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J. P. Santoro,3,36,§ V. Sapunenko,3 R. A. Schumacher,9 V. S. Serov,24 Y. G. Sharabian,3 D. Sharov,28 N. V. Shvedunov,28

E. S. Smith,3 L. C. Smith,37 D. I. Sober,10 D. Sokhan,14 A. Stavinsky,24 S. S. Stepanyan,26 B. E. Stokes,17 P. Stoler,32

I. I. Strakovsky,18 S. Strauch,4,18 M. Taiuti,22 U. Thoma,3,‖ A. Tkabladze,1,18 S. Tkachenko,31 L. Todor,34 C. Tur,4

M. Ungaro,13,32 M. F. Vineyard,35 A. V. Vlassov,24 D. P. Watts,19,¶ L. B. Weinstein,31 D. P. Weygand,3 M. Williams,9

E. Wolin,3 M. H. Wood,4,** A. Yegneswaran,3 L. Zana,29 J. Zhang,31 B. Zhao,13 and Z. W. Zhao4

(CLAS Collaboration)
1Ohio University, Athens, Ohio 45701, USA

2Duke University, Durham, North Carolina 27708, USA
3Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

4University of South Carolina, Columbia, South Carolina 29208, USA
5Argonne National Laboratory, Argonne, Illinois 60439, USA
6Arizona State University, Tempe, Arizona 85287-1504, USA

7University of California at Los Angeles, Los Angeles, California 90095-1547, USA
8California State University, Dominguez Hills, Carson, CA 90747, USA

9Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
10Catholic University of America, Washington, D.C. 20064, USA

11CEA-Saclay, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
12Christopher Newport University, Newport News, Virginia 23606, USA

13University of Connecticut, Storrs, Connecticut 06269, USA
14Edinburgh University, Edinburgh EH9 3JZ, United Kingdom

15Fairfield University, Fairfield, Connecticut 06824, USA
16Florida International University, Miami, Florida 33199, USA

17Florida State University, Tallahassee, Florida 32306, USA
18The George Washington University, Washington, D.C. 20052, USA

19University of Glasgow, Glasgow G12 8QQ, United Kingdom
20Idaho State University, Pocatello, Idaho 83209, USA

21INFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
22INFN, Sezione di Genova, I-16146 Genova, Italy

23Institut de Physique Nucleaire ORSAY, Orsay, France
24Institute of Theoretical and Experimental Physics, RU-117259 Moscow, Russia

25James Madison University, Harrisonburg, Virginia 22807, USA
26Kyungpook National University, Daegu 702-701, Republic of Korea
27University of Massachusetts, Amherst, Massachusetts 01003, USA

0556-2813/2007/76(5)/052202(6) 052202-1 ©2007 The American Physical Society



RAPID COMMUNICATIONS

T. MIBE et al. PHYSICAL REVIEW C 76, 052202(R) (2007)

28Moscow State University, General Nuclear Physics Institute, RU-119899 Moscow, Russia
29University of New Hampshire, Durham, New Hampshire 03824-3568, USA

30Norfolk State University, Norfolk, Virginia 23504, USA
31Old Dominion University, Norfolk, Virginia 23529, USA

32Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
33Rice University, Houston, Texas 77005-1892, USA

34University of Richmond, Richmond, Virginia 23173, USA
35Union College, Schenectady, New York 12308, USA

36Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435, USA
37University of Virginia, Charlottesville, Virginia 22901, USA

38College of William and Mary, Williamsburg, Virginia 23187-8795, USA
39Yerevan Physics Institute, 375036 Yerevan, Armenia

(Received 7 March 2007; published 21 November 2007)

The cross section and decay angular distributions for the coherent φ-meson photoproduction on the deuteron
have been measured for the first time up to a squared four-momentum transfer t = (pγ − pφ)2 = −2 GeV2/c2,
using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared
with predictions from a rescattering model. In a framework of vector meson dominance, the data are consistent
with the total φ-N cross section σφN at about 10 mb. If vector meson dominance is violated, a larger σφN is
possible by introducing a larger t slope for the φN → φN process than that for the γN → φN process. The
decay angular distributions of the φ are consistent with helicity conservation.

