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ABSTRACT 

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION INTO THE 
DETERMINANTS OF PROTEIN STRUCTURE, FOLDING, AND STABILITY IN THE β-

GRASP SUPERFAMILY 

John T. Bedford II 
Old Dominion University, 2021 
Director: Dr. Lesley H. Greene 

 

 

Elucidating the mechanisms of protein folding and unfolding is one of the greatest 

scientific challenges in basic science. The overarching goal is to predict three-dimensional 

structures from their amino acid sequences. Understanding the determinants of protein folding 

and stability can be facilitated through the study of evolutionarily related but diverse proteins. 

Insights can also be gained through the study of proteins from extremophiles that may more 

closely resemble the primordial proteins. In this doctoral research, three aims were accomplished 

to characterize the structure, folding and unfolding behavior within the β-grasp superfamily. We 

propose that the determinants of structure, stability, and folding are conserved as sequence and 

interaction patterns in the β-grasp fold. To elucidate key residues, bioinformatics studies were 

conducted and identified nine structurally conserved amino acids in the core of the B1 domain of 

protein G (GB1). A network analysis of all long-range interactions in the structure of GB1 

revealed the relative significance of each conserved amino acid. Within the β-grasp superfamily, 

two proteins, GB1 and the small archaeal modifier protein 1 (SAMP1), were investigated to 

elucidate the key determinants of structural stability at the level of individual interactions. They 

were subjected to high temperature molecular dynamics simulations and the detailed behavior of 

each long-range interaction was characterized. The results revealed that in GB1 the most stable 

region was the C-terminal hairpin and in SAMP1 it was the opposite, the N-terminal hairpin. The 



 
 

 
 

folding behavior of SAMP1 was investigated due to its nature as a divergent superfamily 

member and extremophile. The results revealed that SAMP1 at high ionic strength folds more 

rapidly than in low ionic strength. These findings clearly indicate that adaption at high salt 

produces rapid and less-frustrated folding. The results of these research aims provide insight into 

determinants of the β-grasp fold and the folding and unfolding behavior of two key members. 

Perhaps the most surprising finding is the presence of a significant number of non-native long-

range interactions during unfolding which has largely gone unnoticed in the scientific 

community and appears to be pivotal. 
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This dissertation was formatted based on the Journal of Molecular Biology 
 

CHAPTER Ⅰ 

INTRODUCTION 

 

OVERVIEW OF PROTEINS 

Protein Structure 

Protein folding is an area of research that has caught the attention of many researchers 

from different disciplines in the scientific community. The field was most notably brought into 

the public spotlight when researchers sequenced the human genome [1-4]. Proteins play a crucial 

role in the onset and sustainability of all life in both mesophilic and extremophilic conditions. 

Proteins are one of four main classes of biological molecules, the others being carbohydrates, 

lipids, and deoxyribonucleic acid (DNA). They are polymers composed of monomeric units 

called amino acids. These polymers in the context of proteins are called polypeptide chains. 

There are 20 naturally occurring amino acids found in nature (Appendix A). As a protein is 

synthesized by the ribosome, it progresses through several structural stages in a hierarchical 

fashion to reach its final functional form (Figure 1). 
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Figure 1. Hierarchical levels of protein structure. Protein structures were visualized using 

Pymol (version 2.1.1). Figure adapted from [5] and used with permission. 

 

 

The primary structure is its linear chain of amino acids connected via peptide bonds. A 

peptide bond is formed via a condensation reaction when the amide nitrogen of one amino acid is 

deprotonated and the carbonyl carbon of another amino acid is dehydroxylated. The primary 

structure then arranges itself into secondary structural elements including α-helices, β-sheets, and 

β-turns. The tertiary structure is defined as the coalescence of secondary elements into a 

protein’s overall structure in three-dimensional (3D) space. These structures are classified into 

three main groups: all α-helical, all β-sheet, and mixed α/β (Figure 2). It has been proposed that 

the mixed α/β class of proteins may be in general the older of the three protein classes [6]. These 

three classes of proteins however have a vast amount of variability in nature. Most proteins adopt 

one of ten main superfolds found in nature (Figure 3). 
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Figure 2. Protein classes. (a) all-α, (b) all-β, (c) mixed α/β. α-helices, β-strands and loops are 

shown in magenta, yellow, and white, respectively. Structures visualized using RasMol Ver. 

2.7.2.1.1. 
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Figure 3. Representations of the ten superfolds. Figure reproduced from [7] and used with 

permission. 

 

 

Although monomeric proteins can be functional in their in tertiary form, some proteins 

need to form complexes comprised of multiple polypeptide chains to be functional. This is 
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defined as the quaternary structure. At the time of this publication, the Protein Data Bank (PDB), 

a repository for elucidated protein structures, contains over 170,970 biological macromolecular 

structures. Yet, this vast array of structures share common folds, motifs, and topologies. 

 

Protein Interactions 

Protein structures are stabilized by various types of interactions. Secondary structural 

elements are formed through local, short-range interactions and are primarily stabilized through 

hydrogen bonding. Local or short-range interactions are those between residues that are close in 

sequence and 3D space. A protein’s tertiary structure is stabilized through an assortment of non-

local, long-range interactions including but not limited to hydrophobic interactions, salt bridges, 

disulfide bonds, hydrogen bonds, and van der Waals interactions (Figure 4). Non-local or long-

range interactions are those between residues that are distant in sequence but still close in 3D 

space. Long-range interactions are more important for structuring of the native state and its 

overall stability [8-15]. 
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Figure 4. Stabilizing interactions of tertiary structure. 

 

 

These interactions are also important for determining a protein’s folding rate. The 

number of contacts and their location also play a key role. Proteins containing more local, short-

range contacts will generally fold faster than those with more non-local, long-range contacts 

[16]. The importance of long- and short-range interactions in a protein’s native structure and how 

they affect the protein’s folding rate can be assessed using contact order (CO) [16-20]. CO is the 

average sequence separation between interacting residues normalized by the total sequence 

length. CO can be calculated using equation 1, where N is the total number of contacts, ΔSi,j is 
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the sequence separation between interacting amino acids i and j, and L is the total number of 

amino acids [16]. 

𝐶𝐶𝐶𝐶 = 1
𝐿𝐿∗𝑁𝑁

 ∑ ∆𝑆𝑆𝑖𝑖,𝑗𝑗𝑁𝑁
𝑖𝑖=0                                                                                                                 (1) 

Proteins that have slower folding rates with ordered transition states and larger non-local 

interaction networks have higher CO values [16-20]. Early long-range interaction formation 

could allow a more stable native structure to be formed by slowing down the folding rate. 

 

Protein Folding 

Cyrus Levinthal proposed that a 100 amino acid protein, sampling one possible 

conformation every 10-13 seconds, would take 1027 years to find the correct native fold [21, 22]. 

Therefore, he concluded that the process of protein folding must be ordered and not random. 

Later work done by Anfinsen, for which he won the Nobel Prize, indicated that amino acid 

interactions are the sole determinant of protein structure [23, 24]. A profound development in the 

field of proteomics was the use of nuclear magnetic resonance spectroscopy (NMR) and X-ray 

crystallography to solve the structure of proteins with atomic resolution. These solved structures 

are stored in the aforementioned PDB so that they are publicly accessible. Once proteins are 

visualized, they can be classified based upon their topology into families and superfamilies. Two 

main databases are predominately used: CATH (Class, Architecture, Topology, and Homology) 

and SCOP (Structural Classification of Proteins) [2, 3]. Five mechanisms have been proposed to 

describe the protein folding process. In the hydrophobic collapse model, non-polar amino acids 

form a hydrophobic core followed by the formation of secondary elements around the core to 

form the native structure (Figure 5). In the framework model, secondary elements are formed 

first and are then assembled into the native conformation (Figure 5). In the nucleation-
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condensation model, secondary elements collapse to form a folding nucleus, which the remaining 

polypeptide orients around resulting in the native state (Figure 5). In the jigsaw model, there are 

many different pathways which an unfolded protein can take to reach its native conformation 

(Figure 5). 

 

 

 

Figure 5. Proposed protein folding models: hydrophobic collapse model, framework model, 

nucleation-condensation model, and jigsaw model. Figure adapted from [25] and used with 

permission. 
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First explored by Alan Fersht and co-workers at University of Cambridge the nucleation-

condensation mechanism has been the focus of many experimental studies [26, 27]. Their work 

with the chymotrypsin inhibitor 2 (CI2) helped to support this mechanism. They showed the 

development of nucleation site in the transition state (TS) during the folding process. Using Φ-

value analysis, the nucleus was determined to be composed of an α-helix stabilized by long-

range interactions to the remaining protein structure. This analysis eliminates or reduces amino 

acid interactions by reduction of the side chain. The mutant protein’s interactions are then 

reassessed during the folding and unfolding process using kinetic and equilibrium techniques 

[26, 27]. Φ-value is the ratio of changes in the folding free energy of activation (ΔΔG‡-D) and the 

folding equilibrium free energy (ΔΔGN-D), as seen in equation 2 [28]. 

𝛷𝛷𝐹𝐹 = 𝛥𝛥𝛥𝛥𝐺𝐺‡−𝐷𝐷
ΔΔ𝐺𝐺𝑁𝑁−𝐷𝐷

                                                                                                                                     (2) 

Φ-values range from 0 to 1, where a Φ-value of 0 is indicative of a mutation in which the TS is 

not affected and thus the interaction does not form in the TS. A Φ-value of 1 is indicative of a 

mutation where the TS is affected and thus the interaction is present in the TS (Figure 6). 
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Figure 6. Φ-value diagrams. The left diagram shows a Φ-value of 0 and the diagram on the 

right shows a Φ-value of 1. Figure reproduced from [29] and used with permission. 

 

 

The protein folding funnel model starts with numerous unfolded peptide conformations 

with few native interactions in a high-energy, high-entropy state. As the protein proceeds down 

the funnel-shaped energy landscape, conformational space is restricted causing an increase in the 

number of contacts, the result of which is a low-energy, low-entropy native state (Figure 7) [30, 

31]. 
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Figure 7. The schematic of the folding energy landscape funnel. The folding of GB1 (PDB 

code: 1PGB) is shown here. Figure adapted from [32] and used with permission. Copyright 

(1998) National Academy of Sciences, U.S.A. 

 

 

Proteins fold along an energy landscape by forming in large part specific non-covalent 

short- and long-range interactions in an ordered process which results in the proper organization 

of structural components into a native conformation. This transition is not a smooth one; the 

funnel consists of many energy wells in which the protein adopts a misfolded conformation. 

There are many factors that influence the folding behavior of proteins, including size, shape, and 

stability [26, 33-51]. 
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In Vivo Protein Folding and the Role of the Ribosome and Chaperones 

In most cells, protein synthesis occurs on the ribosome. The ribosome is comprised of 

two subunits, the small subunit is responsible for reading the incoming mRNA and the large 

subunit is responsible for the elongation of the polypeptide chain [52]. Protein folding can 

initiate while still inside the ribosome [53]. As a protein’s polypeptide chain is elongated it 

begins to exit the ribosome. If the protein is small enough it can fold inside the ribosome as it 

exits, however if the protein is too large folding will occur once the polypeptide chain exits the 

ribosome without assistance (Figure 8(a)). The process of folding outside the ribosome supports 

the in vitro folding of isolated proteins [53-58]. 

If a protein misfolds during this process the result may be a loss of function or the 

formation of certain disease states such as Parkinson’s and Alzheimer’s. Hsp70 or trigger factor 

may aid in the folding process as a means of prevention (Figure 8(b)). Another group of proteins 

that aid in the folding process are chaperones. They function by binding partially folded or 

misfolded proteins to help them reach their correct native fold (Figure 8(c)) [53]. Archetypal 

examples of a chaperonin systems are GroEL/GroES in prokaryotes and TRiC/CCT in 

eukaryotes. The structure of this system consists of two rings with a central cavity and a cap, 

where the partially folded or misfolded protein is unfolded and correctly folded [59]. 
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Figure 8. Cytosolic de novo folding in prokaryotes and eukaryotes. (a) folding that is 

independent of hsp60 and hsp70. (b) folding assisted by hsp70 or trigger factor. (c) folding that is 

assisted by either hsp70 or trigger factor and hsp60 chaperonin. Figure reproduced and figure 

legend adapted from [25] and used with permission. 
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The β-grasp superfamily 

The aim of this doctoral research is to elucidate determinants of structure, folding, and 

stability using the β-grasp superfamily as a model system. The β-grasp superfamily encompasses 

a vast array of proteins that occupy seven distinct branches of the evolutionary tree [60]. These 

proteins have diverse functions which is largely attributed to the β-sheet. Despite this diversity, 

the proteins belonging to this superfamily share a common fold, termed the β-grasp fold, because 

the β-sheet appears to grasp the α-helix (Figure 9). The research presented in this dissertation 

will focus on two members of the β-grasp superfamily, the immunoglobulin-binding domain of 

protein G (GB1) from Streptococcus sp. and the small archaeal modifier protein 1 (SAMP1) 

from Haloferax volcanii. 
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Figure 9. Topology diagrams of select β-grasp superfamily members. (a) The four-stranded β-

sheet and core α-helix that are conserved among all members are shown in green and orange 

respectively. (b) Embellishments to the core structure are shown in yellow, magenta, and grey. 

Figure reproduced from [60] and used with permission. 
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GB1 

GB1 was selected as a model protein for this research because of its intrinsic 

characteristics and its history of being well studied both computationally [61-72] and 

experimentally [73-84]. It is a small, 56 residue protein containing a four-stranded β-sheet 

packed against an α-helix (Figure 10). The two hairpins and helix form a symmetrical fold that is 

rarely seen amongst proteins. It is isolated from Streptococcus sp., a mesophilic organism. 

 

 

 

Figure 10. The immunoglobulin-binding domain of protein G (PDB code: 1PGB). The α-helix 

and β-sheet are shown in magenta and yellow, respectively. Structures visualized using RasMol 

Ver. 2.7.2.1.1. 

 

 

SAMP1 

SAMP1 was chosen as a model protein because of its topological similarity to GB1 and 

because it contains structural embellishments, in part, due to its belonging to Haloferax volcanii, 

a halophilic organism isolated from the silt sands of the Dead Sea in Israel. It is an 87-residue 
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protein containing a four-stranded β-sheet and three α-helices (Figure 11). Two of the helical 

elements are embellishments of the common β-grasp fold. 

 

 

 

Figure 11. The small archaeal modifier protein 1 (PDB code: 3PO0). The α-helix and β-sheet 

are shown in magenta and yellow, respectively. Structures visualized using RasMol Ver. 

2.7.2.1.1. 

 

 

RESEARCH AIMS 

The aim of this dissertation was to conduct a thorough investigation into the determinants 

of structure, folding, and stability among model members of the β-grasp superfamily. This is 

necessary because in over five decades significant advancements have been made in our 

understanding but the fundamental questions of how proteins fold, how are they stabilized, and 
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how is the structure predicted remain unresolved. In aim one, a bioinformatics analysis was 

completed on select proteins in the β-grasp superfamily in order to identify the nature of 

conserved residues proposed as critical determinants for folding and stability. While numerous 

computational and experimental studies have been performed to analyze these determinants [82, 

85-94], our studies are focused on identifying and characterizing the role of conserved residues 

using bioinformatics. Conserved residues have been analyzed in a number of different proteins 

from different superfamilies [95-106]. Once identified, we are able to characterize them using 

network principles which provides a depth of understanding [107-110]. This approach is more 

unique in the protein folding field and has more recently become a very valuable way to analyze 

proteins and investigate determinants of folding. The idea is that what is conserved in proteins 

that differ in function and sequence identity but are related by a common ancestor and share the 

same overall topology is a key determinant of the folding and structure. More specifically, we 

examine long-range interactions using network approaches, which we propose are central to 

encoding the native 3D structure [13, 18, 111-117]. In aim two, molecular dynamics was used to 

unfold GB1 and SAMP1 to elucidate the determinants of stability and map the unfolding 

process. These studies involve an analysis of every long-range interaction which is 

computationally intensive and rigorous and is largely missing in studies of GB1 and other 

members of the superfamily. Thus, our research will provide the most comprehensive view of the 

unfolding process at atomic level resolution. The analysis consists of calculating the average 

persistence of each long-range interaction over the course of multiple unfolding simulations. 

Long-range interactions that are found to be among the most persistent are proposed to be 

important for the formation of the β-grasp fold. The last aim was to conduct a biophysical 

analysis of SAMP1 using kinetic and equilibrium techniques to characterize the folding kinetics 
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and establish a divergent member as a future model. SAMP1 is a halophilic protein and to the 

best of our knowledge no protein stability, folding and unfolding studies have been performed. 

Our experiments will characterize the stability and kinetic behavior of SAMP1 at different 

sodium chloride concentrations. This provides the first insight into an extremophile in the β-

grasp fold and establishes the foundation for future experimental studies to elucidate the role of 

conserved residues and long-range interactions which we have identified computationally in 

aims one and two. 

 

COMPUTATIONAL AND EXPERIMENTAL METHODOLOGY 

Bioinformatics 

Bioinformatics is the union between computers, biology, and chemistry. It allows large 

quantities of sequence information to be analyzed to find patterns and determinants of biological 

processes such as genomic sequencing of tumors to identify causative mutations that direct 

chemotherapy treatments. It is also used to identify adaptive changes in organisms during 

evolution or from environmental challenges. It is used to track viruses and mutations that can 

lead to enhanced virulence and infectivity, and to study protein sequences and structures to gain 

insight into their functional and structural behavior. The most common bioinformatics tools are 

the position-specific iterated basic local alignment search tool which utilizes algorithms to 

identify protein families and superfamilies [118], DaliLite which utilizes structural information  

found in the PDB to search for other proteins that contain a similar structure [119], and 

MUSCLE, a sequence based alignment program [120]. Visualization programs such as RasMol, 

PyMOL, and VMD are also used to analyze structural details. All of these programs allow one to 

interrogate in great detail, macromolecular sequence and structure information. 
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Network Science 

A network is a system of interconnected nodes. Interconnected systems like social 

networks, businesses, and systems even as basic as power distribution grids have been the 

subject of network analysis to understand their development, robustness, and dynamics [107, 

108, 121, 122]. This concept can also be applied to proteins. A protein is a network of amino 

acids (nodes) interconnected through various types of interactions [108]. An upward trend can be 

seen of network science helping to answer questions about protein structure, stability, and 

folding [123]. Network science is suited for such a task [124-130]. 

The way to begin to analyze a protein as a network system is to calculate interactions 

between amino acids. Here, an amino acid is a node and the interaction, a link. These interactions 

can be short- or long-range and consist of hydrogen bonds, van der Walls forces, hydrophobic 

forces, and salt bridges. 

One very powerful approach to analyzing protein structure networks is to apply the 

concept of betweenness centrality (BC). BC is a measure of the total number of shortest paths 

between all pairs of nodes that pass through a specific node. Nodes with a high BC value play a 

critical role in network connectivity. This value concept can be applied to many systems 

including proteins [109, 131]. 

