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Abbreviations: 

9-accm      1,7-(di-9-anthracene-1,6-heptadiene-3,5-dione) 

AFM             Atomic force microscopy

AlTSPc aluminium tetrasulfide phthalocyanines

an-tpy             4`-(9-anthracenyl)-2,2`:6`,2``-terpyridine  

BODIPY boron dipyrromethene

BPE                 1,2-bis(4-pyridyl)ethane 

bpy                  2,2′-bipyridine 

cat                   benzene-1,2-diolate

Ce6                 chlorin e6

dopa-NBD      4-(2-(4-nitrobenzo[c][1,2,5]oxadiazol-7-ylamino)ethyl)benzene-1,2-diolate

dpa dipicolylamine 

dpp                  2,3-bis(2-pyridyl)pyrazine

dppz                dipyrido[3,2-a:2′,3′-c]phenazine

dpq                  2,3-bis(2-pyridyl)quinoxaline

ER                   endoplasmic reticulum

FPs                  fine-sized particles

GQDs      graphene quantum dots

HAp         hydroxyapatite

HPV        human papillomavirus

HSA        human serum albumin

IP-nT       imidazo[4,5-f][1,10]phenanthroline

InTPP      tetraphenylporphyrin

MB          methylene blue

mTCPC   5,10,15-tris(meta-carbomethoxyphenyl)corrole

NPs         nano-sized particles

mPACT    photoactivated chemotherapeutic

pbt 2-(2’-pyridyl)benzothiazole)A
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Pcs             phthalocyanines

phen          1,10-phenanthroline

Ph2phen    4,7-diphenyl-1,10-phenanthroline

phen2DTT 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol 

ph-tpy       (4′-phenyl)-2,2′:6′,2′′-terpyridine

pq              3-phenylisoquinoline

PS       photosensitizer 

pTCPC      5,10,15-tris(para-carbomethoxyphenyl)corrole

PTT           photothermal therapy

PpIX          protoporphyrin IX 

py-tpy        4`-(1-pyrenyl)-2,2`:6`,2``-terpyridine

ROS         reactive oxygen species

salmet      N-salicylidene-L-methionate

sal-L-tryp        N-salicylidene-L-tryptophanate

SDT          sonodynamic therapy

Sil             silane arm

Stpy          (2,2′:6′,2′′-terpyridin-4′-oxy)ethyl-β-D-glucopyranoside 

tpphz       tetrapyrido[3,2-a:2‘,3‘-c:3‘‘,2‘‘-h:2‘‘‘,3‘‘‘-j]phenazine (tpphz)

tpy            2,2′:6′,2′′-terpyridine

TSPP        meso-tetra(4-sulfonatophenyl)porphyrin

ttpy       4′-(p-tolyl)-2,2′:6′,2′′-terpyridine
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Abstract

Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitiser and a light source 

to treat several conditions, including cancer. PDT uses reactive oxygen species (ROS) such as 

cytotoxic singlet oxygen (1O2) to induce cell death in cancer cells. Chemotherapy has historically 

utilized the cytotoxic effects of many metals, especially transition-metal complexes. However, 

chemotherapy is a systemic treatment so all cells in a patient’s body are exposed to the same cytotoxic 

effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a 

potential localized method for treating several cancer types by using inorganic complexes as 

photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical 

trials that reported on the anti-cancer properties of inorganic pharmaceuticals used in PDT against 

different types of cancer.

Keywords: cancer; photodynamic therapy; transition metal complexes; singlet oxygen; 

photosensitiser 
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INTRODUCTION

Cancer is a major issue around the world given that the American Cancer Society recently reported 

that around 750,000 cancer cases were diagnosed in 2020 (1). In 2017, 2018, and 2019, the three most 

common causes of cancer related deaths in U.S. females were lung, breast, and colorectal cancers; 

while the most common causes of cancer related deaths in U.S. males were lung, prostate, and 

colorectal cancers (2-4). Declines in cancer incidence and death rates in the U.S.A. over the past 

decade have followed the national changes of cancer risk factors (e.g., excess body weight, decreases 

in human papillomavirus, and smoking) (5-8). Cancer screening, diagnostics, and treatments that 

include nanomaterials, inorganic pharmaceuticals, and PDT, have improved over the last few decades 

(9, 10). 

PDT is a medically selective technique that has been widely used to treat different types of 

cancer and other diseases (11, 12). The effect of chemicals under light irradiation on cell death was 

discovered by Oscar Raab. He studied the interaction of light and acridine and showed a lethal effect 

on Infusoria (13). Shortly afterwards, the optical property of fluorescence was predicted to be 

potentially promising if used in medicine (14). The first medicine using the interaction between a 

fluorescent compound and light was used to treat skin cancer (15). PDT requires three fundamental 

components: a photosensitizer (PS), light, and molecular oxygen (16-18). When visible light is 

absorbed, the PS is promoted from the ground state up to the excited triplet state (3PS) and can 

contribute to generating ROS (1O2, •OH, H2O2…) that selectively kill cancer cells (19-21). Photofrin 

is a PS that is currently being used as a PDT drug (22, 23). It stimulates the formation of cytotoxic 1O2 

species with red light (24, 25). Porphyrins have been evaluated in PDT because they strongly absorb 

light, which is then converted to energy and heat in cancer cells (26). Similarly, many metals and 

lanthanides can also be used as PSs to treat cancers (27). When these elements were used as non-PDT 

drugs, they showed anti-cancer activity, but also exhibited similar toxicity to other metal-based anti-

cancer drugs. In addition, cancers treated with these elements also exhibit drug resistance (28). 

Toxic effects of metal-based complexes have evoked considerable interests to develop safer version 

of these drugs (29). Additionally, PDT reduces the toxicity of metal-based drugs on human organs 

compared to non-PDT chemotherapeutic drugs (30). There are various types of metal-based PDT anti-

cancer drugs that have been reported recently (31-34). There has been increasing interest in the A
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development of light-activated metal complexes to exhibit photocytotoxicity through mechanisms 

independent of ROS production (35-38). 

Light penetrates the tissue and excites a PS with a metal centre. This PS is then energetically 

promoted to 3PS, which can transfer electrons, protons, or emit light from this state. 3PS electron 

transfer typically interacts with cellular oxygen to form 3O2 and 3PS proton transfer also interacts with 

cellular oxygen to form 1O2. These resulting ROS can then lead to damages to DNA (39).

Based on the topic and PDT research as carried out by the late Professor Karen Brewer, it is 

fitting that the reader should read the following before proceeding to the selected metal centres that 

are utilised in PDT: the special Issue in Inorganic Chimica Acta on “Coordination Chemistry: 

Understanding the role of molecular and supramolecular design on the photophysical, biological, and 

electron transfer properties of transition metal complexes and their potential applications. Dedicated 

to the memory of Karen J. Brewer” (https://www.sciencedirect.com/journal/inorganica-chimica-

acta/vol/454/suppl/C) and PDT chapters in the textbook entitled “Ruthenium Complexes: 

Photochemical and Biomedical Applications” (40-42).

This review will focus on the following metal centres, but with increasing atomic numbers of 

metals, starting with aluminium.

ALUMINIUM

Aluminium-based complexes in combination with PDT have been reported to determine anti-

cancer efficacy against melanoma skin cancer, non-melanoma skin cancer, and other diseases (43, 

44). Phthalocyanines (Pcs) have been studied for their PDT potential due to their strong absorption at 

the red region of the spectrum (~670 nm), their excellent 1O2 generation, their chemical stability, and 

effective tissue penetration (45). Pcs in conjunction with metals that are diamagnetic have been shown 

to have better sensitizing activity than metal-free Pcs (46). Aluminium phthalocyanine chloride 

(AlCPc) has been studied as a PDT agent as reported in the literature (47).

<Figure 1>

A murine model of non-melanoma skin carcinomas and normal skin was used to study the 

pharmacokinetics of the topical application of AlClPcA. This complex was not detected in normal A
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skin tissues, which indicates that the topical application of this solution does not lead to generalized 

toxicity or phototoxicity. Additionally, AlClPc penetrated the tumours of hairless mice 25 times more 

deeply than in normal skin. The results found that this complex can be a treatment option in the future 

for deep squamous cell carcinomas that cannot be treated by surgery (43).

Another study investigated cytotoxic effects of aluminium tetrasulfophthalocyanines (AlTSPc) 

in combination with PDT on melanoma skin cancer cells at different concentrations and compared the 

results to the cytotoxic effects in normal skin fibroblast and keratinocyte cells (44). Tetrasubstituted 

Pcs have high dipole moments and effective 1O2 generation, making them ideal for combination 

treatment with PDT. This treatment did induce apoptosis in melanoma cells with symptoms such as 

protrusions in the plasma membrane and nuclear fragmentation and condensation. The results showed 

that 40 µg ml-1 with low levels of light activation (4.5 J cm-2) was effective in reducing the cell 

viability of melanoma skin cancer cells by inducing apoptosis, and this therapy has the potential to 

successfully treat melanoma skin cancer (44).

The topical administration of hydroxy-aluminium phthalocyanine (AlOH-PC) entrapped in 

liposomes was used for in vivo studies against human prostate carcinomas. The specific human 

prostate carcinoma cell lines, LNCaP and PC3 were utilized. The aggressive PC3 tumours had a 

100% cure rate at a dose of 6 mg ml-1, and the less aggressive LNCaP tumours had a 100% cure rate 

at 4.5 mg ml-1. The results show that liposomal AlOH-PC prepared by a patented microfluidization 

procedure is potentially suitable for the PDT treatment of prostate carcinomas (48).

