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ABSTRACT

FEATURE EXTRACTION AND DESIGN IN DEEP LEARNING
MODELS

Daniel Perez
Old Dominion University, 2021

Director: Dr. Yuzhong Shen
Co-Director: Dr. Jiang Li

The selection and computation of meaningful features is critical for developing good

deep learning methods. This dissertation demonstrates how focusing on this process can

significantly improve the results of learning-based approaches. Specifically, this dissertation

presents a series of different studies in which feature extraction and design was a significant

factor for obtaining effective results. The first two studies are a content-based image retrieval

system (CBIR) and a seagrass quantification study in which deep learning models were used

to extract meaningful high-level features that significantly increased the performance of the

approaches. Secondly, a method for change detection is proposed where the multispectral

channels of satellite images are combined with different feature indices to improve the re-

sults. Then, two novel feature operators for mesh convolutional networks are presented that

successfully extract invariant features from the faces and vertices of a mesh, respectively.

The novel feature operators significantly outperform the previous state of the art for mesh

classification and segmentation and provide two novel architectures for applying convolu-

tional operations to the faces and vertices of geometric 3D meshes. Finally, a novel approach

for automatic generation of 3D meshes is presented. The generative model efficiently uses

the vertex-based feature operators proposed in the previous study and successfully learns



to produce shapes from a mesh dataset with arbitrary topology.
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CHAPTER 1

INTRODUCTION

This chapter offers an overview of the dissertation and introduces the relevant topics

that will be discussed through the document. Specifically, a brief history of deep learning

is offered in Section 1.1, Section 1.2 describes the importance of deep learning algorithms

in the modeling and simulation (M&S) field, Section 1.3 analyzes the importance of feature

engineering in deep learning applications. Finally, Section 1.4 establishes the proposed work,

and Section 1.5 summarizes the structure of the document.

1.1 History of Deep Learning

The origin of learning-based algorithms can be traced back to 1943, when Warren

S. McCulloch and Walter H. Pitts Jr. proposed the first mathematical model of a neuron,

also known as the Threshold Logic Unit [1]. This model was originally proposed to math-

ematically define biological neurons and how they interact in the brain, and it settled the

ground for modern neural networks. However, this work did not propose a learning-based

application for the neuron model. 15 years later, Frank Rosenblatt used a modified version

of the McCulloch and Pitts neuron model to design the perceptron learning algorithm [2].

Using a combination of connected neurons and a simple optimization approach, Rosenblatt

proposed the first supervised learning algorithm for binary classification. The main limita-

tion of this algorithm was that it could only be applied to linearly separable problems, which

made its efficacy rather limited. The next big discovery in the field was the introduction of
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backpropagation for optimization and learning of multiple layer perceptron (MLP) networks

[3]. A MLP network is composed of a combination of hidden layers that can be optimized

through backpropagation to learn the relation between a set of input and output samples.

The introduction of non-linear activation functions between the multiple layers gave MLP

networks the ability to distinguish non-linearly separable data.

MLP networks became popular for many applications such as image classification or

speech recognition, and many machine learning methods were proposed to improve their

performance. One limitation of these models is that they are not very effective when given

raw versions of the input (image pixels, sound waves, etc.). Because of this, there was a

great deal of interest in the research community in determining the best feature represen-

tations for the data. This field can be referred to as feature engineering, and it consists of

designing and selecting the most effective combination of features for learning-based algo-

rithms. Examples of features that have proved to be efficient in different machine learning

problems are Histogram of Oriented Gradients (HOG) [4], Haralick features from the gray

level co-occurrence matrix (GLCM) [5], Speeded Up Robust Features (SURF) [6], or Scale

Invariant Feature Transform (SIFT) [7].

For years, feature engineering was very popular and extremely important when de-

signing learning-based algorithms, but this changed with the introduction of deep learning

in 2012, when Krizhevsky et al. [8] won the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) by decreasing the error rate nearly in half with respect to the winner in

2011. They presented a deep Convolutional Neural Network (CNN) in which the first con-

volutional layers were able to extract meaningful features that could then be used effectively



3

by a classifier. Since then, deep learning has become very popular, and many architectures

have been proposed for different domains and applications.

Traditionally, deep learning models have been applied to regular data structures in

one or two dimensions (such as audio, text, or images), but very recently there has been

increased interest in applying these models to non-Euclidean domains such as graphs and

3D shapes. This type of data is very irregular and does not have a commonly established

order. An example is illustrated in Fig. 1. A 2x2 convolutional filter can be applied to an

image from left to right trivially. Additionally, this filter could be applied to other images

of the same size in the same way. However, if a convolutional filter was to be applied to

a 3D shape, the task becomes significantly more challenging. Different vertices can have a

different number of neighbors, so defining a constant size for the convolutional kernels is

hard. Additionally, the number of vertices and their order and connectivity can significantly

differ among 2 different shapes, which increases the difficulty of extracting invariant features

within the model. This emergent field is known as geometric deep learning [9], and it will

be paid special attention to in this dissertation.

1.2 Deep Learning in Modeling and Simulation

The field of M&S is composed of two subfields, namely modeling and simulation.

Modeling deals with the creation of a model, which is a representation of a system of

interest [10]. A simulation is a tool for evaluating the performance of a given model under

different configurations of interest and periods of time [10]. The field of M&S encompasses

many different areas such as transportation, medical simulation, training, cybersecurity,

etc. Among these areas, visualization is a particularly important one, since it significantly
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Fig. 1. Applying a convolutional filter to a 2D image (a) is trivial, but it becomes significantly

challenging in a 3D mesh.

helps to communicate with the users [11]. Advances in visualization, and particularly in

3D environments, significantly improve the realism of a simulation from a user-perspective.

Thus, developing better virtual environments is a priority in many M&S applications.

The relation between M&S and deep learning is reciprocal. As a matter of fact,

deep learning would not exist as we know it without M&S. Neurons in a neural network are

considered mathematical models of biological neurons [1], and their interconnection in the

hidden layers of the network represents a model of how the neurons communicate with each

other inside the brain [2]. Analogously, training a neural network can be considered a simu-

lation of how concepts are learned by the brain, while testing the network is the simulation

of decision-making. On the other hand, many M&S studies use deep learning techniques

to effectively increase the performance and fidelity of their models and simulations [11].
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Examples of this include, but are not limited to, agent-based modeling [12], transportation

[13], physics simulation [14], and visualization [9].

1.3 Feature Engineering in Deep Learning Models

As discussed in Section 1.1, one of the main advantages of deep learning models

over more traditional machine learning approaches is their ability to automatically extract

meaningful representations from the input data. Thanks to this property, deep learning

models can be fed with raw data such as pixels in an image, instead of having to compute

intermediary features before feeding the data to the model. Consequently, one can be led

to believe that feature engineering is no longer relevant when developing learning-based

approaches. However, selecting the appropriate features is still an important field in many

deep learning applications.

Feature engineering remains an important stage in deep learning approaches, and

it is particularly important in geometric deep learning methods [9]. As illustrated in Fig.

1, the features in the Non-euclidean domain are not regular and significantly differ among

different samples. Because of this, coming up with invariant features is a critical aspect

of geometric deep learning methods, which makes feature engineering a critical part of the

process.

1.4 Proposed Work

Feature selection and design is an important part of designing effective deep learning

models, especially in the case of geometric deep learning. This dissertation proposes a

collection of deep learning studies in which feature engineering was a significant factor to
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obtain effective results. Specifically, the contributions of the dissertation are listed as follows:

• A content-based image retrieval (CBIR) system of lung nodules in which it is demon-

strated that using features extracted from a deep learning model significantly outper-

forms traditional hand-crafted features [15].

• A remote sensing study for quantification of seagrass [16] that effectively extracts high-

level representations from deep learning models to significantly improve the accuracy

in previously unseen areas.

• A method for detecting changes in satellite images that successfully combines the

multispectral channels of images and several feature indices for improving results [17].

• A study that proposes two novel methods for extracting invariant features for con-

volutional neural networks on 3D meshes and offers a detailed comparison of feature

extractors on different mesh primitives (vertices, edges, faces).

• A progressive generative approach for the synthetic generation of geometric 3D meshes

that uses the previously proposed vertex-based feature operators.

1.5 Structure of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 analyzes the

relevant literature needed to understand the concepts discussed in the dissertation. Chapter

3 presents two studies in which the extraction of high-level features using deep learning

models produced significantly better results. Chapter 4 discusses a study where feature

indices are combined with raw image channels to produce better results for change detection.
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Chapter 5 proposes two novel feature operators for mesh convolutional operators and a

detailed comparison of feature extractors depending on the mesh primitives. Chapter 6

showcases how the vertex-based feature operators proposed in Chapter 5 can be implemented

in a generative model for geometric 3D meshes. Finally, Chapter 7 draws the conclusions

of the dissertation.
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CHAPTER 2

RELATED WORK

This chapter offers a comprehensive description of the concepts that will be discussed

through the dissertation, as well as an analysis of the relevant work found in the literature.

Section 2.1 analyzes the field of deep learning and describes the relevant models found

through this work. Section 2.2 describes the concepts involved in image retrieval that

are needed to understand the study presented in Section 3.1. The remote sensing field is

comprehensively discussed in Section 2.3 and is critical to understanding two of the studies

discussed through the dissertation. Finally, Section 2.4 defines and analyzes the field of

geometric deep learning, which is the basis of the studies proposed in Chapters 5 and 6.

2.1 Deep Learning

Deep learning allows computational models that are composed of multiple processing

layers to learn representations of data with multiple levels of abstraction [18]. Deep learning

models have achieved superb results in different areas in recent years such as object detection

and tracking [19]–[22], image classification [8], [23]–[26], remote sensing [17], [25], [27]–[30],

speech recognition [31], [32], autonomous driving [33], [34], cybersecurity [35], [36], and

medical imaging [15].

Deep neural networks are composed of a set of layers that are optimized with the

backpropagation algorithm [3]. Using this method, the weights of each layer in the model

are changed to compute a meaningful representation from the previous layer and, eventually,
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the network discovers the intricate structure of a given dataset and is able to perform the

task at hand (e.g., classification, regression). While there exist many different architectures

in the literature, it is out of the scope of this document to review them all. The following

subsections cover the architectures that are relevant for this dissertation.

2.1.1 Convolutional Neural Networks

CNNs are one of the most popular architectures in the field of deep learning. A CNN

consists of a set of layers that are formed by neurons and connected by weights between

consecutive layers. There are three main layers in a CNN: convolutional layers, pooling

layers, and fully connected (FC) layers. Convolutional layers are the most important part of

a CNN, as their learned kernels are able to extract the meaningful features from the dataset

that can then be used to make accurate predictions by the network [37]. In a convolutional

layer, the outputs from the previous layer convolute with a set of trainable filters (i.e.,

kernels) to compute excitations of the neurons in the layer. They are normally followed

by a non-linear activation function so that the network can establish non-linear relations

between the input and the output. There are different activation functions that can be

applied after a convolutional layer, the most popular being the rectified linear unit (ReLU)

function. This function has been demonstrated to be very efficient in terms of accuracy and

speed [38], and it is defined in Eq. 1. Fig. 2 shows a convolution operation followed by a

ReLU activation.

ReLU(x) = max(0, x) (1)
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Fig. 2. Convolution with ReLU activation.

Fig. 3. Max pooling (left) and average pooling (right) with a pooling window of size 2x2.

The second type of layers in CNNs are pooling layers. The goal of these layers is to

reduce the dimensionality of the data during the convolution operations. A pooling layer is

defined by a pooling window with a pre-defined size n× n. The pooling window is applied

through the input by combining all the information within the window in a single output.

There are different pooling operations that can be applied in the layer. Fig. 3 illustrates

two of the most common pooling operations in CNNs: max pooling and average pooling.

Lastly, the output from the last convolutional layer is transformed into a 1-dimensional
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input and applied to a set of FC layers. In a FC layer, all neuron pairs in the two consecu-

tive layers are connected, following the same principle as MLP models [2]. A typical CNN

structure consists of a set of convolutional layers and pooling layers to extract features, and

a set of fully connected layers on top of it to perform classification or regression. Figs. 12

and 20 depict structures of CNN networks used through this dissertation.

2.1.2 Deep Capsule Networks

Deep Capsule Network (DCN) models were introduced in late 2017 by Sabour et al.

[39]. In these models, neurons in filter maps are grouped to form a set of capsules, which

represent instantiation parameters of an entity in a given image, and information between

different capsule layers is communicated through routing. Fig. 19 shows the architecture of

a DCN model. The first implementation of capsule networks achieved a 99.75% accuracy on

the MNIST dataset, which still represents the state of the art in this dataset. DCNs have

two unique properties as compared to CNNs: being able to identify overlapped objects in

images and perform simultaneous classification and regression.

The last capsule layer of a DCN model comprises a set of capsule vectors, where

each vector corresponds to one class in the training dataset and the length of the vector

is treated as the posterior probability of the class for classification. In addition, the model

reconstructs each input image using the corresponding capsule vectors. These reconstructed

images are used for regularization during the training process. The errors between input

images and their reconstructions are then backpropagated to optimize all the weights in the

network. The unique configuration of DCNs makes them able to perform classification and

regression simultaneously. Sabour et al. demonstrated that the reconstruction stage is also
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an important contributor to the superb results obtained by the model applied to MNIST

[39].

Recently, DCN models have been applied to more complex data. The application of

DCN models to the CIFAR-10 dataset was studied in [40], where the authors obtained an

accuracy of 77.55%. This performance is significantly worse than the current state-of-the-art

results (96.53%). In the medical image analysis field, it has been demonstrated that DCNs

outperform CNNs in different tasks such as classification of brain tumor type [41], diagnosis

of thoracic disease [42] and reconstruction of image stimuli from functional MRI [43]. In

[44], the authors showed how a capsule network could be successfully implemented in the

deep reinforcement learning framework to create intelligence agents in games. Additionally,

LaLonde and Bagci applied a DCN model to an object segmentation task [45] and showed

that the number of parameters of the capsule network can be reduced by 94.5% as compared

to the traditional design, while still improving its accuracy. In [46], a DCN model was

implemented as a generative model to readjust a trained capsule network for classification

of seagrass at different locations.

2.1.3 Autoencoders

An autoencoder (AE) consists of two neural networks: the encoder and the decoder.

Fig. 4 shows the overall architecture of an AE. The encoder consists of a set of layers

(traditionally, FC layers) that reduce the dimensionality of the input to a latent vector.

Then, the decoder takes the latent vector representation and applies an inverse set of layers

to produce an output that mimics the input. Autoencoder networks have been traditionally

used for dimensionality reduction and data compression [47]–[49].
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Fig. 4. Architecture of an autoencoder.

More recently, AEs have been mainly used for generative tasks [50], [51]. The encoder

can learn to represent a given input as a low dimensional latent vector that can be used by

the decoder to reconstruct the input. Following this idea, new samples can be generated

by feeding the decoder a variety of latent vectors. However, the main limitation of this

architecture is that it is not possible to define the range of the latent vector’ values that

will produce accurate and realistic samples. To this extent, the variational autoencoder

(VAE) architecture was proposed [52], in which the encoder produces a set of means and

variance values that are used to sample the latent vector from a normal distribution. During

training, a Kullback–Leibler (KL) divergence [53] term is added to the network loss to ensure

that the latent vector follows a normal distribution. Using this technique, new samples can

be generated by the decoder by feeding it latent vectors randomly generated by a normal

distribution.
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2.1.4 Autodecoders

The goal of the encoder in AE models (Fig. 4) consists of learning to come up with

reduced representations of the data (i.e., latent vectors). However, once the network is

trained, the encoder network is not used for inference. Because of this, it is not certain

whether the encoder is the best method to generate the latent vectors. This motivated

the design of an encoder-less autoencoder, which is normally referred to as an autodecoder.

An autodecoder model is an alternative version of an AE in which the encoder network is

removed. Instead, each data sample is initially assigned a random latent vector. During

training, the loss is backpropagated to optimize both the weights of the network and the

values of the latent vectors. Fig. 5 illustrates the architecture of an autodecoder. This model

was initially proposed by [54] for the task of dimensionality reduction. More recently, this

type of model has been used in generative tasks for image synthesis [55], matrix completion

[56], and generation of 3D shapes [57].

2.1.5 Generative Adversarial Networks

A generative adversarial network (GAN) is a deep learning model used in generative

tasks proposed in 2014 by Goodfellow et al. [58]. A GAN is composed of two networks:

the generator and the discriminator. The generator is responsible for generating synthetic

samples from a latent vector filled with random data, while the task of the discriminator is

to classify whether a sample is real or generated. The output of the discriminator is then

used to jointly optimize the weights of both networks. Following this strategy, a well-trained

generator is capable of producing samples that are highly realistic and significantly difficult

to tell apart from the real samples in the dataset used for training.
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Fig. 5. Architecture of an autodecoder.

