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ABSTRACT 

BIOPHYSICAL CHARACTERIZATION OF THE PAR-4 TUMOR SUPPRESSOR: 

EVIDENCE OF STRUCTURE OUTSIDE THE COILED COIL DOMAIN AND 

INTERACTIONS WITH PLATINUM CHEMOTHERAPEUTICS 

Andrea Megan Clark 

Old Dominion University, 2021 

Director: Dr. Steven M. Pascal 

 

Prostate apoptosis response-4 (Par-4) is an apoptosis-inducing tumor suppressor protein. 

Full-length Par-4 has previously been shown to be a predominantly intrinsically disordered protein 

(IDP) under neutral conditions, with significant regular secondary structure evident only within 

the C-terminal coiled coil domain. However, IDPs can gain ordered structure through the process 

of induced folding, which often occurs under non-neutral conditions. Previous work has shown 

that the Par-4 leucine zipper, which is a subset of the C-terminal coiled coil domain, is disordered 

under neutral conditions, but forms a dimeric coiled coil at acidic pH. Increase in ionic strength 

was also shown to increase leucine zipper formation. Building on this work, we undertook to study 

the effects of environment on a naturally occurring Par-4 segment, the cl-Par-4 fragment. During 

apoptosis, intracellular full-length Par-4 is cleaved at aspartic acid 131 by caspase-3, generating a 

24 kilodalton fragment (cl-Par-4). Cl-Par-4 enters the nucleus and inhibits pro-survival genes, 

thereby preventing cancer cell proliferation.  

 Here, the structure of cl-Par-4 was investigated using circular dichroism (CD) 

spectroscopy, dynamic light scattering (DLS), intrinsic tyrosine fluorescence, and size exclusion 

chromatography with multi-angle light scattering (SEC-MALS). Biophysical characterization 

showed that under conditions of low salt and neutral pH, cl-Par-4 forms large soluble aggregates. 

We have clearly identified two disparate conditions under which cl-Par-4 forms non-aggregated 
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largely helical structures. First, with low salt and acidic pH, c  l-Par-4 folds into a predominantly 

alpha helical and coiled coil structure. Second, at neutral pH and high ionic strength, cl-Par-4 forms 

highly helical tetramers. Together, these results suggest that the cellular environment influences 

the in vivo structure and self-association state of cl-Par-4 and that the tetramer may be the active 

conformation under specific intracellular conditions. 

A third area of research involves the chemotherapeutic drug cisplatin and its trans isomer 

transplatin. We have shown that both bind directly to full-length Par-4 and the caspase-cleaved 

fragment. It appears that this binding interaction occurs through coordination of platinum to sulfur 

ligands in the protein, such as methionine and/or cysteine residues. This direct binding of cisplatin 

and transplatin could also subsequently influence apoptotic activity and Par-4 structure. 
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NOMENCLATURE 

 

Par-4                Prostate apoptosis response-4 

cl-Par-4            Caspase-cleaved Par-4 

FL-Par-4           Full-length Par-4 

SAC                   Selective for apoptosis induction in cancer cells 

CC                     Coiled coil 

LZ                      Leucine zipper 

NLS2                  Nuclear localization signal 2 

NES                   Nuclear export sequence 

GRP78               Glucose regulated protein 78 

IDP                    Intrinsically disordered protein 

cisPt                   Cisplatin 

transPt               Transplatin 

CD                     Circular dichroism 

DLS                    Dynamic light scattering 

SEC-MALS         Size exclusion chromatography with mutli-angle light scattering 

SDS-PAGE         Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

ITC                      Isothermal titration calorimetry 
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CHAPTER 1 

INTRODUCTION 

 

INTRINSICALLY DISORDERED PROTEINS (IDPS) AND THEIR UNUSUAL 

BIOPHYSICS  

In contrast to the lock-and-key model for protein structure, not all proteins exist in one set 

three-dimensional structure [1-3]. Natural proteins can often exist in one of three major protein 

forms: functional and folded, nonfunctional and misfolded, or functional and intrinsically 

disordered [1, 4]. Intrinsically disordered proteins (IDPs) are a class of proteins that lack stable 

three-dimensional structure and are considered natively unfolded [2, 3, 5, 6]. IDPs often lack 

significant ordered secondary, tertiary, or quaternary structure and rather, exist in random coil 

structures with enhanced conformational flexibility [1]. Proteins may also have intrinsically 

disordered protein regions (IDPRs) along with ordered domains. IDPs and IDPRs often function 

in cell signaling and therefore, are more abundant in eukaryotes [1, 7, 8]. IDPs and IDPRs often 

have a decreased number of order-promoting residues such as Trp, Cys, Ile, Phe, Tyr, Asn, Val, 

and Leu and instead are enriched in disorder-promoting residues such as Lys, Pro, Arg, Gly, Glu, 

Ser, Gln, and Ala.  [1, 5, 9, 10].  

The conformational behavior of IDPs and IDPRs greatly contrasts that of ordered globular 

proteins. Conformational flexibility allows IDPs to accommodate multiple binding interactions 

and form flexible ensembles which is important in cell signaling pathways [6, 11-13]. IDPs often 

represent a mixture of partially folded protein segments [4]. IDPs can undergo a functional disorder 

to order transition called induced folding which can be triggered by environmental changes or 

substrate binding, resulting in the formation of intermediate pre-molten globule (PMG) and molten 
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globule (MG) conformations or a predominantly folded structure [14-18]. IDPs are often highly 

unstructured in physiological conditions but gain structure in un-physiological conditions such as 

extreme temperature, acidic or basic pH, or extreme ionic strength [5, 19].  

 

IDPS AND HUMAN DISEASE: “DISORDER IN DISORDERS” CONCEPT  

There is an enrichment of IDPs in human diseases such as cancer, cardiovascular disease, 

and neurodegenerative disease [6]. Approximately 79% of cancer-associated proteins and 66% of 

cell-signaling proteins contain regions of disorder that are thirty residues in length or longer [6]. 

Failure of a protein to adopt its functional conformational state can lead to protein misfolding, gain 

of toxic functions, aggregation, and loss of normal function [6]. Many IDPs function in cell 

signaling pathways where intrinsic disorder can serve as a regulatory mechanism with “on-off” 

switch-type interactions, highlighting the importance of cell signaling and intrinsic disorder in a 

wide range of diseases [20, 21]. Examples of IDPs and proteins with IDPRs associated with cancer 

include p53, PTEN, BRCA1, HPV proteins, and EWS [22-24]. IDPs including alpha synuclein 

and amyloid β are associated with neurodegenerative diseases [25]. Prions implicated in scrapie, 

bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease are among the IDP class of 

proteins [6, 26-29].  

 

INTRINSICALLY DISORDERED PROSTATE APOPTOSIS RESPONSE-4 (PAR-4) 

TUMOR SUPPRESSOR  

Par-4 is a pro-apoptotic tumor suppressor protein that was first identified in studies of prostate 

cancer [30-32]. In normal mammalian tissue, Par-4 is ubiquitously expressed, localized in the 
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cytoplasm of healthy cells, and spontaneously secreted [30, 31, 33, 34]. Par-4 contains two nuclear 

localization sequences (NLS1 and NLS2), a Vasa domain, a selective for apoptosis induction in 

cancer cells (SAC) domain, a coiled coil (CC) domain with a leucine zipper (LZ), and a nuclear export 

sequence (NES) (Figure 1) [31, 34, 35]. The SAC domain is the minimum fragment necessary to 

induce apoptosis [35-37]. The Par-4 CC contains a heptad repeat characteristic of a LZ [34]. The 

isolated C-terminal LZ can interconvert between a partially ordered monomer (POM) and a coiled 

coil dimer (CCD) and forms a more stable dimer under acidic conditions [38-41]. X-ray 

crystallography studies have confirmed dimer formation in the entire CC domain [42]. However, 

little is known about the structure of the remainder of the protein except that most of the full-length 

Par-4, outside of the CC, appears to be disordered in vitro [38, 39]. Most identified protein 

interactions involving Par-4 are mediated via the CC and LZ [31, 42]. These include interactions 

with Wilms’ tumor 1 (WT1), atypical isoforms of protein kinase C (aPKC), DAP-kinases 

(Dlk/ZIP), and THAP1 [43-47]. 

 

 

 

 

Fig. 1. Domain structure of full-length Par-4. 

 

In the Par-4 LZ, negative charge-charge repulsion between aspartic and glutamic acid residues 

at the g and e positions of the helical wheel contribute to conformational instability of the dimer 

(Figure 2). Interestingly, extreme conditions such as high ionic strength or acidic pH are known to 

help highly polar IDPs fold by shielding or preventing charge-charge repulsion [2, 4, 5] [48-50].  
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Fig. 2. Helical wheel representation of the Par-4 leucine 

zipper parallel dimer (DrawCoil 1.0) [51, 52]. Blue and red 

indicate basic and acidic residues, respectively. Red 

dashed lines represent inter-helical charge-charge 

repulsion and blue dashed lines represent salt bridges. 

 

 

 

PAR-4 AND APOPTOSIS INDUCTION 

Apoptosis induction by Par-4 is highly specific and is occurs through both extracellular and 

intracellular mechanisms (Figure 3) [53, 54]. GRP78 is primarily found in the ER of healthy cells 

but translocates to the cell surface of cancer cells due to ER stress [33, 53]. The interaction between 

GRP78 and the SAC domain of Par-4 at the cell surface initiates the apoptotic Fas/FasL-FADD 

pathway, activating both the intrinsic and extrinsic caspase cascades. [33, 54, 55].  

Additionally, several post-translational modifications of Par-4 are important for cancer cell 

apoptosis. Phosphorylation of Par-4 at T163 by PKA serves as an activating phosphorylation whereas 

phosphorylation at S228 or S231 by Akt/PKB or CK2 prevents nuclear translocation of Par-4 [36, 56]. 

After activation of the caspase-cascade and phosphorylation by PKA, cytoplasmic full length Par-4 

is cleaved by caspase-3 at D131, which generates caspase-3-cleaved Par-4 (cl-Par-4), a 24 

kilodalton “activated” fragment [57, 58]. The small 15 kilodalton Par-4 amino-terminal fragment 

(PAF) remains in the cytoplasm [57, 58]. The cl-Par-4 fragment retains the SAC domain which 

includes NLS2, the CC with the LZ, and the linker domain which connects the SAC and CC domains 
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[35, 57]. Nuclear translocation of cl-Par-4 via NLS2 allows inhibition of pro-survival pathways that 

mediate cancer cell survival including NF-κB and Bcl-2 [35, 44, 54, 56, 57, 59].  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Apoptosis induction by Par-4. 

 

PAR-4 AND CANCER THERAPY 

The Par-4/PAWR gene is found on the unstable chromosome 12q21.2, which can be mutated 

or deleted in cancers, contributing to low Par-4 levels [60]. However, Par-4 downregulation often 

occurs through mechanisms other than gene mutation or deletion. Par-4 down-regulation can result 

from over-activated oncogenes such as Ras, epigenetic silencing, or post-translational 

modifications that render the protein inactive [36, 61]. Par-4 down-regulation occurs in a variety 

of cancers including prostate, breast, and endometrial cancers, renal cell carcinoma, acute and 

chronic leukemia, and neuroblastoma [62-65]. Low Par-4 levels have been shown to correlate to 

metastasis, increased chance of cancer recurrence, and resistance to chemotherapeutics [64, 66].  

1 

2 

3 

4 

5 6 
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For example, Par-4 is epigenetically silenced by the transcription factor TWIST, which 

promotes cancer recurrence in mouse breast cancer models [61]. However, tumor growth 

decreased after restoring Par-4 expression to apoptosis-inducing levels [61]. Additionally, purified 

recombinant Par-4 has been shown to decrease tumor growth in mice models [67]. Recently, Par-

4 with an extended sequence was engineered to extend the half-life, making this engineered 

construct more stable in therapeutics [68]. Therefore, restoring apoptosis-inducing levels of Par-

4, and the utilization of recombinant Par-4, are attractive therapeutic strategies to combat cancer.  

 

SYNERGISTIC ANTI-TUMOR EFFECT OF PAR-4 AND CISPLATIN 

Recent studies have shown a correlation between Par-4 and cisplatin efficacy. Cisplatin 

(cis-diamminedichloridoplatinum [II], cisPt) is a platinum-based chemotherapeutic agent that 

targets proliferating cells (Figure 4) [69, 70]. The mechanism of action occurs through cross-

linking of purine DNA bases, which inhibits DNA synthesis [69, 70]. CisPt is used to treat many 

cancers including lung, breast, ovarian, and brain cancers, along with carcinomas and lymphomas 

[70].  

Downregulation of Par-4 conferred resistance to cisPt treatment in pancreatic cancer cells, 

while overexpression of Par-4 conversely prevented resistance to cisPt treatment [71]. Combined 

treatment of Par-4 and cisPt had an inhibitory effect on human Wilms’ tumor cells, via Par-4-

induced sensitization to cisPt [72]. CisPt treatment of ovarian and endometrial cancer cells 

increased cellular levels of cl-Par-4 [73]. In chemosensitive cells, cisPt treatment enhanced 

caspase-induced cleavage of FL-Par-4 and increased cellular levels of cl-Par-4 [73]. However, it 

is not known whether these correlations between Par-4 and cisPt activities are the result of direct 

interaction, or whether intermediaries may be involved.  
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INTERACTIONS OF PLATINUM CHEMOTHERAPEUTICS WITH PROTEINS 

Multiple negative side effects are associated with cisPt treatment [69, 70]. One source of 

negative side effects is binding to cellular proteins, which occurs because cisPt has high affinity 

towards S- and N-donors [74]. After cisPt hydrolysis upon exposure to aqueous solution, the 

resulting reactive cationic species readily reacts with the nitrogen or sulfur sites found in 

methionine, histidine, and cysteine residues [74]. This is problematic in cancer treatment, wherein 

cisPt can be trapped in complexes with cellular proteins instead of cross-linking DNA in 

proliferating cells. 

Characterizing platinum-protein interactions and the effect on Pt/protein function will further 

our understanding of how cancer cells become resistant to platinum chemotherapeutics and could 

be used to design therapeutic agents with reduced affinity for cellular proteins. It has been 

established that cisPt is highly reactive with plasma proteins. After injection into the bloodstream, 

approximately 65 to 98 % of the platinum is bound to proteins [75]. CisPt-protein interactions have 

been characterized for bovine serum albumin, ribonuclease A, lysozyme, ubiquitin, myoglobin, 

BRCA1, and the copper chaperone Atox1, among others [74, 76-81]. CisPt binding can alter both 

protein structure and function [74]. 

After administration into the bloodstream, cisplatin can convert to the trans isomer (transPt) 

over time (Figure 4). Transplatin is clinically ineffective in cancer treatment [82, 83]. Therefore, 

the cytotoxicity of transPt is lower than that of cisPt. CisPt and transPt often have different 

preferential binding sites and binding affinities for proteins [84]. For example, transPt binds urease 

with a higher affinity than cisPt and the binding sites are also different [85]. CisPt and transPt both 

bind ubiquitin, but cisPt forms four distinct adducts while transPt forms one distinct adduct [84]. 