TITANIUM

Titanium oxide (TiO2) has been used as a PS in PDT for cancer treatment due to its chemical 

stability, low toxicity, and high photocatalytic activity (49). In vitro study of carbon-doped TiO2 

(TiO2:C) in X-ray-induced PDT was examined against A459 lung cancer cells and showed a 

significant toxicity compared to without X-ray irradiation. In addition, the in vivo study also 

confirmed a low A459 cancer cells viability by ROS generation. Overall, TiO2:C inhibited cancer 

growth efficiently and improved PDT effects (50). 
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VANADIUM 

Vanadium based complexes, especially oxovanadium complexes, have been known to exhibit 

anti-cancer properties as they have demonstrated the ability to induce apoptosis in cancer cells (51). 

This makes their use, a promising route to take in the fight against cancer, especially when combined 

with PDT. For instance, PDT activity was demonstrated by cell viability assay for the ternary 

oxovanadium(IV) complexes, shown in Fig. 2, [VO(salmet)(N-N)] and [VO(saltrp)(N-N)] (where N-

N = phen, dpq, or dppz). This resulted in half maximal IC50 values of 2.7 ± 0.4 mM and 2.5 ± 0.2 mM 

in MCF-7 (human breast carcinoma) and HeLa cells (human cervical cancer), respectively, in addition 

to efficient photoinduced DNA nuclease activity following two (2) hours exposure to blue (360 nm) 

and red (750 nm) lights (52). 

Another oxovanadium(IV) complex, [VO(L2)Cl2], (where L2 is N-(4-(5,5-difluoro-2,8-diiodo-

1,3,7,9-tetramethyl-5H4ʎ4,5ʎ4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinin-10-yl)benzyl)-1-(pyridin-2-

yl)-N-(pyridin-2-ylmethyl)methanamine), exhibited mitochondrial membrane disruption by JC-1 

(1,1′,3,3′-tetraethyl5,5′,6,6′-tetrachloroimidacarbocyanine iodide) dye assay, in addition to IC50 values 

of 0.15 ± 2 µM and 0.2 ± 0.08 µM in HeLa cells and MCF-7 cells, respectively (53). In another study, 

the PDT activity of the following oxovanadium(IV) complexes was determined: [VO(cat)(L)] and 

[VO(dopa-NBD)(L)], (where L is phtpy or stpy), shown in Fig. 2. Cytotoxic assays of these 

complexes, in the dark and in the presence of visible light of 400-700 nm and red light of 600-720 

nm, showed that they exhibited increased toxicity against HeLa and Hep G2 cells, upon 

photoirradiation. These studies further confirm that the anti-cancer properties of vanadium are 

enhanced with the use of PDT when compared to in the dark (54). 

<Figure 2>

MANGANESE 

Manganese-containing complexes have been utilized in PDT due to their ability to increase the 

ROS level and Fenton reactions (55). Atif et al. synthesized and characterized MnxCe1−xO2 

nanocomposites and analysed its anti-cancer properties against MCF-7 cells. When MnxCe1−xO2 

nanocomposite was administered, apoptosis was observed in cells treated with 9% Mn-doped CeO2 A
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nanocomposites due to an increase in the production of ROS levels (56). A Mn2+ ion and doxorubicin 

(Dox) were loaded onto an NP with phycocyanin (PC) to construct Mn nanococktails (PC-Mn@Dox-

NPs). PC-Mn@Dox-NPs increased drug release rate and the generation of H2O2 and •OH all leading 

to cytotoxicity (57). 

A Mn complex was reported in combination with immunotherapy to heighten the combined 

therapeutic response. The MnO2@Ce6 nanoprobes was tested in vitro and in vivo using human-

induced pluripotent stem cells (iPSs) as a vehicle. The MnO2 and H2O2 reversed the hypoxic tumour 

microenvironment, and after PDT, 1O2 was generated alongside stimulation of an immune response 

(58). 

IRON 

Iron, when coordinated to certain ligands, has also shown cytotoxic abilities on cancer cells by 

causing DNA damage. Hence, making it important to investigate its potential effect on these cells 

when associated with PDT. Tabrizi et al. showed efficacy of mitochondria‐targeted PDT with a Fe(II) 

complex containing BODIPY derivatives, [Fe(L)(tpy‐BODIPY)], (with L being 

5‐methoxy‐1,3‐bis(1‐methyl‐1H‐benzo[d]imidazol‐2‐yl)benzene), depicted in Fig. 3. This resulted in 

a IC50 values of 1.05 ± 0.3 µM, against HeLa cells and 36.21 ± 0.2 µM, against noncancerous MRC‐5 

cells, in the presence of a light source with λ = 500 nm (59).

Another study by Sun et al. demonstrated the PDT activity of iron mono-hydroxyl 

metallocorrole complexes as shown in Fig. 3 in which each metal centre is coordinated by a corrole 

ligand, which is an aromatic macrocycle similar to corrin and porphyrin rings. Cytotoxic studies on 

A549 (human lung cancer), MCF-7, and HepG-2 cells after LED irradiation at 625 ± 2 nm resulted in 

relatively low IC50 values of 18 ± 3 µM, 27 ± 4 µM, and 15 ± 2 µM respectively (60). These studies 

showed that iron complexes were suitable PDT candidates against cancer cells without being toxic to 

noncancerous GES-1 cells.

<Figure 3>

COBALT 
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Many studies have shown that cobalt-containing complexes can be used in PDT because they 

can photocleave DNA in vitro and bind to different chromophoric ligands and act as PSs (61, 62). For 

instance, the dark and light cytotoxicity of cobalt(III) curcumin complexes with different N,N,N,N-

tripodal ligands (Fig. 4) were tested against DLD-1 colon cancer cells and MCF-7 cells to evaluate 

their PDT activity. The cobalt(III) complexes were nontoxic in the dark but accumulated in significant 

concentrations in the cell membrane. The cytotoxicity of the cobalt complexes exhibited around 20-

fold increase when cells were treated with light (520 and 470 nm) for 15 min, whereas the 

photocytotoxicity of the free curcumin increased by only two-fold. The biological activity and strong 

stability of the cobalt-curcumin complexes were due to the nature of the ancillary ligand and cobalt 

reduction potential (63).

<Figure 4>

Two ternary cobalt(II) complexes, [Co(9-accm)(phen)2](OAc) and [Co(9-

accm)(dppz)2](OAc), were synthesized to study their ability to kill cancer cells under visible light 

irradiation conditions. In vitro photoactivated cytotoxicity of the complexes were assessed in HeLa, 

MCF-7 and MDA-MB-231 (human breast cancer cell lines), and HPL1D (lung epithelial normal 

cells). The complexes showed low cytotoxicity in the dark, although in visible light, they could treat 

the cancer cells with low energy. The complexes showed a high photocytotoxicity in HeLa, MCF-7, 

and MDA-MB-231 cells by generating ROS, whereas they were non-toxic to the HPL1D cells. The 

high phototoxicity of the cobalt(II) complexes containing anthracene-based curcuminoid ligand make 

them suitable candidates for PDT (64). 

Cobalt(II) complexes of terpyridine bases: [Co(ph-tpy)2](ClO4)2, [Co(an-tpy)2](ClO4)2, and 

[Co(py-tpy)2](ClO4)2 (Fig. 5) were prepared and their DNA photocleavage activity and 

photocytotoxicity on HeLa cells were studied. The photo-induced DNA cleavage activity of the 

complexes were carried out in UV-A light of 365 nm and visible light of 514 nm, 569 nm, and 647 

nm. The an-tpy and py-tpy complexes at 2.5 µM concentration showed complete DNA cleavage 

activity in UV-A light, while the ph-tpy complex was inactive under similar light irradiation. 

Moreover, all complexes showed significant photocleavage activity in visible light due to the 

formation of 1O2 and •OH species. According to the cytotoxicity property of the complexes under 

visible light, the an-tpy and py-tpy complexes showed a high PDT effect in HeLa cells giving IC50 A
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values of 24.2 and 7.6 µM, respectively. The authors concluded that these cobalt(II) complexes could 

be potent metal-based PDT agents (65).

<Figure 5>

In recent years, cobalt nanoparticles have been used as mediators for cancer treatment and 

drug delivery vehicles (66, 67). The photo-cytotoxic effect of pCo3O4 NPs was studied in vitro and in 

vivo against the murine breast cancer 4T1 cells. In case of in vitro study, the pCo3O4 NPs could kill 

cancer cells via inducing ROS and DNA damage after NIR irradiation at 808 nm without apparent 

side effects. The pCo3O4 NPs was injected into 4T1 cells in syngeneic BALB/c mice for in vivo study. 

This study showed a tumour necrosis under 808 nm irradiation. Moreover, pCo3O4 NPs exhibited 

broad near-infrared (NIR) laser absorbance, high photothermal conversion efficiency, distinguished 

colloidal stability, excellent biocompatibility, and promising multifunctional groups. Overall, pCo3O4 

NPs represent a promising phototheranostics agent for multimodal imaging (photoacoustic/magnetic 

resonance imaging) and PTT/PDT synergistic phototherapy of tumours (68). 

Park et al. synthesized multifunctional cobalt ferrite (CoFe2O4) NPs (CoFe2O4-HPs-FAs), 

where HP is hematoporphyrin and FA is folic acid. Photodynamic anti-cancer activity of CoFe2O4-

HPs-FAs was investigated on FR positive (HeLa and KB) and FR-negative (MCF-7 and PC-3) cells. 

The CoFe2O4-HPs-FAs in FR-positive (Hela and KB) cells showed a slightly better photo-killing 

efficacy compared with the CoFe2O4-HPs-FAs in FR-negative (MCF-7 and PC-3) cells. The large 

amount of HP could generate high levels of 1O2, which causes cell death during irradiation (69). 