Since their original implementation, many other GAN models have been proposed in

the literature. Deep convolutional GAN (DCGAN) models extend over the original archi-

tecture by using convolutional layers for the generator and discriminator [59]. Conditional

GAN models are fed with additional information from the dataset to have better control over

the generated models (for instance, generated images of a specific label) [60]. In [61], au-

thors propose a Wasserstein generative adversarial network (WGAN), in which the training

method is changed to improve on its stability, and the output of the discriminator is di-

rectly used to optimize the network’s parameters by using the Wasserstein loss [62]. Another

popular architecture is the progressive growing generative adversarial network (Progressive

GAN) proposed by [63], in which the depth of the model is progressively increased during

training. The same research team later proposed an improvement of this architecture called

StyleGAN [64], [65], which allows the user to control features of the generated images by
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changing certain parts of the latent vector fed to the generator. There are several other

implementations of GAN models proposed in the literature. For a comprehensive survey,

readers can refer to [66].

2.2 Content Based Image Retrieval

CBIR is a technique for retrieving images from large databases by comparing auto-

matically derived features such as texture, shape or color [67]. Given an image or a set of

images, the goal of a CBIR system is to retrieve a set of new images from a database that

match with the query input. Generally, the process involves two critical steps: (1) extraction

of low-level features from the input data, and (2) comparison of the input features with the

features from the database.

There exist several techniques to extract low-level features from an image. These

techniques can be grouped by the type of feature to be extracted. The literature traditionally

divides these features in shape, texture, and color features [67], [68]. Among these, shape

is important because it is a well-defined concept that plays a critical role when recognizing

natural objects [69]. HOG is a commonly used descriptor to extract the shape of an image.

It consists of counting the gradient orientations in different parts of the image to retrieve the

shape of the image’s edges [4]. Other shape descriptors include, but are not limited to, global

information of the image (aspect ratio, circularity...) [70], boundary segments [71], elastic

deformation templates [72], or directional histograms of edges [73]. Texture features are

also significantly common in CBIR systems. In [5], authors proposed a method to extract

features from the GLCM matrix that proved to be very effective for classification tasks.

These features are often referred to as Haralick features, and they include texture descriptors
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such as contrast, correlation, dissimilarity or energy. Other methods for extracting texture-

based features involve the use of fractals [74] and Gabor filters [75]. Color based features are

typically based on extracting color histograms from the image [67]. Finally, there has been

a recent interest in computing features using machine learning and deep learning techniques

[68], [76]–[78]. In Section 3.1, a CNN model that effectively extracts high-level features for

a CBIR system is proposed.

After the system has computed the features of the images, the next step is to compare

those features to the samples from the database. Once the features are compared, the system

will be able to effectively retrieve the most similar images to the query. A popular and

simple method to do this is to obtain a 1-dimensional representation of the image features

and compute the distance with the other feature vectors using one of these metrics:

• Euclidean Distance

The Euclidean distance between two vectors A and B of size n is defined as:

d(A,B) =

√√√√ n∑
i=1

(Ai −Bi)
2. (2)

• Manhattan Distance

The Manhattan distance between two vectors A and B of size n is defined as:

d(A,B) =
n∑
i=1

|Ai −Bi|. (3)
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Fig. 6. DTW Matrix of sequences A and B [80].

• Dynamic Time Warping (DTW)

Given two vectors A and B whose size is respectively n and m, the algorithm creates

a matrix of size n × m. Each entry (i, j) of the matrix is the Euclidean distance

between the points i (from time series A) and j (from time series B). Figure 6 shows

the computation process of the similarity between A and B, where the red dots in the

figure correspond to the path that minimizes the distance between A and B, and the

minimum distance is the similarity between A and B. DTW can handle two vectors

with different lengths and is very popular in comparing time series [79].

There are several other methods for feature extraction and matching/indexing in
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CBIR systems, but it is out of the scope of this dissertation to describe them. For compre-

hensive surveys in CBIR systems, readers can refer to [67], [68].

2.3 Remote Sensing

There are multiple definitions of remote sensing in the literature, but overall, re-

mote sensing can be defined as the collection and analysis of data from a distance [81].

This dissertation presents two different studies in the field of remote sensing. Specifically,

learning-based solutions for quantifying seagrass (Section 3.2) and detecting change (Chap-

ter 4) are proposed. While each project is unique on its own, the general methodology in

both of them is similar and can be summarized as follows:

1. Collection and pre-processing of satellite images: Images taken by the WorldView-2

(WV-2) satellite are used, which produces 8-band multispectral images with a resolu-

tion of 1.84 m [82]. A series of pre-processing and labeling steps are typically applied

to each image so it can be fed to the deep learning models.

2. Extraction of patches from the satellite images: All pixels of each image are scanned,

and small patches with a non-arbitrary spatial size n × n are extracted. The size of

the patches (n) is determined empirically through cross-validation experiments.

3. Training and testing: The patches collected in step 2 to train and test the deep learning

models are used on the task at hand. In the proposed methods, the whole patch with

size n× n is used as an input to come up with a prediction for the center pixel inside

the patch.

Deep learning has been widely used in the remote sensing field. Its applications
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include, but are not limited to, terrain classification [28], [29], [46], anomaly detection [83],

target recognition [84], [85], object detection [86], [87], or superresolution [88], [89]. While

covering these topics is out of the scope of this document, readers can refer to [90] for a

comprehensive survey of deep learning applied to remote sensing problems.

2.4 Geometric Deep Learning

Deep learning models have achieved superb results in many different tasks when

applied to 2-dimensional data such as images or 1-dimensional data such as text or audio.

This type of data has a grid-like or Euclidean structure that makes it very suitable to be fed

to models like MLPs or CNNs. Recently, there has been an increased interest in applying

deep learning models to non-Euclidean domains such as graphs, molecules or 3D shapes.

This field is known as geometric deep learning [9].

The term geometric deep learning covers a wide variety of topics. This dissertation

is exclusively focused on deep learning models applied to 3D shapes. There are different

ways to represent a 3D shape using a computer. The most common representations are

point clouds, voxels, and meshes. A point cloud is a collection of 3D points corresponding

to the vertices of the shape. In a voxelized representation, the space is divided in a 3D

grid, and each element of the grid is referred to as a voxel. Similar to a pixel in a 2D

image, a volume voxel represents a value in the 3D grid. Typically, this value is either 0

or 1 to represent whether the region is filled or empty. The last representation, mesh, is a

collection of vertices and faces. Because this representation includes the geometry (vertices)

and connectivity (faces) of the shape, it is preferred by many in the computer graphics field

[91]. Figure 7 illustrates how a sphere can be synthesized with each representation.
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Fig. 7. A 3D sphere represented by a mesh (left), point cloud (center), and voxels (right).

One of the first approaches to apply deep learning models to 3D shapes consisted

of rendering views of the models from different angles and positions and applying to them

traditional 2D models such as CNNs [92], [93]. Another initial technique involves feeding

the models with 3D voxel grids that are analogous to image representations in 2D [94]–

[96]. While these techniques have the advantage of directly using deep learning models that

have proved to be significantly successful in the 2D domain, they do not make use of the

geometry or connectivity information of the 3D shapes, and their computational complexity

is significantly high.

Another direction consists of designing deep learning models that can work in point

clouds. One of the most popular implementations that follow this approach is PointNet

[97]. The authors of this method propose a network in which a shared MLP layer (i.e., a

1x1 convolution) is applied per vertex to obtain the high-level representations, and a global

pooling layer is added at the end of the network to guarantee invariance to the order of

the vertices. An improvement of this model referred to as PointNet++ was proposed by
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the same team that used the closest neighbors of a vertex as additional information in

the model [98]. A similar network is proposed in [99], but in this case the neighborhood

information is dynamically updated per layer based on the distance in the feature space.

While these networks benefit from using the geometry information of the 3D shapes, the

actual connectivity between the vertices is not fed to the models.

Other works focus on the design of models that can be fed with the connectivity of

the shapes. One technique consists of extracting the Laplacian of the graph representation

and operating on the spectral domain of the mesh [100], [101]. The main limitation of this

approach is that the topology of the meshes fed to the model needs to be fixed, which limits

their usability to cases in which all the meshes in the training set have the same connec-

tivity. Other approaches consist of parameterizing the 3D mesh to a 2D space [102], [103].

However, parameterizing 3D shapes is a arduous process and, similar to the methods that

deal with multi-view and voxel representations, the networks in these approaches do not

adapt specifically to the mesh structures. To overcome this, a model known as MeshCNN

was recently proposed by Hanocka et al. [104]. The authors of this method designed con-

volutional and pooling operators that take into account the connectivity of the mesh. They

proposed an edge-based architecture in which the input consists of features extracted from

the edges and their neighbors. This method produced state-of-the-art results in classifica-

tion and segmentation of 3D meshes, and it has been successfully adapted for other tasks

such as subdivision [105], generation of geometric textures [106], or point cloud to mesh

translation [107].
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CHAPTER 3

HIGH-LEVEL FEATURE EXTRACTION USING DEEP

LEARNING MODELS

This chapter presents two different studies in which high-level features are extracted

from deep learning models to produce significantly better results. Specifically, Section 3.1

proposes a CBIR system in which a CNN is used to extract features for similarity compar-

ison. Compared against traditional feature extractors, the deep learning features produce

better results in terms of accuracy and computational resources. Additionally, Section 3.2

presents a deep learning method for seagrass quantification in which new high-level fea-

tures are computed in a transfer learning task that significantly improve the accuracy of the

method in novel images

3.1 Deep Learning Features for Image Retrieval of Lung Nodules

Lung cancer is one of the most common types of cancer in the world, accounting for

about 25% of all cancer deaths. It is estimated that, there will be 236,760 new lung cancer

cases in the United States and 131,880 deaths in the year 2021 [108]. Lung cancer can be

caused from nodules: small growths in the lung with an oval or round shape. Fig. 8 displays

a computed tomography (CT) scan in which a lung nodule is pointed to by a white arrow.

More than 90% of nodules that are three millimeters or smaller in diameter are considered

benign. On the other hand, nodules larger than three millimeters in diameter are very likely

to be cancerous. Early detection is key to prevent benign nodules from progressing into
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Fig. 8. Example of a lung nodule [109].

malignant ones. X-rays or CT scans are the most common imaging modalities used for

identifying lung nodules in clinical practice.

Lung nodule detection in CT images can be done by an experienced radiologist or

by a trained computer-aided lung nodule detection system as a second opinion [110]–[112].

Typically, an experienced radiologist can interpret CT images with higher accuracy and

more confidence. In addition, automatic lung nodule detection systems need to be trained

by ground truths, which are provided by expert radiologists. However, interpreting CT

images is expensive, and training radiologists is even more costly. Therefore, there is a

need to develop automatic systems by which novice radiologists can educate themselves by

learning from experienced radiologists.

The objective of this work is to create an information retrieval system to assist

novice radiologists by providing them knowledge from experienced radiologists. To do this,

the diagnostic knowledge in the large Lung Image Database Consortium (LIDC) and Image

Database Resource Initiative (IDRI) databases, annotated by four experienced radiologists,

is used to help train novice radiologists. For a lung nodule query, the system uses predefined
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Fig. 9. Diagram of the proposed system.

similarity metrics to rank the annotated nodules in the database and returns the most similar

nodules for the user to study how experienced radiologists made their diagnosis on similar

lung nodules. Fig. 9 shows the overall diagram of the system. The system consists of two

components: (1) an online interface for users to submit a lung nodule query, and (2) a

real-time CBIR system to return a set of matched nodules in the database with annotations

and text descriptions. This chapter is exclusively focused on the second part of the system.

For details about the online interface, readers can refer to [15].

This study offers a system that extracts high-level representations of the lung nodules

using a deep learning model. The results retrieved using the deep learning features are

compared against results using traditional feature extractors, showing a significant increase

in terms of precision. The remainder of this chapter is organized as follows: the proposed

system details are discussed in Section 3.1.1. Experimental results are shown in Section

3.1.2, and conclusions are given in Section 3.1.3.
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Fig. 10. Data-flow diagram of the system.

3.1.1 Methodology

This section first introduces the database utilized in this paper. Then, the CNN

deep learning model that was used to learn feature representations for retrieval is described.

Finally, the last subsection discusses the specifics of the proposed CBIR system for lung

nodules and the performance metric used to evaluate it.
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Fig. 11. Three different lung nodules with five (left), three (center) and two (right) slices.

3.1.1.1 Lung Nodule Dataset

The LIDC-IDRI database contains CT scans of more than 1,000 patients, for which

each nodule has been examined by four experienced radiologists [113]. A contour was

marked on each slice by the four radiologists, and the characteristics of the nodule were

recorded including subtlety, internal structure, calcification, sphericity, margin, lobulation,

spiculation, texture and malignancy. Malignancy is the most important characteristic of the

nodule for the purpose of the proposed system, and it is represented as an integer number

in the range [1, 5], with 1 being the most benign and 5 the most malignant.

Nodule slices are extracted based on the contours marked by the radiologists for

each nodule. If a nodule spans across multiple slices, all slices are concatenated as a column

image as shown in Fig. 11. The following information is recorded for each set of slices: (1)

the width and height of the slices, (2) the number of slices of the nodule, (3) the diagnosis

of the radiologist and (4) the z coordinates of each slice.

Two nodule datasets are extracted based on the four radiologists’ examination.

Dataset 1 includes 965 lung nodules upon which three or more radiologists agreed about
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Fig. 12. Structure of the CNN for feature learning.

the diagnosis on malignancy, and Dataset 2 contains 224 nodules where all four radiologists

agreed with the diagnosis on malignancy.

3.1.1.2 Deep Model for Feature Learning

A CNN model as shown in Fig. 12 is developed to automatically learn feature

representation for retrieval. The CNN model was trained to predict malignancy level, from

1 to 5, for each slice. The CNN has two convolutional layers and two FC layers. Additionally,

pooling layers follow each of the convolutional layers to reduce the size of each representation.

All layers except the last FC layer used the ReLU operator (Eq. 1) as the activation function,

and the last layer utilizes the softmax function for classification. The dropout technique

[114] is applied for each layer to prevent the network from overfitting. Specifically, a dropout

rate of 0.5 is set for the output layer and 0.2 for all other layers.

3.1.1.3 CIBR System

As described in Section 2.2, the main parts of every system are feature extraction

and similarity computation. Two additional feature extraction methods are implemented
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to compare against the deep learning features extracted from the CNN. Specifically, HOG

features and Haralick features from the GLCM matrix are extracted. To compute the

similarity between each set of features, the system is evaluated using Euclidean, Manhattan

and DTW distance. Each lung nodule is composed of a set of slices, and each slice has an

associated feature vector. To compute the similarity between two nodules A and B, the

distances between each slice of A and all the slices of B are added together and divided by

the total number of slices.

DTW compares a set of vectors by finding the path from the distance matrix that

minimizes the distance (Fig. 6). Haralick features cannot be compared using this technique

because each feature unit represents unique properties about the nodule. Thus, comparing

the first unit of a feature vector (subtlety) with the second unit of another vector (internal

structure) cannot be done. To solve this issue, the technique used to compare Haralick

features using DTW is slightly modified. Fig. 13 shows the extraction of the feature vectors

from a lung nodule with slices A-H. The same features from different slices are grouped to

form 23 new vectors, and the DTW measure is computed as the average DTW of the 23

pairs.

3.1.1.4 Performance Metric

Precision is used as the main metric to evaluate the performance of the system. For

a query lung nodule, the system returns the top ten most similar nodules based on the

similarity measure, and the precision is computed based on the nodule’s malignancy level

shown in Eq. 4, where P stands for precision, K is the number of nodules retrieved by the

system, and Nm is the number of nodules retrieved that matched on malignancy with the
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Fig. 13. DTW distance for Haralick features.

query.

P@K =
Nm

K
(4)

3.1.2 Results

The proposed framework is evaluated through a variety of experiments. Specifically,

this section presents a study to determine the configuration of the CNN for feature extrac-

tion, reports and compares the precision of each extracted feature, determines the optimum

number of nodules to be retrieved by the system, and analyzes the computational complexity

of the framework.

3.1.2.1 Determination of CNN Structure

The number of kernels of each convolutional layers is decided empirically by testing
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TABLE 1. Accuracies of different CNN configurations

Configuration Average Accuracy Total Size of Features

5-10-500 67.50% 5,425
20-50-500 70.67% 21,185
10-25-100 68.83% 10,445
5-10-100 69.17% 5,025
5-10-200 69.50% 5,125

20-50-1000 69.50% 21,685

different configurations. Specifically, several CNN models are trained with different kernel

configurations on Dataset 1 and Dataset 2 to classify lung nodules as the five malignancy

levels marked by the four experienced radiologists. Each configuration is evaluated in terms

of accuracy performing 3-fold cross validation (CV). A total of six different CNN kernel

configurations are tested. The average testing accuracies are reported in Table 1. All CNN

structures contain two convolutional layers and two FC layers. For example, 5-10-500,

denotes that there are 5 and 10 kernels in the first and second convolutional layers, and 500

neurons in the first FC layers. The last FC layer must always have 5 neurons to classify the

malignancy of the nodule in terms of the 5 malignancy labels.

It is observed that the best accuracy is obtained using the configuration of 20-50-

500. However, it is important to note that the size of the features of that configuration is

considerably large, which negatively affects the computational efficiency in the similarity

calculation. The structure of 5-10-200 has an accuracy of 69.5%, which is slightly lower, but

contains a significantly smaller number of features. Therefore, the configuration 5-10-200 is

chosen as the best option to learn new representations for lung nodule retrieval.
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3.1.2.2 Experimental Setup for Lung Nodule Retrieval

Lung nodule retrieval performances of the three features including deep learning

feature representation, HOG and Haralick features are evaluated on the two datasets. To

obtain deep learning feature representations, a CNN is trained with a structure of 5-10-200

in the 3-fold CV setting. In the testing phase of the 3-fold CV, outputs from all the hidden

layers of the CNN are recorded as new feature representations for the nodules.