 

Molecular Dynamics 

As detailed and amazing as protein structures are to observe, viewing them in motion is 

even more so. This can be achieved using molecular dynamics (MD). MD utilizes computer-

generated force fields to simulate the in vivo movement of proteins and molecules on a 

picosecond time scale by assigning random velocities appropriate for a given temperature to each 
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atom in a simulation. These atoms then move in response to forces acting on them, which are 

determined by Newton’s equations of motion [132].  Some popular force fields include 

CHARMM, AMBER, and GROMOS [133-139]. 

The dynamic equation for motion used for MD simulation is derived from the following. 

The position of atoms can be propagated forward using equation 3 given the atoms initial 

positions, xi (t0), and their respective velocities, vi (t0) at time t0. 

𝑥𝑥𝑖𝑖(𝑡𝑡1) = 𝑥𝑥𝑖𝑖(𝑡𝑡0) + 𝑣𝑣𝑖𝑖(𝑡𝑡0)∆𝑡𝑡                                                                                         (3) 

New velocities can then be calculated using equation 4. 

𝑣𝑣𝑖𝑖(𝑡𝑡1) = 𝑣𝑣𝑖𝑖(𝑡𝑡0) + ∆𝑣𝑣𝑖𝑖(𝑡𝑡0)                                                                                           (4) 

Using equations 5 and 6 and Newton’s equation (F = ma or F = mdV/dt) the change in velocity 

can be calculated. 

∆𝑣𝑣𝑖𝑖(𝑡𝑡0) =
𝐹𝐹𝑖𝑖(𝑡𝑡0)

𝑚𝑚𝑖𝑖
∆𝑡𝑡                                                                                                         (5) 

𝑣𝑣𝑖𝑖(𝑡𝑡1) = 𝑣𝑣𝑖𝑖(𝑡𝑡0) +
𝐹𝐹𝑖𝑖(𝑡𝑡0)

𝑚𝑚𝑖𝑖
∆𝑡𝑡                                                                                             (6) 

where Fi is the sum of the forces acting on the ith particle, Thus, 

𝐹𝐹(𝑟𝑟) = −∇𝑈𝑈(𝑟𝑟)                                                                                                            (7) 

𝑈𝑈(𝑟𝑟) = Σ𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟) + Σ𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)                                                                      (8) 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏 + 𝑈𝑈𝑏𝑏𝑖𝑖ℎ𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑎𝑎 + 𝑈𝑈𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑒𝑒                                                         (9) 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑈𝑈𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑏𝑏𝑎𝑎𝑏𝑏𝑒𝑒                                                                                                       (10) 

𝑈𝑈(𝑟𝑟) = Σ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐾𝐾𝑏𝑏(𝑏𝑏 − 𝑏𝑏0)2 + Σ𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝐾𝐾Θ(Θ + Θ0)2 +                                                     (11) 

Σ𝑏𝑏𝑖𝑖ℎ𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑎𝑎𝐾𝐾Φ[1 + cos(𝑛𝑛Φ − 𝛿𝛿)] + Σ𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑒𝑒𝑏𝑏𝐾𝐾𝜔𝜔(𝜔𝜔 − 𝜔𝜔0)2 + 

Σ𝑈𝑈𝑒𝑒𝑏𝑏𝑈𝑈−𝐵𝐵𝑒𝑒𝑎𝑎𝑏𝑏𝑎𝑎𝑈𝑈𝐾𝐾𝜇𝜇(𝜇𝜇 + 𝜇𝜇0)2 + Σ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝜖𝜖[(𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖,𝑗𝑗

𝑒𝑒𝑟𝑟𝑗𝑗
)12 − �𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚,𝑗𝑗𝑗𝑗

𝑒𝑒𝑟𝑟𝑗𝑗
)6� + Σ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝜖𝜖𝑒𝑒𝑖𝑖𝑗𝑗
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In the first term of equation 11, Kb is the bond force constant and b-b0 is the distance 

from equilibrium for a given bond. In second term Kθ is the angle force constant and θ + θ0 is the 

degrees from equilibrium for a given angle. In the third term, KΦ is the dihedral force constant, n 

is the multiplicity, Φ is the dihedral angle, and δ is the phase shift. In the fourth term, Kω is the 

force constant and ω – ω0 is the out of plane angle. In the fifth term, Kµ is the force constant and 

µ + µ0 is the distance from equilibrium of the 1,3-nonbonded interactions. In the sixth term, ε is 

the electric permittivity constant, rij is the distance between two nonbonded atoms in the 

configuration and Rin,ij is the constant distance at which the potential is zero. In the last term, qi 

and qj are partial charges of atoms i and j. Figure 12 describes some of these terms. 
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Figure 12. Schematic of select terms describing potential energy. The molecular mechanics 

potential energy function comprising the van der Waals (term 1, Lennard-Jones) and coulombic 

(term 2) interactions, and the three valence terms, bond, angle bending, and dihedral energy. The 

summations for van der Waals and coulombic terms indicate all pairwise interactions between 

atoms that are not either bonding or linked via a bond angle. The Lennard Jones parameters εij 

and σij, partial charges qi and qj, and the force constants kb, ka, and kϕ are all atom-specific 

parameters that comprise the force field and are inputs to the simulation. Figure and figure 

legend reproduced from [140] and used with permission. 
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One of the major limitations of using MD to simulate the atomistic movement of proteins 

is computation time. Modeling the smallest proteins could take upwards of a month to simulate 

100 nanoseconds of protein movement. This limitation can be overcome using parallel 

computing and specially designed algorithms. One such computer is Anton, which can simulate 

proteins on the order of millions of atoms for timescales in the millisecond range [141, 142]. 

The ability to view an MD protein trajectory provides invaluable insight into how folding 

and unfolding occur. To view a trajectory, one must first load a minimized crystal structure into 

VMD. The minimized structure has been neutralized and solvated into a box of water. After 

loading the minimized structure, the trajectory file is loaded. The trajectory file contains a 

merged list of PDB codes that were generated at selected intervals during the simulation. 

 

Fluorescence 

It is essential to have experimental studies to complement computational analyses. Many 

techniques that are utilized to study protein folding rely on intrinsic fluorescence of aromatic 

residues, namely, phenylalanine, tyrosine, and tryptophan (Appendix A) [143-145]. These 

residues absorb wavelengths of light at 260nm, 280nm, and 285nm respectively [146]. When 

these residues are buried in an environment excluding solvent, representative of the native state, 

fluorescence intensity increases [146]. As the protein unfolds and the residues are exposed to 

solvent, the fluorescence is quenched. This unfolding can be due to heat, chemical denaturant, 

pH, or pressure [143]. While these three amino acids exhibit fluorescence, tryptophan is most 

often used as a probe for folding and unfolding experiments due to its high fluorescence intensity 

and large molar extinction coefficient [146]. 
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Circular Dichroism 

Circular dichroism (CD) is a method used for ascertaining the secondary and tertiary 

structural information of proteins from their native environments. This technique measures the 

differential absorption of left- or right-handed circularly polarized UV light by chiral molecules 

(Figure 13(a)) [147, 148]. 
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Figure 13. CD effect origin. (a) The left (L) and right (R) circularly polarized components of 

plane polarized radiation: (i) the two components have the same amplitude and when combined 

generate plane polarized radiation; (ii) the components are of different magnitude and the 

resultant (dashed line) is elliptically polarized. (b) Absorption versus CD spectra. Band 1 has a 

positive CD spectrum with L absorbed more than R; band 2 has a negative CD spectrum with R 

absorbed more than L; band 3 is due to an achiral chromophore. Figure and figure legend 

reproduced from [147] and used with permission. 
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This differential absorption results in a CD spectrum which can contain both positive and 

negative peaks (Figure 13(b)). There are two types of CD, far and near. In far-UV CD, the 

protein backbone, and thus the secondary structure, can be monitored due to its preferential 

absorption of UV light 240nm and below [147-149]. In near-UV CD (260-320nm), tertiary 

structure can be monitored due to the number, mobility, and environment of aromatic amino 

acids. Phenylalanine, tyrosine, and tryptophan are observed in the 255-270nm, 275-282nm, and 

290-305nm regions respectively [147, 148]. 

 

Continuous and Stopped-Flow 

The folding kinetics of a protein is commonly studied using stopped-flow spectroscopy. 

It is rapid-mixing technique which can monitor the folding or unfolding of a protein as a measure 

of intrinsic fluorescence. When conducting a folding experiment, protein that has been denatured 

with concentrated denaturant is diluted with a refolding buffer (Figure 14). 
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Figure 14. Schematic of a stopped-flow spectrophotometer. Protein (red) and buffer (green) 

are mixed and passed through the cell. Mixed samples (blue) are collected in a stop syringe. 

Figure and figure legend reproduced from [150] and used with permission. 

 

 

As the concentration of denaturant is decreased, the protein folds and intrinsic 

fluorescence increases. Conversely, an unfolding experiment mixes protein in its native state 

with concentrated denaturant. As the concentration of denaturant is increased, the protein unfolds 

and intrinsic fluorescence decreases. Other methods exist for denaturing proteins, such as 

altering the pH or temperature, and detection of folding or unfolding, such as near- and far-UV 

CD, Fourier transform infrared spectroscopy, X-ray scattering, and real time NMR [146, 147, 

151-156]. A major limitation of the stopped-flow technique is dead-time. Dead-time is defined as 

the amount of time it takes a protein sample to move from the mixer to the observation window. 

This time can be on the order of milliseconds. In the event of a rapidly folding protein, many of 

the major folding events could occur in this dead-time and thus would not be detected [87, 157-
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159]. Researchers are developing better systems with dead-times in the microsecond range [160-

162]. One such system is a continuous flow spectrophotometer. In continuous flow the protein 

and buffer solutions are mixed as they enter the observation cell, and the reaction occurs as the 

sample flows through the cell. Fluorescence is measured for the entire length of the cell (Figure 

15). 

 

 

 

Figure 15. Schematic of continuous flow spectrophotometer. (a) protein and buffer are passed 

through (b) a mixer just prior to entering (c) the observation cell. Figure adapted from [163] and 

used with permission. 
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CHAPTER Ⅱ 

ELUCIDATING THE KEY DETERMINANTS OF STRUCTURE, FOLDING, AND 

STABILITY OF GB1 USING BIOINFORMATICS APPROACHES 

 

OVERVIEW 

Folding along a funnel-shaped energy landscape from an ensemble of denatured states 

occurs through the restriction of conformational space. One of the key determinants 

hypothesized to restrict shape space is the formation of a native-like topology dictated by long-

range contacts between evolutionarily conserved residues. In this view, select amino acids are 

conserved in a superfamily of proteins, in part because they make critical interactions that are 

more important in forming and maintaining the common fold than biological function. These 

critical interactions are proposed to work by structuring a hydrophobic “fold-determining core” 

to stabilize the initial native-like topology [97, 164]. The role of conserved amino acids has been 

the subject of a number of computational and experimental studies which seek to investigate a 

link between conserved amino acids and how they might or might not facilitate rapid and correct 

folding of a protein into its native state [97, 100-105, 109, 165-168]. 

Long-range interactions are the focus of this research because they are the key 

determinants of tertiary structure and can be classified as interactions between amino acids that 

are greater than seven residues from each other in the primary structure but within 5Å in the 

tertiary structure [109, 169, 170]. Using bioinformatics approaches we can identify and assess 

which amino acids are conserved for the fold of a protein. 

Content in this chapter is reprinted with permissions from “Collins J, Bedford JT, Greene LH. Elucidating 
the Key Determinants of Structure, Folding, and Stability for the (4β + α) Conformation of the B1 
Domain of Protein G Using Bioinformatics Approaches. IEEE Transactions On Nanobioscience. 2016; 
15:140-147.” 
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The application of network science has also become important in the study of protein 

structure and folding [97, 107, 114, 171-173]. Network measures have most recently been 

applied to protein transition-states and native folds, which further our understanding of the 

underlying determinants of protein structure [97, 114]. 

A protein superfamily is similar to a family lineage tree (Figure 16) [174, 175]. As a 

protein diverges from a common ancestral sequence, there will be some degree of evolutionary 

drift and some features will be retained. In terms of sequence similarity, it has been determined 

that proteins that contain >40% identity are generally conserved in function [176]. Whereas 

sequences conserved for the fold can contain <25% identity and have a significant degree of 

functional diversity. Thus, the construction of a divergent superfamily provides a method of 

searching and identifying a conserved sequence and structural signature that are hypothesized to 

be critical in determining the fold. 
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Figure 16. Hypothetical representative schematic of a superfamily. 

 

 

Our model system is GB1. In this chapter, I present the use of bioinformatics methods in 

concert with a network analysis to elucidate the conserved amino acids and their relative 

importance in the fold of GB1. This establishes a foundation for experimental and computational 

studies to test the proposed role of conserved residues in structure, folding, and stability. 

 

MATERIALS AND METHODS 

Structural Alignment and Percent Identity 

A structural alignment was constructed for GB1 using the DaliLite Server (v.3) [119]. 

This was used to identify and select proteins with a similar superimposable structure that also 

shared low sequence identity and varied in function. The DaliLite server is a comprehensive 
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search method that surveys the protein data bank and does a sum-of-pairs comparison of 

superimposable structures. This method produces a measure of similarity by comparing 

intramolecular distances and calculating a similarity measure called the Dali Z-score. Structures 

that are significantly similar have a Z-score above 2, and usually have similar folds [119]. The 

final alignment was constructed by removing all gap regions in the Dali generated alignment to 

give a contiguous GB1 sequence. 

The sequence identity of the structural alignment was obtained by importing the 

alignment into the sequence identity and similarity (SIAS) server which uses the following 

equation to calculate the percent identity (PID) of each alignment: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 100 � 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝑖𝑖𝑒𝑒𝑎𝑎𝑎𝑎 𝑃𝑃𝑏𝑏𝑏𝑏𝑖𝑖𝐼𝐼𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏
𝐿𝐿𝑏𝑏𝑏𝑏𝑎𝑎𝐼𝐼ℎ 𝑏𝑏𝑜𝑜 𝐼𝐼ℎ𝑏𝑏 𝐴𝐴𝑎𝑎𝑖𝑖𝑎𝑎𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼

�                                                                           (12) 

Our aim in using this program was to evaluate the multiple sequence alignment of 

selected structures to ensure that they were significantly divergent. This ideally consists of 

pairwise identities ≤ 25%, although a few pairs were between 25–35% identity. We also sought 

to have a broad range of functional diversity so that similarities obtained would be related to 

structure. Structural modifications were made by hand based on the visual comparison of the 

side-chain orientation in each selected structure using RasMol (Ver. 2.7.2.1.1) and Insight II 

(Ver. 2005, Accelrys). This manual analysis is required to ensure that the obtained structural 

alignment is further refined as DaliLite only considers the α-carbon backbone in the 3D 

superposition. 

 

Conservation Analysis and Hydropathy 

The completed and verified structural alignment was analyzed for position specific 

residue type and residue character conservation. The number of each residue type at each 
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position in the structure-based sequence alignment is calculated by summation of each type of 

amino acid using a computer program written to calculate these values. With the number of 

amino acids of each type at each position, entropy can be calculated by equation 13 in SigmaPlot 

(Ver. 13.0, Systat Software): 

𝑆𝑆(𝑖𝑖) = ∑ − {𝑃𝑃𝑃𝑃(𝑖𝑖) ln[𝑃𝑃𝑃𝑃(𝑖𝑖)]}m
j = 1                                                                                   (13) 

In the equation Pj(i) is the fractional occurrence of each amino acid type j at each residue 

position i and m is the number of amino acid types or groups possible in the particular analysis 

[177]. Positional entropy tells us about the amino acid variability at each position. High entropy 

indicates high variability and thus infers low conservation and vice versa. Thus, to calculate 

conservation the results from the application of (13) is used as follows: 

𝐶𝐶(𝑖𝑖) = 1 − 𝑆𝑆(𝑖𝑖)
ln (𝑚𝑚)

                                                                                                          (14) 

The conservation parameter C(i), ranges from 0 to 1. At maximum entropy, where all 

amino acids types are equally represented, a conservation of 0 is obtained. Whereas, at minimal 

entropy, when only one amino acid type is represented, a conservation of 1 is obtained. From the 

analysis, residue positions whose conservation is ≥ 0.45 are considered highly conserved 

whereas conservation between 0.45 and 0.30 are considered moderately conserved. Any 

conservation values <0.30 are considered to be less conserved. Positions containing one or more 

gaps with respect to GB1 are given a value of zero and considered non-conserved. The analysis 

of conservation of character involved dividing the amino acids into four groups (polar, nonpolar, 

acidic, and basic) for (13) and (14). To calculate residue specific hydropathy as it relates to 

persistence within the structural superfamily, the average hydrophobicity of all the amino acids 

at the selected position are assigned a hydropathy value. We then applied equation 15 at each 

position in the alignment. 
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𝐴𝐴𝑣𝑣𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴 𝐻𝐻𝐻𝐻𝐻𝐻𝑟𝑟𝐻𝐻𝐻𝐻ℎ𝐻𝐻𝑏𝑏𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝐻𝐻 =
(𝑏𝑏𝑠𝑠𝑚𝑚 𝑏𝑏𝑜𝑜 𝐼𝐼ℎ𝑏𝑏 𝑏𝑏𝑠𝑠𝑚𝑚𝑏𝑏𝑏𝑏𝑒𝑒 𝑏𝑏𝑜𝑜 𝑏𝑏𝑎𝑎𝑒𝑒ℎ 𝑎𝑎𝑚𝑚𝑖𝑖𝑏𝑏𝑏𝑏 𝑎𝑎𝑒𝑒𝑖𝑖𝑏𝑏 𝐼𝐼𝑈𝑈𝑖𝑖𝑏𝑏

∗ ℎ𝑈𝑈𝑏𝑏𝑒𝑒𝑏𝑏𝑖𝑖ℎ𝑏𝑏𝑏𝑏𝑖𝑖𝑒𝑒𝑖𝑖𝐼𝐼𝑈𝑈 𝑏𝑏𝑜𝑜 𝐼𝐼ℎ𝑎𝑎𝐼𝐼 𝑎𝑎𝑚𝑚𝑖𝑖𝑏𝑏𝑏𝑏 𝑎𝑎𝑒𝑒𝑖𝑖𝑏𝑏)
14

                     (15) 

The hydrophobicity values used were adapted from a commonly used amino acid 

hydrophobicity index [178]. The data from both conservation and hydropathy analyses were 

analyzed and plotted using SigmaPlot. 

 

Network Analysis 

Using the PDB structure of GB1 (1 PGB) we calculated all of the long-range amino acid 

interactions. This was accomplished using the program Contact which calculated every 

interacting atom between pairs of residues within 5Å in the tertiary structure [179]. The output 

file was further analyzed using a program we coded in C, called DegLR which identified pairs of 

contacting residues that were seven or more residues apart in the primary structure. This data was 

converted to a Pajek input file and a network of all the long-range interactions was constructed 

using Pajek-XXL (64 bit) [180]. Betweenness centrality was calculated within the resulting GB1 

network using Pajek and plotted with SigmaPlot. The betweenness centrality measure is based on 

(16). 

