).

Optimization of the reference contamination value and the ex-
ponent were explored by iterating through a range of values and noting
the effect on the resulting spectra. Red edge distribution percentage
medians ranging from 5% through 50% in increments of 5% were
considered, while maintaining a constant Rayleigh exponent of 4.75.
Rayleigh exponents ranging from 3.5 to 6.5 in increments of 0.25 were
tested, while maintaining a constant red edge distribution percentage of
5%. Resulting spectra were visually compared against field observa-
tions.

A reproducible workflow was developed in an effort to reduce the
arbitrary nature of selecting dark pixels used for DOS (Fig. 3). A sha-
pefile indicating the extent of estuaries along the coastline was used as
an initial separation between land and water (Schaeffer and Myer,
2020), ensuring red edge anchor values were not selected from inland
water pixels such as lakes and rivers. After spatial subsetting, some
pixels along the shoreline remained. Therefore, a spectral threshold was
applied. The normalized difference water index (NDWI) was computed
(McFeeters, 1996), and pixel values flagged as water (i.e., NDWI value
above zero) were retained for dark pixel consideration.

The median of red edge Rrs values was computed from those re-
presenting the darkest 5% of the distribution. We assumed half the red
edge radiance represented atmospheric contamination, while the re-
mainder represented true water-leaving radiances. This assumption was
motivated by Vanhellemont and Ruddick (2014) in which a linear re-
lationship between the two surrounding bands, red and NIR, was used
to characterize atmospheric contamination in Landsat 8 imagery and
was further established through a sensitivity analysis in which ap-
proximately half of the red edge signal generated retrievals that did not
result in negative Rrs values, where negative Rrs indicate an atmo-
spheric overcorrection. Determination of a red edge anchor value was
repeated for all tiles within the scene, and the lowest of these values
was used to compute the scattering factor for the entire scene. Red edge
anchor values across tiles did not differ drastically, ranging from
0.000655 to 0.000657 for WorldView-2 and 0.00269 to 0.00279 for
RapidEye. The scattering factor was computed as:

Table 1
Spectral characteristics of each sensor.

Band WorldView-2 RapidEye

FWHM Center SNR Range Center SNR

Coastal 400–450 427.3 22.22
Blue 450–510 477.9 7.40 440–510 475 3.10
Green 510–580 546.2 2.65 520–590 555 1.71
Yellow 585–625 607.8 1.64
Red 630–690 658.8 1.41 630–685 657.5 1.17
Red edge 705–745 723.7 0.58 690–730 710 1.24
NIR #1 770–895 832.5 0.45 760–850 805 1.18
NIR #2 860–1040 908 0.57

FWHM represents the full width half maximum for each band. SNR indicates
the signal to noise ratio computed across the scene following Dadon et al.
(2011) as the ratio between the standard deviation and the mean of the satellite
signal for each band, and excluded land pixels. The exclusion of land pixels is
explained in Section 2.3.

Fig. 3. (A) Image showing the distribution of red edge Rrs values scaled from “low” to “high” across a hypothetical image. (B) Pixels retained after applying the
estuary boundary of Schaeffer and Myer (2020). (C) Additional pixels removed with NDWI>0. (D) Remaining pixels representing the lowest 5% of the Rrs values in
the red edge band. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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= ×σ λ αred edge red edge
4.75

(1)

where σ is the scattering factor and α is the anchor value. The scattering
factor was then applied to the wavelength of each band to compute the
band-specific value subtracted from each pixel in each band, as:

=η σ
λband

band
4.75 (2)

where η is the subtraction value. The resulting band-specific values of η
were then subtracted from Rrs values in each band for all pixels in the
scene.

2.3.3. RPC Orthorectification
Rational polynomial coefficient (RPC) orthorectification was ap-

plied to geometrically correct the image and remove distortions from
image capture. The Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010) dataset is provided with ENVI at a spatial resolu-
tion of 30 arc-seconds, and was used in the processing protocol pre-
sented here to ensure large-scale reproducibility and since there were
no terrain-specific issues over water (Danielson and Gesch, 2011).

2.3.4. Mosaicking and resampling
Orthorectified tiles were then mosaicked into a single scene. In

addition to the native resolution WorldView-2 and RapidEye scenes, a
third raster was generated by resampling the 2 m WorldView-2 imagery
via bilinear interpolation to match the 6.5 m spatial resolution of
RapidEye. Comparing native resolution to downsampled WorldView-2
imagery revealed differences stemming from spatial resolution, given
spectral resolution was the same. Comparing downsampled WorldView-
2 imagery to native resolution RapidEye imagery revealed differences
stemming from spectral resolutions given most other image parameters
were held constant.

