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SUMMARY

Accelerated climate warming in the past decades and a recent increase in the frequency

and severity of summer heat-waves in combination with more irregular summer

precipitation challenge silvicultural concepts in Europe’s temperate forest region, as some

of the main timber species seem to be relatively susceptible to drought and possibly also

heat. Notably, Norway spruce (Picea abies (L.) H. Karst.) and European beech (Fagus

sylvatica L.) showed drought-related dieback and vitality losses. For that reason, concepts

to admix and promote native, putatively drought-tolerant, minor timber species are

gaining growing interest in Central Europe. Norway maple (Acer platanoides L.),

common hornbeam (Carpinus betulus L.), European ash (Fraxinus excelsior L.), and

small-leaved lime (Tilia cordata Mill.) are promising candidates due to their occurrence

in the more continental climate of Eastern Europe and scattered knowledge from

ecophysiological studies.

The present thesis assessed the drought tolerance of the four aforementioned species

in comparison to sessile oak (Quercus petraea Matt. Liebl), a well-studied, drought-

tolerant, and major timber in Central Europe. A combination of three methodological

packages was applied to quantify drought tolerance, namely plant hydraulic traits, fine

root inventories and dendroecology. To allow for quantification of the species’ plasticity,

the assessment was accomplished in a field study along a precipitation transect from

putatively optimal to relatively dry conditions (mean annual precipitation range from ca.

900 to 500 mm) around the Harz mountain range in Central Eastern Germany.

Hydraulic efficiency- (xylem conductivity and Huber value) and safety-related traits

(xylem embolism resistance, leaf turgor loss point, hydraulic safety margins) were

quantified from sun-exposed branches from the uppermost canopy. Although a certain

intra-specific trait variability in safety-related traits was observed, the magnitude was

small compared to interspecific variability. In contrast, efficiency-related traits showed a

high intra-specific trait variability both within populations and within the crowns of single

trees. Surprisingly, the observed ITV of all traits was neither driven by climatic or soil

water availability, nor by tree height, indicating a complex control of adult trees’

hydraulic traits by the environment. A. platanoides and C. betulus showed very wide

safety margins, a highly resistant xylem and higher trait plasticity, whereas T. cordata

was vulnerable to embolism and operated with consistently narrow margins.
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Fine root inventories in the uppermost mineral soil were carried out in spring under

ample water supply and after extreme summer drought in 2018, assessing fine root

biomass, necromass and morphology. The extent of the root necromass/biomass ratio

(N/B) increase and reductions in root tip frequency were used as a measure of the species’

belowground sensitivity to water deficits. Q. petraea showed the smallest fine root

density and was the only species not increasing N/B towards drier sites and without losses

of root tips after summer drought, indicating the most conservative and resistant fine root

system. The other species showed a more susceptible fine root system with distinctly

increased N/B towards drier sites, mostly elevated N/B after summer drought (especially

on moister sites), and throughout reduced root tip frequencies in response to drought.

For the dendroecological assessment, climate-growth relationships, their temporal

variation, and the resistance and resilience to climatic droughts was analyzed from

increment cores for the past 50 years. While growth responded in all four species

positively to summer precipitation and negatively to higher summer temperature and

climatic aridity, climate sensitivity of growth decreased in the period of 1967-2016. None

of the species showed negative growth trends with recent climate warming and drought

sensitivity was not higher at drier sites, indicating a considerable acclimation and

adaptation potential. The resistance of radial growth to drought was higher in ring-porous

species (F. excelsior, Q. petraea) in comparison to diffuse-porous species (A. platanoides,

T. cordata), but resilience was high in all species.

The findings of the present work and knowledge from literature were combined to a

synoptic evaluation of the species’ abilities to withstand drought and an integration of the

drought response strategies into the isohydry-anisohydry syndrome. Q. petraea and F.

excelsior are strictly anisohydric and highly drought-tolerant, keeping up high

productivity under unfavorable water supply. However, F. excelsior is severely

threatened by the fungus Hymenoscyphus fraxineus, causing a pan-European ash dieback

and rendering any recommendations for silvicultural planning impossible in the near

future. A. platanoides is strictly isohydric with high hydraulic safety, accepting temporary

reductions of productivity for the sake of a low drought-related mortality risk. T. cordata

did not prove to be highly drought-resistant overall, but pursues a unique semi-isohydric

strategy with high stem and leaf water capacitance, buffering well against mediocre

droughts. C. betulus showed no drought-resistant fine root system, but fairly drought-

resistant hydraulic properties. Early leaf shedding and radial growth stagnation seem to
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be safety mechanisms of C. betulus in order to provide a certain tenacity in coping with

unfavorable conditions.

In comparison to F. sylvatica and P. abies, all five species seem to be more drought-

resistant, and especially A. platanoides (in addition to Q. petraea) deserves a broader

consideration in silvicultural concepts targeted at adapting production forests to climate

warming.
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1 GENERAL INTRODUCTION

1.1 Climate warming and drought intensification affect forest

ecosystems

Anthropogenic global warming already reached about 1°C above preindustrial levels

and is estimated to continue to increase to more than 1.5°C until 2050 under constant rates

of greenhouse gas emissions (IPCC, 2014). The continuously rising temperatures since

the 1980s affect ecosystems directly, but also via increasing vapor pressure deficits of the

atmosphere (Held and Soden, 2006; Schuldt et al., 2020) leading to a higher likelihood

and severity of drought conditions (Trenberth et al., 2014). Under ongoing drought, this

is a self-enhancing process due to positive feedbacks of reduced evaporative cooling on

surface temperatures (Breshears et al., 2013; Maness et al., 2013). The predicted increase

in intensity and frequency of severe heat waves in Central Europe (Schär et al., 2004) is

already reality (Christidis et al., 2015; Ionita et al., 2017). Additionally, summer

precipitation rates are expected to decrease and become more irregular in many areas in

Central Europe (IPCC, 2014; Fischer et al., 2014; Rowell and Jones, 2006), and the

increase of precipitation deficits may even accelerate quicker than predicted (Orth et al.,

2016).

Around the globe, forests are important sources of a wide range of economic and

ecological services, ranging from their prominent role in primary production, CO2

fixation and climate regulation, over pedogenesis and groundwater replenishment, to

timber and food production (Bonan, 2008). Additionally, forest ecosystems are home to

the biggest fraction of global biodiversity and provide a variety of socio-cultural benefits

like recreational space and spiritual value (Hassan et al., 2005). Forests worldwide,

however, are affected by climate change (Bonan, 2008). Possible effects include positive

feedbacks (e.g. CO2 fertilization, reduced frost impacts, longer growing seasons) as well

as negative impacts (e.g. reduced productivity due to stomatal limitations, heat- and

drought stress induced vulnerability to pests and pathogens and drought-induced

hydraulic failure and mortality; Allen et al., 2010; Ayres and Lombardero, 2000;

McDowell et al., 2011). In the past decade, though, the number of reviews and studies

reporting negative impacts of climate warming on forests, increased steeply. This

includes drought-induced mortality rates (e.g. Allen et al., 2010; Anderegg et al., 2013;

Breshears et al., 2018; Schuldt et al., 2020; Senf et al., 2018; Senf et al., 2020) and reduced
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growth and vitality (e.g. Sanginés de Cárcer et al., 2018; Yuan et al., 2019), covering a

wide range of different forest types and climates. Accordingly, within all climatic

extremes, drought was evaluated as the biggest global constraint on forest productivity

(Choat et al., 2018; Reichstein et al., 2013).

A change in the drought characteristics over the past decades is a very plausible

explanation for the former underestimation of global forest vulnerability to drought-

related mortality due to global warming. This phenomenon is usually referred to as

“global-change-type droughts” (Breshears et al., 2013) or “hotter droughts” (Allen et al.,

2015), where water supply deficits are combined with extraordinarily high temperatures.

Besides the above-mentioned additional effects of temperature on evaporative demand,

higher temperatures lead to steeply increasing residual water losses in trees due to a non-

linear change of cuticular permeability above 40°C (Riederer and Schreiber, 2001;

Schuster et al., 2016). The role of residual water loss that cannot be mitigated by stomatal

control was highlighted in recent literature and should be considered in ecosystem models

(Cochard, 2019; Duursma et al., 2019).

Particularly in the context of rapidly accelerating climate change, understanding and

predicting possible future forest declines in order to mitigate negative impacts on the

global biosphere remain one of biggest challenges for ecologists (Boisvenue and

Running, 2006; Bonan, 2008)

1.2 Drought vulnerability of primary timber species in Germany

In Central Europe, water availability is a key determinant of forest species composition

and productivity (Bréda et al., 2006; Leuschner and Ellenberg, 2017) and changes in

species composition under a drier climate in the future can be expected (Buras and

Menzel, 2019). The latest increase in frequency of severe drought and heatwaves

(Christidis et al., 2015; Schuldt et al., 2020) in combination with a sharp increase of

observed tree mortality (Braun et al., 2020; Schuldt et al., 2020; Senf et al., 2020) and

overall loss of forest vitality (Waldzustandserhebung Deutschland, 2019) highlight the

fact, that forest transitions with a change of species composition imply broad-scale

mortality events. This fundamentally affects a wide range of environmental processes and

ecosystem services (Allen et al., 2015; Anderegg et al., 2013; Breshears et al., 2011).

Thus, smoothing this process by anticipatory and sustainable silvicultural planning and

management is of major importance.
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Norway spruce (Picea abies [L.] H. Karst) is the most abundant tree species in

Germany and its area has expanded far beyond the limits of its natural range in the 20th

century (Spiecker, 2000). There is broad consensus on its sensitivity to drought and its

ongoing decline due to climate change (Hanewinkel et al., 2013; Mäkinen et al., 2002;

Pretzsch et al., 2013; Spiecker, 2000; Vitasse et al., 2019; Zang et al., 2014). Large-scale

dieback in the past few years due to drought-related predisposition and bark beetle

infestation has confirmed the concerns (Waldzustandserhebung Deutschland, 2019;

Rigling et al., 2019).

Three other major timber species in Germany, European beech (Fagus sylvatica L.),

Scots pine (Pinus sylvestris L.), and sessile oak (Quercus petraea (Matt.) Liebl.) have

been regarded as relatively drought tolerant for decades (Roloff and Grundmann, 2008),

but especially in case of F. sylvatica, this has become a matter of intense debates in the

post-millennial decade (Ammer et al., 2005; Bolte, 2005; Leuschner, 2009; Rennenberg

et al., 2004). Meanwhile, despite its high adaptability and plasticity (Roloff and

Grundmann, 2008; Schuldt et al., 2016), reports on high climate sensitivity of radial

growth (Cavin and Jump, 2017; Michelot et al., 2012; Scharnweber et al., 2011;

Walentowski et al., 2017; Weber et al., 2013), long-term growth declines due to climate

change (Latte et al., 2016; Scharnweber et al., 2011; Zimmermann et al., 2015), potential

loss of dominance in mixed stands (Cavin et al., 2013; Mette et al., 2013), increased

mortality after the drought year of 2018 (Waldzustandserhebung Deutschland, 2019;

Schuldt et al., 2020), and legacy effects on crown vitality in years after drought (Bréda et

al., 2006; Schuldt et al., 2020) emerged.

P. sylvestris is one of the most common species on drier sites in Germany, especially

on nutrient-poor, sandy soils in the eastern federal states (Roloff et al., 2010), but is also

increasingly affected by drought (Buras et al., 2018; Dobbertin et al., 2005; Rigling et al.,

2013; Walentowski et al., 2007). Additionally, P. sylvestris is known to be a very weak

competitor in mixed stands under ample nutrient availability and may therefore only be

an option on sandy soils – even more in the light of increasing nutrient leaching from

agriculture (Roloff and Grundmann, 2008).

Q. petraea, on the other hand, has proven its high growth resistance to drought events

in many dendroecological studies (e.g. Mette et al., 2013; Scharnweber et al., 2011; Zang,

2011), is known to be a deep-rooting species with a drought-resistant fine root system

(Leuschner et al., 2001; Roloff and Grundmann, 2008), and has a remarkably resistant

hydraulic system in comparison to co-occurring species (based on xylem resistance to
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embolism and hydraulic safety margins; Dietrich et al., 2019; Lobo et al., 2018; Schuldt

et al., 2020). On the other hand, the genus Quercus is susceptible to infestations with

pests, insects, and fungi as well as partly inexplicable vitality losses in Central Europe

over the past decades (Donaubaur, 1998; Gibbs and Greig, 1997; Roloff et al., 2010).

Still, Q. petraea is one of the major timber species in Germany that is better suited for

climate change, also because of its thermophilic characteristics (Roloff and Grundmann,

2008).

Considering the above, in the sub-continental central-eastern part of Germany with

mean annual precipitation sums of 500 mm and below, some of the primary timber species

are already operating close to or even beyond the drought limitations of their bioclimatic

envelopes (Kölling, 2007). In the context of climate change, forests in such drought-prone

areas might approach the point for a substantial ecological transition in near future, which

highlights the urgent need to identify timber species suited to cope with these climatic

changes.

The promotion and establishment of alternative, more drought-tolerant species is broad

consensus in silviculture, but the criteria for the choice of these species are heavily

debated. One popular perspective is the introduction and promotion of species that are

already established major timbers in other regions and known to be productive on

relatively arid sites, such as Douglas fir (Pseudotsuga menziesii [Mirbel] Franco; Eilmann

and Rigling, 2012; Isaac-Renton et al., 2014) and European black pine (Pinus nigra J.F.

Arnold; Eilmann and Rigling, 2012). However, this approach raises concerns regarding

unknown effects on native biodiversity (Felton et al., 2016) and unpredictable risks

regarding future susceptibility to pests (Roques et al., 2019). For that reason, there is

growing interest in concepts of admixture and promotion of native and putatively

drought-tolerant species that are naturally widespread, but only minor timbers (Brang et

al., 2008; Grundmann and Roloff, 2009; Kunz et al., 2018; Kunz and Bauhus, 2015).

1.3 Portraits of the studied minor timber species

The tree flora of Central Europe contains several tree species of the genera Acer,

Carpinus, Fraxinus, Quercus, Sorbus and Tilia, which occur also in the more continental

climate of eastern Central and Eastern Europe, indicating that they might be more drought

tolerant than the major timbers. According to general assessments of the drought

tolerance of native minor timbers in Germany, several species might be suitable for

promotion and establishment in forests in Central Europe in a future drier climate.
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Norway maple (Acer platanoides L.), field maple (Acer campestre L.), small-leaved and

large-leaved lime (Tilia cordata Mill. and Tilia platyphyllos Scop.), European hornbeam

(Carpinus betulus L.), European ash (Fraxinus excelsior L.), the wild service tree (Sorbus

torminalis (L.) Crantz), and the service tree (Sorbus domestica L.) are expected to be

relatively drought tolerant based on their distribution ranges towards continental parts of

eastern Europe (Figure 1.1), their occurrence on edaphically dry sites or their

ecophysiological traits (Hemery et al., 2010; Köcher et al., 2009; Leuschner et al., 2019;

Leuschner and Meier, 2018; Roloff and Grundmann, 2008). Sorbus species, A. campestre

and T. platyphyllos were already subject of recent studies comparing their drought

tolerance to major timbers (Kunz et al., 2018; Walentowski et al., 2017). Thus, we focus

here on A. platanoides, C. betulus, F. excelsior, and T. cordata and compare them to the

well-studied and drought-tolerant major timber Q. petraea.

These species are widespread in Central and East Europe (Figure 1.1) with natural

occurrences in various types of broadleaf mixed forest communities of the

phytosociological alliances Carpinion betuli (oak-hornbeam forests) and Tilio-Acerion

(mixed maple slope forests), in which European beech (Fagus sylvatica), the dominant

species of Central Europe’s natural forest vegetation, is rare or absent (Leuschner and

Ellenberg, 2017). The four minor timbers are less competitive than F. sylvatica and more

demanding in terms of soil base saturation than F. sylvatica, but their competitive ability

increases on dry, shallow, and rocky soils (Roloff et al., 2010).

1.3.1 Acer platanoides (Sapindaceae)

A. platanoides grows mainly on nutrient-rich sites with medium to high base saturation

and is intolerant to highly acidic soils (Caudullo and de Rigo, 2016). It often occurs

widely scattered in low frequencies in mixed forests due to its low competitive potential

in comparison to most other broadleaves. Only the seedlings are shade-tolerant, adult

trees need increasingly more light (Roloff et al., 2010). In Central Germany, it gains

competitive advantages over F. sylvatica, F. excelsior and Acer pseudoplatanus on

shallow, calcareous soils, upper slopes, and in open stands because of its thermophilic

and heliophilic characteristics (Roloff et al., 2010). Due to massive seed production and

drought and shade tolerant saplings (Kunz et al., 2016; Roloff et al., 2010), A. platanoides

has a very high natural regeneration potential which is mostly inhibited by browsing

damage (Roloff et al., 2010). The wood is diffuse-porous, well-suited for woodworking

and therefore often utilized for furniture production. Additionally, special fields of
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application include the construction of bows and music instruments due to its elasticity

and attractive grain figures (Caudullo and de Rigo, 2016; Schütt and Aas, 1992).

Several general assessments attribute A. platanoides a good aptitude to play a bigger

role in drought-tolerant mixed broadleaf forests in the future (Hemery et al., 2010;

Leuschner and Meier, 2018; Roloff and Grundmann, 2008). Its distribution range reaches

relatively continental climates in the Ukraine and towards the southern Ural and it serves

as ornamental tree in many cities where summer microclimate is often much drier and

warmer compared to forest sites. A. platanoides has been compared in dendroecological

studies to Q. petraea and F. sylvatica in a set of minor broadleaves by Kunz et al. (2018)

in south-west Germany and by Zimmermann et al. (2015) in central Germany, attesting

relatively strong growths depressions in drought years, but also a high resilience due to

quick and full growth recovery afterwards. This behavior is most probably due to the

strictly isohydric and drought-avoiding strategy of A. platanoides, conservatively

sacrificing carbon assimilation for the sake of a safe and intact hydraulic system: Low

xylem water potentials and xylem embolism are avoided by rigid stomatal control

(Leuschner et al., 2019) and wide hydraulic safety margins (Messinger, 2017,

unpublished). Summarizing the above, A. platanoides might be well suited to grow in a

warmer and drier climate in the future in Germany and serve as a surrogate timber in

regions where F. sylvatica is declining.
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Figure 1.1: Distribution ranges of the four minor timber species (A. platanoides, C. betulus, F. excelsior,
and T. cordata) and two major timbers (Q. petraea and F. sylvatica) based on the synthetic chorology
database of Caudullo (2017).