3.1.2.3 Mean Precision of CNN Features in Each Layer

Fig. 14 shows the mean average precision (mAP) obtained by feature representations

from each layer of the CNN model, including the ReLU, pooling (pool), convolutional (CL),

and FC layers. This precision corresponds to the average of the mAPs obtained with the

three different distance measures. It can be noticed that, in both datasets, the layer with

the best accuracy corresponds to FC2, which is the output layer that contains the posterior

probability for each malignancy level. This highly semantic layer obtained an accuracy of

69.2% in the database where 4 radiologists agree, and a score of 51.8% in the one where 3

or more radiologists agree. For this reason, this layer is selected as the best option when

comparing lung nodules using CNN features.

3.1.2.4 Performance Comparison with Hand-crafted Features

Table 2 shows the precision at K (P@K) obtained for all the datasets, features and

distance methods, and Fig. 15 shows performance comparison of P@K with Euclidean

distance. It can be seen that, in both datasets, the best mAP was obtained when using

the CNN features from the FC2 layer. Also, using the dataset in which 4 radiologists agree
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Fig. 14. mAP of CNN features in each layer.

about the malignancy of the nodule produces more accurate results than the one in which

only 3 or more radiologists agree. This confirms the hypothesis that filtering the nodules

would improve the accuracy and reliability of the system.

Fig. 15. Precision at K of Haralick, HOG and CNN features with Euclidean distance.
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TABLE 2. Precision at K of different features and distance measures in both databases.

Database Feature Distance P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 mAP

Dataset 1

HOG
DTW 48.60 46.74 46.36 46.01 46.03 45.56 45.26 45.09 44.94 48.60 45.90

Euclidean 45.70 46.11 46.36 45.80 45.51 45.28 44.81 44.52 44.47 44.37 45.29
Manhattan 46.53 46.58 45.28 45.52 45.72 44.94 44.47 43.94 43.96 43.83 45.08

Haralick
DTW 33.89 32.75 32.37 32.02 31.42 31.17 30.50 30.39 30.26 29.94 31.47

Euclidean 42.28 42.23 34.20 35.44 31.63 28.45 26.05 24.40 23.18 23.46 31.13
Manhattan 43.11 42.90 33.96 35.96 31.05 28.07 25.54 24.04 22.76 23.25 31.06

CNN
DTW 51.19 52.75 53.09 52.33 52.06 51.62 51.46 51.19 51.08 50.88 51.77

Euclidean 51.92 53.52 52.95 52.10 52.21 52.00 51.74 51.49 51.43 51.40 52.08
Manhattan 53.68 51.81 52.37 52.36 51.92 51.26 50.76 50.63 50.29 50.41 51.55

Dataset 2

HOG
DTW 68.75 67.19 66.07 65.07 63.75 64.43 63.90 63.84 63.14 63.04 64.92

Euclidean 68.75 70.98 68.45 66.52 65.63 65.03 64.35 63.17 62.50 62.10 65.75
Manhattan 67.41 67.63 66.07 65.51 64.55 64.21 63.58 62.89 62.20 61.79 64.59

Haralick
DTW 50.89 55.13 55.51 54.24 54.38 53.87 53.83 54.07 53.52 53.35 53.88

Euclidean 14.29 35.27 38.24 38.95 39.46 39.21 39.67 39.29 39.43 39.24 36.31
Manhattan 11.16 35.27 40.18 41.52 41.96 42.04 42.67 43.08 43.50 43.13 38.45

CNN
DTW 71.43 70.98 70.98 69.87 69.46 68.60 68.05 68.25 67.76 66.83 69.22

Euclidean 71.43 70.76 70.83 69.87 69.46 68.53 67.98 68.25 67.81 66.83 69.17
Manhattan 70.98 70.76 70.54 69.98 68.75 68.30 68.49 68.42 67.86 67.90 69.20

3.1.2.5 Optimum Number of Nodules To be Retrieved

A different performance metric is used to determine how many nodules should be

retrieved by the system. In this case, the system checks whether the malignancy of at least

one of the nodules returned by the system matches with the query. Fig. 16 shows the

accuracy obtained according to this criteria in the two datasets. It can be seen that when

the program returns 5 or more nodules, the accuracies of all the methods are considerably

stable; thus, returning more nodules does not provide extra benefits. Additionally, it can be

seen that the performance of the CNN features is consistently better than the other HOG

and Haralick features across different numbers of retrieved nodules.

3.1.2.6 Computational Efficiency

The computational efficiency of each of the feature types is evaluated by recording the
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Fig. 16. Average accuracy based on the number of nodules retrieved by the system.

time that the program took to compare a query lung nodule with all nodules in the database.

All evaluations are carried out on a HP ZP840 with a 16-core Intel(R) Xeon(R) E5-2630 v3

processor of 2.4GHz and a memory of 32.0 GB. The CPU times for different features and

distance measures are shown in Table 3. It is found that the execution time depends on

four factors: (1) the number of slices of the nodule, (2) the size of the database (number

of nodules) to which the nodule is compared, (3) the size of the features to be compared,

and (4) the algorithm to measure the distance. Table 3 shows the average, maximum and

minimum execution times (in seconds) for one query nodule. Overall, the configuration that

took the most time to compute was HOG features using DTW as similarity measure. The

one that took the least time was the CNN features from the FC2 layer. In this case, the

execution time is very similar for all the similarity measures, although it can be noted that,

for Dataset 1, the DTW measure takes slightly more time than Euclidean and Manhattan

distance measures.
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TABLE 3. CPU time analysis (in seconds) for different configurations.

Database Feature Distance Av. Max. Min.

Dataset 1

HOG
Euclidean 7.58 9.00 7.00

Manhattan 7.55 9.00 7.00
DTW 177.16 357.00 17.00

Haralick
Euclidean 1.00 1.00 1.00

Manhattan 1.00 1.00 1.00
DTW 1.71 3.00 1.00

CNN
Euclidean 0.61 1.00 0.00

Manhattan 0.65 1.00 0.00
DTW 0.87 2.00 0.00

Dataset 2

HOG
Euclidean 2.00 3.00 1.00

Manhattan 1.90 2.00 1.00
DTW 31.29 56.00 4.00

Haralick
Euclidean 0.24 1.00 0.00

Manhattan 0.24 1.00 0.00
DTW 0.38 1.00 0.00

CNN
Euclidean 0.14 1.00 0.00

Manhattan 0.14 1.00 0.00
DTW 0.14 1.00 0.00

3.1.3 Conclusions

This study presents a CBIR system to train and help novice radiologists in the

diagnosis of malignant nodules. The system extracts features from a query nodule and

compares them to the features in a large database, retrieving the most similar nodules to

the query.

The performed experiments show that extracting features from a CNN model sig-

nificantly benefits the system. On one hand, the highly semantic features learned by the

deep learning model perform considerably better than other hand-crafted features. On the

other hand, the features are significantly smaller in size, which produces faster results from



37

the system. Through this study, it is shown that deep learning is a powerful tool to auto-

matically learn new representations for lung nodule retrieval without human intervention.

Specifically, the mean average precision of the system is increased from 45.90% to 52.08%

for retrieving nodules in the dataset having three or more radiologists agreed upon its ma-

lignancy in diagnosis, and from 64.92% to 69.22% for retrieving the nodules in which all

four radiologists made a consistent decision on the malignancy for the nodules.

In conclusion, this study shows that deep learning models can effectively be used

to extract meaningful representations from a set of data that can be used for different

applications. This case highlights the advantages of these learned representations in the

context of a CBIR system for lung nodules, but in reality, the application of these models

are almost limitless.

3.2 Seagrass Quantification Using Convolutional and Capsule Networks

Seagrass constitutes a significantly important economic, ecological and social well-

being component of coastal ecosystems [115], [116]. However, trustworthy information about

seagrass distribution is missing in most of the planet due to the excessive costs of its mapping

[116]. Automatic methods for seagrass mapping have been explored in the past, but the

research in literature on seagrass mapping is mostly focused on analyzing performances of

manual mapping approaches [117], [118]. Quantifying the level of seagrass at a specific

location can be done by measuring its leaf area index (LAI). LAI is defined as leaf area

per square area [119], and it is a critical biophysical component of seagrass [116]. The

LAI index is denoted as a floating number ranging from 0 to 10, with ’0’ as no seagrass

and ’10’ the largest seagrass density per area. A remote sensing method was developed
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by Yang et al. [120]. Instead of quantifying the seagrass distribution in satellite images,

they manually determined whether seagrass was presented in a given region and achieved an

accuracy slightly better than 80%. A few works proposed automatic methods for seagrass

quantification. For example, Wicaksono et al. implemented an automatic algorithm for

seagrass LAI mapping and achieved a mean square error (MSE) of 0.72 [116]. In [121], Pu

et al. implemented a regression model for LAI quantification that achieved MSEs of 0.78

and 0.59 using data taken by Hyperion (HYP) and Advanced Land Imager (ALI) satellites,

respectively. In [122], Dierssen et al. developed a remote sensing strategy to estimate LAI

levels of seagrass with MSEs ranging from 0.88 to 0.98.

This study analyzes different deep learning approaches for quantification of seagrass

in satellite images and compares them against traditional machine learning methods. Specif-

ically, the proposed methods quantify the LAI of each pixel based on multispectral satellite

images. The ultimate goal of this project is to automatically quantify the LAI index using

satellite images with minimum workforce for field observations. The following two questions

need to be addressed to achieve this goal:

1. Can a deep learning model be trained to successfully predict the level of LAI based

on multispectral satellite images?

2. Can a deep model trained with images from one location be generalized to predict

seagrass LAI levels at a different location?

To address the first question, two deep learning models for seagrass quantification

are proposed: (1) a CNN for regression of LAI, and (2) a DCN that is optimized jointly

for simultaneous classification and regression. To answer the second question, the deep
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learning models are trained with one multispectral image, and a transfer learning approach

is designed to generalize the models to the other two images collected at different locations.

The transfer learning method extracts high-level feature representations from the trained

models that can effectively be used to generalize new samples.

The remainder of this section describes the methodology that was followed in the

study, presents and discusses the results obtained, and draws the appropriate conclusions

from them. For more details about this study, readers can refer to the following papers

published on the topic: [16], [123].

3.2.1 Methodology

This section covers the methodology that was followed in the study. Specifically, the

following subsections thoroughly describe the data used to train the networks, the archi-

tecture of each deep learning model, and the proposed transfer learning method to predict

seagrass at unseen locations.

3.2.1.1 Data Labeling

Three multispectral images taken by the WV-2 satellite at three different coastal

locations in Florida are utilized in this study. The images have spatial sizes of 12,208x6,717,

8,962x7,227 and 6,143x9,793 pixels, respectively. A patch of 5x5x8 is extracted for each

pixel centered in the patch, and the patch will be classified as sea, land, seagrass or sand.

Additionally, the physics model [124] computed the LAI index for each pixel.

The physics model reported a 10% error for LAI mapping [124]. Therefore, the whole

mapped images cannot be used as ground truth to train the models. However, some regions
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TABLE 4. Number of patches per class in the selected regions of each satellite image.

Label St. Joseph Bay Deckle Beach St. George Sound

Sea 108,675 240,361 104,094
Land 16,304 7,642 23,317

Seagrass 120,375 137,210 26,573
Sand 108,167 34,059 5,914

in the LAI mappings by the physics model are considered to be more reliable than others.

In this study, several regions in the images where the LAI mappings are more accurate are

selected by an experienced operator (co-author of the physics model in [124]). These regions

are treated as ground truth for training the deep models. Fig. 17 shows the selected regions

where cyan, blue, red and green boxes represent sand, sea, land and seagrass, respectively.

Additionally, Fig. 18 shows the LAI mappings of the whole images. When the models are

trained, only the selected regions highlighted in Fig. 17 are used as input. Table 4 shows

the number of pixels in the selected regions per class in each of the satellite images used in

the study. Note that the labeled pixels in the selected regions are unbalanced. To address

this issue, the training samples are balanced by randomly downsampling majority classes

and upsampling minority classes to ensure that each class has roughly the same number of

training examples.

3.2.1.2 Joint Optimization of Classification and Regression in Capsule Networks for Seagrass

Mapping

Figure 19 shows the designed DCN model for simultaneous classification (sea, sand,

seagrass, land) and regression (LAI mapping) in multispectral satellite images. Inputs of the
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(a) (b) (c)

Fig. 17. Images taken by the WorldView-2 satellite from (a) Saint Joseph Bay, (b) Keeton

Beach and (c) Saint George Sound. The images were taken on 11/14/2010, 05/20/2010 and

04/27/2012, respectively. Selected sand, sea, land and seagrass regions are represented by

cyan, blue, red and green boxes, respectively.

(a) (b) (c)

Fig. 18. Mappings of seagrass LAI level obtained by the physics model [124] at (a) Saint

Joseph Bay, (b) Keeton Beach and (c) Saint George Sound.

model are image patches of size 5x5x8. The reconstruction part of the original DCN model

[39] is replaced by a linear regression layer for seagrass mapping. This layer quantifies

the LAI level of seagrass based on the seagrass capsule vector from FeatureCaps. The
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Fig. 19. DCN model for end-to-end seagrass identification and LAI mapping.

LAI of an image patch is defined as the LAI of its center pixel. This structure allows for

jointly optimized LAI regression and seagrass classification. The FeatureCaps layer performs

classification for the four classes (sea, land, seagrass and sand) with a separate margin loss

for the kth class as shown in Eq. 5 [39]. In the equation, Tk = 1 if the class of k is present,

m+ = 0.9, m− = 0.1 and vk is the magnitude of the kth vector in FeatureCaps representing

the posterior probability for the kth class. λ is set as the default value of 0.5, and the total

loss for the four classes is the sum of each individual loss.

Lk = Tkmax(0,m+ − ||vK||2) + λ(1− Tk)max(0, ||vk|| −m−)2 (5)

The number of routings from the PrimaryCaps layer to the FeatureCaps layer in the

DCN model is set to 3. During training, if a seagrass image patch is fed as input, the seagrass

vector in the FeatureCaps layer is used to train the regression model for LAI quantification.

Then, the error of the regression is used during back-propagation to update the weights of

the DCN model, jointly optimizing classification and regression. For other types of image
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patches (sea, sand, land), the regression step is skipped, and only the classification model

is optimized.

3.2.1.3 Convolutional Neural Network for Seagrass Mapping

Figure 20 shows the CNN model implemented for regression of LAI. The CNN model

has 2 convolutional layers for representation learning. The first convolutional layer has 32

kernels with a size of 2x2x8, and the second layer has 16 filters of size 4x4x32. The fully

connected layer has a total of 16 hidden units, which matches the size of the vectors in the

FeatureCaps layer in the DCN model. The last layer uses this representation to compute

LAI through linear regression.

Additionally, a support vector machine (SVM) model and a linear regression model

are implemented to quantify LAI based on image patch directly. These models offer baseline

performances for comparison.

3.2.1.4 Transfer Learning for Seagrass Mapping at Different Locations

Seagrass distribution differs significantly among different locations, making it chal-

lenging to generalize a regression model trained at one location to new locations. The

proposed transfer learning approach uses the features from FeatureCaps and generalizes a

trained DCN model to a different location with minimum information from the new loca-

tion. Specifically, the transfer learning approach for DCN model consists of the following

steps:

1. Train a DCN model with all labeled samples from the selected regions in the satellite

image taken at St. Joseph Bay (Fig. 17 a).
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Fig. 20. CNN structure for LAI regression using 8-channel pan-sharpened multispectral

images.

2. Select a small portion of the training samples from the satellite image taken at Keeton

Beach.

3. Classification Step:

(a) Pass the labeled samples through the trained DCN model as shown in Fig. 19

and output the 64 features from the FeatureCaps layer as new representations

for the labeled samples.

(b) Use the labeled new representations to classify the rest of the unlabeled samples

from Keeton Beach using 1 -nearest neighbor (1-NN ) rule.

4. Regression Step:

(a) Use the seagrass vector (16 features) in the labeled new representations from

Keeton Beach to train a linear regression model to quantify LAI levels of seagrass.
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(b) For every unlabeled patch that is classified as seagrass by the 1-NN rule, predict

its LAI value using the linear regression model trained in the previous step. LAI

for every non-seagrass patch is set to ’0.’

5. These procedures are repeated for the image taken at St. George Sound for LAI

prediction.

The transfer learning approach is also applied to the CNN model. When performing

transfer learning with CNN, the features from the last fully connected layer (16 features)

are extracted in both the classification and regression steps. The other parts of the transfer

learning approach are identical to the method using the DCN model.

3.2.2 Experiments and Results

This section evaluates the proposed learning-based models for seagrass quantifica-

tion. Specifically, Section 3.2.2.1 presents a CV experiment to initially evaluate the models,

Section 3.2.2.2 reports the results of the proposed transfer learning method for quantification

of seagrass at novel locations, and Section 3.2.2.3 analyzes the computational complexity of

each deep learning model.