2.4. Field measurements of reflectance

Satellite estimates of atmospherically corrected Rrs were compared
against hyperspectral reflectance measurements taken at 24 locations
throughout the bay (Fig. 1). Statistical analyses were conducted in R
Version 3.4.0 (R Core Team, 2017). Data were collected as described in
Hill et al. (2014). Hyperspectral field measurements of Rrs were re-
sampled to match the eight WorldView-2 and five RapidEye spectral
bands by taking the mean of the hyperspectral reflectance values within
the FWHM for each band. For each of the 24 observations, field mea-
sured Rrs was compared to satellite derived Rrs using the mean absolute
deviation (MAD) and associated bias.

2.5. Classification of seagrass extent

A deep convolutional neural network (DCNN) developed by Islam
et al. (2020) was used to classify image pixels into five classes: deep
water, land, submerged sand, seagrass, and intertidal. Intertidal re-
presents a region of filamentous red algae and microbial films, but not
seagrass (Hill et al., 2014), along the land-water interface that would be
submerged during high tide and exposed during low tide. Character-
ization of an intertidal region can be important for time series analyses
in which different tidal stages are represented.

A DCNN was chosen as it achieves high accuracies with less com-
putational complexity compared to other approaches (Islam et al.,
2018, 2020). The DCNN model was developed with the Keras package
in Python 3.5 (Python Core Team, 2015; Chollet, 2015). A DCNN model
requires known input classes for training, which are provided through
spectral information contained in regions of interest (ROIs). ROIs were
generated across the image based on a combination of local knowledge,
expected spectral response, and visual confirmation, with three poly-
gons representing each of the five classes (Fig. 4). The same ROIs were
used for both WorldView-2 and RapidEye, ensuring differences in

classification results between the two sensors were not due to differ-
ences in ROIs.

We used an input patch size of 3 × 3 to extract the training samples
from the selected ROIs. A sequential model, or linear stack, of six
hidden layers was applied. The first layer was a convolutional layer
consisting of 32 filters with a kernal size of 1 × 1 followed by a rec-
tified linear activation function. Next a dropout layer randomly set 1%
of the outputs from the first layer to zero. The second convolutional
layer consisted of 16 filters with a kernal size of 3 × 3, again, followed
by a rectified linear activation function. Then, another dropout layer
with a dropout rate of 1% was added before flattening the model.
Finally, a dense layer with a SoftMax activation function was used to
compute pixel-based probabilities for each class (Bishop, 2006). This
DCNN model was trained for 500 epochs, where an epoch represents
the point at which all training data have been processed one time, using
a batch size of 256. More information about the model can be found in
Appendix A.

2.6. Aerial estimates of seagrass extent

Seagrass pixels identified in the satellite imagery were compared to
a shapefile obtained from the Florida Fish & Wildlife Conservation
Commission (FL FWC) representing the distribution of seagrass beds in
St. Joseph Bay derived from aerial photography. Aerial photographic
images were interpreted by Quantum Spatial, (2010) formerly Photo
Science, Inc.) based on October 2010 natural color aerial photography
acquired by the Florida Department of Transportation (Statistics
Canada, 2008; Great Britain, 2009). Images were taken at high tide and
only visible features were mapped.

FL FWC classified features into tidal flats, bays & estuaries, con-
tinuous seagrass, patchy seagrass, and unclassified from the aerial
imagery. Descriptions of these classes were not available; thus, the ROIs
chosen here were based on those presented in Islam et al. (2020) rather
than attempting to match the classes presented in the FL FWC dataset.
Additionally, the distinction between patchy and continuous seagrass is
described as a perceived texture difference rather than percent cover;
therefore, continuous and patchy seagrass were combined into a single
seagrass class. FL FWC warns that the accuracy of this dataset was not
verified. Typically, state programs strive to achieve a 10% mark for
ground verification. Thus, this analysis assesses agreement among three
remote sensing datasets, none of which have been verified through on
the ground measurements: two datasets using a deep learning classifier
on satellite imagery, the third using human photointerpretation of
aerial imagery.

The aerial shapefile was subset to include just St. Joseph Bay and
rasterized to match the spatial resolution of each satellite sensor. Before
computing statistics, pixels classified in the satellite imagery as inter-
tidal were discarded in both satellite and aerial estimates to account for
differences in tidal heights between each dataset. An agreement matrix
was developed for seagrass presence and seagrass absence, and agree-
ment between aerial imagery and each satellite platform was assessed
according to Congalton (1991) via the carot package in R (Kuhn et al.,
2020).

Agreement matrices compare, on a class-by-class basis, the re-
lationship between reference data (in this case, aerial imagery) and the
corresponding classification results from analysis of the satellite
images. Errors of ommission occur when a feature is incorrectly left out
of the category being evaluated, i.e., a false negative. Errors of com-
mission occur when a feature is incorrectly included in the category
being evaluated, i.e., a false positive. Overall accuracy was computed as
the number of pixels labeled as the same class in aerial and satellite
imagery normalized to the total number of pixels in the scene.