1.3.2 Carpinus betulus (Betulaceae)

Generally, C. betulus is widespread and very common in most parts of Europe (except

for northern and southern margins), but because of its irregular stem shape, spiral growth

and mediocre qualities for woodworking (strong shrinkage and poor elasticity), economic

interest in this species is low and scientific literature is scarce (Praciak, 2013; Sikkema et

al., 2016). However, it occurs in admixture in many varieties of oak- and beech-

dominated forests because of its exceptional shade tolerance (Leuschner and Ellenberg,

2017) and has a high ecologic value due to its ability to improve soil quality in mixed

stands (enhances litter decomposition and mineralization; Dziadowiec, 2014; Roloff et

al., 2010). Except for highly acidic sites, C. betulus tolerates a very wide range of edaphic

conditions from sub-acidic to calcareous soils and from nutrient-poor sand to heavy clay

(Praciak, 2013; Roloff et al., 2010). It also occurs on very shallow and rocky soils as well
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as on heavily disturbed sites due to its resilience to mechanical disturbance and high

vegetative regeneration potential (Sikkema et al., 2016).

Its drought tolerance has barely been evaluated and dendro-ecological studies are

missing completely. Also, its southern and eastern distribution margins (slightly more

continental compared to F. sylvatica, Figure 1.1) are not particularly insightful.

Nevertheless, from the perspective of plant-water relations, C. betulus shows surprisingly

drought tolerant properties including a high embolism resistance and wide safety margins

(Schuldt et al., 2020). Additionally, Köcher et al. (2009) judged this species as fairly

drought tolerant in comparison to other Central European broadleaves based on leaf water

status and sap flux measurements in response to dry soils.

Hence, C. betulus can be expected to play an ecologically important part in mixed

forests on drier sites in the context of climate change.

1.3.3 Fraxinus excelsior (Oleaceae)

This species occurs on a wide range of nutrient-rich, basic soil types and is most

productive on moist and deep soils. It has, however, a very broad amplitude regarding

water availability, as it becomes a dominant component in forests on either dry calcareous

slopes or deep, nutrient-rich alluvial soils, both unfavorable conditions for otherwise

dominant F. sylvatica (Dobrowolska et al., 2011; Leuschner and Ellenberg, 2017). This

fragmentation of the realized niche to the extremes of the physiological amplitude gave

birth to the differentiation in two ecotypes (so-called “water-ash” on wet and “chalk-ash”

on dry sites), but this theory has been proven wrong (Roloff et al., 2010; Weiser, 1995).

In juvenile stages, F. excelsior is very shade tolerant, but light demand increases sharply

with age, resulting in high mortality among middle aged ashes in dense stands

(Dobrowolska et al., 2011). The wood is ring-porous and valuable for tool production,

furniture and interior construction due to its high tensile and flexural strength (Kollmann,

1941; Roloff et al., 2010).

Based on preferred habitats and indicator values (Ellenberg et al., 1991; Leuschner and

Ellenberg, 2017), F. excelsior has often been judged as adapted to ample water supply

(Roloff and Grundmann, 2008). Studies on its drought resistance are rare, Zimmermann

et al. (2015) attested F. excelsior a high resistance to drought (comparable to Q. petraea)

based on long-term trends and climate sensitivity of radial growth. A few other

dendroecological studies were either conducted on moist study sites (Weemstra et al.,

2013) or only assessed very general climate-growth relationships (Koval and

Maksymenko, 2020; Roibu et al., 2020) and are not suited to evaluate the ability to grow



GENERAL INTRODUCTION

17

on arid sites with respect to its remarkable physiological plasticity. This plasticity also

finds expression in a highly adaptive xylem embolism resistance in dependence of the

site water availability (Lemoine et al., 2001). Additionally, F. excelsior is exceptionally

anisohydric with a drought tolerance strategy (rather than drought avoidance; Carlier et

al., 1992; Leuschner et al., 2019), keeping stomata open even at predawn water potentials

near -5 MPa (Carlier et al., 1992). In combination with its distribution range across the

Balkans, the Ukraine and the southern Caucasus region, F. excelsior is a promising

candidate for a warmer and drier climate in the future.

However, F. excelsior is existentially threatened by the pan-European ash dieback due

to the fungus Hymenoscyphus fraxineus (Enderle, 2019; Erfmeier et al., 2019; Pautasso

et al., 2013). Dependent on the further progress of this disease and its possible mitigation

due to climate change (Goberville et al., 2016; Grosdidier et al., 2018), F. excelsior might

still be an option for future silviculture.

1.3.4 Tilia cordata (Malvaceae)

T. cordata has the widest natural distribution range within the set of the above-

mentioned species (Figure 1.1), with common occurrences from West Europe to Central

Siberia in the steppe-forest ecotone (Roloff et al., 2010; Schütt and Aas, 1992).  In western

parts of Europe, its silvicultural role is rather minor, but in Central Eastern Europe its

abundance, silvicultural appreciation and competitive strength rises with increasing

continentality (Jaegere et al., 2016). Historically, T. cordata has even been a semi-

dominant major species in temperate primeval woodlands in Eastern Europe (Jaegere et

al., 2016) because of its high shade tolerance and its mid- to late-successional character

in forest dynamics (Leuschner and Ellenberg, 2017). Additionally, its growth rates are

relatively high under favorable water and nutrient conditions (Jaegere et al., 2016). Its

wood is diffuse-porous, semi-soft, bright and evenly colored, and has a very balanced

shrinkage-behavior in axial and radial directions. Therefore, it is very well-suited for

turnery and small applications and veneers in furniture production, but never used in

construction (Roloff et al., 2010).

In comparison to co-occurring species in Central Europe, T. cordata is thermophilic

(Hemery et al., 2010) but still highly frost-tolerant (Till, 1956). It is tolerant to a wide

range of soil fertilities, fairly insensitive to soil acidity and grows on semi-moist to very

dry and shallow sites. However, waterlogged conditions are avoided (Jaegere et al., 2016;

Roloff et al., 2010).
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T. cordata tolerates drought with a fairly unique strategy, not easily assessable within

the isohydric-anisohydric spectrum. Literature is inconsistent on this matter (Köcher et

al., 2009; Leuschner et al., 2019; Moser et al., 2016) because of a semi-isohydric stomatal

control and a tight safety margin due to its vulnerable xylem (Messinger, 2017,

unpublished; Schuldt et al., 2020). This “risky” strategy is only possible because of its

extraordinary water capacitance on stem- (Köcher et al., 2013) and leaf-level (Leuschner

et al., 2019), buffering over periods of water shortage. Thus, T. cordata can tolerate short

to medium periods of drought easily (Hemery et al., 2010; Köcher et al., 2009; Köcher et

al., 2012), but its radial growth is strongly affected by prolonged periods of drought

(Kulagin and Shayakhmetov, 2007). Still, its ability to recover from drought and its long-

term resilience to frequent droughts is higher in comparison to F. sylvatica (Latte et al.,

2020).

According to Jaegere et al. (2016), almost all known aspects about its biology are

indicative that T. cordata is a well-suited and underused timber species for admixture in

Central European forests in the face of climate change, and that studies and field

observations are urgently needed for further determination of its potential.

1.4 Comprehensive assessments of vulnerability to drought: A multi-

method approach

Conventional and general assessments of the suitability of tree species in a warmer

and drier climate are often based on climate envelopes (e.g. Kölling, 2007) or species

distribution models (e.g. Falk and Hempelmann, 2013). These correlative approaches are

a valuable instrument for a first estimate but lack ecophysiological explanations

(Walentowski et al., 2017). Criticism further includes the over-simplistic nature of

climate parameters and exclusion of extreme events, the omission of edaphic factors, and,

most importantly, the missing consideration of plasticity and adaptability of the species

to temporal climate variations (Bolte et al., 2008). Available assessments based on the

reaction of potted plants or saplings to artificial drought conditions can hardly be

extrapolated to mature stands (Cavender-Bares and Bazzaz, 2000; Cornelissen et al.,

2003).

To comprehensively address the drought tolerance of the species and to enable a

comparison between them, a combination of three methodological packages was chosen:

- plant hydraulic properties (xylem vulnerability to embolism, leaf turgor loss point,

hydraulic safety margins, xylem efficiency),
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- fine root inventories (biomass, necromass and morphology after moist and dry

periods), and

- dendroecology (climate-growth relations, drought induced increment reductions

and recovery)

To allow for a quantification of the species’ plasticity, the assessment was accomplished

in a field gradient study along a precipitation transect from putatively optimal to relatively

dry conditions (mean annual precipitation range from ca. 900 to 500 mm). This allows

for the deduction of precipitation limits of changes in increment, physiological

parameters, and stress indicators (e.g. fine root mortality) and is a “space-for-time

substitution” (Pickett, 2012) to project responses to spatially increasing drought exposure

towards prospective climate change.

1.4.1 Plant hydraulics

Survival and productivity of trees under drought are intimately associated with their

ability to supply water to their leaves by avoiding excessive formation of embolism in

their hydraulic system (Maherali et al., 2004). Under drought, stomatal control over

transpiration (and simultaneously CO2 uptake) is an important mechanism to keep the

xylem tension below a critical value and hence control the risk of embolism formation.

This balancing act mediates between two interconnected physiological mechanisms (i.e.

carbon starvation and hydraulic failure) that explain reduced tree productivity and

increased mortality following severe drought exposure (McDowell et al., 2008;

McDowell et al., 2011). Xylem vulnerability to embolism and the leaf turgor loss point

(the capacity of a leaf to maintain its turgor during dehydration) are important hydraulic

traits to describe the ability of a given species to withstand drought. The hydraulic safety

margin is usually defined as the width of the water potential safety-buffer between

stomatal closure and excessive embolism formation in the xylem (Meinzer et al., 2009).

It is a measure of the conservatism of a plant’s stomatal control strategy (Choat et al.,

2012). Trees with smaller safety margins operate closer to the threshold of runaway

embolism formation and are therefore more prone to hydraulic failure (Choat et al. 2012).

For the four minor timbers, comparative assessments of leaf-water-relations, stomatal

control strategies, stem sap flow, and stem water storage are available (Köcher et al.,

2009; Köcher et al., 2013; Leuschner et al., 2019). However, magnitude of the mentioned

hydraulic traits and particularly their plasticity in dependence of environmental

conditions have rarely or never been assessed on mature trees. Here, a set of hydraulic

traits was quantified from sun-exposed branches and leaves from the upper canopy of
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mature trees across the climatic gradient in order to compare the species’ embolism

resistance, their drought-tolerance/-avoidance strategies, and their ability to adapt to drier

conditions.

1.4.2 Fine root inventories

Information on the below-ground drought responses of all four species are completely

missing yet. How tree roots and the root system respond to drought is increasingly a

matter of debate, but the empirical data basis is quite limited, especially for mature trees.

Optimal partitioning theory predicts that trees tend to increase their root-to-shoot ratio

under conditions of limited water availability to increase their absorptive capacity in

relation to the transpiring surface (Brunner et al., 2015; Reich, 2002), but evidence from

field studies is scarce. In contrast, literature is consistent on increased fine root mortality

as a consequence of drought exposure, reflected by elevated necromass/biomass ratios.

Fine root may just die due to dehydration, but active root shedding was also proposed as

physiological explanation, where fine roots act as hydraulic fuses, uncoupling the rest of

the hydraulic system from low water potentials in the dry soil to avoid embolism

formation in more expensive plant organs (Alder et al., 1996; Jackson et al., 2000). The

necromass/biomass ratio can be seen as an integral over the processes of root mortality

and the production of new fine roots during the observation period, thus reflecting both,

the root system’s resistance to drought and its resilience after drought. The ratio has

therefore been used in several studies and reviews as an inverse indicator of tree and root

system vitality under exposure to drought or chemical stress (Persson and Stadenberg,

2010; Puhe, 2003; Wang et al., 2018).

Two fine root inventories were carried out across the climatic gradient, addressing

biomass, necromass and morphology. The first inventory assessed the parameters under

ample water supply after average spring conditions in April, and the second inventory

was conducted after the exceptionally dry summer in 2018 with extended rainless periods

on all study sites.

1.4.3 Dendroecology

The analysis of annual radial increment over many decades with respect to climatic

drivers and the impact of exceptional drought events is a powerful tool to gain information

about the climate sensitivity of trees. Arguably, temporal increment reductions are not

unambiguously representing a species’ vulnerability to drought (Lloret et al., 2011;

McDowell et al., 2008; Walentowski et al., 2017), but also indicating an adaptive
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mechanism to cope with drought (e.g. by adjusting xylem anatomy or by increasing

carbon allocation to roots). However, the reduction of radial increment is, besides

mortality, one of the most important economic aspects of drought impacts.

Most of the existing dendroecological studies on minor timbers either did not allow

for a comparison between species or did not take the spatial or temporal plasticity of the

species into account. The few studies that partially did so (Kunz et al., 2018; Walentowski

et al., 2017) were addressing mainly other species and were conducted in the South

German Uplands and not on Pleistocene grounds.

Here, classical dendroecological methods were applied, including climate sensitivity

analyses (annual climate-growth relationships) and superposed epoch analyses of the

growth response to drought years. Since climate-growth relationships are usually non-

stationary (Wilmking et al., 2020), temporal dynamics with respect to recent climate

warming were additionally tracked in a moving window analysis (Biondi, 1997). Drought

tolerance indices (resistance and resilience) according to Lloret et al. (2011) were

calculated, compared between species and regressed against climatic and edaphic

gradients of water availability.

1.5 Study area and design

The study was conducted in Central Germany in the transition zone between a sub-

oceanic and a sub-continental climate in the rain shadow of the Harz Mountains (Figure

1.2). The study area is situated in the planar to colline zone (110-440 m a.s.l.) between

the northern parts of the Central Uplands and its foothills towards the North German Plain

which is characterized by a small-scale heterogeneity in geology. The study sites are

located on leptic/vertic cambisols over Triassic limestone or on Pleistocene loose

sediments over Triassic sandstone.
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Figure 1.2: Map of the study area between Göttingen and Halle/S. in central Germany with the precipitation
gradient from the west to the east. The nine study sites are marked with red dots. The background colors
and isohyets indicate the mean annual precipitation (MAP 1991–2017). The area with MAP over 1000 mm
north-east of Göttingen is the Harz mountain range. For further information on the study sites, refer to the
detailed tables 2.1, 3.1, and 4.1 in the following chapters.

For minor timber species, mixed stands of comparable stand structure and tree age

with presence of all five species under identical edaphic conditions are uncommon. As a

consequence, not all species are present at all nine study sites, but every species occurs at

least at five sites along the precipitation transect. Every site consists of several mixed

forests of variable species composition in a maximum distance of several hundred meter

to a few kilometers to each other. All investigated stands are of mature age (range: 69–

139 years), with the exception of two older oak stands (170 years). To ensure that climate

and weather are the predominant factors for water availability, steep slopes (inclination >

5°), groundwater influence, stagnant moisture and very shallow soils were avoided. To

address the differences in soil types, chemical and physical soil properties were recorded

for each species on each site separately, including modelled plant available water storage

capacity based on soil texture classes, bulk density and soil depth.

1.5.1 Limitations

In case of C. betulus, dendrochronological analyses were not possible because of long

sections of indistinguishable annual rings in almost all increment cores. Neither different

planing, sanding or coloring techniques, nor the microscopic analysis of whole-core

microsections solved this problem. Apparently, C. betulus shows longer periods of radial

growth stagnation due to a relatively low tree height and competitive strength in mixed

stands, especially in earlier stages of ontogeny. If partially suppressed, C. betulus

allocates a bigger fraction of its carbon budget to the development of its crown, resulting
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in high branching and foliation density (Roloff et al., 2010). Thus, it was excluded from

the dendroecological assessment.

The assessment of some important hydraulic traits (vulnerability to embolism,

hydraulic conductivity, and hydraulic safety margins) were not possible for the ring-

porous species (F. excelsior, Q. petraea). The underlying reason is the distinctly different

xylem anatomy. Ring-porous species feature long xylem vessels, that do not allow to use

of the centrifugation method in combination with standard-sized rotors due to the so-

called “open-vessel artifact” (e.g. Martin-StPaul et al., 2014). An alternative method

suited for long-vesseled species (bench dehydration; Sperry and Tyree, 1988) was

applied, but the comparison of results from two different methods is highly error-prone.

Despite literature confirming the comparability of the two methods, the high variability

and inconsistency of our bench dehydration results suggested to refrain from doing so.

Therefore, the chapter on plant hydraulic properties only include the diffuse-porous

species (A. platanoides, C. betulus, T. cordata).

1.6 General study objectives

The present study is a comprehensive assessment of the drought resistance of four

minor timber species (A. platanoides, C. betulus, F. excelsior, and T. cordata) in

comparison to Q. petraea to identify species that are suitable for silviculture in the sub-

continental climate of central and eastern Germany under warmer and drier conditions.

The project’s aims were

- to compare the species’ resistance to embolism, hydraulic safety margins, and

hydraulic efficiency of sun crown branches,

- to quantify the plasticity of hydraulic traits within species and populations and in

dependence on edaphic and climatic water availability,

- to study adaptations of the fine root system of the five species to soil water deficits,

- to compare fine root mortality in reaction to extreme summer drought,

- to identify the most important climatic drivers of radial growth and compare them

between the species, across the precipitation gradient, and over the past 50 years,

- to quantify the species’ drought-year induced growth reductions (‘resistance’

index) and the ability to reach pre-drought growth levels afterwards (‘resilience’

index), and

- to test how resistance and resilience change across the gradients of edaphic and

climatic water availability.
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The overarching goal of the study is the deduction of a drought resistance ranking of

the five species. Drought resistance will be evaluated based on a synthetic discussion of

the sections on plant-water-relations, drought sensitivity of the fine root system,

dendroecology, and knowledge from literature. Drought resistance is defined here as a

broader term to describe a species ability to withstand water stress, either by tolerance or

by avoidance mechanisms (Levitt, 1980; Basu et al., 2016).
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2.1 Abstract

Plant hydraulic traits are key for understanding and predicting tree drought responses.