Another study on CoFe2O4-HPs-FAs showed the photodynamic anti-cancer activity on prostate cancer 

PC-3 cells with FA according to the exposure dose of the green light-emitting diode (LED) light at 

doses of 3.06, 6.12, and 18.36 J cm-2. The photo-killing efficacies of the CoFe2O4-HPs-FAs were 

markedly increased in a dose-dependent manner, and this is related to the close correlation between 

exposure dose of light and dose of the CoFe2O4-HPs-FAs (70).

NICKEL

Nickel functions as an essential element in constructing enzyme cofactors, but it’s biological 

role in humans still remains largely unknown (71, 72). Despite this, many researchers have 

recognized its role in PDT anti-cancer research. A nickel(II) porphyrin complex elicited 
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photonicking activity of circular plasmid DNA after administration (73). The potential relevance for 

eukaryotic DNA damage via photonicki,ng after PDT is worthy of investigation. 

<Figure 6>

Another bifunctional nickel compound was investigated as a PS in PDT. This 

nickel chlorophyll derivative, methyl 3-devinyl-3-(1’-(benzyloxy)-ethyl)pheophorbide-a (Ni-PH-A), 

was investigated as a tumour imaging agent and PS. In vitro studies with MDAH-2774 (human 

ovarian endometrioid adenocarcinoma) cells and MCF-7 cells showed IC50 values of 379.2 µM and 

135.7 µM, respectively (74). In vivo studies also showed that the complex remained at a stable 

concentration in the lungs and liver. Concentration stability in vivo is a pharmacokinetic property 

associated with a greater PS character better suited for good treatment response (75). 

COPPER 

Copper is a nontoxic and bioessential element that is vital to the health of all living organisms, 

and therefore, photochemotherapeutic usage of different copper complexes is an interesting field of 

research (76, 77). The photodynamic activity of copper(II) complexes: [Cu(L1)B]ClO4 and 

[Cu(L2)B]ClO4 (where L1 = 2‐[(pyridin‐2‐yl)methyleneamino]phenol, L2 = 

2‐[(pyridin‐2‐yl)methyleneamino]benzenethiol, and B are 1H‐imidazo[4,5‐f][1,10]phenanthroline) and 

1-(pyren-2-yl)-1H‐imidazo[4,5‐f][1,10]phenanthroline) was studied in a structure‐activity relationship 

(SAR)-based approach. This study assessed the role of S-coordination to copper(II) in PDT on HeLa 

cells. The complexes exhibited toxicity in the dark with IC50 values of ~10 µM. However, they 

showed a high toxicity in visible light with IC50 values of ~1.0 µM due to 1O2 generation. Overall, the 

S-coordination in modulating the in vitro photodynamic activity of the copper(II) complexes is crucial 

in designing copper-based next generation PDT agents (78). 

<Figure 7>

The PDT effect of Cu-Try/MB NPs was studied in vitro against HeLa cells using a lactate 

dehydrogenase (LDH) cytotoxicity assay kit. The cells were irradiated with 650 nm laser (200 mW 

cm−2) for 15 min. The Cu−Try NPs increased the ROS level to enhance the PDT efficacy and killed 

cancer cells effectively reaching to 71% cell death rate. In vivo experiment was studied against murine 

cervical cancer cells (U14) and showed an inhibition in tumour growth without effecting the other 
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normal organs. In vitro and in vivo studies indicated that enhanced PDT based on Cu−Try/MB NPs 

can reduce cancer cell viability (79). 

ZINC 

Zinc is integral to many enzymes and transcription factors which control different fundamental 

cellular functions such as gene expression, DNA replication, DNA repair, and apoptosis (80). A large 

number of zinc complexes showed in vitro photocytotoxicity against different human cancer cell 

lines. A study by Nene et al. reported the in vitro PDT activity of two morpholine-substituted Zn(II) 

Pcs conjugated to graphene quantum dots (GQDs) and biotinylated GQDs (GQDs-biotin) by non-

covalent π-π interactions. The PDT activities of GQDs with biotin was increased due to improved 

drug uptake in the Pcs-GQDs-biotin conjugates, where the cell viability was 34.9% after treatment. In 

addition, the cell viability was decreased from 66.2% to 51.2% after treatment with 4-GQDs and 5-

GQDs, respectively. Overall, the GQDs, cationic charges, and biotin transport helped to improve the 

therapeutic efficacy of Pcs in vitro during PDT by improving the concentration of Pcs penetrating the 

cells (81). 

Many studies have demonstrated that zinc-porphyrins have a high therapeutic effect on cancer 

cells (82). Pan et al. developed three Meso-substituted porphyrins with zinc molecules:  5,10,15,20-

tetrakis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl) zinc porphyrin (P1), 5,15-bis(3,4-

bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)- 10,20-bis(2-(2-(2-(4-

ethynylphenoxy)ethoxy)ethoxy)ethanol) zinc porphyrin (P2), and 5,15-bis(3,4-bis(2-(-2-(2-

hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-N,N-dibutyl-4-ethynylaniline zinc porphyrin (P3), (Fig. 

8). They studied the photodynamic activities of zinc porphyrins (P1-P3) against HeLa cells after 

illumination (650 nm, 40 mW cm-2) for 10 min. All Zn-porphyrin compounds presented a decent 

biocompatibility and marvellous photocytotoxicity giving IC50 values from 5 µM to 7 µM. The 

compounds showed a high percentage of cell death due to their strong π-π interactions within 

porphyrin molecules. The authors suggested that all these Zn-porphyrins had the promising potential 

in PDT for cancer (83).

<Figure 8>
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Another example of PDT with zinc-porphyrins demonstrated that the 5,10,15-tris (phenyl)-20-

[4-(2-(2-methyl-5-nitro-imidazolyl)ethoxyl)phenyl]porphyrin (H2Pp) and its zinc(II) metalloporphyrin 

(ZnPp) complex (Fig. 9) exhibited very low cytotoxicity towards breast cancer cells in the dark with 

the survival rate above 80%. However, after UV irradiation for 30 min, the cell survival rate with 

H2Pp and ZnPp was decreased to 65.3% and 17.8%, respectively. The anti-cancer activity of the 

zinc(II) porphyrin was much higher than that of the free porphyrin (H2Pp). Overall, ZnPp complex 

showed a significant PDT effects for treating breast cancer (84). 

<Figure 9>

MOLYBDENUM 

NPs from octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OCOCF3)6] were 

reported to be radiosensitizers for X-ray induced PDT. The cytotoxic effect of the NPs on HeLa cells 

was first examined under UVA/blue-light irradiation in order to demonstrate the biological effects of 

photosensitized O2(1∆g). In the dark, the molybdenum NPs were not toxic at physiologically relevant 

concentrations up to 15 µM. However, the cell viability decreased under 460 nm light. There was 

strong phototoxicity in the nanomolar concentration range (85).

Brandhomeur et al. prepared poly (D,L-lactide-co-glycolide) (PLGA) NPs embedding 

inorganic molybdenum octahedral cluster to evaluate its anti-cancer properties in PDT. 

Tetrabutylammonium salt of [Mo6Br14]2-, (TBA)2Mo6Br14 cluster compound loaded PLGA 

nanoparticles (CNPs) was prepared. In vitro cell viability studies were carried out on A2780 (ovarian 

cancer) cells treated with clusters or CNPs. The results in dark did not show any sign of toxicity in 

concentrations up to 20 µg/ml. In case of the photo-activation test at 365 nm, CNPs were able to 

reduce the cell viability up to 50% and generate 1O2. The authors concluded that (TBA)2Mo6Br14 can 

be used as an efficient PS for PDT and PLGA NPs as an effective delivery system against cancer cells 

(86).

RUTHENIUM 

Ruthenium complexes make great candidates for PDT due to their efficient 1O2 generation 

(87), their abundant visible light absorption (88), their therapeutic abilities, and their ability to A
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photocleave DNA (89, 90). Ruthenium complexes also have strong two-photon absorbing and 

luminescence properties (91). Though Ruthenium complexes have very promising anti-cancer and PS 

properties, their cell selectivity is lacking. Ru(II) polypyridyl complexes have this problem which 

leads to normal cells experiencing the cytotoxic effects instead of the cancer cells. The antiestrogenic 

breast cancer treatment drug, Tamoxifen, competes with and binds to ER, ultimately leading to 

programmed cell death. An ER targeting Ru(II) polypyridyl complex (Ru-tmxf) was synthesized in 

order to target and treat breast cancer with two-photon PDT (92). 

<Figure 10>

<Figure 11>

The suitability of Ru-OMe and Ru-tmxf was tested with a maximum two-photon action cross-

sections estimated to be 160-180 Göppert-Mayer units at 820-830 nm. The cytotoxicity and cellular 

uptake of these two complexes were tested with MCF-7 cells (ER+ breast cancer cells) and MDA-

MB-231 (ER- breast cancer cells). In dark conditions, both Ru-tmxf and Ru-OMe had little 

cytotoxicity, but upon irradiation, Ru-tmxf (16 µM) resulted in 99% cell death. While Ru-OMe only 

had a 17% cell death for MCF-7 cells under the same conditions. Ru-tmxf could generate 1O2 

effectively under TP irradiation. It was proven that Ru-tmxf is an ER-targeting Ru(II) polypyridyl PS 

that is an excellent candidate for PDT for breast cancer. The first functional subunit of this compound, 

tamoxifen, efficiently targets the ERs on ER+ breast cancer cells. The other subunit of the compound, 

a Ru(II) polypyridyl PS that acted as a two-photon fluorescence probe, that can be used for tracking 

cellular uptake and location, and as a two-photon excited 1O2-generating PS. Ru-tmxf treats ER+ 

breast cancer by selectively damaging lysosomes in ER+ breast cancer cells. This makes Ru-tmxf a 

great potential ER+ breast cancer PDT treatment (93).