The Kappa coefficient indicates how well the resulting classification
performs compared to a random classification (Cohen, 1960; Goodman
and Kruskal, 1954). It is represented as a ratio between −1 and 1 with
higher Kappa coefficients indicating higher agreement between
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classification approaches. Difference maps were generated using the
ArcGIS Image Analysis window to visualize areas in which satellite and
aerial classifications differed (ESRI, 2016).

3. Results and discussion

3.1. Atmospheric correction

3.1.1. Optimizing DOS parameters
Adjustment of the red edge distribution percentage had a smaller

effect on reflectance values than adjustment of the Rayleigh exponent,
as shown for a single field location characterized by submerged sand
(Fig. 5). In WorldView-2 imagery, adjusting the red edge distribution
percentage did little to change the resulting reflectance values, meaning
distribution percentages ranging between 5% and 50% produced si-
milar results. This same range of red edge distribution values applied to
RapidEye data yielded a larger range of reflectance values, but the
spectral shapes of corrected imagery still mimicked that of field ob-
servations.

When iterating the Rayleigh exponent, similarity in spectral shape
between corrected satellite-derived reflectance and field reflectance
was sought. A Rayleigh exponent of 4.75 provided necessary correction
in shorter wavelengths while preserving non-negative values (i.e.,
avoiding over-correction) across the entire spectrum. In WorldView-2
imagery, a Rayleigh exponent of 6.5 was still incapable of producing
reasonable reflectance values in the coastal blue and blue spectral
bands. In RapidEye imagery, higher Rayleigh exponents resulted in
negative reflectance values in shorter wavelengths.

Even with more stringent atmospheric correction through an in-
creased red edge distribution and Rayleigh exponent, comparatively
high reflectance values in the coastal blue and blue spectral bands of
WorldView-2 could not be lowered sufficiently to match the in situ
measurements of Rrs. Although the present study only examined one
WorldView-2 scene, manual inspection of multiple WorldView-2 scenes
indicates this offset is common across this platform, suggesting that
radiometrically corrected values in the coastal blue and blue spectral
bands are much higher than they should be over these relatively dark
water targets.

A primary component of standardizing data processing for com-
mercial imagery was the development of an atmospheric correction

approach that did not require user-supplied values on a scene-by-scene
basis, which is a known limitation of DOS. In addition to creating
spectral separability necessary for classification, atmospheric correction
is considered a requirement for change detection applications (Coppin
et al., 2004), such as assessing temporal changes in seagrass extent. This
effort begins to assess the applicability of a standardized processing
regime, and it is encouraging that both images settled on the same
parameters.

St. Joseph Bay is characterized by a large central basin of optically
deep water, which explains similar reflectance values while iterating
through various red edge distributions. In coastal areas characterized
by waters with a more diverse distribution of optical properties, the
percentage of the red edge reflectance values used to characterize dark
water will certainly have a larger influence on the resulting spectra. In
such environments, using a higher percentage of the red edge re-
flectance values will likely result in over-correction, yielding negative
reflectance values in shorter wavelengths. Therefore, it is likely that a
conservative threshold of 5% will allow proper atmospheric char-
acterization even in scenes with a small area of optically deep water,
but future efforts should focus on spatial and temporal applicability.

Preserving the minimum red edge anchor value for all tiles within
the scene further increases confidence that the red edge anchor is re-
presentative of deep water pixels, increasing the likelihood that the
atmospheric correction is an accurate representation of atmospheric
contamination. If a minimum of one tile within the scene is char-
acterized by optically deep water in at least 5% of the surface area, this
DOS approach should yield a sufficient atmospheric correction. A di-
vision factor of two was used to capture atmospheric contamination
while maintaining true water-leaving radiance in the red edge spectral
band.

Relatively high Rayleigh exponents have been found to be more
appropriate in clear conditions, whereas relatively low Rayleigh ex-
ponents are more appropriate in hazy conditions (Curcio, 1961; Slater
et al., 1983; Chavez, 1988). This is because in clear conditions, shorter
wavelengths are scattered more relative to longer wavelengths while in
hazy conditions, scattering across all wavelengths is more equal. Thus,
the focus of DOS in clearer conditions is to decrease reflectance in
shorter wavelengths, thereby adjusting the spectral shape. In hazier
conditions, the focus of DOS is to decrease reflectance across the entire
spectrum while, more or less, preserving the spectral shape. Both scenes

Fig. 4. Regions of interest (ROIs) for each of the five classes overlaid on (A) native resolution WorldView-2 imagery, (B) downsampled WorldView-2 imagery, and (C)
native resolution RapidEye imagery. ROIs were generated based on a combination of local knowledge provided by coauthors Zimmerman and Hill, expected spectral
response, and visual confirmation.
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considered in this study represent visibly clear conditions, therefore a
high Rayleigh exponent – as opposed to the idealized value of 4 – to
represent the relative scattering model for this DOS approach is rea-
sonable. Additionally, given that clear, cloud-free scenes are desired
when extracting information at the surface, a Rayleigh exponent of 4.75
will likely be appropriate across a range of satellite scenes.