Information about the degree of the traits’ intra-specific variability may guide the

selection of drought-resistant genotypes and is crucial for trait-based modelling

approaches.

For the three temperate minor broadleaf tree species Acer platanoides, Carpinus

betulus and Tilia cordata, we measured xylem embolism resistance (P50), leaf turgor loss

point (PTLP), specific hydraulic conductivity (KS), Huber values (HV), and hydraulic safety

margins in adult trees across a precipitation gradient. We further quantified trait

variability on different organizational levels (inter-specific to within-canopy variation),

and analyzed its relationship to climatic and soil water availability.

Although we observed a certain intra-specific trait variability (ITV) in safety-related

traits (P50, PTLP) with higher within-tree and between-tree than between populations

variability, the magnitude was small compared to inter-specific differences, which

explained 78.4% and 58.3% of the variance in P50 and PTLP, respectively. In contrast,

efficiency-related traits (KS, HV) showed a high ITV both within populations and within

the crowns of single trees. Surprisingly, the observed ITV of all traits was neither driven

by climatic nor soil water availability.

In conclusion, the high degree of conservatism in safety-related traits highlights their

potential for trait-based modelling approaches.

Keywords: embolism resistance, Huber value, hydraulic conductivity, hydraulic

plasticity, hydraulic safety margin, leaf turgor loss point, precipitation gradient, xylem

safety.
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2.2 Introduction

In many regions of central Europe, important primary timber species such as European

beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] H. Karst.) are

approaching their drought limit (van der Maaten-Theunissen et al., 2013; Lévesque et al.,

2014; Leuschner, 2020). Since 1980, this region has experienced a continuous increase

in temperature and concomitantly in atmospheric vapour pressure deficit (Schuldt et al.,

2020), which culminated in a massive tree dieback of these two primary timber species

in many central European forests during the exceptional 2018/2019 drought (Braun et al.,

2020; Schuldt et al., 2020; Senf et al., 2020). At least in the drier regions of central

Europe, there is an urgent need to identify native timber species suited for production

forests that better withstand drought and heat.

The survival and therefore overall fitness of trees under drought are intimately linked

to their ability to supply water to the canopy by avoiding excessive formation of embolism

in their hydraulic system in order to maintain a sufficiently high carbon gain (McDowell,

2011; Sapes et al., 2019). Two interconnected physiological mechanisms that explain

reduced tree productivity and increased mortality following severe drought exposure,

namely carbon starvation and hydraulic failure, have widely been discussed in the past

since their introduction by McDowell et al. (2008). Recent results, however, indicate that

hydraulic failure is the proximate cause of drought-induced tree mortality in various

biomes (Rowland et al., 2015; Anderegg et al., 2016; Adams et al., 2017; Correia et al.,

2019; Hajek et al., 2020; Powers et al., 2020; Arend et al., 2021; Nolan et al., 2021).

Hydraulic traits have widely been used to characterize plants in their disposition to

suffer from hydraulic failure (Choat, 2013; Skelton et al., 2015; Choat et al., 2018), and

to predict the effects of increased drought exposure on the productivity and mortality of

woody plants (Choat et al., 2012; Anderegg, 2015; Anderegg et al., 2016). The link

between productivity and mortality under drought is mirrored by the proposed trade-off

between hydraulic efficiency and safety (Tyree et al., 1994; Sperry et al., 2008).

According to said trade-off, plants are not able to simultaneously maximize the

conductivity of their water transport system and minimize the risk of embolism formation.

Studies across species and biomes provide moderate support for this hypothesis (Maherali

et al., 2004; Lens et al., 2011; Gleason et al., 2016; Schumann et al., 2019), although

opposite results exist (Torres-Ruiz et al., 2017). Within species, evidence for this trade-

off seems to be even weaker (Burgess et al., 2006; Schuldt et al., 2016; but see Liang et

al., 2019).
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Two traits commonly used to describe a plant’s hydraulic safety are the xylem water

potential at 50% loss of hydraulic conductance (P50; Sperry & Tyree, 1988) and the water

potential at the leaf turgor loss point (PTLP; Oppenheimer, 1963). Furthermore, P50 is

directly related to the resistance of the xylem against embolism formation, while the PTLP

describes the capacity of a leaf to maintain its turgor during dehydration. Hydraulic

efficiency, however, has often been associated with the xylem area-specific conductivity

(KS; Farmer, 1918) or the Huber value (HV; Huber, 1928), i.e. the sapwood-to-leaf area

ratio. Both parameters are major determinants of the ratio of a tree’s assimilation rate to

its xylem construction costs. These four traits are crucial for understanding the hydraulic

variability of tree species and their potential to cope with drought. Adaptive modifications

in these traits to different levels of water availability have been demonstrated across

various species and biomes. Several studies observed higher hydraulic safety (Maherali

et al., 2004; Schuldt et al., 2016; Larter et al., 2017; Zhu et al., 2018; Rosas et al., 2019)

and lower hydraulic efficiency in drier environments (Maherali et al., 2004; Rosas et al.,

2019). Intra-specific variability of P50 and PTLP, however, has been much less studied in

the past (Anderegg & Meinzer, 2015), and the few available studies on the response of

hydraulic traits to water availability in mature trees of the same species produced

contradictory results. For example, while some intra-specific studies indeed observed an

increase in embolism resistance with declining water availability (Schuldt et al., 2016;

Stojnic et al., 2018), others observed either the opposite (Herbette et al., 2010) or no

relationship across climatic gradients (Martínez-Vilalta et al., 2009; Martin-StPaul et al.,

2013; González-Muñoz et al., 2018; Rosas et al., 2019). In contrast, PTLP has been found

to decrease rather consistently with increasing aridity across (Lenz et al., 2006; Bartlett

et al., 2012b; Mitchell & O'Grady, 2015; Zhu et al., 2018) and within species (Liang et

al., 2019; Rosas et al., 2019; Pritzkow et al., 2020). One reason for the difference is that

P50 depends on wood properties that are strongly conserved, while PTLP is not static and

can be adjusted actively by the plant to match the current environmental conditions.

Another explanation for the often missing relationship between xylem safety and

climatic variables might be that most field studies on plant hydraulics neglect the role of

soil hydrology, and only use climatic drought indices like the climatic aridity index. In

order to characterize the aridity of a stand, however, variation in soil texture and soil

hydraulic properties should likewise be acknowledged, as both properties can strongly

affect tree hydraulics (Sperry & Hacke, 2002; Hultine et al., 2006; Waite et al., 2019).

Congruently, several recent studies observed a close relationship between soil hydraulic
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properties (as the soil capacity for plant-available water, AWC) and drought-induced tree

mortality (Peterman et al., 2013; Hember et al., 2017; Rehschuh et al., 2017; Breshears et

al., 2018).

The vulnerability of the hydraulic system to drought does not solely depend on the

xylem resistance to embolism, but on the interaction of several physiological processes

which includes the stomatal control strategy (e.g. Mencuccini, 2003; Choat et al., 2018).

Hydraulic safety margins (HSMs) relate resistance on the xylem level to stomatal control

(Meinzer et al., 2009), and trees with small safety margins operate closer to the threshold

of runaway embolism formation and are therefore more prone to hydraulic failure (Choat

et al., 2012). HSMs are usually defined as the difference between minimum leaf water

potential (Pmin) and a measure of xylem embolism resistance (e.g. P50), representing a

measure of the conservatism in a tree’s hydraulic strategy (Choat et al., 2012). Recently,

the point of stomatal closure (Pgs90, 90% reduction of stomatal conductance) or PTLP have

been used instead of Pmin (Martin-StPaul et al., 2017; Ziegler et al., 2019; Powers et al.,

2020), as measurements of the latter are labour-intense and often unreliable.

While most central European studies investigating plant hydraulic traits and their

variability under altered water availability focused on the four economically most

important tree genera, Picea, Pinus, Fagus, and Quercus, only little is known about minor

timber species. Yet, small-leaved lime (Tilia cordata Mill., Malvaceae), Norway maple

(Acer platanoides L., Sapindaceae) and European hornbeam (Carpinus betulus L.,

Betulaceae) may be more drought-resistant than European beech and Norway spruce, the

most important broadleaf and coniferous timber species in Germany. Under the prospect

of climate warming, the importance of minor tree species might increase if they prove to

be better adapted to a future warmer and drier climate and their wood is suited for the

timber industry. In the absence of physiological data, the drought tolerance assessment of

minor timber trees is mainly based on analyses of the climate envelope of the distribution

ranges and comparative expert assessment based on habitat preferences in natural forests

(Ellenberg et al., 2001; Niinemets & Valladares, 2006; Leuschner & Meier, 2018). Hence,

there is an urgent need for more precise empirical data on the drought response of these

minor timber species. In particular, information on traits associated with hydraulic safety

and efficiency and their variability in response to shifts in water availability is largely

missing.

To close this knowledge gap, we examined the variability of the four major hydraulic

traits related to hydraulic efficiency and safety at the wood and leaf level (P50, PTLP, HV
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and KS, respectively) in three broadleaf, diffuse-porous tree species along a precipitation

gradient in central Germany, and compared the species’ drought tolerance in terms of

their hydraulic safety margins. For doing so, we partitioned the variance in the four

studied traits into the relative contributions of different hierarchical levels of variability,

and computed the fraction of variance explained by species differences, by differences

between populations, by individual differences within populations, and by random

within-individual variability. Subsequently, we tested the hypothesis that within each

species, the differences in hydraulic traits between populations are driven by climatic and

edaphic water availability. We hereby assumed that traits related to hydraulic efficiency

are more closely associated to water availability than traits related to hydraulic safety.

2.3 Material and Methods

2.3.1 Study sites and tree species

The nine study sites are situated along a precipitation gradient in west–east orientation

in central Germany between Göttingen and Halle/S. at planar to colline elevation (110–

440 m above sea level (asl)). The climate is cool temperate with mean annual

temperatures (MATs) of 7.9 to 9.9°C. Mean annual precipitation (MAP) ranges between

528 and 918 mm and mean growing season precipitation (MGSP, April–September)

between 291 and 412 mm, with a general decrease from west to east (Fig. 2.1). This

represents a gradient from hydrologically optimal conditions to values close to the

assumed drought limit of the species (Leuschner & Ellenberg, 2017).
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Figure 2.1: Map of the study area between Göttingen and Halle/S. in central Germany with the precipitation
gradient from west to east. The study sites are marked with red dots, the background colours indicate the
mean annual precipitation (MAP 1991–2017). The area with MAP over 1000 mm northeast of Göttingen
is the Harz mountain range.
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The three investigated tree species (A. platanoides, T. cordata, C. betulus) are naturally

widespread in various types of central European broadleaf mixed forest communities of

the phytosociological alliances Carpinion betuli (oak-hornbeam forests) and Tilio-

Acerion (mixed maple slope forests, for species distributions see Appendix A, Fig. 2.5),

where the dominant species of central Europe’s natural forest vegetation (F. sylvatica L.)

is rare or absent (Leuschner & Ellenberg, 2017). The three species are more demanding

in terms of soil base saturation than F. sylvatica, but they also occur in more continental

climates in eastern Europe and thus are thought to be more drought tolerant (Roloff &

Grundmann, 2008; Roloff et al., 2010). While F. sylvatica is the most important broadleaf

timber species in central European forestry, the three investigated species are only minor

timbers. Therefore, mixed stands of comparable age, soil, and structure with presences of

all three species are uncommon. Consequently, not all species were present at all nine

study sites, but every species occurred in five stands along the precipitation gradient. Each

site was composed of several mixed forest stands of variable species composition. The

target species grew at a given site in a maximum distance of several hundred metres to a

few kilometres to each other under comparable edaphic and climatic conditions. To take

small-scale variation within a site into account, the edaphic and climatic conditions in the

different stands were recorded separately for each species. All stands were located on

level terrain (maximum inclination 5°) without groundwater influence.

2.3.2 Climatic conditions

Precipitation, air temperature, and potential evapotranspiration (PET) data were

calculated from gridded data of 1 km mesh width retrieved from the German Weather

Service (Deutscher Wetterdienst (DWD), Offenbach, Germany) database. The PET data

of the DWD were calculated with the Penman–Monteith equation (Penman, 1948;

Monteith, 1965; Löpmeier, 1994), the climatic water balance (CWB) was computed for

the whole year as the difference of precipitation and PET.

Long-term annual means of climatic variables were calculated for the period 1991–

2017, because PET data are available from DWD only since 1991. We tested our models

with a variety of climatic parameters including long-term (27 yr) and short-term (2–5 yr)

data of precipitation and evapotranspiration of whole year-periods and growing season-

periods only. Because the ratio of summer precipitation to annual precipitation is almost

constant, temperature is inversely proportional to precipitation along the transect, and

short-term and long-term climate data did not differ notably in the 27-yr period, we
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obtained very similar results for precipitation and CWB data and decided to report results

for CWB only.

2.3.3 Edaphic conditions

The capability of soils to store water, which is available for plant uptake, is

characterized by the AWC. We employed pedo-transfer functions according to Schaap et

al. (2001), using the module ‘Rosetta’ implemented in the software Retc (v.6.02; van

Genuchten et al., 1991), to estimate soil hydraulic properties (the so-called van Genuchten

(1980) parameters) from local data on soil texture class and bulk density. The modelled

water retention curves were used to retrieve the soil water content (in vol.%) at field

capacity (soil matric potential of −0.03 MPa, pF 2.5) and at the conventional permanent

wilting point (−1.5 MPa, pF 4.2). AWC was then calculated as the difference between

these two water contents. Soil texture classes and soil bulk density were determined in

samples taken in soil pits at 0–10 cm, 10–30 cm and 30–60 cm depth. Sand fractions were

obtained by sieving, silt and clay fractions by gravitational sedimentation according to

the international standard ISO 11277 with an integral suspension pressure method

(Durner et al., 2017), using the Pario device (Metergroup, Munich, Germany). The profile

total of AWC (in millimetres) of a given stand was obtained by adding the AWC values

of the three measured layers for the 0–60 cm profile, and extrapolating AWC to 120 cm

depth by assuming constant soil texture below 60 cm depth. The data of three pits per

stand were averaged. In case of shallower soils, we used the measured average bedrock

depth for AWC extrapolation.

2.3.4 Tree selection and sampling

Five mature trees of comparable size per species and site were selected. All trees

belonged to the upper canopy (dominant or co-dominant individuals). Tree height (H)

was comparable across the gradient except for T. cordata, where H decreased notably

towards the drier sites (Table 2.1). In June and July 2017/2018, branches were collected

from the uppermost sun-exposed canopy with tree-climbing equipment. Sampling took

place in a rotating scheme so that sites and species were spread evenly across the sampled

season and the studied years. Seasonal or year effects on the traits of interest were not

detected. To decide for an appropriate sample length, we performed preliminary

measurements with the air-injection method that suggested the maximum vessel length

of all studied species was well below 20 cm. Per tree, six branches of 100 cm length were

air-cut, re-cut to 50 cm under water, immediately transferred to plastic tubes filled with
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de-ionized water, and stored at 4°C. Within five days, three of these branches were used

to construct xylem vulnerability curves, and the remaining three used for hydraulic

conductivity measurements and quantification of the total leaf area distal to the reference

measuring point (basipetal end of the sample, 50–100 cm from the apex). Additionally,

three distal twigs per tree with c. 5–10 mature and fully intact leaves were harvested from

the uppermost canopy to determine turgor loss point. Twigs were recut under water and

transported to the laboratory with the cut surface submerged in water bottles to enable

rehydration over-night at 10°C and 100% air humidity. For all four measured variables

(P50, PTLP, KS, HV), each 75 samples per species were investigated (three branches × five

trees × five sites), yielding 225 in total.

2.3.5 Hydraulic efficiency

For calculating HV, i.e. the sapwood-to-leaf area ratio, all leaves distal to the reference

measuring point of a branch were scanned (Expression 11000XL; Epson Deutschland

GmbH, Meerbusch, Germany) and analysed with WinFolia 2014 software (Régent

Instruments, Quebec City, QC, Canada). In order to estimate the cross-sectional xylem

area (Axylem in mm2) without pith and bark at the reference measuring point, a linear

regression was carried out between total cross-sectional area (Across) and Axylem (cf. Hajek

et al., 2014; Schuldt et al., 2016). Per species, 75 digitalized semi-thin transverse sections,

taken at 1–3 cm proximal from the reference measuring point, were used. The obtained

equations are as follows (Eqs. 1–3):

:ݎ݁ܿܣ ௫௬௟௘௠ܣ = −5.84755 + 0.70525 ∙ ௖௥௢௦௦ܣ (ܴଶ = 0.98) (1)

:ݏݑ݊݅݌ݎܽܥ ௫௬௟௘௠ܣ = −2.02419 + 0.76517 ∙ ௖௥௢௦௦ܣ (ܴଶ = 0.98) (2)

݈ܶ݅݅ܽ: ௫௬௟௘௠ܣ = −4.86760 + 0.56120 ∙ ௖௥௢௦௦ܣ (ܴଶ = 0.90) (3)

For measuring hydraulic conductivity (Kh; in kg m MPa−1 s−1), branches (mean

reference point diameter ± SE: 10.12 ± 0.08 mm; mean length ± SE: 298.83 ± 0.46 mm;

n = 225) were recut under water with a razor blade, lateral branches cut off and glued

with quick-drying superglue working on wet surfaces in combination with an activator

(Loctite 431 and 7452; Henkel, Düsseldorf, Germany). The value of Kh was measured

along a 6 kPa-pressure gradient with the Xyl’em apparatus (Bronkhorst, Montigny les

Cormeilles, France) after flushing the segments three times at 120 kPa with filtered,

degassed, and demineralized water (10 mM potassium chloride and 1 mM calcium

chloride). The value of KS (in kg m−1 MPa−1 s−1) was calculated by dividing Kh by Axylem.
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2.3.6 Hydraulic safety

Vulnerability curves were constructed with the flow-centrifuge method (Cochard et

al., 2005) using a custom-made honeycomb rotor attached to a commercially available

centrifuge (Sorvall RC-5C; Thermo Fisher Scientific, Waltham, MA, USA). Nonflushed

branches (mean diameter at basipetal end ± SE: 9.14 ± 0.07 mm; n = 225) were recut to

27.5 cm with a razor blade and exposed to increasingly negative water potentials starting

at −0.8 MPa. Xylem water potential was lowered stepwise until the percentage loss of

conductivity (PLC) reached at least 90% (Appendix A, Fig. 2.6). Nonlinear mixed-effects

models (R package nlme; Pinheiro et al., 2020) were fitted for each species to estimate

the xylem pressure at 50% loss of conductivity (P50) and the slope of the curve at the

inflexion point (s) according to the sigmoidal function given by Pammenter & van der

Willigen (1998):

ܥܮܲ = 100/ ቀ1 + exp ൬ ௦
ଶହ
ߖ) − ହܲ଴)൰ቁ (4)

where Ψ is the water potential and PLC the percentage loss of conductivity. Due to

repeated measurements on the same sample and three investigated samples per tree, a

hierarchical structure of random effects had to be considered in the statistical analysis.