σ(𝑚𝑚) ≡� 𝐵𝐵(𝑖𝑖,𝑚𝑚,𝑗𝑗)
𝐵𝐵(𝑖𝑖,𝑗𝑗)𝑖𝑖≠𝑗𝑗

                                                                                                  (16) 

B(i, j) is the total number of shortest paths between vertices i and j. B(i,m, j) is the total 

number of shortest paths between vertices i and j that pass through vertex m. The ratio B(i,m, 

j)/B(i, j) produces a measure of importance (0 = low importance and 1 = high importance) of 

vertex m in traversing the network from vertices i to j. The betweenness measure, σ(m) of the 

vertex m, is the sum over all pairs of i and j vertices which have at least one path [181]. Thus, 

B(i, j) > 0. Betweenness centrality facilitates identifying the central importance of each node. 
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The methods described above regarding the structural alignment and percent identity, 

conservation analysis and hydropathy, and network analysis were done in collaboration with Dr. 

Jason Collins. 

 

RESULTS AND DISCUSSION 

To determine the evolutionary conservation of amino acids in the sequence of GB1 we 

developed a structural superfamily using the DaliLite server [119]. We input the PDB file of 

GB1 into the server and obtained a list of proteins whose structures are superimposable with 

GB1. Ideally, we would have selected 20 or more proteins to allow for the greatest amino acid 

variability. However, we were limited in the numbers of available structures that fit our criteria 

for inclusion. From the server we selected 13 proteins whose fold matched GB1 but varied 

significantly in sequence identity (Figure 17) and were functionally diverse (Table 1). This 

ensured that the structure and structure-based sequence alignments would provide information on 

which amino acids and side-chain interactions were important in dictating the fold and not 

biological function. In addition, we assessed the sequence identity to ensure to a significant 

degree that each value was below 25% for the majority of selected proteins. This percent identity 

is considered in the “twilight zone” [182]. The “twilight zone” is a threshold of percent identity 

in which you cannot be sure or guarantee the proteins have the same 3D structure. Thus, we 

work in this region to enhance sequence variability but use known 3D structures for accuracy of 

the analysis. 
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Figure 17. Percent sequence identity for proteins in the structure-based multiple sequence 

alignment in Figure 18. Identities were calculated using equation (12) within the SIAS server. 

http://imed.med.ucm.es/Tools/sias.html 
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Table 1 General functional classification of structurally aligned proteins. 

 

 

 

Although the structural alignment provided by the DaliLite server is quite advanced, it 

may not be perfect and only provides an optimal sequence alignment based on α-carbon 

superposition. To verify the sequence alignment, the general side-chain orientation of each 

PDB 
Code 

Species Protein 
Length 

Functional Classification 
(Based on RCSB PDB) 

1pgb Bacteria (Streptococcus sp. Group 
G) 56 Immunoglobulin-Binding 

Protein 

2ptl Bacteria (Peptostreptococcus 
magnus) 78 Protein-Binding 

(Immunoglobulin L Chain) 

1rlf Mouse (Mus musculus) 90 Signal Transduction Protein 

3po0 Halophile (Haloferax volcanii) 89 Protein-Binding 

1enf Bacteria (Staphylococcus aureus) 212 Toxin 

1fma Bacteria (Escherichia coli) 81 Transferase 

2k8h Human African Trypanosomiasis 
(Trypanosoma brucei) 110 Signaling Protein 

1f2r Mouse (Mus musculus) 87 DNA-Binding Protein 

1euv Baker's Yeast (Saccharomyces 
cerevisiae) 221 Hydrolase 

1wm2 Human (Homo sapiens) 78 Protein Transport 

3a4r Mouse (Mus musculus) 79 Transcription 

1c4p β-hemolytic Bacteria 
(Streptococcus equisimilis) 137 Blood Clotting 

2bs2 Proteobacteria (Wolinella 
succinogenes) 660 Oxidoreductase 

1wsp Rat (Rattus norvegicus) 84 Signaling Protein 
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amino acid aligned with GB1 was assessed by manually inspecting the superposition using the 

3D structure visualization programs, RasMol and Insight II [183]. Once each side-chain 

orientation was verified the finalized structure-based sequence alignment was completed (Figure 

18). 

 

 

 

Figure 18. Structure-based sequence alignment. The sequence alignment was generated from a 

structural alignment of 14 superimposed proteins, some of which are domains within larger 

proteins. Side chains that are not in a similar orientation are shown as lowercase letters in 

accordance with DaliLite. Gaps are delineated by dashes. All positions were verified upon visual 

inspection of the aligned structures and adjusted accordingly. In brackets on the left are the PDB 

codes for the structures selected for inclusion in the alignment. The numbering system 

corresponds to the GB1 structure (1PGB). 
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As expected, most variability in side-chain orientation is found in the loop regions which 

have higher variation in structure and length. Also of note, is that the third β-strand of GB1 

appears to only have one position in which there was total side-chain orientation alignment. This 

could indicate that formation of β-strand 3 is not as evolutionarily conserved for this fold as the 

other β-strands and could also suggest that stabilization of this strand is formed post initial 

collapse of the structure during folding. In order to know which amino acids would be most 

significant to select for experimental and computational study, an analysis is performed to 

determine position specific conservation over the superfamily (Figure 19). Using a modified 

Shannon’s entropy equation, amino acid conservation is determined based on the number of 

amino acid types at each position. This analysis calculates the entropy of a given residue based 

on a position specific variability over the superfamily, where high entropy indicates high amino 

acid variability while low entropy indicates low variability. From the conservation analysis we 

found that there were twelve residue positions that were considered evolutionarily conserved. In 

GB1 these correspond to: Tyr3, Lys4, Leu5, Thr18, Ala20, Ala26, Phe30, Glu42, Asp46, Lys50, 

Phe52, and Val54. There are eleven positions that were considered moderately conserved 

(>0.30) and one position, residue Ala26, considered highly conserved (≥0.45). It is interesting to 

note that there is at least one conserved amino acid found in each major secondary structure 

component. 
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Figure 19. Amino acid conservation analysis. Positions colored in black are positions 

considered conserved. Positions ≥ 0.45 are considered highly conserved and 0.45 > positions ≥ 

0.30 are considered moderately conserved. Arrows indicate β-strands, the rounded rectangle 

indicates an α-helix. Data plotted using SigmaPlot 12.5. 

 

 

The initial analysis determined conservation based strictly on identity, thus we also 

wanted to get a sense of conserved residue positions with respect to amino acid character. A 

second conservation analysis was conducted by counting similar character types rather than the 

same specific amino acid and the results were plotted similarly (Figure 20). The data indicated 

that eleven positions were conserved in amino acid character. In GB1 these are: Tyr3, Leu5, 
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Leu7, Thr18, Ala20, Ala26, Phe30, Gly41, Trp43, Phe52, and Val54. Between the two 

conservation analyses (Figures 19 and 20) there are four positions (Lys4, Glu42, Asp46, and 

Lys50) that were considered conserved based on identity but are not similarly conserved in the 

character analysis. This indicates from an evolutionary perspective that these positions may be 

more dependent on the particular amino acid chemical structure. However, when these positions 

are modified it does not favor a particular amino acid character type which could mean that its 

role in forming the overall shared conformation across the superfamily could be secondary. In 

GB1, experimental data indicates that Asp46 is structured in the transition-state and necessary 

for early formation of the second β-turn [81]. Interestingly, the following eight positions are 

conserved in both amino acid position and character: Tyr3, Leu5, Thr18, Ala20, Ala26, Phe30, 

Phe52, and Val54. In addition, three positions (Leu7, Gly41, and Trp43) that were not conserved 

in amino acid identity are now considered conserved with respect to amino acid character which 

indicates that these positions may be important in the fold of GB1 because of the character of the 

amino acid. This suggests that during evolution when these positions were varied, they did not 

favor any specific amino acid in particular but required that the character of the position be 

maintained. 
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Figure 20. Amino acid character conservation analysis. Positions colored in black are positions 

considered conserved. Positions ≥ 0.45 are considered highly conserved and 0.45 > positions ≥ 

0.30 are considered moderately conserved. Arrows indicate β-strands, the rounded rectangle 

indicates an α-helix. Data plotted using SigmaPlot 12.5. 

 

 

To identify hydrophobic positions versus hydrophilic positions a hydropathy analysis was 

done (Figure 21). From the hydropathy analysis we see that of the fifteen positions conserved by 

amino acid type or character, eleven were hydrophobic while four were hydrophilic in nature. 

This makes sense as the four positions considered hydrophilic are either acidic or basic in 

character and would be expected to be found on the surface of the protein exposed to the solvent. 
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Figure 21. Position specific hydropathy analysis. Positions colored in black are positions 

considered conserved either by position or character conservation. Positive values indicate 

hydrophobicity and negative values indicate hydrophilicity. Arrows indicate β-strands, the 

rounded rectangle indicates an α-helix. Data plotted using SigmaPlot 12.5. 
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Table 2 Summary of Structure Alignment Analysis 

 

 

 

Based on all the bioinformatics data gathered there are fifteen positions that were 

revealed to have conservation by at least one measure. However, when compared to the 

structure-based sequence alignment only nine of the fifteen positions can be considered reliably 

conserved when we take into account side-chain orientation. A comprehensive summary of all 

the conserved positions and the results of each analysis can be found in Table 2 and Figure 18. 

Experimental results show in part some correspondence with our conservation data [81]. 
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Figure 22. Network of long-range interactions in the structure of GB1. Individual amino acids 

are the filled circles connected by long-range interactions shown as lines. The nine conserved 

amino acids based on Table 2 and Figure 18 (considering only positions with similar side-chain 

orientation) are shown by open circles. Data plotted using Pajek64-XXL 4.08. 

 

 

A network analysis provides insight into the nature of each amino acid position within the 

structure of GB1. We can initially assess the relative importance at each position in the structure 

by the number of contacts made with other amino acids. Using this approach, we calculated all 

the long-range interactions found in the structure of GB1 and modeled an interaction network 

(Figure 22). From the network we see that the nine conserved residues are highly interconnected. 

Of the nine conserved positions, eight form what appears to be a predominantly hydrophobic 

core of GB1 (Figure 23(a)). A network model of the long-range interactions overlaying the 3D 

structure of GB1 shows a group of amino acids linked in the core. It is interesting that six of the 

nine conserved residues are found in the N- and C-termini β-strands. 
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Figure 23. Conserved amino acid network overlay. Backbone structure of GB1 in light gray 

with (a) conserved amino acid side chains shown and (b) network overlay with amino acid nodes 

located on the Cα in filled circles and long-range interaction links as lines. (c) Core network of 

conserved amino acids. Structures visualized using RasMol Ver. 2.7.2.1.1. 

 

 

It appears as if the formation of connections between the N- and C-termini may be 

important to forming this fold with five of the fifteen core long-range interactions found between 

β-strands 1 and 4 (Figure 23 (b)). There are also three conserved interactions potentially 

important in forming the β-hairpins and six in stacking the α-helix onto the β-sheet. This could 

be necessary in bringing the two anti-parallel β-hairpins together in 3D space during the folding 

process. 
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Figure 24. Betweenness centrality analysis of the GB1 network. Positions with high 

betweenness centrality are colored in black. These are: 3, 5, 52, and 54. Arrows indicate β-

strands, the rounded rectangle indicates an α-helix. Data plotted using SigmaPlot 12.5. 

 

 

To further investigate the importance of the core conserved amino acids, an analysis 

using the betweenness centrality (BC) measure on the GB1 long-range interaction network was 

conducted (Figure 24). A betweenness measure indicates centrality of an amino acid node in the 

network. It calculates the importance of a node in traversing the network [184, 185]. The BC 

analysis revealed four nodes (Tyr3, Leu5, Phe52, and Val54) with high betweenness. 

Interestingly, the four amino acids are found on the N- and C-termini β-strands and could be 
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important in bringing the two hairpins together. Further, these four amino acids interact in the 

GB1 network (Figure 23(b-c)). This result indicates that these positions appear to be more 

centrally important to the network and may be of higher importance, perhaps fixing the topology 

in the folding process. However, a focused investigation is necessary to determine if the 

hypothesized role of the conserved features in the formation of the β-grasp fold is supported by 

existing and future computational and experimental results. 

 

SUMMARY 

GB1 has served as the model system in a number of significant studies that encompass 

both computational and experimental approaches. Orban and co-workers engineered GB1 and 

another protein, the three-helical bundle called protein A to maintain their distinct folds and 

functions yet share up to 98% sequence identity [83]. The folding behavior of these artificially 

designed proteins was further studied by Giri and co-workers to shed light on this fascinating 

discovery [186]. GB1 was also a structure used in successful de novo folding simulation studies 

by Shaw and co-workers [187]. Additionally, while a number of computational [85, 86] and 

experimental studies [82, 88-94, 188] have been conducted to characterize the structure, stability, 

and folding behavior of GB1, our work is directed at elucidating and characterizing the role of 

conserved residues from a bioinformatics perspective. Thus, the results of our present study 

provide an important avenue of investigation for experimental research as well as future 

theoretical and simulation studies which in combination with existing results published in the 

literature could help lead to a more comprehensive understanding of the folding process of GB1. 

 

 



50 
 

 
 

CHAPTER Ⅲ 

THE NATURE OF PERSISTENT INTERACTIONS IN TWO MODEL β-GRASP 

PROTEINS REVEALS THE ADVANTAGE OF SYMMETRY IN STABILITY 

 

OVERVIEW 

Computational approaches have significantly advanced our understanding of the 

determinants of protein structure, folding, and dynamics. In particular, molecular dynamics 

(MD) simulations have allowed us to peer into protein forms and interrogate the nature of the 

interactions in both the native state, transition-state (TS), and during the folding and unfolding 

process. More recently, significant advancements in the application of MD simulations were 

made through the success in folding a select group of small proteins with the use of a purpose-

built supercomputer named Anton [187]. Other advances have also come from further 

development of Monte Carlo simulations [189, 190]. 

In this chapter the results of in silico unfolding studies conducted using molecular 

dynamics is presented. The two model systems are β-grasp proteins, GB1 (Figure 25(a)) and 

SAMP1 (Figure 25(b)). GB1 contains 95 calculated long-range interactions, where contacts that 

are seven or more residues apart in the primary sequence but closer than 5Å in the tertiary 

structure are defined as long-range interactions. 

 

 

 

 

Content in this chapter is reprinted with permissions from “Bedford JT, Diawara N, Poutsma J, Greene 
LH. The nature of persistent interactions in two model β-grasp proteins reveals the advantage of 
symmetry in stability. Journal of Computational Chemistry. 2021; 42:600-607.” 
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Figure 25. X-ray crystal structures of (a) GB1 and (b) SAMP1. α-helices and β-strands are 

shown in magenta and yellow, respectively. Structures visualized using RasMol Ver. 2.7.2.1.1. 

 

 

The understanding of the folding process emerging thus far from kinetic studies suggests 

that GB1 is a rapid two-state folder [81, 84]. This conclusion remains controversial with the 

identification of an on-pathway intermediate based on the techniques and conditions of select 

kinetic studies [61, 76, 77]. In the TS, based on Φ-value analysis, the second hairpin is more 

structured. In agreement, the application of Ψ-value analysis suggests the four-stranded β-sheet 

is partially formed through select interactions with the strongest located in the second hairpin 

[81, 94]. 

A number of research studies on GB1 focusing on the unfolding of the individual β-

hairpins in isolation have been published [191, 192]. The work of Pande and Rokhsar supports 

our research findings. They found that the first step during unfolding is the total loss of 
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secondary structure, where intra-backbone hydrogen bonding is lost. This event however does 

not disrupt the hydrophobic cluster in the C-terminal hairpin comprised of Trp43, Tyr45, Phe52, 

and Val54. This cluster remains intact until the water penetrates and disrupts the hydrophobic 

core [191]. The work of Lee and Shin also support our research findings. They concluded that 

the hydrophobic core consisting of Trp43, Tyr45, Phe52, and Val54 is located in the middle of 

the two strands comprising the C-terminal hairpin and that the formation of this core is 

responsible for the initial folding and stability of the C-terminal hairpin [192]. 

Unfolding studies by MD simulation of the full-length protein have been conducted by 

previous research groups. Scott and Daggett found during the unfolding of a GB1 variant with 

three mutations in the C-terminal hairpin (GB1 variant G311), the hydrophobic core is opened 

and repacked followed by the dissociation of the N-terminal hairpin from the main protein 

structure [193]. Next the C-terminal hairpin moves away from the helix and the helix rotates to a 

near parallel position to the C-terminal hairpin. Simultaneously to this event the hydrophobic 

core comprising Tyr3, Val5, Phe30, Ile34, Trp43, Tyr45, Phe52, and Val54 is rearranged 

however the long-range interactions between these residues are maintained but are non-native. 

This series of unfolding events is similar to what we observe in our simulations however in our 

study we monitor all native long-range interactions. They further conclude that considering the 

unfolding simulations in reverse, the earliest interactions are between strands three and four 

which form the C-terminal hairpin and that the β-turn of this hairpin then interacts with the helix. 

These two events fix the topology of GB1 early in the folding pathway [193]. Morrone et al. 

conducted five thermal unfolding MD simulations on GB1 and described their results from the 

perspective of folding [76]. They found that in the first transition state, contacts between strands 

in the C-terminal hairpin were almost fully formed. This is in agreement with our unfolding 
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simulations which found some of these contacts to be the most persistent during unfolding. Their 

findings also suggest the formation of an extended nucleus which not only incorporates residues 

from the C-terminal hairpin and α-helix but also the N-terminal hairpin [76]. Our conclusions are 

similar in that we find residues in the first strand of the N-terminal hairpin help to stabilize GB1. 

In the present study, GB1 is subjected to high temperature all-atom MD simulations in 

order to identify key long-range interactions governing native-state thermodynamic stability. 

Long-range interactions were studied because they are the dominant determinants of the 3D 

protein structure and provide the chemical forces between secondary elements. Of the 95 long-

range interactions, 9 are most persistent and located in the C-terminal hairpin. Comparisons to 

experimental studies at the residue-level are drawn to present a picture of the determinants of 

structural stability. 

For a deeper look into the β-grasp superfamily we compare the MD simulations of GB1 

to those conducted with a distant homologue, SAMP1 (Figure 25(b)) which shares 2% identity 

with GB1. This selection is based on needing a member which was very divergent to best 

investigate the common determinants in the fold which can be obscured if the proteins are too 

similar. SAMP1 is a ubiquitin-like protein found in the halophilic organism Haloferax volcanii. 