3.1.2. Atmospheric correction in the literature
Other automated atmospheric correction regimes have been applied

to satellite remote sensing imagery, including ENVI's Fast Line-of-Sight
Atmospheric Analysis of Hypercubes (FLAASH) model (Kovacs et al.,
2018; Tamondong et al., 2013; Roelfsema et al., 2014; Traganos and
Reinartz, 2018; Pu et al., 2014). However, FLAASH has been found to
provide poorer results than those derived with DOS (Collin and Hench,
2012; Wicaksono and Hafizt, 2018).

DOS has successfully been applied to satellite imagery from a
variety of platforms for seagrass detection (Hossain et al., 2015; Fauzan
et al., 2017; Thalib et al., 2018; Wicaksono and Lazuardi, 2018). De-
spite its employment in commercial satellite processing, an investiga-
tion into its unbiased optimization has not been performed until now.
Many studies apply atmospheric correction to a single scene, but the
approach presented here to identify the darkest pixels in a scene can
reduce bias requiring little, if any, manual intervention to the current
workflow. The presented workflow could also be modified for sensors
or scenes containing NIR values with better SNR. Employing NIR
channels may result in an improved atmospheric correction given no
assumptions need to be made regarding the actual versus perceived
atmospheric contributions to the NIR reflectance values.

3.2. Deviation and bias in satellite-derived reflectance

RapidEye overpredicted reflectance values compared to field mea-
surements for all spectral bands, but only slightly, while WorldView-2

overpredicted in shorter wavelengths (coastal blue through red) and
underpredicted in longer wavelengths (Fig. 6, Supplementary Table
S2). MAD and bias associated with the coastal blue and blue spectral
bands of WorldView-2 was nearly 0.03 and 0.025, respectively, while
results for the remaining bands fell below 0.015.

Higher reflectance values in RapidEye imagery compared to field
observations is consistent with previous studies in terrestrial ecosys-
tems (Machwitz et al., 2014; Chander et al., 2013), and offset between
WorldView-2 data and field observations is also supported (Latif et al.,
2012). However, previous studies have not assessed radiometric per-
formance over lower-reflectance aquatic environments. Difficulties in
the radiometric correction are likely the reason for high reflectance
values in shorter wavelengths of WorldView-2 imagery. Updated cali-
bration factors presented in Kuester (2017) likely do not capture sensor
drift, meaning updated values do not represent accurate correction
factors for the 2010 image presented here. Additionally, these values
should be revisited annually, but more recent correction values were
not available.

While MAD and bias provide a comparison of sensor performance, a
primary objective of atmospheric correction is to create realistic and
separable spectral shapes for each class. Therefore, while the magnitude
of MAD is a valid measure of sensor performance, a consistent MAD is
more relevant for classification. Deviation associated with RapidEye
was more consistent over its spectral bands than WorldView-2, sug-
gesting that, although there was an offset, the spectral shapes of
RapidEye data were more similar to those of field observations.

The temporal offset between field measurements and satellite
overpass ranged from 5 to 12 days for WorldView-2 and 2 to 9 days for
RapidEye. Deviation and bias for observations collected on 2 Nov 2010
(n = 2) were nearly double those of observations collected on 6 Nov
2010 (n = 11) or 9 Nov 2010 (n = 11; Supplementary Table S3). Field
observations taken on 9 Nov 2010 and early observations taken on 6
Nov 2010 coincided with the tidal stage at which satellite overpass

Fig. 5. Example of the effect of red edge distribution percentage and Rayleigh exponent on the atmospherically corrected Rrs spectrum for a single pixel representing
optically shallow sand. (A) WorldView-2 uncorrected spectra and field spectra compared against a DOS regime considering red edge distribution percentages between
5% and 50% in increments of 5%, while maintaining a constant Rayleigh exponent of 4.75. (B) WorldView-2 uncorrected spectra and field spectra compared against a
DOS regime considering Rayleigh exponents between 3.5 and 6.5 in increments of 0.25, while maintaining a constant red edge distribution percentage of 5%. (C)
Same as (A), but for RapidEye. (D) Same as (B), but for RapidEye. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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occurred for both WorldView-2 and RapidEye (Fig. 7). Tide predictions
were obtained from the NOAA Tides & Currents database (https://
tidesandcurrents.noaa.gov/). The tidal heights during field data col-
lected on 2 Nov 2010 and later observations taken on 6 Nov 2010,
however, was much lower.