DOI: 10.1103/PhysRevC.76.052202 PACS number(s): 25.20.Lj, 13.60.Le, 13.75.Cs, 14.40.Cs

The exchange of gluons between hadrons, known as
Pomeron exchange [1], is a fundamental process that is
expected to dominate hadron-hadron total cross sections at
high energies. In general, multigluon exchange is harder
to study at lower energy because diagrams including quark
exchange play a more important role. The φ meson is unique
in that it is nearly pure ss̄ and hence multigluon exchange is
expected to dominate φ-N scattering at all energies. Because
gluon exchange is flavor blind, information on multigluon
exchange, isolated by the φ-N interaction, would be universal
and useful in models of hadron-hadron interactions. For
example, information on the φ-N interaction at very low
energies, known as the QCD van der Waals interaction, is
essential for the reliable prediction of the possible formation
of a bound state in the φ-N system [2].

The total φ-N cross section (σφN ) has been estimated by
using vector-meson dominance (VMD) applied to exclusive
φ photoproduction on the proton in the photon energy range

*Current Address: University of New Hampshire, Durham,
New Hampshire 03824-3568, USA.
†Current Address: TRIUMF, 4004 Wesbrook Mall, Vancouver,

British Columbia, V6T 2A3 Canada.
‡Current Address: Massachusetts Institute of Technology,
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Eγ < 10 GeV, resulting in σφN � 10–12 mb [3,4], which is in
agreement with the estimate from the additive quark model [5]
applied to KN - and πN -scattering data [6]. More recently,
the inelastic φ-N cross section σ inel

φN was extracted from the
attenuation of φ mesons in photoproduction from Li, C, Al,
and Cu nuclei [7]. The attenuation for large A is significantly
larger than that calculated from VMD. More sophisticated
models [4,8,9] are consistent with the experiment if σ inel

φN is
significantly larger (∼30 mb) compared with σφN from the
VMD model. The reason for the discrepancy of σφN from
these two estimates is not well understood. Here we will
show that information on the t dependence and spin structure
of the φ-N interaction provides essential clues to solve this
problem.

In this Rapid Communication, the φ-N interaction is
investigated in coherent photoproduction on deuterium. The
diagrams of the dominant processes contributing to the
reaction γ d → φd are shown in Fig. 1. In the first diagram,
Fig. 1(a), the φ is produced in a single scattering off a nucleon,
which is dominant at small −t and strongly suppressed at
larger −t due to the deuteron form factor. The second diagram,
Fig. 1(b), shows double scattering, where the φ is produced
at the first vertex and scatters from the other nucleon at
the second vertex. The strength of the second interaction
is gauged by σφN . The probability to undergo double scat-
tering increases at larger −t because both nucleons receive
momentum transfer and may recombine into a final-state
deuteron with a smaller relative momentum between the two
nucleons [10].

The φ meson is a spin one particle that decays to a KK̄ pair,
i.e., two spinless particles. The decay angular distribution of
the φ carries information on the spin structure of the reaction
amplitude that is the sum of single- and double-scattering
processes [11].

052202-2
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FIG. 1. (a) Single-scattering and (b) double-scattering contribu-
tions to the coherent φ-meson photoproduction on the deuteron.

The measurement of the differential cross sections of co-
herent φ photoproduction and the decay angular distributions
in a wide t range allows one to study the φ-N interaction in
both single and double scattering, as well as the transition from
one to the other.

The data were collected with the CLAS detector and the
Hall B tagged-photon beam at the Thomas Jefferson National
Accelerator Facility [12]. The incident electron beam energy
was 3.8 GeV, producing tagged photons in the range from 0.8
to 3.6 GeV. The photon beam was directed onto a 24-cm long
liquid-deuterium target. The data acquisition trigger required
two charged particles detected in coincidence with a tagged
photon. Charged particles were momentum analyzed by the
CLAS torus magnet and three sets of drift chambers. The
torus magnet was run at two settings, low field (2250 A) and
high field (3375 A), each for about half of the run period.
The minimum angle covered by the CLAS was about 10◦ for
positively charged particles.