The binding sites in ubiquitin and binding kinetics also vary based on the isomer [84]. Since ligand 
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chemistry and geometry of platinum chemotherapeutics dictate interactions with protein and DNA, 

further studies are needed to understand drug resistance and side effects. 

 

 

 

 

 

 

Fig. 4. Structure of cisplatin (cisPt) and transplatin (transPt). Cisplatin has square planar geometry 

with two ammine ligands and two chloro ligands oriented in a cis planar configuration around the 

central platinum ion. Transplatin has the same ligands but oriented in a trans configuration around 

the central platinum.  

 

RESEARCH AIMS 

The aim of this dissertation project was to study the caspase-cleaved Par-4 tumor suppressor 

using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light 

scattering (DLS), fluorescence spectroscopy, and size exclusion chromatography with mutli-angle 

light scattering (SEC-MALS). These techniques were used to identify conditions that induce 

folding of cl-Par-4 into a predominantly folded conformation, likely characteristic of the active 

conformation, and study the self-association state of Par-4. CD, DLS, UV-visible absorption 

spectroscopy (UV-vis), gel filtration, and gel electrophoresis experiments were used to identify 

and characterize direct interaction of the chemotherapeutic drug cisplatin and its trans isomer with 

both the full-length Par-4 protein (FL-Par-4) and cl-Par-4. Taken together, this is the first study to 
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characterize cl-Par-4 using biophysical techniques, the first evidence of tetramer formation in cl-

Par-4, and the first evidence of direct interaction between platinum chemotherapeutics and the Par-

4 tumor suppressor.  
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CHAPTER II 

BIOPHYSICAL CHARACTERIZATION OF CL-PAR-4 AT ACIDIC PH 

 

PREFACE 

 The content of this chapter was published in Biomolecules in December 2018. Reprinted 

with permission from Clark, A.M., Ponniah, K., Warden, M.S., Raitt, E.M., Yawn, A.C., and 

Pascal, S.M. (2018) Acidic pH-induced folding of the caspase-cleaved Par-4 tumor suppressor: 

evidence of structure outside of the coiled coil domain. Copyright 2018 MDPI 

 

INTRODUCTION 

 The aim of the research described in the following chapter was to use biophysical 

techniques to study the effect of pH on the folding and structure of the caspase-cleaved fragment 

of Par-4, an apoptosis-inducing tumor suppressor protein. As mentioned in Chapter 1, extracellular 

full-length Par-4 binds GRP78 at the cell surface which initiates the apoptotic process and activates 

the caspase cascade [33, 55]. After activation of the caspase-cascade, intracellular full-length Par-

4 is cleaved at aspartic acid 131 (D131) by caspase-3 [57]. This generates the 24 kilodalton 

caspase-cleaved fragment (cl-Par-4) and a small 15 kilodalton amino terminal fragment (PAF). Cl-

Par-4 then predominantly localizes in the nucleus where inhibition of pro-survival pathways occurs 

while full-length Par-4 and the PAF remain primarily in the cytoplasm [86]. Subsequent 

interactions of the Par-4 coiled coil (CC) domain with atypical isoforms of PKC, Bcl-2, and WT1 

are important in preventing pro-survival pathways and decreasing tumor growth [34, 44, 54]. 
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 While the isolated racine Par-4 C-terminal CC domain has previously been studied, little 

is known about the remainder of the protein outside of the CC. In this study, cl-Par-4 was studied 

in neutral pH and acidic pH and changes in conformation and hydrodynamic size were monitored 

using CD, DLS, and tyrosine fluorescence. IDPs are often unstructured in physiological conditions 

of low salt and neutral pH, yet extreme conditions such as acidic or basic pH have been shown to 

induce folding of IDPs [4, 5]. This is referred to as a “turned out” response to environment. Cancer 

cells have also been shown to have an acidic microenvironment and other tumor suppressors such 

as p53 have been found inside of acidic organelles [87]. Lysosomes have a pH as low as 4.5 and 

Par-4 can localize in exosomes which derive from the lysosome-endosome pathway [88-90]. 

Therefore, it is possible that an intracellular acidic environment could influence cl-Par-4 structure. 

Techniques used to study the effect of pH on cl-Par-4 include CD spectroscopy, DLS, and 

tyrosine fluorescence. Secondary structure changes were monitored by CD spectroscopy, changes 

in hydrodynamic size were monitored by DLS, and changes in the microenvironment around 

tyrosine residues in the SAC and linker domains were monitored by tyrosine fluorescence. The 

work in the present study represents an important step in understanding conditions that induce 

folding of the Par-4 tumor suppressor, specifically the caspase-cleaved fragment, and how this 

relates to the protein’s physiological structure and function.  

 

MATERIALS AND METHODS 

Expression and purification of cl-Par-4 

To prepare the human cl-Par-4 construct (residues 132-340), full length human Par-4 was 

used as a template and amplified by PCR with the forward primer 5’- 

GACCCATGGGTGTTCCGGAGAAGGGCAAAAGC – 3’ and the reverse primer 5’- 
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CAGAAGCTTTTAGCGGGTCAGTTGGCCCACCAC-3’. The PCR product was digested with 

NcoI and HindIII restriction enzymes and subsequently ligated into a modified H-MBP-3C 

expression vector [91]. After DNA sequence verification, cl-Par-4 was expressed in BL21(DE3) 

CodonPlus E. coli cells grown in LB media supplemented with 100 μg/mL ampicillin at 37 °C, 

250 rpm. Cells were induced at an OD600 of 0.8-0.9 with 0.5 mM isopropyl thio-β-D-galactoside 

(IPTG) and grown for an additional 18 hours at 15 °C, 250 rpm. After centrifugation, the cell pellet 

was resuspended in pH 7.4 lysis buffer containing 10 mM Tris, 300 mM NaCl, 20 mM imidazole, 

1 mM TCEP, and 1 mg/mL lysozyme. Cells were sonicated with a 10 sec pulse/59 sec rest at 40% 

amp for 30 repetitions and then centrifuged at 16,000 rpm. The supernatant (containing soluble 

protein) was filtered through both a 0.8 µm and 0.45 µm syringe filter. 

 Protein purification was achieved via IMAC using a His-Trap HP column (GE Healthcare) 

and the His-MBP-cl-Par-4 was eluted with buffer containing 300 mM imidazole. Fractions 

containing cl-Par-4 were identified using SDS-PAGE and then combined. Then the 3C protease 

was added to cleave the His-MBP tag and the sample was dialyzed in pH 7.5 buffer containing 10 

mM Tris, 1 M NaCl, 1 mM TCEP, at 4 °C overnight. Cleavage was verified via SDS-PAGE (cl-

Par-4 band at 24 kilodaltons) and the sample was dialyzed against 10 mM Tris, 1 M NaCl, 20 mM 

imidazole and 1 mM TCEP, pH 7.4 buffer and loaded onto a His-Trap HP column to remove the 

His-MBP tag.  

The purified cl-Par-4 was dialyzed against 10 mM Tris, 1 M NaCl, 1 mM TCEP, pH 7.0 

buffer, and concentrated by centrifugation at 3500 rpm with a Vivaspin Turbo 15 (Sartorius). To 

determine protein concentration, the absorbance at 280 nm was obtained and the extinction 

coefficient of 6400 M-1cm-1 was used in calculations. Purified cl-Par-4 was lyophilized in pH 7.0 

buffer with 10 mM Tris, 1 M NaCl, 1 mM TCEP, and re-solubilized in ultrapure H20.  
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Secondary Structure Predictions 

Secondary structure predictions were performed on the cl-Par-4 amino acid sequence using 

DisEMBL and GOR4 analysis [92, 93]. 

 

Circular Dichroism Spectroscopy 

CD spectra were recorded on a Jasco J-815 CD spectrometer. Cl-Par-4 was at a 

concentration of 0.2 mg/mL (8.3 µM) in native buffer (20 mM NaCl, 10 mM Tris, 1 mM TCEP) 

from pH 4-10, and native buffer with 0.1% SDS at pH 7. Far UV-CD spectra were recorded from 

260-190 nm at a scan speed of 20 nm/min with a bandwidth of 1 nm, and samples were recorded 

at 25 °C. Additional CD spectra were obtained for pH 4 and pH 7 at 5, 25, 45, 65, and 85 °C to 

assess thermal stability. Three scans were recorded for each sample and averaged after baseline 

subtraction. The scans were smoothed using a means-movement function of 25 and deconvoluted 

using the Selcon3 algorithm (DichroWeb server) [94]. 

  

Dynamic Light Scattering and Zeta Potential  

DLS measurements were recorded using a NanoBrook Omni particle sizer and zeta 

potential analyzer. Cl-Par-4 was at a concentration of 0.2 mg/mL (8.3 µM) in native buffer with 

pH ranging from 4-10 for DLS and zeta potential measurements. For each sample, five scans were 

recorded in 1 cm path length plastic cuvettes at 25 °C and averaged. The highest peak of the 

histogram was recorded as the mean diameter. To determine the experimental isoelectric point 

(pI), five zeta potential measurements were recorded and averaged for each pH value. 
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Fluorescence Spectroscopy 

Fluorescence measurements were recorded using a Varian Cary Eclipse Fluorescence 

Spectrophotometer. Cl-Par-4 was at a concentration of 0.2 mg/mL (8.3 µM) in native buffer at pH 

4 or 7. Spectra were obtained using 1 cm path length, 400 μL fluorescence cuvettes. Tyrosine was 

selectively excited at 220 nm (determined as the maximum excitation wavelength) and the 

emission spectrum was recorded over the range of 250-400 nm, using excitation and emission slits 

of 10 nm and 20 nm, respectively. Three emission scans were recorded for each sample and 

averaged after baseline subtraction. All scans were obtained at 25 °C The fluorescence intensity at 

310 nm was recorded from 20-95 °C with a temperature rate increase of 1 °C/min using the same 

excitation and slit parameters as above to monitor thermal stability. 

 

GalaxyWEB Modeling 

Template-based models were generated using GalaxyTBM on the GalaxyWEB server  using 

the racine Par-4 CC crystal structure (pdb 5fiy_A) as a template and allowing the remainder of the 

protein to fold computationally [42, 95]. Five structures were produced and then visually inspected 

for features consistent with the CD, DLS, and fluorescence results for cl-Par-4 at acidic pH. 

 

RESULTS 

Secondary Structure Predictions: Mix of Order/Disorder Outside of the CC Domain 

DisEMBL was used to predict regions of high disorder in cl-Par-4 (Figure 5b). Disorder 

probability above 0.43 (dashed line) approximately separates regions of order and disorder. Some 

disorder is expected in the SAC domain and high disorder is predicted for the linker domain. In 
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contrast, the CC and LZ have low disorder probability. GOR4 was used to predict secondary 

structure in cl-Par-4: 48.8% helical content, 41.7% random coil, and 9.5% extended strand (Figure 

5c shows helicity).  

The SAC domain has some helical propensity, while very low helicity is expected within the 

linker domain. The CC and LZ have high helical propensity; however, decreased helical propensity 

between residues 180-190 occurs due to charge-charge repulsion across the dimer interface. 

DisEMBLE and GOR4 data are consistent, with regions of high disorder aligning with regions of 

low helical propensity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Secondary structure predictions for cl-Par-4. (a) block diagram of cl-Par-4 domain 

structure. (b) DisEMBL disorder prediction of cl-Par-4. (c) GOR4 alpha helix analysis of cl-Par-4 

amino acid sequence. 
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Circular dichroism: more intense negative dichroism in acidic pH 

 CD spectroscopy was used to study the effect of pH on the secondary structure of cl-Par-4 

(Figure 6a). Minima at 222 and 208 nm were observed at neutral pH and more extreme pH (pH 4 

and pH 10), consistent with partial alpha helical secondary structure. However, dichroism is more 

intense at pH 4. Decreased dichroism intensity at pH 7 and pH 10 could be related to the formation 

of large cl-Par-4 aggregates. CD spectra were also recorded under denaturing conditions of 0.1% 

SDS. With 0.1% SDS, an intense minimum at 205 nm dominates, although a local minimum 

appears near 222 nm. This CD spectrum under denaturing conditions is therefore consistent with 

a primarily disordered conformation for cl-Par-4, with some residual secondary structure. By 

comparison, cl-Par-4 CD spectra at all pH values tested appears to have more regular secondary 

structure than in denaturing conditions. This suggests that some order survives at all pH values 

tested.  

 

 

 

 

 

 

 

 

(a)                                                              (b) 

Fig. 6. Circular dichroism spectroscopy of cl-Par-4 at pH 4-10. (a) CD analysis of cl-Par-4 at 

pH 4, 7, 10, and in SDS. (b) CD analysis at pH 5, 5.5, and 6.5, near the pI of 5.39. 
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A ratio of ellipticity at 222 and 208 nm (ϴ222/ϴ208) greater than 1 indicates coiled coil (CC) 

formation.  Ratios are 1.2, 1.6, and 1.1 at pH 4, 7, and 10, respectively. The high ratio at pH 7 

could be influenced by beta secondary structure which also produces negative dichroism near 222 

nm. Under SDS denaturing conditions, the ϴ222/ϴ208 ratio is 0.60, and therefore does not suggest 

CC formation. 

Since there is a distinct loss of dichroism intensity at pH values above the pI (5.39), 

CD spectra were recorded at pH 5.0, 5.5, and 6.5 (Figure 6b). Data was not acquired at pH 6.0 

due to sample precipitation. Below the pI at pH 5.0, minima at 222 and 208 nm are more 

intense and the ϴ222/ϴ208 ratio is 1.3. This is consistent with helical CC formation. In contrast, 

minima at 222 and 208 nm are less intense at pH above the pI. The ϴ222/ϴ208 ratios are 1.0 at 

pH 5.5 and 1.3 at pH 6.5. These results show that observed dichroism becomes less intense at 

higher pH, although at least some of the effect is likely due to scattering. The change in shape 

however suggests that coiled coil formation, as opposed to simple helical formation, also is 

affected by pH with larger ϴ222/ϴ208 ratios observed near pH 7.  

The thermal stability of cl-Par-4 at pH 7 and pH 4 was investigated by CD (Figure 7). At pH 

7, the CD spectra at 5 °C has intense minimum near 225 nm and less intensity near 208 nm (Figure 

7a). Minor spectral changes occur between 5 to 45 °C; however, an intense band near 200 nm 

arises at 65 °C and 85 °C, characteristic of disorder. In contrast, spectra at pH 4 show intense 

minima at both 208 and 222 nm up to 65 °C, with significant disorder only arising at 85 °C (Figure 

7b). Deconvolution of the thermal stability CD data shows that at neutral pH, there is 

approximately 2/3 calculated helical content with 20% disorder at 5 °C (Figure 7c). However, the 

effect of large soluble aggregates on the dichroism intensity could influence this value. Helicity 

decreases between 25-45 ºC to approximately ½, with increased beta content (sheet + turn) to 
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approximately 20%. At 65 °C, helicity decreases to 40% with increased beta content to 31% and 

disorder to almost 30%. Helicity further decreases at 85 °C to approximately 1/4 with increase in 

beta content to 40%, and 34% disorder. At acidic pH (Figure 7d), there is approximately 80% 

helicity with marginal disorder from 5 to 45 ºC. Helicity starts to decrease and beta/disorder 

content increase at 65 °C. At 85 °C, helicity decreases to approximately 20% with increased beta 

and disorder contents to approximately 40% each. 