3.3. Agreement between satellite and aerial classifications

3.3.1. Regions of interest
Reflectance within ROIs varied between WorldView-2 and RapidEye

(Fig. 8). The intertidal class, for example, was characterized by much
higher spectral signatures for RapidEye compared to WorldView-2,
nearly resembling a land signature. Because of the tidal stage (Fig. 7),
deeper water at the time of image acquisition produced lower values in

Fig. 6. Radar plots indicating the average mean absolute deviation and mean absolute bias across 24 field sites throughout St. Joseph Bay. Asterisks indicate the
wavelengths at which RapidEye does not collect data; therefore, RapidEye statistics were not computed for these bands.
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the WorldView-2 image relative to RapidEye.
Reflectance values within RapidEye ROIs also demonstrated in-

creased variability compared to WorldView-2, as shown through a
larger spread between the 5th and 95th percentiles across nearly all
classes. Additionally, chronically high reflectance values associated
with coastal blue and blue spectral bands of WorldView-2 imagery was
evident, particularly in the submerged sand spectra; RapidEye and
WorldView-2 had high agreement in the green through NIR bands, but
diverged in the shorter wavelengths as RapidEye followed a more ex-
pected spectral shape, decreasing in reflectance values, and WorldView-
2 increased in reflectance values.

3.3.2. Classification results
Classification results were visually similar across all three datasets

throughout much of St. Joseph Bay. However there were clear differ-
ences for each sensor compared to aerial photointerpretation (Fig. 9,
Supplementary Table S4). Notably, the DCNN classified large areas of
intertidal for both satellite platforms that were manually classified as
seagrass from the aerial imagery. Although tidal height differed be-
tween aerial imagery acquisition and satellite overpass, Hill et al.
(2014) reported much of the intertidal region to be colonized by fila-
mentous red algae and microbial films, not seagrass. DCNN results also
indicated higher coverage area of submerged sand, much of which was
designated as deep water in the photointerpreted aerial imagery.
Deeper water at the time of the aerial image acquisition likely explains
the under-reporting of optically shallow water consisting of un-
vegetated sand.

Quantitative assessment indicated that both satellite platforms were
well-suited for seagrass detection, with overall accuracy above 96%
(Tables 2, Supplementary Table S5). The Kappa coefficient (around
0.87) was also similar among the three images. Kappa coefficients be-
tween 0.80 and 0.90 are considered strong with 64–81% of data being
reliable (McHugh, 2012). Thus, the higher disagreement between
WorldView-2 and field-measured reflectance values did not appear to
affect the performance of the image classification, although poor
agreement could be problematic if using the imagery for pure radio-
metric values or atmospherically corrected reflectance values. For ex-
ample, derived products such as density estimation require low dis-
agreement (Hill et al., 2014).

Visibly identifiable seagrass pixels were misclassified by both
WorldView-2 and RapidEye as sand along the fringes of seagrass before
transitioning to submerged sand (Fig. 10). RapidEye captured these
areas with less accuracy than WorldView-2 as shown by large areas of
orange along the the transition zone in the western portion of St. Joseph
Bay. Poor capture in this area is likely due to the patchy nature of these
regions, which can be problematic for classification in both satellite
imagery (Knudby and Nordlund, 2011; Phinn et al., 2008b; Green et al.,
1996; Baumstark et al., 2016; Pu et al., 2014; Pu and Bell, 2013) and
photointerpretation (McKenzie et al., 2001; Meehan et al., 2005).

Differences between satellite and aerial classifications along the

transition from submerged sand to deep water were apparent in native
resolution WorldView-2 imagery. A faint magenta line is visible along
this transition zone (Fig. 10), likely indicative of misclassification by
the DCNN algorithm. Coarser spatial resolution could explain the ab-
sence of this artifact in both downsampled WorldView-2 imagery and
RapidEye imagery.

WorldView-2 appears to overclassify seagrass in the southern por-
tion of the bay compared to both the aerial photointerpretation and the
RapidEye classification. Many of the inlets FL FWC labeled as either
submerged sand or deep water are classified as seagrass in both the
native resolution and resampled WorldView-2 imagery. Additionally,
across all platforms, it appears that many smaller patches of submerged
sand embedded in the seagrass beds were misclassified as seagrass.
These misclassifications are likely because the spectra appear dark
green to the satellite sensor since they were in relatively deep water. A
spectral linear unmixing approach could offer insight into subpixel
composition, allowing for improved habitat characterization in patchy
environments.