Ruthenium complexes have also been studied to treat malignant melanoma. Two novel mixed-

metal binuclear complexes that contain a ruthenium(II) PS and a vanadium(IV) metal centre, of which 

have terminal and bridging polypyridyl ligands. Ruthenium and vanadium were chosen due to their 

anti-cancer properties and their ability to photocleave DNA. Complexes 2, 3, 4, and 5 were 

synthesized and characterized; then utilised as PDT agents. 

<Figure 12>

<Figure 13>A
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<Figure 14>

The cell lines used in these studies are A431 (human epidermoid carcinoma), amelanotic 

malignant melanoma, and non-cancerous HFF (human skin fibroblast) cells. A431 and HFF non-

cancerous cells demonstrated the greatest difference in inhibition of cell proliferation. [Ru 

(pbt)2(phen2DTT)VO(sal-L-tryp)]Cl2 and [Ru(pbt)2(tpphz)VO(sal-L-tryp)]Cl2 had the strongest 

efficacy in inhibiting melanoma cell growth when compared to Na4[Co(tspc)(H2O)2] in both dark and 

light studies (94).

Ruthenium complexes of polyazine ligands have interesting redox and photophysical 

properties. Mixed-metal supramolecular complexes containing ruthenium have been studied for their 

ability to photocleave DNA upon irradiation with visible light. Complexes such as 

[((bpy)2Ru(dpp))2RhCl2](PF6)5, [((bpy)2Os(dpp))2RhCl2](PF6)5, and [((tpy)RuCl(dpp))2RhCl2](PF6)3, 

have been studied for their metal-to-ligand charge transfer (MLCT) based transitions and their metal-

to-metal charge transfer (MMCT) excited states (95, 96). The supramolecular complexes listed above 

with low lying MMCT states can photocleave when excited into their intense MLCT transitions (97, 

98). The photoactivity of the Ru(II) complexes was also reported to be regulated by the induction of 

distortion into the octahedral geometry around the metal. Ruthenium polypyridyl complexes have 

been shown to induce 1O2-mediated DNA photocleavage when exposed to UV or visible light (99). 

Some ruthenium agents have also been reported to be able to act in hypoxic tissues via O2-

independent mechanisms (100). Complexes with these properties that can photocleave DNA, and 

complexes that can function as a photosensitizer are useful to developing PDT. 

The mononuclear polyazine complexes, [(Ph2phen)2Ru(dpp)]2+ and [(Ph2phen)2Os(dpp)]2+ 

(Ph2phen = 4,7-diphenyl-1,10-phenanthroline; dpp = 2,3-bis(2-pyridyl)pyrazine) were synthesized 

and investigated for the PDT treatment of cancer. Their efficacies as light activated anti-cancer drugs 

were tested against F98 cells (malignant rat glioma cells). Upon irradiation with blue light, these 

compounds presented excellent phototoxicity, but in the dark, they had negligible cytotoxicity. The 

IC50 value of the complex in red light (625nm) [(Ph2phen)2Os(dpp)]2+ was (86.07 ± 8.48) μM (101). 

Graphene, single-walled carbon nanotubes (SWCNTs), single wall carbon nanohorns 

(SWCNHs), and other carbon nanomaterials have become increasingly popular for photothermal 

therapy (PTT) as excellent drug delivery devices. SWCNTs have been proven to induce cell death A
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with PTT, and future studies with them can develop multimodal therapies to combine PTT and PDT. 

Ruthenium was chosen for combination therapy with carbon nanotubes because of its anti-cancer 

properties and efficient 1O2 generation. The Ru@SWCNHs were synthesized by sonicating 

complexes 6 and 7 with SWCNTs solutions for four hours at room temperature. This was repeatedly 

washed to remove free Ru(II) complexes. The Ru@SWCNTs were dispersed in an aqueous solution 

because they are not water-soluble.

<Figure 15>

The cytotoxicity of Ru@SWCNTs, SWCNTs, and Ru(II) complexes was tested against HeLa 

cells. When tested with only the Ru@SWCNTs, there was negligible toxicity, and when tested with 

only the laser there was negligible toxicity as well. The results showed that, with the laser, the 

Ru@SWCNTs were much more effective at killing the cancer cells than the SWCNTs and the Ru(II) 

complexes alone. When tested against multicellular tumour spheroids (MCTSs), Ru@SWCNTs 

exhibited excellent bimodal PTT and PDT effect. The efficacy of the Ru@SWCNTs was also tested 

in vivo on nude mice bearing HeLa tumours. After 15 days of observation, the Ru@SWCNTs, with 

the laser therapy, showed gradual shrinking of the tumours or even disappearance without regrowth. 

The laser alone or Ru@SWCNTs alone treatment resulted in rapid tumour growth after 15 days. 

Overall, Ru@SWCNTs in combination with PTT and two photon PDT was a successful bimodal anti-

cancer therapy. In vivo and in vitro studies showed that Ru@SWCNTs successfully produced 1O2 

upon 808 nm diode laser irradiation, and has high efficacy as a PDT and PTT combination therapy to 

treat cancer (102, 103).

<Figure 16>

A study by Paul et al. reported the synthesis of ruthenium(II) conjugates of boron-

dipyrromethene and biotin for targeted PDT in red light. The ruthenium(II) complexes of NNN-donor 

dpa bases having BODIPY moieties, were prepared and characterized by spectroscopic techniques 

and their cellular localization/uptake and photocytotoxicity studied. The photocytotoxicity assay of 

the complexes was examined against A549 and HPL1D cells. The complexes were basically nontoxic 

in the dark. In the visible light, the complexes had IC50 values of ∼2.0 and 0.98 μM in A549 cells. 

The photocytotoxicity of the complexes was reduced by ∼4-fold in the HPL1Dcell line (104).
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TLD1433 complex has been tested against numerous cancerous cell lines and has proven to 

have efficacious anti-cancer activity. Since this complex has a light-absorbing metallic scaffold and 

shows dual type I/type II photo-reactivity, it can generate enough radicals and 1O2 species to cause 

cancerous cell death (105). 

A study aimed to discover if TLD1433 could be activated by an optical surface applicator 

(OSA) for the intra-operative PDT of non-small cell lung cancer A549 cells. The results of the 

TLD1433-mediated PDT with 532 nm and 630 nm of light proved an EC50 value of 1.98 µM (J cm-2) 

and 4807 µM (J cm-2) for green and red light, respectively. It was also shown that > 20 J cm-2 of 532 

nm light from the OSA was delivered to places with 100% loss of cell viability. The results show that 

TLD1433 activated by an OSA is a potential treatment for lung cancer (106). 

TLD1433 was also tested to determine its anti-cancer efficacy against bladder cancer and 

conjunctival melanoma (107, 108). TLD1433 was tested in vitro and in vivo against AY-27, rat 

urothelial derived tumour cells, and T24 human bladder carcinoma cells. The in vitro studies 

exhibited high efficacy against the T24 and AY-27 cancer cells. For the iv vivo studies, the calculated 

LD50 values as a function of absorbed photon density were shown to be 1.14 x 1016 and 8.17 x 1016 hv 

cm-3 for T24 cells and 5.7 x 1015 and 2.71 x 1016 hv cm-3 for AY-27 cells with green and red 

activation wavelength, respectively. The LD50 value is significantly lower than that of Photofrin 

proving that TLD1433 has excellent phototoxicity. Also, enhanced bladder uptake of the complex and 

tumour necrosis was detected close to 1.5 mm in depth in the bladder. PDT treatment with TLD1433 

in non-muscle invasive bladder cancer showed to be a selective and effective cancer treatment (108). 

TLD1433 was tested against multiple cell lines, conjunctival melanoma (CRMM1, CRMM2, 

and CM2005), uveal melanoma (OMM1, OMM2.5, and MEL270), epidermoid carcinoma (A431), 

and cutaneous melanoma (A375). Apoptosis and necrosis of these cells was detected after treatment 

with TLD1433 and 15 minutes of green light irradiation (21 mW cm-2, 19 J cm-2, 520 nm). Further 

testing was conducted where CRMM1 and CRMM2 cells were injected behind the eye (orthotopic) or 

into the circulation of the fish (ectopic). The fish were then incubated in water containing TLD1433, 

injected with TLD1433 intravenously, or injected with TLD1433 retro-orbitally. The non-toxic PDT 

protocol used on the fish was four treatments of 90 minutes of green light irradiation (21 mW cm-2, 

114 J cm-2, 520 nm) and 60 minutes drug-to-light intervals. Results showed that TLD1433 inhibited A
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tumour growth in the orthotopic fish when treated retro-orbitally. It also inhibited tumour growth in 

the ectopic fish when treated intravenously or retro-orbitally. The incubation in water treatment was 

too phototoxic to yield good results. Overall, TLD1433 exhibited excellent anti-cancer properties in 

vivo against cutaneous melanoma cells (107). 

RHODIUM 

Rhodium complexes bind to DNA in a similar way to cisplatin and have also been studied for 

their PDT effects (109). Rhodium NPs have been studied over the years as novel photosensitizing 

agents in PDT for cancer treatment (110). The photodynamic effect of the RhNPs was studied in vitro 

on HeLa cells with and without NIR radiation (800 nm, 2.5 W cm-2 and 10 min). The cell viability 

decreased significantly at concentrations over 5 mg L-1 with NIR radiation. The effect of NIR 

exposure on HeLa cells was negligible and could be safely used for PDT in a wide concentration 

range (from 0.1 to 10 mg L-1) (111). 