SAMP1 is 87 residues in length compared to GB1’s 56 and contains many charged residues due 

to its highly saline environment. SAMP1, like GB1, has four β-strands and one central α-helix 

[194].  It also has two small inserted α-helical segments, α1 and α3, and much longer loops. A 

total of 20 persistent long-range interactions out of 155 were identified in SAMP1. Comparative 

studies between GB1 and SAMP1 were conducted and reveal the flexibility in stability for 

simple symmetrical proteins. 
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MATERIALS AND METHODS 

The X-ray crystal structures for GB1 and SAMP1 were obtained from the Protein Data 

Bank (PDB codes: 1PGB and 3PO0). Using CHARMM v.39 the structures were minimized and 

solvated into truncated octahedron water boxes containing 6525 and 6369 explicit water 

molecules after molecules overlapping with the GB1 and SAMP1 structures respectively, were 

removed. To neutralize the structure of GB1, four sodium ions were randomly added to its water 

box. To the box containing SAMP1, 13 chloride ions and 25 potassium ions were randomly 

added. In this case, the structure is still neutralized however extra ions were added to increase the 

ionic strength of the simulation. Equilibration was run at 450K and 475K for 280ps for GB1 and 

SAMP1, respectively. Start temperature was 110K which reached a final temperature of 450K or 

475K. Once equilibrated, MD simulations were performed employing CHARMM39 with a 

CHARMM27 force field and using an isothermal-isobaric ensemble. Four separate simulations 

were run for GB1 while only three simulations were run for SAMP1. The dynamics simulations 

were 120ns each with time steps of 2fs. Ewald was utilized to treat long-range electrostatics and 

van der Waals interactions employed a cutoff of 12Å. The SHAKE algorithm was used to freeze 

all covalent bonds involving hydrogen. The simulations were visualized using VMD. 

The RMSD of each simulation was calculated as a function of time to ensure that the 

proteins unfolded. The contact distance between residue pairs was measured every 2ps over the 

course of the trajectory. In each 4ns window, the number of times the amino acids of a long-

range interaction were within 10Å of each other were counted. A value of 2000 indicates that the 

contact was present during the entire window. These counts are referred to as persistence values 

in the context of this research study. The values for the four simulations were scaled to values 

ranging from zero to one so that data could be fitted using a logistic regression model and was 
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subsequently rescaled to the range of the original data. Fitted data was then averaged over the 

different simulations and plotted as persistence over time.  

An analysis to elucidate the common long-range interactions between GB1 and SAMP1 

was conducted. For the long-range interactions only two heavy atoms, one on each residue, need 

to be closer than 5Å in the tertiary structure. They are identified using Contact (CCP4) and 

DegLR, a program coded in the Greene Lab. 

The hydrophobic core of a protein is a region of high density containing non-polar 

residues. The program Naccess (http://wolf.bms.umist.ac.uk/naccess/) was used to calculate 

solvent accessibility in both GB1 and SAMP1. The long-range interactions monitored in the 

more detailed analysis of the MD trajectories are confined to those that have a percent burial of 

60% or higher. Any relevant short-range interactions thought to play a role were also analyzed. 

The orientation of each amino acid side chain was visually verified, and our analysis focused on 

interactions involving side chains. 

 

RESULTS AND DISCUSSION 

Persistence in GB1 

The RMSDs of the four GB1 unfolding simulations were plotted as a function of time. As 

seen in Figure 26(a), these simulations, despite having the same dynamics parameters, have 

similar yet distinct RMSD values over the course of the simulations. This is due to each atom 

being assigned a random velocity vector at the beginning of the simulation. It is interesting to 

note that the RMSDs are fluctuating indicating that GB1 is undergoing many unfolding and 

folding events but the overall RMSDs are trending upward indicating that the protein is 

unfolding over the course of the simulations. Also, two of the four GB1 simulations diverge to 

higher RMSD values earlier in the simulation. The persistence of the 95 long-range interactions 
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in GB1 was measured over the course of each simulation and averaged. The averaged persistence 

values were plotted versus time and are shown in Figure 27. The most persistent long-range 

interactions clearly separate themselves from the total population and are mostly red. 

Specifically, 9 of 95 or 9.5% of the long-range interactions within GB1 are persistent. 

Furthermore, these nine interactions are located in the C-terminal hairpin (Figure 28). 
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Figure 26. RMSD of MD simulations. (a) GB1 and (b) SAMP1. Simulations 1, 2, 3, and 4 are 

shown in black, red, green, and blue, respectively. Data plotted using XMGR 
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Figure 27. Persistence of long-range interactions in GB1. Interactions within the N- and C-

terminal hairpins are shown in blue and red, respectively. Interactions between the α-helix and 

either hairpin are shown in green. Interactions between the N- and C-terminal hairpins are shown 

in purple. Interactions involving loop regions are shown in gray. Data plotted using SigmaPlot 

12.5. 
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Figure 28. Persistent long-range interactions in GB1. Residues involved in persistent long-

range interactions are shown as spheres. Residues are located in the C-terminal hairpin (red) and 

loop region (gray). Structure visualized using RasMol Ver. 2.7.2.1.1. 

 

 

To further explore the structural nature of the unfolding transition, snapshots of GB1 

were taken over the course of the simulation to visually assess the unfolding transitions. These 

snapshots are shown in Figure 29. The assessment of the long-range interactions during the 

simulations reveal that the two β-hairpins separate first at 52ns followed by movement of the α-

helix away from the main structure at 56ns. The N-terminal hairpin is next to unfold at 78ns 

followed by partial unfolding of the C-terminal hairpin at 107ns. 
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Figure 29. GB1 unfolding simulation snapshots. The N- and C-terminal hairpins are shown in 

blue and red, respectively. The central α-helix is shown in green. Loops and termini are in gray. 

The structures in (a-e) represent configurations from the third trajectory at time points: 0ns, 52ns, 

56ns, 78ns and 107 ns, respectively. Structures visualized using VMD 1.9.1. 

 

 

Previous computational studies revealed the preferential formation of the C-terminal 

hairpin during early folding in comparison to the N-terminal hairpin of GB1 [64, 70] suggesting 

that during an unfolding event the C-terminal hairpin would be the most persistent. It is also 

likely that the C-terminal hairpin acts as a structurally stable element for helix docking [67]. The 

formation of the C-terminal hairpin is characterized by the long-range hydrophobic interaction 

between Trp43 and Phe52 [68], one of the nine persistent long-range interactions in the present 

study. Further evidence using MD analysis suggests the conformation of the C-terminal hairpin 

determines whether the final structure will be properly folded [65]. Previous molecular dynamics 

simulations involving ten folding and unfolding events by Shaw et al. found that either hairpin 

could fold first for a redesigned variant of GB1 [187]. 
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Computational work, however advanced, ideally requires comparison to experimental 

research whenever possible. The computationally derived persistence data was then compared to 

experimental work done by Baker and coworkers [81]. These researchers experimentally 

determined ΔΔG values based on site-directed mutagenesis. 

ΔΔG is a measure of the stability of the mutated protein against the wild-type. Residues 

that resulted in ΔΔG values greater than 0.3 kcal mol-1 were found to be important for the 

stability of GB1. The three residues with the highest ΔΔG values within the C-terminal hairpin, 

Tyr45, Phe52, and Val54, are involved in two-thirds (6 of 9) of the persistent long-range 

interactions we identified in the unfolding simulations of GB1. Thus, there seems to be a 

correlation between ΔΔG, and residues involved in persistent long-range interactions (Figure 28) 

indicating that they are important for protein stability. Additional experimental work by Bu et al. 

revealed that three residues (Phe30, Tyr45, and Phe52) were key to stability [73]. Two residues 

are located in the C-terminal hairpin and one residue is located in the central helix. We also 

identified these residues and detailed their stabilizing interactions. Idiyatullin et al. show 

experimentally, the locations of residues with the highest internal motion activation energy, 

which equates to stability [195]. They are located in strands 1, 3, and 4 as well as part of the 

helix, which in our present work are also the more stable elements. However, we are uniquely 

able to monitor stability at the level of individual long-range interactions during the entire 

unfolding process. 

Our results were further compared to the experimental work of Orban and co-workers 

[83, 84, 196, 197]. This research involved mutating two proteins, the albumin binding domain of 

protein G (GA) and GB1, to near identical sequences (95%) while maintaining their distinct 3D 

folds. In three rounds of mutations, residues were mutated from the GB1 sequence to GA and 
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vice versa. The total number of mutations made to the GB1 sequence was 20. When compared to 

our data only one of the 20 mutated residues (Glu42) was found to be involved in persistent 

long-range interactions (Figure 30(a)). This research ultimately led to the seminal discovery that 

three critical residues were responsible for fold-switching, Ala20, Phe30, and Tyr45. One of the 

three critical residues (Tyr45) was found to be involved in persistent long-range interactions 

(Figure 30(b)). These findings further support our proposal that the residues comprising 

persistent long-range interactions in GB1 are important for structural stability of the protein. 

 

 

 

Figure 30. Select experimental studies of GB1. (a) Residues mutated by Orban and co-

workers. The mutated residues are shown with numbered spheres. Residue 42 located in the C-

terminal hairpin is shown in red and is persistent. (b) Fold switching residues in GB1. Residue 45 

located in the C-terminal hairpin is shown in red and is persistent [83, 196, 197]. (c) Residues 

with high Φ-values (Asp46, Asp47, Thr49) are shown as numbered spheres [81]. Structures 

visualized using RasMol Ver. 2.7.2.1.1. 
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Lastly, our data was compared to Baker and co-workers Φ-value analysis [81]. Φ-values 

can range from zero to one with values closer to one indicating the residue is structured in the 

transition state. The three residues with the highest Φ-values make no long-range interactions 

within the protein, only short-range interactions and are in the turn of the second hairpin (Figure 

30(c)). This suggests that residues involved in persistent long-range interactions are not the most 

important for the TS during folding as other residues within GB1. However, two residues with 

moderate Φ-values (Tyr45 and Thr51) are involved in persistent long-range interactions. 

 

SAMP1 Persistence 

The RMSDs of the three SAMP1 unfolding simulations were plotted as a function of time 

(Figure 26(b)). As in the case of GB1, these simulations used the same dynamics parameters, yet 

distinct RMSD values over the course of the simulations were observed. Further, the RMSDs are 

fluctuating indicating that SAMP1 is undergoing many unfolding and folding events but the 

overall RMSDs are trending upward indicating that the protein is unfolding over the course of 

the simulations. 

The persistence of the 155 long-range interactions in SAMP1 was measured over the 

course of each simulation and averaged. The averaged persistence values were plotted versus 

time and are shown in Figure 31. The most persistent long-range interactions clearly separate 

themselves from the total population and are mostly blue. Specifically, 20 of 155 or 13% of the 

long-range interactions within SAMP1 are persistent. Unlike GB1 however, these 20 interactions 

are located in the N-terminal hairpin (Figure 32). 

To further explore the structural nature of the unfolding transition, snapshots of SAMP1 

were taken over the course of the third simulation to visually assess the unfolding transitions. 
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These snapshots are shown in Figure 33. The assessment of long-range interactions during the 

simulations reveal that the extra secondary elements, not present in GB1, move away from the 

main structure at 24ns followed by movement of the α-helix away from the main structure at 

42ns. The C-terminal hairpin is next to unfold at 44ns followed by the separation of the hairpins 

at 48ns. Lastly, the N-terminal hairpin partially unfolds at 80ns. 

 

 

 

Figure 31. Persistence of long-range interactions in SAMP1. Interactions within the N- and C-

terminal hairpins are shown in blue and red, respectively. Interactions between the central α-

helix and either hairpin are shown in green. Interactions between the hairpins are shown in 

purple. Interactions involving loop regions and extra secondary elements are shown in gray and 

yellow, respectively. Data plotted using SigmaPlot 12.5. 
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Figure 32. Persistent long-range interactions in SAMP1. Residues involved in persistent long-

range interactions are shown as spheres. gray, yellow, and blue residues are located in loops, an 

α-helix, and the N-terminal hairpin, respectively. Residues 84-87 removed for visual clarity. 

Structure visualized using RasMol Ver. 2.7.2.1.1. 
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Figure 33. SAMP1 unfolding simulation snapshots. The N- and C-terminal hairpins are shown 

in blue and red, respectively. The central α-helix is shown in green with the two additional 

helical segments in yellow. Loops and termini are in gray. The structures in (a-f) represent 

configurations from the third trajectory at time points: 0ns, 24ns, 42ns, 44ns, 48ns, and 80ns, 

respectively. Structures visualized using VMD 1.9.1. 

 

 

A comparative analysis of the structural nature and stability of these proteins was 

performed by creating a long-range consensus network of GB1 and SAMP1 and plotting these on 

a contact map (Figure 34). The analysis revealed 57 long-range interactions in common between 

the two structures. These interactions are predominately located within and between each of the 

hairpins. These results seem to indicate that β-hairpin and β-sheet formation is critical in 

maintaining the overall shape and stability of this topology. 
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Figure 34. Long-range interaction contact maps of (a) GB1 and (b) SAMP1. The use of color 

(other than black) indicates a common interaction in both proteins. Interactions within the N- and 

C-terminal hairpins and between them are shown in blue, red, and purple, respectively. Green 

indicates interactions between the central α-helix and either hairpin. Interactions in extra 

secondary elements and loops are shown in yellow and gray, respectively. Data plotted using 

Microsoft Excel 365. 
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To address the nature of the forces that shift the local stability profile and kinetics from 

one hairpin to another we analyzed short- and long-range hydrophobic interactions involving 

residues that are in the core (90% buried) or peripheral to it (60-90% buried). Throughout the 

simulations we find that the bias in the native patterning of hydrophobicity in the core and 

periphery plays a central role. Here, destabilization of the core in layers facilitates unfolding of 

the protein. We also propose that transient non-native interactions (salt bridges and hydrophobic 

interactions) play a fundamental role in unfolding, which has received little recognition in the 

protein folding field (data not shown). In GB1, we propose the C-terminal hairpin is more stable 

than its N-terminal hairpin for several reasons. Within the C-terminal hairpin, there are three 

long-range hydrophobic interactions (Figure 35(a)) that have an average persistence of 88% in 

the MD simulations (Figure 35(b)). Within the N-terminal hairpin of GB1, one long-range and 

one short-range hydrophobic interaction (Figure 35(a)) have an average persistence of 26% and 

34%, respectively (Figure 35(b)). This outcome is due to the fact that the central region of the 

second strand in the N-terminal contains no hydrophobic residues. However, the ends do have 

hydrophobic residues: Leu and Ala. Interestingly, there are weaker long-range interactions 

between the N-terminal hairpin and the loops with a persistence of 17% (Figure 35(c)). Thus, the 

C-terminal hairpin has stronger and more central interactions. Therefore, location of the 

hydrophobic residues is also key to conferring structural stability. 
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Figure 35. Persistence in the hydrophobic core and peripheral core of (a-c) GB1 and (d-f) 

SAMP1. (a, d) long-range (black solid lines) and short-range (black dashed lines) hydrophobic 

interactions in the N-terminal (blue) and C-terminal (red) hairpins. Residues 84-87 of SAMP1 

removed for visual clarity. (b, e) Persistence of long-range (solid lines) and short-range (dashed 

lines) hydrophobic interactions in the N-terminal (blue) and C-terminal (red) hairpins. (c, f) 

persistence of long-range (solid lines) hydrophobic interactions between a residue in a hairpin 

and a residue in a loop. N-terminal and C-terminal hairpins are shown in light blue and orange, 

respectively. Structures visualized and data plotted using RasMol Ver. 2.7.2.1.1 and Microsoft 

Excel 365, respectively. 
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The hairpins are also further stabilized through interactions with the central helix, which 

is an integral part of the hydrophobic core (Figure 36(a)). In GB1, both hairpins are interacting 

with the central helix. In the N-terminal hairpin, the four long-range interactions with the helix 

involve residues in the first strand and have an average persistence of 25%. The one short-range 

interaction, containing a residue in strand two, has a persistence of 58%. Both strands of the C-

terminal hairpin have interactions with the helix There are seven long-range interactions, and 

they have an average persistence of 29%. Thus, fewer persistent contacts and the fact that only 

one strand of the hairpin interacts with the helix indicates that N-terminal hairpin has weaker 

interactions with the hydrophobic core, making it susceptible to unfolding first. 
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Figure 36. Persistence between the hairpins and central α-helix of (a) GB1 and (b) SAMP1. (a, 

b) Persistence of long-range (solid lines) and short-range (dashed lines) hydrophobic interactions 

in the N-terminal (blue) and C-terminal (red). (c) persistence of long-range (solid lines) 

hydrophobic interactions between residues in the loop of the C-terminal hairpin and the central 

α-helix. Data plotted using Microsoft Excel 365. 

 

 

Within the N-terminal hairpin of SAMP1 are five hydrophobic interactions (Figure 35(d)) 

that have an average persistence of 59% in the MD simulations (Figure 35(e)). One long-range 

interaction exists between the N-terminal hairpin and a loop with a persistence of 56% (Figure 

35(f)). Within the C-terminal hairpin of SAMP1 are two hydrophobic interactions (Figure 35(d)) 

that have an average persistence of 37% (Figure 35(e)) in the MD simulations. Two weak long-

range interactions exist between the C-terminal hairpin and a loop with an average persistence of 

30% (Figure 35(f)). 
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As in GB1, the central helix has a stabilizing effect on the two hairpins in SAMP1 

(Figure 36(b)). The N-terminal hairpin contains eight hydrophobic interactions with the central 

α-helix that have an average persistence of 37%. The C-terminal hairpin contains seven long-

range hydrophobic interactions with the central α-helix. Four involve residues in strand four, one 

involves a residue in strand three, and two residues are in a loop (Figure 36(c)). The average 

persistence values are 21%, 28%, and 15%, respectively. The stabilizing hydrophobic 

interactions with the N- and C-terminal hairpins of both proteins are listed in Table 3. 

 

 

Table 3 Hydrophobic core and peripheral core interactions in GB1 and SAMP1. Italics indicate 

short-range interactions 

GB1 SAMP1 
Tyr3 - Ala20 Met1 - Val18 
Leu7 - Leu12 Met1 - Val20 
Trp43 - Phe52 Trp3 - Val18 
Trp43 - Val54 Trp3 - Val20 
Tyr45 - Phe52 Leu5 - Val18 

 Val59 - Ala79 
  Val59 - Leu80 

 

 

As we find with GB1’s strand two, SAMP1’s strand three is weakly associated with the 

hydrophobic core. Thus, this is in large part the reason for the swapping of stability in the 

symmetrical proteins. 

Comparing our results to a homologue of GB1, protein L, which has been studied 

experimentally using Φ-value analysis, indicates the N-terminal hairpin of protein L forms early 

[198]. Interestingly, in this protein, unlike GB1, the most stable region is the N-terminal hairpin. 
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This finding is analogous to what we find in the computational studies of SAMP1. However, ψ-

value studies support the β-sheet comprised of both the N- and C-terminal hairpins forming 

early. Interestingly, the computational MD work of Cheng and co-workers have simulated 

transitions state structures that accommodate both of these experimental results [64]. 