We allowed both s and P50 to vary with a site-specific fixed effect and random effects for

trees and samples nested in tree. Further analyses were based on conditional predictions

on the branch level. The values for P12 and P88 (xylem pressure at 12% and 88% loss of

conductivity) were calculated from branch-level P50 predictions by rearranging Eq. 4

(where x is the desired percentile loss of conductivity):

௫ܲ =
୪୬ቀభబబೣ ିଵቁ∙ଶହ

௦
+ ହܲ଴ (5)

Leaf PTLP (in MPa) was determined within 48 hours after sampling by the osmometric

method (Bartlett et al., 2012a). The leaf osmotic potential (Ψ0) of freeze-thawed (liquid

nitrogen) leaf discs from fully expanded, sun-exposed, and rehydrated leaves was

measured in a vapour pressure osmometer (VAPRO 5600, Wescor, Logan, UT, USA)

following the protocol of Bartlett et al. (2012a) and used to predict PTLP as:

்ܲ௅௉ = 0.832 Ψ଴ − 0.631 (6)

The HSM was subsequently calculated on the tree level as the difference between

mean PTLP and mean P50.

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0020
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0078
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0075
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0009
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0009
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2.3.7 Statistical analyses

The coefficient of quartile variation (CQV=(Q3 − Q1)/(Q1+Q3)) was used to assess

trait variability, as it provides a more robust measure of dispersion than the coefficient of

variation, when data are partly nonnormally distributed or log-transformed (Canchola et

al., 2017; Altunkaynak & Gamgam, 2019; Rosas et al., 2019). To decompose the

variability of each trait for different levels of organization (species, populations (sites),

individuals, within-tree (branches)), log-linear mixed-effects models were fitted for each

trait separately using the R package lme4 (Bates et al., 2015). Each of the models

contained fixed effects for species, and random tree effects as well as species-wise

random site effects (i.e. random effects for each combination of site and species). The

total variance in the traits was then decomposed into variance components for the fixed

(between-species) and random effects (between-population and between-tree) as well as

the residual (within-tree) standard deviation analogous to the definition of conditional and

marginal R2 (cf. Nakagawa & Schielzeth, 2013). The same models were used to

investigate pair-wise differences between species across all sites using Tukey-adjusted P-

values with degrees of freedom based on Satterthwaite’s approximation (R package

emmeans; Lenth, 2020).

To assess the effect of water availability on intraspecific trait variation, sets of linear

mixed-effects models were fit for each trait (P50, PTLP, KS, HV) and species. Climatic

(CWB) and edaphic (AWC) water availability were included as fixed effects (both

centred and scaled to simplify the comparison of regression coefficients). As the low

number of five sites per species precluded adding random site effects, in these models we

could only introduce tree-wise random intercepts, which thus are assumed to account both

for between-site and within-site intra-specific variability. The explained variance was

calculated according to Nakagawa & Schielzeth (2013). This set of models was not fitted

for the HSMs, as this variable could only be calculated on the tree level. Likewise, trait

interrelations could not be assessed on the branch level because traits were not measured

on the same observational units (different branches, leaves, etc.). Therefore, simple linear

regressions across species based on means per site and species are reported in order to

illustrate tendencies in trait interrelations. We are aware that the small number of species

is not sufficient to draw generalizable conclusions for a larger species number.

For all dependent variables, model residuals were checked for normality and natural

log-transformed whenever required to meet the assumption of normality. All analyses

were carried out with the statistical software R (v.3.6.3; R Core Team, Vienna, Austria).

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0015
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0003
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0084
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0011
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0071
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0047
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.17448#nph17448-bib-0071
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2.4 Results

2.4.1 Magnitude of traits and variability on different levels of organization

According to their average P50-values, the xylem embolism resistance of the three

species could be ranked in the sequence A. platanoides > C. betulus > T. cordata (Table

2.2). Both A. platanoides and C. betulus showed a fairly resistant xylem with the vast

majority of P50-values in the range of −5 to −4 MPa, but C. betulus was markedly less

resistant at the driest site with a median P50 of −3.8 MPa (Fig. 2.2a). By contrast, the

estimated P50 of T. cordata was generally much less negative (mean of −3.06 MPa; Table 

2.2). This species ranking was, however, not mirrored in the PTLP-values. The highest

PTLP was found in A. platanoides and the lowest in C. betulus (Table 2.2; Fig. 2.2c).

Consequently, the three species showed pronounced differences in HSMs with A.

platanoides having the largest safety margin (2.59 MPa; Table 2.2), C. betulus showing

intermediate values (1.6 MPa), and T. cordata operating with a narrow margin of 0.84

MPa.

The species rankings in terms of P12 and P88 were the same as in case of P50, but the

vulnerability curves of C. betulus showed less steep slopes (Appendix A, Fig. 2.6) and

thus relatively low P88 values that were very close to the values of A. platanoides (Table

2.2; Fig. 2.2b).

The values of KS and HV barely differed between A. platanoides and C. betulus, but

HV was significantly higher in T. cordata and KS was at least tendentially higher and

more variable in T. cordata (Table 2.2; Fig. 2.3).

Table 2.2: Means ± SE of measured traits per species pooled over all study sites. Different letters denote
significantly different means based on Tukey-adjusted p-values from linear mixed effects models with post-
hoc tests for pairwise species differences with degrees of freedom based on Satterthwaite's approximation.
P50/12/88 = xylem water potential at 50/12/88 % loss of conductivity; PTLP = leaf water potential at turgor
loss point; HSM = hydraulic safety margin; Huber value (HV) = AXylem/ALeaves-ratio of branches; KS = xylem
area specific hydraulic conductivity of branches.

Species
P 50

(MPa)
P 12

(MPa)
P 88

(MPa)
P TLP

(MPa)
HSM
(Mpa)

HV
(Axylem/Aleaf)

K S

(Kg m-1 s-1 Mpa-1)

A. platanoides -4.62 ± 0.03 (a) -3.97 ± 0.04 (a) -5.27 ± 0.04 (a) -2.02 ± 0.02 (a) 2.59 ± 0.07 (a) 0.0159 ± 0.0007 (a) 1.73 ± 0.07 (a)

C. betulus -4.25 ± 0.05 (b) -3.31 ± 0.06 (b) -5.19 ± 0.06 (a) -2.66 ± 0.02 (b) 1.60 ± 0.10 (b) 0.0165 ± 0.0006 (a) 1.75 ± 0.05 (a)

T. cordata -3.06 ± 0.03 (c) -2.44 ± 0.03 (c) -3.69 ± 0.04 (b) -2.23 ± 0.03 (c) 0.84 ± 0.05 (c) 0.0195 ± 0.0011 (b) 2.28 ± 0.12 (a)
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Figure 2.2: Hydraulic safety-related traits: (A) Xylem water potential at 50 % loss of conductivity (P50),
(B) xylem water potential at 12/88 % loss of conductivity (P12/88), (C) leaf water potential at turgor loss
point (PTLP), and (D) hydraulic safety margins of the three tree species at all study sites. Sites are sorted in
ascending order according to the climatic water balance. Box-whisker plots include median and
interquartile ranges (Q1–Q3); whiskers extend to max. 1.5 times the interquartile range. Different letters
denote significantly different means between sites within a species based on Tukey-adjusted p-values with
degrees of freedom based on Satterthwaite’s approximation from linear mixed effects models with post-
hoc tests for pairwise differences.
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Figure 2.3: Hydraulic efficiency-related traits: (A) AXylem/ALeaves-ratio of branches (Huber value), and (B)
xylem area-specific hydraulic conductivity of branches (KS) of the three tree species at all study sites. Sites
are sorted in ascending order according to the climatic water balance. Box-whisker plots include median
and interquartile ranges (Q1–Q3); whiskers extend to max. 1.5 times the interquartile range. Different
letters denote significantly different means between sites within a species based on Tukey-adjusted p-values
with degrees of freedom based on Satterthwaite’s approximation from linear mixed effects models with
post-hoc tests for pairwise differences.

Generally, KS and HV were the most variable traits, whereas PTLP showed the lowest

variation (Fig. 2.4a). For the two hydraulic safety-related traits (P50 and PTLP), the by far

largest fraction of variance was explained by species differences. The intra-specific trait

variability (ITV) between and within populations was small compared to the ITV in

efficiency-related traits, especially in case of P50 (22% or 42% of total trait variance for

P50 and PTLP, respectively; Fig. 2.4b). For P50, we estimated a between-population

standard deviation of 0.20 MPa and between- and within-tree standard deviations of 0.23

MPa and 0.16 MPa, respectively (Fig. 2.4b; Appendix A, Table 2.4), while PTLP varied

by ± 0.14 MPa between populations, by ± 0.14 MPa between trees within populations and

by ± 0.10 MPa within trees (Fig. 2.4b; Appendix A, Table 2.4). Hereby, the range of site

averages of P50 spanned 0.84 MPa, 0.52 MPa and 0.31 MPa in case of C. betulus, A.

platanoides and T. cordata, respectively (Fig. 2.2a). The range in site averages of PTLP

was comparable (T. cordata: 0.50 MPa, C. betulus: 0.36 MPa, A. platanoides: 0.26 MPa;

Fig. 2.2c).

In contrast to hydraulic safety, average efficiency-related traits (KS and HV) nearly did

not differ between species, but varied substantially between populations as well as

between and within individuals (Fig. 2.4b). Particularly the residual variability within
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individuals was high (44% of total variance in case of HV and 50% of total variance in

case of KS).

For all four traits, the variability within populations (intra- and inter-individual) was

larger than the variability between populations (Fig. 2.4b).

Figure 2.4: (A) Coefficient of quartile variation of the studied traits across all species and measurements;
(B) variance decomposition between different levels of organization (between species, between
populations, and between individuals; see Appendix A, Table 2.4 for full model output). Given are the
xylem water potential at 50% loss of conductivity (P50), the leaf water potential at turgor loss point
(PTLP), Axylem/Aleaf − ratio of branches (Huber value, HV) and xylem area-specific hydraulic conductivity
(KS). ‘Residual’ denotes the unexplained variance of the models (i.e. variability between
branches + estimation and measurement uncertainty).

2.4.2 Trait dependence on environmental and stand structural parameters

For most studied traits, significant differences between the study sites were observed

for at least one species (Figs 2.2, 2.3). However, water availability (as expressed by the

combined effect of CWB and AWC) explained only a small fraction of variance in the

analysed traits (marginal R² 0.04–0.19 in nearly all cases; Table 2.3). The only exception

was T. cordata, where 37% of the variance in HV was explained by water availability.

Conditional R² were much larger (0.28–0.88, Table 2.3), indicating that most of the

variance in the data resulted from unexplained differences between sites and individual

trees.

In general, the observed associations between the studied traits and climatic and soil

water availability were weak, the only exceptions being a positive effect of AWC on HV
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in T. cordata (higher xylem area-to-leaf area ratio on sites with higher soil water storage

capacity), a negative effect of AWC on PTLP in A. platanoides (lower turgor loss point on

sites with better soil water storage capacity; Table 2.3; Appendix A, Fig. 2.7), and a

reduction in KS with AWC in T. cordata and with CWB in A. platanoides. Water

availability had no significant influence on P50, except for a marginally positive effect of

AWC on P50 in A. platanoides (P < 0.1; Table 2.3). The value of PTLP of C. betulus and

T. cordata was not influenced by AWC, although the leaves of C. betulus showed a

tendency of a turgor loss point reduction with increasing climatic aridity (positive effects

of CWB on PTLP at P < 0.1; Table 2.3; Fig. 2.2c). Although not part of the regression

models, HSMs did not change systematically along the climatic gradient within species,

as evident from Fig. 2.2d.

Further relationships between site variables and interrelations between traits are

presented in the correlation matrix in Fig. 2.8 (Appendix A).
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Table 2.3: Results of the linear mixed effects models examining the relationships between environmental
variables and functional traits. P50 = xylem water potential at 50% loss of conductivity; PTLP = leaf water
potential at turgor loss point; HSM = hydraulic safety margin; Huber value (HV) = Axylem/Aleaf − ratio of
branches; KS = xylem area specific hydraulic conductivity of branches. Given are the scaled estimates for
CWB (climatic water balance) and AWC (plant-available water storage capacity of the soil), as well as the
standard deviation for the tree-wise random intercept (Tree SD), the residual standard deviation (Res. SD),
and marginal and conditional R2 of the models (Marg. R2 and Cond. R2). Bold estimates represent
significant effects (*, P < 0.05; **, P < 0.01), (a) denotes marginally significant effects (P < 0.1). The full
output of the models is given in Appendix A, Table 2.5.

Species Term P50 PTLP HV KS

CWB -0.054 -0.214  0.343. -0.402*
AWC  0.374. -0.460* 0.049 0.103
Tree SD 0.81 0.724 0.708 0.685
Res. SD 0.529 0.584 0.674 0.629
Marg. R2 0.141 0.189 0.103 0.184
Cond. R2 0.743 0.68 0.574 0.627
CWB -0.278  0.347. 0.054 -0.072
AWC 0.035 -0.074 -0.078 -0.241
Tree SD 0.854 0.87 0.565 0.548
Res. SD 0.396 0.445 0.853 0.836
Marg. R2 0.083 0.121 0.009 0.057
Cond. R2 0.837 0.818 0.312 0.341
CWB 0.165 0.237 -0.027 -0.315
AWC -0.144 -0.04  0.604** -0.437*
Tree SD 0.822 0.963 0.511 0.437
Res. SD 0.559 0.365 0.631 0.867
Marg. R2 0.076 0.064 0.371 0.094
Cond. R2 0.708 0.883 0.62 0.277

A. platanoides

C. betulus

T. cordata
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2.5 Discussion

2.5.1 Variability of efficiency- and safety-related traits on different levels of

organization

In our field study on mature trees, the HV, i.e. the sapwood-to-leaf-area ratio, and KS

showed the highest, and the PTLP the lowest variability across the three diffuse-porous

species. This is in line with recent findings by Rosas et al. (2019). The high variability of

the efficiency-related hydraulic traits KS and HV was driven by large intra- and inter-

individual differences. Most likely, this can be attributed to small-scale variability in

microclimatic conditions within the canopy of single trees and corresponding

morphological and anatomical adjustments (e.g. Lemoine et al., 2002; Sellin & Kupper,

2004; Schuldt et al., 2011; Sellin et al., 2011). In agreement hereon, both branch age and

branch growth rate were found to vary considerably within the crown, and both are closely

related to hydraulic efficiency (Schuldt et al., 2016). In dependence on the position in the

canopy and associated differences in flow-path length, light exposure and evaporative

demand, the xylem architecture is adjusted in order to meet the water demand of the

supported leaf area. Still, the covered range in both efficiency-related variables was

relatively low compared to other studies (cf. Rosas et al., 2019). We focused on co-

occurring diffuse-porous angiosperms only, and did not include conifers or ring-porous

angiosperms. This might explain why the efficiency-related traits were more or less

comparable across species despite pronounced differences in xylem safety. All three

species have co-evolved and are widespread in central and eastern Europe in various types

of broadleaved mixed forest communities in which European beech (F. sylvatica), the

dominant species of central Europe’s natural forest vegetation, is rare or absent

(Leuschner & Ellenberg, 2017).

The low variability in PTLP compared to other hydraulic traits has likewise been

observed in other studies (Mencuccini et al., 2015; Bartlett et al., 2016; Farrell et al.,

2017; Zhu et al., 2018). When excluding plants with sclerophyllous leaves or from

perhumid ecosystems, the range of PTLP-variation based on differences in osmolality

seems to be restricted to 2 MPa (Bartlett et al., 2012b). In our study, most of the variability

in PTLP could be attributed to species differences, although there still was a considerable

amount of ITV between populations and individuals.

In contrast to the two efficiency-related traits, the xylem pressure at P50 differed

distinctly between species. Although ITV in xylem safety was not completely negligible
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as we observed intra-specific ranges of 0.3 to 0.8 MPa across sites, 78% of the total

variance in P50 could be attributed to species differences. The highest ITV was observed

between trees at given sites, which explained 14% of the total variance in P50. This pattern

of higher variability within than between populations has been confirmed for P50 (Herbette

et al., 2010; Wortemann et al., 2011; Hajek et al., 2016; Schuldt et al., 2016) and a wide

range of other anatomical, foliar and hydraulic traits (Hajek et al., 2016; Rosas et al.,

2019).

The low ITV in P50 reinforces the assessment of xylem embolism resistance as an

evolutionarily canalized trait (cf. Flatt, 2005; Lamy et al., 2014; Rosas et al., 2019;

Sanchez-Martinez et al., 2020). Accordingly, neither environment nor genotype seems to

have strong control over the phenotypic expression of P50. For trait-based models of tree

mortality (cf. Adams et al., 2013; Choat et al., 2018), this is an important finding as these

models implicitly rely on trait conservation within species and do not account for ITV.

2.5.2 Effects of water availability and tree height on hydraulic traits

Given the relatively small intra-specific variation in hydraulic safety-related traits, we

expected to trace this ITV back to local climatic or edaphic conditions that define the

water availability of the stands. However, none of the two measures of water availability

had a consistent influence on P50, PTLP, or HSMs. For P50, a majority of intra-specific

studies on a wide range of tree species failed to identify environmental variables that drive

ITV (Van der Willigen & Pammenter, 1998; Cornwell et al., 2007; Martínez-Vilalta et

al., 2009; Herbette et al., 2010; Wortemann et al., 2011; Martin-StPaul et al., 2013;

González-Muñoz et al., 2018; Li et al., 2019; Rosas et al., 2019; but see Schuldt et al.,

2016; Stojnic et al., 2018). It is therefore reasonable to conclude that the limited

environmental control over P50 is relatively complex, as assumed by Wortemann et al.