Another study on RhNPs reported the development of rhodium-based (mesoporous 

polydopamine) NPs and PS chlorine6 (Ce6-Rh@MPDA). This study examined the photodynamic 

effects of these synthesized RhNPs on 4T1 cells which were irradiated with a 635 nm laser for 10 

min. The phototoxicity of Ce6-Rh@MPDA was increased in a dose-dependent manner due to the 

presence of MPDAwhich improved the catalytic RhNPs efficiency (112).

PALLADIUM

Palladium has no biological role in humans, and many studies went underway to compare Pd 

complexes and their anti-cancer properties to Pt complexes. However, Pd often decomposed into Pd2+ 

during experiments (113). Recently, Pd particles between 0.25-0.5 µm were reported to induce DNA 

adducts in A549 cells (114). A series of palladium complexes were investigated as PSs in PDT 

against HeLa cells. Tripor and Pd-Tripor IC50 values after PDT were 18.2 μM and 

9.6 μM, respectively (115). These low IC50 values indicate that Pd has anti-cancer properties when 

effective ligands are coordinated to the metal (116). 

A binuclear species, Pd, Pt PS, Pd@Pt-PEG-Ce6, was reported to address the requirements of 

a PS entering a solid hypoxic tumour microenvironment. In this specific microenvironment, a typical 

PS is ineffective because they are hydrophobic and rely on oxygen-dependent reactions. Wei and co-A
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workers designed a novel bimetallic Pd, Pt PS with reduced hydrophobicity and better tumour 

selectivity than that of previously reported PSs. Pd@Pt‐PEG‐Ce6 and Pd@Pt in vitro biocompatibility 

and cytotoxicity after PDT in 4T1 and HeLa cells was observed via 1O2 generation. Confocal 

fluorescence imaging and flow cytometry showed cellular localization, which confirmed 

biocompatibility. In vivo studies in 4T1 subcutaneous tumour mouse models showed that 

Pd@Pt‐PEG‐Ce6 had a long blood circulation time after PDT treatment (117). 

SILVER 

Silver NPs are commonly used in combination with PDT for the treatment of certain cancers. 

They have been extensively studied for their anti-tumour properties and ability to induce apoptotic 

cell death (118). The cytotoxicity of Ag NPs was tested against A549 cells using comet assay and 

single cell gel electrophoresis was used to determine DNA damage. This study proved that the 

enhanced cytotoxicity of the Ag NPs in combination with PDT was due to the increased intracellular 

ROS. The Ag NPs used in this experiment were spherical in shape and 27 nm in size, which is 

preferable as cytotoxicity is dependent on the size of the Ag NPs. This combination with PDT also 

showed significant DNA fragmentation when compared to the control group where p < 0.0001. The 

exact pathway by which Ag NPs enhanced cytotoxicity is not known, but it could be caused either by 

post oxidative stress occurring upon ROS generation and DNA fragmentation, or the generation of 

ROS by silver ions causing DNA fragmentation (119). 

Ag NPs have also been tested in combination with PDT against B16F10 (skin melanoma) and 

A431 cells and this resulted in a maximum inhibition of 68.11% and 76.70% in 1 mM concentration, 

respectively. Upon combination with 5-aminolevulinic acid (5-ALA), an inhibition of 81.01% at 

1mM concentration on A431 cells was obtained. When used with PDT, 5-ALA-silver nanoparticle 

conjugates resulted in lower IC50 values than Ag NPs against both B16F10 and A431 cells, which 

shows that 5-ALA-silver nanoparticle conjugates had better anti-cancer activity than pure Ag NPs and 

5-ALA alone. This experiment showed that at physiological pH, 5-ALA could effectively bind to 

positively charged Ag NPs through electrostatic interaction, and combination of this treatment with 

PDT can be used for the selective destruction of carcinoma cells (120). 

Silver nanoparticles and nanoclusters have also been tested against MCF-7 cells. Ag NPs were 

extracted from the Cynara scolymus (artichoke) using microwave irradiation. These Ag NPs where A
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spherical and 200-223 nm average diameters. The IC50 value of the Ag NPs with PDT was determined 

to be 10 mg ml-1. The green synthesized Ag NPs with PDT therapy showed efficient anti-cancer 

activities via mitochondrial apoptosis in MCF-7 cells. The intrinsic apoptosis pathway was induced by 

Ag NPs and PDT combination therapy through up-regulation of pro-apoptotic proteins of the Bax and 

downregulation of the anti-apoptotic proteins Bcl-2 in MCF-7 cells (121). 

Another study used bovine serum albumin protein-templated silver nanoclusters (BSA-Ag13), 

which has 13 silver atoms per cluster, and studied their cytotoxic effects against MCF-7 cells. The 

measured IC50 value for BSA-Ag13 with PDT is 50 µM. The PDT in this experiment involved 

irradiating the cells with a 150 mW white light source, and the cell viability was measured with a 

MTT assay. MCF-7 cells were effectively killed upon NC uptake and white light treatment, 

demonstrating the good potential of BSA-Ag13 NC in cancer treatment via PDT (122). 

INDIUM

Indium complexes increase the in vitro and in vivo photodynamic efficacy more than Photofrin 

due to their high effectivity in the photooxidation of red blood cells when located in the core of the PS 

structure (123). The photodynamic activity of Indium(III)-meso-InTPP, which was encapsulated into 

NPs of poly(D,L-lactide-co-glycolide) (PLGA), was studied against prostate cancer cells (LNCaP) 

with incident light dose (15–45 J cm-2), in comparison with the free InTPP. The InTPP-loaded NPs 

were more effective than the free drug, resulting in the reduction of cell viability. Encapsulated InTPP 

was three times more internalized into the cells than the free InTPP. The photocytotoxic effect of NPs 

loaded with InTPP showed high potential as a PDT agent due to their ability to generate 1O2 (124).

TIN  

The phototoxicity of Tin ethyl etiopurpurin (SnET2) was examined against canine prostates in 

adult male mongrel dogs in a series of four studies. SnET2 in combination with transurethral 

and transperineal light resulted in an average prostate tissue volume decrease of 52% (125). These 

results suggest promising implications for future clinical trials with this treatment plan. Another anti-

cancer PS was investigated and found to have antimetastatic properties. β-SnWO4 nanoparticle 

photocatalyst was reported in in vitro and in vivo studies. HepG2 cells showed ROS-induced 
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apoptosis and necrosis with an LD50 of < 0.5 μM (126). This low LD50 value unveils the excellent 

anti-cancer efficacy of this PS.

A multimodal bimetallic NP complex, Fe@Sn-UCNPs, was reported as endogenous H2O2-

activatable, generating O2 through catalytic reaction, and exhibiting photothermal performance (127). 

Tumour hypoxia differentiates tumour tissue from surrounding tissue and characteristic of poor 

prognosis in some cases (128, 129). Designing a PS independent of O2 concentration is an important 

development in PDT options for patients with different tumour microenvironments. Additionally, the 

treatment modality is flexible with this PS, which is another important development for multiple types 

of cancer patients seeking treatment. Elevated tumour O2 levels enhanced PDT effects in vitro and in 

vivo. In vitro phototherapeutic effects of Fe@Sn-UCNPs, magnetic Fe@Sn-UCNPs, and 

magnetic Fe@Sn-UCNPs showed sufficient phototoxicity (127). Multifunctional PSs are the most 

efficient PDT agents and emphasize cost efficacy for future administration to patients. Therefore, this 

PS offers many advancements to anti-cancer PDT. 

HAFNIUM 

Hafnium oxide NPs have a high electron density where they can generate a large number of 

electrons in tumour cells (130, 131). The photodynamic activity of hafnium-doped hydroxyapatite 

(Hf:HAp) NPs was studied under ionizing radiation against A549 lung cancer cell line using in vitro 

and in vivo models. The cytotoxicity (LDH) assay showed damage in the cells related to the formation 

of ROS. The in vivo studies demonstrated that the Hf:HAp NPs, with ionizing radiation, caused an 

inhibition in the tumour growth by apoptosis. Overall, the potential of Hf:HAp NPs can be used in a 

palliative treatment after lung surgical procedure (132).

TUNGSTEN 

Tungsten oxide (WO3-x/Dpa-Mel) NPs have phototherapeutic activity under 980 nm laser, but 

that causes unfavourable heating effect on normal tissues (133, 134). A study reported the synthesis of 

a novel dopamine enveloped WO3-x/Dpa-Mel NPs to achieve a PDT effect on solid tumours under 

single 808 nm of NIR laser irradiation, avoid overheating, and obtain deep tissue penetration. In vitro 

phototoxic activity of WO3-x/Dpa-Mel NPs was studied against 4T1, HeLa and MDA-MB-231 cells. 

The excellent PDT effect and stability of WO3-x/Dpa-Mel NPs was confirmed under the 808 nm laser A
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irradiation. Additionally, in vivo application was examined on male BALB/c mice bearing 

subcutaneous 4T1 murine breast cancer tumours to evaluate PDT of WO3-x/Dpa-Mel NPs. The results 

showed that WO3-x/Dpa-Mel NPs can create an excellent synergistic phototherapy effect on solid 

tumour ablation in vivo without damaging healthy tissues under the light irradiation (135). 

Other tungsten NPs like FA-WN-Ce6 (FWC) NPs, were synthesized to evaluate PDT effect 

against hypoxic tumours using in vitro and in vivo models. FWC NPs could selectively accumulate in 

tumour sites under 630 nm laser irradiation to form oxygen, which increases ROS generation. The 

phototoxicity of FWC NPs was evaluated on COS7 (normal mouse fibroblast) and CT26 (colon 

carcinoma) cell lines, and free Ce6 was chosen as the control. A high concentration of cell death 

(70%) was showed in CT26 cells when they incubated with Ce6 at a concentration of 4 µg ml-1 in 

normoxia, while around only 40% cells were killed when the O2 level was 1%. In contrast, the cell 

viabilities for FWC NPs were less than 30% in both normoxia and hypoxia at the same Ce6 

concentration (4 µg ml-1). To conclude, FWC NPs could have an excellent PDT effect in hypoxic 

tumour tissues (136).