 

  

  

  

  

   

   

  

  

 

 

 

 

 

 

 

Fig. 7. Relationship of cl-Par-4 thermal stability and pH assessed by CD. (a) CD versus 

temperature at pH 7. (b) CD versus temperature at pH 4. (c) Secondary structure versus 

temperature at pH 7. (d) Secondary structure versus temperature at pH 4. 
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DLS: the hydrodynamic properties of cl-Par-4 are pH dependent 

To assess the hydrodynamic properties and aggregation state of cl-Par-4 at different pH 

conditions, DLS measurements were obtained. The measured Rs values are 43 nm at pH 4, 483 nm 

at pH 7 and 339 nm at pH 10 (Figure 8a). Under 0.1% SDS denaturing conditions at pH 7, the Rs 

was 28.3 nm. From zeta potential measurements, the experimental pI was determined (Figure 8b). 

As pH increased from 4 to 10, zeta potential decreased from 15.4 mV to -20.01 mV and the 

experimental pI was determined to be pH 5.35. This is consistent with theoretical pI of 5.39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Dependence of cl-Par-4 hydrodynamic size on pH. (a) Measured Rs of cl-Par-4 under native 

and denaturing conditions by DLS. (b) Relationship of zeta potential (dashed) to pH and Rs (solid 

line). (c) Measured Rs over seven days at pH 4, 7, and 10. 
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Additionally, there was minor variation in hydrodynamic size at acidic pH, with the Rs 

ranging from 41.8 to 45.0 nm over seven days (Figure 8c). In contrast, the Rs changed substantially 

over seven days at pH 7 and 10, with significant variation in measured Rs. The large Rs at pH 7 

and 10 suggest that aggregation occurs at pH values above the pI of 5.35 where cl-Par-4 has a net 

negative charge. The large Rs likely suggests a non-globular or rod-shaped conformation. 

Decreased hydrodynamic size in acidic pH suggests a more compact conformation when cl-Par-4 

has a net positive charge. Additionally, the Rs of all non-denatured samples were larger than the 

partially unfolded SDS denatured form, indicating cl-Par-4 exists in a polymeric state when non-

denatured. At least some of this self-association is mediated by the CC dimerization motif. 

 

Effect of pH on tyrosine fluorescence intensity 

Fluorescence emission is dependent upon solvent exposure of the aromatic residues. If the 

aromatics are buried within the hydrophobic core of the protein, the emission has higher intensity. 

However, if the aromatics are exposed to the solvent, the emission intensity decreases. Since cl-

Par-4 has tyrosine residues in the SAC and linker domains, tyrosine fluorescence can be used to 

monitor folding these regions, which are predicted to be partially disordered based on DisEMBLE 

and GOR4 analysis. Tyrosine was selectively excited at 220 nm and the emission was recorded 

from 250-400 nm at 25 °C for cl-Par-4 in 20 mM NaCl at pH 7 and pH 4 (Figure 9a).  

The emission maximum near 310 nm was more intense at pH 4, than at pH 7. Thermal 

denaturation was also investigated (Figure 9b) by monitoring tyrosine emission at 310 nm as 

temperature increased from 20 to 95 °C. At both pH 7 and pH 4, fluorescence emission decreased 

linearly with increased temperature. While the emission spectra seem to indicate better solvent 

protection of tyrosine residues in acidic pH, the observed difference could reflect aggregation 
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rather than a change of solvent accessibility of the tyrosine residues at neutral pH. However, it 

does appear that at both neutral and acidic pH there is substantial solvent protection of tyrosine 

residues at low temperatures, which is reduced at higher temperatures. 

 

 

 

 

 

 

 

 

 

Fig. 9. Intrinsic tyrosine fluorescence of cl-Par-4 at pH 4 and 7. (a) Tyrosine fluorescence at pH 4 

and 7 over 250-400 nm (b) Thermal denaturation at pH 4 and 7 monitored by emission at 310 nm. 

 

GalaxyWEB model of the cl-Par-4 dimer at acidic pH 

To further assess the conformation of cl-Par-4 at acidic pH, template-based models were 

generated using GalaxyTBM on the GalaxyWEB server [95]. The racine Par-4 CC crystal structure 

(pdb 5fiy_A) was used as a template and the remainder of the protein folded computationally [42]. 

An ensemble of five structures were generated and visually inspected for features consistent with 

the biophysical results obtained for cl-Par-4 at acidic pH. The structure shown in Figure 10 is best 

representative of the conformation at acidic pH: a relatively compact conformation with partially 

helical SAC and linker domains attached to the C-terminal CC.  

In this model, NLS2 is accessible for nuclear import receptor binding which is necessary 

for nuclear import. Additionally, the NES is likely masked by homodimerization mediated by the 
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CC, preventing nuclear export of cl-Par-4. However, the exact self-association state of cl-Par-4 in 

acidic pH is not known, only that cl-Par-4 exists in a polymeric state with some self-association 

mediated by the CC dimerization motif. 

 

 

 

 

 

 

 

 

 

Fig. 10. GalaxyWEB model of the cl-Par-4 dimer at acidic pH. The SAC domain is red, the NLS2 

is yellow, linker domain gray, CC light blue and LZ dark blue 

 

DISCUSSION 

Intrinsic disorder in cl-Par-4 

Disorder-to-order transitions serve a major role in IDP function, such as regulation of cell 

signaling and ligand binding [1, 3]. Common features of IDPs include reduced sequence 

complexity and high net charge, and often increased stability at extreme temperature and pH [1, 2, 
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96]. This last feature is clearly related to the high content of charged residues, since extreme pH 

will change the charge distribution. In most cases, this will reduce the number of charged side 

chains, thus reducing charge-charge repulsions that inhibit folding of the protein.  

  Full-length Par-4 has been classified as mostly intrinsically disordered, although it contains 

a helical CC at its C-terminus [38, 39, 42]. However, during apoptosis, a 24 kilodalton fragment, 

cl-Par-4, is generated which then predominantly localizes in the nucleus where inhibition of pro-

survival pathways occurs [57]. There is little structural information known about the caspase-

cleaved fragment and it is unclear whether cl-Par-4 is predominantly disordered as is the full-

length protein. DisEMBLE disorder prediction of cl-Par-4 showed high disorder probability in the 

linker domain and some disorder in the SAC domain, which coincide with regions of low helix 

propensity by GOR4 analysis (Figure 5b,c) [92, 97]. Additionally, GOR4 analysis predicts 

approximately 42% disorder under physiological conditions (Figure 5c) [97].  

Consistent with the secondary structure predictions in Figure 5, results in the present study 

show evidence for some disorder in cl-Par-4. First, based on SDS-PAGE analysis, cl-Par-4 

displays an apparent molecular weight of 31 kilodaltons which is approximately 30% higher than 

expected. This is consistent with previous studies on the racine Par-4 constructs including full 

length, SAC, and deleted LZ, which each showed apparent molecular weights on SDS-PAGE at 

least 30% higher than predicted based on primary structure [39]. This behavior is due to the unique 

negatively charged amino acid composition typical of IDPs, which reduces the affinity of SDS 

binding, preventing full denaturation and decreasing electrophoretic mobility [2, 98, 99]. CD 

(Figure 6a) and DLS (Figure 8a) analysis are also consistent with only partial disorder in the 

presence of SDS. Thermal denaturation (Figure 7) was better able to unfold cl-Par-4, confirming 

that a significant degree of structure remains in the presence of the SDS denaturant.  
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Instability at neutral pH 

       CD spectra of cl-Par-4 obtained at pH 7 show less intense negative dichroism at 222 and 208 

nm and decreased thermal stability compared to CD obtained in acidic conditions (Figures 6a, 7a). 

DLS experiments showed large measured Rs, which varies with time (Figure 8). IDPs have a larger 

Rs than a globular protein of the same molar mass. However, the Rs value here is far larger than 

expected for a disordered monomer, and is consistent with the formation of soluble aggregates 

[100, 101].  

Decreased intensity in the tyrosine fluorescence emission spectra is also consistent with the 

formation of large aggregates (Figure 9). A high ϴ222/ϴ208 ratio from CD experiments suggests 

CC formation, although this ratio could be influenced by beta content. Less intense negative 

dichroism and increased Rs values occurred at all pH values tested above the experimentally 

determined pI of 5.35 (Figure 6b, Figure 8c). Taken together, the data demonstrates that at pH 

above the pI, cl-Par-4 forms large soluble aggregates with a degree of conformational flexibility. 

Depicted in Figure 2 (Chapter I) is a helical wheel diagram of the LZ region of Par-4. LZs are 

a special type of coiled-coil oligomerization motif with leucine residues in the d position. [102-

104]. Dashed lines represent inter-helical interaction between charged residues at the e and g 

positions. The D-E charge repulsion contributes to the conformational instability observed above 

the pI, as previously determined for the LZ and CC constructs [38, 40, 41].  

In summary, the aggregation at pH above the pI can be explained via electrostatic repulsion 

across the LZ dimer interface. This repulsion reduces dimer stability, which apparently promotes 

a more disordered interaction of hydrophobic regions that are systematically buried at the dimer 

interface at low pH.  
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Acidic pH-induced folding 

Electrostatic repulsion within the cl-Par-4 CC domain is abrogated at low pH due to partial 

titration of the acidic side chains involved [40, 41]. Due to the associating negative charges, the 

pKa of the repelling D-E acidic side chains in the CC domain is expected to be higher than normal 

and should be somewhere in the range of 5-6. In acidic conditions, negative dichroism at 222 and 

208 nm was more intense, specifically at pH below the pI (Figure 6a,b). While CD spectroscopy 

shows thermal stability up to at least 65 °C, the 222 nm band does become systematically less 

intense with increasing temperature (Figure 7b). This suggests a reduction in CC content at higher 

temperatures. Some IDPs, such as nerve growth factor and αs-casein, gain structure upon increased 

temperature [105, 106]. Our results show the opposite trend: increased temperature results in 

partial loss of secondary structure in cl-Par-4, providing further evidence of ordered structure.  

DLS shows a monodisperse conformation with an Rs value intermediate between the largely 

disordered monomer in SDS and the aggregate at neutral pH (Figure 8). Thermal unfolding 

experiments monitored by fluorescence showed that tyrosine residues in the SAC and linker 

domains are solvent protected at room temperature (Figure 9a,b). Together, these data suggest that 

at acidic pH, cl-Par-4 forms a single, stable conformation of fixed self-association state, with 

substantial CC and perhaps additional non-coiled helical regions. The amount of helix present 

requires that at least part of the SAC and linker domains have helical character.  

To further assess the conformation at acidic pH, template-based models were generated via 

GalaxyTBM on the GalaxyWEB server [95]. The racine Par-4 CC crystal structure (pdb 5fiy_A) 

was used as a template and the remainder of the protein was allowed to fold computationally [42]. 

An ensemble of five structures was generated and visually inspected for features consistent with 

the above biophysical results for cl-Par-4 at acidic pH. At least part of the SAC and linker domains 
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must fold under acidic conditions since the CC only comprises approximately 37% of the protein 

fragment, while CD analysis indicates approximately 80% helical content. The structure shown in 

Figure 10 is representative of the type of conformation that may occur at acidic pH: a relatively 

compact conformation with partially helical SAC and linker domains attached to the CC.  

 

Caspase-cleavage of FL-Par-4 is important for apoptosis 

Interestingly, increased caspase-3 activation occurs during apoptosis due to the release of 

cysteine proteases from the lysosome, during cytosolic acidification [107-111]. Thus, cl-Par-4 

could be generated under acidic conditions. For subsequent nuclear entry, another protein such as 

a nuclear import receptor must bind the NLS of cl-Par-4 [34, 112, 113]. The NLS would likely be 

accessible in a folded non-aggregated conformation such as that represented in Figure 11 but may 

not be accessible in the aggregate present at neutral pH.  

Consistent with this possible mechanism, the RASSF2 tumor suppressor binds a cl-Par-4-

sized fragment of Par-4, via the NLS [114]. This binding interaction enhances nuclear localization 

of the Par-4 fragment, leading to cancer cell apoptosis [114]. In contrast, the NES is most likely 

masked by homo-dimerization mediated by the CC, preventing nuclear exit of cl-Par-4 [55]. Taken 

together, these results indicate that caspase-induced cleavage of Par-4, creating cl-Par-4, 

simultaneously exposes the cl-Par-4 NLS and sequesters the NES, obligating nuclear localization. 

The folded conformation shown here is consistent with exposure of the NLS at its N-terminus, and 

sequestration of the NES within the CC dimerization domain. Furthermore, we have shown that at 

acidic pH, aggregation of cl-Par-4 is inhibited, producing a molecular size more consistent with 

the ability to traverse the nuclear pores.  
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Intracellular Acidic Environments 

Though acidic pH can induce cl-Par-4 folding in vitro, the physiological relevance of the 

acidic-induced structure of cl-Par-4 remains to be determined. Some clues to the importance of 

folding at acidic pH can be obtained through discussion of other proteins with similar 

characteristics. First, many in vitro studies have shown IDPs preferentially folding at acidic pH 

[87, 115]. Examples include α synuclein, prothymosin α, and the cytoplasmic domain of BAP29 

[115-118]. The general principle is that acidic pH can alleviate charge-charge repulsion in IDPs, 

allowing for stable folding [1, 2, 5]. Other proteins are known to have both stable structure and to 

function in an acidic environment. For instance, acid endonucleases function in cell death and have 

optimal activity as low as pH 4.9 [119, 120]. As a second example, dimer formation of the 

apoptosis-regulating Bcl-2 family proteins is stabilized at pH 4 [121].  

Many other proteins, including tumor suppressors, have been detected in lysosomes, 

endosomes or exosomes, which can be highly acidic. Perhaps the best-known example is the p53 

tumor suppressor, which can be found in the highly acidic lysosomes in human breast cancer cells 

[87, 122]. It has been suggested that the p53 conformation at acidic pH could function in lysosomal 

membrane permeabilization, which often occurs in early apoptosis [87, 123]. The PTEN protein is 

an example of a tumor suppressor that is transported via exosomes [124]. Exosomes can be used 

for intercellular transfer of tumor suppressors, which helps to prevent tumor proliferation [125, 

126]. Since exosome biogenesis occurs through the lysosome-endosome pathway (pH 4-6 range), 

the relevant pH is consistent with the acidic pH in our study [89, 127-132]. 