3.2.2.1 Cross-Validation in the Selected Regions

The first experiment consists of determining whether the proposed models are able

to quantify LAI for seagrass in the regions selected by the experienced operator. To do this,

a 3 -fold CV experiment is performed in the selected regions in each satellite image as shown

in Fig. 17. Both deep learning models are trained until their learning losses converge, which
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TABLE 5. RMSEs obtained by 3 -fold CV in the selected regions.

Image
Linear

Regression
SVM CNN DCN

St. Joseph Bay 0.58 0.57 0.45 0.46
Keeton Beach 0.16 0.16 0.04 0.07

St. George Sound 0.12 0.10 0.08 0.12
Mean 0.29 0.28 0.19 0.21

generally happens before 100 training epochs. The metric to assess the performance of each

model is root mean squared error (RMSE). Table 5 shows the results for each model. It can

be seen that the deep learning models (CNN and DCN) outperform linear regression and

SVM. The performances of CNN and DCN are similar, but generally CNN produces the

best results, achieving an average RMSE of 0.19.

3.2.2.2 Transfer Learning with Deep Models

Deep learning models for LAI quantification are first trained with all the selected

patches from the satellite image taken at St. Joseph Bay, and then the trained models are

used as feature extractors to transfer their knowledge to the other two locations (Keeton

Beach and St. George Sound). Finally, a set of 50, 100, 500 and 1,000 random patches is

selected from the two new locations to train a linear regression model for LAI quantification

at each new location. These selected patches are balanced among the four classes. To train

a linear regression model for a new location, the selected labeled image patches are passed

through the trained DCN/CNN model, and outputs from the FeatureCaps/FC layer are

stored as training data. The outputs belonging to seagrass patches are then used to train a

linear regression model for LAI quantification. For the remaining unlabeled image patches,
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new representations are extracted from the FeatureCaps/FC layer, and they are classified

in one of the four classes using the stored training data samples based on 1 -NN rule. If an

image patch is classified as seagrass, its LAI is predicted using the trained linear regression

model. Otherwise, its LAI is set to 0.

Each experiment is performed five times, and Table 6 shows results of the 1 -NN

classification accuracies for the labelled patches at Keeton Beach and St. Joseph Bay. It can

be seen that while the classification results are very similar between both models, the DCN

generally performs slightly better than the CNN. The RMSE results of LAI quantification

by transfer learning are shown in Table 7. When the transfer learning approach is applied to

the image taken at Keeton beach, the DCN outperforms the CNN in the cases with a small

number of training samples (50, 100). In the cases with a larger number of training samples,

there is no significant difference between CNN and DCN. Fine tuning always makes both

the DCN and CNN worse indicating that over-fitting may happen. At St. George Sound,

the DCN outperforms the CNN in transfer learning regardless of the number of training

samples from St. George Sound. However, the best results at this location are always

obtained when performing fine tuning with the CNN. In all cases, the proposed transfer

learning approach significantly outperforms direct mapping using linear regression and SVM.

Additionally, it can be seen that the errors when using the networks without transfer learning

(0 samples) are significantly larger. This proves that the extracted high-level representations

from the trained models serve as effective features of new sample patches. These transferred

features contain useful information that can be effectively used for reducing the RMSE of

the predictions.
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TABLE 6. Accuracies obtained by the proposed transfer learning approach utilizing different

number of samples from new locations. Five experiments are performed for each sample size,

and results are shown as mean±std.

Image Model 50 patches 100 patches 500 patches 1000 patches

Keeton
Beach

CNN 0.9145±0.04 0.9514±0.01 0.9853±0.003 0.9902±0.0007
DCN 0.9311±0.03 0.9676±0.01 0.9867±0.002 0.9908±0.001

St. George
Sound

CNN 0.9615±0.007 0.9635±0.007 0.9761±0.008 0.9868±0.005
DCN 0.9529±0.008 0.9721±0.01 0.9839±0.002 0.9896±0.001

TABLE 7. RMSEs obtained by the proposed transfer learning approach and fine tuning

utilizing different number of samples from new locations. Five experiments are performed

for each sample size, and results are shown as mean±std.

Image Method 0 Samples
50 Samples 100 Samples 500 Samples 1000 Samples

Transfer
Learning

Fine
Tuning

Transfer
Learning

Fine
Tuning

Transfer
Learning

Fine
Tuning

Transfer
Learning

Fine
Tuning

Keeton
Beach

CNN 2.76 0.69±0.19 1.35±0.14 0.52±0.08 1.17±0.297 0.28±0.03 0.66±0.33 0.24±0.007 0.91±0.47
DCN 1.72 0.63±0.12 1.30±0.14 0.46±0.06 1.16±0.02 0.29±0.02 0.73±0.31 0.25±0.02 0.69±0.03
LR – 1.57±0.003 1.61±0.01 1.62±0.01 1.60±0.01

SVM – 1.57±0.003 1.62±0.003 1.52±0.0007 1.62±0.003

St. George
Sound

CNN 0.61 0.35±0.03 0.14±0.01 0.31±0.04 0.14±0.005 0.23±0.05 0.09±0.006 0.18±0.03 0.09±0.01
DCN 0.56 0.34±0.04 0.24±0.03 0.25±0.07 0.20±0.04 0.19±0.008 0.11±0.01 0.15±0.005 0.13±0.03
LR – 0.71±0.01 0.73±0.002 0.72±0.01 0.71±0.01

SVM – 0.71±0.0003 0.72±0.0002 0.73±0.0007 0.73±0.0005

3.2.2.3 Computational Complexity

All the experiments are carried out using a computer with 64 GB of RAM and an

Intel Xeon E5-2687W v3 @ 3.10 GHz (10 cores). On average, one epoch of training requires

85.39 seconds and 13.17 seconds by the DCN and CNN models, respectively. Testing the

DCN model takes 0.13 milliseconds/patch, while testing on the CNN model takes 0.023

milliseconds/patch. In total, testing on one entire image takes about 1.5 hours with DCN

and 0.42 hours with CNN. Table 8 includes the training and testing time by each model.
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TABLE 8. Average training and testing CPU times by DCN and CNN.

Model
Training Time

(s/epoch)
Testing Time
(ms/patch)

DCN 85.39 0.13
CNN 13.17 0.023

3.2.3 Conclusions

This study shows that seagrass can be accurately quantified using deep learning

models. Specifically, it is shown that a DCN and a CNN produce significantly better results

than traditional machine learning techniques. The performance of the DCN and CNN

models is very similar. However, training the CNN model takes approximately 6.5 times

less time than training the DCN, which makes the CNN the preferred option.

Additionally, the study demonstrates that the models trained in one location can be

effectively used to extract meaningful features from new locations. The results obtained

show that the new representations learned by the DCN and CNN models are much better

than the raw image patches for seagrass identification and LAI quantification. The DCN

model achieves slightly better classification accuracies (Table 6) than the CNN model at the

two new locations. For LAI mapping, the DCN model generally can achieve better results

than CNN (without fine tuning) as shown in Table 7. If fine tuning is applied, performances

of both the CNN and DCN models drop at Keeton Beach, indicating that over-fitting

may happen, degrading the models’ performances. At St. George Sound, DCN always

performs better than CNN, and fine tuning improves the performances of both models.

Overall, transfer learning with DCN and CNN significantly improves seagrass quantification

at different locations using as few as 50 samples from the new locations for training, as
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compared to the direct regression models including linear regression and SVM. With these

experiments, it is demonstrated that the extraction of features using previously trained

models can significantly boost the performance of the model in terms of RMSE.

3.3 Conclusions

This chapter shows how deep learning models can be used to extract better features

from a certain set of data. Specifically, it is demonstrated how learning-based representations

can significantly improve the results in a CBIR system for lung nodules and in a transfer

learning approach for seagrass quantification. The next chapters of this dissertation are

focused on how selecting the proper features can increase the performance of deep learning

models.
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CHAPTER 4

FUSING IMAGES WITH FEATURE INDICES FOR

IMPROVED CHANGE DETECTION

This chapter demonstrates that a careful selection and combination of features can

significantly improve the results of deep learning models. Specifically, the chapter presents

a remote sensing study in which feature indices are combined with the raw multispectral

channels of satellite images to improve the results of a learning-based algorithm for change

detection. For more details about this study, readers can refer to its original publication in

[17].

4.1 Background

Change detection is defined as ”the process of identifying differences in the state of

an object or phenomenon by observing it at different times” [125]. Change detection is very

useful in the remote sensing field, and multiple methods for change detection have been

studied extensively in recent years [126]–[130].

The simplest method for detecting changes is simple differencing, which consists of

directly subtracting two images pixel by pixel and setting the change-map as the absolute

value of the subtraction [125]. Another simple procedure is image ratioing, which consists of

computing the ratio between two co-registered images [125]. However, this technique is not

recommended because it is based on a non-normal distribution, and it produces non-equal
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error rates at each side of the mode [131]. These methods have a major drawback: they treat

all the differences in the images as changes, so atmospheric variations (e.g. illumination,

weather...) are treated as changes. It has been found that using linear regression [132] and

principal component analysis (PCA) [133] can solve this issue. The main issue with these

methods is that they can fail to detect changes due to the inability of learning knowledge

about the actual changes [134]. Deep learning, which has proven to be successful in remote

sensing applications [25], [27], [46], [123], can help to gain knowledge of the images to detect

the proper changes. The most common approach is to train machine learning models so

that they can learn to identify changes [135]–[137]. However, these methods require previous

knowledge of the changes, which is significantly difficult to generalize due to the wide range

of variation in satellite images taken at different locations. For this reason, unsupervised

algorithms are a better option. To solve this issue Xu et al. proposed an unsupervised

change detection algorithm in which they implicitly establish the correspondence between

the images using a deep autoencoder [126]. Deep autoencoders utilize an unsupervised pre-

training step to take advantage of unlabeled data, and previous research has shown that the

unsupervised pre-training step can benefit many applications [138]–[140].

Most change detection methods are applied directly to the image channels. A dif-

ferent approach is to apply those methods to specific indices that measure miscellaneous

features of the satellite images, such as normalized difference vegetation index (NDVI), nor-

malized difference soil index (NDSI) or non-homogeneous feature difference (NHFD) [141].

Some studies have proved that applying the change detection algorithms to these indices

instead of the image can produce better results [142], [143]. These studies apply the change
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detection algorithm to one or more of the feature indices independently, with the goal of

searching for the index that is most suitable for change detection. Using only one index

can reduce false positives, but some critical information might be lost during the process.

To solve this issue, a combination of changes obtained from different feature indices can be

computed.

This study proposes a novel method to combine the changes detected in different

feature indices and the satellite images. The proposed method applies change detection

methods directly to the image bands and the vegetation indices. The experimental results

of the study show that the combination of the multispectral bands and the feature indices

significantly boost the performance of the model. Additionally, a series of post-processing

filters is applied to the results to improve their accuracy and remove false positives. The

following subsections describe the methodology of the study, present the results obtained

and draw the conclusions of the project.

4.2 Methodology

The proposed approach combines change detection algorithms with some well-known

spectral feature indices, as well as multiple pairs of images to remove false positives. The

process can be divided into 5 parts. First, the images are obtained and preprocessed so

that they are suitable for change detection. Second, a set of feature indices is computed

based on the image bands. Then, the change detection algorithms are applied to different

pairs of images. The next step is to perform a series of pixel-wise operations to combine the

changemaps. Lastly, post-processing filters are applied to the changemaps to improve the

results.
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4.2.1 Image Preprocessing

This study uses a set of 3 satellite images that were captured by the WV-2 satellite.

Fig. 21 shows the images used in this study. The images were taken on 10/15/2016 and

08/03/2017 respectively. An auxiliary image taken on 07/06/2016 was used to remove false

positives. The satellite images need to be aligned with each other to obtain the optimal

results in change detection. To do this, a two-step image alignment approach described in

[144]–[146] was used.

(a) (b)

(c) (d)

Fig. 21. Satellite images taken on 10/15/2016 (a) and 08/03/2017 (b). The most visible

changes between the images are highlighted. An image taken on 06/07/2016 (c) was used

to remove false positives. The ground truth in the form of a binary mask is shown in (d).
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4.2.2 Computation of Feature Maps

The second step consists of computing different feature indices [141] that measure

miscellaneous features of the satellite images. The feature indices used in this study are

described as follows:

1. Normalized Difference Vegetation Index: This index is used to measure the

amount of green vegetation at a given point. Eq. 6 shows how to compute the NDVI

in WV-2 images, where Nir2 is channel 8 and Red is channel 5 of the satellite image.

Fig. 22 shows the NDVI of each of the images used in the study.

NDV IWV−2 =
Nir2−Red
Nir2 +Red

(6)

2. Normalized Difference Soil Index: This index is used to measure the amount of

soil in a given location of the image. The NDSI of a WV-2 image can be computed

using Eq. 7, where Green corresponds to channel 3 and Y ellow to channel 4 of the

satellite image. Fig. 23 shows the NDSI of each of the images used in the study.

NDSIWV−2 =
Green− Y ellow
Green+ Y ellow

(7)

3. Non-Homogeneous Feature Difference: This index identifies features that con-

trast highly against the background (e.g., roofs, vehicles). The formula to calculate

the NHFD is shown in Eq. 8, where RedEdge corresponds to channel 6 and Coastal

to channel 1 in the satellite images. Fig. 24 shows the NHFD of the images used in
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(a) (b) (c)

Fig. 22. NDVI maps corresponding to images a-c from Fig. 21.

the study.

NHFDWV−2 =
RedEdge− Coastal
RedEdge+ Coastal

(8)

4. Red-Blue Ratio (R/B): This index corresponds to the division of the red band

(channel 5 in WV-2 images) between the blue band (channel 2 in WV-2 images). Fig.

25 shows the R/B of each of the WV-2 images used in this project.

4.2.3 Change Detection

This study utilizes three different methods for change detection. The first method

is based on deep autoencoder. Given a pair of images collected at different times, a deep

autoencoder is trained by feeding small patches from both images. The image collected at

an earlier time is used as input and the image at a later time as the output. The second

method is based on PCA. The third method is based on simple differencing of two images.
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(a) (b) (c)

Fig. 23. NDSI maps corresponding to images a-c from Fig. 21.

(a) (b) (c)

Fig. 24. NHFD maps corresponding to images a-c from Fig. 21.

(a) (b) (c)

Fig. 25. R/B maps corresponding to images a-c from Fig. 21.
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The methods are described as follows:

1. Deep autoencoder: This method consists of an unsupervised change detection al-

gorithm based on the work by Xu et al. [126]. Specifically, the autoencoder is trained

with patches from image 1 as inputs and patches from image 2 as outputs. The val-

idation data are two sets of the same patches from image 1. The model is trained

with 3 million random patches extracted from images 1 and 2 and validated with

1 million random patches (different from the training set) extracted from image 1.

Then, to compute the changemap, all the patches of image 1 are evaluated in the

autoencoder; then, each of the decoded patches is subtracted from its corresponding

patch from image 2. Each autoencoder is trained for 20 epochs in batches of 1,024

patches. Algorithm 1 summarizes the change detection procedure using autoencoder.

The architecture of an autoencoder is described in Section 2.1.3 and depicted in Fig.

4. This study experiments with five different structures of autoencoders, which are

summarized in Table 9.

2. PCA: A method for change detection is computed based on the principles of PCA

[147]. Principal component analysis was originally developed to reduce the number

of dimensions in a dataset by identifying the correlation between the data points

(normally through the covariance matrix or correlation matrix) and then transferring

the data to an uncorrelated set. PCA can be used in change detection by assuming

that the pixels with no change are heavily correlated [148]. Following this principle,

it can be established that the areas in which the data is not correlated are the areas

with changes. Specifically, the method consists of the following steps:
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(a) For each band, a 2D graph is created in which the X-axis is the pixel value from

image 1 and the Y-axis is the pixel value from the same band in image 2. Each

point then will correspond to a location on the images, and the value of each axis

will correspond to the pixel value on each image.

(b) PCA is performed on the graph, and the distance in the second component is

considered as the difference between images 1 and 2.

(c) To combine the results in a single channel, a sum of all the changes per channel

is computed. Then, the results obtained are normalized to get a changemap

that ranges between 0 and 1, corresponding to no change and maximum change

respectively.

3. Differencing: This method consists of directly subtracting the pixel values for each of

the pixels on both images, and then considering the absolute value of that subtraction

as the change between the images. Eq. 9 shows the mathematical interpretation of

this technique, where Ck
ij represents the change at coordinates i,j and band k, and

xkij(tn) corresponds to the pixel value at coordinates i,j and band k at times t1=first

date and t2=second date. As in the PCA method, all the changes are combined in a

single band by performing the summation of all bands and then normalizing the result

between 0 and 1.

Ck
ij = |xkij(t1)− xkij(t2)| (9)

4.2.4 Combination of Changes

The changes of each of the indices are computed independently, and the algorithms
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Algorithm 1: Change detection using autoencoder.