The reaction γ d → φd was identified by detecting a
deuteron and a K+ from φ → K+K− decay. The K+ and
deuteron were selected based on time-of-flight, path length,
and momentum measurements. The missing mass was recon-
structed for the reaction γ d → dK+X. Figure 2(a) shows the
missing mass distribution, MX, for the reaction γ d → dK+X

when events near the φ-meson peak [0.98 < M(K+K−) <

1.12 GeV/c2] were selected in the K+K− invariant mass,
assuming a K− was the missing particle. A missing K− peak
is seen on top of a smooth background from non-d K+K−
final states. The missing mass resolution, ranging from 8
to 30 MeV/c2, depends on photon energy and the deuteron
momentum. A three-σ cut was applied to select the missing
K− for the exclusive γ d → K+K−d reaction.

Figure 2(b) shows the invariant mass distribution for the
K+K− pair after the selection of the missing K−. The φ-meson
yield was obtained from a fit to the M(K+K−) distribution by a
Gaussian-convoluted Breit-Wigner function and a background
function. The width and the pole position for the Breit-Wigner
function were fixed to 4.3 and 1019.5 MeV/c2, respectively
[13]. The standard deviation of the Gaussian distribution was
fixed to the value obtained from simulation. The background
function was chosen as a

√
x2 − (2mK )2 + b(x2 − (2mK )2)

[14], where x is M(K+K−),mK is the charged kaon mass,
and a and b are the fit parameters. Three background
functions, a linear background, background from nonresonant
K+K−d production, and f0 photoproduction, were studied as
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FIG. 2. (a) Missing mass distribution of the reaction γ d →
dK+X for events near the φ-meson mass [0.98 < M(K+K−) <

1.12 GeV/c2]. (b) Invariant mass distribution for the K+K− pair
after the selection of the missing K−. The solid curve is a fit to the
data. The dashed curve shows the contribution from background.

alternative choices. The background models for the nonreso-
nant K+K−d and f0 photoproduction were parametrized by
the differential cross section and photon-energy distribution of
events in the sidebands of the φ-meson peak. The dependence
of the yield on the background function, fit range, and
parametrization of the Breit-Wigner function were studied.
The extracted yield changes between 3% and 9% depending
on the yield extraction procedures.

The CLAS acceptance was determined by using a GEANT-
based Monte Carlo simulation [15]. A phenomenological func-
tion was used in an event generator to model the kinematical
distributions. The simulation was iterated to reproduce the
measured t , photon energy, and decay angular distributions.
The acceptance was between 10% and 20% in the kinematic
region covered by the present measurements. The accuracy
of the calculation of the acceptance was estimated from the
comparison of results from the other event reconstruction
topologies (dK+K−,K+K−, and dK0

s topologies) for which
the acceptances were different from that for the dK+ topology.
The differential cross sections for these topologies are shown
in Fig. 3. They agree with each other within statistical
uncertainties, indicating that the acceptance is understood as to
the number of reconstructed tracks, charge combinations, and
decay modes. The CLAS acceptance for multiparticle tracks
depends on the kinematic distributions.

Supplemental simulations were performed to propagate
statistical uncertainties of kinematic distributions in the event
generator in the simulations. A double exponential dependence
form was used for the t dependence in the event generator.
The biggest uncertainty came from the description of the t
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FIG. 3. Comparison of differential cross sections for γ d → φd

from various topologies in the range 1.6 < Eγ < 3.6 GeV. Only
statistical uncertainties are shown.

distribution in the small |t | region where acceptance is the
smallest. The systematic uncertainty on the acceptance was
estimated from the difference in acceptance between different
parametrization of the small |t | region. All unpolarized
spin-density matrix elements were set to zero in the event
generator. As shown later, decay angular distributions show
all three elements are consistent with zero. The systematic
uncertainty due to this assumption was estimated by the
statistical uncertainties of the spin-density matrix elements.
The systematic uncertainties due to the event generator and
event reconstruction were estimated as 1–11% and 1–5%,
respectively.