Therefore, it is interesting to note that while most studies of Par-4 have focused on intracellular 

function, full length Par-4, along with Par-4 fragments of 33 and 14 kilodaltons (based on SDS-

PAGE) have also been found in secreted exosomes (termed apoxosomes) [88]. These fragments 
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have not yet been positively identified; however, the SDS-PAGE-based sizes are consistent with 

those created by caspase-induced cleavage, including the cl-Par-4 fragment. Additionally, p62 

forms a ternary complex with PKCζ and Par-4 (through the Par-4 C-terminus), helping to regulate 

the interaction of aPKC with the NF-κB pathway [133]. Interestingly, atypical isoforms of protein 

kinase C (aPKCs) and p62 localize to late endosomal compartments [43, 133-135], suggesting that 

Par-4 may also localize to late endosomes due to this binding interaction. Therefore, it is quite 

plausible that future studies will positively identify cl-Par-4 in these acidic organelles. Also, the 

fact that typical exosome size is less than 100 nm [136] suggests that cl-Par-4 under neutral 

conditions (Rs >400 nm) may be too large for transport via exosomes. However, the folded 

conformation at acidic pH would be of a more suitable size.  

It has also been well documented that the cytosol of cancer cells can be more acidic than that 

of healthy cells, particularly during apoptotic processes [110, 111, 119, 137-141]. For instance, 

one study showed apoptotic human histiocytic lymphoma cells with a cytosolic pH of 5.7 [122, 

129]. While the precise degree of acidification may vary in different tumors, cancer-related 

acidification of the cytosol could potentially help to promote IDP folding. Finally, it should be 

noted that in vivo folding of cl-Par-4 may be influenced by factors other than pH, including post-

translational modification or binding interactions with other proteins or ions. This could help to 

reduce the conformational instability observed at neutral pH. However, these factors are not 

required for stable folding of cl-Par-4 at acidic pH.  
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CHAPTER III 

DEPENDENCE OF CL-PAR-4 STRUCTURE ON IONIC STRENGTH: EVIDENCE OF 

TETRAMER FORMATION 

 

PREFACE 

The content of this chapter was published in the FEBS journal in June 2019. Reprinted with 

permission from Clark, A.M., Ponniah, K., Warden, M.S., Raitt, E.M., Smith, B., and Pascal, S.M. 

(2019) Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor, the 

FEBS journal. Copyright 2019 

 

INTRODUCTION 

 The aim of the research described in the following chapter was to study the effect of ionic 

strength on the structure of cl-Par-4, the caspase-cleaved fragment of the Par-4 tumor suppressor. 

Biophysical techniques including CD spectroscopy, DLS, tyrosine fluorescence, and SEC-MALS 

were used. As discussed in Chapter II, cl-Par-4 forms aggregates under typical physiological 

conditions, but adopts a predominantly alpha helical conformation in acidic pH [51]. Disordered 

proteins often fold under extreme conditions such as extreme pH, temperature, or ionic strength 

due to various stabilizing factors [2, 4, 5, 19]. For instance, high salt can increase folding of highly 

polar IDPs by shielding charge-charge repulsion [48-50].  

Over time, some proteins on earth have adapted to life in extreme environments like high 

salt [142, 143]. These halophilic proteins are influenced by electrostatic interactions and often 

form random coil structures, both common among intrinsically disordered proteins (IDPs) like 
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Par-4. This suggests a possible link between halophilic protein adaption and the folding and 

structural flexibility of IDPs [143]. One of NASA’s mission directorates addresses the question 

“Does life exist outside of Earth?” It is plausible that if proteins could exist outside of earth, they 

would have characteristics comparable to that of IDPs, which interestingly encompasses many 

medically relevant proteins. Therefore, the objective of this research was to use a medically 

relevant human protein, Par-4, as a model of protein folding in extreme conditions characteristic 

of an extraterrestrial environment. In this chapter, the effect of ionic strength on cl-Par-4 

conformation at neutral pH was studied. Results show that cl-Par-4 is highly susceptible to 

aggregation in low salt conditions, forming large oligomers. However, cl-Par-4 forms 

predominantly alpha helical tetramers in high salt. This observation raises the possibility that Par-

4 tetramerization may be critical for its apoptotic activity. 

 

MATERIALS AND METHODS 

Expression and purification of cl-Par-4 

Cl-Par-4 was expressed and purified according to published procedures using the H-MBP-

3C expression vector and BL21(DE3) CodonPlus E. coli cells [51]. Cl-Par-4 was purified using a 

His-Trap HP column (GE Healthcare) and dialyzed against high salt, pH 7 buffer (10 mM Tris, 1 

M NaCl, 1 mM TCEP). Cl-Par-4 was lyophilized and re-solubilized in ultrapure H20.   

 

Circular Dichroism 

Far-UV CD experiments were performed as in Chapter II. Stock protein was diluted to 0.2 

mg/mL (8.3 µM) in pH 7 buffer with 10 mM Tris-HCl, 1 mM TCEP, and NaCl ranging from 20 

mM to 3 M.  
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Intrinsic Tyrosine Fluorescence 

Fluorescence spectra were recorded as in Chapter II. Protein was at a concentration of 0.2 

mg/mL (8.3 µM) in pH 7 buffer with 10 mM Tris-HCl, 1 mM TCEP, and 20 mM or 1 M NaCl.  

 

SEC-MALS 

A Superdex 200 column (GE healthcare, Uppsala, Sweden) with a 24 mL column volume 

(CV) was equilibrated with 1 CV of buffer at a flow rate of 0.1 mL/min before injecting the sample. 

BSA was used as a standard. After filtration with a 0.45 µm syringe filter, 500 µL of cl-Par-4 at 3 

mg/mL (125 µM) was loaded onto the column. Running buffer contained 10 mM Tris, pH 7 and 

either 20 mM or 1 M NaCl. SEC experiments were done at 4 °C with a flow rate of 0.3 mL/min 

for 0.02 M NaCl and a flow rate of 0.2 mL/min for 1 M NaCl to prevent increased pre-column 

pressure.  

After protein elution, light scattering and refractive index measurements were recorded.  

Light scattering was recorded at three angles (43.6°, 90°, and 136.4°) using a mini-DAWN with a 

690 nm laser (Wyatt Technology). Using Astra software, the molar masses (MM) and radius of 

gyration (Rg) values were calculated for the eluted fractions. Double log plots of MM versus Rg 

were obtained from Astra software. Fractions were collected and analyzed by SDS-PAGE. 

 

GalaxyWEB Modeling 

GalaxyHomomer on the GalaxyWEB server for protein structure prediction was used to 

generate the cl-Par-4 tetramer model. An oligomeric state of four (tetramer) was specified at input, 

and models were generated based on the cl-Par-4 amino acid sequence and template-based 

modeling, using pdb 5dol (YabA) as a template. 
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RESULTS 

CD: More intense negative dichroism in high ionic strength 

       The effects of ionic strength on cl-Par-4 secondary structure were investigated using CD 

spectroscopy (Figure 11a). There was minor change in negative dichroism between 0.02 to 0.25 

M NaCl. Minima at 222 and 208 nm became more intense as NaCl concentration increased, 

specifically in the range of 0.35 M to 3 M.  

       

 

 

 

 

 

(a)                                                                          (b) 

Fig. 11. Minima at 222 and 208 nm become more intense with increasing ionic strength at pH 7. 

(a) CD spectra of cl-Par-4 in ionic strength ranging from 20 mM to 3 M NaCl (b) Ɵ222/Ɵ208 ratios 

in 0.02-3 M NaCl. 

 

      Less intense negative dichroism in low ionic strength could be related to scattering of large 

soluble aggregates. The Ɵ222/Ɵ208 ratios were assessed to monitor CC formation (Figure 11b). 

Ratios decreased from 1.71 to 0.92 as salt increases from 0.02 M to 3 M. This would seem to 

suggest that CC formation occurs at low salt (0.02-0.25 M) but not in high salt (0.35-3 M). 

However, ratios in low salt could be influenced by beta content. 
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    The change in [Ɵ]222 as temperature was increased from 25 to 85 °C was studied in 0.15 M, 0.5 

M, and 1 M NaCl (Figure 12). In 0.15 M NaCl, temperature-induced changes in [Ɵ]222 were 

modest. However, in 0.5 and 1 M NaCl, there is a significant loss of [Ɵ]222 intensity with increased 

temperature. The melting temperature (Tm) appears to be near 55 °C at 0.15 M and 1 M NaCl. 

Extraction of Tm at 0.5 M NaCl was not possible with this data. 

 

Fig. 12. Thermal stability analysis of 

cl-Par-4 by CD. [Ɵ]222 versus 

temperature at three salt 

concentrations are shown. 

 

       

 

DLS: Ionic strength changes the hydrodynamic properties of cl-Par-4 

      To assess the dependence of cl-Par-4 hydrodynamic size on ionic strength, DLS measurements 

were obtained of cl-Par-4 in varying ionic strength buffers at pH 7 (Figure 13). Large Rs 

measurements (greater than 400 nm) were observed in low salt of 0.02-0.25 M NaCl, which are 

characteristic of large aggregates. The hydrodynamic size of cl-Par-4 significantly decreased in 

high salt (0.5 to 1 M NaCl) with small Rs values in the range of 115 to 86 nm. This is consistent 

with a non-aggregated, more compact conformation. Additionally, there is significant variation in 

size in low ionic strength, suggesting multiple conformations and flexibility. However, low error 

in high salt shows better reproducibility between samples and one consistent conformation.   
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Fig. 13. Dependence of cl-Par-4 

hydrodynamic size on ionic strength. 

Measured Stokes radius (RS) values 

from 0.02 to 1 M NaCl are shown. The 

standard deviations from 0.02 M to 1 M 

NaCl are 129, 25, 3, 3, and 15 nm. 

 

Effect of NaCl concentration on tyrosine fluorescence 

Tyrosine fluorescence emission spectra were obtained in the range of 250-400 nm (Figure 

14). The difference in fluorescence intensity from 0.02 M to 1 M NaCl might suggest the tyrosine 

residues in the SAC and linker domains have different levels of solvent exposure. However, 

decreased intensity in low ionic strength could be due to aggregation, rather than a change of 

solvent accessibility of the tyrosine residues in the SAC and linker domains, as discussed in the 

previous chapter. 

 

Fig. 14. Tyrosine fluorescence of 

cl-Par-4 in the presence of 0.02 

M (orange) and 1 M (red) NaCl 

following excitation at 220 nm. 

 

 

 

0

100

200

300

400

500

600

250 300 350 400

F
lu

o
re

sc
e
n

ce
 I

n
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

1M NaCl 20mM NaCl



35 
 

 
 

SEC-MALS: Mixed high-order oligomers in low salt 

      To identify the oligomeric association of 125 µM cl-Par-4, SEC-MALS experiments were 

performed to determine molar mass (MM) and radius of gyration (Rg). A mixture of large 

aggregates form in low salt of 0.02 M NaCl, which is consistent with DLS data. The major peak 

eluted after 70 minutes and scattered light intensely, indicating a large molecular size (Figure 15a). 

MM measurements could not accurately be calculated for the small second and third peaks that 

eluted between 71-75 minutes. The major peak had a MM ranging from 389 to 424 kilodaltons 

(Table 1, Figure 15b). Plotting the elution profile as a function of MM shows variation in MM as 

the sample eluted from the column (Figure 15b), suggesting a somewhat heterogeneous sample. 

Mw/Mn is the polydispersity ratio, and the value was 1.3 ± 35% for this sample, consistent with 

heterogeneity. Since the MM of monomeric cl-Par-4 is 24 kilodaltons, the results are consistent 

with a primary species ranging from 16mer to 18mer (theoretical MM is 384 and 432 kilodaltons, 

respectively). The average Rg for this sample was 128 nm (Table 1).  

            When the SEC-MALS experiment was repeated with a second 125 µM cl-Par-4 sample, 

also in low salt (0.02 M NaCl), the fraction that eluted near 70 minutes had a somewhat larger MM 

of 517 kilodaltons, consistent with a 22mer (theoretical 22mer MM is 528 kilodaltons), and an Rg 

of 155 nm (Figure 15c, Table 1). Figure 15c is also consistent with a heterogeneous sample based 

on variation in measured MM as the sample eluted. An Mw/Mn of 1. In both low salt samples, 

individual MM measurements had an error in the range of 24-39%. Though these results are 

inexact, clearly, SEC-MALS consistently predicts higher-order oligomers in low salt, while the 

observation of multiple peaks consistently suggests the presence of multiple, possibly 

interconverting, aggregated species. This is not unexpected for a disordered protein which is highly 

flexible and not expected to have a fixed quaternary structure. 
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Fig. 15. SEC-MALS of 125 µM cl-Par-4 in 0.02 M NaCl (a) Elution profile of cl-Par-4 from 

Superdex 200 gel filtration column with light scattering (LS), UV, and refractive index (RI) 

measurements. (b) and (c) show molar mass analysis of the major peak from part (a) for two 

separate runs.  (b) Mw (weight average molar mass -black dots) and UV (green) versus time. The 

molar mass at the peak maximum is approximately 424 kilodaltons, consistent with an 18mer. (c) 

Mw molar mass plot of a second sample showing a mass of approximately 515 kilodaltons at the 

peak maximum, consistent with a 22mer. Variation in weight average molar mass measurements 

in (b) and (c) suggest the presence of a range of oligomers. (d) Conformation plot in 0.02 M NaCl 
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for samples shown in (b) and (c). Fitted slopes are 0.44 (black/red) and 0.71 (gray/green), 

respectively. 

 

          

  

 

 

 

 

Table 1. SEC-MALS measurements of 125 µM cl-Par-4 in 0.02 M NaCl. Shown are Mn and Mw 

values which refer to number average MM and weight average MM. Mw/Mn is the polydispersity 

ratio. Rn, Rw, and Rz are the number, weight, and z-average radius of gyration values. Two separate 

runs are shown for low salt which gave a range of oligomers: 16mer-22mer. The average molar 

mass and radius values are shown with standard deviation (± SD %); however, there is high error for 

individual measurements and high polydispersity in the samples. 

 

      A double log conformation plot of MM versus radius provides information about protein shape 

where a slope of 0.33 indicates spherical, 0.5 indicates coil, and 1 indicates rod-like. The 

conformation plot of cl-Par-4 in low salt shows slopes of 0.44 and 0.71 (Figure 15d). At least some 

of the difference between the slopes are due to fitting uncertainty, since visually, the slopes appear 

more similar than the numbers suggest. However, both of these values suggest at least some coil-

like character. 

Parameters R1 (error %) R2 (error %) 

Mn (g/mol) 3.4e5 ± 25% 4.9e5  ± 32% 

Mw (g/mol) 4.3e5 ± 24% 5.5e5  ± 39% 

Avg MM (g/mol) 3.9e5 5.2e5 

Mw/Mn 1.3 ± 35% 1.1 ± 50% 

Rn (nm) 106.8 ± 9% 146.1 ± 7% 

Rw (nm) 119.8  ± 6% 152.5 ± 7% 

Rz (nm) 156  ± 4% 167.7 ± 6% 

Avg R (nm) 127.5 155.4 
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SEC-MALS: helical tetramer formation in 1 M NaCl 

        Smaller oligomers were the primary species detected in 1 M NaCl (Figure 16, Table 2). A 

peak with weak UV intensity eluted after 28-30 minutes, which scattered intensely, consistent with 

a small amount of aggregation. The largest UV signal came from the second peak which eluted 

after 40 minutes. This major peak scattered less intensely, which correlates to a smaller species. 