RHENIUM  

Rhenium compounds have been investigated to determine their photocytotoxic behaviour 

against cancer cells (137). A study by Einrem et al. reported the synthesis of a set of rhenium(V)-oxo 

meso-triarylcorroles bearing ester and carboxylic acid functionalities. The two carboxylic acids 

Re[mTCPC](O) and Re[pTCPC](O) were used to study the phototoxic/cytotoxic effects on rat bladder 

cancer cells (AY27) and human colon carcinoma cells (WiDr). Both isomeric complexes induced 

50% cell death after about 5 min of blue light exposure (435 nm, 0−40 min) on the AY27 cell line. 

Whereas, the meta-isomer was more active, effecting around 50% cell death in 8 min, and the para-

isomer achieved about 50% cell death in 12 min on the WiDr cells (138).

Dinuclear phosphorescent rhenium(I) complexes: [(L1)(CO)3Re(BPE)Re(CO)3(L1)](PF6)2 

(DRe1) and [(L2)(CO)3Re(BPE)Re(CO)3(L2)](PF6)2 (Dre2), where L1 is 1-(pyridin-2-yl)-9H-

pyrido[3,4-b]indole and L2 is 1-(quinolin-2-yl)-9H-pyrido[3,4-b]indole were synthesized to survey 

their PDT effects. The photodynamic activity of the dinuclear Re(I) complexes was tested in vitro 

against A549 cells upon visible light of 425 nm for 15 min. The complexes Dre1 and Dre2 showed a 

significant photocytotoxicity toward A549 cell lines giving IC50 values of 0.26 and 0.11µM, A
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respectively compared to 8.3µM for cisplatin. The authors suggested that these complexes may be 

used as potential anti-cancer and PDT agents (139). 

OSMIUM 

 Osmium is an excellent element to use for PDT because it offers a characteristic unlike most 

elements, which is panchromatic absorption. Panchromatic absorption is an ideal characteristic for a 

PS because so many, if not all, wavelengths of light will activate its phototoxic effects. Panchromatic 

PSs can broaden the therapeutic window of activatable light wavelengths. A bimetallic OsII, PtII 

complex was reported to bind to DNA and reduce DNA migration better than cisplatin (140). In the 

presence of Pt, Os can function as a DNA binding agent, enhancing the DNA binding properties of Pt 

alone, which can greatly impact the field of cancer treatments.

 [((bpy)2Os(dpp))2RhCl2](PF6)5 was reported as a photocleaving PDT agent against DNA 

(105). The binuclear complex, [((bpy)2Os(dpp))2RhCl2]Cl5, was found to be phototoxic against Vero 

cells at a wavelength below the typical range that is considered therapeutic for PDT. The trinuclear 

complex was only cytotoxic after light exposure, which displayed photoactivity that could lead to 

enhancing PDT in future studies (96). 

A mononuclear Os(II) complex [(Ph2phen)2Os(dpp)]2+, elicited a phototoxic effect in response 

to blue light PDT against rat glioma F98 cells. In addition, [(Ph2phen)2Os(dpp)]2+ showed cytotoxicity 

under the therapeutic window of light used in PDT. The broad range of photoactivity unveils 

promising developments in cancer treatment. The complex’s cytotoxicity was remarkably higher than 

that of cisplatin, presenting a promising new PDT agent that is more effective than current 

chemotherapy options (101). 

Four osmium-based PSs were reportedly synthesized, characterized, and evaluated for their 

phototoxicity in PDT. An Os(phen)2-based scaffold was added to a series of IP-nT ligands tethered to 

n = 0–4 thiophene rings. [Os(phen)3]Cl2, Os-0T, Os-1T, Os-2T, Os-3T, Os-4T were described in the 

study and used in in vitro experiments to reveal that Os-4T produced the lowest half minimal effective 

concentration (EC50) value amongst the rest of the PSs in the series. Os-4T also showed an impressive 

EC50 value in both hypoxic and normoxic conditions, were 0.651 μM and 0.803 

μM, respectively (141). This indicates Os-4T could be similarly effective in tumours with variable 
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oxygen content. Other studies showed that the complex, Os-4T, would be a wonderful candidate for 

more in vivo studies because mice tolerated the high maximum dose.

Lazic et al. synthesized, characterized, and assessed the biological activity of a series of 

new osmium‐based PSs, TLD1822, TLD1824 and TLD1829. The PSs were activated in a fantastically 

broad spectrum of light during PDT in vitro and in vivo experiments with the complexes. Their wide 

range of photoactivation and cytotoxicity enables the PSs to have the best treatment flexibility 

compared to other elements. It also creates promising implications for increasing PS efficacy. In 

vivo studies of TLD1829 PS showed that the complex could treat colon cancer in mice (142). 

TLD1829 could have the potential to become a PDT agent used in colon cancer treatments. 

An osmium(II) complex [Os(bpy)2 (IP-4T)](PF6)2 was reported to be a promising anti-cancer 

PDT agent after NIR irradiation. In vitro experiments in MCF-7 cells showed that the complex was 

localized within the cytoplasm. A patent of a cancer vaccine was reported. The vaccine included 

inactivated cancer cells treated with an Os complex, PDT, and electromagnetic radiation. The 

components of the vaccine were reported as effective in prompting an immune response, which 

contributed to the field of cancer immunotherapy (143). This invention has established anti-cancer 

PDT’s role in forwarding the progress of anti-cancer immunotherapy.

A novel Os(II) complex (Os1) was synthesized alongside a Ru(II) (Ru1) analogue to compare 

their phototoxicities. In vitro studies were conducted with Os1 and Ru1 in A549 cells.  Os1 was 

excited by 700-850 nm, and Ru1 was excited by 550-700 nm. Both Ru1 and Os1 exhibited 

photostability. Os1 was localized in lysosomes while Ru1 was localized in mitochondria. Os1 also 

showed better multifunctional PS activity as a PDT agent and imaging agent (144). This study further 

shows the capabilities of Os as a PDT agent, which can be multifunctional and photostable. These are 

important characteristics that describe quality PSs.

IRIDIUM  

A series of Ir(III) complexes that targeted the endoplasmic reticulum (ER) redox signalling 

pathway to induce apoptosis were reported. All complexes migrated into the ER and induced 

apoptosis in A549 cells. The complex Ir2 was the most cytotoxic with an IC50 value of 0.65 μM. Low 

IC50 values enable complexes to perform well as PSs in the future by reducing any exposure related 
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toxicity in future in vivo studies or clinical trials. This PS has promising results for the future of PDT 

(145). 

Another Ir(III) complex, [Ir(ttpy)(pq)Cl]PF6, was developed and utilized photoredox catalysis 

to have a phototoxic effect independent of oxygen presence. The PDT reaction occurring in hypoxic 

conditions is a remarkable advance in the field of PDT treating cancer. The tumour microenvironment 

is often variable from one tumour to the next, and this includes oxygen presence. Utilizing a cytotoxic 

mechanism independent of this variable can increase the availability of this PS option in patients in 

the future. This capability has promising implications for further PDT advancements (146). 

An Ir(III) complex with the ligand 

(4,15‐bis[4‐(N,N‐diphenylamino)phenyl][1,2,5]thiadiazolo‐[3,4‐i]dipyrido[a,c]phenazine) was 

reported as a highly efficient ROS generator, with negligible dark toxicity. The complex was 

administered in in vitro and in vivo experiments and showed photostability and cytotoxicity under 808 

nm irradiation. This complex utilized aggregation‐induced ROS generation, which is a unique method 

of ROS generation for PSs (147). This Ir complex introduced a unique role as a highly efficient anti-

cancer PDT agent.  

A cyclometallated [Ir(ppy)2(L1)][PF6], where L1 = fluorenyl 5-substituted-phen, was reported 

as a future photosensitiser in two-photon excited photodynamic therapy. [Ir(ppy)2(L1)][PF6] 

photocytotoxicity was tested against C6 Glioma (malignant nervous) cells and produced 1O2 at 740 

nm (148).

PLATINUM 

Platinum-based complexes like cisplatin, carboplatin, and oxaliplatin are use commonly in the 

treatment of a multitude of cancers (149). Cisplatin has the ability to bind to DNA, inhibit DNA 

replication, and decrease DNA repair, making it a great candidate to use in combination with 

chemotherapy (150). Each of these platinum-based complexes form intrastrand DNA cross-links and 

DNA adducts in a cell, which ultimately leads to the induction of apoptosis of that cell (151). 

Another platinum-based complex, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, was studied 

for its efficacy in killing cervical, colorectal, and bladder cancer cells. This complex was found to be 

photostable and could be activated upon irradiation with visible light (405 nm). This complex was 

also found to have high efficacy against the listed cell types and a cisplatin resistant bladder cell line A
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(EJ-R) at concentrations of 0.1-1 µM. Upon irradiation, this complex was able to kill these cancer 

cells through DNA single strand breakage and the generation of ROS, making it a very promising 

PDT agent (152).