(2011). In our study, only less than 10% of total variability occurred between populations,

indicating that the effects of different drivers may often be difficult to disentangle in field

studies on mature trees. For example, most of the aforementioned studies disregarded that

various site-specific factors might, in addition to atmospheric climatic aridity, affect

embolism resistance. To our knowledge, only Rosas et al. (2019) also included a wide

range of stand, soil, and climatic factors as potential drivers of P50, but the authors were

likewise not able to identify the sources of the ITV in P50 in adult field-grown trees.

In contrast to P50, reports on an intra-specific decline in PTLP with increasing aridity are

rather consistent (e.g. Liang et al., 2019; Rosas et al., 2019; Pritzkow et al., 2020). In our

study, C. betulus indeed showed a marginally significant negative relationship between
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PTLP and aridity. Leaf traits might thus be under a stronger environmental control than

wood traits, and one of the main acclimative responses of the broadleaf tree species of

our sample to local climatic gradients might be osmotic adjustment (cf. Hartmann et al.,

2021).

We did not find the expected increase in HV on drier sites, even though a high

variability of HV across climatic gradients has been reported both within (Martínez-

Vilalta et al., 2009; Rosas et al., 2019; Pritzkow et al., 2020) and across species (Gleason

et al., 2013; Mencuccini et al., 2019). However, intra-specific variability in HV in

response to climatic aridity has mainly been observed in different ecosystems or in

conifers that showed limited variability in xylem traits (Martínez-Vilalta et al., 2009;

Lamy et al., 2014).

While intra-specific adaptation of hydraulic efficiency in terms of xylem anatomical

adjustments has been demonstrated (e.g. Schreiber et al., 2015; Liang et al., 2019), studies

quantifying actual conductivities often failed to report such adaptive modifications

(Martínez-Vilalta et al., 2009; Schuldt et al., 2016; Rosas et al., 2019). This is in line with

our findings that KS was not under environmental control, despite its very high ITV. One

explanation for the missing relationship might be that empirically measured conductivity,

in contrast to theoretical values, additionally includes the flow resistance of inter-vessel

pits and conduit irregularities along the flow path, which are estimated to account for 50%

of the total xylem resistance (Sperry et al., 2005).

We found a general inter-specific safety-efficiency trade-off as observed by others

(Maherali et al., 2004; Gleason et al., 2016; Schumann et al., 2019). Across the three

species of our sample, P50 and KS were correlated (P < 0.05, R2 = 0.23; Appendix A, Fig.

2.9), but this observed safety-efficiency relationship did not hold within any of the

species. We are aware that this finding may not be transferable to more general between-

species pattern due to the small number of species in our sample.

2.5.3 Hydraulic safety in comparison to major timbers

In our study, A. platanoides and C. betulus showed both an embolism resistant xylem

(P50: −4.62 MPa and −4.25 MPa, respectively) and large HSMs (2.59 MPa and 1.6 MPa,

respectively). In contrast to these two species that have been of minor silvicultural interest

so far, the major broadleaf timber species in the study region, F. sylvatica, is less drought-

resistant in terms of hydraulic safety (P50: −3.8 MPa to −3.5 MPa; HSM: 0.2 MPa to 1.5 

MPa; P50 and Pmin data obtained from Schuldt et al., 2016; Dietrich et al., 2018; Schuldt et

al., 2020). These two species even turned out to be a match—in terms of hydraulic
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safety—for another major timber species of the region, namely sessile oak (Quercus

petraea), which is known to be more drought-resistant than European beech (P50: −5.0

MPa to −4.6 MPa, HSM: 1.8 MPa to 2.3 MPa; based on P50 and Pmin data from Dietrich et

al., 2018; Lobo et al., 2018). Especially F. sylvatica is currently widely affected by

drought-induced defoliation and tree mortality following the extreme 2018/2019 drought

(Braun et al., 2020; Schuldt et al., 2020). According to dendroecological analyses, this

species is more drought-sensitive than A. platanoides even in the core area of its

distribution range (Zimmermann et al., 2015; Leuschner, 2020). Thus, A. platanoides and,

from a plant hydraulic perspective, also C. betulus seem to be better suited than F.

sylvatica for a future drier climate.

However, HSMs alone are not sufficient to capture drought tolerance on the whole-

tree level, because stem and leaf water capacitance act as additional buffers against

desiccation (Choat et al., 2018). Tilia cordata has a relatively high stem water storage due

to its low wood density (Köcher et al., 2013) and a high leaf water capacitance linked to

a highly elastic leaf tissue (Leuschner et al., 2019), which might partly compensate for

the species’ relatively high xylem vulnerability and small HSM. Consequently, more

holistic and integrated studies on whole-tree drought responses are needed to fully

understand tolerance strategies and compare different species.

2.5.4 Conclusions

The three investigated minor timber species showed a considerable amount of intra-

specific variability in efficiency-related traits, which were highly variable between and

within individuals. In contrast, ITV was low in xylem safety-related traits despite

pronounced differences between species. This implies that xylem safety-related traits at

the wood (P50) and leaf (PTLP) levels are more strongly conserved traits, which—given

their high mechanistic importance for plant drought responses—underlines their value for

trait-based modelling approaches in dynamic vegetation and land surface models.

Environmental control over hydraulic traits in mature stands seems to involve complex

interactions with abiotic drivers. In our study, it was not possible to clearly disentangle

their influence from other factors, even though both climate and soil water capacity were

taken into account. Most likely, local properties of the stand and soil, including small-

scale variability in moisture availability, belowground and aboveground competition with

direct neighbours, as well as a high within-crown variability in branch hydraulic

properties hamper the identification of the environmental drivers of xylem safety and

efficiency for given species.
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Despite these uncertainties, our study provides valuable information on hydraulic traits

and their variability for three promising minor timber species that may help to assess their

suitability for broader inclusion in silvicultural concepts in central Europe in a future

warmer and drier climate. In the light of large-scale vitality losses and dieback in some

of the primary timber species in central Europe, minor timber species such as A.

platanoides or T. cordata emerge as well-suited potential components of future more

drought-tolerant production forests.
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2.6 Appendix A

Figure 2.5: Distribution ranges of the three minor timber species (Acer platanoides, Carpinus betulus, and
Tilia cordata) based on the synthetic chorology database of Caudullo et al. (2017).
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Figure 2.6: Xylem vulnerability curves illustrating percent loss of conductivity vs. xylem water potential.
Plotted lines represent conditional predictions for single branches (colored, dotted), single trees (colored),
and sites (black) based on species-wise non-linear mixed-effects models (pointsymmetrically, sigmoidal).
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Figure 2.7: (A) Xylem water potential at 50 % loss of conductivity (P50), (B) leaf water potential at turgor
loss point (PTLP), (C) AXylem/ALeaves-ratio of branches (Huber value), and (D) xylem area-specific hydraulic
conductivity of branches (KS) of the three tree species on all study sites. Sites are given in ascending order
of plant-available water capacity of the soil. Box-whisker plots include median and interquartile ranges
(Q1–Q3); whiskers extend to 1.5 times the interquartile range.
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Figure 2.8: Pearson correlation matrix of environmental and tree-specific predictors and functional traits.
Given are Pearson correlation coefficients per species in the top right triangle and the corresponding data
in the lower left triangle.  MAP = mean annual precipitation (period 1991–2017); CWB = climatic water
balance; MAT = mean annual temperature; AWC = plant-available water storage capacity of the soil; DBH
= Stem diameter at breast height; P50/P12/P88= xylem water potential at 50/12/88 % loss of conductivity;
Slopevc = slope of the vulnerability curve at the inflexion point; PTLP = leaf water potential at turgor loss
point; KS = xylem area specific hydraulic conductivity of branches; HV = Huber value (AXylem/ALeaves-ratio
of branches). KS and HV are natural log-transformed, traits measured on branch/leaf-level are means per
tree. All variables are scaled by their standard deviation and centered around zero.
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Figure 2.9: Tendency of a hydraulic safety-efficiency trade-off across species between KS (xylem area-
specific hydraulic conductivity) and P50 (xylem water potential at 50 % loss of conductivity). Shown are
mean values per site and species with standard errors and p-value and R2 of a linear regression across all
species and sites.
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Table 2.4: Full output table of the linear mixed effects models for the variance decomposition (Fig. 4b).
Given are the fixed effect estimates for the intercept (i.e. the Carpinus average), the differences of Acer and
Tilia to Carpinus, with their standard errors, estimated degrees of freedom (edf) based on Sattherthwaite’s
approximation and P-values, as well as the estimates of the three variance components (tree level,
population level and residual SD).

Table 2.5 (next page): Full output table of the linear mixed effects models examining the relationships
between environmental variables and functional traits (corresponds to Table 2.3). Given are the scaled
estimates for CWB (climatic water balance) and AWC (plant-available water storage capacity of the soil),
the standard errors of the estimates (SE), the estimated degrees of freedom (DF) based on Sattherthwaite’s
approximation, P-values, and lower and upper border of likelihood-profile-based confidence intervals (CI
low and CI high).
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3.1 Abstract

While much research has addressed the aboveground response of trees to climate

warming and related water shortage, not much is known about the drought sensitivity of

the fine root system, in particular of mature trees. This study investigates the response of

topsoil (0–10 cm) fine root biomass (FRB), necromass (FRN), and fine root morphology

of five temperate broadleaf tree species (Acer platanoides L., Carpinus betulus L.,

Fraxinus excelsior L., Quercus petraea (Matt.) Liebl., Tilia cordata Mill.) to a reduction

in water availability, combining a precipitation gradient study (nine study sites; mean

annual precipitation (MAP): 920–530 mm year−1) with the comparison of a moist period

(average spring conditions) and an exceptionally dry period in the summer of the

subsequent year. The extent of the root necromass/biomass (N/B) ratio increase was used

as a measure of the species’ belowground sensitivity to water deficits. We hypothesized

that the N/B ratio increases with long-term (precipitation gradient) and short-term

reductions (moist vs. dry period) of water availability, while FRB changes only a little.

In four of the five species (exception: A. platanoides), FRB did not change with a

reduction in MAP, whereas FRN and N/B ratio increased toward the dry sites under ample

water supply (exception: Q. petraea). Q. petraea was also the only species not to reduce

root tip frequency after summer drought. Different slopes of the N/B ratio-MAP relation

similarly point at a lower belowground drought sensitivity of Q. petraea than of the other

species. After summer drought, all species lost the MAP dependence of the N/B ratio.

Thus, fine root mortality increased more at the moister than the drier sites, suggesting a

generally lower belowground drought sensitivity of the drier stands. We conclude that the

five species differ in their belowground drought response. Q. petraea follows the most

conservative soil exploration strategy with a generally smaller FRB and more drought-

tolerant fine roots, as it maintains relatively constant FRB, FRN, and morphology across

spatial and temporal dimensions of soil water deficits.

Keywords: Acer platanoides; Carpinus betulus; fine root biomass; fine root

necromass; Fraxinus excelsior; necromass/biomass ratio; Quercus petraea; root

morphology; Tilia cordata; water availability
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3.2 Introduction

Tree fine roots (roots < 2 mm in diameter) play a crucial role in forest ecosystem

functioning, even though they represent only a few percent of tree biomass (Jackson et

al., 1997; Leuschner and Ellenberg, 2017; Nadelhoffer and Raich, 1992). Fine roots serve

as the interface between soil and tree and thus control water and nutrient uptake, they

closely interact with mycorrhizal fungi and rhizosphere microbiota, and represent a major

source of soil organic carbon (C) (Eissenstat and Yanai, 2002; Rasse et al., 2005). Due to

their rapid turnover, it has been estimated that up to a third of the global annual net

primary production refers to fine root growth (Jackson et al., 1997). The size,

morphology, and turnover rate of the fine root system of trees is dependent on many biotic

and abiotic factors. Water availability is a key determinant among the soil factors besides

nutrient availability, soil acidity, and temperature (Brunner et al., 2015; Leuschner et al.,

2004; Leuschner and Hertel, 2003).

With climate change, forests are exposed to warmer summers and a higher evaporative

demand, and, in various regions, reduced and more irregular summer precipitation (IPCC,

2014; Schär et al., 2004), likely exposing trees to increased drought and heat stress.

Recent reviews of climate change-related decreases in tree vitality and increasing

mortality in many forest regions of the earth have predominantly focused on aboveground

tree parts (Allen et al., 2010; Anderegg et al., 2013; Ryan, 2011; Senf et al., 2018),

ignoring root responses. This is primarily caused by the fact that the fine root system of

mature forests is difficult to observe, and methods are labour-intensive and often quite

imprecise (Brunner et al., 2015).

How tree roots and the root system respond to drought is increasingly a matter of

debate, but the empirical data basis is quite limited, especially for mature trees. Optimal

partitioning theory (OPT) predicts that trees tend to increase their root-to-shoot ratio (R/S)

under conditions of limited water availability to increase their absorptive capacity in

relation to the transpiring surface (Bloom et al., 1985; Brunner et al., 2015; Reich, 2002).

Evidence in support of OPT has been obtained by comparing the R/S of different plant

functional types from different biomes (Kozlowski and Pallardy, 2002; Mokany et al.,

2006), by analysing the R/S of trees or forests along precipitation gradients (Coomes and

Grubb, 2000; Hertel et al., 2008), and by manipulating soil moisture in experiments with

tree saplings (Thomas and Gausling, 2000; Tomlinson and Anderson, 1998; van Hees,

1997). Most studies with increases in R/S found a reduction in aboveground biomass (leaf

mass or shoot mass), while fine root biomass (FRB) changed only a little, suggesting that
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shoot growth may respond more sensitively to drought than root growth (Kuster et al.,

2013). Yet, it is not well understood how the fine root system of trees responds to a

decrease in soil water availability, and existing findings are partly contradictory (Brunner

et al., 2015; Hertel et al., 2013; Meier and Leuschner, 2008a). Many sapling studies found

a decrease in FRB with decreasing soil moisture (Aspelmeier and Leuschner, 2006;

Bongarten and Teskey, 1987; Meier and Leuschner, 2008b; Zang et al., 2014), but these

responses can hardly be extrapolated to mature trees, and limited rooting space may

sometimes have influenced the results. For mature stands, Leuschner and Hertel (2003)

found in a meta-analysis of studies from temperate broad-leaved forests no clear trend in

FRB in dependence on precipitation. The results of multi-site field studies with a single

tree species are inconsistent: Some authors reported a higher FRB at drier sites (Bakker

et al., 2006; Hertel et al., 2008; Hertel et al., 2013; Parker and van Lear, 1996), others a

higher biomass at moister sites (Chenlemuge et al., 2013; Leuschner et al., 2004; Meier

and Leuschner, 2008a; Santantonio and Hermann, 1985). The controversial results are

partly explained by differences in species, in the steepness of the precipitation gradient,

or in the severity and timing of drought events at the study sites. Moreover, different

combinations of growth-related reductions in overall productivity, of shifts in

aboveground/belowground carbohydrate partitioning, and of altered root lifespan may

lead to opposing root/shoot ratio responses (McCormack and Guo, 2014).

More consistent are the reports about a fine root necromass (FRN) increase or elevated

necromass/biomass (N/B) ratios as a consequence of drought exposure (Brunner et al.,

2015; Wang et al., 2018), indicating increased fine root mortality. In accordance, (Hertel

and Leuschner, 2002) found a large FRN increase in a mature beech forest after a summer

drought, while FRB remained constant over the study period. It appears that certain tree

species are capable of compensating elevated drought-induced fine root losses through

increased production of new fine roots, thereby avoiding reductions in standing FRB. It

is not known which species are capable of this response and under which conditions it

occurs.

Root mortality reduces the lifespan of fine roots and, when dying roots are replaced

by new ones, a reduction in mean fine root age in the root population is the consequence

(Eissenstat et al., 2000; McCormack and Guo, 2014). One possible physiological

explanation of a shortened fine root lifespan in dry soil is active root shedding, in which

fine roots act as ‘hydraulic fuses’ in the tree’s xylem system, uncoupling the rest of the

hydraulic system from low water potentials in the dry soil to avoid embolism formation
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in more expensive or irreplaceable plant organs (Alder et al., 1996; Jackson et al., 2000;

Rewald, 2008). This could happen when fine roots are indeed more sensitive to cavitation

in the xylem than the stem and branches in the canopy. An alternative explanation

assumes that younger fine roots, that replace the shed ones, are physiologically more

active and therefore can support the tree by extracting more water, which increases fitness

(Brunner et al., 2015; Eissenstat et al., 2000). Such a response would also be in agreement

with OPT, which predicts a higher investment in the root system. In any case, root

mortality will increase the N/B ratio, which must be seen as an integral over the processes

of root mortality and the production of new fine roots during the observation period, thus

reflecting both the root system’s resistance to drought and its resilience after drought. The

ratio has therefore been used in several studies and reviews as an indicator of tree and

root system vitality under exposure to drought and chemical stress (Leuschner et al., 2004;

Persson and Stadenberg, 2010; Puhe, 2003; Wang et al., 2018).

Field studies on the drought response of tree fine root systems usually adopt one of

two approaches, either investigating temporal (natural or experimental) variation in soil

moisture (Gaul et al., 2008; Leuschner et al., 2001a; Mainiero and Kazda, 2006;

Makkonen and Helmisaari, 1998; Teskey and Hinckley, 1981; Tierney et al., 2003), or

examining spatial differences in water availability, often along precipitation or soil

moisture gradients (Bakker et al., 2006; Hertel et al., 2013; Hertel and Leuschner, 2002;

Leuschner et al., 2004; López et al., 1998; Meier and Leuschner, 2008a; Persson and

Stadenberg, 2010; Santantonio and Hermann, 1985). In central Europe, such studies

focused on the economically most important coniferous and broad-leaved tree genera,

i.e., Picea, Pinus, Fagus, and Quercus.

Only little is known about the fine root system of other common tree species that are

minor timber species or of no use in current forestry. Small-leaved lime (Tilia cordata

Mill.), Norway maple (Acer platanoides L.), European hornbeam (Carpinus betulus L.),

and European ash (Fraxinus excelsior L.) may be more drought resistant than European

beech and Norway spruce according to their distribution ranges and knowledge of

aboveground physiological traits (Hemery et al., 2010; Leuschner and Ellenberg, 2017;

Leuschner and Meier, 2018). While these species can be of interest for forestry in a

warmer and drier climate in the future, their belowground drought response is unknown.