The average MM for the major peak was 94 kilodaltons which is consistent with tetramer 

formation (theoretical MM is 96 kilodaltons) (Figure 16b, Table 2).                 

        In total, four 125 µM cl-Par-4 samples were run in 1 M NaCl, each with similar results. Within 

each run (Figure 16b shows the first run), and across the four runs (Table 2), less variation in MM 

measurement was observed, indicating a more homogeneous sample than in low salt. However, 

the slight shoulder on the right edge of the main peak would appear to represent a smaller species 

such as dimer. This suggests the presence of a small amount of dimer-tetramer interconversion as 

the sample elutes. 

        The average calculated Rg of the tetramer was 30 nm (Table 2), significantly smaller than the 

observed Rg of the aggregates. The conformation plot (Figure 16c) has a slope of 0.26, close to 

0.33 for spherical proteins. Slopes from additional experiments in high salt include 0.30 and 0.37, 

which all suggest a mostly spherical protein. The Mw/Mn ratios were approximately 1.05 ± 10% 

depending on the sample, which is consistent with largely homogeneous samples. Additionally, 

most of the individual MM measurements had 10% error or below; therefore, we can ascribe 

tetramer state with some certainty. Less sample-to-sample variation in high salt indicates a more 

stable structure, with less conformational/associative interconversion than at low salt. 
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Fig. 16. SEC-MALS of 125 µM cl-Par-4 in 1 M NaCl. (a) Elution profile of cl-Par-4 from a 

Superdex 200 gel filtration column in 1 M NaCl with LS, UV, and RI measurements. (b) Mw molar 

mass analysis of the major peak that eluted between 40-45 minutes with molar mass (black) and 

UV (green) versus time. The molar mass at the peak maximum is approximately 91 kilodaltons, 

consistent with a tetramer. (c) Conformation plot in 1 M NaCl with a slope (blue line) of 0.26. 
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Parameters R1 (error %) R2 (error%) R3 (error %) R4 (error %) 

Mn (g/mol) 9.1e4 ± 7% 7.6e4 ± 4% 8.2e4 ± 6% 7.8e4 ± 3% 

Mp (g/mol) 8.6e4 ± 7% 8.3e4 ± 4% 9.1e4 ± 6% 8.6e4 ± 3% 

Mw (g/mol) 9.6e4 ± 7% 7.9e4 ± 4% 8.7e4 ± 6% 8.3e4 ± 3% 

Mz (g/mol) 1.8e5 ± 23% 8.8e4 ± 9% 1.1e5 ± 13% 1.1e5 ± 8% 

Avg MM(g/mol) 1.1e5 8.2e4 9.2e4 9.0e4 

Mw/Mn 1.06 ± 10% 1.04 ± 6% 1.05 ± 10% 1.06 ± 4% 

Rn (nm) 32.7 ± 22% 24.3 ± 23% 24.9 ± 37% 31 ± 10% 

Rw (nm) 33.5 ± 21% 25.2 ± 22% 26.1 ± 34% 32 ± 10% 

Rz (nm) 36.5 ± 19% 27.5 ± 18% 28.8 ± 28% 35.3 ± 8% 

Avg R(nm) 34.2 25.7 26.6 32.8 

 

Table 2. SEC-MALS measurements of 125 µM cl-Par-4 in 1 M NaCl. Molar mass, Mw/Mn, and 

radius measurements reported for 1 M NaCl are from four separate samples that all were 

predominantly tetramers. The average molar mass was 9.4e4 g/mol (94 kilodaltons) which is close 

to the theoretical molar mass of 96 kilodaltons for a tetramer. The average radius is 29.8 (~30 nm). 

Low error in individual runs and in averaging the runs, correlates to one predominant self-

association state with reproducibility in SEC-MALS measurements.  

 

Homology model of the cl-Par-4 tetramer 

         Using Clustal Omega and BLAST, we identified that the YabA protein (pdb 5dol) has high 

sequence similarity to cl-Par-4, specifically to the CC domain (Figure 17) [55-57]. Shown below 

the alignment is the domain structure of cl-Par-4: SAC domain (14-69), linker region (70-130), 

and the coiled coil (CC) with a leucine zipper (131-209). The YabA sequence is aligned with the 

CC region of cl-Par-4 (sequences obtained from UniProt.org). Between residues 168-204 in the 

cl-Par-4 CC, there is 59% sequence similarity to YabA and 38% sequence identity. The YabA 

tetramer forms via anti-parallel alignment of two parallel CC dimers [58]. Tetramer formation in 

cl-Par-4 may occur in a similar manner.  
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Fig. 17. Sequence alignment of cl-Par-4 with YabA (pdb 5dol) using Clustal Omega [144, 145]. 

Nonpolar, uncharged residues are red. Polar, uncharged along with nonpolar, aromatic are green. 

Basic residues are pink, while acid residues are blue. The asterisks (*) show fully conserved 

residues, a colon (:) shows positions that have amino acids with similar properties, and a period (.) 

shows positions with conservation between amino acids with partially similar properties.  

 

    Using GalaxyHomomer modeling software [59], the YabA tetramer was used as a template to 

generate a tetramer model of cl-Par-4 (Figure 18). In the model, each parallel oriented dimer pair 

(AB and A’B’) resembles a pair of tweezers formed by the CC domains, and the two tweezers 

interact in a scissors-like fashion. The SAC and linker domains are shown as mostly helical but 

extending away from the coiled coil. They could instead be folded back towards the geometrical 

center of the tetramer, which would result in a more compact spherical shape.  
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Fig. 18. Cl-Par-4 tetramer model. The model was generated via GalaxyWEB homomer modeling 

software using the YabA tetramer as a template.  

 

        Dimer 1 (red) is made up of chains A and B with their CC domains oriented in a parallel 

fashion. Dimer 2 (blue) is a similar parallel arrangement of chains A' and B'. The two dimers 

interact with each other in an antiparallel orientation to form a central tetrameric region, with the 

LZ regions at the C-termini remaining dimeric. In this model, the SAC and linker domains are 

shown as largely helical but extending away from the CC regions. These domains may instead fold 

back toward the geometric center, resulting in a more compact sphere-like structure. 
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DISCUSSION 

Ionic strength influences cl-Par-4 dichroism, hydrodynamic size, and fluorescence 

In the present study, ionic strength-induced folding of cl-Par-4 was investigated. High salt 

can be used to dissociate large protein oligomers and increase solubility. [146]. In our initial studies 

of cl-Par-4, we found that high salt was necessary during purification to prevent the formation of 

insoluble aggregates. This suggested that high salt was inducing a more stable three-dimensional 

structure. Upon further investigation (the present study), we found that in low salt and neutral pH, 

cl-Par-4 forms large soluble aggregates. In low ionic strength conditions, CD spectra show less 

intense negative dichroism (Figure 11), DLS analysis showed increased hydrodynamic size 

(Figure 13), and fluorescence shows decreased tyrosine fluorescence emission (Figure 14). The 

opposite trend is observed for cl-Par-4 in high ionic strength: more intense negative dichroism, 

decreased Rs, and increased tyrosine fluorescence emission.  

Less intense negative dichroism in low ionic strength conditions could be related to 

scattering of large cl-Par-4 oligomers. CD of cl-Par-4 in high ionic strength is characteristic of a 

predominantly alpha helical protein (Figure 11).  However, in high ionic strength, negative 

dichroism was more intense at 208 nm than at 222 nm, making the Ɵ222/Ɵ208 ratios in high ionic 

strength are less than 1. The large RS in low salt is characteristic of non-globular aggregates. 

However, a decrease in hydrodynamic size in high salt up to 1 M NaCl is consistent with a more 

compact conformation and a decrease in self-association state. The SAC and linker domains 

represent potential sites for induced folding and could, for instance, serve as a flexible hinge, a 

type of structure observed in other long CC proteins [147]. Increased ionic strength likely 

minimizes negative-negative charge repulsion in the LZ due to contacts between acidic side chains 

discussed in Chapter II.  



44 
 

 
 

Cl-Par-4 forms large soluble aggregates at neutral pH 

After identifying aggregate formation in low salt, SEC-MALS was used to identify the 

degree of self-association. Large molar mass measurements indicated that high-order oligomers in 

a range near 16mer to 22mer can form in low salt (Figure 15, Table 1) that have a non-globular 

shape, somewhat characteristic of coil or a rod shape. This data could indicate, for instance, a 

“folded rod” which is not spherical, but has some partially folded regions [147].  

It is plausible that partially disordered pre-formed dimers and/or tetramers further self-

associate in a destabilizing environment such as low salt to form large partially disordered 

aggregates. Many factors such as electrostatic repulsion and CC destabilization, hydrophobic 

interactions, and helix sliding could potentially result in protein aggregation and loss of function 

[148-150].  

 

Ionic strength-induced tetramer formation 

Possibly the most intriguing conclusion from this study is that cl-Par-4 forms a tetramer in 

1 M NaCl (Figure 16, Table 2). This is the first evidence of tetramer formation in the Par-4 tumor 

suppressor. Based on our biophysical data, the tetramer is mostly alpha helical and more globular 

than is the structure in low salt. The observance of a tetramer at high salt is consistent with results 

reported for other proteins, e.g. mellitin and Ndel1 [151-153]. Tetramer formation by another 

tumor suppressor, p53, is well-established and determined to be the active conformation [154, 

155]. Additionally, many IDPs undergo a structural transition (induced folding) either when bound 

to a physiological partner or due to changes in cellular environment [14, 15, 99]. Here, data clearly 

demonstrates that high salt is sufficient to induce folding of cl-Par-4 into stable tetramers. 
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This folding process likely serves a role in Par-4 regulation and function. Extracellular Par-

4 enters tumor cells by binding GRP78 at the cell surface, and then is modified post-translationally 

through phosphorylation and the caspase-induced cleavage that produces the cl-Par-4 fragment 

[53, 54, 56, 57]. It has been proposed that a post-translational signal initiates tetramer formation 

in the p53 tumor suppressor [154]. A similar post-translational signal may initiate tetramerization 

of Par-4 in vivo. This could potentially occur in the full-length protein as well as in the cl-Par-4 

fragment, or caspase-cleavage may be required for tetramer formation to occur. 

Clearly, a compact tetramer could more easily translocate to the nucleus than could a large 

and disordered aggregate. Tetramer formation could also make NLS2 more accessible. Also, 

similar to p53, the nuclear export sequence (NES), which resides in the Par-4 CC region, would 

likely become masked within the CC of the tetramer, preventing export of Par-4 from the nucleus 

[156]. Once in the nucleus, tetramer formation could facilitate pro-apoptotic binding interactions, 

as seen in other apoptotic proteins such as the Bcl-2 relative Bak [157, 158]. Par-4 nuclear 

interactions with, e.g., WT1, ζpKC isoforms, and Dlk occur within the leucine zipper (LZ) region 

of the CC [31, 43, 45, 62, 133], which our proposed tetramer model suggests would be accessible 

for substrate binding (Figure 8).  

Higher order oligomerization could itself serve a regulatory role. As an example, the HypT 

transcription factor forms dodecamers in low salt, but dissociates into tetramers and dimers upon 

DNA binding [146]. This dissociation process can be initiated in vitro via exposure to 0.8 to 1.5 

M NaCl [146]. Large cl-Par-4 oligomers could similarly serve as a storage form, which dissociate 

into active tetramers upon substrate-binding. It has been proposed that Par-4 can be transported 

out of cells within exosomes [88, 133]. Since the average diameter of an exosome is less than 100 

nm [136], only the folded structures identified in either acidic pH or high salt would be suitable 
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for exosome transport. Therefore, it is interesting to note that exosomes arise from late endosomal 

compartments that are more acidic than the cytosol [127], an environment more conducive to the 

compact structural form.  

In summary, it is highly likely that both ionic strength and pH, among other factors, 

influence the in vivo structure and regulation of Par-4. Additional biophysical and functional 

characterization of both full-length Par-4 and cl-Par-4 are necessary to establish the role and 

significance of tetramerization more definitively in Par-4 localization and apoptotic function. 
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CHAPTER IV 

DIRECT INTERACTION OF PLATINUM CHEMOTHERAPEUTICS WITH FULL 

LENGTH PAR-4 AND CASPASE-CLEAVED PAR-4 

 

INTRODUCTION 

The aim of the research described in the following chapter was to identify and characterize 

the direct interaction of cisplatin (cisPt) and transplatin (transPt) with the full length Par-4 protein 

(FL-Par-4) and the caspase-cleaved fragment of Par-4 (cl-Par-4). As discussed in Chapter I, cisPt 

is a platinum-based chemotherapeutic agent that cross-links the DNA of proliferating cells, 

inhibiting DNA synthesis [69, 70]. CisPt is widely used in cancer therapy and is used to treat lung, 

breast, ovarian, and brain cancers, along with carcinomas and lymphomas [70, 159].  

CisPt and transPt are highly reactive to S- and N-donors and can therefore bind cellular 

proteins [74, 160]. It has been proposed that sulfur-containing biomolecules such as methionine 

could function as a cisPt drug reservoir, ultimately transporting cisPt to DNA [160]. Pt-protein 

interactions can affect the biodistribution and cellular uptake of drug, produce negative side 

effects, contribute to resistance processes, and alter the structure and function of the protein [74]. 

Therefore, characterizing interactions between platinum chemotherapeutics and cellular proteins, 

specifically IDPs, is of high importance. As described in Chapter I, recent studies have shown that 

Par-4 combined with cisPt have a synergistic anti-tumor effect [72]. However, it is unknown 

whether the correlations between Par-4 and cisplatin activities are due to direct interaction, or 

whether intermediaries may be involved.  

FL-Par-4 has six sulfur-containing residues that serve as potential platinum binding sites: five 

methionine (M) residues and one cysteine (C) residue (Figure 19). Cl-Par-4 retains three potential 
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cisplatin binding sites: one cysteine in the selective for apoptosis induction in cancer cells (SAC) 

domain and two methionine residues in the C-terminal coiled coil (CC) domain. While most 

previous studies have characterized interactions of cisPt with globular proteins, the interaction of 

cisPt with IDPs has not been extensively studied. In this study, analytical and biophysical 

techniques were used to characterize the interaction of cisPt and transPt with Par-4. Platinated cl-

Par-4 and FL-Par-4 oligomers were detected and the interaction likely occurs through S-Pt 

coordination. This is the first evidence of direct interaction between cisPt and transPt with Par-4. 

 

 

 

 

 

 

Fig. 19. Par-4 sequence and domain structure. The six sulfur-containing residues are highlighted 

in red: five methionine. Yellow indicates SAC domain and gray indicates the CC domain. The cl-

Par-4 fragment is underlined (cleavage site marked by triangle). 

 

MATERIALS AND METHODS 

Cisplatin and transplatin 

The cisPt and transPt stock solutions were prepared by dissolving cisPt (Sigma Aldrich) or 

transPt (Sigma Aldrich) in phosphate buffered saline (PBS) at neutral pH with 140 mM NaCl to a 
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final concentration of 1.67 mM (cisPt) and 0.84 mM (transPt). Stock solutions were stored at room 

temperature in the dark and then diluted for Par-4 cisPt/transPt binding studies.  