Data: Past images x1, ..., xM ; New image y

Result: Changemap

Steps:

for image pairs (xi,y) i = 1, ...,M do

1. Collect patches;
2. Patches of xi as inputs to auto-encoder and patches of y as outputs.
Forward training followed by backward training until steady state has been
reache;

3. Subtract y from the predicted y with xi as input;
4. Threshold the difference image;
5. Repeat for each i;
6. Perform an intersection of the of the difference images;
7. Perform a closing to connect the isolated regions and then an erosion
operation to remove the isolated regions;

end

for change detection are also applied to the bands of the satellite images directly. Once the

change detection algorithms are applied to each of the indices, they are combined to a single

image. To do this, first each of the changemaps is thresholded to come up with a logical

image in which 1 means a change occurred in a given pixel and 0 means otherwise. The

threshold operation is shown in Eq. 10, where the result C ′ij is the resulting binary mask

and T is the threshold value determined empirically.

C ′ij =


1, if Cij > T

0, Cij ≤ T

(10)

Once the thresholded masks are obtained, all the changes are combined per index
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TABLE 9. Structure of the autoencoders used in this study. The last column shows the

number of neuron in the hidden layers of the autoencoders applied to satellite images (8

channels) and feature indices (1 channel).

ID Patch Size Activation Size of Layers (Sat. Image and Feat. Index)

1 8x8 Sigmoid
512-256-128-80-40-80-128-256-512
64-32-16-8-4-8-16-32-64

2 1x1 Linear
8-8
1-1

3 1x1 Sigmoid
8-8
1-1

4 4x4 Linear
128-64-128
16-8-16

5 4x4 Sigmoid
128-64-128
16-8-16

in a single mask by performing a pixel-wise OR operation. To reduce false positives, the

algorithms are applied to detect two different changes. The first change is the one between

the images 10/15/2016 and 08/03/2017, the second one between the images 06/07/2016

and 08/03/2017. Then, a pixel-wise AND operation is performed to come up with the final

change. This is done to remove temporary changes related to the movement of vehicles,

persons or temporary structures (among others). Since 06/07/2016 and 10/15/2016 are

close in time, it is assumed that if a change does not occur in both changes, then that

change is temporary. The process to obtain the final change image (after thresholding) is

depicted in Fig. 26.

4.2.5 Post-Processing

Once the final change map is computed, two morphological filters are applied on it
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Fig. 26. Process to obtain final change image. The changes in the separate indices are

combined with an OR operation, while the changes between the different images are filtered

with an AND operation. In the images, 1 means a changed occurred and 0 means otherwise.

to improve the results. The goal of the post-processing filters is to enforce group sparsity

across neighboring pixels, which has significantly improved the results in similar works [25],

[149]. First, a close operation is performed to connect the isolated changes. Then, an erosion

operation is applied to delete the small isolated false positives.
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4.3 Experiments and Results

Fig. 27 shows the final results obtained for change detection. For each of the change

detection methods, 3 different types of results are shown. First, the change detection meth-

ods are applied to the image and each index separately, and then they are fused with an

OR operation pixel-wise. Those results are shown in the left column of Fig. 27. The center

column shows the results when only the image is used for change detection (and not the

feature indices), while the right column shows the results when the change detection algo-

rithm is applied only to the feature indices (and not directly to the image). Note that the

threshold applied in these results was 0.2, which was determined empirically.

It can be appreciated that in all the cases, the changes detected in both the image

and the feature indices (left column of Fig. 27) produce better results. The two most

noticeable changes from Fig. 21 are detected in all those cases.

Although Fig. 27 shows that the combination of feature indices and the image

bands produced the best results, it is difficult to determine which of the change detection

methods is the best. Fig. 28 shows the Receiving Operating Characteristic (ROC) curves

and their corresponding area under the curve (AUC) to provide an analytical assessment

of the performance of each method. It can be observed that the combination of feature

indices with the image bands produced the best results, which is consistent with the results

shown in Figure 27. Additionally, autoencoders 4 and 5 were the methods that maximized

the AUC scores in all cases, which proves that they are the optimal methods for change

detection in multispectral satellite images.
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Autoencoder 1:

Autoencoder 2:

Autoencoder 3:

Autoencoder 4:

Autoencoder 5:

PCA:

Differencing:

Fig. 27. Results obtained using different change detection algorithms.
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(a) (b) (c)

Fig. 28. ROC curves obtained using all the studied change detection methods. The results

when the actual images are used in combination with the feature indices are shown in (a),

(b) shows the results when only the whole image is considered, while (c) shows the results

when only the feature indices were considered.

4.3.1 Computational Complexity

All the experiments were conducted on a desktop computer with Intel Xeon @

3.10GHz (10 cores) and 64 GB of RAM. Table 10 reports the computational time of each

change detection method. Since the spectral size of the satellite images and the feature

indices differs, both cases are distinguished when reporting the time. It can be appreci-

ated that performing change detection with autoencoder takes significantly more time and

resources than PCA and differencing.

4.4 Conclusions

This study proposes a novel method for the combination of change detection of satel-

lite images and their corresponding feature indices. The computation of change detection on

the feature indices of the images proves useful when combined with the detection of changes
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TABLE 10. Average computational time in seconds of each method for change detection

when applied to a multispectral satellite image (8 bands) and a feature index (1 band).

Method Satellite Image Feature Index

Autencoder 1 144.56 43.67
Autencoder 2 16.81 12.78
Autencoder 3 18.01 13.04
Autencoder 4 32.19 21.07
Autencoder 5 35.97 22.92

PCA 0.75 0.13
Differencing 0.32 0.17

in the whole image. The method proposed utilizes a combination of feature indices and the

whole image and applies morphological filters to improve the results. The technique can

be applied to any set of 3 aligned multispectral images taken on the same area at different

times.

With this chapter, it is shown that carefully selecting and combining the input fea-

tures significantly improves the performance of a deep learning model (in this case, an

autoencoder for change detection). This does not only apply to deep learning models, but

also to more simple approaches for change detection such as PCA and differencing. In fact,

the difference in performance between these methods and the autoencoders is not very sig-

nificant, which ultimately makes them a better option due to their reduced computational

complexity. However, the study demonstrates the importance of feature selection for data-

driven tasks and shows how expanding the input features of a model significantly boosts its

performance.

In conclusion, this chapter demonstrates how using the proper feature representations
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of the data produces significantly better results. In the next chapter, the importance of this

concept in the field of geometric deep learning will be shown.
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CHAPTER 5

FEATURE OPERATORS IN MESH CONVOLUTIONAL

NETWORKS

This chapter proposes two novel architectures for mesh convolutional neural networks

that can be fed with features extracted from the faces and vertices of geometric 3D meshes.

Specifically, the chapter describes the implementation of a face-based and vertex-based mesh

convolutional network and shows the advantages of these models over the original edge-based

MeshCNN [104].

5.1 Background

Deep learning has achieved superb results in different tasks such as classification,

regression, object recognition, etc. In most cases, deep learning algorithms are applied to

2D data (images) or 1D data (text, audio, etc.). Recently, there has been increased interest

in applying these techniques to 3D shapes, which is a significantly harder task due to the

complexity and irregularity of the data. There have been multiple approaches to apply

deep learning models to different representations of 3D data such as 2D projections, voxel

grids, point clouds, etc. [150]. Recently, Hanocka et al. proposed MeshCNN [104], a CNN

based model that produced state-of-the-art results in classification and segmentation of 3D

shapes. The authors of this method designed convolutional and pooling operators that take

into account the connectivity of the mesh. They proposed an edge-based architecture in
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Fig. 29. MeshCNN network for classification of geometric triangular meshes.

which the input consists of features extracted from the edges and their neighbors. The

overall architecture of a MeshCNN network for classification is depicted in Fig. 29.

Specifically, MeshCNN combines a set of invariant features per edge with the features

of the edge’s neighbor (4 neighbors per edge) in a feature tensor with a dimension of nf×ne×

(1+nn), where nf is the number of features, ne is the number of edges and nn is the number

of neighbors per edge (in their case, 4). Then, the first layer of the network is defined as a

convolutional layer with nk kernels and a size of 1×(1+nn) per kernel, which can be applied

to the input using general matrix multiplication (GEMM), and producing an intermediate

feature tensor with size nk × ne × 1. This representation is then modified in each layer to

include the updated combined features of the edge’s neighbors. Additionally, the authors

propose a set of operations to guarantee invariance through the network. First, they extract

edge-based features that are completely invariant to similarity transformations (translation,

rotation, scaling). Second, they combine the features of the neighbors of each edge using a

set of symmetric operations, so that the feature representation does not change depending on

the order of the neighbors. Finally, they propose a pooling operation following the principles

of edge collapse [151], in which edges with lower activations from the previous convolutional

layer are pooled first so that the network learns effective pooled representations of the data.
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One of the main limitations of MeshCNN is that it is limited to be applied to the

edges of the geometric meshes. While this does not constitute a problem for some tasks such

as classification of the whole shapes, it can become an issue when the task at hand is focused

on a different primitive of the mesh. For instance, translating edges or faces of a mesh is

not as trivial as translating its vertices due to the connectivity within the shape. Thus,

a vertex-based approach would be desirable in a generative problem in which the position

of the mesh’s primitives has to be displaced. A different example can be a specific project

that requires segmentation of the faces or vertices of a mesh instead of the edges. While

the input and output of the network can be adapted in all of these cases to intermediate

edge-based representations, it would be desirable to have networks that can directly handle

these primitives instead of edges.

This study proposes two novel architectures for MeshCNN that, while following the

main principles of the original network, are thoroughly modified so that they can be applied

directly to the faces or vertices of a mesh. To do this, the three main modules of MeshCNN

are modified. Those modules are: feature extraction, neighborhood selection and pooling.

The main contributions of this study are face-based and vertex-based mesh convolutional

neural networks that are applied directly to the faces and vertices of the mesh, respec-

tively. The main goal of this study is to come up with two alternative implementations of

MeshCNN that can be applied to the faces and the vertices of a mesh directly, while pre-

serving or improving the performance of the original network. The following sections of this

chapter thoroughly describe the methodology for designing the networks, demonstrate their

performance through a variety of experiments and a case study, and draw the appropriate
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conclusions from the study.

5.2 Methodology

The proposed face-based and vertex-based networks follow the same aggregation and

convolutional principles of MeshCNN. Specifically, the input of the network is combined in a

feature tensor with dimensions nf×np×(1+nn), where nf is the number of features, ne is the

number of primitives (face or vertex) and nn is the number of neighbors per primitive. This

input tensor can then be passed through the CNN using standard GEMM operations. While

this part of the network does not change with respect to the original, each of the modules to

aggregate and process the data is completely modified so that the network can be applied

to the faces and vertices of the network. Specifically, the three main parts of the network

are fundamentally modified: (1) the input features of the network, (2) the neighborhood

of each primitive, and (3) the pooling operation in the network. The following subsections

discuss each implementation proposed in this study.

5.2.1 Face-Based Architecture

The following subsections thoroughly describe the methodology used when designing

the proposed face-based implementation.

5.2.1.1 Features

Fig. 30 (b) shows the feature operators for the proposed face-based implementation

of MeshCNN. For each face, a set of features that are invariant to similarity transformations

needs to be selected. Inspired by the original edge-based implementation of MeshCNN
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Fig. 30. Feature operators for each implementation of MeshCNN.

Fig. 31. Neighborhood operators for each implementation of MeshCNN.

[104], the method takes advantage of the constant neighborhood of the face in a watertight

manifold mesh, where each edge is always adjacent to 2 faces. Similarly, a face is adjacent
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Fig. 32. Pooling operators for each implementation of MeshCNN.

to 3 other faces. In other words, two faces are adjacent if they share one edge. With this

in mind, the face-based features are defined as invariant features that are relative to the

3 neighbors of each face. Specifically, for each face, the method extracts the 3 angles of

the face (α1, α2, α3), the 3 dihedral angles between the face and its neighbors (β1, β2, β3),

and three ratios between the area of each neighbor and the face. These features can be

considered analogous to the edge-based features of the original MeshCNN implementation

(Fig. 30 (a)) but adapted to faces.

5.2.1.2 Neighborhood

In [104], the authors apply symmetric operations to the features of the edge’s neigh-

bors and include them as separate input units of the network. Specifically, the neighbors of

each edge are defined as the remaining edges of the edge’s adjacent faces (Fig. 31 (a)). To

further ensure invariance in the convolutions, the authors apply a set of symmetric opera-

tions to the edge’s neighbors. This is shown in Fig. 31 (a), where e0 is the selected edge

and e1, e2, e3, and e4 are the selected neighbors.

The neighborhood selection of the proposed face-based implementation is depicted
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in Fig. 31 (b). For each face, the 3 faces that share an edge with it are selected as the

primitive’s neighborhood. Then, the features of the selected neighbors are combined with

a summation operation so that the selection order of the neighbors is invariant within the

network. The symmetric operation (summation) was selected empirically, as demonstrated

in Section 5.3.1.

5.2.1.3 Pooling

Pooling layers in a CNN reduce the dimensionality of the data to reduce the weight

computations in the network while preserving the most important features of the data.

The pooling layers of the original implementation of MeshCNN [104] are based on the edge

collapse technique proposed by [151]. Following this method, an edge is collapsed into a

vertex, and the 4 neighbors of the edge are merged into 2 resulting edges (one per adjacent

face). This is shown in Fig. 32 (a). In the network, the edge to be collapsed is decided

based on the output from the last convolutional layer. Specifically, the network collapses

the edges whose activations contribute the least to the network’s goal.

The proposed face-based implementation of MeshCNN follows a similar approach

as in [104]. However, in this case, the activations of the convolutional layer do not relate

directly to the edges of the mesh. Instead, the activations correspond to the faces of the

mesh. In the network, the edge is selected by looking at the activations of its two adjacent

faces. Specifically, the network selects the edges in which the combination of the activations

of its adjacent faces contributes the least to the network’s objective. Fig. 32 (b) shows the

pooling operation in the proposed face-based implementation. The red faces in the diagram

represent the faces with the lowest activations in the previous convolutional layers. The
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edge collapse operation is performed so that both faces are removed, and the features of the

resulting neighbors (in blue) are computed as the average between their feature values and

the values of the collapsed faces.

Similarly to [104], the unpooling layers are designed so that they recover the previ-

ously pooled faces. Specifically, each unpooling layer is matched with a pooling layer, and

then the unpooling layer recovers the faces that had been previously pooled. The features

of the new unpooled faces (red faces in Fig. 32 (b)) are computed as the average of its

neighbor faces (blue faces in Fig. 32 (b)).

5.2.2 Vertex-Based Architecture

The following subsections thoroughly describe the methodology used when designing

the features, neighborhood and pooling operations of the proposed vertex-based implemen-

tation.

5.2.2.1 Features

The vertex in a mesh can be considered as the minimum unit of information of a

geometric shape. The vertices of a mesh contain the geometric information of the shape

(coordinates generally in 3D space), as well as other optional information such as texture

coordinates, normal, or colors. For the purposes of this study, it is assumed that every vertex

only contains 3D coordinates (x, y, z) of the shape. Two vertices of a mesh are considered

neighbors (within a 1-ring neighborhood) if they share an edge. Unlike faces and edges, a

vertex can have any number of neighbors, which makes defining a constant neighborhood

such as the one in [104] (Fig. 30 (a)) for feature extraction computationally impossible.
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Thus, it is significantly challenging to extract invariant features from the vertices based on

its neighborhood. Instead, the curvature of each vertex is used as its invariant input features.

Specifically, the mean curvature and Gaussian curvature of each vertex are extracted.

Mean curvature is the average of the two principle curvatures (maximal curvature

and minimal curvature) of a surface at a certain point [91]. The mean curvature H at

a vertex vi can be calculated as shown in Eq. 11, where ∆f(vi) is the Laplace-Beltrami

operator of vertex vi.

H(vi) =
1

2
||∆xi|| (11)

The Laplace-Beltrami operator is a generalization of the Laplace operator to func-

tions on surfaces [152]. The Laplace-Beltrami operator at vi can be computed as shown in

Eq. 12, where Ai is the sum of the area of the faces adjacent to vi, N1(vi) is the 1-ring

neighborhood of vi, and αi,j and βi,j are the opposite angles of the adjacent triangles to edge

(i, j), as shown in Fig. 33. This equation, which has been utilized in different applications

[153], is considered to be the most popular discretization of the Laplace-Beltrami of a ge-

ometric mesh, and it provides a discrete approximation of the mean curvature of vertex vi

[91].

∆f(vi) =
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cot βi,j)(fj − fi) (12)

The Gaussian curvature of a surface at a point is the product of the principal cur-

vatures (maximal curvature and minimal curvature) at the given point [91]. Essentially, it

is the square of the geometric mean of the maximal curvature and minimal curvature. The
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Fig. 33. Quantities used in the discretization of the mean and Gaussian curvatures.

Gaussian curvature at a vertex vi can be discretized using Eq. 13, where θj corresponds to

the angles of the incident triangles of vertex vi, as shown in Fig. 33. This discretization of

the Gaussian curvature was proposed in [154].

K(vi) =
1

Ai
(2π −

∑
vj∈N1(vi)

θj) (13)

The discrete operators H and K define the curvature of a vertex, and they are

completely invariant to similarity transformations, which makes them good candidates for

features of the proposed vertex-based network.

5.2.2.2 Neighborhood

Unlike edges and faces, defining a constant neighborhood for a vertex is non-trivial.

In this case, it is impossible to know beforehand the exact number of neighbors per vertex.