The area surrounding the Gulf County Canal creates an artifact in
the DCNN classification. All three scenes misidentify seagrass in this
area of high CDOM discharge from the canal due to similar spectral
shapes. In a spectrally similar environment, image classification ap-
proaches can fail to discern different cover types accurately (Knudby
and Nordlund, 2011). The inclusion of a CDOM class could improve the
classification in the future.

Agreement matrices could not be generated to compare satellite
classifications to aerial photointerpretation across all classes because
class labels differed between the two datasets. Instead, an agreement
matrix was generated to compare classification results for deep water,
land, submerged sand, seagrass, and intertidal between resampled
WorldView-2 imagery with native resolution RapidEye imagery
(Supplementary Table S6).

Previous studies have found classification improvements through
further image processing, particularly the application of a water column
correction (Pu et al., 2014). However, in our system this correction was
unnecessary to achieve sufficient spectral separability between seagrass
and other classes. Additionally, none of the images considered were
affected by sunglint which could present difficulties in both the pro-
posed processing regime and the classification algorithm. Unmixing-
based denoising has also improved accuracy assessments of remotely
sensed seagrass (Traganos et al., 2017). Results presented here report
merely on the presence or absence of seagrass. Satellite imagery has
been used to report on percent cover of seagrass using a five class
classification scheme of submerged aquatic vegetation (Pu and Bell,
2013; Pu et al., 2012; Roelfsema et al., 2009). Such an approach could
improve classification along the transition from seagrass to another
class, but ground measurements are needed to properly assess agree-
ment.

Fig. 7. Predicted tidal height at Port St. Joe, FL obtained from the NOAA Tides & Currents database (https://tidesandcurrents.noaa.gov/). Acquisition times of field
data are shown in orange, overpass time of RapidEye is shown in red, and overpass time of WorldView-2 is shown in black. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

M.M. Coffer, et al. Remote Sensing of Environment 250 (2020) 112036

9

0.6 

I 
t oA 
·a; 
J:: 

{g 02 
i= 

0.0 

11/03 05:00 11/04 05:00 11/05 05:00 11/06 05:00 11/07 05:00 11/08 05:00 11/09 05:00 11/10 05:00 11/11 05:00 11/12 05:00 11/13 05:00 11/14 05:00 

• Field data 

• RapidEye 

• WorldView-2 

https://tidesandcurrents.noaa.gov/


3.3.3. Applicability across other systems
The processing protocol presented here and classification algorithm

introduced in Islam et al. (2020) were used in three additional scenarios
to test applicability across other systems (Fig. 11). Because of the de-
comissioning of RapidEye in December 2019, only WorldView scenes
were considered here, including imagery from both WorldView-2 and
WorldView-3. Scenes at St. Joseph Bay, Tampa Bay, and St. George
Sound were considered for the years 2010, 2016, and 2014, respec-
tively. Tampa Bay and St. George Sound both represent similar systems
to St. Joseph Bay. Tampa Bay is located along Florida's Gulf coast and
St. George Sound is located along the Florida panhandle just east of St.
Joseph Bay.

First, the WorldView-2 scene presented earlier in the manuscript
was considered, but using only the blue, green, red, and NIR #1 bands
to mirror the spectral characteristics of other commercial platforms.
Results were compared to photointerpreted aerial imagery and con-
tinued to demonstrate strong agreement (Supplementary Table S7).
Next, a WorldView-3 scene collected over Tampa Bay on 1 Mar 2016
was processed and classified using the methods presented here. Visual
inspection of the results are promising, with the DCNN algorithm able
to identify the patchy nature of seagrass in this system. A WorldView-2
scene collected over St. George Sound on 27 Apr 2014 also demon-
strated agreement through visual inspection.

Results at Tampa Bay and St. George Sound were not quantitatively
assessed for agreement with seagrass coverage maps for two reasons.
First, the DCNN algorithm has already been demonstrated across sites
(Islam et al., 2020). The focus of this study was instead to develop a
reproducible processing regime for commercial satellite imagery, which
can be demonstrated through successful creation of separable spectra
required for an accurate classification. Second, the quality of photo-
interpretation results can vary drastically across regions. Visual com-
parison of true-color imagery against seagrass shapefiles at Tampa Bay,
for example, revealed an important limitation of human drawn maps:
areas of patchy seagrass are often aggregated into a single polygon,
whereas a pixel-based approach such as a DCNN can provide more
detailed estimates of seagrass coverage. Thus, using more generalized
seagrass shapefiles can artificially reduce the agreement of the satellite
classification as neither dataset conveys a validated representation of
true seagrass coverage.