<Figure 17>

These three compounds were tested in vitro against multiple cell lines in conjunction with the 

PS temoporofin (mTHPC), shown in Fig. 18. The synergistic effects of these compounds as PDT 

agents were tested against A-427 human lung cancer cells, BHY human oral cancer cells, KYSE-70 

human oesophageal cancer cells, RT-4 human bladder cancer cells, and SISO human cervical cancer 

cells. Synergism was found when mTHPC was combined with cisplatin in KYSE-70 cells and in 

SISO cells. Synergism was also found when carboplatin was combined with mTHPC-PDT in SISO 

cells. Oxaliplatin with mTHPC was synergistic in BHY cells. Antagonistic effects were found when 

cisplatin was combined with mTHPC-PDT in A-427 and BHY cells. Carboplatin produced 

antagonistic effects when combined with mTHPC-PDT in A-427 and KYSE-70 cells. With any 

combination, only antagonistic effects were found in A-427 cells, and only synergistic effects were 

found in SISO cells. The formation of ROS with the combination therapy of mTHPC-PDT was 

examined. When compared to the mTHPC or Pt(II) complexes alone, there was an enhanced 

generation of ROS with oxaliplatin in BHY cells and RT-4 cells, and with cisplatin, carboplatin, and 

oxaliplatin in SISO cells (149).

<Figure 18>

Low dose carboplatin is also a good candidate for PDT against metastatic ovarian cancer. 

Metastatic ovarian cancer is difficult to treat due to chemoresistance and poor drug penetration, and 

PDT sensitizes ovarian tumours to platinum agents. The cytotoxicity of carboplatin in combination 

with PDT was tested in vitro against 3-D multicellular tumour nodules of OVCAR5 cells in order to 

represent the micro metastatic disease. Testing showed that treatment of these 3-D multicellular 

tumour nodules was dependent upon order of treatment with the carboplatin and BPD-PDT. Treating 

cells with BPD-PDT prior to treating with carboplatin resulted in increased synergistic reduction, 

while the reverse resulted in no synergism. These results indicate that PDT in combination with 

carboplatin is an effective treatment option to overcome resistance mechanisms and that BPD-PDT 

itself is also cytotoxic. The experiment with 3-D multicellular tumour nodules showed that BPD-PDT A
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disrupts nodular architecture of tumours, making them more vulnerable to carboplatin and nuclear 

apoptotic signalling (153).

PDT in combination with carboplatin and Photofrin has also been tested against HeLa cells. 

When HeLa cells were treated with 100 µM of carboplatin and 20 µM of Photofrin and 330 mJ of 

light, there was an enhanced reduction of 67.5±6.9 or 43.7±3.1% compared to Photofrin PDT alone. 

For PF-PDT alone, primary cell death was achieved by cell necrosis, but for ccPDT, enhanced 

apoptosis was observed. The generation of ROS was also observed. The low dose carboplatin-based 

PDT combination treatment led to the synergistic enhanced generation of toxic •OH via a Fenton-like 

reaction: 2[PtII]2 + H2O2 → [Pt2.25]4 + OH¯ + •OH. This led to superimposed apoptotic cell death 

without having the side effects of reducing the carboplatin dosage. This treatment will promote 

complete tumour regression in cervical or endometrial patients, relapse free, as a fertility-preservation 

therapy (154).

GOLD 

Gold NPs have been studied for their anti-cancer properties against breast cancer (155). Au 

NPs were functionalized with a mixed monolayer of zinc phthalocyanine and a lactose derivative in 

order to study their targeting ability toward the galectin-1 receptor on the surface of breast cancer 

cells (156). Galectin-1 is associated with metastasis, increased tumour aggressiveness, poor prognosis, 

and increased cell adhesion, making it an excellent candidate for targeting (157, 158). Because lactose 

contains both galactose and glucose residues, and galectin-1 binds to both of these sugar units, it 

makes lactose the ideal candidate for targeted PDT. The study used two octa-alkyl substituted zinc(II) 

Pcs, with different lengths of the carbon chain connecting the macrocycle to the disulfide bond, either 

eleven carbon atoms (lactose-C11Pc-AuNPs), or (lactose-C3Ps-AuNPs). Both nanoparticle systems 

generated 1O2, with lactose-C3Pc-AuNPs producing more than lactose-C11PC-AuNPs, most likely 

because of the enhanced surface effects on the C3Pc molecule. SK-BR-3 breast adenocarcinoma cells, 

MDA-MB-231 cells, and noncancerous MCF-10A cells were tested. Since it was shown that there is a 

higher expression of galectin-1 on the surface of the MDA-MB-231 cells, it was expected to be a 

better target for the lactose-C3Pc-AuNPs or lactose-C11Pc-AuNPs than the SK-BR-3 cell line. After 

irradiation with a 633 nm HeNe laser for 6 min, the results also showed approximately a 95% 

decrease in cell viability in the cancerous cell lines, and the cell viability of the lactose-containing A
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compound did not decrease significantly more than the compound that does not contain lactose. 

Lactose-C11-AuNPs targeted the SK-BR-3 cells, which lead to a significant cytotoxicity (90% at 0.2 

µM) as compared to the control C11-sPED-AuNPs (61% at 0.2 µM). These results also showed that 

C3Pc should be used preferentially over C11Pc, because it presents higher levels of cytotoxicity for 

both cell lines at a lower PS concentration (157). 

Au NPs in combination with PDT were tested to determine their targeting abilities toward 

HER2 receptors. When antibodies or cell-targeting peptides are integrated onto the nanoparticle 

surface it enables selective cell and/or nuclear targeting. Au NPs (4 nm) were stabilized with a self-

assembled layer of a zinc–phthalocyanine derivative as a PS and a heterobifunctional polyethylene 

glycol. Anti-HER2 monoclonal antibodies were covalently bound to the NPs via a terminal carboxy 

moiety on the polyethylene glycol. The efficacy of phthalocyanine derivatives as a PS can be 

significantly enhanced by attachment to the surface of Au NPs. The C11Pc–PEG–antibody– Au NPs 

were tested against breast carcinoma cells MDA-MB-231 and SK-BR-3, and non-cancerous breast 

epithelial MCF-10A cells in vitro. MDA-MB-231 does not overly express HER2, and SK-BR-3 does 

overly express HER2. Nanoparticle conjugates can be used to specifically target and destroy HER2 

cell receptor positive with PDT. Upon irradiation with 633 nm red light, SK-BR-3 exhibited a 60% 

decrease in cell viability, MDA-MB-231 exhibited a 25% decrease in cell viability, and MCF-10A 

only showed a 7% decrease in viability. The highest level of membrane damage was found in the SK-

BR-3 cell line, due to the formation of, chromatin fragments. The membrane remained intact in MCF-

10A cells. The 4-component nanoparticle conjugate proved to be able to specifically target and kill 

cancer cells through apoptosis. The results show that the 4-component nanoparticle conjugate has 

great potential for targeted PDT treatment of HER2+ breast cancer (156).

LANTHANIDES 

Neodymium laser treatment (Nd-YAG) has been used as a palliative care option for lung 

cancer patients because of its capabilities to open endobronchial stenosis and reduce obstructions 

since the 1980s (159). More recently, a neodymium PS complex, NaYF4:Yb/Er/Nd@NaYF4:Nd core-

shell dual PS merocyanine 540 (MC540) and ZnPc up conversion nanoparticle (UCNP) system, was 

synthesized to address the need for PDT agents with deeper penetrative excitability and ROS 

production. Specifically, Yang’s laboratory sought to synthesize a novel PDT agent with laser light A
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excitability toward the upper limit of the PDT window of therapeutic light, in order to penetrate 

tissues deeper. In vitro and in vivo studies showed tumour-specific targeting ability toward folate 

receptor (FR)-overexpressed cancer cells. Minimal side effects were observed in normal tissue with 

the dual PS loaded UCNP system with folic acid (FA). PDT treatment showed the complex exhibited 

an enhanced PDT efficacy with the dual-PS method. Tumour cell specificity makes this PS a valuable 

complex for further examination (160). 

Lu et al. reported the synthesis of a novel nanoparticle-PS conjugate capable of deep issue 

penetration by X-ray mediated PDT. The NP-PS β-NaLuF4:X%Tb3+ synthesis was reported (161). A 

terbium oxide complex, Tb2O3 combined with a polysiloxane layer, was synthesized and generated 
1O2 after X-ray radiation. X-ray radiation and PSs are combined here to promote a deeper therapeutic 

light penetration into the target tissue. Results reveal the Tb oxide complex as a possible future 

candidate as an anti-cancer PS due to its ability to generate 1O2 after X-ray radiation (162). 

Current studies have shown cytotoxic effects of dysprosium ion Dy3+ upon activation by a 

NIR (980 nm) light treatment. Cytotoxic 1O2 generation was detected. These nanocrystals could be 

useful as a penetrative NIR activated PDT agent or used in image-guided diagnosis as dark MRI 

contrast (163). Holmium laser fulguration, with subsequent mitomycin C installation, is a safe and 

feasible alternative to transurethral resection of bladder tumours (164). Holmium lasers are also 

utilized for the PDT treatment of Extramammary Paget’s disease (EMPD), which is a rare 

intraepithelial neoplasm arising in apocrine rich area of the skin. A case of postoperative recurrent 

EMPD treated by combination therapy of non-invasive repeatable ALA-PDT and deep penetrated 

holmium laser was reported (165). Er:YAG laser (erbium-doped yttrium aluminium garnet laser) in 

combination with a topical treatment of ALA methyl ester has been proven to be effective in the 

photodynamic treatment of basal cell carcinoma. This treatment combination has an efficacy of 

98.97% against basal cell carcinoma. The preferred treatment method was the Er:YAG laser, with an 

efficacy of 91.75% (166).