Recent root research in temperate mixed forests with lime, maple, hornbeam, oak, and

ash species has focused on species interactions and diversity effects, but drought

responses have not been examined (Jacob et al., 2014; Kubisch et al., 2015; Meinen et
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al., 2009). A better understanding of the belowground drought response of these minor

timber species is fundamental for predicting the species’ performance in a drier climate.

This study investigates the response of the fine root biomass and necromass, and fine

root morphology of four secondary tree species (T. cordata, A. platanoides, C. betulus,

and F. excelsior) to a reduction in water availability, combining a precipitation gradient

study with the comparison of a moist and a dry season. The well-studied and relatively

drought-resistant sessile oak (Quercus petraea (Matt.) Liebl.) was included in the study

for comparison. The sample thus comprised three ECM (ectomycorrhizal; T. cordata, C.

betulus, Q. petraea) and two AM tree species (arbuscular mycorrhizal; A. platanoides, F.

excelsior), and two ring-porous (Q. petraea, F. excelsior) and three diffuse-porous

species (T. cordata, C. betulus, A. platanoides), thereby covering a broad range of tree

functional types of the European temperate tree flora. Fine root inventories were carried

out in the topsoil of nine study sites along a precipitation gradient (mean annual

precipitation (MAP): 918–528 mm year−1), comparing data from a moist (spring 2017)

and a subsequent dry period (summer 2018). The precipitation gradient covers most of

the MAP range encountered by the species at their natural occurrences in northern central

Europe.

We expected that the five species differ in their root system response to water deficits

and that the sensitivity of belowground and aboveground organs are linked to each other

in these species. The extent of the N/B ratio increase was used as a measure of the species’

belowground sensitivity to water deficits. Based on the existing knowledge about the

drought response of tree fine root systems (Brunner et al., 2015; Hertel et al., 2013; Meier

and Leuschner, 2008a), we hypothesized that, in all species, (i), the fine root N/B ratio

increases with decreasing mean annual precipitation due to higher root mortality and thus

an increase in necromass, while biomass changes only little, (ii) a severe summer drought

increases necromass and the N/B ratio, and (iii) the increase in the N/B ratio upon drought

is more pronounced at the moister sites, where trees are assumed to be more sensitive to

water shortage.

3.3 Materials and Methods

3.3.1 Forest Stands and Tree Species

Nine study sites were chosen along a transect in central Germany between Göttingen

and Halle/S., which represents a steep precipitation gradient in west-east orientation. All

sites are in the planar to colline zone (110–440 m a.s.l.) and have a cool-temperate climate
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with annual mean temperatures of 7.9 to 9.9 °C. Mean annual precipitation (MAP) ranges

between 918 and 528 mm and mean growing season precipitation (MGSP, April–

September) between 291 and 412 mm, with a general decrease from west to east

(Figure 3.1).

Figure 3.1: Map of the study area between Göttingen and Halle/S. in central Germany with the precipitation
gradient from the west to the east. The nine study sites are marked with red dots. The colors indicate the
mean annual precipitation (MAP 1991–2017). The area with MAP over 1000 mm NE of Göttingen is the
Harz mountain range.

Four of the five investigated tree species (A. platanoides, T. cordata, C. betulus, and

F. excelsior) are widespread in Central Europe with natural occurrences in various types

of broadleaf mixed forest communities of the phytosociological alliances Carpinion betuli

(oak-hornbeam forests) and Tilio-Acerion (mixed maple slope forests), in which

European beech (Fagus sylvatica L.), the dominant species of Central Europe’s natural

forest vegetation, is rare or absent (Leuschner and Ellenberg, 2017). The four species are

more demanding in terms of soil base saturation than beech and Q. petraea, the fifth

species of this study, but they also occur in eastern Europe under a more continental

climate and thus are thought to be relatively drought tolerant. While Q. petraea is one of

the most important timber species of Central European forestry, the four other species are

only secondary timber species in the study region. Therefore, mixed stands of comparable

stand structure and tree age with presence of all five species are uncommon. As a

consequence, not all species are present at all nine study sites, but every species occurs at

least at five sites along the precipitation transect. Every site consisted of several mixed

forests of variable species composition in a maximum distance of several hundred m to a

few km to each other. The target species grew in these mixed stands of two to six species
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under comparable edaphic and climatic conditions. All stands were located on level

terrain with an inclination of less than 5° without groundwater influence.

The target trees in the stands were all of mature age (range: 69–139 years), with the

exception of two older oak stands (170 years). The exact age of all individuals was

determined from the investigation of increment cores and dendrochronological analysis,

except for C. betulus, which was not included in the tree ring study, as the increment cores

consist of long sections of indistinguishable annual rings. Age information for this species

was taken from forest inventory data supplied by the local forestry offices. The

investigated trees were selected for comparable height and DBH at the different sites

(Table 3.1). From the moister western to the drier eastern sites, average tree height in the

stands slightly decreased from 28.2 to 25.8 m (means of all species), while average DBH

increased from 44.5 to 47.1 cm. This indicates that aboveground biomass changes only

little along the transect. Only in the case of T. cordata, tree height decreased notably

towards the drier sites. In case of F. excelsior, we selected only trees that were not visibly

affected by ash dieback, a recently spreading lethal infection caused by the fungus

Hymenoscyphus fraxineus.
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3.3.2 Climatic Conditions

Precipitation, air temperature, and potential evapotranspiration (PET) data were taken

from the DWD (Deutscher Wetterdienst, Offenbach, Germany) database and the required

local data were calculated from extrapolated 1 km-gridded data. The gridding method of

the DWD employs the reduction to a reference elevation level, the calculation of inverse

squared-distance weights (horizontal interpolation), and finally the transformation to the

actual elevation of the grid point using regression over elevation (Kaspar et al., 2013;

Müller-Westermeier, 1995). This gridding method is relatively simple, but comparison

and verification against other GIS-based interpolation methods (Maier and Müller-

Westermeier, 2010) have confirmed its accuracy, which is partly a consequence of the

relatively high weather station density in Germany. The largest distance between a study

site and the closest weather station was ca. 7.1 km.

PET was extrapolated from data derived from the agrometeorological model AMBAV

(“Agrarmeteorologisches Modell zur Berechnung der aktuellen Verdunstung”, Löpmeier,

1994) that is based on the Penman-Monteith equation. Without doubt, these

agrometeorological PET data do not characterize potential forest evapotranspiration

exactly, but the values are used in the study only for characterizing the weather conditions

prior to the two fine root inventory campaigns.

The mean de Martonne Index (DMI) for the respective three-month periods prior to

each sampling date was calculated by dividing precipitation sums by the mean

temperature + 10 (Martonne, 1926).

Long-term mean annual climate data were calculated for the period 1991–2017,

because PET data generated with the AMBAV model are only available from DWD

stations since 1991. Fine root data were modelled in dependence on a variety of

parameters characterizing site water availability, notably mean annual precipitation

(MAP), mean growing season precipitation (MGSP; April–September), and the climatic

water balance (precipitation—PET, whole year and growing season). Because the ratio

of summer precipitation to annual precipitation is constant and temperature is inversely

proportional to precipitation along the transect, we obtained similar results for all tested

variables in the correlation analyses and thus used in the analyses MAP as a proxy for

climatic aridity along the transect. The actual precipitation in the 12 months prior to

sampling was tested as well and resulted in the same patterns of correlation, as it was

mostly proportional to MAP along the transect (see Appendix B, Table 3.6 and Figure

3.5).



FINE ROOT INVENTORIES

85

3.3.3 Edaphic Conditions

Various soil chemical and physical properties were analysed for the topsoil (0–10 cm

of mineral soil) of three soil pits per site, notably soil texture, organic matter content, soil

pH (in H2O and in KCl), and organic C, organic N, and resin-extractable P content.

Organic carbon and nitrogen concentrations were determined by gas chromatography

(C/N elemental analysis) and the resin-extractable P concentration was determined with

ICP-OES (inductively coupled plasma optical emission spectrometry) analysis, after P

extraction with water using an anion-exchange resin and subsequent re-exchange of P

with NaCl and NaOH solutions. The soil organic matter content was additionally

determined through the dry ignition method at 600 °C, the soil texture by sieving (sand

fractions) and sedimentation (silt fractions) according to the international standard ISO

11277.

3.3.4 Fine Root Inventories: Sampling Periods

To examine the effect of seasonal drought on fine root mortality, two inventories with

determination of fine root biomass and necromass were carried out at all sites in spring

2017 and summer 2018. The first inventory in April 2017 was conducted after a

moderately moist spring period in order to examine fine root mass under ample soil

moisture conditions along the precipitation gradient without the influence of unusual

drought periods. On the other hand, no soil frost was influencing this inventory, as the

winter was mild with no harsh frost periods. A second inventory was conducted in

September 2018 after an exceptionally dry summer with an extended rainless period to

investigate the effect of pronounced soil drought on the fine root system. The summer of

2018 with its extraordinary heatwave was on average 2.0–2.3 °C warmer and had 55–

74% lower rainfall amounts than the average (1991–2017) in the study region. All study

sites were exposed to very low rainfall between May and September prior to the

inventory, with mostly <30 mm of precipitation per month (Table 3.2). We decided to

report the average weather in the 3 months prior to each sampling date and related it to

the long-term means of the respective seasons. A period length of three months was

chosen, because loamy soils in the study region are known to desiccate only with some

delay after precipitation ceased in a dry period, and the peak of fine root mortality thus

typically happens after an additional time lag of 1–2 months, according to a root study in

central northern Germany (Hertel and Leuschner, 2002).
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Table 3.2: PET, precipitation, and temperature in the three months prior to the sampling dates in 2017 and
2018. Given are the totals of potential evapotranspiration (PET) and precipitation (P), the deviation of P
from the long-term mean (1991–2017) in percent, and the absolute deviation of the average temperature of
the three-month period from the long-term mean (1991–2017) in that period in °C.

3.3.5 Fine Root Inventories: Fine Root Biomass and Necromass

Five mature, similarly-sized and vital trees were chosen per site and species, and two

topsoil samples per tree extracted in 1.5 m distance from the stem base in eastern and

western direction using a soil corer of 3.5 cm in diameter. These two samples were later

combined to one, as we did not intend to study FRB variation within the same tree. For

reasons of comparability, the second sampling campaign was conducted at coring

locations in close vicinity of the previous campaign, but in a distance of 40 cm to exclude

possible interference from the soil disturbance of the earlier coring.

Because the study focus was on the comparison of five species at many sites with a

large number of samples, we had to restrict the sampling to the uppermost 10 cm of

mineral soil (A-horizon), where drought effects are assumed to be largest. At all sites, the

A-horizon contained by far the highest density of fine roots which decreased

exponentially with soil depth. Organic layers on top of the soil were generally thin,

consisted mainly of undecomposed litter and rarely contained fine roots.

The soil samples were transferred to plastic bags and stored at 4 °C in the laboratory

until processing within 3 months. Prior to the root extraction procedure, the samples were

soaked in tap water and carefully cleaned from attached soil residues under gently running

water over a sieve of 0.25 mm mesh size. Only fine root fragments (< 2 mm in diameter,

> 10 mm in length) of the target species were considered for analysis. In most samples,

shrub and herb roots were rare or missing and the percentage of roots of non-target species

was very small, because all sampling locations were situated in small monospecific forest

patches of 5–10 individuals of the target species. The sorting of fine roots by species was

done by morphological criteria (colour and surface structure of the root periderm,

2017  2018

Site PET
(mm)

P
(mm)

P
deviation
(%)

T
deviation
(°C)

PET
(mm)

P
(mm)

P
deviation
(%)

T
deviation
(°C)

Halle 45.9 78.4 −24.9 +0.02 405.2 78.9 −68.3 +2.14
Ziegelroda 44.5 86.0 −25.4 +0.04 396.6 78.0 −70.2 +2.26
Hakel 43.9 101.0 −19.3 +0.18 390.4 120.0 −55.2 +2.12
Großwilsdorf 46.6 93.0 −26.7 +0.08 396.5 93.3 −67.4 +2.17
Knutbühren 45.2 144.0 −24.4 +0.02 374.7 82.7 −73.0 +2.14
Holzerode 46.1 147.0 −24.4 +0.06 380.2 120.0 −62.9 +2.15
Liebenburg 48.1 127.0 −36.3 +0.38 384.6 101.0 −67.9 +2.06
Hainleite 40.2 177.0 −16.8 +0.17 374.0 80.0 −73.9 +2.08
Reyershausen 44.0 159.0 −25.1 +0.04 372.6 125.0 −62.9 +2.13
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branching patterns of the rootlets, morphology of ectomycorrhizae in the ECM species),

established in our lab during earlier work in mixed broadleaf forests in Central Germany

(Jacob et al., 2014; Kubisch et al., 2015; Meinen et al., 2009). Living (biomass) and dead

roots (necromass) were distinguished under the stereomicroscope by inspecting colour,

root elasticity, and cohesion of the cortex, periderm, and stele (Hertel and Leuschner,

2002; Persson, 1978). The fine root biomass and necromass of every sample was dried at

70 °C for 48 h and weighed and expressed as g L−1 soil volume.

We did not take any dead root particles <10 mm length into account, although this

finest fraction of decaying root particles is known to represent a considerable portion of

total FRN (Bauhus and Bartsch, 1996; Leuschner et al., 2004). One reason is the sheer

impossibility to assign these particles to different tree species in samples containing more

than one tree species. In addition, a main study aim was the analysis of the effect of the

2018 summer drought on the N/B ratio of fine root mass. Yet, it is likely that the bulk of

partly decomposed FRN fragments in the samples originate from earlier die-off events,

and that the <10 mm fraction is the one most influenced by the activity of decomposers

in the soil. This suggested focusing on the larger, still intact necromass fragments

(>10 mm length), which more likely were formed in summer 2018.

3.3.6 Fine Root Inventories: Fine Root Morphology

Four to five intact rootlets were picked from the living biomass fraction and further

analysed for their mean root diameter, specific root surface area (SRA, in cm2 g−1),

specific root length (SRL, in m g−1), root tissue density (in g cm−3), and the number of

root tips per mass using a water bath scanner and the WinRhizo (Régent Instruments Inc.,

Quebec, QC, Canada) visual analysis system. All morphological parameters were

calculated on a dry biomass (70 °C for 48 h) basis.

3.3.7 Statistical Analyses

All calculations and tests were conducted with version 3.6.1 of R (R Core Team 2019).

All fine root biomass, necromass, and morphological data showed a strong right-skewed

distribution and were neither within the species, nor among plots and different species

normally distributed. In some cases, the necromass values were almost bi-modally

distributed, as root necromass distribution within the soil was highly patchy. We therefore

used non-parametric tests to detect differences between years in fine root bio- and

necromass. Since it is a priori unclear, whether two soil samples taken at short distance

(40 cm) in two subsequent years are paired or independent, we decided to conduct two
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non-parametric tests: the Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney U

test. Since both tests resulted in exactly the same pattern of significant differences, we

here only report the results of the signed-rank test, because pair-wise comparison seems

to better fit to the repeat-sampling strategy of this study.

In order to explore the relationships between various site-specific soil characteristics,

tree size attributes, climate variables and fine root data, principal components analyses

(PCA) were conducted separately for site- and species-level data for the 2017 and 2018

sampling campaigns (R Packages “FactoExtra” and “FactoMineR”, Kassambara

and Mundt, 2017; Lê et al., 2008). The PCA included the variables mean annual

precipitation (MAP), mean annual temperature (MAT), de Martonne aridity index (DMI)

of the 3 months prior to sampling, soil pH, C/N ratio, resin-exchangeable P concentration,

organic matter content, silt content and soil bulk density (0–10 cm depth), mean tree

height, diameter at breast height (DBH), FRB, FRN, N/B ratio, specific root area (SRA),

and specific root length (SRL). To account for the right-skewed distribution of fine root

data, we log-transformed, centred, and scaled all biomass, necromass, and morphological

data prior to the PCA analysis.

Further, linear mixed effects models were fitted for the 2017 and 2018 data sets

separately for all predictors and dependent variables (R package lme4, Bates et al., 2015).

The models included one of the predictors (MAP, MGSP, MAT, soil pH, soil C/N ratio,

silt proportion, soil organic matter content, tree age, height, and DBH) and its interaction

with the factor “species” as fixed effects, while the factor “site” was introduced as random

effect. The random effect was introduced, because fine root data on tree level were nested

within species per site. The dependent variables in the models were the log-scaled fine

root mass and morphology data. Here, we only report the results of the models with MAP

as predictor, as the other variables led either to very similar results (e.g., MGSP) or

showed no significant effects and very small effect sizes. These minor inter-relationships

among biotic, edaphic, and climatic variables in the data set are already demonstrated by

the PCAs.

All models were checked for constant variance of the residuals across fitted values and

between levels of the fixed effects, as well as for acceptable normality of the distribution

of the residuals using Q-Q-plots. Only the model with fine root necromass as dependent

variable showed slightly distorted residuals in part of the data set due to several very low

necromass values, which did not apply to the model with necromass/biomass ratio.

Conclusions from the N/B ratio model are thus more robust than those from the
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necromass-only model. All estimates are based on the restricted maximum likelihood

(REML) criterion and p-values were calculated with the lmerTest package based on

Satterthwaites degrees of freedom method (Kuznetsova et al., 2017).

Reported marginal “pseudo-R2” values were calculated per species according to

Nakagawa and Schielzeth (2013) and represent a measure for explained variance of the

fixed effects in mixed-effects models:

ܴ௠௔௥௚
ଶ = 1 −

(௠௔௥௚ݏ݁ݎ)݁ܿ݊ܽ݅ݎܽݒ
((݈ܾ݁ܽ݅ݎܽݒ)log)݁ܿ݊ܽ݅ݎܽݒ

(1)

where resmarg are the residuals of the marginal predictions of the model.