 

Expression and purification of FL-Par-4 and cl-Par-4 proteins 

  FL-Par-4 and cl-Par-4 were expressed in BL21(DE3) E. coli cells using the modified H-

MBP-3C expression vector according to published procedures (described in Chapters II and III) 

[51, 161]. FL-Par-4 did not require high NaCl for solubility, and therefore was dialyzed into 300 

mM NaCl, 10 mM Tris, 1 mM TCEP, pH 7 buffer. Absorbance measurements at 280 nm and a 

molar extinction coefficient of 14440 M-1cm-1 were used to determine FL-Par-4 concentration. 

 

Gel analysis of cross-linking and thermal stability 

 Protein samples were incubated with or without varying molar ratios of cisplatin or 

transplatin for one hour. Samples containing 25 µM cl-Par-4 and 27 µM FL-Par-4 were prepared 

in pH 7 buffer containing 120 mM NaCl (cl-Par-4) or 195 mM NaCl (FL-Par-4) and 10 mM Tris. 

Loading dye was added to the protein samples which were then loaded onto a denaturing 4-12% 

SDS-PAGE gel under non-reducing conditions with no boiling of samples. For thermal 

stability/dissociation studies, samples were either heated at 90 °C for 5 minutes or kept at room 

temperature. Gels were run at 240 V for 35 minutes and then stained with Coomassie blue to assess 

cross-linking of Par-4 by cisPt or transPt. 

 

UV-vis spectroscopy, dynamic light scattering and circular dichroism 

 Cl-Par-4 (8.3 µM) and FL-Par-4 (4.1 µM) protein samples were incubated with cisPt or 

transPt for one hour at room temperature in buffer containing 10 mM Tris-HCl, pH 7 and varying 
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NaCl concentration. UV-vis spectroscopy experiments were performed on a Schimadzu double 

beam UV-Vis spectrophotometer. Three scans were recorded from 240 to 400 nm using 1 cm 

pathlength quartz cuvettes and baseline subtracted. DLS experiments were performed on a 

NanoBrook Omni particle sizer. Five scans were recorded in 1 cm pathlength plastic cuvettes and 

then averaged. Far-UV CD and corresponding UV-visible absorption experiments were obtained 

on a Jasco J815 CD spectrometer using 0.1 cm pathlength quarts cuvettes. Far-UV CD and UV-

vis scans were acquired from 190-260 nm with a scan speed of 20 nm/min. Three scans were 

recorded for each sample and baseline was subtracted. CD spectra were smoothed using a means-

movement function of 25 and deconvoluted with Selcon3 (DichroWeb server) [94]. Experiments 

were performed at room temperature.  

 

Gel filtration 

Gel filtration experiments were performed on a Superdex 200 column (GE Healthcare) with 

a column volume of 24 mL. The column was equilibrated with 30 mM NaCl, pH 7 buffer at a flow 

rate of 0.1 mL/min for 1 CV prior to sample injection. Aliquots containing 500 µL of 83 µM cl-Par-

4 and 500 µL of 16 µM FL-Par-4 were treated with a range of molar equivalents of cisPt or transPt 

and then loaded onto the column. Untreated samples were used as a control. Experiments were 

performed at 4 °C and a flow rate of 0.3 mL/min was used. A280 measurements were obtained. 

MALS analysis of FL-Par-4 in 300 mM NaCl, pH 7 buffer was performed as in Chapter III.  

 

Isothermal Titration Calorimetry 

ITC experiments were performed using a Micral ITC 200. The sample cell was filled with 

16 µM FL-Par-4, the reference cell was filled with 30 mM NaCl, 10 mM Tris, pH 7 buffer, and the 
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syringe was filled with 320 µM cisPt solution. The temperature was set to 23 °C.  Multiple injections 

of cisPt were made into the sample cell which contained FL-Par-4. Each injection of cisPt into the 

sample cell was made over 4 seconds with an interval of 60 seconds between injections. The titration 

curves were analyzed to determine thermodynamic parameters. 

 

RESULTS 

Effect of Pt-binding on cl-Par-4 absorption, hydrodynamic size, and secondary structure 

UV-visible absorption spectroscopy, dynamic light scattering (DLS), and Far-UV circular 

dichroism (CD) experiments were performed to assess the effect of cisPt on the UV-vis absorbance 

spectra, hydrodynamic size, and secondary structure of cl-Par-4. Cl-Par-4 at 8.3 µM in either 150 

mM or 1 M NaCl, pH 7 buffer was incubated with 10 molar equivalents of cisPt at room 

temperature for 1 hour followed by UV, DLS, and CD measurements. 

Absorption spectra in were obtained in the range of 240 to 400 nm to assess scattering of 

large cl-Par-4 oligomers. In 150 mM NaCl buffer, UV-vis absorption spectra in the near UV region 

show no substantial change in absorbance between the untreated control and cisPt-treated cl-Par-

4 (Figure 20a). UV-vis measurements obtained in parallel with far-UV chirality measurements 

showed no substantial change in absorbance (Figure 20b). This confirms that in circular dichroism 

experiments, any changes in dichroism intensity are due to change in chirality and not in scattering. 

Far-UV CD experiments did show a change in dichroism upon cisPt treatment, with 

negative dichroism becoming less intense (Figure 20c). DLS experiments showed no substantial 

change in the stokes radius (Rs) upon cisPt treatment with minor change from 1460 to 1422 nm 

upon Pt treatment (Figure 20d). Shown in Figure 20e is the difference between the two dichroism 
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plots in Figure 20c. This molar ellipticity difference is approximately 1e5 deg·cm2·dmol-1 and 

could be related to the S-Pt dichroism. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. In low ionic strength, cisplatin induces changes in dichroism but does not change the self-

association state of cl-Par-4. Cl-Par-4 at 8.3 µM in 150 mM NaCl, pH 7 buffer was treated with 
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10 molar equivalents of cisplatin (dotted) or untreated (solid) and incubated for one hour at room 

temperature and then analyzed by (a) UV-visible spectroscopy in the near UV region from 240 – 

400 nm and (b) UV-visible spectroscopy in the far UV region from 195 to 260 nm (c) Far-UV CD 

(d) DLS. Panel (e) shows the difference between the two dichroism plots in panel (c).  Pathlengths 

are 1 cm (a,d) and 0.1 cm (b,c).  

 

The effect of cisPt treatment on 8.3 µM cl-Par-4 in 1 M NaCl, pH 7 buffer was also assessed 

since cl-Par-4 has been shown to form stable structure in extreme conditions of 1 M NaCl [162]. 

UV-vis absorption spectra in the near UV range of 240 to 400 nm showed minor change in 

absorbance upon cisPt treatment  (Figure 21a). In 1 M NaCl, absorbance in the range of 320 to 400 

nm was less intense compared to Figure 20a, likely due to decreased scattering of large particles. 

UV-vis measurements obtained in parallel with far-UV chirality measurements showed similar 

absorbance (Figure 21b), confirming any changes in dichroism in Figure 21c are due to changes 

in chirality and not in scattering. CD spectra showed no substantial change in secondary structure 

(Figure 21c), with dichroism overlapping for untreated and cisPt-treated cl-Par-4. Two cl-Par-4 

species were detected by DLS measurements (Figure 21d) with Rs values of 700 and 74 nm 

(untreated) and 734 and 71 nm (cisPt treated). No major change in Rs was detected between treated 

and untreated cl-Par-4.  
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Fig. 21. At high ionic strength, cisplatin does not change the structure or self-association state of 

cl-Par-4 significantly. Cl-Par-4 at 8.3 µM in 1 M NaCl, pH 7 buffer was treated with 10 equivalents 

of cisplatin (dotted) or untreated (solid) and incubated for one hour at room temperature and then 

analyzed by (a) UV-visible spectroscopy in the near UV region from 240-400 nm, (b) UV-vis 

spectroscopy in the far UV region from 195 to 260 nm, (c) Far-UV CD, and (d) DLS. Pathlengths 

are (a,d) 1 cm and (b,c) 0.1 cm.  

 

Shown in Figure 22 are additional CD experiments of cisPt-treated cl-Par-4 performed in 

low ionic strength conditions ranging from 40 mM to 150 mM NaCl at neutral pH. Protein samples 

were at 8.3 µM. In all experiments shown, the intensity of negative dichroism either increases or 

decreases upon cisPt treatment (dotted line) compared to the untreated control (solid line). In 
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Figures 22a,b, the intensity of negative dichroism decreased upon cisPt treatment similar to Figure 

20c. Negative dichroism for the untreated control (solid line) was of similar intensity in both 

experiments (Figure 22a,b), indicative of a similar starting structure before treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Intensity of cl-Par-4 negative dichroism increases or decreases upon cisPt treatment. CD 

of 8.3 µM cl-Par-4 without (solid line) and with (dotted line) one equivalent of cisplatin at pH 7, 

under the following ionic strength conditions: (a) with 150 mM NaCl (sample 1); (b) with 150 mM 

NaCl (sample 2); (c) with 40 mM NaCl. The difference between the two plots in panel (a) is shown 

in panel (d). Similarly, panels (e) and (f) show difference plots for data from panels (b) and (c), 

respectively. The pathlength of cuvettes used was 0.1 cm. 
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However, cisPt-treatment can also increase the intensity of negative dichroism (Figure 

22c). In Figure 22c, negative dichroism of the untreated control is less intense than samples 1 and 

2 and therefore is likely in a difference conformation or self-association state. This suggests that 

the effect of cisPt-binding on dichroism intensity may be related to the initial protein conformation 

and self-association state, or even to the initial state of cisPt. The formation of large soluble 

oligomers may prevent accessibility of certain Pt-binding sites. Figures 22d-f show the difference 

plot of cisPt-treated and untreated cl-Par-4 in Figures 22a-c. This global shift in dichroism intensity 

is likely related chirality of the S-Pt bond and the dihedral bond angle influences an upward versus 

downward shift.   

 

Identification of Pt-induced cl-Par-4 oligomers 

To determine if cisPt and transPt can induce the formation of cl-Par-4 cross-links, gel 

electrophoresis experiments were performed (Figure 23). Cl-Par-4 was prepared at a concentration 

of 25 µM in pH 7 buffer containing 120 mM NaCl. On a denaturing gel, monomeric cl-Par-4 

migrates primarily as a single form, with a band near 30 kilodaltons. After incubation with 10 to 

40 molar equivalents of cisPt, aggregated species (platinated cl-Par-4 oligomers) are detected on 

a denaturing gel, and the intensity of the monomeric band decreased (Figure 23a). 

 A similar result was obtained when treated with transPt (Figure 23b). Platinated cl-Par-4 

oligomers were detected on a denaturing gel upon treatment with 10 to 30 molar equivalents of 

transPt. The platinated oligomers have sizes ranging from 66-70 kDa and greater than 116 kDa. 

The larger oligomers could possibly represent a cl-Par-4 dimer and tetramer. This result suggests 

that platinated cl-Par-4 oligomers are formed when the platinum center of cisPt or transPt cross-
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links cl-Par-4 subunits. Aggregates formed in the presence of cisPt and transPt are SDS-resistant 

or at least partially SDS-resistant. 

 

 

 

 

 

 

 

 

 

(a)                                                             (b) 

Fig. 23. At high concentration, cisplatin and transplatin cross-link cl-Par-4. SDS-PAGE of 25 µM 

cl-Par-4 treated with (a) cisPt and (b) transPt prepared in pH 7 buffer containing 120 mM NaCl. 

 

Next, thermal stability of the platinated cl-Par-4 oligomers was assessed by gel 

electrophoresis (Figure 24). Cl-Par-4 was prepared at a concentration of 25 µM in pH 7 buffer 

containing 120 mM NaCl and then incubated with or without cisPt or transPt. Again, the intensity 

of the monomeric band near 30 kilodaltons decreased upon Pt treatment. Minor differences in 

intensity of the monomeric band were detected for untreated cl-Par-4 upon heating. Dissociation 

of platinated cl-Par-4 oligomers upon heating suggests that Pt-induced cl-Par-4 cross-links are not 

resistant to denaturation. Cl-Par-4 oligomers formed upon cisPt treatment dissociate into bands of 
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various sizes upon denaturation, while cl-Par-4 oligomers formed upon transPt treatment 

dissociate primarily into monomer. 

 

Fig. 24. Thermal stability of 

platinated cl-Par-4 oligomers. 

SDS-PAGE analysis of Pt-treated 

and untreated 25 µM cl-Par-4 

prepared in pH 7 buffer containing 

120 mM NaCl. Samples were 

heated at 90°C for 5 min and 

compared to the unheated control 

samples. 

 

Analysis of platinated cl-Par-4 oligomers by gel filtration 

SDS-PAGE experiments showed that cisPt and transPt can cross-link cl-Par-4 and DLS 

experiments in low ionic strength conditions produced large Rs values, consistent with a large 

oligomeric cl-Par-4 species. Therefore, gel filtration experiments were performed to assess if Pt-

binding affects the aggregation state of cl-Par-4 by monitoring changes in the retention time of Pt-

treated cl-Par-4. Additionally, increased absorbance at 280 nm of the eluting species has been used 

to detect S-Pt coordination in other proteins.  

Chromatographic profiles obtained for 83 µM cl-Par-4 treated with varying molar ratios of 

cisPt and transPt are reported in Figure 25 and compared to the untreated control. The SEC elution 

profile of untreated cl-Par-4 was consistent with published SEC results for cl-Par-4: in low ionic 
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strength, cl-Par-4 has a retention time of 21 mL, representing large soluble oligomers in the range 

of 16 to 22mer [162]. Treatment of cl-Par-4 with 1 molar equivalent of cisPt produced peaks with 

retention times of 15.5, 19, and 21.5 mL with similar intensity to the untreated control. Treatment 

of cl-Par-4 with 10 molar equivalents of cisPt produced peaks with similar retention times. 

However, the absorbance for the peak with a retention time of 21.5 mL increased.  

 

   

 

 

 

 

 

 

 

 

Fig. 25. Cl-Par-4 forms large oligomers with increased absorbance upon cisPt and transPt 

treatment. Gel filtration pattern of 83 µM cl-Par-4 treated with cisPt (red) and transPt (blue) in 30 

mM NaCl, pH 7 buffer. The solid black line represents the untreated control.  

  

    This increase in absorbance at 280 nm might correspond to S-Pt coordination between cisPt 

and sulfur-containing residues in cl-Par-4. The peak with a retention time of 18 mL for the control 

eluted at 19 mL upon cisPt treatment of both 1 and 10 molar equivalents. Treatment with 1 molar 

equivalent likely produced one platinated species, while treatment with 10 molar equivalents 

cl-Par-4 oligomer 
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produced two platinated species. Similar results were obtained when cl-Par-4 was treated with the 

trans isomer, transPt. The peak with a retention time of 18 mL was not detected upon transPt 

treatment. However, transPt treatment resulted in increased absorbance for the peak eluting at 21.5 

mL. The major peaks are symmetric and therefore, likely correlate to one oligomerization state.                                                                 

 

Biophysical analysis of the FL-Par-4-Pt interaction  

FL-Par-4 at 4.1 µM in 30 mM NaCl, pH 7 buffer was incubated with cisPt or transPt for 

one hour at room temperature and then CD and DLS measurements were obtained. There was no 

substantial change in the secondary structure of Par-4 treated with 10 molar equivalents of either 

cisPt or transPt (Figure 26a). All spectra show negative dichroism near 222 nm and 208 nm with 

positive dichroism near 195 nm, characteristic of an alpha helical conformation.  