Although archives of WorldView-2 and RapidEye imagery exist,
Schaeffer et al. (2013) found that mission continuity is critical for end-
users. Several current satellite missions, including Airbus Defense and
Space's SPOT-6 and -7 constellation and DigitalGlobe's GeoEye-1 sa-
tellite, are potentially well-suited for coastal seagrass detection, but
each of these platforms offer only 4 multispectral bands: blue, green,
red, and NIR. Results presented here demonstrate promise that the
proposed methods are reproducible and potentially could move toward
sensor independence, but additional testing across a larger range of
images collected across space and time is needed. Additionally, more
detailed field data would be required to quantitatively validate the
performance of the DCNN at other locations.

3.3.4. The use of photointerpretation as reference data
Many studies assess the accuracy of remote sensing classifications

by comparing results to photointerpretation, assuming photo-
interpretation results are correct. However, this assumption rarely
holds and can result in a biased evaluation of remote sensing products
(Congalton, 1991). Error associated with reference data is seldom
known and, thus, impossible to consider when assessing classification
accuracy. Moreover, while they did not offer an alternative, Rutchey
and Vilchek (1999) cautioned against quantitative comparisons be-
tween aerial photointerpretation and satellite classification, noting the
two approaches rely on very different mechanisms for classifying
ground cover data. This is a gap that must be closed in order to tran-
sition from human to automated interpretation of remotely sensed
imagery.

McKenzie et al. (2001) noted a particular area of error along the
boundary of seagrass beds, which was an area of disagreement between
the satellite and aerial imagery. The authors suggested these regions be
assigned a quality flag to reflect lower confidence associated with
human error. Moreover, findings from Meehan et al. (2005) argue that
photointerpretation methods can overestimate seagrass area by amal-
gamating disjunct seagrass patches into continuous meadows. Edwards
and Lowell (1996) and Thierry and Lowell (2001) proposed a ‘fuzzy
boundary’ concept, where transition zones from one class to another
were labeled or interpolated to indicate decreased confidence. These
suggestions were not adopted in the FL FWC data, although such an
approach could help quantify uncertainty in aerial estimates.

Fig. 8. The 5th, 50th, and 95th percentile of the Rrs distribution for each region
of interest (ROI) and sensor. Three ROIs were generated for land as well, but
their spectra were excluded from this figure.
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To our knowledge, no comprehensive study exists to assess the
human error rates associated with image classification in aquatic sys-
tems. One study assessed the overall accuracy of a single photo-
interpretation in a wetland ecosystem, finding a 95% agreement with
34 field survey sites (Rutchey and Vilchek, 1999). While not explicitly
quantified, Edwards and Lowell (1996) found texture differences and
the presence of straight versus curved lines to influence photo-
interpretation accuracy.

In addition to error inherent in a single photointerpretation event,
inconsistencies also exist from one individual to another (Edwards and
Lowell, 1996), and for the same individual from one occasion to an-
other (Nantel, 1993). Interpretor error can significantly affect results
when comparing maps for temporal trends (Ward et al., 1997). Artifi-
cial intelligence approaches for image classification such as a DCNN are
likely to be more consistent over time versus traditional photo-
interpretation methods.

3.4. Future work

This study aimed to retrieve seagrass extent in coastal waters.
However, satellite imagery has also demonstrated utility for estimation
of leaf area index (LAI) and biomass (Dierssen et al., 2003; Hill et al.,
2014), which could aid in addressing uncertainty regarding global es-
timates of seagrass carbon storage. Moreover, the image processing and
classification regime presented here could be used to monitor addi-
tional water quality parameters, such as chlorophyll. Future work
testing this approach for other applications would require extensive
field data for validation.

Ongoing work is focused on testing whether ROIs defined for each
class for a single area of interest can be reused in other scenes from that

same area of interest, or if ROIs defined for each class for a single area
of interest can be reused in other areas of interest. Islam et al. (2020)
suggests promise in this pursuit by successfully defining a generalizable
DCNN model for seagrass detection from one location to another. Ex-
cellent performance was achieved by utilizing labeled samples from
new environments to adapt a previously trained classifier. Additionally,
extensive evaluation of which machine learning algorithms are best for
seagrass detection is planned for future efforts.

Applicability of the proposed processing regime to 4-band sensors
was shown here, but the incorporation of additional sensors could im-
prove temporal resolution as compared to commercial platforms.
Future work should focus on expanding the presented methods to
openly available imagery from sensors such as the Landsat series and
Sentinel-2. The Landsat series offers a longer imagery archive than ei-
ther of the platforms presented here, and Sentinel-2 offers consistent
temporal coverage with a revisit frequency of 2 to 3 days.