3.4 Results

3.4.1 Fine Root Biomass, Necromass, and Morphology in the 2017 and 2018

Inventories

Across the nine sites, FRB density in the mineral topsoil (0–10 cm) was lowest in

stands of Q. petraea and T. cordata (mostly in the range 0.2–0.8 g L−1), intermediate in

A. platanoides (0.3–2.0 g L−1), and highest in C. betulus (0.8–2.0 g L−1) and especially F.

excelsior (1.5–4.0 g L−1; Figure 3.2a). The corresponding FRB pools in the 0–10 cm layer

were 20–80, 30–200, 80–200, and 150–400 g m−2. Thus, across all sites, F. excelsior had

about fivefold larger FRB densities in the topsoil than Q. petraea. The FRN pools (only

fragments > 10 mm) were 10 to 100 times smaller than the biomass pools (Figure 3.2b),

resulting in N/B ratios mostly in the range of 0.1 to 0.01 (Figure 3.2c).
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Figure 3.2: Fine root biomass (a), necromass (b), and necromass/biomass (N/B) ratio (c) of the five tree
species in the topsoil (0–10 cm) in April 2017 and September 2018. Box-whisker plots with median and
interquartile ranges (Q1–Q3); whiskers extend to 1.5 times the interquartile range. Indicated significant
differences between the inventories for each species are based on a non-parametric signed-rank-test; ***:
p ≤ 0.001, *: p < 0.05. Note the log-scaled y-axes in (b) and (c).

Comparing the FRB recorded in the moist spring of 2017 to the biomass of the dry

summer of 2018 revealed in none of the five species a significant difference, whereas

necromass was significantly greater after the 2018 drought in three species (A.

platanoides, F. excelsior, and Q. petraea) but unchanged in the other two (Figure 3.2a,b).

The N/B ratio was higher after the 2018 drought in A. platanoides and F. excelsior, but

not in the other three species (Figure 3.2c).
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Figure 3.3: Specific root surface area (SRA) and root tips per fine root biomass of the five tree species in
the topsoil (0–10 cm) in April 2017 and September 2018. Box-whisker plots for all species and both
inventories with median and interquartile ranges (Q1–Q3); whiskers extend to 1.5 times the interquartile
range. Indicated significant differences between the inventories for each species are based on a non-
parametric signed-rank-test; ***: p ≤ 0.001, **: p ≤ 0.01, *: p < 0.05. Note the log-scaled y-axes.

While FRN was not different between the two inventories in C. betulus and T. cordata,

SRA was significantly smaller in these species after the 2018 drought than in 2017

(Figure 3.3a). A similar morphological response was observed also in A. platanoides,

while the SRA of the other two species did not respond to the drought. All species except

Q. petraea showed significantly reduced root tip numbers per FRB after the 2018 drought

(Figure 3.3b).

3.4.2 Changes in Fine Root Mass and Root Traits along the Precipitation Gradient

Under conditions of ample soil moisture in the spring of 2017, FRB density at the nine

sites revealed a positive relationship with MAP in case of Q. petraea, a negative relation

in A. platanoides, and no significant relations in the other three species (Figure 3.4, Table

3.3). FRN density increased with a decrease in MAP in all species except Q. petraea, and

so did the N/B ratio. After the summer drought in 2018, in contrast, we found no

dependence of FRB, FRN and N/B ratio on MAP (Table 3.3) due to a marked increase in

FRN at the moister end of the precipitation gradient (Figure 3.4). FRB changed relatively

little between 2017 and 2018 in four species, but showed a marked increase at the moist

end of the gradient in A. platanoides (Figure 3.4).
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Figure 3.4: Fine root biomass (a), necromass (b), and necromass/biomass ratio (c) in the topsoil (0–10 cm)
of the five species in relation to mean annual precipitation (MAP) in the 2017 and 2018 inventories. Data
points are tree-level values, lines represent conditional predictions of the linear mixed effects model (the
predictions of the fixed effect “MAP” for each species plus an intercept for each level of the random factor
“site”). Note the log-scaled y-axis. The corresponding p and pseudo-R2 values are summarized in Table 3.3.
Graphs for the morphology variables are given in Figure 3.6 in the Appendix B.
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Table 3.3: Results of linear mixed effects models for fine root traits in dependence of mean annual
precipitation (MAP). Given are estimates of the fixed effect (fine root trait ~ species:MAP), marginal
pseudo-R² for the fixed effect (calculated according to Nakagawa and Schielzeth (2013)) and p-values. p-
values below 0.05 are given in bold. All fine root traits were log-transformed in advance except for root
diameters.

Of the root morphological traits, SRA and the number of root tips per biomass

increased with decreasing MAP in the 2017 inventory in Q. petraea, and in 2018 in C.

betulus, pointing at a larger absorptive capacity of the finest roots at drier sites (Table 3.3

and Figure 3.6 in the Appendix B). Accordingly, mean fine root diameter in the <2 mm

category increased towards the moister sites. A similar pattern was also observed in the

other species in both years, but the relationships were mostly not significant (exception:

root diameter in F. excelsior in 2018) and the explained variance was low; especially T.

cordata did not show significant morphological plasticity along the gradient (Table 3.3).

Model 2017 (Moist) 2018 (Dry)
Species Estimate Pseudo R² p-value Estimate Pseudo R² p-value
Fine root biomass ~ MAP
Fraxinus excelsior −0.0004 0 0.678 0.0007 0 0.523
Carpinus betulus −0.0004 0.02 0.752 −0.0009 0.03 0.531
Acer platanoides −0.0048 0.31 <0.001 −0.0005 0.01 0.725
Quercus petraea 0.0029 0.12 0.023 −0.0001 0 0.933
Tilia cordata −0.0024 0.07 0.264 −0.0021 0.1 0.368
Fine root necromass ~ MAP
Fraxinus excelsior −0.0074 0.32 0.002 −0.0034 0.07 0.147
Carpinus betulus −0.0063 0.13 0.032 0.0011 0 0.711
Acer platanoides −0.0113 0.47 <0.001 −0.0022 0.03 0.400
Quercus petraea −0.0002 0 0.955 0.0005 0 0.841
Tilia cordata −0.019 0.42 <0.001 0.0005 0 0.923
Necro-/biomass-ratio ~ MAP
Fraxinus excelsior −0.007 0.32 <0.001 −0.004 0.08 0.081
Carpinus betulus −0.0057 0.11 0.028 0.002 0.01 0.482
Acer platanoides −0.0063 0.25 0.014 −0.0016 0.02 0.523
Quercus petraea −0.0029 0.05 0.211 0.0007 0 0.798
Tilia cordata −0.0166 0.37 <0.001 0.0028 0.04 0.533
SRA ~ MAP
Fraxinus excelsior −0.001 0.09 0.15 −0.0006 0.03 0.367
Carpinus betulus −0.0001 0 0.926 −0.0022 0.25 0.011
Acer platanoides −0.0008 0.07 0.266 −0.0001 0 0.861
Quercus petraea −0.002 0.1 0.013 −0.0013 0.09 0.117
Tilia cordata 0.0004 0 0.781 0.0001 0 0.918
Root tips per biomass ~ MAP
Fraxinus excelsior −0.0012 0.06 0.249 −0.0008 0.04 0.421
Carpinus betulus −0.0006 0 0.648 −0.0038 0.35 0.002
Acer platanoides −0.0015 0.11 0.179 −0.0006 0.01 0.587
Quercus petraea −0.0043 0.16 <0.001 −0.0009 0.01 0.412
Tilia cordata −0.0004 0.01 0.83 −0.0007 0.01 0.728
Root diameter ~ MAP
Fraxinus excelsior 0.1511 0.02 0.269 0.2416 0.16 0.014
Carpinus betulus 0.1485 0.04 0.367 0.5943 0.51 <0.001
Acer platanoides 0.061 0 0.677 0.0426 0.01 0.700
Quercus petraea 0.5661 0.18 <0.001 0.0045 0 0.970
Tilia cordata −0.0783 0 0.765 −0.0027 0 0.989



CHAPTER 3

94

3.4.3 Interdependencies between Climatic and Edaphic Factors and Fine Root

Variables along the Precipitation Gradient

The principal components analysis for the inventory in spring 2017 revealed a

relatively continuous distribution of the study sites along the first three axes that

explained 63.4% of the total variance of the dataset (Table 3.4, a graphical representation

of the PCA results is provided in the Appendix B in Figure 3.7). The first axis (27.5%

explained variance) coincided mainly with the climatic factors MAP and MAT and the

weather prior to sampling (DMI). FRN and the N/B ratio were strongly correlated with

the first axis as well, whereas root biomass itself and morphological attributes (SRA and

SRL) coincided with the second axis (21.2% explained variance) and soil physical and

chemical properties (C/N, silt content, bulk density, organic matter content). FRB was

generally positively associated with high organic matter content in the upper mineral soil

and negatively influenced by high bulk density, which itself coincided with high silt

content. The third axis (14.8% explained variance) reflects the positive association

between tree height and soil pH and P availability, but did not correlate with climate or

fine root variables.

Table 3.4: Results of the principal components analysis for the spring inventory in 2017. Given are the
loadings of the selected variables along the four axes with the highest explained variance in the dataset.
Bold numbers mark the variables with the highest loading (>0.4) on the respective axis. The values in
brackets give the cumulative fraction of variance explained by the variable. MAP = mean annual
precipitation, MAT = mean annual temperature, DMI = de Martonne aridity index of the three months prior
to sampling.

Explained Variance:
Axis 1 Axis 2 Axis 3 Axis 4
27.8% 21.1% 14.5% 12.8%

Climate factors
MAP −0.93 (0.86) −0.03 (0.86) −0.10 (0.88) 0.15 (0.90)
MAT 0.86 (0.74) −0.07 (0.75) 0.36 (0.88) 0.06 (0.88)
DMI (sampling period) −0.92 (0.84) −0.10 (0.85) −0.24 (0.90) −0.02 (0.90)
Soil properties
pH −0.27 (0.07) 0.35 (0.20) 0.70 (0.69) −0.06 (0.69)
C/N ratio 0.23 (0.05) −0.77 (0.64) −0.30 (0.73) −0.11 (0.74)
Silt content 0.01 (0.00) 0.77 (0.60) −0.25 (0.66) −0.03 (0.66)
P concentration −0.24 (0.06) 0.11 (0.07) 0.88 (0.85) 0.19 (0.88)
Org. matter content −0.25 (0.06) −0.70 (0.55) 0.47 (0.77) −0.12 (0.78)
Bulk density 0.33 (0.11) 0.70 (0.6) −0.17 (0.63) 0.35 (0.75)
Stand structural parameters
Tree height −0.32 (0.1) 0.23 (0.15) 0.48 (0.39) 0.55 (0.69)
Diameter at breast height 0.20 (0.04) 0.41 (0.21) −0.06 (0.21) 0.59 (0.56)
Fine root-related variables
Fine root biomass 0.15 (0.02) −0.57 (0.35) 0.29 (0.43) 0.06 (0.44)
Fine root necromass 0.77 (0.59) −0.38 (0.73) 0.12 (0.75) 0.25 (0.81)
Fine root dead/live ratio 0.86 (0.74) −0.06 (0.75) −0.07 (0.75) 0.27 (0.82)
SRL 0.31 (0.10) 0.45 (0.30) 0.13 (0.31) −0.75 (0.87)
SRA 0.25 (0.06) 0.39 (0.21) 0.33 (0.32) −0.69 (0.80)
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After the 2018 summer drought, the environmental and root-related variables in the

data set were in general less tightly correlated to each other according to the PCA (Table

3.5, a graphical representation of the PCA results is provided in the Appendix B in Figure

3.8). The first axis (22.7% explained variance) coincided again mostly with climatic

factors but did not explain root bio- or necromass variation. Instead, root morphological

parameters had a reasonable loading on this axis (−0.67, −0.56). The second axis (21.1%

explained variance) reflected influences of soil properties (C/N ratio, organic matter

content, bulk density, soil texture) on FRB: The same positive effect of organic matter

content and negative effect of bulk density as in 2017 was visible in this data set. Fine

root bio- and necromass were strongly inter-related after the summer drought along the

first two PCA axes in 2018, which relates to the relatively constant N/B ratio across plots

and species in this inventory.

Table 3.5: Results of the principal components analysis for the drought inventory in 2018. Given are the
loadings of the selected variables along the four axes with the highest explained variance in the dataset.
Bold numbers mark the variables with the highest loading (>0.4) on the respective axis. The values in
brackets give the cumulative fraction of variance explained by the variable. MAP = mean annual
precipitation, MAT = mean annual temperature, DMI = de Martonne aridity index of the three months prior
to sampling.

Stand and tree age was only weakly correlated with the studied fine root traits and we decided not to include
it in the final PCAs to avoid mixing tree age/stand age data from different sources because
dendrochronological determination of tree age was not possible for C. betulus.

Explained Variance:
Axis 1 Axis 2 Axis 3 Axis 4
22.0% 21.6% 17.0% 11.4%

Climate factors
MAP 0.65 (0.42) 0.25 (0.48) −0.38 (0.62) 0.36 (0.75)
MAT −0.54 (0.29) −0.09 (0.30) 0.65 (0.72) −0.26 (0.79)
DMI (sampling period) 0.85 (0.71) −0.03 (0.72) 0.16 (0.74) 0.08 (0.75)
Soil properties
pH 0.69 (0.48) 0.08 (0.48) 0.35 (0.61) −0.37 (0.75)
C/N ratio −0.72 (0.52) 0.44 (0.72) −0.24 (0.78) 0.31 (0.87)
Silt content (%) 0.26 (0.07) −0.73 (0.61) −0.14 (0.63) −0.12 (0.64)
P concentration 0.59 (0.35) 0.28 (0.43) 0.59 (0.78) 0.14 (0.81)
Org. matter content −0.04 (0.00) 0.84 (0.71) 0.14 (0.73) 0.29 (0.82)
Bulk density 0.15 (0.02) −0.79 (0.65) 0.12 (0.67) −0.08 (0.67)
Stand structural parameters
Tree height 0.51 (0.26) 0.02 (0.27) 0.48 (0.5) 0.52 (0.77)
Diameter at breast height 0.00 (0.00) −0.48 (0.23) 0.39 (0.38) 0.36 (0.51)
Fine root-related variables
Fine root biomass −0.02 (0.00) 0.56 (0.32) 0.17 (0.35) 0.25 (0.41)
Fine root necromass 0.03 (0.00) 0.65 (0.42) 0.39 (0.57) −0.43 (0.76)
Fine root dead/live ratio 0.05 (0.00) 0.33 (0.11) 0.33 (0.22) −0.70 (0.71)
SRL −0.48 (0.23) −0.32 (0.33) 0.59 (0.68) 0.20 (0.72)
SRA −0.38 (0.15) −0.21 (0.19) 0.72 (0.70) 0.29 (0.79)
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3.5 Discussion

3.5.1 Fine Root Biomass and Belowground C Allocation in Dependence on Long-Term

Water Reduction

Our study at nine sites along the steep precipitation gradient in the rain shadow of the

Harz mountains (MAP: 920–530 mm year−1) found only weak support for optimal

partitioning theory, when applied to the FRB stocks in the topsoil. FRB in the moist

sampling period 2017 did not change in a consistent manner with decreasing mean annual

precipitation. A. platanoides was the only species with a significant increase in FRB from

the moister to the drier sites in 2017, which could point at increased belowground C

allocation to increase water uptake, while Q. petraea showed a decrease and the other

three species no relation of FRB to MAP. The outcome was not different when other

precipitation variables (e.g., MGSP, current-year precipitation or climatic water balance)

were used instead of the long-term mean. Other studies along precipitation gradients

obtained mixed results, either no consistent change in FRB and relative C allocation to

roots (Joslin et al., 2000; Meier et al., 2018), a decrease (Leuschner et al., 2004; Meier

and Leuschner, 2008a), or an increase with decreasing water availability (Hertel et al.,

2013; Parker and van Lear, 1996), suggesting a large influence of species and soil

moisture conditions on the drought response of carbon allocation. Clearly, our fine root

inventory covers only the topsoil and we hence may have missed preferential biomass

partitioning to other parts of the root system. Trees growing at drier sites could allocate

more carbon to root growth in deeper soil layers to access the moister subsoil and escape

surface drying (Konôpka and Lukac, 2013; Persson et al., 1995). However, a meta-

analysis of root biomass data by Schenk and Jackson (2002) and a detailed study of the

subsoil root system of Fagus sylvatica along a precipitation gradient by Meier et al.

(2018) showed the opposite response to long-term precipitation reduction, i.e., shallower

rooting of trees under water limitation. An alternative explanation for the weak support

for OPT in our study could be the only moderate length of the studied precipitation

gradient (MAP difference: 390 mm year−1), which apparently had only a minor effect on

total tree productivity. Carbon allocations shifts in support of OPT were mostly found in

studies across biomes or in experiments with very different treatments. Poorter et al.

(2012) concluded from a meta-analysis that marked increases in allocation to the root

system occur only, when drought reduces biomass by 50 percent or more, which is not

the case here.
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The PCAs with root-related and environmental variables support the conclusion that

the average soil moisture regime as indicated by the MAP gradient has only a minor

influence on the FRB stocks at our study sites. In both root inventories, the association of

FRB with edaphic and climatic variables suggests that topsoil FRB generally increases

with organic matter content, but decreases with increasing nitrogen content, silt content

and soil bulk density, while the effect of climatic factors (MAP, MAT) and also soil pH

and P content is weak. This is in accordance with the observation that fine root density in

temperate forest soils is usually highest in the carbon-rich Ah horizon and the organic

layer with low bulk density (Kirfel et al., 2019; Leuschner et al., 2004).

Inherited tree species differences in FRB seem also to be more influential on FRB

patterns than moisture conditions. In our study, F. excelsior had up to five times higher

FRB densities in the topsoil than Q. petraea and T. cordata, with intermediate values in

C. betulus and A. platanoides. While part of this variation may be due to differences in

DBH and small-scale variations in stem density between species in mixed stands,

comparison with earlier fine root studies in mixed forests suggests that the high FRB of

F. excelsior and the low values of Q. petraea may be species-specific. This is indicated

by a meta-analysis of fine root studies from temperate forests (Leuschner and Hertel,

2003) and root inventories in mixed forests (Jacob et al., 2014; Leuschner et al., 2001b).

An additional explanation for low FRB values of Q. petraea might be a different depth

distribution of fine roots, as other authors state that Central European oak species are

generally deeper rooted than beech and other broadleaf tree species (Rosengren et al.,

2006), but precise data on depth-distributions are lacking for our sites. The contrasting

FRB patterns of A. platanoides and Q. petraea along the precipitation gradient further

indicate that co-occurring tree species may differ not only in standing FRB but also in

root mortality and the response of their carbon allocation modes to long-term reduction

in water availability.