Additionally, several other research investigations reveal that the N-terminal hairpin is the earlier 

hairpin to become structured [198, 199]. 

 

SUMMARY 

The results of the comparative study with GB1 and SAMP1 reveal that either of the two 

β-hairpins can be the most stable. This is in large part due to the polarization of the hydrophobic 

cores and location of key long-range interactions. GB1 contains a hydrophobic core comprised of 

select residues with low solvent accessibility that is polarized toward the C-terminal hairpin. 

Conversely, SAMP1 contains a hydrophobic core comprised of select residues with low solvent 

accessibility that is polarized toward the N-terminal hairpin. Thus, the location of the 

hydrophobic core and select long-range interactions and the hydrophobic forces therein appears 

to lend itself to the preferential stability of one hairpin over the other as seen in the native state. 

The unfolding simulations uniquely allowed an in-depth investigation into the unfolding process 

and governing forces. When coupled to the results from previous studies of protein L, it is clear, 

that symmetrical stability is a central feature of the β-grasp fold. 
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CHAPTER Ⅳ 

EFFECTS OF IONIC STRENGTH ON FOLDING AND STABILITY OF A 

HALOPHILIC PROTEIN 

 

OVERVIEW 

The research presented in this chapter focuses on a halophilic protein, the small archaeal 

modifier protein 1 (SAMP1), within the β-grasp fold superfamily. In the field of protein 

biochemistry, far less is known about the thermodynamic and kinetic behavior of halophilic 

proteins in comparison to mesophilic proteins. Thus, a deeper understanding can provide a 

clearer view of the determinants of folding and stability [200-205]. Halophilic proteins have a 

number of unique features such as a larger number of acidic residues which is consistent with 

analysis of SAMP1 (Table 4) [206]. Aspartic acid and glutamic acid residues are also considered 

two of the prebiotic residues [207]. Halophilic proteins are attractive models for study as a high 

salt environment is considered one of the potential primordial conditions in which proteins first 

evolved [207]. Halophiles are also thought to be particularly adaptive to changing temperature 

and pH conditions which would have been a favorable feature in an evolving world [206]. 

Interestingly, a study conducted towards investigating the evolution of halophiles to mesophiles 

revealed that incorporating an aromatic residue, which is not considered a primordial amino acid, 

in the core of a designed primitive protein, converted the folding behavior from halophilic to 

mesophilic conditions [207]. The formation of the essential peptide bond is also considered more 

favorable under high salt [207-209]. 
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Figure 37. Structures of select β-grasp superfamily members. (a) GB1, (b) protein L with 

residues 1-14 removed, (c) SAMP1, and (d) ubiquitin. PDB codes are 1PGB, 2PTL, 3PO0, and 

1UBQ, respectively. α-helices and β-strands are shown in magenta and yellow, respectively. 

Structures visualized using RasMol Ver. 2.7.2.1.1. 

 

 

Here I present the results of experimental folding and unfolding studies conducted using 

SAMP1 from Haloferax volcanii [194]. While sharing the same fold as GB1, ubiquitin, and 

protein L, it differs in sequence length and contains additional helical secondary structure (Figure 

37). SAMP1 is more closely related in structure and sequence to ubiquitin (Table 4). SAMP1 has 

very interesting features in contrast to other β-grasp superfamily members studied thus far. As a 
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protein expressed by a halophile, it evolved to fold and maintain its stability at higher salt 

concentrations. It is therefore more stable and highly structured in comparison to GB1, protein L, 

and ubiquitin, which is expected of halophilic proteins [206]. 

 

 

Table 4 Characteristics of β-grasp superfamily members. 

  GB1 Protein L Ubiquitin SAMP1 
Sequence Length 56 78 76 87 

Number of Secondary 
Elements 5 5 7 7 

Number of Positive Residues 6 8 (7)a 11 5 
Number of Negative 

Residues 10 17 (8)a 11 17 

Relative Contact Order 0.17 0.18 0.15 0.14 
Absolute Contact Order 9.70 11.13 11.47 12.47 

ln(kf) 6.00c 4.10b 5.90d 
3.41 (1.0 M NaCl) 

0.202 (0.3 M NaCl) 
-0.675 (0.1 M NaCl) 

 Percent Identity and RMSD GB1 Protein L Ubiquitin SAMP1 

GB1 100 10 7 2 
0 2.5 3.1 3.1 

Protein L 10 100 7 6 
2.5 0 4 4.1 

Ubiquitin 7 7 100 8 
3.1 4 0 2.5 

SAMP1 
2 6 8 100 

3.1 4.1 2.5 0 
a The number shown in parenthesis is lower when the long intrinsically  

disordered tail is not included (residues 1-17). 
b Folding rate based on a protein length of 63 residues [210, 211]. 
c ln(kf) obtained from [212]. 
d ln(kf) obtained from [212, 213]. 
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The results of folding studies revealed that SAMP1 folds faster at high versus low ionic 

strength. With little information on the folding of halophilic proteins this study also provided the 

opportunity to examine the folding behavior near the solubility point of NaCl at 25°C. A 

comparison of SAMP1 to the folding kinetics mechanisms of GB1, ubiquitin, and protein L 

provides greater insight into the underlying nature of the β-grasp protein fold. 

 

MATERIALS AND METHODS 

Materials and Equipment 

The buffer for the protein study was composed of a mixture of mono- and di-basic 

sodium phosphate and sodium chloride from Fisher Scientific (Pittsburgh, PA). Ultrapure urea 

for protein unfolding was obtained from MP Biochemicals, Inc. (Solon, OH). The studies with 

Escherichia coli BL21(DE3) to produce the protein included Luria-Bertani media (LB) and 

isopropyl β-D-thiogalactoside (IPTG). The protein was purified using a Ni-NTA column (GE 

Healthcare). Equilibrium fluorescence was conducted using a PTI QM-2000 spectrofluorometer 

(Photon Technology International, Inc., South Brunswick, NJ). Folding and ultrafast folding 

kinetics were conducted using a SX-20 stopped-flow instrument (Applied Photophysics, Ltd., 

Leatherhead, U.K.) and an in-lab built continuous flow mixer [214], respectively. Circular 

dichroism was conducted using a JASCO J-815 spectropolarimeter. 

 

Protein Expression and Purification 

The recombinant plasmid (pET-22b(+)) containing the SAMP1 gene cloned in the Nde 

I/Xho I sites was used for expression of the SAMP1 protein [215]. It was transformed into E. coli 

BL21(DE3) and the cells grown in LB at 37 °C to an OD600 of 0.8. Expression of the 
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recombinant protein was induced at 16 °C for 20 hours using 0.5 mM IPTG. The cells were 

harvested by centrifugation at 4 °C, 4000 g for 10 mins, and were resuspended with lysis buffer 

(20 mM Tris, 400 mM NaCl, 5 mM imidazole, pH 7.8). Cells were lysed by sonication and the 

lysate was cleared by centrifugation at 4 °C, 15000 g for 30 mins. The supernatant was collected 

and passed through a Ni-NTA column and the column was washed with 30 ml wash buffer (20 

mM Tris, 400 mM NaCl, 70 mM imidazole, pH 7.8). The recombinant protein, including an N-

terminal Leu-Gln-His6 sequence, was eluted with elution buffer (20 mM Tris, 400 mM NaCl, 70 

mM imidazole, pH 7.8) and dialyzed in buffer containing 10 mM Tris, 50 mM NaCl pH 7.5. 

These studies were performed by my collaborator Dr. ShanHui Liao at the University of Science 

and Technology of China. 

 

Equilibrium Unfolding Monitored by Fluorescence 

Urea-induced equilibrium fluorescence of SAMP1 was measured in 50 mM sodium 

phosphate, pH 7.0, with varying amounts of NaCl: 100 mM, 300 mM, and 1.0 M. Trp 

fluorescence was monitored using a PTI QM-2000 spectrofluorometer. All experiments were 

conducted with 2 µM protein at 20°C and three wavelength scans were collected for each 

concentration. Excitation and emission wavelengths were 290 nm and 300-450 nm, respectively. 

Slit widths were 1 nm for excitation and 6 nm for emission. The complete 2D data set 

(fluorescence vs. urea concentration and wavelength) was fitted to a 2-state model using a global 

fitting procedure in Igor Pro, ver. 6.37 (WaveMetrics, Inc), as described in Latypov and in Maki 

[216, 217]. These studies were completed at the Fox Chase Cancer Center in Philadelphia, PA in 

collaboration with Drs. Heinrich Roder and Takuya Mizukami.  
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Folding Kinetics Monitored by Fluorescence 

All data were acquired at 20 oC in 0.1 M sodium phosphate buffer (pH 7.0) containing 

varying concentrations of sodium chloride. An in-lab built continuous flow mixing instrument 

comprising a microfluidic mixer with a mixing time of ~10 µs and a 266 nm DPSS laser 

(Mizukami et al., in preparation) was used to monitor fluorescence changes associated with the 

kinetics of folding and unfolding of SAMP1 on the sub-millisecond time scale. Tryptophan 

fluorescence emission was measured using a 310 nm cut-on filter. The observation channel had a 

depth of 0.2 mm and a variable width from 0.15-0.6 mm. For folding/unfolding measurements on 

a time scale of ~1 ms and longer we used an Applied Photophysics SX-20 stopped flow 

instrument equipped with a 1 mm cuvette. Tryptophan fluorescence was excited at 290 nm and 

emission was monitored using a 310 nm cut-on filter. The final protein concentration in stopped-

flow and continuous flow experiments was 1.1 and 2.0 µM, respectively. The folding data from 

the different urea and salt concentrations were fitted to a 2-state and 3-state model following a 

global fitting procedure in Igor Pro, ver 6.37 (WaveMetrics, Inc). These studies were completed 

at the Fox Chase Cancer Center in Philadelphia, PA in collaboration with Drs. Heinrich Roder 

and Takuya Mizukami. Kinetics figures were constructed from data acquired with Dr. Takuya 

Mizukami. 

 

Circular Dichroism 

Near- and far-UV circular dichroism spectra were obtained for SAMP1 using a Jasco J-

815 spectropolarimeter under native and denatured conditions, 50 mM sodium phosphate and 50 

mM sodium phosphate/6.0 M guanidinium chloride, respectively, for both low salt, 62.5 mM, 
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and high salt, 962.5 mM conditions at 20.0 °C. A 1 cm and 0.1 cm cuvette were used for near- 

and far-UV CD, respectively. Relevant IBC protocol numbers are 16-005 and 17-010. 

 

Computational Studies 

Native protein structures were analyzed and visualized using Chimera for electrostatics 

and VMD (v. 1.9.1) for salt bridges using a 4.0 Å cutoff. SAMP1 unfolding simulations were 

conducted as described in Bedford et al. [218]. Salt bridges in the MD trajectories were 

calculated using VMD (v.1.9.1) using a 4.0 Å cutoff. To calculate relative and absolute contact 

order, the website developed by Plaxco and Baker was used. 

https://depts.washington.edu/bakerpg/contact_order/contact_order.cgi 

 

RESULTS AND DISCUSSION 

Circular Dichroism 

Figure 38 presents an equilibrium analysis of SAMP1 monitored by near- and far-UV 

CD. The results suggest that at high ionic strength SAMP1 is more structured than at low ionic 

strength as evidenced by the difference in molar ellipticity of the near-UV CD spectra, 

particularly around the Phe residues (wavelengths 255-270 nm) [147]. 
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Figure 38. Circular dichroism spectra of SAMP1. SAMP1 at 62 mM NaCl (blue) and 965 mM 

NaCl (red) under native (dotted-line) and denatured (solid-line) conditions. Panels (a) and (b) are 

near- and far-UV CD, respectively. 

 

 

Analysis of electrostatic interactions 

We also analyzed the electrostatic interactions of SAMP1 at both high and low ionic 

strength. The surface potential of SAMP1 at high-ionic strength was calculated using the 
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Coulombic model in Chimera (Figure 39). Most of the surface is negative with only a couple 

small patches of net positive charge. A salt bridge analysis utilizing VMD with a cutoff distance 

of 4.0 Å [219] on the native crystal structure revealed two valid results, Glu70-Arg61, Asp76-

Arg61. Upon visual analysis it appears there may also be a third salt bridge present, Glu2-Arg19. 

In comparison, both GB1 and ubiquitin contain three salt bridges in their native states while 

protein L contains none. 

 

 

 

Figure 39. Surface potential of the high-ionic strength form of SAMP 1 (PDB code: 3PO0). 

Red, white, and blue indicate negative, neutral, and positive surface potential, respectively. 

Surface potential was calculated using the coulombic model in Chimera 1.14. 
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In another study, monitoring the salt bridges during the unfolding of SAMP1 by 

molecular dynamics simulations at high temperature reveals that Glu70-Arg61 and Asp76-Arg61 

are lost early in the 120 ns simulation at approximately 20 ns and 35 ns, respectively. The third 

possible salt bridge, Glu2-Arg19, is maintained for approximately 70 ns and then abruptly 

breaks. Interestingly, between the three simulations there are 58 transient salt bridges formed 

during the unfolding process (Table 5). Details of the unfolding simulations using molecular 

dynamics can be found in Bedford et al. [218]. 

 

 

Table 5 Transient salt bridges formed during all three SAMP1 unfolding simulations. 

Salt Bridges 
Asp-Arg16 Asp25-Lys4 Asp50-Arg61 Glu2-Lys4 Glu64-Arg61 
Asp8-Arg45 Asp30-Arg16 Asp55-Arg16 Glu11-Arg16 Glu64-Lys4 
Asp8-Lys4 Asp30-Arg19 Asp55-Arg19 Glu11-Arg19 Glu70-Arg16 
Asp21-Arg16 Asp30-Arg61 Asp55-Arg45 Glu11-Arg45 Glu70-Arg19 
Asp21-Arg19 Asp33-Arg16 Asp76-Arg16 Glu11-Lys4 Glu70-Arg61 
Asp21-Arg61 Asp33-Arg19 Asp76-Arg19 Glu43-Arg16 Glu70-Lys4 
Asp23-Arg16 Asp33-Arg61 Asp76-Arg61 Glu43-Arg45 Glu77-Arg16 
Asp23-Arg19 Asp33-Lys4 Asp76-Lys4 Glu43-Lys4 Glu77-Arg19 
Asp23-Arg61 Asp49-Arg19 Glu2-Arg16 Glu52-Arg16 Glu77-Arg61 
Asp25-Arg16 Asp49-Arg45 Glu2-Arg19 Glu52-Arg45 Glu77-Lys4 
Asp25-Arg19 Asp49-Lys4 Glu2-Arg45 Glu52-Lys4  
Asp25-Arg61 Asp50-Arg45 Glu2-Arg61 Glu64-Arg19   

 

 

Folding and Unfolding Studies 

The fluorescence changes at a representative wavelength associated with urea-induced 

unfolding and refolding of SAMP1 at NaCl concentrations of 0.1, 0.3, and 1.0 M are shown in 

Figure 40. Folded and unfolded populations that were obtained by a global fit of a two-state 
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model at each salt concentration are shown and parameters characterizing these transitions are 

listed in Table 6. 

 

 

Table 6 m-values at corresponding sodium chloride concentrations. 

[NaCl]/M m(kcal/mol·M) 
  No constraints Global baselines Global m-value 

0.1 0.645 1.737 
0.859 0.3 1.370 0.938 

1.0 0.937 0.740 
 

 

The observed increase in the mid-point concentration of the unfolding transitions, Cm, 

with increasing salt concentration indicates that the folded state is strongly favored at higher 

ionic strength (Figure 40). m-values are calculated in order to understand the change in 

accessible surface area of the transition state (Table 6). If the low-salt state, M, is less compact 

than the high-salt state, N, then we should have m(low-salt) < m(high-salt). However, we if fact 

observed that m(0.1 M NaCl) < m(1.0 M NaCl) < m(0.3 M NaCl). 
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Figure 40. Equilibrium population at 100 mM (blue), 300 mM (orange) and 1.0 M (red) NaCl 

estimated by fluorescence spectroscopy. The solid and dashed lines show the population of 

native and unfolded states, respectively. Data plotted using SigmaPlot 12.5. 

 

 

This is also evident in Figure 41, which shows that as salt concentration increases the 

denaturation midpoints of the chevron plots also increase. Chevron plots are constructed by 

combining two rate constants as shown in equation 17. When combined they form a V-shaped 

curve [220]. 

ln 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏 = ln (𝑘𝑘𝑜𝑜
𝐻𝐻2𝑂𝑂 exp �−𝑚𝑚𝑘𝑘𝑓𝑓[𝐻𝐻𝐴𝐴𝑛𝑛𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡]� + 𝑘𝑘𝑠𝑠

𝐻𝐻2𝑂𝑂exp (𝑚𝑚𝑘𝑘𝑢𝑢[𝐻𝐻𝐴𝐴𝑛𝑛𝑟𝑟𝑡𝑡𝑑𝑑𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡])               (17) 

The data reveals that the structure at high ionic strength (1.0 M) folds more rapidly. 
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Figure 41. Chevron plots of stopped-flow experiments done at medium speeds at [NaCl] of 

100 mM (blue), 300 mM (orange), 1.0 M (red). The lines show fitting curves to a two-state 

model. Data plotted using SigmaPlot 12.5. 

 

 

The salt dependence on the free energy landscape was calculated and plotted in Figure 

42(a). The results show that as sodium chloride concentration increases, protein stability 

increases. The Tanford β value was then applied to better understand the rates for denaturation 

unfolding. βT is a measure of the degree of exposure of the transition state relative to the native 

and unfolded states and is therefore a good indicator of the compactness of the transition state 

[220]. Figure 42(b) shows that the protein structure becomes more compact as it folds. 



87 
 

 
 

 

Figure 42. Salt dependence of the free energy landscape and Tanford β value. The three colors 

represent different NaCl concentrations: 100 mM (blue), 300 mM (orange) and 1.0 M (red) 

NaCl. Panel (a) shows the free energy calculations for each state (U = unfolded state, TS1 and 

TS2 are the two transition-states, M is the near native state and N = native state. Panel (b) graphs 

the βT-value against the U, TS1, M, TS2 and N-states. Data plotted using SigmaPlot 12.5. 