Deconvolution of CD spectra using Selcon3 provided calculated percentages of secondary 

structure: approximately 80% alpha helical and the remaining 20% comprised of beta sheet, turn, 

and disorder [94]. While most CD spectra obtained of cisPt-treated FL-Par-4 show no change in 

dichroism intensity, changes in intensity of negative dichroism are occasionally detected. UV 

measurements obtained in parallel with Far-UV CD showed no change in absorbance (Figure 26b), 

confirming changes in dichroism intensity are due to changes in chirality and not in scattering.  

The hydrodynamic size of Pt-treated Par-4 was assessed by DLS (Figure 26c). The average 

Rs did decrease slightly upon Pt treatment. The untreated control had an average Rs of 1331 nm, 

while cisPt and transPt treated Par-4 had Rs values of 1168 nm and 1108 nm, respectively. 

However, all Rs values are large, consistent with an oligomeric species. 
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(a)                                                                      (b) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                              (c) 

Fig. 26. No substantial change in FL-Par-4 hydrodynamic size or dichroism upon cisplatin or 

transplatin treatment. FL-Par-4 at 4.1 µM in 30 mM NaCl, pH 7 buffer was treated with 10 

equivalents of cisplatin (dotted), transplatin (dashed), or untreated (solid) and incubated for one 

hour at room temperature and then analyzed by (a) Far-UV CD (b) UV-vis absorbance spectra in 

the far UV region and (c) DLS. The pathlength was 0.1 cm (a,b) and 1 cm (c).  

 

While most CD spectra obtained of cisPt-treated FL-Par-4 did not show a change in 

dichroism intensity, in one experiment the intensity of negative dichroism increased upon cisPt 

treatment (Figure 27). FL-Par-4 was at a concentration of 4.1 µM in pH 7 buffer containing 30 

mM NaCl, 10 mM Tris. In this experiment, the untreated FL-Par-4 control (solid line) varies in 
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shape and intensity compared to Figure 26. Upon treatment with 1 molar equivalent of cisPt, 

negative dichroism became more intense. This shift in dichroism intensity is comparable to results 

obtained for cl-Par-4 and suggests that the effect of cisPt-binding could be related to initial protein 

conformation. Shown in Figure 27b is the difference in CD intensity of cisPt-treated FL-Par-4 and 

the untreated control. This produces a molar ellipticity value of approximately to -3e5 

deg·cm2·dmol-1. This difference in CD intensity for cisPt-treated FL-Par-4 could be related to the 

S-Pt dichroism, comparable to the global shift in dichroism intensity observed for cisPt-treated cl-

Par-4. 

 

 

 

 

 

 

 

 

(a)                                                                      (b) 

Fig. 27. Outlier experiment: increased intensity of negative dichroism upon cisPt treatment of 4.1 

µM FL-Par-4 was seen with one sample. (a) CD of 4.1 µM FL-Par-4 without (solid) and with 

(dotted line) 1 molar equivalent of cisPt in 30 mM NaCl, pH 7 buffer. (b) Difference plot of the 

two plots in panel (a). Pathlength used was 0.1 cm. 

 

Formation of Pt-induced covalent FL-Par-4 oligomers 

Human FL-Par-4 is 36.5 kilodaltons based on amino acid sequence; however, disordered 

proteins due to their intrinsic disorder and non-globular conformation often have slower 
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electrophoretic mobility and run higher on SDS-PAGE. Platinated FL-Par-4 oligomers were 

detected in a denaturing gel after treatment with 5 to 20 molar equivalents of cisPt (Figure 28a).  

 

 

 

 

 

 

 

 

 

(a)                                                                             (b) 

Fig. 28. At high concentration, cisplatin and transplatin cross-link FL-Par-4. SDS-PAGE of 27 µM 

FL-Par-4 treated with (a) cisPt and (b) transPt prepared in pH 7 buffer containing 195 mM NaCl. 

 

Intensity of the bands near 116 and 200 kDa increased with increasing cisPt concentration. 

Platinated FL-Par-4 oligomers were detected when treated with 10 molar equivalents of transPt 

(Figure 28b) In both denaturing gels, the intensity of bands near the sample loading wells also 

increased with increasing Pt concentration, consistent with a large oligomeric species. Bands near 

116 and 200 kDa could possibly represent tetramer and possibly hexamer, respectively. 

Since Pt-induced FL-Par-4 cross-links were also detected, chromatographic studies were 

performed to assess changes in FL-Par-4 oligomerization upon Pt treatment. FL-Par-4 at a 

concentration of 16 µM was treated with freshly prepared cisPt versus aged cisPt prepared in buffer 

containing low [Cl-] (30 mM NaCl).  
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Fig. 29. Gel filtration of FL-Par-4 treated with cisplatin and transplatin. FL-Par-4 at 16 µM was 

treated with varying molar equivalents of cisPt in low ionic strength conditions (30 mM NaCl) at 

pH 7. (a) FL-Par-4 treated with freshly prepared cisplatin (less reactive). Insert in (a) is elution 

profile of untreated FL-Par-4. (b) FL-Par-4 treated with aged cisplatin (more reactive) (c) Differing 

effect of fresh (less reactive) vs. aged (more reactive) cisplatin. Shown is A280 for the peak that 

eluted at 19 mL in (a) and (b). (d) FLPar-4 treated with varying molar equivalents of transplatin. 

 

Retention times for untreated FL-Par-4 are 15, 17.5, and 20-22 mL (Figure 29a, insert). 

Upon cisPt treatment, the retention time for the major peak increased to 19 mL and A280 values 

increased proportionally to cisPt treatment. Next, the experiment was repeated with cisPt that had 
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been in aqueous solution longer (Figure 29b). A similar trend was observed, except that the peak 

intensity at 19 mL was approximately double that of Figure 29a for all the molar ratios of cisPt 

tested. In both elution profiles, one platinated FL-Par-4 adduct was detected. Shown in Figure 29c 

is the relationship between A280 and cisPt concentration for the peak eluting at 19 mL in Figures 

29a,b. Treatment of FL-Par-4 with transPt produced two platinated adducts with retention times 

of 19 and 21.5 mL and the A280 of these peaks increased upon transPt treatment (Figure 29d).  

 

Preliminary ITC analysis of cisPt-FL-Par-4 interaction 

ITC was used to study the thermodynamics and kinetics of the Par-4-Pt interaction. Figure 

30 shows the titration profile of cisPt binding with 16 µM FL-Par-4 at 23 °C. Each peak represents 

one injection of cisPt into the protein solution and the plot below represents amount of heat 

released per injection. The interaction of cisPt with FL-Par-4 is exothermic in nature, evident by 

the negative peaks at each injection. Listed in Table 3 are the thermodynamic parameters obtained 

from the titration : the enthalpy change was -1.114e4 cal/mol, the entropy change was -8.54 

cal/mol/deg, and the binding constant was 3.6e5 M-1. Additional ITC experiments of FL-Par-4 

titrated with cisPt are also characteristic of an exothermic reaction. 

 

Table 3. Interaction of cisplatin with 16 µM FL-Par-4 by ITC. Listed are the 

kinetic/thermodynamic parameters. 

[Par-4] µM [cisPt] µM Temp (°C) Enthalpy 

change 
Entropy change Binding 

constant 

16 320 23 -1.114e
4
 cal/mol -8.54 cal/mol/deg 3.6e

5
 M

-1
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Fig. 30. Preliminary ITC analysis of the 

interaction of 16 µM FL-Par-4 with 

cisplatin. (a) Thermogram and (b) binding 

isotherm for the titration of cisPt with FL-

Par-4. 

 

 

 

 

 

 

 

 

 

 

 

Evidence of dimer and trimer formation by FL-Par-4 with increased ionic strength 

Oligomerization is important for many biologically active proteins [146, 158, 163, 164], 

and Par-4 is known to self-associate [38, 39]. Therefore, SEC-MALS experiments were performed 

to study the oligomeric association of 16 µM FL-Par-4 (not treated with cisPt or transPt) in high 

ionic strength of 300 mM NaCl at pH 7 (Figure 31). The peak area between 11-13 mL was analyzed 

by MALS to obtain values for molar mass (MM) for two separate experiments. Figure 31a shows 

a plot of refractive index and light scattering versus elution volume for the two experiments 

(labeled as sample 1 and sample 2). Sample 1 scattered more light but had lower RI measurements. 

Sample 2 had substantially larger RI measurements, but decreased LS. 

Figures 31b,c presents a simultaneous plot of RI (blue curve) and molar mass (MM; dotted 

line) vs. elution time (11-13 mL) from the SEC column for sample 1 (Figure 31b) and sample 2 
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(Figure 31c). The variation in Figure 31b suggests a somewhat heterogeneous sample, with a 

minimum and dominant MM near 104 kDa in the center of the peak, which is consistent with 

trimer formation (monomeric FL-Par-4 is 36.5 kDa). Other parts of the peak produce MM values 

as high as 350 kDa.  

 

 

 

 

 

 

 

Fig. 31. Trimer and dimer formation by FL-Par-4 with increased ionic strength. SEC-MALS 

analysis of 16 µM FL-Par-4 in 300 mM NaCl, 10 mM Tris, pH 7 buffer from two separate 

experiments labeled as sample 1 and sample 2. (a) Refractive index (blue) and light scattering (red) 

for each experiment, vs column retention time. Solid is sample 1 and dotted is sample 2. Panels 

(b) and (c) show plots of molar mass (dotted) and refractive index (solid blue) for (b) sample 1, 

indicating a trimer and (c) sample 2, indicating a dimer.   

 

In Figure 31c, the MM at the center of the peak is 62 kDa, consistent with dimer formation.  

The largest MM value was detected as the peak started to elute, with a size near 120 kDa (trimer), 

suggesting possible trimer-dimer interconversion. However, the dominant conformation appears 

to be a trimer or dimer under these conditions. Further experiments would be required to better 

understand what factors may tip the balance in favor of trimer or in favor of dimer. 
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DISCUSSION 

Interaction of Par-4 and metallodrugs: potential physiological significance 

The use of metallodrugs in platinum-based cancer therapy is limited due to metabolic 

deactivation which occurs when the drug interacts with sulfur-containing biomolecules such as 

proteins [69, 70]. This binding interaction can influence both the protein structure and function 

along with the activity of the drug [74, 76, 81, 165-167]. Additionally, these interactions can 

contribute to some of the toxic side effects that are associated with platinum-based cancer therapy 

[168, 169]. 

Previous studies have demonstrated a synergistic anti-cancer effect between Par-4 and cisPt 

[71-73]; however, direct binding had not been studied. In this study, we investigated the hypothesis 

that cisPt and transPt directly bind the Par-4 tumor suppressor, specifically the full-length protein 

and the caspase-cleaved fragment. Results showed that cisPt and transPt do in fact directly bind 

both cl-Par-4 and FL-Par-4 and this is the first evidence of direction interaction between Pt cancer 

drugs and the Par-4 tumor suppressor. 

 Both cl-Par-4 and FL-Par-4 are important in cancer cell apoptosis [57, 58]. Prior studies have 

found that the cisplatin-albumin complexes are toxic to carcinoma cells [170, 171], infusion of 

cisPt-HSA complexes increased patient survival times [170, 172], and that albumin binding could 

result in decreased negative side effects of cisPt treatment such as nephrotoxicity [172, 173]. While 

it is unclear the effect cisPt and transPt binding has on Par-4 apoptotic activity, it is plausible the 

complex could have antitumor activity comparable to HSA. Further analysis is needed to 

determine the effect of cisPt and transPt binding on Par-4 structure and function, and ultimately 

how this relates to cancer cell apoptosis and resistance processes. 
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Biophysical analysis of Pt-Par-4 interactions 

The change in negative dichroism intensity in the disulfide range of 250-260 nm (Figure 20c) 

for cisPt-treated cl-Par-4 in 150 mM NaCl is likely due to the formation of Pt-S bonds. The 

platinum center of one cisPt molecule could be interacting with sulfur groups from one or two 

residues, inducing changes in dichroism in the disulfide bond region. Disulfide bonds absorb in 

the near UV region and can produce negative or positive dichroism in the range of 250 to 260 nm 

depending on the dihedral angle of the bond [174]. Additional experiments have shown increased 

and decreased intensity of negative dichroism in the disulfide region (Figure 22). The global shift 

in dichroism intensity is likely related to S-Pt coordination mentioned above. Changes in the 

intensity of negative dichroism upon  cisPt treatment have been observed for other proteins such 

as alpha-2-macroglobulin [166] and atox 1 [175]. There was no substantial change in UV-visible 

absorbance spectra or hydrodynamic size upon cisPt treatment. CisPt treated cl-Par-4 in 1 M NaCl 

did not vary substantially from the untreated sample (Figure 21). This could be related to the 

protein already being in a stable conformation and high [Cl-] can decrease the reactivity of cisPt. 

Circular dichroism experiments of FL-Par-4 treated with cisPt and transPt showed no 

substantial change in dichroism and produced spectra characteristic of a predominantly alpha 

helical conformation (Figure 26a). CisPt binding does not always induce a change in protein 

secondary structure. For example, Far UV-CD of platinated RNase A showed that even with cisPt 

treatment, the protein remained correctly folded and was moderately thermostable [176]. 

Additionally, DLS experiments showed only minor decrease in Rs upon cisPt and transPt 

treatment. Pt-treated FL-Par-4 was consistent with a large oligomeric species (Figure 26c). 

However, in one experiment, the intensity of negative dichroism increased upon cisPt treatment 

(Figure 27). The CD spectra of the untreated control (Figure 27a) showed less intense negative 
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dichroism compared to Figure 26a, suggesting a change in initial protein conformation which 

likely influenced cisPt binding. 

As an IDP, it is likely that intrinsic disorder and conformational flexibility affect the 

accessibility of S-containing residues for Pt-binding. Therefore, this does not exclude the 

possibility of other results obtained from Pt treatment of Par-4 and the effect of cisPt or transPt 

treatment on Par-4 is likely dependent on initial protein conformation.  

 

Gel electrophoresis and chromatographic studies 

Inter-molecular cl-Par-4 and FL-Par-4 cross-links were detected by SDS-PAGE when treated 

with increased molar ratios of cisPt or transPt (Figures 23, 28). Some Coomassie staining near the 

wells suggests that cross-linking by transPt produces oligomers too large to fully enter the gel. 

Platinated cl-Par-4 oligomers were not resistant to thermal denaturation and cl-Par-4 treated with 

transPt seemed more susceptible to heat denaturation than when treated with cisPt (Figure 24). 