Systematic uncertainties in the yield extraction and ac-
ceptance were estimated as a function of photon energy
and t ; they were between 4% and 13%. The combined
systematic uncertainty for the luminosity and trigger efficiency
was less than 10%. Systematic uncertainties from contribu-
tions from accidental tracks, target windows, and particle
misidentification are less than a few percentages. The total
systematic uncertainty was estimated as 11–17% by adding
these uncertainties in quadrature.

The differential cross sections were measured in the ranges
1.6 < Eγ < 2.6 GeV and 2.6 < Eγ < 3.6 GeV [16]. They
are given in Table I. Figure 4 shows the experimental data in
the range 2.6 < Eγ < 3.6 GeV. The data are compared with
theoretical calculations using a rescattering model [10,17]. In
this model, the γN → φN amplitude was parametrized by
using published data on the γp → φp reaction [18] and data
from the proton target run during this experiment. This am-
plitude was convoluted with the deuteron wave function with
a correction for the relativistic-recoil effect [10]. The double
scattering process [Fig. 1(b)] is modeled by the generalized
eikonal approximation [19]. The σφN and t dependence for

TABLE I. Differential cross sections for the reaction γ d → φd.
The second and third numbers in each field are the statistical and
systematic uncertainties, respectively.

t range (GeV2/c2) dσ/dt [nb/(GeV2/c2)]

tmin tmax 1.6 < Eγ < 2.6 GeV 2.6 < Eγ < 3.6 GeV

−0.375 −0.350 10.21 ± 0.82 (1.70) 8.63 ± 0.80 (1.04)
−0.400 −0.375 8.85 ± 0.75 (1.11) 6.80 ± 0.69 (1.07)
−0.425 −0.400 7.32 ± 0.59 (0.94) 4.57 ± 0.53 (0.74)
−0.450 −0.425 6.16 ± 0.55 (0.81) 5.76 ± 0.56 (0.65)
−0.500 −0.450 4.73 ± 0.34 (0.60) 3.99 ± 0.33 (0.55)
−0.550 −0.500 3.52 ± 0.28 (0.51) 3.59 ± 0.29 (0.55)
−0.600 −0.550 2.66 ± 0.24 (0.38) 2.11 ± 0.22 (0.28)
−0.700 −0.600 2.17 ± 0.15 (0.26) 1.83 ± 0.14 (0.24)
−0.800 −0.700 1.40 ± 0.12 (0.16) 1.32 ± 0.12 (0.20)
−1.000 −0.800 0.94 ± 0.07 (0.11) 0.96 ± 0.07 (0.11)
−1.200 −1.000 0.57 ± 0.06 (0.07) 0.57 ± 0.05 (0.06)
−1.400 −1.200 0.28 ± 0.05 (0.04) 0.36 ± 0.04 (0.05)
−2.000 −1.400 0.19 ± 0.02 (0.03) 0.15 ± 0.02 (0.02)

the rescattering process are the inputs for the calculation. The
model successfully reproduces the differential cross sections
on coherent ρ photoproduction [10] using the inputs from the
VMD.

The total model uncertainty is estimated to be about 20%.
A 10% uncertainty was assigned to the parametrization of
the γN → φN amplitude based on the γp → φp data. The

10
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10

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0

Eγ=2.6-3.6 GeV

This work

(A) σφN=10 mb (VMD)

(B) σφN=30 mb (VMD)

(C) σφN=30 mb (bφN=10 GeV-2)

Single scattering

t (GeV2/c2)

dσ
/d

t 
[n

b/
(G

eV
2 /c

2 )]