4. Conclusions

A reproducible workflow was developed to process commercial sa-
tellite imagery from WorldView-2 and RapidEye. This workflow trans-
forms basic, level 1B imagery into an atmospherically corrected pro-
duct. Corrected imagery were compared to field observations of Rrs.
ENVI/IDL source code and associated documentation accompanying
this workflow can be found at doi:10.23719/1518572. WorldView-2
imagery indicated higher disagreement and a positive bias in shorter
wavelengths, particularly the coastal blue and blue spectral bands.
Longer wavelengths had lower disagreement and a slight negative bias.
RapidEye imagery showed lower overall disagreement, and a slight
positive bias compared to field data. Despite spectral and spatial

Fig. 9. Classification results from Florida Fish & Wildlife Conservation Commission (FL FWC) and satellite data from native resolution WorldView-2 imagery,
downsampled WorldView-2 imagery, and native resolution RapidEye imagery. FL FWC data was based on photointerpreted aerial imagery collected at high tide in
October 2010. WorldView-2 and RapidEye imagery were obtained during low tide in November 2010 (WorldView-2 tidal height 0.2 m; RapidEye tidal height
0.06 m).

Table 2
Agreement between machine learning classification of satellite imagery and photointerpretation of aerial imagery for seagrass presence and absence.

Errors of ommission Errors of commission Overall accuracy Kappa

Present Absent Present Absent

WorldView-2 (2 m) 6% 3% 14% 1% 97% 0.88
WorldView-2 (6.5 m) 9% 2% 12% 2% 97% 0.88
RapidEye (6.5 m) 14% 2% 9% 3% 96% 0.86

Agreement was quantified through errors of ommission, errors of comission, overall accuracy, and the Kappa coefficient. Areas classified as intertidal by the DCNN
were removed before computing agreement statistics to correct for differences in tidal height at time of data collection.
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differences, image classification via a DCNN demonstrated nearly 97%
agreement for both satellite platforms compared to aerial photo-
interpretation, although neither the satellite classification nor the aerial
photointerpretation were validated through ground measurements.
Methods were tested at two additional Florida sites, St. George Sound
and Tampa Bay, and results demonstrated visual agreement with the

imagery, suggesting the presented methods can be transferable to other
locations.

Declaration of Competing Interest

The authors declare that they have no known competing financial

Fig. 10. Difference maps illustrating areas classified through satellite imagery as seagrass present but classified through aerial imagery as seagrass absent (shaded in
magenta) and areas classified through satellite imagery as seagrass absent but classified through aerial imagery as seagrass present (shaded in orange). Insets (black
box) illustrate a portion of the classification difference to demonstrate performance differences along the transition from seagrass to another class. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Classification results for (A) the same WorldView-2 scene used above, but using only the blue, green, red, and NIR #1 spectral bands, (B) a WorldView-3
scene from Tampa Bay, FL, USA from 1 Mar 2016 including a subset of the classification compared to the true-color imagery, and (C) a WorldView-2 scene from St.
George Sound, FL, USA from 27 Apr 2014 including a subset of the classification compared to the true-color imagery. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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reflect the views or policies of the U.S. EPA. Lastly, we thank three
anonymous reviewers for their assistance in improving the structure
and communication of the study.

A. An overview of deep convolutional neural networks (DCNN)
Deep convolutional neural networks (DCNN) have been successfully

employed for seagrass detection in multispectral imagery (Islam et al.,
2020). A DCNN is a deep learning approach which achieved state-of-
the-art classification performances in many image recognition tasks
(Krizhevsky et al., 2012). A DCNN typically consists of two types of
layers: a convolutional layer and a fully connected layer. Convolutional
layers use small kernals to filter the input image and extract useful
features for classification. A fully connected layer is also referred to as a
dense layer. Dense layers mimic the functionality of the traditional
neural network for classification.

A DCNN model can have one or more convolutional layers de-
pending on the complexity of the tasks. These layers can be thought of
as feature identifiers are are adept at extracting hierarchical features for
classification. Lower layers extract low-level characteristics of the
image such as edges, curves, and colors. Higher layers compute more
complex features as different combinations of low-level features to
achieve robust image classification. The final step before the classifi-
cation layer is to flatten the model. Flattening transforms the features
into a vector that can be fed into the dense layer for classification. The
dense layer takes the vector and computes probabilities for the input
image. Additionally, dropout layers are usually dispersed throughout
the network, helping control overfitting. During training, if the output
probabilities are incorrect, the errors are then backpropagated back to
the model to adjust the model parameters. This process allows the
model to slowly approach the optimum point where the model performs
best.

In our experiments, instead of training the DCNN model on the full
image, we used small subsets of the image to acheive pixel-wise clas-
sification. These subsets of the image are known as patches. We as-
signed a class label to each patch according to the center pixel of the
patch. We extracted fifty thousand patches per class from the selected
ROIs to train the DCNN model. Once trained, the model scanned across
the entire image patch-by-patch to produce a pixel-wise classification of
the entire image. We set the size of the patch to 3 × 3 and set the step
size of the scanning process to one so that adjacent patches were
overlapped during testing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.112036.
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