The Ytterbium ion Yb3+ has been tested upon irradiation to determine the efficacy of PDT 

upon excitation to its triplet state (167). Ytterbium-doped fibre laser can be one of the simplest 

methods for the creation of the high-power sources for the excitation of 1O2. A study reported a drug-

free form of PDT using an ytterbium-doped fibre laser, an SRS converter, and a maximum output A
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power of 18 W at a wavelength of 0.97 µm in the treatment of basalioma. The preliminary results 

showed a relatively high efficiency of the device in the organ preserving treatment of basaliomas, 

even in the case of inconvenient localizations with good cosmetic results (168).

A Y2.99Pr0.01Al5O12-based (YP) mesoporous silica coated nanoparticle, with protoporphyrin IX 

(PpIX) and folic acid (YPMS@PpIX@FA), was reported to address the need for X-ray mediated PDT 

agents with potentially deeper tissue penetrative abilities. Other researchers have developed PSs with 

the same goals and have shown X-ray mediated PDT can penetrate tissue deeper than the typical 

visible light induced PDT, which reduces the limitations in treatment application of PDT (169). In 

vitro studies in breast and prostate cancer cells showed YPMS@PpIX@FA nanocomposites were 

integrated into cancer cells with the folate receptor Folr1. In vivo studies showed good 

biocompatibility (170). Folr1 is often chosen to target cancer cells with treatments because tumour 

cells often overexpress the receptor (171). Therefore, utilization of this tumour selectivity method 

specifies the therapeutic agent’s role. Good biocompatibility is an ideal pharmacokinetic property in 

drug delivery, making this PS an interesting candidate for future studies (75).

Lu et al. reported the synthesis of a novel nano particle-PS conjugate capable of deep tissue 

penetration by X-ray mediated PDT. The NP-PS  β-NaLuF4: X%Tb3+ synthesis was reported (161). A 

Tb oxide complex, Tb2O3 combined with a polysiloxane layer, was synthesized and generated 1O2 

after X-ray radiation. X-ray radiation and PSs are combined here to promote a deeper therapeutic light 

penetration into the target tissue. Results reveal the Tb oxide complex as a possible future candidate 

as an anti-cancer PS due to its ability to generate 1O2 after X-ray radiation (162)

The Ytterbium ion Yb3+ has been tested upon irradiation to determine the efficacy of PDT 

upon excitation to its triplet state (167). Ytterbium-doped fibre laser can be one of the simplest 

methods for the creation of the high-power sources for the excitation of 1O2. A study reported a drug-

free form of PDT using an ytterbium-doped fibre laser, an SRS converter, and a maximum output 

power of 18 W at a wavelength of 0.97 µm in the treatment of basalioma. The preliminary results 

showed a relatively high efficiency of the device in the organ preserving treatment of basaliomas, 

even in the case of inconvenient localizations with good cosmetic results (168).
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Pre-clinical, in vivo studies of motexafin lutetium for the PDT treatment of rectal cancer in 

dogs has been observed (172). The dosage for the PDT treatment was 2 mg kg-1 of motexafin lutetium 

with pelvic illumination of the transected distal rectum with 730 nm of light, with doses ranging from 

0.5 to 10 J cm-2 3 hours post drug delivery. Results showed no severe toxicity or anastomotic leak, 

and low photobleaching. Drug uptake levels in the colon of photosensitized dogs were much higher 

than that of the controls or of the dogs that did not undergo PDT. Drug uptake in the rectum was 

found to be 0.72 ± 0.23 ng mg-1. Motexafin lutetium mediated PDT with 730 nm of light is an 

adequate treatment for the residual microscopic cancer at less than 5 mm of depth. Overall, motexafin 

lutetium mediated PDT is an effective adjunctive therapy for the treatment of rectal cancer and will 

possibly evaluated further in clinical trials (172).

CLINICAL TRIALS INVOLVING PDT AND COMPLEXES 

TLD1433 is the most prominent and newly developed ruthenium-based photosensitizer that 

has passed phase I clinical trial for the treatment of non-muscle invasive bladder cancer. TLD1433 

has been proven to have a greater phototoxicity than Photofrin for the PDT treatment of this cancer 

and is effectively cell selective (173). 

A clinical trial assessing the safety and response to PDT with a Tookad PS was performed in 

patients with recurrent prostate cancer. After PDT with Tookad, MRIs showed lesion formation was 

strongly drug and light dose dependent (174). These results revealed the cytotoxic abilities of Pd 

complexes in PDT, outlining new applications for Pd-containing species. 

Mang et al. investigated a PDT palliative option for breast cancer patients with recurring 

breast cancer in a phase II/III clinical trial. Patients were treated with Purlytin. Six months follow up 

showed a 92% PDT response rate, and 8% partial response (175). Purlytin had a 100% response rate 

among the patients within this trial, and no adverse effects as a result of the treatment. This is an 

especially important development for successful PDT palliative care options.  

The drug motexafin lutetium (lutetium texaphyrin, Optrin, Lu-Tex), marketed as Antrin by 

Pharamacyclics Inc., has shown promising results in the PDT treatment of many diseases and cancers. 

Patients with locally recurrent prostate carcinoma, after receiving radiation treatment, were selected 

for motexafin lutetium mediated PDT in a phase I clinical trial (176-179). Patients in this clinical trial 

were administered with motexafin lutetium through IV at 0.5 to 2 mg kg-1 24, 6, or 3 hours prior to A
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PDT treatment with 732 nm light delivery with a fluence rate of 150 mW cm-1 and a light fluence rate 

of 25 to 150 J cm-2. Optic fibers were utilized for light delivery and delivered through a transperineal 

brachytherapy template. Patients showed large, transient increases in serum PSA (prostate-specific 

antigen) after PDT treatment. After 26 to 55 days, the PSA levels dropped to an indistinguishable 

level from the baseline. It was determined that all patients presented a significant uptake of this PS in 

the prostate. Adverse effects form this specific protocol such as photobleaching, tissue damage, and a 

drastic increase in PSA levels should bring caution that such PDT treatment using motexafin lutetium 

requires a more individualized treatment for each patient (176-179). Motexafin lutetium has been 

examined in a phase I clinical trial for the treatment of cervical intraepithelial neoplasia grade 2 and 3 

(180), and in a phase II clinical trial for the treatment of recurrent breast cancer (181).

<Table 1>

CONCLUSION 

To conclude, PDT has been proven in many studies to be an effective treatment for multiple 

types of cancers. PDT uses a PS that, upon irradiation with light, produces ROS, or hydroxyl radicals 

through a Fenton reaction. The generation of these ROS have been proven to kill cancer cells, and in 

many cases, through induced apoptosis. This review discussed many metal-based compounds, as well 

as compounds with lanthanides used in in vitro, in vivo studies, as well as clinical trials. These 

complexes act as efficacious photosensitizers and are cytotoxic to cancer cells both upon irradiation 

with light, and in some cases, cytotoxic by themselves. PDT can be used as a powerful form of cancer 

treatment that can be localized, as it has been proven to be successful in specifically targeting cancer 

cells without harming normal healthy cells. 
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FIGURE CAPTIONS

Figure 1. Structure of aluminium phthalocyanine chloride (AlClPc).

Figure 2. Structures of the oxidovanadium(IV) complexes, [VO(salmet)(N-N)], [VO(saltrp)(N-N)], 

[VO(L2)Cl2], [VO(cat)(L)], and [VO(dopa-NBD)(L)], respectively.

Figure 3. Structures of [Fe(L)(tpy-BODIPY)] and metallocorrole, Fe-2c , respectively.

Figure 4. Structures of the cobalt(III) complexes.

Figure 5. Structures of the cobalt(II) complexes, [Co(ph-tpy)2]2+, [Co(an-tpy)2] 2+, and [Co(py-tpy)2] 

2+, respectively.

Figure 6. Normal fibroblast and melanoma cells after 5 μM and 10 μM administration of Ni(II) 

ruthenated porphyrin followed by 60 min irradiation with tungsten lamp. Reproduced from Ref. 73 

with permission from The Royal Society of Chemistry.

Figure 7. Structures of the copper complexes.

Figure 8. Structures of the zinc porphyrins (P1-P3).

Figure 9. The structures of H2Pp and ZnPp porphyrins.

Figure 10. Structure of the ruthenium(II) complex.

Figure 11. Structure of Ru-tmxf.

Figure 12. Structures of complexes 2 and 3.

Figure 13. Structure of complex 4.

Figure 14. Structure of complexes 5.

Figure 15. Structures of complexes 6 and 7.

Figure 16. Schematic representation of the PDT and PTT mechanism of the Ru@SWCNTs anti-

cancer properties in vivo. Reprinted with permission from Ref. 102. Copyright (2015) American 

Chemical Society.

Figure 17. Structure of Pt(II) 2,6-dipyrido-4-methyl-benzenechloride.

Figure 18. Structure of Temoporofin.
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Table 1. Advancements of transition metal complexes and PDT tested in clinical trials. 

Complexes Trial phase Status Outcomes Ref. 

 

Phase Ib Completed 

TDL1433 safety and tolerability 

in non-muscle invasive bladder 

cancer patients was successfully 

established. 

(173) 

 

Phase III Recruiting 

Tookad treating patients with 

upper tract urothelial cancer with 

Tookad and PDT. 

 

(182) 

Phase I/IIa Terminated 

No viable prostate tumors were 

found 7 days post treatment; 

however, MRI results were 

considered inconclusive. 

 

 

(174) 

 

Phase III Completed 

All patients responded to 

Purlytin treatment of recurrent 

breast cancer with a decrease in 

tumor volume. 

 

(175) 
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Phase I Terminated 

Motexafin lutetium safely 

treating of recurrent prostate 

adenocarcinoma. 

(179) 

Phase II Terminated 

Measured the irradiance and 

fluence rate on the tissue surface 

or patients with recurrent breast 

cancer. 

 

(181) 
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