However, it is known that all vertices in closed two-manifold meshes have a minimum of 3

and an average of 6 vertices [91]. Combining different number of vertices in a symmetric
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operation (such as a summation) can negatively affect the invariance of the neural network.

To avoid this, the N closest neighbors of a vertex are selected as its neighborhood, and their

features are included in the input representation sorted from closest to farthest. If a vertex

has fewer than N neighbors, the features of the remaining neighbors are set to zero. In other

words, Ni = min(N, |N1(vi)|) for a vertex vi. Fig. 31 (c) depicts the neighborhood selection

method for the vertex-based approach when the number of neighbors is set to N = 6.

5.2.2.3 Pooling

Fig. 32 (c) shows the pooling and unpooling operations in the proposed vertex-based

network. As in the face-based approach, the (vertex-based) activations of the previous

convolutional layer are combined per edge, and the edges that have the smallest combined

activations are pooled. In this case, two vertices (red in Fig. 32 (c)) are pooled into one

vertex (blue in Fig. 32 (c)), and the features of the pooled vertex are computed as the

average between the features of the unpooled vertices. If the network has unpooling layers,

each of them is connected to a pooling layer so that the same collapsed vertices are recovered.

5.3 Results

This section presents the results obtained in different tasks and compares them

against the original implementation of MeshCNN [104]. First, the results of two hyper-

parameter determination studies are presented to justify the design decisions regarding the

neighborhood selection of the approaches. Then, the proposed designs are compared to

the original implementation of MeshCNN in the tasks of classification and segmentation of

different datasets. Finally, the last subsection includes an analysis of the computational
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complexity of the approaches, and compares them with the original edge-based network.

5.3.1 Hyperparameter Determination

5.3.1.1 Face-based Architecture

Two hyperparameter determination studies are carried out to determine the best con-

figuration for selecting the neighborhood of the proposed networks. The first experiment

studies how applying different symmetric functions to include the primitive’s neighborhood

affects the performance of the face-based network. To do this, six different symmetric opera-

tions are used to combine the features of the 3 neighbors of a face (f1, f2, f3). The operations

are listed in Table 11. Then, a face-based network is trained in a classification task using

all the possible combination of the operations. The results of all experiments (64 different

combinations) is included in Appendix A, while Table 11 reports the mean classification ac-

curacy involving each operation. It is observed that using non-linear symmetric operations

negatively affects the performance of the network. To further demonstrate this, the last two

columns of Table 11 include the classification results when only the linear and non-linear

operations are considered, respectively. These results are also visualized in Fig. 34. It

can be seen how the results in which only linear operations are considered are significantly

better.

Table 12 shows the classification accuracies of the 7 different combinations of linear

operations. It can be seen that the option that produces the best results is including the

features of the face neighbors in a summation operation. This is consistent with the results

reported in Table 11 and Fig. 34, in which the combinations that included the summation
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TABLE 11. Mean test accuracy in the SHREC6 dataset using different symmetric opera-

tions.

ID Operation
All

Operations

Linear

Only

Non-Linear

Only

Sum f1 + f2 + f3 30.61% 93.69% –

Diff-Sum |f1 − f2|+ |f1 − f3|+ |f2 − f3| 27.73% 86.31% –

Product-Sum f1 × f2 + f1 × f3 + f2 × f3 24.75% – 20.15%

Product f1 × f2 × f3 19.70% – 16.58%

Squares-Sum f 2
1 + f 2

2 + f 2
3 21.10% – 16.85%

Cubes-Sum f 3
1 + f 3

2 + f 3
3 10.79% – 11.07%

TABLE 12. Test accuracy in the SHREC6 dataset using different combinations of linear

symmetric operations.

Sum Diff-Sum Test Accuracy

X 95.00%
X X 92.38%

X 80.24%

operation always produced the best results. Based on these results, it is established that the

best neighborhood configuration for the face-based network is to only include the summation

as the symmetric operation for the face neighbors. The remaining results reported with the

face-based architecture follow this design.

5.3.1.2 Vertex-based Architecture

A second hyperparameter determination experiment is carried out to determine the

optimum number of neighbors for the vertex-based network. As explained in Section 5.2.2,
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Fig. 34. Mean test accuracy in the SHREC6 dataset using different symmetric operations.

the number of neighbors for a vertex is not constant within the mesh. To tackle this

issue, the N closest neighbors of the vertex are considered in the input of the network. To

guarantee invariance in the network, the features are sorted from closest to farthest within

the neighborhood, which serves as the symmetric operation of this implementation. Fig. 35

reports the classification accuracies using different values of N . It can be seen that, while

the difference is not very big among different values of N , the best results are obtained

when N = 6, which is also the average number of vertex neighbors in a manifold mesh [91].

Because of this, the remaining experiments of the vertex-based networks use N = 6.
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Fig. 35. Mean test accuracy in the SHREC6 dataset using different number of vertex

neighbors (N).

5.3.2 Classification Results

Edge-based, face-based and vertex-based networks are designed and trained for clas-

sifying the two datasets included in the original paper of MeshCNN [104]: SHREC and en-

graved cubes. In every case, the edge-based network is designed using the same parameters

as in the original implementation. The face-based and vertex-based networks are designed

using the same parameters with some minor modifications. Specifically, the convolutional

filters are slightly changed so that the number of trainable parameters is roughly the same in

all networks, and the pooling resolution is changed in each implementation so that, in each

pooling layer, the number of resulting primitives is roughly the same. Additionally, data

augmentation techniques are applied to the training data following the same configuration
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as in the edge-based implementation [104]. Specifically, the training set is augmented with

5% edge flips and 20% slide vertices.

5.3.2.1 SHREC

The designs of the proposed face-based and vertex-based networks are evaluated on

the task of classifying different splits of the SHREC dataset [155]. This dataset contains

closed two-manifold meshes divided in 30 different classes. Each class in the dataset contains

20 meshes with a similar number of primitives but different topology. A split in this dataset

refers to the number of training samples per class. Five different splits are computed with

1, 3, 6, 10, and 16 training samples per class. For each split, five different experiments are

performed, and the results are shown in Table 13 in the form of mean±std. Additionally,

the mean test accuracy is plotted versus the number of training samples per class (i.e.,

split) in Fig. 36. The experimental results show that the two proposed networks perform

significantly better than the original approach proposed by [104], which constituted the

previous state of the art in this dataset. Generally, the face-based network is the one that

produces the best results, especially in the splits with less training data.

TABLE 13. Testing accuracy for classification of different splits of the SHREC dataset. A

’*’ sign means that the difference with respect to the results using the edge-based imple-

mentation is statistically significant. Best results are highlighted in bold.

Split Edge-based Face-based Vertex-based

1 0.34 ± 0.07 0.56 ± 0.01* 0.35 ± 0.07
3 0.52 ± 0.07 0.84 ± 0.05* 0.66 ± 0.03*
6 0.85 ± 0.03 0.93 ± 0.03* 0.88 ± 0.03
10 0.94 ± 0.01 0.97 ± 0.01* 0.97 ± 0.01*
16 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01



84

Fig. 36. Mean test accuracy in different splits of the SHREC dataset.

5.3.2.2 Engraved Cubes

The authors of the original edge-based MeshCNN [104] produced their own dataset

to further evaluate their model in a classification task. Their dataset, referred in this study

as “Engraved Cubes”, consists of a set of cubes with shallow icon engravings divided in 23

classes. The meshes are labeled depending on the engraved shape in the cubes. Fig. 37 shows

meshes with different cube engravings included in this dataset. The original implementation

and the proposed face-based and vertex-based networks are trained and tested in 5 different

splits of this dataset. For each split, five different experiments are performed, and results

are reported in the form of mean±std in Table 14. Additionally, Fig. 38 includes a plot

with the mean test accuracy. It can be seen that the results on this dataset are very similar

across all the implementations of MeshCNN. It is believed that this happens due to the
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Fig. 37. Meshes from the engraved cubes dataset produced by [104].

TABLE 14. Testing accuracy for classification of different splits of the Engraved Cubes

dataset.

Split Edge-based Face-based Vertex-based

1 0.22 ± 0.04 0.22 ± 0.06 0.23 ± 0.04
10 0.79 ± 0.02 0.80 ± 0.02 0.77 ± 0.02
50 0.98 ± 0.004 0.98 ± 0.01 0.98 ± 0.003
100 0.99 ± 0.002 0.99 ± 0.003 0.99 ± 0.01
170 0.99 ± 0.001 0.99 ± 0.002 0.99 ± 0.02

simplicity of this dataset.

5.3.3 Segmentation Results

The proposed implementations are evaluated on a segmentation task using the same

datasets evaluated in the original MeshCNN implementation [104]. Fig. 39 shows a variety

of meshes segmented using each of the approaches described in this study. The segmentation

datasets used in [104] are edge-based, but the output of the proposed approaches is face-

based and vertex-based. To address this, the segmentation labels are modified accordingly.

As in Section 5.3.2 the proposed networks are designed so that the number of trainable
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Fig. 38. Mean test accuracy in different splits of the Engraved Cubes dataset.

parameters is roughly the same and so that the pooled primitives are proportional to the

edge-based implementation.

5.3.3.1 COSEG

The COSEG dataset contains three different set of meshes with models of aliens,

vases, and chairs [156]. The original versions of these datasets contain 170, 250 and 330

samples for training, respectively. As in the classification experiments, five different splits are

produced from this dataset to evaluate the networks on datasets of different size. Specifically,

five different splits are computed in which the largest one contains the original number of

samples from each dataset, and the following ones reduce the number of samples to 100, 50,

10 and 1. For each number of samples, five different splits are computed for a total of 25
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Fig. 39. Mesh segmentation using the original edge-based approach (a), and the proposed

face-based (b) and vertex-based (c) methods.

experiments per dataset. The mean test accuracies are reported in Tables 15, 16, and 17, and

plotted in Figures 40, 41, and 42, respectively. It can be seen that the face-based architecture

performs significantly better in all the datasets. The vertex-based architecture is somewhat

inconsistent in this task. The reported results with this architecture are generally slightly

worse than the results using the edge-based network. However, in most of the cases this

difference is not significant, and in some cases the results are better than the ones produced

by the original edge-based architecture.
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TABLE 15. Testing accuracy for segmentation of different splits of the Aliens dataset

(COSEG).

Split Edge-based Face-based Vertex-based

1 0.42 ± 0.05 0.48 ± 0.06 0.38 ± 0.03
10 0.66 ± 0.03 0.71 ± 0.01* 0.53 ± 0.04*
50 0.86 ± 0.02 0.87 ± 0.01 0.82 ± 0.04
100 0.93 ± 0.02 0.94 ± 0.01 0.93 ± 0.01
170 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.03

Fig. 40. Mean test accuracy in different splits of the COSEG Aliens dataset.

TABLE 16. Testing accuracy for segmentation of different splits of the Vases dataset

(COSEG).

Split Edge-based Face-based Vertex-based

1 0.45 ± 0.08 0.58 ± 0.09* 0.51 ± 0.11
10 0.75 ± 0.03 0.78 ± 0.04 0.63 ± 0.02*
50 0.85 ± 0.02 0.89 ± 0.01* 0.75 ± 0.02*
100 0.91 ± 0.01 0.92 ± 0.01 0.86 ± 0.01*
250 0.93 ± 0.01 0.95 ± 0.01* 0.93 ± 0.01
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Fig. 41. Mean test accuracy in different splits of the COSEG Vases dataset.

TABLE 17. Testing accuracy for segmentation of different splits of the Chairs dataset

(COSEG).

Split Edge-based Face-based Vertex-based

1 0.37 ± 0.02 0.49 ± 0.06* 0.41 ± 0.02*
10 0.54 ± 0.04 0.63 ± 0.03* 0.50 ± 0.02
50 0.76 ± 0.01 0.80 ± 0.01* 0.76 ± 0.02
100 0.84 ± 0.02 0.85 ± 0.02 0.82 ± 0.02
330 0.94 ± 0.01 0.96 ± 0.01* 0.93 ± 0.02

5.3.3.2 Human Body Segmentation

The authors of the original edge-based implementation of MeshCNN [104] report

state-of-the-art results on the human body segmentation dataset proposed by [157], which

contains meshes of human bodies segmented in 8 different classes. As in the previous
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Fig. 42. Mean test accuracy in different splits of the COSEG Chairs dataset.

experiments, five different splits are computed to evaluate the networks on this dataset. For

this case, the computed splits have 380, 100, 50, 10 and 1 training samples, and results

are reported in Table 18 and Fig. 43. It can be seen that the face-based implementation

produces significantly better results than the edge-based implementation in all the splits

of the dataset. As in the case of the COSEG experiments, the vertex-based segmentation

networks perform somewhat similar to the edge-based case. Specifically, it is observed that

the vertex-based implementation is significantly better in one split (1 training sample) and

significantly worse in another split (380 training samples), and similar to the edge-based

implementation in the rest of the splits.
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TABLE 18. Testing accuracy for segmentation of different splits of the Human Segmentation

dataset.

Split Edge-based Face-based Vertex-based

1 0.26 ± 0.04 0.43 ± 0.06* 0.41 ± 0.09*
10 0.58 ± 0.02 0.79 ± 0.02* 0.60 ± 0.02
50 0.84 ± 0.04 0.92 ± 0.03* 0.82 ± 0.01
100 0.88 ± 0.03 0.96 ± 0.002* 0.87 ± 0.01
380 0.96 ± 0.01 0.98 ± 0.002* 0.94 ± 0.01*

Fig. 43. Mean test accuracy in different splits of the Human Body Segmentation dataset.

5.3.4 Summary of the Results

Table 19 summarizes the results reported in the classification and segmentation

datasets. The table reports the percentage of splits per dataset in which each network

produced better, worse or similar results with respect to the original edge-based MeshCNN.
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TABLE 19. Overall comparison of the results for classification and segmentation using with

respect to the accuracy reported by the original edge-based implementation of MeshCNN.

Task Dataset
Face-based vs. Original Vertex-based vs. Original

Better Worse Similar Better Worse Similar

Classification
SHREC 80% 0% 20% 40% 0 60%

Cubes 0% 0% 100% 0 0 100%

Segmentation

Aliens 20% 0% 80% 0 20% 80%

Vases 60% 0% 40% 20% 20% 60%

Chairs 80% 0% 20% 20% 0 80%

Humans 100% 0% 0% 20% 20% 60%

A split is marked as better/worse if the difference between the accuracies is statistically

significant. Otherwise, the split is labeled as similar. It can be seen that, generally, the

face-based implementation reports significantly better results than the edge-based network,

while the vertex-based implementation generally produces similar results.

5.3.5 Computational Complexity

The proposed architectures are slower than the original edge-based MeshCNN. This

happens due to the pooling layers in the network. The pooling layers of the proposed

networks combine the activations of the faces and vertices per edge to determine where to

apply edge collapse. This operation is not needed in the original edge-based implementation

of MeshCNN, and since it has to be computed in each pooling layer, it significantly affects

the computational time of the proposed networks. Fig. 44 includes the time (in minutes)

that it takes to train each network with and without the pooling layers. It can be seen that
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Fig. 44. Computational time of training each type of network for classification of the

SHREC10 dataset.

when the pooling layers are included in the network, the proposed face-based and vertex-

based networks are slower than the original edge-based network. However, when no pooling

layers are present, the three networks perform similarly in terms of computational time. All

the experiments were carried out using a single NVIDIA V100 GPU.

5.4 Case Study: Vertex-Based Implementation of Point2Mesh

Point2Mesh is a recently proposed method for automatic mesh reconstruction from

a point cloud [107]. A diagram of the model is shown in Fig. 45. This approach first

computes an initial coarse approximation of the reconstructed mesh, and then uses a self-

prior that iteratively learns to displace the vertices of the mesh. The self-prior is defined

as an U-Net style network that follows the principles of MeshCNN [104]. The goal of the

self-prior is to learn displacements for the vertices of the mesh. However, since the network
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is designed using the original edge-based implementation of MeshCNN, the displacements

of the network are produced by edge. Specifically, the network produces a set of edge

displacements ∆E that consists of pairs of vertex displacements. Because one vertex is

adjacent to several edges, the produced vertex displacements must be combined so that the

deformation is consistent. To tackle this issue, the authors propose an extra module referred

to as ”Build ∆V ”, which averages the vertex displacements in ∆E following Eq. 14, where

vi is computed as the average of all the vertex positions in its adjacent edges, and n is the

valence of vi.

vi =
1

n

∑
j∈n

ej(vi) (14)

While aggregating the edge-based output produces very good results, a vertex-based

implementation of MeshCNN could be used for the self-prior so that the ”Build ∆V ” module

is not needed, as shown in Fig. 45. To prove this, a vertex-based version of Point2Mesh

is designed and compared against the original implementation in different qualitative and

quantitative experiments.

5.4.1 Visual Results

Edge-based and vertex-based networks are trained for mesh reconstruction of five

different clean point-clouds provided in the original source code of Point2Mesh [107]. In

every case, the networks are designed following the same configuration as in the original

version of Point2Mesh [107]. Fig. 46 shows the reconstructed meshes using the original

edge-based network and the proposed vertex-based implementation. It can be seen that the
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Fig. 45. Original version of Point2Mesh model and the proposed vertex-based implementa-

tion. The original version uses the ”Build ∆V ” module to compute vertex displacements

(∆V ). The proposed vertex-based version eliminates this module and uses the ”Self-Prior”

module to directly generate ∆V .

proposed approach produces reconstructions with a similar quality as the original edge-based

approach.