CisPt-induced protein cross-links have been detected via polyacrylamide gel electrophoresis for 

other proteins such as holo-Atox1, the BRCA1 ring domain, and RNase A [167, 176, 177]. For 

example, incubation of cisPt with the copper chaperone Atox1 produced a faint dimeric band on 

SDS-PAGE in addition to the monomeric band [177]. Additional studies with holo-Atox1 found 

increased dimers and trimers on SDS-PAGE upon incubation with cisPt [76]. Oligomeric Atox1 

species were detected after incubation with transPt and Pt-induced oligomerization was time 

dependent  [76]. In this study, oligomeric bands were detected after one hour of incubation, 

suggesting the reaction occurs quickly.  

Since cl-Par-4 and FL-Par-4 cross-links were detected via SDS-PAGE, the oligomers were 

further characterized by chromatographic studies. Chromatographic profiles obtained for cl-Par-4 
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treated with cisPt and transPt show increased absorbance at 280 nm upon treatment with 10 molar 

equivalents cisPt and both equivalents tested of transPt (Figure 25). The retention time did not 

change and remained near 21.5 mL, suggesting the platinated species is a large cl-Par-4 oligomer 

and similar cisPt and transPt binding sites. Interestingly, cisPt and transPt have been shown to have 

different binding sites in other proteins [79, 84]. Based on these results, cisPt and transPt treatment 

do not prevent the formation of large cl-Par-4 oligomers.  

One platinated FL-Par-4 species was detected upon treatment with varying molar ratios of 

cisPt. Platinated FL-Par-4 had a slightly increased retention time and increased A280 values 

compared to the untreated control (Figure 29a,b). Interestingly, FL-Par-4 treatment with cisPt that 

had been in aqueous solution longer produced greater A280 values (Figure 29c). Substitution of 

the chloro ligands by the aqua ligand is a two-step process (Figure S3), yielding either monoaquo 

(+1) or diaquo (+2) cisPt. It is possible that Figures 29a,b represent the interaction of monoaquo 

(+1) and diaquo (+2) cisPt with Par-4, respectively, although further studies would be needed to 

confirm this. Gel filtration of FL-Par-4 treated with transPt showed two platinated adducts, evident 

by increased A280 values (Figure 29d).  

Sulfur-platinum coordination can be detected by monitoring changes in absorbance at 280 

nm because the charge transfer between sulfur and platinum absorbs at 280 nm. Coordination of 

the platinum center to other amino acid side chains is not detected at 280 nm. The interaction of 

cisPt with cox17 increased the A280 value of the eluting peak compared to the untreated protein 

[165]. Gel filtration of cisPt-treated RNase A showed increased A280 for specific peaks when 

incubated with greater molar equivalents of cisPt [176]. A methionine residue was found to be the 

primary cisPt binding site in RNase A [176].  
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Protein metalation is a complex process that is dependent on many factors including the 

protein, the nature of the metal in the compound, and the environmental conditions. Figure 25 

shows increased A280 values for cl-Par-4 upon cisPt or transPt treatment; however, Figure 20a 

shows no variation in A280 upon cisPt treatment. This could be related to variation in ionic 

strength of the buffer or protein concentration. The UV-vis experiment in Figure 20a was 

performed with buffer containing 150 mM NaCl, while gel filtration experiments were performed 

with buffer containing 30 mM NaCl. While the ratios of cl-Par-4 to cisPt or transPt remained 

constant, cl-Par-4 was ten times less concentrated in the UV-vis experiment in Figure 20a. 

Previous experiments have shown that the conformation of cl-Par-4 has some dependence on 

protein concentration and therefore, it is likely that cisPt-binding is dependent on cl-Par-4 

conformation and the accessibility of S-containing residues.  Although there was no change in 

A280 in Figure 20a, the CD spectra in Figure 20c does show a change in dichroism intensity, 

possibly correlated to Pt-S coordination. Further UV-vis experiments could be utilized to study S-

Pt coordination in cl-Par-4 and further gel filtration experiments could be used to assess how the 

conformation of cl-Par-4 is influenced by protein concentration. 

Since cisPt and transPt have a high affinity for sulfur donors and gel filtration results are 

consistent with S-Pt coordination, it is plausible the Pt-crosslinking site is a sulfur-containing 

residue [74]. FL-Par-4 has six sulfur-containing residues while cl-Par-4 retains three of those 

residues (Figure 19). Shown in Figure S1 (Appendix) is a model of the Par-4 C-terminus cross-

linked by cisPt at methionine 293, one of the potential cisPt binding sites in Par-4. Shown in Figure 

S2 are changes in backbone dihedral angles observed in the theoretical Par-4 model after 

introduction of the M293-Pt-M293 crosslink.  
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However, the exact cisPt and transPt binding site(s) in FL-Par-4 and cl-Par-4 are yet to be 

determined; therefore, further structural studies are necessary to identify the specific binding site(s) 

and characterize any subsequent changes in Par-4 structure. For example, mass spectrometry could 

be utilized to further characterize the Pt-S unit in cl-Par-4 and FL-Par-4. Mass spectrometry has 

been used to identify and characterize the cisplatin binding sites in proteins such as hen egg white 

lysozyme, ubiquitin, myoglobin, among others [77-79, 178-180]. Additionally, crystallographic 

studies could also be used to further study and characterize Pt-S coordination in cl-Par-4 and FL-

Par-4 [180]. 

 

Preliminary ITC Analysis  

ITC experiments are useful in providing thermodynamic information about protein-ligand 

interactions [181]. The titration profile of cisPt binding Par-4 (Figure 30) shows the reaction is 

exothermic in nature with one interaction jump. Values obtained for both entropy and enthalpy 

change were negative (Table 3). Other studies have found cisPt-protein interactions to be 

exothermic, such as the case with alpha-2-macroglobulin [166]. Similar results were observed for 

the reaction of BSA titrated with naproxen: exothermic in nature, one interaction jump, and 

negative enthalpy and entropy change [182]. 

 

FL-Par-4 forms both dimers and trimers with increasing ionic strength 

SEC-MALS experiments showed variation in the oligomeric association of FL-Par-4 (Figure 

31). Sample 1 had a molar mass consistent with trimer, while sample 2 had a molar mass consistent 

with dimer formation. Other studies have reported octamer formation in Par-4 isolated from HeLa 

cells [183], homodimerization of the racine Par-4 coiled coil [42], tetramer formation in cl-Par-4 
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[162], and conformational equilibrium in the racine Par-4 coiled coil domain between monomer 

and dimer [38].  

Oligomeric proteins can undergo dissociation as they traverse the column, as seen with the 

SecA protein which exists in monomer-dimer equilibria [184]. Results from this study show that 

FL-Par-4 exists in dynamic equilibria between oligomeric associations and that FL-Par-4 can form 

both dimers and trimers. RNase A has been shown to self-associate through 3D-domain swapping 

forming many diverse oligomers: dimers, trimers, tetramers, pentamers, and hexamers [185-187].   

The formation of functional protein oligomers is a highly regulated process; however, protein 

misfolding and the formation of protein aggregates often contribute to disease [6, 188]. 

Oligomerization is considered an inevitable step in protein aggregation [188, 189]. Association-

prone monomers can associate to form early oligomers, late oligomers, and ultimately amorphous 

aggregates, globular oligomers, or amyloid fibrils [188, 189]. However, RNase A aggregates are 

cytotoxic to non-solid tumors [190]. This raises the possibility that oligomerization of FL-Par-4 

and cl-Par-4 could have both functional and pathogenic roles.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

 The work in this dissertation has characterized the intrinsically disordered Par-4 tumor 

suppressor using biophysical and analytical techniques. There is an abundance of IDPs in 

pathological conditions such as cancer [6]. Therefore, characterizing the induced folding process 

of IDPs as well as the interactions of metallodrugs with tumor suppressor proteins is important to 

further our understanding of the structure-function relationship of IDPs and additionally cancer 

resistance processes.  

Results showed that the caspase-cleaved fragment of Par-4 is highly susceptible to 

environment, forming a predominantly helical conformation in conditions of either acidic pH or 

high ionic strength at neutral pH. Cl-Par-4 is highly susceptible to aggregation and forms large 

oligomers in physiological conditions of low ionic strength and neutral pH. Studies provided the 

first evidence of tetramer formation in cl-Par-4, which could be the active conformation capable 

of killing cancer cells. Additional studies showed that the platinum chemotherapeutic cisplatin and 

its trans isomer transplatin are capable of binding both full length Par-4 and cl-Par-4. Pt binding 

induces the formation of platinated Par-4 oligomers and cross-linking likely occurs through 

coordination to sulfur ligands.  

Further structural analysis such as nuclear magnetic resonance (NMR) spectroscopy, cryo-

EM, or mass spectrometry are needed to identify the cisPt and transPt binding site(s) in FL-Par-4 

and cl-Par-4. Additionally, the effect of cisPt and transPt-binding on the apoptotic function of FL-

Par-4 and cl-Par-4 is yet to be determined. There could be applications of the binding interaction 

in cancer therapy if the Par-4-Pt complex is shown to be cytotoxic to cancer cells. 
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Additional ongoing Par-4 studies in the Pascal Laboratory include investigating how 

scattering of large oligomers could influence biophysical analysis along with the identification of 

new Par-4-protein interactions using the LexA system. In conclusion, the Par-4 tumor suppressor 

is crucial to cancer cell apoptosis and further structural knowledge of this protein along with 

binding interactions, both with other cellular proteins and anti-cancer drugs, will provide a better 

understanding of the structure-function relationship in this intrinsically disordered tumor 

suppressor. 
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APPENDIX 

 

COMPUTATIONAL ANALYSIS OF M293-PT-M293 CROSSLINKED CL-PAR-4 

COILED COIL DIMER 

In order to assess whether cross-linking by cisPt could potentially be introduced without 

major disruption of the coiled coil, a theoretical model of the cl-Par-4 coiled coil with platinum 

cross-linking between M293 of each molecule of the coiled coil dimer was developed by Professor 

Bayse. Peptides were created from point mutations of the coiled coil Par-4 x-ray structure (PDB: 

5FIY). The simulations were performed using AMBER 16 and the ff14sb force field. Parameters 

for the [Pt(NH3)2Met2] fragment were created using the Metal Center Parameter Builder (MCPB). 

The protein system was neutralized with Na+ ions and solvated with a 10-angstrom rectangular 

box of TIP3P water molecules. The solvated system was warmed and equilibrated to 300 K prior 

to 1-3 microsecond production runs.  

A depiction of the resulting cross-linked dimer is shown in Figure S1. The platinum atom 

is shown as a sphere, and the coordinating sulfur atoms from M293 of each chain are yellow. Note 

that the platinum atom is not positioned centrally and symmetrically in this model: it is to one side 

of the dimer axis. This necessitates that asymmetry will be introduced into the dimer. However, 

note that the coiled coil remains largely intact, as shown by the broad cartoon shape for each chain, 

which is deployed only if the backbone angles are within the alpha helix range. A break in the 

helix is seen for molecule B, directly at the M293 residue itself. An overall curve and some other 

kinks and irregularities are also introduced. However, the largest alteration near the site of the 

platinum is at M293, and the coiled coil remains intact. 
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Figure S2 presents the numerical values of changes in the backbone introduced into the 

model by the M293-platinum-M293 crosslink. These changes were derived by subtracting the 

dihedral angles of the un-coordinated coiled coil (PDB 5FIY) from the dihedral angles of the cross-

linked dimer model shown in Figure S1. The largest changes are compensating alterations in phi 

and psi angles of M293 of molecule B (marked by * in Figure S2, bottom two panels). These 

changes are phi (-84 degrees) and psi (+89 degrees). Other changes are seen, the largest nearby 

ones being two residues away in either direction, at R291 phi (-47 degrees) and D295 psi (+41 

degrees). In general, lesser changes are seen in chain A than in chain B. However, some large 

changes are seen near the C-terminus of molecule A, far from the M293 site, but these may not be 

directly related to the crosslink. Large changes were also seen at the chain termini (residues 262-

265 and residues 338-340). These changes are highly influenced by natural instability at chain 

termini rather than by the crosslink, and so these terminal residues have been omitted from the 

graphs in Figure S2.   

 

 

 

 

(a)                                                     (b) 

Fig. S1. Computational model of M293-Pt-M293 crosslinked cl-Par-4 coiled coil dimer. Chain A 

of the dimer is colored teal, while chain B is olive. The platinum atom is shown as a grey sphere. 

The M293 side chain of each molecule is shown as sticks, with the coordinating sulfur atoms  

drawn in yellow. 
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In summary, computational analysis supports the experimental result that cisplatin-induced 

crosslinking could occur in Par-4 without major disruption of secondary structure. However, the 

exact cisPt and transPt binding site(s) in FL-Par-4 and cl-Par-4 are yet to be determined. Therefore, 

further structural studies are needed to identify the cisPt and transPt binding site(s) in Par-4 and 

assess how these binding interactions affect Par-4 structure. 

 

DETERMINING MOLARITY OF A PROTEIN FROM THE MASS CONCENTRATION 

To determine the molarity of a protein from the mass concentration, the following relationship is 

used: mM = (mg/mL) / (MW in kDa) 

For Par-4: 

1 mM cl-Par-4 = 24 mg/mL (cl-Par-4 is a 24 kDa protein) 

1 mM FL-Par-4 = 36.5 mg/mL (FL-Par-4 is a 36.5 kDa protein) 

Example: Convert 1 mg/mL cl-Par-4 (24 kDa protein) to molarity. 

X mM cl-Par-4 = 1 mg/mL cl-Par-4 / 24 kDa = 0.042 mM (1 M / 1000 mM) = 4.2e-5 M cl-Par-4 

Example: Convert 1 mg/mL FL-Par-4 (36.5 kDa protein) to molarity. 

X mM FL-Par-4 = 1 mg/mL FL-Par-4 / 36.5 kDa = 0.027 mM (1 M / 1000 mM) = 2.7e-5 M FL-

Par-4 
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RELATIONSHIP BETWEEN RADIUS AND MOLECULAR WEIGHT OF A 

SPHERICAL PROTEIN 

           For a fully folded protein, the relationship of volume to molecular weight is Rmin =  

(3V/4Π)1/3 = 0.066M1/3 [191-193].  Rmin is in units of nm and M is in units of Daltons. Rmin refers 

to the minimum radius of a sphere that could contain the specified mass of protein (M). A partial 

specific volume of v2 = 0.73 cm3/g is assumed. The estimated radius of a spherical 10 kDa protein 

is 1.42 nm, 3.05 nm for a 100 kDa spherical protein, and 5.21 nm for a spherical 500 kDa protein 

complex. The hydrodynamic radius increases as molecular weight of the protein (or complex) 

increases. However, a protein of the same molecular weight would display a larger radius if in a 

non-globular conformation.  

 

LIGAND DISPLACEMENT REACTION OF CISPLATIN WITH WATER 

  

 

 

 

Fig. S3. Ligand displacement reaction of cisplatin with water to form a highly reactive cationic 

species, capable of crosslinking DNA and interacting with other biomolecules (US patent number 

756906B2, mechanism reproduced from Long et al. 1981) 
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