 

 

A salt concentration dependent study examining folding rates was conducted by 

monitoring the change in fluorescence intensity over time by using continuous-flow and stopped-

flow fluorescence (Figure 43). The reaction was initiated by the salt-jump to the target NaCl 

concentration and by the dilution of urea concentration from 4.0 M to 0.36 M. The salt induced 

folding is a triphasic reaction. The kinetic traces show a minor increasing phase in the sub-

millisecond time window followed by a fast major decreasing phase and a slow minor decreasing 

phase. The rate constant of the major phase, which is within the same order of magnitude, well 

matches the data obtained from stopped-flow shown in Figure 41. The results indicate that as the 

concentration of salt increases, the folding rate of the dominant phase increases up to 2.0 M NaCl 
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followed by a small decrease, indicating that the reaction reaches the upper rate limit around 300 

s-1 in the presence of high salt (Figure 43 and Table 7). 
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Figure 43. Salt-dependence on folding rates. The salt-induced folding kinetics is initiated by 

salt-jump and/or urea-jump by the continuous flow and stopped-flow fluorescence. The three rate 

constants measured are plotted as a function of salt concentration. The rate constant of the fastest 

rising phase observed in the continuous flow experiments is shown as red circles. The second 

fastest rate constant of the major decreasing phase observed in the stopped flow experiments is 

shown in green, while the slowest minor phase in blue. The green circles at 0.1, 0.3 and 1.0 M 

NaCl are obtained from the chevron plots shown in Figure 41. Data plotted using SigmaPlot 

12.5. 
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Table 7 Salt-dependence on folding rates. 

[NaCl]/M k1/s-1 
k2/s-1 

k3/s-1 
Observed Extrapolated 

to 0M urea 
0.1 - 0.46a 0.51b - 
0.3 - 0.81a 1.22b - 
0.6 - 2.92 - - 
1.0 - 15.9a 30.3b - 
1.5 0.37 X 104 110 - 20 
2.0 0.41 X 104 254 - 45 
2.5 0.73 X 104 440 - 36 
3.0 0.82 X 104 469 - 31 
3.6 1.94 X 104 350 - 23 
4.5 3.38 X 104 282 - 21 

a The rate constants are obtained at the lowest urea concentration (0.36 M) of the chevron 
plot experiments. 
b The rate constants are obtained by extrapolating the fitting results of chevron plots to 
the 0.0 M urea. 

 

 

There is limited knowledge of how extremophiles, particularly halophiles, fold and 

stabilize their native structure. The equilibrium unfolding data showed that with increasing salt, 

the protein becomes more structured and more stable, thus the more urea needed for unfolding. A 

limitation was reached where the studies could not go above 10.0 M urea due to solubility issues. 

In terms of Debye-Huckel screening of the large number of unfavorable interactions among 

acidic side chains, stability increases strongly with increasing salt concentration. For example, 

the FynSH3 domain, contains a negatively charged cluster on its surface, and its mutant are 

approximately 1-2 kcal/mol stable at low salt concentrations due to unfavorable electrostatic 
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repulsion. The FynSH3 domain is stabilized to approximately 4 kcal/mol at high salt 

concentrations due to the screening effect of unfavorable interactions [221]. Similarly, the 

stability of SAMP1 increases from 0.06 kcal/mol at 100 mM NaCl to 3.14 kcal/mol at 1.0 M 

NaCl, indicating that changes in stability due to salt concentration is a common property of 

highly charged proteins. 

In addition to equilibrium studies, kinetic behavior can be directly understood through the 

use of stopped-flow. Continuous flow experiments are performed only at higher sodium chloride 

concentrations because the kinetic amplitude of the fastest phase becomes smaller at lower 

concentrations of sodium chloride. Stopped-flow data was obtained by refolding SAMP1 at 

sodium chloride concentrations of 0.1 M, 0.3 M, and 1.0 M sodium chloride. The kinetic data 

was fit to a chevron plot that enables a direct evaluation of rate versus urea concentration under 

the different salt concentrations. Folding branches of the chevron plots for 0.1 M and 0.3 M 

NaCl are short compared to 1.0 M NaCl. The denaturation midpoints for 0.1 M and 0.3 M NaCl 

occur between 0.0 M and 2.0 M urea while the midpoint for 1.0 M NaCl occurs at approximately 

4.0 M urea. This indicates that SAMP1 is more stable at higher salt concentrations. Low-salt 

conditions (0.1 M NaCl) show a roll-over in the unfolding branch of the chevrons. This may be 

present at higher salt concentrations however data can only be obtained within the solubility 

range of urea. 

To gain insight into the relative changes in solvent-accessible surface area, βT was 

calculated for the rate-limiting transition state and the intermediate by normalizing the 

cumulative kinetic m-values with respect to the equilibrium m-value. In the absence of 

denaturant, the crossing of the first transition state (TS1) forms the intermediate (M), this is the 

rate-limiting step during refolding. The steep change in the βT value from the unfolded state to 
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TS1 indicates that early folding steps include chain compaction followed by structural 

optimization (fine-tuning). 

Relative and absolute contact order were calculated and can be found in Table 4. Both are 

correlated with folding rates, however relative contact order is normalized to the protein’s 

sequence length [16, 220]. It is expected that proteins with small contact orders will fold quicker 

due to increased local over non-local interactions [16]. SAMP1 has the smallest relative contact 

order and the highest absolute contact order, which is not normalized by sequence length. 

However, it has the slowest folding rate in comparison to GB1, protein L, and ubiquitin (Table 

4). Through this study, we can also ascertain the optimal rate of folding for this family of 

proteins determined by chain topology and contact order. 

Structural studies using several proteins from halophilic organisms have been studied at 

both high- and low-ionic strength [201-205]. These studies are in agreement with our 

observations that SAMP1 exhibits increased structural stability at high- versus low-ionic 

strength. 

More specifically, Muller-Santos et al. found, using CD, that an esterase from 

Haloarcula marismortui was completely unfolded in a salt-free medium. Using pH end point 

titration, they also determined that the enzyme had no activity. Upon increasing the NaCl 

concentration to 2.0 M they observed an increase in helical structure and an increase in specific 

activity, indicative of a folded protein structure [201]. Miyashita et al. found using CD that 

dihydrofolate reductase from Haloarcula japonica is only partially structured in the absence of 

salt but increasing the concentration to 0.5 M induced significant structural formation [202]. 

Additionally, this protein was stabilized for thermal and urea-induced unfolding. Ishibashi et al. 

found that nucleoside diphosphate kinase from Halobacterium salinarum contained more 



92 
 

 
 

secondary structure in 3.8 M salt versus 0.2 M and that increasing the salt concentration from 0.2 

M to 3.8 M progressively stabilizes the protein [203]. Additionally, the melting temperature of 

the protein is reduced by 30 degrees at 0.2 M salt vs 3.8 M. You et al. found using CD that 

RNase H1 from Halobacterium sp. NRC-1 requires at least 2.0 M salt for folding and that at 

low-salt concentrations the protein is only partially folded [204]. Additionally, they found that 

increasing the salt concentration from 0.0 M to 3.0 M raises the fraction of protein in the native 

state from 0 to 100 percent. Pundak and Eisenberg found using CD that malate dehydrogenase 

from a halophilic bacterium found in the Dead Sea begin to lose ellipticity at NaCl 

concentrations less than 1.0 M and below 0.5 M complete distortion of ellipticity occurred [205]. 

They also measured enzyme activity and found that once the NaCl concentration is below 0.5 M 

all activity is lost. The results of these structural studies with these proteins are in agreement with 

our findings which suggest that SAMP1 is more structured at 965 mM NaCl than it is at 62.5 

mM. 

Bandyopadhyay and Krishnamoorthy studied the kinetics of the salt-dependent unfolding 

of the 2Fe-2S ferredoxin from Halobacterium salinarum using stopped-flow [222]. They 

concluded high salt confers stability of the native state against urea denaturation. They also 

concluded that unfolding in low salt appears to be a two-phase process with an intermediate. In 

our studies at 100 mM NaCl we see evidence of an intermediate at low salt where the protein is 

unstable (Figure 42(a)). With respect to folding kinetics, it appears there is only one 

comprehensive folding study on a halophilic protein, dihydrofolate reductase from Haloferax 

volcanii. Gloss et al. used manual mixing kinetics, stopped-flow, and 8-anilinonaphthalene-1-

sulfonic acid fluorescence to characterize the behavior of this protein [223]. They found that 

dihydrofolate reductase folding proceeds through three kinetic phases as monitored by Trp 
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fluorescence: a burst-phase and a fast phase detectable by stopped-flow and a slow phase 

requiring manual mixing. The results for SAMP1 also show three kinetic phases (Figure 43). 

 

SUMMARY 

The results of this research investigation provide an opportunity to examine the nature of 

the folding behavior of proteins from halophiles and supports the notion that proteins adapted 

and evolved to fold rapidly and correctly in a high saline environment. Thus, the observations 

revealing that the folding rates increase in high salt are reasonable. One finding of particular 

interest is based on an analysis of simulated unfolding trajectories using molecular dynamics, 

which revealed that 58 salt bridges are transiently present during the unfolding process of all 

three SAMP1 simulations whereas only four are present in the native state (Table 5). Therefore, 

salt bridges may play a more important role in protein dynamics than previously understood. 
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CHAPTER Ⅴ 

CONCLUSIONS AND FUTURE WORK 

CONCLUSIONS 

In the first aim, using bioinformatics approaches, we investigated which residues may be 

key determinants of this fold. We identified nine conserved amino acids based on the analysis of 

a structure-based sequence alignment. The conservation analysis considered amino acid identity, 

character, and side chain orientation. We propose that these conserved residues are important for 

forming and stabilizing the fold. The nine conserved residues form a predominantly hydrophobic 

nucleus within the core of GB1. A network analysis of all the long-range interactions in the 

structure of GB1 in concert with a BC analysis revealed the relative significance of each 

conserved amino acid residue based on the number and location of the interactions. Interestingly, 

the four residues which exhibited the greatest BC are conserved. This therefore shows correlation 

between the proposal that residues with high BC govern the network and conserved residues 

govern the formation of the network. These conserved residues with high BC are located on the 

central two strands of the four-stranded β-sheet and act as topological buttresses for the overall 

structure. This bioinformatics analysis provides an important foundation for the design and 

interpretation of both computational and experimental work for proteins in the β-grasp 

superfamily which may be helpful in solving the protein folding problem. 

In the second aim, two proteins within the β-grasp superfamily, GB1 and SAMP1, were 

investigated to elucidate the key determinants of structural stability at the level of individual 

long-range interactions. This type of interaction is the focus of the study because it is 

fundamental to tertiary structure and the least understood. What we find most interesting about 

the β-grasp fold is that it is symmetrical. The core structure is composed of two β-hairpins which 
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form a β-sheet flanked by a central α-helix. The proteins were subjected to high temperature 

molecular dynamics simulations and the detailed behavior of each native long-range interaction 

was characterized. The results revealed that in GB1 the most stable region was the C-terminal 

hairpin and in SAMP1 it was the opposite, the N-terminal hairpin. Experimental results for GB1 

support this finding. It appears that the difference in the location and number of hydrophobic 

interactions dictate the differential stability which is accommodated due to the structural 

symmetry of the β-grasp fold. Thus, the hairpins are interchangeable and in nature this lends 

itself to adaptability and flexibility when selective pressures occur. 

In the third aim, the folding behavior of SAMP1, which is a halophile found in Haloferax 

volcanii, from the Dead Sea was investigated. To gain insight into the effects of salt at low and 

high concentration near the saturation point, experimental protein folding studies were 

conducted. The results revealed that SAMP1 folds more rapidly at high- versus low-ionic 

strength. Further, studies conducted at high ionic strength provided insight into the folding 

behavior near the solubility limit of salt at 25 °C. Thus, these results clearly indicate that 

adaption at high salt produces rapid and less-frustrated folding. The results of these studies help 

to experimentally establish the folding and unfolding behavior of SAMP1 and help lay the 

foundation of future, more detailed, experimental studies. 

The results of these research aims provide insight into determinants of the highly 

populated β-grasp fold and folding and unfolding behavior of two key members. Perhaps the 

most surprising finding is the presence of a significant number of non-native long-range 

interactions during unfolding which has largely gone unnoticed in the scientific community since 

the study of protein kinetics and thermodynamics at atomic resolution began. These findings 
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together provide a solid foundation for advancement of the protein folding question and structure 

prediction. 

 

FUTURE WORK 

To ascertain a more complete picture of the underlying mechanisms and forces guiding 

the folding/unfolding process, folding simulations of GB1 should be analyzed in an identical 

manner as the unfolding simulations discussed in chapter three. Three simulations were donated 

by the Shaw research group to the Greene research group and were performed using the Anton 

supercomputer. They will complement the unfolding simulations to give a unified picture of the 

folding and unfolding behavior of GB1 as well as allow the role of the conserved residues in all-

atom folding simulations to be characterized. 

The transient salt bridges found in our unfolding simulations should be analyzed in 

greater detail in future work. They should also be analyzed in the Shaw folding simulations of 

GB1 to determine what role they may play in the folding process. These mercurial salt bridges 

were observed for both GB1 and SAMP1 in their respective unfolding simulations. The 

persistence of transient salt bridges during the unfolding of GB1 is shown in Figure 44. 
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Figure 44. Persistence of transient salt bridges in GB1. The top, middle, and bottom graphs 

seem to be the most to least persistent as grouped by visual analysis. Dotted lines in the top 

graph indicate native salt bridges and those found in loops. The colors are arbitrary and were 

used for distinguishability. Data plotted using Microsoft Excel 365. 

 

 

Specifically, in GB1, there exists no native salt bridge between Lys13 and Glu56 (Figure 

45(a)). During the unfolding simulation these residues remain at a distance (Figure 45(b)) until 

the end of the simulation, where they form a salt bridge (Figure 45(c)). In SAMP1, no native salt 
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bridge is present between Arg19 and Glu77 (Figure 45(d)). During the unfolding simulation they 

form a temporary salt bridge (Figure 45(e)) and then move apart (Figure 45(f)) as the protein 

continues to unfold. Investigation into the persistence of transient salt bridges may provide key 

insights into protein folding that have largely gone unnoticed. 

 

 

 

Figure 45. Transient salt bridges in (a-c) GB1 and (d-f) SAMP1. The transient salt bridge 

between Lys13 (blue spheres) and Glu56 (red spheres) in GB1 at (a) 0 ns, (b) 68 ns, and (c) 112 

ns during the first unfolding simulation. The transient salt bridge between Arg19 (blue spheres) 

and Glu77 (red spheres) in SAMP1 at (d) 0 ns, (e) 58 ns, and (f) 100 ns during the first unfolding 

simulation. Residues comprising the N- and C-terminal hairpins, central α-helix, and loops are 

shown in blue, red, green, and gray, respectively. Secondary structure embellishments are shown 

in yellow. Structures visualized using VMD 1.9.1. 
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Transient hydrophobic interactions were also observed during the unfolding simulations 

for both GB1 (Figure 46(a-c)) and SAMP1 (Figure 46(d-e)) in our unfolding simulations. These 

temporary interactions may play a role in the folding of the protein and thus future work should 

include the development of a program that is able to calculate and track all transient hydrophobic 

interactions over the entire protein structure during the course of an unfolding or folding 

simulation. 
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Figure 46. Residues comprising transient hydrophobic interactions in (a-c) GB1 and (d-e) 

SAMP1. In GB1, residues involved in hydrophobic interactions are Tyr3 (blue spheres), Phe52 

(dark red spheres), Val54 (red spheres), and Val39 (gray spheres) and are shown at (a) 0 ns, (b) 

45 ns, and (c) 55 ns during the first unfolding simulation. In SAMP1 residues involved in 

hydrophobic interactions are Trp3 (blue spheres) and cluster of hydrophobic loop residues 

comprised of Ala65, Ala66, Ala67, Leu 68, Ala71, Ala73, and Ala74 (gray spheres) and are 

shown at (d) 0 ns and (e) 85 ns during the first unfolding simulation. Residues comprising the N- 

and C-terminal hairpins, central α-helix, and loops are shown in blue, red, green, and gray, 

respectively. Secondary structure embellishments are shown in yellow. Structures visualized 

using VMD 1.9.1. 
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To capture some of these intermediate states and characterize the transient interactions in 

the future, freeze folding in combination with solid state NMR can be used. In the case of 

SAMP1, folding via jumping the salt concentration is possible due to its increased structural 

stability in high ionic concentrations. Recognition of these non-native interactions by the 

scientific community is less well described. 

Work on SAMP1, both experimental and computational, is minimal compared to other 

proteins in the β-grasp superfamily due to its relevant recent discovery. Future work with 

SAMP1 should include folding simulations on the Anton supercomputer. These simulations 

would prove priceless in helping to ascertain the determinants of folding in SAMP1, but they 

would also allow for the comparison to the folding simulations by the Shaw research group and 

to our MD unfolding simulations and experimental work. An extensive mutagenesis study and 

subsequent Φ-value analysis of SAMP1 would help to elucidate key residues responsible for the 

folding of SAMP1 and give insight into its structure in the transition state. 
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APPENDIX A 

STRUCTURES OF THE 20 COMMON AMINO ACIDS  

(Figure reproduced from Garrett, R.H. and Grisham, C.M. (2010). Biochemistry Brooks/Cole 

and used with permission) 
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APPENDIX B 

COMPLETE β-GRASP SUPERFAMILY ALIGNMENT 

 

 

 

 

 

 

 

 

 

 

1pgbA   ---------------------------------------------- 

2ptlA   ---------------------------------------------- 

1rlfA   ---------------------------------------------- 

3po0A   ---------------------------------------------- 

1enfA 2 dlhdkseltdlalanaygqynhpfikeniksdeisgekdlifrnqg 47 

1fmaD   ---------------------------------------------- 

2k8hA   ---------------------------------------------- 

1f2rC   ---------------------------------------------- 

1euvB   ---------------------------------------------- 

1wm2A   ---------------------------------------------- 

3a4rA   ---------------------------------------------- 

1c4pD   ---------------------------------------------- 

1qlaB   ---------------------------------------------- 

1wspC   ---------------------------------------------- 
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1pgbA    ------------------------------------------- 

2ptlA    ------------------------------------------- 

1rlfA    ------------------------------------------- 

3po0A    ------------------------------------------- 

1enfA 48 dsgndlrvkfatadlaqkfknknvdiygasfyykcekisenis 90 

1fmaD    ------------------------------------------- 

2k8hA  1 ----------------------------------msnnggeps 9 

1f2rC    ------------------------------------------- 

1euvB    ------------------------------------------- 

1wm2A    ------------------------------------------- 

3a4rA    ------------------------------------------- 

1c4pD    ------------------------------------------- 

1qlaB    ------------------------------------------- 

1wspC    ------------------------------------------- 
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1pgbA  1 -----------------MTYKLILN---G------K--------TL- 12 