5.4.2 Evaluation Metrics

Similar to [107], the proposed method is quantitatively evaluated by sampling points

on the reconstructed mesh and a point cloud obtained from the ground truth meshes, and

then the Hausdorff distance and F-score are computed as the comparison metrics.
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Fig. 46. Mesh reconstructions obtained with the edge-based approach (b) and the proposed

vertex-based approach (c).
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The Hausdorff distance is considered to be the sharpest distance error estimate be-

tween two meshes [91], and it is the maximum of the minimum distance between two

sets of points, as shown in Eq. 15. Because this distance metric is not symmetric (i.e.,

dH(A,B) 6= dH(B,A)), it is normally preferred to use the symmetric Hausdorff distance,

defined as the maximum of both distances (Eq. 16).

dH(A,B) = max
a∈A

min
b∈B
||a− b|| (15)

dSH(A,B) = max{dH(A,B), dH(B,A)} (16)

The F-score between two geometric meshes is a metric first proposed by [158], and it

can be defined as the harmonic mean between the precision P (τ) and recall R(τ) at a user-

specified distance threshold τ , as shown in Eq. 17. With this metric, a given reconstruction

would have an F-score of 100 in the best case scenario and of 0 in the worst case.

F (τ) =
2P (τ)R(τ)

P (τ) +R(τ)
(17)

It is important to note that, while these distortion-based metrics can help estimate

the quality of each approach, they are not necessarily linked to the visual quality of the

results [159].

5.4.3 Mesh Reconstruction from Noisy Point Clouds

The proposed approach is evaluated in the task of reconstructing a mesh from a noisy

point cloud. As in [107], 75,000 points are sampled from a ground truth mesh and then
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Fig. 47. Qualitative results for mesh reconstruction from noisy point clouds.

a small amount of Gaussian noise is added to each (x, y, z) coordinate. Each experiment

is computed five separate times, and the best and worst visual results for each network

and mesh are shown in Fig. 47. It can be seen that, while there is not a perceptual

difference between the edge-based and vertex-based network in the best case, the worst

results produced by the original edge-based network tend to be worse than the ones produced

by the vertex-based approach. For more details, the reconstructions of all the denoising

experiments is included in Appendix A.

Additionally, quantitative results of this experiment are computed in terms of Haus-

dorff distance and F-score. For each experiment, 25,000 points are sampled from the recon-

struction and the ground truth, and a distance threshold of τ = 0.002 is set. Table 20 shows
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TABLE 20. Quantitative results for mesh reconstruction from noisy point clouds

. Hausdorff distance (lower is better) and F-score (higher is better) for five different

experiments in the form of mean±std.
Hausdorff Distance F-score

Mesh Edge-based Vertex-based Edge-based Vertex-based
Guitar 0.0059 ± 0.0094 0.0020 ± 0.0008 99.19 ± 0.78 94.81 ± 6.17
Cow 0.0086 ± 0.0006 0.0084 ± 0.0022 76.52 ± 9.46 66.00 ± 6.90

the results in the form of mean±std. The proposed vertex-based approach reports slightly

better results in terms of Hausdorff distance but slightly worse results in terms of F-score.

In all the cases, the difference between both approaches is not statistically significant.

5.4.4 Mesh Reconstruction from Incomplete Point Clouds

The proposed approach and the original edge-based network are evaluated in the

task of mesh reconstruction from incomplete point clouds. To do this, 75,000 points are

sampled from two ground truth meshes, and points are manually removed from certain

areas of the meshes to come up with low density point clouds similar to the ones used in

[107]. Five different experiments are performed for each mesh and network, and qualitative

and quantitative results are shown in Fig. 48 and Table 21, respectively. The visual results

in Fig. 48 show that there are not perceptual differences between the best reconstructions

of the proposed vertex-based approach and the original edge-based method. However, as

in the previous experiment, it can be seen that the worse results of the edge-based network

contain more noise than the results obtained with the proposed method. The outcomes of

all the experiments are included in Appendix A. Quantitatively, Table 21 shows that the
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Fig. 48. Qualitative results for for mesh reconstruction from incomplete point clouds.

proposed vertex-based approach performs better both in terms of Hausdorff distance and

F-score. However, the difference between the methods is not statistically significant.

5.4.5 Computational Time

The results produced by the edge-based implementation were already superb, and

beating these results is very challenging. However, the vertex-based network is significantly

faster than the original one, as shown in Fig. 49. This happens because the proposed

vertex-based network directly produces displacements for the mesh’s vertices; thus, it does

not need to aggregate the output using the ”Build ∆V ” module. Specifically, when the

two networks are trained for 6,000 iterations, the edge-based approach takes an average of

4.41 hours to finalize training, while the vertex-based approach only takes 36.71 minutes.
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TABLE 21. Quantitative results for for mesh reconstruction from incomplete point clouds.

Hausdorff distance (lower is better) and F-score (higher is better) for five different experi-

ments in the form of mean±std.

Hausdorff Distance F-score

Mesh Edge-based Vertex-based Edge-based Vertex-based
Bull 0.0076 ± 0.0063 0.0043 ± 0.0018 77.34 ± 21.74 87.66 ± 8.10

Giraffe 0.0027 ± 0.0009 0.0018 ± 0.0016 94.13 ± 7.66 96.79 ± 4.45

(a) (b)

Fig. 49. Total training time (a) and average inference time (b) for mesh reconstruction using

the edge-based approach and the proposed vertex-based approach.

This corresponds to a percentage decrease of about 91%. The difference is lower in terms of

inference time. In this case, the edge-based approach takes about 0.21 seconds to compute

a reconstruction, while the vertex-based approach takes an average of 0.17 seconds, for an

average percentage decrease of about 20%. All the experiments were computed in a single

NVIDIA V100 GPU.
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5.5 Conclusions

This study proposes two novel implementations of mesh convolutional neural net-

works that, unlike MeshCNN [104] can directly handle a face-based and vertex-based input.

The proposed networks do not only match the performance of the original MeshCNN but

also outperform its accuracy in different tasks. This is demonstrated by performing exper-

iments in the same datasets for classification and segmentation used in [104], as well as by

producing a vertex-based implementation of Point2Mesh [107].

In the classification task, the networks are evaluated in different splits of the SHREC

dataset [155], and in the Engraved Cubes dataset provided by [104]. The experiments

obtained show that both the proposed face-based and vertex-based implementations of

MeshCNN outperform the original approach in the classification of the SHREC dataset,

setting a new state of the art. In the case of the Engraved Cubes dataset, the experimen-

tal results show that the performance of the three networks is fundamentally the same.

It is believed that this happens due to the lower complexity of this dataset compared to

SHREC. First, the dataset contains fewer labels than the SHREC dataset (23 vs. 30 classes).

Most importantly, the shapes of the Engraved Cubes dataset are significantly simpler. This

dataset is formed by cubes with shallow engravings of different shapes, so the actual repre-

sentation of the labeled shapes is the engraved 2D silhouette of different shapes. Because

of this, it is argued that the simplicity of the task makes it fundamentally harder for the

proposed implementations to beat the original edge-based MeshCNN in this dataset.

In the segmentation task, the face-based approach outperforms the edge-based im-

plementation in all of the experiments. In this case, the vertex-based approach is not
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consistently better than the edge-based MeshCNN. Overall, it is found that the difference

in performance between the vertex-based approach and the original edge-based implementa-

tion of MeshCNN is not statistically significant. As in the classification task, it can be seen

that the harder the task, the bigger the difference between the performance of the face-based

and vertex-based approaches. In this case, the Human Body dataset is more complex than

the COSEG datasets as it has more labels (8 vs 3-4) and a higher resolution. This makes

the Human Body dataset harder to segment than the COSEG datasets, which leads to the

better performance of the face-based architecture over the original implementation.

Additionally, a case study is presented in which Point2Mesh [107] is adapted to follow

the proposed vertex-based implementation. The experimental results show that, while the

results produced by the vertex-based approach are not significantly better than the original

results, the computational time is significantly reduced when using this method. Specifically,

a reduction of about 91% in training time and about 20% in inference time is reported.

This demonstrates that using a network specifically designed for the task at hand is a better

method than post-processing the results to convert from one primitive to another.

The goal of this study was to come up with vertex-based and face-based implementa-

tions of MeshCNN that matched in performance with the original network. To do this, a set

of features, neighborhood operations, and pooling layers was designed that, while following

the same principles as in the original MeshCNN, were fundamentally changed so that they

could be applied to faces and vertices. The experimental results show that the face-based

implementation performs significantly better than the edge-based implementation, while
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(a) Edge-based (b) Face-based (c) Vertex-based

Fig. 50. Comparison of the receptive field used as an input in the different implementations

of MeshCNN.

the vertex-based implementation’s performance is about the same. While the proposed ap-

proaches produce promising results, more research about the theoretical differences between

the face and edge’s features needs to be done to understand this phenomenon. One thing

that can be noticed is that the receptive field used as the input for each implementation

is fundamentally different, which can be one of the causes that leads to different results.

Fig. 50 illustrates the difference between the receptive fields of each architecture. In the

future, more research needs to be done to fully understand the theoretical implications of

each method from a geometric perspective. The future work of this project will be focused

on this, as well as on researching other tasks for geometric processing that can be benefited

by these methods.

In conclusion, this chapter shows that selecting the appropriate features (and adapt-

ing the network to handle them) can significantly boost the performance of the network in

terms of accuracy and computational time. Feature operators are critical in the development
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of geometric deep learning techniques, and this study demonstrates that making the right

decisions about the feature operators used in a certain network is significantly beneficial for

the outcome of the study. To further demonstrate this, Chapter 6 shows how a vertex-based

model can efficiently be used for automatically generating synthetic geometric 3D meshes.
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CHAPTER 6

MESH GENERATION USING VERTEX-BASED FEATURE

OPERATORS

This chapter demonstrates how the vertex-based feature operators presented in Chap-

ter 5 can be efficiently used in the task of mesh generation. Specifically, the chapter proposes

a novel approach for generation of geometric 3D meshes that can successfully learn to gen-

erate shapes from a dataset composed of meshes with arbitrary topology.

6.1 Background

The generation of 3D models and scenes is a critical aspect in the computer graphics

field. On one hand, different industries such as video game developers, animation studios,

or visual effects companies are constantly generating 3D content on a large scale for the

creation of their virtual worlds [160]. On the other hand, the research community is in

need of large and high-quality 3D datasets that they can use to train their geometric deep

learning models [9], [161]. Because of this, there is much interest in synthesizing 3D shapes

automatically using generative deep learning methods.

Generative learning is a branch of machine learning that deals with the generation

of synthetic data that mimics the distribution of a certain dataset [162]. In recent years,

deep generative models have produced superb results in the generation of images [64], [65],

text [163], [164], and audio [165], among others. Similar to other deep learning problems

(such as the ones discussed in Chapter 5), using generative learning models on 3D shapes
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is significantly harder due to the complexity and irregularity of the data. An initial ap-

proach to tackle this problem consisted of generalizing deep generative models that had

been successful in the 2D domain and applying them to analogous representations in the

3D domain such as multi-view maps [166], [167], geometric images [168], or voxelized repre-

sentations [169], [170]. These techniques have the advantage of directly using deep learning

models that have been successful in the 2D domain, but they do not take into account the

geometry or connectivity information of the shapes, and they are very costly in terms of

computational complexity. Other approaches aim to generate point clouds [171] or implicit

surfaces [57]. While these methods account for the geometry of the shapes, they do not use

their connectivity information. Because of these reasons, it would be desirable to instead

have deep generative learning methods that can directly generate 3D meshes, which contain

both the geometry and connectivity information of a shape, and are generally the preferred

representation in the computer graphics community [91].

The generation of 3D meshes using deep generative models can be divided into two

categories depending on whether the meshes fed to the model have a fixed or an arbitrary

topology [161]. A set of meshes with fixed topology consists of models in which the con-

nectivity information is represented on the same graph, while the geometry information is

different for each sample. On the other hand, a set with an arbitrary topology is composed of

meshes in which both the connectivity and geometry information is different in every mesh.

A common approach for the generation of meshes with fixed topology is to design neural

networks with filters that operate on the spectral domain of the mesh by extracting the

Laplacian of its graph [100], [161]. This technique has become very popular for tackling this
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problem, with examples on mesh recovery from 2D images [172], generation of expressions

on 3D faces [173], or recovery of body parts [174], [175]. In contrast, the generation of 3D

meshes with arbitrary topology is relatively unexplored, and there is little consensus on how

the problem should be approached [161]. This is due to the increased difficulty of generating

not only the geometry information of the shape, but also the graph (i.e., connectivity) of

each mesh. To the best of the author’s knowledge, the only generative model that can syn-

thesise realistic 3D meshes from a dataset with arbitrary topology is DeepMind’s PolyGen

[176]. This approach consists of two deep transformer models [177] that separately generate

the vertices and the faces of the geometric meshes. While the model is able to produce high

quality meshes of simple and rigid objects such as tables or chairs, it fails to accurately

retrieve more complex shapes such as airplanes or guitars. Additionally, the resolution of

the generated meshes that this model produces is relatively low, and its computational time

is significantly high.

This study aims to generate 3D geometric meshes of arbitrary topology with a deep

generative model that efficiently uses the geometry and connectivity information of the

shapes. To do that, an autodecoder is designed by following the principles of MeshCNN

[104], which has produced state-of-the-art results on the classification and segmentation of

3D meshes. Specifically, a modified version of MeshCNN that directly uses vertex-based

feature operators (as proposed in Chapter 5) is used. To the best of the author’s knowledge,

this is the first approach that uses mesh convolutional neural networks to generate synthetic

3D meshes. The model is able to reconstruct the meshes of a given dataset with arbitrary
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Fig. 51. Network architecture for generation of 3D geometric meshes.

topology and to generate new shapes from previously unseen latents. The following sec-

tions of this chapter describe the methodology followed to design the proposed approach,

demonstrate its performance through different experiments, and draw the conclusions from

the study.

6.2 Methodology

This section provides a thorough description of the design of the proposed model.

Specifically, the section presents the details of the architecture of the autodecoder model,

the loss terms used to optimize the network, and a progressive training strategy used to

upsample the generated mesh as the network is being trained.

6.2.1 Autodecoder Model

Fig. 51 shows the architecture of the proposed generative model for geometric 3D

meshes. The approach takes inspiration from the architecture of Point2Mesh [107], where

the authors propose a U-Net style network that, given an input latent vector, displaces

the vertices of an initial mesh to reconstruct a specific point cloud. Unlike the proposed
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approach, Point2Mesh is designed for learning from a single shape, so the architecture of

the network is modified accordingly. Specifically, given a dataset of 3D meshes, an initial

mesh M is generated by computing a convex hull of all the samples of the dataset. Then, an

autodecoder (see Section 2.1.4) for mesh generation is designed so that each sample Xi in

the mesh dataset is paired with an initial latent vector randomly sampled from N (0, 0.012).

During training, the loss is computed as the difference between the reconstructed mesh M ′
i

and Xi and it is backpropagated to optimize the weights of the network and the values of

zi. Eq. 18 shows an abstraction of the proposed method, where V is the set of vertices of

the initial mesh M , fθ is the autodecoder network and V ′i is the set of resulting displaced

vertices. The autodecoder is designed following the principles of the proposed vertex-based

MeshCNN network presented in Chapter 5.

fθ(zi,M |Xi) + V = V ′i (18)

6.2.2 Loss Functions

The loss of the network is composed of four loss terms that contribute to generate

visually appealing meshes. The following subsections describe each loss term as well as the

computation of the overall loss.

6.2.2.1 Chamfer Loss

The bi-directional Chamfer distance is used as the main loss term of the model. Eq.

19 shows the definition of the Chamfer loss lc between two sets of points X and Y . The

L2 norm is used as the distance term when computing the loss (i.e., d(x, y) = (x − y)2).
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The sets of points are obtained by uniformly sampling points from the reconstructed and

original meshes. This metric is widely used to compare two sets of point clouds or meshes

in the geometric deep learning field because it is differential and relatively fast to compute

[9].

lc =
∑
x∈X

min
y∈Y

d(x, y) +
∑
y∈Y

min
x∈X

d(x, y) (19)

6.2.2.2 Normal Loss

An additional loss term is computed by comparing the normal of the sampled points

when computing the Chamfer distance between the meshes. To come up with this loss term,

the sets of point normals are compared using the Chamfer distance formula shown in Eq. 19.

Since normals are vectors that represent the orientation of the faces, the cosine similarity

is used to compute the distance between them, which is a widely used measure to compare

two vectors. The cosine similarity is defined as the cosine of the angle between two vectors,

and it can be computed using Eq. 20, which is a derivation of the euclidean dot product

formula.

d(x, y) =
x · y

||x||2 · ||y||2
(20)

6.2.2.3 Regularization

Two regularization terms are added to the loss to prevent the optimization from

getting stuck in local minima. First, a laplacian regularization term is added to keep the
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vertices of the mesh from moving too much. This term forces neighboring vertices to move

in a similar way, serving as a local detail preserving operator. Doing this avoids intersections

between vertices and ensures that only fine-grained details are added to the reconstructed

mesh [172], [178].