FIG. 4. Differential cross sections for the reaction γ d → φd. The
inner error bars shown are statistical uncertainty only, whereas the
outer error bars are the sum of statistical and systematic uncertainties
in quadrature. The curves A, B, and C are calculations from the
rescattering model [10,17]; see text for details. The uncertainties on
curves B and C are comparable to that of curve A but are not shown.
The dot-dashed curve is a contribution from the single scattering
diagram.
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FIG. 5. Decay angular distri-
butions of the φ meson in the
helicity frame. The inner error
bars shown are statistical uncer-
tainty only, whereas the outer
error bars are the sum of statistical
and systematic uncertainties in
quadrature. Solid curves are the
predictions from helicity conser-
vation.

effect of spin-flip in the process γN → φN was ignored in the
parametrization of the single scattering amplitude because the
spin-flip amplitude is more suppressed in the coherent process
than in the incoherent process. A 15% systematic uncertainty
was assigned due to this effect [20]. An isospin dependence
of the process γN → φN was not taken into account in the
model, but Ref. [21] suggests such an effect is small.

In Fig. 4, curve A shows the t distribution calculated by
using the VMD prediction for the φ-N cross section, i.e.,
σφN = 10 mb, and the same t distribution for the reaction
γN → φN and the reaction φN → φN . The contribution
from the single scattering process is shown in the dot-dashed
curve. The curve B corresponds to σφN = 30 mb, inspired
by Ref. [7], with the VMD assumption for the t distribution.
It overestimates the data at large −t where the contribution
from double scattering dominates. This implies that if the t

distribution follows the VMD prediction, σφN is also consistent
with the VMD prediction. In this case, inconsistency with
the larger σφN from the A-dependence experiment [7] still
remains.

However, the VMD picture may not be a good approx-
imation in this photon energy range. The larger σφN from
the A-dependence experiment [7] can be explained if the t

distribution of the reaction φN → φN differs from the VMD
prediction. For example, it is possible for the virtual φ to
fluctuate to a KK̄ pair and have a larger cross section for
the second interaction [22]. In this case, the t slope for the
second interaction would be larger than that for the γN →
φN reaction based on a general geometric relation between
the t slope and the total cross section [23]. Following this
hypothesis, cross sections were calculated with σφN = 30 mb
using a larger exponential t slope, bφN = 10 (GeV/c)−2,
in the second interaction (curve C). The curves A and
C describe the data equally well. Although the current
data do not allow one to extract the σφN and the t slope
independently due to the strong correlation between them,
it suggests that a larger σφN than the VMD prediction is
possible if a larger t-slope parameter for the φ-N interaction is
assumed.

In addition to the differential cross sections, the decay
angular distributions of the φ meson were also measured
in the helicity frame [11]. The direction of the φ-meson
momentum in the CM system was chosen as the z axis,
and the polar angle and azimuthal angle between the K+
momentum and the φ-meson production plane were defined
as θH and φH in the φ-meson rest frame. Figure 5 shows the
projections of the decay angular distributions onto cos θH and
φH in the ranges −0.8 < t < −0.35 GeV2/c2 and −2.0 < t <

−0.8 GeV2/c2 in each photon energy region. The data are
consistent with the prediction from helicity conservation (solid
curves), i.e., the spin of the φ meson is aligned to the
momentum of the φ meson. This is similar to what was
observed in the φ photoproduction on the proton [24,25].
In the larger −t region, the double-scattering contribution
becomes more important. No drastic change is observed from
the smaller −t to the larger −t region, implying that the spin
structure of the single- and double-scattering processes are
similar.

In summary, we have presented the first measurement of
the differential cross sections and decay angular distributions
for coherent φ photoproduction on the deuteron up to t =
−2.0 GeV2/c2. The differential cross sections at large −t

exhibit a contribution from double scattering. The data are
consistent with σφN = 10 mb in a framework of VMD. The
data also provide a possible explanation for larger σφN if the t

slope for φN → φN is larger than the VMD value from γp →
φp. The decay angular distributions follow the prediction from
helicity conservation.

This measurement demonstrates a new approach to the
study of the φ-N interaction in the low-energy region where
VMD is not necessarily a good approximation. Further
measurements at higher photon energies [26], at very small
−t [27], as well as an A-dependence study in e+e− decay [28]
will make it possible to map out details of the energy and t

dependences of the φ-N interaction.
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