2ptlA  1 enkeetpetpetdseeeVTIKANLI---f------a-------ngs- 30 

1rlfA 646------------gssdcRIIRVQME---l------g-------edg-663 

3po0A -1 -----------------GSMEWKLF----------A--------Dl- 9 

1enfA 91 eclyggttlnseklaqeRVIGANVW---V------d-------giq-120 

1fmaD  1 ------------------MIKVLFFaqvr------e--------lvg 15 

2k8hA 10 nnggegaegtckeetalVAVKVVNA--------------------d- 35 

1f2rC  1 ---------mcavlrqpKCVKLRAL---h----------------s- 18 

1euvB 20 -------------pethINLKVSDg---------------------- 31 

1wm2A 12 -----------tenndhINLKVAGQ--------------------d- 26 

3a4rA 339----------gplgsqeLRLRVQGk-------------------ek-350 

1c4pD 149------kpiqnqaksvdVEYTVQFT---plnpdddf--------rp-177 

1qlaB  1 ---------------mgRMLTIRVF---k------Ydpqsavskph- 22 

1wspC 749-------------pcdsIVVAYYFc---g----------------e-762 
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1pgbA  13 K-----GETTTEA--------V---DA---ATAEKVFKQYA 34 

2ptlA  31 t-----QTAEFKg--------T---Fe----KATSEAYAYA 51 

1rlfA 664 s-----VYKSILV--------T------sqdkAPSVISRVl 685 

3po0A  10 aevagsrTVRVDV--------Dgdatv---GDALDALvgah 39 

1enfA 121 k-----ETELIRT----nkknv---tl---qELDIKIRKIL 146 

1fmaD  16 t-----dATEVAa--------d--------fptVEALRQHM 35 

2k8hA  36 g-----aEMFFRI--------K---s----rtALKKLIDTY 56 

1f2rC  19 a-----cKFGVAA--------r---sC---QELLRKGCVRF 40 

1euvB  32 s-----sEIFFKI--------K---kt---tpL-RRLMEAF 53 

1wm2A  27 g-----sVVQFKI-----krht---pl---SKLMKAYCERq 51 

3a4rA 351 h-----qMLEISL--------Spdspl---kVLMSHYEeam 375 

1c4pD 178 g-----lKDTKLLktlaigdti---ts---qELLAQAqsil 207 

1qlaB  23 f-----qEYKIEe--------a---p----smtIFIVLNmi 43 

1wspC 763 p-----iPYRTLV--------r-grav-tlGQFKE-LL--- 784 
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1pgbA 35--ND-----NG------VD--------------GEW-TY---------45 

2ptlA 52--DT-----Lk---kdnge--------------YTV-DV---------65 

1rlfA686--kk-----nnrdsavase--------------FEL-VQ---------702 

3po0A 40pale-----sr------v-----fgddgelydhiNV-LR---------61 

1enfA147--SD-----ky-----------kiyykdseiskGLI-EF---------166 

1fmaD 36--AAqsdrwal------al----------edgklLA-AV---------55 

2k8hA 57--Ck-----kq--gisrns--------------VRF-LF---------71 

1f2rC 41--q-------------------------lpmpgsRL-CLyedgtevtd60 

1euvB 54A-KR-----qg------ke-----------mdsLRF-LY---------67 

1wm2A 52--gl-----------smrq--------------IRF-RF---------62 

3a4rA376--gl-----------sghk--------------LSF-Ff---------386 

1c4pD208--nk---thpg------yt-------------iYeRdSs---------222 

1qlaB 44--re--tydpd------lnfdfvcragicgscgmMI-n---grpslac77 

1wspC785--tk-----kg-------s--------------YRY-YF---------794 
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1pgbA  46 --D---D-----------------A------------------- 48 

2ptlA  66 --A---d-----------------k------------------- 68 

1rlfA 703 --llpgdreltiphsanvfyamdga------------------- 725 

3po0A  62 --n----------------------------------------- 62 

1enfA 167 --D---M-----------------k---------tprdysfdiy 179 

1fmaD  56 --n----------------------------------------- 56 

2k8hA  72 --d----------------------------------------- 72 

1f2rC  61 dcf---p-----------------g------------------- 65 

1euvB  68 --d----------------------------------------- 68 

1wm2A  63 --d----------------------------------------- 63 

3a4rA 387 --d----------------------------------------- 387 

1c4pD 223 --i---v-----------------thdndifrtilpmdqeftyh 244 

1qlaB  78 rtltkdf-----------------e------------------- 85 

1wspC 795 --k---k-----------------------------------vs 798 
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1pgbA  49 ------------------------T---K-TFTVTE 56 

2ptlA  69 ------------------------g---Y-TLNIKF 76 

1rlfA 726 ------------------------s---h-DFLLRQ 733 

3po0A  63 ------------geaaalgeataag---d-ELALFP 82 

1enfA 180 dlkgendyeidkiyednktlksddi---s-HIDVNL 211 

1fmaD  57 ------------qtlvsfdhpltdg---d-EVAFFP 76 

2k8hA  73 -------gtpidetktpeelgmedd---d-VIDAMV 97 

1f2rC  66 ------------------------lpnda-ELLLLT 76 

1euvB  69 -------giriqadqtpedldmedn---d-IIEAHR 93 

1wm2A  64 -------gqpinetdtpaqlemede---d-TIDVFQ 88 

3a4rA 388 -------gtklsgkelpadlglesg---d-LIEVWG 412 

1c4pD 245 vknreqayeinkksglneeinntdl---i-SEKYYV 276 

1qlaB  86 ------------------------d---G-VITLLP 93 

1wspC 799 defdcgvvfeevredeailpvfeek---i-IGKVEK 830 
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1pgbA    --------------------------------------------- 

2ptlA    --------------------------------------------- 

1rlfA    --------------------------------------------- 

3po0A    --------------------------------------------- 

1enfA    --------------------------------------------- 

1fmaD    --------------------------------------------- 

2k8hA    --------------------------------------------- 

1f2rC    --------------------------------------------- 

1euvB    --------------------------------------------- 

1wm2A    --------------------------------------------- 

3a4rA    --------------------------------------------- 

1c4pD    --------------------------------------------- 

1qlaB 94 lpafklikdlsvdtgnwfngmsqrveswihaqkehdiskleerie 138 

1wspC    --------------------------------------------- 
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1pgbA     ---------------------------------- 

2ptlA     ---------------------------------- 

1rlfA     ---------------------------------- 

3po0A     ---------------------------------- 

1enfA     ---------------------------------- 

1fmaD     ---------------------------------- 

2k8hA     ---------------------------------- 

1f2rC     ---------------------------------- 

1euvB     ---------------------------------- 

1wm2A     ---------------------------------- 

3a4rA     ---------------------------------- 

1c4pD     ---------------------------------- 

1qlaB 139 pevaqevfeldrciecgcciaacgtkimredfvg 172 

1wspC     ---------------------------------- 
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1pgbA     ----------------------------------------- 

2ptlA     ----------------------------------------- 

1rlfA     ----------------------------------------- 

3po0A     ----------------------------------------- 

1enfA     ----------------------------------------- 

1fmaD     ----------------------------------------- 

2k8hA     ----------------------------------------- 

1f2rC     ----------------------------------------- 

1euvB     ----------------------------------------- 

1wm2A     ----------------------------------------- 

3a4rA     ----------------------------------------- 

1c4pD     ----------------------------------------- 

1qlaB 173 aaglnrvvrfmidphdertdedyyeligdddgvfgcmtlla 213 

1wspC     ----------------------------------------- 
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1pgbA     -------------------------- 

2ptlA  77 ------------------------ag 78 

1rlfA 734 ------------------------rr 735 

3po0A  83 ---------------------pvsgg 87 

1enfA 212 ------------------------yt 213 

1fmaD  77 ---------------------pvtgg 81 

2k8hA  98 ---------------------eqtgg 102 

1f2rC  77 ---------------agetwhgyvsd 87 

1euvB  94 ---------------------eqigg 98 

1wm2A  89 -------------------------q 89 

3a4rA     -------------------------- 

1c4pD 277 ----------------------lkkg 280 

1qlaB 214 chdvcpknlplqskiaylrrkmvsvn 239 

1wspC 831 ------------------------vd 832 
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APPENDIX C 

ELUCIDATING DETERMINANTS OF PROTEIN STABILITY AND FOLDING IN 

EXTREME ENVIRONMENTS – GB1 INVESTIGATION FOR THE VIRGINIA SPACE 

GRANT CONSORTIUM 2016-2017 

 

ABSTRACT 

On Earth there exist organisms that thrive in extreme conditions. Proteins are one of the 

most critical components of biological life, essential for cellular function and environmental 

adaptability. This robustness is achieved by varying amino acid content and the number and 

types of chemical contacts while maintaining the three-dimensional structure. The 

immunoglobulin-binding domain of protein G is a protein that is ideal to study due to its size and 

fundamental topology. To assess the role of amino acid type and amino acid interactions a 

protein alignment was generated, and long-range interaction networks calculated for wild-type 

and mutated GB1 in silico to analyze changes in the number of contacts. Mutated GB1 was also 

made in vitro. The variant protein was then expressed and purified in preparation for circular 

dichroism (CD) and fluorescence studies in pH 7.0, pH 2.0, and 3.0 M NaCl buffers. While the 

network analysis suggests that the variant protein will be more stable, the far- and near-UV CD 

and fluorescence spectroscopy data reveal that the variant protein is less stable compared to the 

wild-type. This may be due to overcrowding in the protein core. 
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INTRODUCTION 

The vast unknown reaches of the universe have peaked mankind’s curiosity for centuries. 

Questions such as what celestial masses lie beyond our own blue spheroid and does life exist 

elsewhere in the cosmos are timeless. There is no doubt that in the search for discovery explorers 

have found numerous extreme environments in outer space. From the intense temperatures on 

Venus [C1] to the methane lakes on Titan [C2], conditions are certainly not ideal for life. 

On Earth, there are many places where extreme environments similar to those in space are 

found. The intense temperatures of hydrothermal vents, the high salinity of the Dead Sea, and the 

crushing pressure of the Marianas Trench are just a few examples. One might be tempted to 

think that life could not survive in such places, even on a planet thriving with life, but there are 

actually many diverse organisms that have found a way to flourish. One of these ways is through 

the increased robustness of their proteins. 

Proteins are one of the four main types of macromolecules, which also include, nucleic 

acids, lipids, and carbohydrates, that are essential to life. They are responsible for most of the 

cell’s vital functions and are composed of amino acids that are linked via peptide bonds. This 

amino acid chain is organized into secondary elements as α-helices and β-sheets that are further 

organized into a three-dimensional (3D) form. In many instances this tertiary structure is not 

functional alone and associates with other tertiary structures to become a functional quaternary 

structure. The secondary elements are held together with hydrogen bonds while the tertiary form 

of the protein is held together by a variety of interactions, including but not limited to, hydrogen 

bonds, hydrophobic interactions, disulfide bonds, and salt bridges. These interactions are critical 

to protein stability. 
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Proteins that are found in extremophilic organisms exhibit characteristics that allow for 

their enhanced stability. Some contain cysteine residues that when close enough in 3D space and 

under the right conditions form very stable, covalent disulfide bonds. Others contain additional 

noncovalent interactions which collectively increase overall stability. The length and orientation 

of the amino acid’s side chain accounts for the number of contacts it displays. Upon mutation of 

an amino acid, which results in lengthening of its side chain, there is an expectation for a greater 

number of contacts. 

We are interested in understanding the determinates of stability for protein folds and 

propose that increasing the number of contacts within the protein core will enhance its 

thermodynamic stability thus making it more amenable to extreme conditions on this planet and 

others. In order to undertake this investigation, we designed a combined approach involving both 

computational and experimental techniques using the immunoglobulin-binding domain of 

Streptococcal protein G (GB1) as a model system (Figure C1) [C3]. This is a small 56 residue 

protein that is 6.2 kDa in size. It contains one α-helix and one, four stranded, β-sheet. Its 

topology is that of a ubiquitin-like β-grasp fold. It is an ideal protein to study due to its small size 

and fundamental topology. 
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Figure C1. Immunoglobulin-binding domain of Streptococcal protein G. The α-helix 

(magenta), β-sheet (yellow), β-hairpins (blue), and loops (white) are colored accordingly. 

Structures visualized using RasMol Ver. 2.7.2.1.1. 

 

 

Bioinformatics is a computational field of study which uses computer algorithms for the 

purpose of gathering and analyzing biological data [C4]. In the specific case of proteins, it is 

used to ascertain information about sequence, structure, and function. Bioinformatics is 

intrinsically linked with the concept of network analysis. This applies concepts from the field of 

network science to model protein structures as network systems thus allowing us to rigorously 

interrogate the nature of long-range interactions [C5]. Thus, a combination of bioinformatics and 

network science approaches will be applied to the present research investigation. 

On the experimental side, we are able to test the role of interactions in the stability of the 

protein by making a mutation, expressing and purifying the variant protein, and conducting 

structural and stability studies. The latter is achieved with circular dichroism which is a 
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biophysical method used to study the structural components of proteins [C6]. There are two types 

of circular dichroism, far-UV (190-250nm), which monitors a protein’s secondary structure and 

near-UV (250-320nm), which monitors a protein’s tertiary structure. Circular dichroism is the 

differential absorption of left and right polarized light causing elliptical polarization. This work 

will be complimented with fluorescence spectroscopy to monitor the stability of the core. 

In the course of our computational studies, we proposed specifically that changing alanine 

in the 26th position to phenylalanine would enhance thermodynamic stability without affecting 

the overall structure, however, based on experimental results we discovered that GB1 was 

destabilized and the protein structure altered. While unexpected, this is in fact very interesting, 

because it suggests that the β-grasp fold may be limited in its ability to accommodate and 

increase in hydrophobicity. Therefore, this protein form may not exist in extreme environments 

beyond those known to contain this fold on Earth and may not be amenable to other planets with 

more extreme environments than our own. This also makes us think about the nature of our 

present protein structure universe, how it evolved, and what constitutes an allowable fold. 

 

MATERIALS 

Bioinformatics studies were conducted using DALI [C7] and the CATH [C8] database for 

identifying related sequences and structures. Proteins were visualized using RasMol [C9]. A 

mutation in silico was made using Insight II (Accelrys). Contact distances were calculated using 

the Contact program (CCP4) [C10]. Networks were generated on a SUN Workstation running 

Linux using a DegLR program written in the laboratory. The networks were visualized using 

Pajek [C11]. Luria broth (LB) media, supplemented with 100 µg/ml carbenicillin (Teknova), was 

used for bacterial cultures and agar plates. Mutagenesis reactions were performed using the Q5 
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site-directed mutagenesis kit from New England Biolabs (NEB). A Strataprep mini plasmid prep 

kit (Agilent Technologies) was used for the purification of plasmid DNA. Plasmid DNA samples 

were sent to the Molecular Core Facility at Eastern Virginia Medical School for sequencing. 

Protein was expressed using BL21 (DE3) competent E. coli cells (NEB) via induction with 0.4 

mM IPTG (IBI Scientific). An AKTA purification system (GE) was used for the purification of 

protein samples. Q Sepharose fast flow resin (GE) was used for anion exchange and Sephacryl S-

100 (GE) was used for gel filtration. 1.0 kDa MWCO dialysis tubing (Spectrum Labs) was used 

for dialysis. Protein purity was verified using 4-12% Bis-Tris gels (Invitrogen). Relevant IBC 

protocol numbers are 16-005 and 17-010. 

 

METHODS 

The present research investigation is delineated into three major aims. In Aim 1, a search 

was done using the DALI database and the PDB FASTA sequence for GB1 as the query. The 

results generated were from many different organisms. Multiple chains of the same protein were 

also displayed as results. The results were filtered to obtain a list of proteins that were 

exclusively from extremophilic organisms. Only one chain from each protein was chosen for 

evaluation. The selected protein sequences were then structurally aligned using DALI. The 

alignment was then verified by evaluating each amino acid position with reference to GB1 using 

the RasMol visualization program and making corrections as necessary. The CATH database 

was then used to assign domains to the various proteins. Only the domain that aligned with GB1 

was included in the alignment, all others were removed. Upon gathering the alignments, each 

amino acid position was visually verified as being aligned with GB1 by analyzing the 3D 

structures in RasMol. Corrections were made as necessary to produce the final alignment. The 
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networks were generated with the DegLR program which used a contact file as input and 

visualized in Pajek. The cutoffs used in the network were 5 Ǻ contact distance between atoms 

and seven residue separation between pairs of interacting amino acids [C12]. 

In Aim 2, site-directed mutagenesis and transformation were performed using the protocol 

from NEB. Polymerase chain reaction running conditions were as follows: initial denaturation at 

98 °C for 30 s, 25 cycles of denaturation at 98 °C for 10 s, annealing at 57 °C for 30 s, and 

extension at 72 °C for 3 min and 30 s, finally a final extension at 72 °C for 2 min. The 

transformed cells were plated and incubated at 37 °C overnight. A single colony was then 

obtained from the selective plate and cultured in 50 ml of selective LB media and incubated at 37 

°C overnight with shaking at 250 rpm. Plasmid DNA was extracted and purified. Samples were 

the sent for sequencing. Upon confirmation of the mutated cDNA sequence, the plasmid was 

transformed into BL21 (DE3) competent E. coli cells using the protocol provided. The 

transformed cells were again plated on selective LB agar and incubated at 37 °C overnight. A 

single colony was then obtained from the selective plate and cultured in 50 ml of selective LB 

media and incubated at 37 °C overnight with shaking at 250 rpm. 6.0 L of selective LB media 

was inoculated with 2 ml of starter culture and incubated at 37 °C with shaking at 250 rpm until 

the OD600 was between 0.6 and 0.8 representing the mid-log phase of growth. Cultures were then 

inoculated with more carbenicillin bringing the final concentration to 200 µg/ml and IPTG at a 

final concentration of 0.4 mM. Cultures continued shaking incubation at 37 °C for 4 hours. After 

incubation cultures were centrifuged into a single pellet at 8000 rpm for 30 min and covered with 

50 ml of buffer containing 20 mM Tris base, pH 8.5 and stored at -20 °C overnight. The bacterial 

pellet was thawed and solubilized in buffer covering the pellet and sonicated on ice at 25% 

amplitude for 4 hours with 10 s pulses per minute using an ultrasonic processor. Sonicated lysate 



134 
 

 
 

was then heated at 80 °C for 15 min to precipitate out proteins that are not thermostable. Lysate 

was centrifuged at 16000 rpm for 20 min to pellet bacterial debris and decanted into a sterile 

falcon tube. Lysate was loaded onto a well equilibrated XK26 anion exchange column containing 

38 ml of Q sepharose fast flow resin. Sample was loaded and washed at a flow rate of 0.5 ml/min 

using a 20 mM Tris buffer, pH 8.5 and was eluted at a flow rate of 1.0 ml/min for 600 min using 

a 20 mM Tris, 500 mM NaCl buffer, pH 8.5. Peaks were ran using gel electrophoresis to check 

for purity. Peaks containing the variant protein were pooled and dialyzed into double deionized 

water using 1.0 kDa MWCO dialysis tubing, frozen using liquid nitrogen, and lyophilized on a 

freezer drier. The variant protein was solubilized at a concentration of 40 mg/ml and loaded onto 

a XK16 size exclusion column containing 120 ml of Sephacryl S-100 resin with a running buffer 

containing 50 mM Tris and 200 mM NaCl, pH 6.5. Column was run at 0.5 ml/min for 4 hours. 