Secondly, an edge regularization loss term is added to penalize long edges in the

generated meshes. Long edges are usually caused by vertices that move too freely, and they

can lead to noisy meshes [172]. The edge length regularization loss term le is computed

as shown in Eq. 21, where V is the set of generated vertices and N (vi) is the one-ring

neighborhood of a vertex vi.

le =
∑
vi∈V

∑
vj∈N (vi)

||vi − vj||22 (21)

6.2.2.4 Overall Loss

The overall loss of the model is a weighted sum of all the losses described in the

previous section. Specifically, the overall loss is computed as L = λ1lc + λ2ln + λ3ll + λ4le.

The weights of the loss terms are determined empirically to accurately balance the overall

loss. The experiments presented in this study set these weights to λ1 = 1, λ2 = 0.0001,

λ3 = 0.05, and λ4 = 0.25.

6.2.3 Progressive Training Strategy

A progressive strategy is implemented that upsamples the resolution of the meshes

as the network is being trained. Having an initial mesh (M) with a low resolution will

produce low quality meshes that will be inevitably trapped in local minima [107]. Having
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a high resolution mesh as the initial mesh is preferable to capture the fine grained details

of the meshes, but it will also over-complicate the learning process during training. To

tackle this issue, a progressive training strategy that upsamples the mesh after a certain

number of iterations is proposed. Fig. 52 depicts the proposed training strategy. An initial

mesh that has a relatively low resolution is used as the input to train an autodecoder that

generates new meshes by displacing its vertices. After a certain number of iterations, the

generated meshes are upsampled via mesh subdivision [179], which increases the resolution

of the meshes by a factor of 4. Since the latent vectors have the same size as the number of

vertices in the mesh, they need to be upsampled in a similar way. To tackle this issue, the

latent vectors are upsampled by applying the same averaging operations that are applied to

the meshes’ vertices during subdivision. After the meshes and latent vectors are subdivided,

they are used as the input of a new untrained autodecoder.These steps are repeated for a

certain number of subdivision levels. To ensure that the subdivision of the latent vectors

occurs in the same way during inference and training, the values of the latent vectors are not

optimized after subdivision occurs. Once the final meshes are obtained, a post processing

filter is applied to ensure that the generated meshes are watertight, manifold, and have no

intersecting triangles. This is performed by applying the robust watertight manifold surface

approach proposed by [180].

6.3 Results

This section provides an analysis of the results obtained using the proposed autode-

coder model for generation of 3D shapes. First, the setup of the experiments is presented.

Then, different experimental results are discussed. Specifically, the proposed autodecoder
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Fig. 52. Diagram of the progressive training strategy for geometric mesh generation.

model is evaluated for mesh reconstruction, random shape generation, and latent space in-

terpolation. Finally, an analysis of the computational complexity of the model is provided.

6.3.1 Experimental Setup

The proposed autodecoder for generation of geometric 3D meshes is trained in dif-

ferent datasets extracted from ShapeNet [181]. Specifically, several meshes belonging to
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a certain subset of ShapeNet are extracted and processed so that they can be fed to the

model. The shapes generated by the network follow the same characteristics of the ini-

tial mesh, which is a watertight manifold mesh with no cuttings (i.e., its genus is equal to

zero). Since the generated models will be compared with the meshes in the dataset, it is

recommended that these models have similar characteristics. To ensure that, each mesh is

processed following the same robust watertight manifold surface approach that it is used

to post-process the generated meshes [180]. Then, those meshes with a genus greater than

0 are filtered out, and each mesh is normalized so that the value of its vertices is in the

range [−0.5, 0.5]. Using this method, 5 different datasets containing 3D meshes of airplanes,

guitars, cars, tables, and knives are generated. The number of samples of each dataset is

reported in Table 22. All meshes have a resolution of roughly 1,000 faces and 500 vertices.

A network is trained on a single dataset so that it can generate 3D models of a certain

subset. All the networks are trained using the ADAM optimizer [182] with a learning rate of

0.0009 for both the latent vectors and the weights of the network. Additionally, the networks

are designed using 2 subdivision levels, which leads to 3 different autodecoders after each

subdivision (plus the initial mesh). The initial meshes of each dataset have a resolution

of roughly 100 vertices and 200 faces. After the subdivisions, the generated meshes have

approximately 1,600 vertices and 3,200 faces. All experiments are executed on a single

NVIDIA V100 GPU.

6.3.2 Mesh Reconstruction

The first experiment consists of reconstructing the 3D meshes used for training the

autodecoder model. To do this, a network is trained per dataset, and then the trained
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TABLE 22. Number of samples in each of the processed datasets used in the experiments

for mesh generation.

Dataset Number of Samples

Airplanes 1,813
Guitars 493
Cars 901
Tables 3,120
Knives 256

TABLE 23. Hausdorff distance between the reconstructed and original meshes.

Dataset Mean Std Min Max

Airplanes 0.0084 0.0036 0.0034 0.0509
Guitars 0.0050 0.0029 0.0014 0.0244
Cars 0.0179 0.0096 0.0039 0.0531
Tables 0.0622 0.0339 0.0075 0.2667
Knives 0.0041 0.0033 0.0006 0.0200

models are fed with the latent vectors corresponding with each shape of the dataset. The

generated meshes are compared to the original ones using the Hausdorff distance metric (Eq.

15). Fig. 53 shows the best and worst reconstructions for each dataset in terms of Haus-

dorff distance and compares them to their corresponding original mesh. Additionally, the

Hausdorff distance metrics are reported for each dataset in Table 23. It can be appreciated

that datasets with a lower mean Hausdorff distance (e.g., airplanes) produce reconstructions

that are more visually appealing than those for which the mean Hausdorff distance is higher

(e.g., tables).
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Fig. 53. Best and worst reconstructed meshes in terms of Hausdorff distance.

6.3.3 Generation of Random Shapes

Fig. 54 shows geometric 3D meshes randomly generated by the proposed autodecoder
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model and compares them against meshes generated by PolyGen [176]. To do this, a network

is trained for each dataset and, after training, each network is fed with random latent vectors

sampled from N (0, 0.012). Note that these randomly generated vectors have not been fed to

the network during training, so it is expected that the generated meshes have a lower quality

than those presented in Fig. 53. To generate the PolyGen meshes, a model pretrained on

ShapeNet provided by the authors [176] is used to conditionally sample new meshes for each

dataset. The maximum number of vertices and faces of the shapes generated by PolyGen is

set to 1,600 and 3,200, respectively and a nucleus sampling with top-p = 0.9 is set. It can be

seen that the proposed method produces better looking meshes in the airplanes dataset, but

significantly upderperforms in the tables dataset compared to the models generated with

PolyGen.

6.3.4 Latent Space Interpolation

An experiment for object interpolation is performed. To do this, two meshes and

their corresponding latent vectors from a certain dataset and trained network are selected.

Then, new unseen latent vectors are generated by linearly interpolating between the values

of the first and second selected latents. These interpolated latents are fed to the trained

model. Fig. 55 shows the resulted meshes from the interpolated latent vectors. It can be

appreciated how the intermediate shapes are transitions between the two selected models

shown in the left and right of the figure, respectively.

6.3.5 Computational Time

Fig. 56 reports the average inference time of the proposed autodecoder model and
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Fig. 54. Randomly generated 3D meshes from the proposed autodecoder approach and

PolyGen.
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Fig. 55. Interpolations through the latent space.

compares it to PolyGen [176]. In the case of the autodecoder, 10 meshes are generated using

randomly sampled vectors while the network inference time is recorded for each generated

mesh. When sampling with PolyGen, 10 models are conditionally sampled from the same

dataset classes. The maximum resolution of the shapes generated by PolyGen is set to

match the resolution of the meshes generated with the autodecoder (1,600 vertices). The

average inference times of each network are reported in Fig. 56. On average, the proposed

autodecoder network takes 30.48 seconds to generate a mesh, while PolyGen takes 242.10

seconds. This corresponds to a percentage decrease of 87.41% on inference time. All the

experiments were carried out on a single NVIDIA V100 GPU.

6.4 Conclusions

This study proposes a deep generative model for reconstruction and generation of

geometric 3D meshes. The proposed architecture consists of an autodecoder that follows the

principles of the proposed vertex-based feature operators presented in Chapter 5. To the best

of the author’s knowledge, this is the first deep learning model that uses mesh convolutional

neural networks for the generation of synthetic 3D meshes. The main advantage of the
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Fig. 56. Average inference time for mesh generation.

proposed model with respect to those found in the literature is that it can be trained with

meshes of arbitrary topology. Since the vast majority of shape datasets contain meshes

with this type of topology, this constitutes a significant advancement for automatic mesh

generation. The only deep learning model in the literature that can learn from mesh datasets

of arbitrary topology is PolyGen [176]. In the experiments, the proposed method is compared

against PolyGen in terms of visual quality of the generated meshes and average inference

time. It is shown that PolyGen is able to generate significantly better looking models of

rigid shapes such as tables, while the proposed model produces more realistic meshes of

complex models like planes (Fig. 54). Additionally, it is shown that the proposed model

is significantly faster than PolyGen during inference. Specifically, the autodecoder takes

approximately 30 seconds on average to generate a single mesh, while PolyGen takes roughly

4 minutes. This constitutes a percentage decrease of about 87% in inference time, making
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the proposed model significantly useful for large scale mesh generation.

The proposed model has limitations that need to be addressed. The meshes generated

by the model are still far from perfect and are not be suitable for production. This is likely

to be improved in future iterations of the model. The following recommendations for future

work are as follows:

• Generally, it is observed that increasing the resolution of the initial mesh leads to

better results. However, feeding the model with meshes of a high resolution leads to

the GPU running out of memory. This could be solved by optimizing the framework

so that it uses multiple GPUs in parallel or by creating a mesh model that divides the

meshes in different parts such as the one in [107].

• While the proposed model can be trained using datasets of meshes with arbitrary

topology, it is recommended to keep the genus of the meshes constant through the

models. Currently, those models in the trained dataset with a genus greater than

zero are filtered out so that all shapes in the training set match with the initial mesh.

This limits the amount of meshes that can be used for training and the variety of the

generated meshes. Improving the model so that it can generate meshes of varying

genus would constitute a significant improvement of the proposed model which would

likely lead to improvements in the quality and variety of the generated shapes.

• Currently, a simple subdivision technique is used when increasing the resolution of

the generated meshes. Specifically, the value of the newly generated vertices is com-

puted as the average of their neighbors’ coordinates. There are other subdivision

methods such as Catmull-Clark [183] or Loop [184] subdivision. Implementing these
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techniques when increasing the resolution of the meshes could lead to improvements

in the generated meshes.

In summary, this chapter shows how the vertex-based feature operators for mesh

convolutional neural networks can be efficiently used in a deep generative model. While the

quality of the generated meshes is not suitable for production, the proposed method shows

promising results for mesh generation, and future improvements to the proposed generative

model can likely lead to the generation of high quality meshes.
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CHAPTER 7

CONCLUSIONS

This dissertation presents a series of studies in which feature extraction and de-

sign played a significantly important role in the success of different deep learning methods.

Specifically, five different studies are presented. Among these studies, feature extraction is

used in two of them to provide better representations of data, and feature design is used

in three of them to improve the performance of deep learning models. This section briefly

summarizes each chapter, draws the appropriate conclusions from the presented studies, and

sets future plans for each work.

First, Chapter 3 demonstrates how extracting high-level features from deep models

significantly improves the results in two different studies. Specifically, the performance of

an image retrieval system is significantly improved in terms of accuracy and computational

resources (Section 3.1). Additionally, a seagrass quantification project is presented in Section

3.2 where high-level features are extracted from a DCN and CNN model to improve the

accuracy of the models in previously unseen locations.

Second, Chapter 4 presents a change detection project where it is demonstrated that

combining the channels from the satellite images with certain feature indices significantly

boosts the performance of deep learning models in terms of AUC. This demonstrates that a

proper selection and combination of input features can significantly improve the performance

of a given deep learning model.
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Then, Chapter 5 presents two novel feature operators for mesh convolutional neural

networks. Specifically, a series of invariant features is extracted from the faces and vertices

of geometric meshes, and the neural networks are modified accordingly to handle these

kinds of inputs. The experimental results show that the proposed methods produce better

or similar results for classification and segmentation on a variety of datasets. Additionally,

a case study demonstrates the advantages of using a vertex-based network in a previously

proposed method for mesh reconstruction, where a vertex-based network performs similarly

as the previous work but significantly faster in both training and inference times. This work

successfully shows that feature selection and computation is critical in the development of

deep learning methods.

Finally, Chapter 6 shows how the vertex-based feature operators introduced in Chap-

ter 5 can be effectively used in a deep learning model for automatic generation of geometric

3D meshes. This constitutes the first attempt to use mesh convolutional neural networks

efficiently for the generation of 3D data. The main advantage of this method is that it can

be trained in a dataset composed of meshes with arbitrary topology, which is a relatively

unexplored area. The results of this approach are compared against a similar study in the

literature called PolyGen [176]. Through a variety of experiments, it is shown that the

performance of the proposed approach in terms of the quality of the meshes depends on

the choice of the dataset. Specifically, the proposed approach produces better results when

trained on a dataset of complex shapes such as planes, while PolyGen generates more visually

appealing meshes of rigid and simple shapes such as tables. Additionally, it is demonstrated

that the proposed method is 84% faster than PolyGen when generating a random shape. In
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conclusion, the proposed approach shows promising results for the task of mesh generation

and demonstrates the efficacy of the vertex-based feature operators presented in Chapter 5.

This dissertation discusses different studies, and each study has different directions

for future work. The future work for the CBIR system of lung nodules presented in Section

3.1 will be focused on deploying the platform to make it accessible by radiologists and

patients, as well as on investigating extensions of the system for diagnosis of other diseases

such as tumor detection or breast cancer. Regarding the seagrass detection system presented

in Section 3.2, its future work involves performing more experiments on coastal images from

around the world, with the final goal of coming up with a method that can map seagrass

distribution globally. The future work of the change detection study presented in Chapter 4

is focused in two directions. First, the method has to be tested with other change detection

methods (e.g., image ratioing, linear regression, etc.) to adequately assess its validity.

Second, it would be interesting to analyze the application of this technique to different areas

to evaluate its performance. Finally, it is important to discuss future plans of the feature

operators designed for the geometric deep learning studies presented in Chapters 5 and 6.

The performance of the proposed operators is demonstrated through a series of experiments.

However, it would be beneficial to theoretically study each feature operator and architecture

to have a better understanding of the differences among the models. Chapter 6 presents an

application of the vertex-based feature operators to generate synthetic 3D meshes using a

deep autodecoder. While the meshes generated by this method do not have a high visual

quality, the method is among the first generative models for 3D meshes of arbitrary topology,

which is a very promising advance in the computer graphics field. Future directions for
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improving this method are focused on scaling the network to work with meshes of a higher

resolution, expanding the approach to generate meshes of varying genus, and exploring other

subdivision techniques to improve the progressive training approach. Additionally, it would

be of great interest to study other applications of geometry processing in which the proposed

feature operators could make a significant difference.
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APPENDIX A

ADDITIONAL TABLES AND FIGURES FOR CHAPTER 5

Fig. 57. Every reconstruction for the five denoising experiments in the guitar point cloud.

Fig. 58. Every reconstruction for the five denoising experiments in the cow point cloud.
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Fig. 59. Every reconstruction for the five low density completion experiments in the bull

point cloud.

Fig. 60. Every reconstruction for the five low density completion experiments in the giraffe

point cloud.
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TABLE 24. Test accuracies of the face-based network in the SHREC6 dataset when using

different combinations of neighborhood operators.

Sum Product-Sum Diff-Sum Product Squares-Sum Cubes-Sum Test Accuracy

X 95.00%
X X 92.38%
X X 80.24%

X 80.24%
X X X 77.86%

X X 63.57%
X X X 57.38%
X X X X 55.95%
X X X X 51.19%
X X X 50.71%
X X 47.62%

X 42.86%
X X X 39.52%

X X 33.10%
X X X 32.62%

X X X 30.48%
X X X X 30.24%

X X 29.29%
X X 29.05%

X X X 24.76%
X X X X 24.29%
X X X X X 23.81%

X X X 22.86%
X X 22.86%

X 21.90%
X X X 20.71%

X X 20.71%
X X X 20.48%

X X X X 20.24%
X X 18.10%

X X X X 14.05%
X X X 13.81%
X X X X 13.57%

X X X X 13.57%
X 13.33%

X X X X 12.86%
X X 12.86%

X X 12.62%
X X 11.67%

X X X X X 11.67%
X X 11.43%

X X X X X 11.43%
X X X 11.19%

X X X 10.95%
X X X 10.71%

X X X 10.71%
X X X 10.71%

X X X 10.48%
X X X X 10.48%
X X X X X 10.48%

X X X 10.24%
X X X X 10.24%
X X X X 10.00%

X X X 10.00%
X X 10.00%

X 9.76%
X X X X X X 9.76%

X X X 9.76%
X X X X 9.76%
X X X X 9.52%
X X 9.29%
X X X X X 8.81%

X X X X X 8.33%
X X X 8.10%
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