Gel electrophoresis was again used to check for purity. Peaks containing the variant protein were 

pooled and dialyzed into double deionized water using 1.0 kDa MWCO dialysis tubing, frozen 

using liquid nitrogen, and lyophilized on a freezer drier. 

The structural and stability studies were conducted in Aim 3. This involved using far- and 

near-UV CD (Jasco J-815) in the native condition (pH 7.0) and two extreme conditions (3.0 M 

NaCl and pH 2.0). Comparative stability studies were more clearly analyzed using thermal 

unfolding by fluorescence spectroscopy on a Cary Eclipse spectrophotometer. GB1 has an 

intrinsic tryptophan in the core (Trp 43) and was monitored using 295 nm excitation and 350 nm 

emission wavelengths. The slit widths were 5 and 10, respectively. 
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RESULTS AND DISCUSSION 

The final corrected structural alignment of extremophilic proteins in reference to GB1 is 

shown in Figure C2. It includes the query sequence (1pgb) and sequences found in a cryophile 

(2pw9), halophile (3po0), a protein found in oil wells (2l52), and a thermoacidophile (2g1e). 

 

 

 

Figure C2. Corrected structure-based alignment. Side chains that are not aligned are shown as 

lowercase letters. Gaps are delineated by dashes. PDB codes are in brackets on the left. Positions 

26 and 52 are shown in bold. 

 

 

It is interesting to note where the gap sequences are in GB1. These are areas in which 

amino acids have been added in some of the other proteins. These extra amino acids may be 

important in facilitating enhanced stability in their respective extremophilic proteins. It is also 

worthy to note that position 26 of the alignment is occupied by amino acids whose side chains 

are more moderate in size. In GB1 the amino acid is located in the α-helix and the side chain is 
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pointed toward the interior of the protein. It was for these reasons that the alanine residue in 

position 26 of GB1 was selected for mutation to a phenylalanine. This mutation is shown in 

Figure C3. 

 

 

 

Figure C3. Backbone representation of GB1. In red, (a) alanine 26 is shown mutated to (b) 

phenylalanine. Phenylalanine in position 52 is shown in blue. Structures visualized using RasMol 

Ver. 2.7.2.1.1. 

 

 

To evaluate how the mutation will affect the protein, networks were constructed for the 

wild-type and mutated forms of GB1. As seen in Figure C4, when a phenylalanine replaces the 

alanine in position 26, new long-range interactions are generated with residues 1, 2, and 19. 

Residues 1 and 2 are located in the first β-strand of the protein and residue 19 is located in the 

second β-strand. Since more contacts often lead to a more stable structure, it would stand to 

reason that this variant protein should exhibit increased stability. 
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Figure C4. Long-range interaction network of GB1. Amino acids are filled circles connected 

by long-range interactions shown as lines. Long-range interactions involving residue 26 are 

shown for wild-type GB1 (dark blue). Upon mutation to phenylalanine, the formation of 

additional long-range interactions occurs (red). Data plotted using Pajek64-XXL 4.08. 

 

 

To determine the effect on protein structure and stability experimentally, far- and near-

UV CD studies were performed. Figure C5 shows the results from the far-UV CD analysis. Both 

wild-type and variant GB1 are the least stable in an acidic environment. In wild-type GB1 the 

presence or absence of NaCl causes little variation in protein stability however in the variant 

protein the addition of salt results in increased stability. The overall results show that the variant 

protein, independent of the buffer, exhibits a decrease in secondary structure when compared to 

the wild-type and is therefore less stable. 
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Figure C5. Far-UV CD of GB1. Wild-type and variant GB1 are shown as solid and dashed 

lines respectively. Samples were run at pH 7.0 (blue), pH 2.0 (red), and 3.0 M NaCl (green). 

Data plotted using Microsoft Excel 365. 

 

 

Figure C6 shows the results from the near-UV CD analysis during thermal unfolding. 

Wild-type GB1 is the least stable in acidic conditions, losing its tertiary structure between 20 °C 

and 55 °C while variant GB1 retains little tertiary structure under all three conditions at 20 °C. 

The overall results show that the variant protein displays a decrease in tertiary structure under all 

conditions when compared to the wild-type. Thermal unfolding was also monitored using 

fluorescence spectroscopy. 
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Figure C6. Near-UV CD of GB1 during thermal unfolding. Wild-type and variant GB1 are 

shown in black and grey respectively. Thermal unfolding was performed at (a) pH 7.0, (b) pH 

2.0, and in (c) 3.0 M NaCl. Temperature data is shown for 20 °C (dotted lines), 55 °C (dashed 

lines), and 95 °C (solid lines). Data plotted using Microsoft Excel 365. 

 

 

As shown in Figure C7, the variant protein is less stable than the wild-type. The profiles 

for the two proteins match in that they are more stable when salt is present and less stable in an 
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acidic environment. These results parallel those obtained for far-UV CD and also help to 

determine whether the presence of salt makes the wild-type protein more stable. The results of 

this study show that while theoretically, through a computational study, a mutation that produces 

a greater number of contacts should increase the stability of the protein, experimentally this is 

not always the case. 

 

 

 

Figure C7. Fluorescence spectroscopy during thermal unfolding. Wild-type and variant GB1 

are shown as solid and dashed lines respectively. Samples were run at pH 7.0 (blue), pH 2.0 

(red), and 3.0 M NaCl (green). Data plotted using Microsoft Excel 365. 
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The axin dix domain (ADD) found in the Norwegian rat, PDB code 1WSP, when 

structurally aligned with GB1, contains a phenylalanine in position 26 (Figure C8). Upon 

analysis of the two protein structures, it was seen that opposite the amino acid side chain in ADD 

there is a glycine residue while in GB1 there is another phenylalanine. This means that while a 

phenylalanine residue is allowed to exist in this location there must be a compensatory mutation 

that shortens the side chain of the amino acid opposite that of the phenylalanine. If this mutation 

does not occur, overcrowding within the interior of the protein core results and the stability is 

decreased. 

 

 

 

Figure C8. GB1 compared to the axin dix domain. In (a) GB1 alanine 26 and phenylalanine 52 

are shown in red and blue, respectively. In (b) the axin dix domain phenylalanine and glycine are 

shown in red and blue, respectively. Structures visualized using RasMol Ver. 2.7.2.1.1. 
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These findings have implications for further understanding how protein folds evolved on 

this planet and how the density of protein cores may limit further adaption on other planets that 

have conditions more extreme than our own. 
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APPENDIX D 

FURTHER INVESTIGATION INTO ELUCIDATING DETERMINANTS OF PROTEIN 

STABILITY AND FOLDING IN EXTREME ENVIRONMENTS – GB1 

INVESTIGATION FOR THE VIRGINIA SPACE GRANT CONSORTIUM 2017-2018 

 

ABSTRACT 

Computational bioinformatics studies were conducted using the immunoglobulin-binding 

domain of protein G (GB1) to assess the role of amino acid type and amino acid interactions in 

dictating structure and stability. This directed experimental studies and a double mutant, GB1-

Ala26Phe-Phe52Ala, which was synthesized. The variant protein was then expressed. Following 

biophysical studies in physiological and extreme conditions, (high salt and high temperature), it 

was determined that the variant was highly unstable in physiological conditions however 

interestingly in 3.0 M NaCl the structure and stability of the variant protein increased. This 

suggests that extreme conditions are not necessarily deleterious to the building blocks of cells 

and can facilitate adaptability. 

 

INTRODUCTION 

This work is a continuation of the research presented in Appendix C. As a result of the 

previous Virginia Space Grant Consortium computational studies, we discovered that changing 

alanine in the 26th position to phenylalanine in GB1 resulted in destabilization and altered the 

protein structure despite phenylalanine being moderately expected in a helix compared to other 

amino acids [D1]. We hypothesized this may have been due to overcrowding in the protein core 

and proposed that mutating a phenylalanine in the 52nd position to alanine would cause some 
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stability and structure to be regained. The characterization of this double variant of GB1 is the 

focus of one of our present research aims This new compensatory mutation was selected due to 

the presence of a glycine residue in a protein found in the Norwegian rat that has a structure 

similar to GB1. However, this was not the case and the resultant protein was further destabilized. 

While unexpected, this is in fact very interesting, because it suggests that compensatory 

mutations are limited by the 3D space around the residue. 

 

MATERIALS 

Bioinformatics studies were conducted using the DALI [D2] and BLAST [D3] databases 

for identifying related sequences and calculating their percent identity and RMSD. Protein 

sequences were aligned using MUSCLE [D4]. Proteins were visualized using RasMol [D5]. A 

mutation in silico was made using Insight II (Accelrys). Contact distances were calculated using 

the Contact program (CCP4) [D6]. Networks were generated on a SUN Workstation running 

Linux using a DegLR program written in the laboratory. The networks were visualized using 

Pajek [D7].    Luria broth (LB) media, supplemented with 100 µg/ml carbenicillin (Teknova), 

was used for bacterial cultures and agar plates. Mutagenesis reactions were performed using the 

Q5 site-directed mutagenesis kit from New England Biolabs (NEB). A Strataprep mini plasmid 

prep kit (Agilent Technologies) was used for the purification of plasmid DNA. Plasmid DNA 

samples were sent to the Molecular Core Facility at Eastern Virginia Medical School for 

sequencing. Protein was expressed using BL21 (DE3) competent E. coli cells (NEB) via 

induction with 0.4 mM IPTG (IBI Scientific). An AKTA purification system (GE) was used for 

the purification of protein samples. Q Sepharose fast flow resin (GE) was used for anion 

exchange and Sephacryl S-100 (GE) was used for gel filtration. 3.0 kDa MWCO concentrators 
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(Sartorius) were used for protein concentration and buffer exchange. Protein purity was verified 

using 4-12% Bis-Tris gels (Invitrogen). Relevant IBC protocol numbers are 16-005 and 17-010. 

 

METHODS 

The present research investigation is delineated into three major aims. In Aim 1, a search 

was done using the BLAST database and the PDB FASTA sequence for SAMP1 as the query. 

SAMP1 was used as the query because it has the same topology as GB1 and is found in a 

halophilic organism. The results generated were from many different organisms. The results 

were filtered to obtain a list of proteins that were exclusively from extremophilic organisms. The 

selected sequences were then aligned using MUSCLE. In Aim 2, we sought to expand upon the 

work previously carried out in the VSGC project. A mutation from alanine in position 26 to 

phenylalanine was made. This mutation destabilized the protein and was hypothesized that this 

was due to overcrowding in the core. To test this theory another mutation was made; 

phenylalanine in position 52 to alanine. The new network was generated with the DegLR 

program which used a contact file as input and visualized in Pajek. The cutoffs used in the 

network were 5 Ǻ contact distance between atoms and seven residue separation between pairs of 

interacting amino acids [D8]. In Aim 3, site-directed mutagenesis and transformation were 

performed using the protocol from NEB followed by structural and stability studies. Polymerase 

chain reaction running conditions were as follows: initial denaturation at 98 °C for 30 s, 25 

cycles of denaturation at 98 °C for 10 s, annealing at 62 °C for 30 s, and extension at 72 °C for 3 

min and 30 s, finally a final extension at 72 °C for 2 min. The transformed cells were plated and 

incubated at 37 °C overnight. A single colony was then obtained from the selective plate and 

cultured in 50 ml of selective LB media and incubated at 37 °C overnight with shaking at 250 
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rpm. Plasmid DNA was extracted, purified and sent for sequencing. Upon confirmation of the 

mutated cDNA sequence, the plasmid was transformed into BL21 (DE3) competent E. coli cells 

using the protocol provided. The transformed cells were again plated on selective LB agar and 

incubated at 37 °C overnight. A single colony was then obtained from the selective plate and 

cultured in 50 ml of selective LB media and incubated at 37 °C overnight with shaking at 250 

rpm. 5.0 L of selective LB media was inoculated with 500 µL of starter culture and incubated at 

37 °C with shaking at 250 rpm until the OD600 was between 0.6 and 0.8 representing the mid-log 

phase of growth. Cultures were then inoculated with more carbenicillin bringing the final 

concentration to 200 µg/ml and IPTG at a final concentration of 0.4 mM. Cultures continued 

shaking incubation at 37 °C for 4 hours. After incubation cultures were centrifuged into a single 

pellet at 8000 rpm for 30 min and stored at -20 °C overnight. The bacterial pellet was thawed and 

solubilized in buffer containing 20 mM Tris base, pH 8.5 and sonicated on ice at 40% amplitude 

for 2 hours with 10 s pulses per minute using an ultrasonic processor. Sonicated lysate was then 

heated at 80 °C for 15 min to precipitate out proteins that are not thermostable. Lysate was 

centrifuged at 16000 rpm for 20 min to pellet bacterial debris and decanted into a sterile falcon 

tube. Lysate was filtered through a 0.45 µm membrane and loaded onto a XK26 anion exchange 

column containing 38 ml of Q sepharose fast flow resin. Sample was loaded and washed at a 

flow rate of 0.5 ml/min using a 20 mM Tris buffer, pH 8.5 and was eluted at a flow rate of 0.5 

ml/min for 230 min using a 20 mM Tris, 500 mM NaCl buffer, pH 8.5. Peaks were ran using gel 

electrophoresis to check for purity. Peaks containing the variant protein were pooled and 

concentrated using 3.0 kDa MWCO concentrator. The variant protein was loaded onto a XK16 

size exclusion column containing 120 ml of Sephacryl S-100 resin with a running buffer 

containing 50 mM Tris and 200 mM NaCl, pH 7.5. Column was run at 0.5 ml/min for 4 hours. 
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Gel electrophoresis was again used to check for purity. Peaks containing the variant protein were 

pooled, concentrated, and buffer exchanged into double deionized water using 3.0 kDa MWCO 

concentrator.  

The structural and stability studies involved using CD (Jasco J-815). Near-UV CD was 

performed in the native condition (pH 7.0) and far-UV CD was performed in the native condition 

(pH 7.0) and at an extreme condition (3.0 M NaCl). Comparative stability studies were more 

clearly analyzed using thermal unfolding by fluorescence spectroscopy on a Cary Eclipse 

spectrophotometer. GB1 has an intrinsic tryptophan in the core (Trp 43) and was monitored 

using 295 nm excitation and 350 nm emission wavelengths at a concentration of 0.05 mg/ml. 

The slit widths were 5 and 10, respectively. 

 

RESULTS AND DISCUSSION 

The final corrected structural alignment of extremophilic proteins in reference to SAMP1 

is shown in Figure D1. It includes the halophilic query sequence (3PO0) and sequences found in 

a halophile (WP_020445345.1), haloacidophile (WP_021780493.1), haloalkaliphile 

(WP_011324211.1), alkaliphile (WP_093047229.1), thermophile (WP_005588799.1), 

alkalithermophile (WP_007506270.1), and two hyperthermophiles (WP_010879121.1 ; 

WP_048091823.1). 
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Figure D1. MUSCLE alignment. Gaps are delineated by dashes. Accession numbers are in 

brackets on the left. Numbering is with respect to 3PO0. 

 

 

It is interesting to note that halophilic sequences in the alignment share the same amino 

acid at positions 3, 9, 31, and 46 with respect to 3PO0 whose side chains point toward the protein 

core and positions 60 and 75 with respect to 3PO0 whose side chains are solvent exposed. These 

amino acids may be important in facilitating enhanced stability in a high salinity environment.    

We propose that mutating a phenylalanine residue in position 52 to alanine will alleviate some of 

the overcrowding (Figure D2). To test our hypothesis, a network was constructed for the mutated 

form of GB1. 
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Figure D2. Backbone representation of GB1. Position 26 is in blue and position 52 is in red. 

(a) Wild-type, (b) A26F mutant, and (c) A26F and F52A mutant. Structures visualized using 

RasMol Ver. 2.7.2.1.1. 

 

 

As seen in Figure D3, when an alanine replaces the phenylalanine in position 26, new 

long-range interactions are generated with residues 1 and 2 in the first β-strand and residue 19 in 

the second β-strand. However, upon mutation of the phenylalanine in position 52 to alanine, 

long-range interactions are lost to residue 3 in the first β-strand and residues 23, 26, and 27 in the 

α-helix. 
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Figure D3. Long-range interaction network of GB1. Amino acids are filled circles connected 

by long-range interactions shown as lines. Long-range interactions gained by A26F mutation 

(dark blue) and lost by F52A mutation (red) are highlighted. Data plotted using Pajek64-XXL 

4.08. 

 

 

To determine the effect on protein structure and stability experimentally, far- and near-

UV CD studies were performed. Figure D4 shows the results from the far-UV CD analysis. Both 

wild-type and variant GB1 show little variation in protein stability in the presence or absence of 

NaCl. The overall results show that the variant protein, independent of the buffer, exhibits a 

decrease in secondary structure when compared to the wild-type and is therefore less stable. 
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Figure D4. Far-UV CD of GB1. Wild-type and variant GB1 are shown in black and grey 

respectively. Samples were run at pH 7.0 (solid lines) and 3.0 M NaCl (dashed lines). Data 

plotted using Microsoft Excel 365. 

 

 

Figure D5 shows the results from the near-UV CD analysis during thermal unfolding. 

Wild-type GB1 is stable at lower temperatures and loses its tertiary structure between 55 °C and 

95 °C while variant GB1 adopts a disordered tertiary structure during thermal unfolding. The 

overall results show that the variant protein displays a decrease in tertiary structure during 

thermal unfolding when compared to the wild-type. Thermal unfolding was also monitored using 

fluorescence spectroscopy. As shown in Figure D6, the variant protein is less stable than the 

wild-type. These results parallel those obtained for far-UV CD and also help to determine 

whether the presence of salt makes the wild-type protein more stable. 
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Figure D5. Near-UV CD of GB1 during thermal unfolding. Wild-type and variant GB1 are 

shown in black and grey respectively. Thermal unfolding was performed at pH 7.0. Temperature 

data is shown for 20 °C (dotted lines), 55 °C (dashed lines), and 95 °C (solid lines). Data plotted 

using Microsoft Excel 365. 
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Figure D6. Fluorescence spectroscopy during thermal unfolding. Wild-type and variant GB1 

are shown as black and grey lines respectively. Samples were run at pH 7.0 (solid lines) and 3.0 

M NaCl (dashed lines). A protein concentration of 0.05 mg/ml was used with excitation and 

emission wavelengths of 295 nm and 350 nm respectively. Data plotted using Microsoft Excel 

365. 

 

 

The results of this study show that while theoretically a compensatory mutation would 

allow the protein to be more stable than a single mutation, experimentally this is not always the 

case. Many factors play a role in what mutations are allowed by nature. In light of our new 

findings, analysis of the axin dix domain (ADD), PDB code 1WSP, when structurally aligned 

with GB1, the phenylalanine in position 26 is located at the top of a helix. This perhaps helps 

accommodate the residue side chain. This means that while a phenylalanine residue is allowed to 

exist in this location there must room in the surrounding 3D environment. 
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