As predicted (hypothesis 1), all five species showed increasing amounts of FRN and

an increasing N/B ratio in the topsoil with a decrease in MAP, while FRB remained

unchanged (with the exception of A. platanoides). One possible explanation of this pattern

is that fine root mortality increases with a permanent reduction in water availability, as

has been observed in many field studies (e.g., Meier and Leuschner, 2008a) and

concluded from literature reviews (e.g., Eissenstat et al., 2013; McCormack and Guo,

2014), which in turn may trigger increased carbon allocation to root growth in

compensation of the FRB loss. This was observed, for example, in Norway spruce roots
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under mild drought stress (soil matrix potentials of—0.06 MPa, Gaul et al., 2008). Such

a response will reduce mean fine root age and likely increase the water and nutrient uptake

capacity of the tree and thus its fitness under water shortage (Brunner et al., 2015;

Eissenstat and Yanai, 2002). Another possible explanation is fine root shedding with the

assumed function to uncouple the rest of the hydraulic system from very low water

potentials in dry soil to avoid embolism formation in more valuable organs (hydraulic

fuse theory, Alder et al., 1996; Jackson et al., 2000). It could take place during more

severe drought events and does not imply the immediate replacement by new fine roots.

In support of this idea, McCormack and Guo (2014) predicted on the basis of a conceptual

model exponential increases in root mortality at the highest drought stress intensities. This

is in accordance with the results of a rainfall exclusion experiment with Picea abies trees,

in which, under mild drought, root mortality increased, while fine root production was

also stimulated. Under more severe drought, root mortality was high and no replacement

occurred (Gaul et al., 2008).

Our data suggest that the five species differ in specific root mortality rates upon soil

desiccation, as the N/B ratio showed a more than tenfold increase with the MAP reduction

along the transect in T. cordata, intermediate N/B slopes in C. betulus, A. platanoides,

and F. excelsior, and the lowest increase in Q. petraea. We interpret these patterns as a

hint that Q. petraea is better able than the other species to produce fine roots capable of

tolerating long-term reductions in soil moisture without suffering increased root

mortality. Physiological and genetic studies have to show whether this is due to a

principally different physiological constitution of the fine roots of this ring-porous

species, or is caused by the specific acclimation or adaptation of different oak populations

along the precipitation gradient. An alternative explanation for increasing FRN amounts

and N/B ratios with a MAP reduction is that the drier and somewhat warmer climate

toward the east of the transect reduces root decomposition rate and thus leads to the

accumulation of FRN, independent of changes in root mortality rate. In the absence of

decomposition data, this possibility cannot be ruled out, but it is not very likely. The

gradients in MAT (7.9–9.9 °C), soil pH (4.2–6.5) and C/N ratio (10.7–18.9) along the

transect were only moderate and the latter factors did not covary significantly, either with

MAP or FRN. Moreover, site differences in decomposition rate should mainly affect the

finest root necromass particles, which were not investigated here. We assume that the

analyzed larger, less fragmented necromass fractions (>10 mm length) reflect more
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directly the root mortality processes, where decomposition likely has started only very

recently.

3.5.2 Effects of the 2018 Summer Drought on Fine Root Biomass and Belowground C

Allocation

It is noteworthy that none of the species showed a decrease in mean FRB across the

transect after the severe 2018 summer drought (in C. betulus, a non-significant tendency

for a decrease existed). The 2018 drought with summer precipitation amounts 55–73 %

lower than the long-term average was extreme and resulted in the local dieback of more

sensitive tree species (Picea abies, Fagus sylvatica) in the region. This indicates that all

five species must be relatively tolerant of soil desiccation compared to other major timber

species, and that precipitation is playing only a secondary role for the standing FRB of

these species. It is possible that our FRB figures are influenced by temperature and other

seasonal influences unrelated to summer drought, as fine root production and biomass

stocks typically peak between April and July in central European broadleaf tree species,

as is visible from studies in beech (Ladefoged, 1939; Meier and Leuschner, 2008a) and

beech-oak mixed forests (Hertel and Leuschner, 2002). Thus, we cannot exclude with

certainty that the biomass figures observed in September 2018 represent reduced values

which are influenced by the typical seasonal FRB decrease that should have taken place

later in summer. However, we did not observe a FRB reduction. Moreover, if the

reduction had occurred, it should have been similar along the transect. In addition, the A.

platanoides data from the moist transect end indicate the opposite, a FRB increase from

the 2017 to the 2018 inventory.

Higher FRN amounts in three of the species (A. platanoides, F. excelsior, and Q.

petraea) in 2018 (in comparison to 2017) indicate that drought has increased root

mortality. Interestingly, the severe drought drove all N/B ratios to converge on a higher

level, or, in other words, all species lost the MAP dependence of necromass and N/B ratio

after the drought. This suggests that the mortality increase was greater at the moister than

the drier sites in all species except for Q. petraea, which largely supports hypothesis 3.

We explain this pattern with a generally higher drought sensitivity of the root systems at

MAP > ca. 700 mm year−1, which caused higher root mortality and leveled all FRN

differences that exist along the transect in normal years. In T. cordata and C. betulus,

FRN and N/B ratio were also higher at the moister sites in 2018 than 2017, but this

response was compensated by lower FRN amounts at the drier sites. Thus, our second

hypothesis is only partly supported.
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In a meta-analysis about stand- and soil-related drivers of fine root N/B ratio across

biomes, Wang et al. (2018) found elevated N/B ratios at reduced precipitation only in

forests dominated by ECM tree species, but not in AM forests. This suggests an influence

of mycorrhizal type on the drought response of the root system. Liese et al. (2019)

confirmed these findings in a mesocosm experiment for several temperate tree species

(including Acer, Fraxinus, Carpinus, Tilia, and Quercus taxa), demonstrating a much

greater drought-induced root lifespan reduction in ECM than AM species (40–56% vs.

0.5–13%). Our data from three ECM (C. betulus, T. cordata, and Q. petraea) and two

AM species (A. platanoides and F. excelsior) do not support this conclusion, as Q. petraea

was the species with the smallest N/B response to a MAP reduction at the drier end of the

gradient. The response to the 2018 summer drought even revealed the opposite response

pattern to that found by Wang et al. (2018) and Liese et al. (2019), with a significant

increase in the N/B ratios in the AM species A. platanoides and F. excelsior, while all

ECM species did not respond. One possible explanation for the discrepancy between the

results of the Wang et al. (2018) and Liese et al. (2019) studies and our investigation is

that largely different spatial scales (comparison of biomes with different climates; sapling

experiment; regional gradient study) are considered.

3.5.3 Root Morphological Change in Response to Reduced Water Availability

Trees can adapt to shortages in water or nutrients by increasing the absorptive capacity

of the root system in two different ways: by enhancing root production and maintaining

larger absorbing surface areas (extensive strategy), or by modifying root morphology and

physiology in order to increase uptake efficiency per root mass (intensive strategy,

Lõhmus et al., 2006; Ostonen et al., 2007). In contrast to the other four species, Q. petraea

showed characteristics of an intensive adaptation strategy by increasing SRA and the

number of root tips per root mass towards the drier sites according to the 2017 inventory,

while FRB remained constant. Q. petraea differed further from the other species by

showing no root tip shedding and no SRA reduction after the 2018 drought. A. platanoides

showed the opposite response with a FRB increase towards the drier sites, while root

morphology was not altered. The other three species maintained a constant FRB along

the gradient, but the marked FRN increase toward the drier sites points at elevated root

turnover and compensatory stimulation of fine root production under desiccation, which

can be viewed as attributes of an extensive strategy.

After the 2018 drought, all species except Q. petraea showed a marked dieback of root

tips and more distal thin rootlets. This resulted in the observed SRA reduction, which was
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particularly strong in T. cordata. The losses in the putatively most active finest rootlets

had not been replaced until September 2018, when sampling was conducted. We interpret

this response in 2018 as an indicator of belowground vulnerability to extreme drought,

which must have reduced the vitality and absorptive capacity of the fine root system of

F. excelsior, A. platanoides, C. betulus, and T. cordata.

3.5.4 Species Differences in the Belowground Drought Response

The fine root system of Q. petraea seems to be more resistant to both permanent

moisture reduction and severe drought events than that of T. cordata, C. betulus, F.

excelsior, and A. platanoides due to the following features: (1) Although fine root

necromass increased after the 2018 summer drought, the N/B ratio changed only a little

and it was roughly constant across the precipitation gradient. (2) Fine root morphology

and the number of root tips were not affected by the drought, indicating either low

sensitivity or rapid recovery in oak roots. This fits to findings from the

dendrochronological analysis of climate sensitivity (e.g., Kunz et al., 2018) and more

general comparative assessments of drought resistance of the species based on climate

envelopes (Leuschner and Ellenberg, 2017; Walentowski et al., 2017). On the other hand,

Q. petraea maintained the lowest fine root density in the topsoil and more generally seems

to produce a relatively small fine root system. Due to still-unknown morphological and/or

physiological properties, oak can also maintain its fine roots in dry periods instead of

shedding and partly replacing them. This rather “conservative” strategy with lower

maintenance costs and a more or less constant root biomass during wet and dry periods

was also observed in other Central European oak forests by Leuschner et al. (2001b), who

compared Q. petraea to F. sylvatica and concluded that this strategy comes with the

drawback of inferior interspecific competitive ability.

The other four species have in common that they all show indications of a somewhat

greater belowground vulnerability to severe soil drought, but they pursue different

strategies. T. cordata seems to be the most vulnerable species due to large drought-

induced reductions in SRA and tip frequency, which is in line with assessments based on

leaf and stem level data (Köcher et al., 2009; Leuschner et al., 2019). F. excelsior is

unique due to its high fine root density, which may secure water uptake in drought periods

and increase the species’ competitive ability in mixed stands and on very shallow and dry

soils.

Our results suggest that co-occurring tree species differ in the drought sensitivity of

their fine root systems, which could play an important role with respect to the species’
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fitness and drought survival. Yet, much less is known about the belowground growth and

stress tolerance strategies of trees than about aboveground responses.

This case study suffers from a number of shortcomings that are introduced with the

study design and the methods used, which may bias some of the conclusions. First, the

study design is not fully symmetric, as not all tree species occur at all sites, which

weakens the power of statistical analysis. Second, our FRN analysis covers only the larger

fragments, as the finest particles could not be identified to the species level. Consideration

of the complete root necromass pool might have led to somewhat different results. Finally,

edaphic inhomogeneity introduces some noise in the climatic signal retrieved from the

precipitation gradient, which may weaken some of the conclusions. Fortunately, climate

and soil properties did not covary systematically. While the retrieved patterns seem

plausible, they need verification by additional gradient studies in other regions and with

additional species.

We conclude that the comparative analysis of fine root biomass, necromass, and fine

root morphology along precipitation gradients, and in moist and dry periods, has the

potential to provide valuable information on the belowground drought sensitivity of tree

species, thereby complementing results from canopy- and leaf-level studies.
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3.6 Appendix B

Table 3.6: Results of linear mixed effects models for fine root bio- and necromass in dependence of actual
precipitation in the year prior to sampling (act.PRCP). Given are estimates of the fixed effect (fine root trait
~ species:MAP), marginal pseudo-R² for the fixed effect (calculated according to Nakagawa and Schielzeth
(2013)), and p-values. p-values below 0.05 are given in bold. All fine root traits were log-transformed in
advance.

Model 2017 (Moist) 2018 (Dry)
Species Estimate Pseudo r² p-value Estimate Pseudo r² p-value
Fine root biomass ~ act.PRCP
Fraxinus excelsior −0.0003 0.00 0.805 0.0007 0.00 0.543
Carpinus betulus −0.0007 0.03 0.650 −0.0008 0.02 0.544
Acer platanoides −0.0066 0.33 <0.001 −0.0006 0.02 0.630
Quercus petraea 0.0041 0.15 0.013 0.0003 0.00 0.824
Tilia cordata −0.0028 0.04 0.313 −0.0015 0.07 0.447
Fine root necromass ~ act.PRCP
Fraxinus excelsior −0.0096 0.30 0.003 −0.0032 0.06 0.152
Carpinus betulus −0.0087 0.14 0.017 0.0013 0.00 0.622
Acer platanoides −0.0147 0.48 <0.001 −0.0031 0.06 0.227
Quercus petraea −0.0001 0.00 0.975 0.0008 0.00 0.750
Tilia cordata −0.0247 0.43 <0.001 0.0000 0.00 0.994
Necro-/biomass-ratio ~ act.PRCP
Fraxinus excelsior −0.0094 0.32 <0.001 −0.0038 0.07 0.089
Carpinus betulus −0.0077 0.12 0.014 0.0021 0.01 0.415
Acer platanoides −0.0079 0.24 0.009 −0.0024 0.04 0.345
Quercus petraea −0.0040 0.06 0.192 0.0005 0.00 0.825
Tilia cordata −0.0220 0.40 <0.001 0.0017 0.03 0.668
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Figure 3.5: Fine root biomass (a), necromass (b) and necromass/biomass ratio (c) in the topsoil (0–10 cm)
of the five species in relation to actual precipitation in the year prior to sampling in the 2017 and 2018
inventories. Data points are tree-level values, lines represent conditional predictions of the linear mixed
effects model (the predictions of the fixed effect “MAP” for each species plus an intercept for each level of
the random factor “site”). Note the log-scaled y-axis. The corresponding p and pseudo-R2 values are
summarized in Table A1.
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Figure 3.6: Specific root area (a), fine root tips per root mass (b), and average fine root diameter (c) in the
topsoil (0–10 cm) of the five species in relation to mean annual precipitation (MAP) in the 2017 and 2018
inventories. Data points are tree-level values, lines represent conditional predictions of the linear mixed
effects model (the predictions of the fixed effect “MAP” for each species plus an intercept for each level of
the random factor “site”). Note the log-scaled y-axis. The corresponding p and pseudo-R2 values are
summarized in Table 3.3.
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Figure 3.7: Principal components analysis (PCA) biplot of the 2017 fine root inventory. All data are
aggregated on site and species level.

Figure 3.8: Principal components analysis (PCA) biplot of the 2018 fine root inventory. All data are
aggregated on site and species level.
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4.1 Abstract

Climate warming and a rise in evaporative demand expose forests to increasing stress,

challenging silvicultural planning in many temperate forest regions. As some major

timber species are drought susceptible, the choice of native broadleaf minor timbers with

assumed higher drought tolerance is a promising alternative option. However, their

growth performance and vitality in a warmer and drier climate are not well known. We

studied tree-ring chronologies of the Central European minor timbers Acer platanoides

L., Fraxinus excelsior L., and Tilia cordata Mill. in comparison to the widely planted

Quercus petraea Matt. Liebl in different mixed stands along a precipitation gradient in

Central Germany and analyzed the sensitivity of radial growth to climatic drivers and

severe drought events with the aim to compare the species’ drought tolerance. While

growth responded in all four species positively to summer (or spring) precipitation and

negatively to higher summer temperature and climatic aridity, climate sensitivity of

growth decreased in the period 1967-2016, proving non-stationarity. Superposed epoch

analysis revealed larger growth reduction during severe drought in the diffuse-porous

species (A. platanoides, T. cordata) than the ring-porous species (Q. petraea, F.

excelsior), but resilience was high in all species. Moreover, none of the species showed

negative growth trends with recent climate warming, and drought sensitivity was not

higher at drier sites, suggesting a considerable acclimation and adaptation potential to

increasing drought stress. As all four species proved to be fairly drought tolerant, they

deserve broader consideration in silvicultural concepts targeted at adapting production

forests to climate warming.

Keywords: acclimation, Acer platanoides, dendroclimatology, dendroecology,

Fraxinus excelsior, growth resilience, Quercus petraea, Tilia cordata, tree-rings
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4.2 Introduction

Accelerated climate warming since the 1980s (IPCC, 2014) and the predicted future

increase in the frequency and severity of summer heat-waves (Schär et al., 2004)

challenge silvicultural concepts in Central Europe. In this region, some of the main timber

species seem to be relatively susceptible to drought and possibly also heat, notably

Norway spruce (Picea abies (L.) H. Karst.; Spiecker, 2000), European beech (Fagus

sylvatica L.; Bréda et al., 2006; Leuschner, 2020) and Scots pine (Pinus sylvestris L.;

Rigling et al., 2013). This became obvious during the extreme drought and heat years

2003, 2018, and 2019 that caused widespread vitality loss and mortality increase in P.

abies, F. sylvatica, and locally also P. sylvestris, as well as in other coniferous and

broadleaf tree species (Schuldt et al., 2020; Walthert et al., 2021). F. sylvatica and P.

abies suffered distinct growth declines over the past decades especially in regions of

Central Europe with mean annual precipitation sums of less than ca. 700 mm and on

shallow soils (Leuschner, 2020; Mäkinen et al., 2002; Scharnweber et al., 2011;

Zimmermann et al., 2015).

As a response, forest ecologists and foresters have proposed to reduce stem density in

drought-affected stands, to replace monocultures by mixtures, and to introduce more

drought-resistant native and non-native temperate timber species (Pretzsch et al., 2013;

Pretzsch et al., 2017). A favored strategy in many regions of Central Europe is to plant

productive conifers in mixture with native broadleaf trees assuming that mixtures are

more stable against environmental hazards, notably droughts (Steckel et al., 2020;

Vannoppen et al., 2019) and pests (Brockerhoff et al., 2017; Jactel et al., 2005). However,

drought exposure depends on the water consumption of the stand, and mixtures with

productive species can exhaust soil water reserves to a larger extent than monocultures

(Gebauer et al., 2012; Grossiord et al., 2014), which might expose one or more species of

the mixture to increased drought stress. This was shown, for example, for European beech

when planted in mixture with Norway spruce or Douglas fir (Pseudotsuga menziesii

[Mirbel] Franco; Pretzsch et al., 2020; Thurm et al., 2016). Thus, doubts remain as to

whether species mixing alone will be an effective measure to achieve a higher tolerance

of temperate production forests to future drought and heat waves. It appears that the

choice of suitable drought-tolerant tree species is more decisive for meeting the

challenges of climate warming than the silvicultural options of species mixing and stand

thinning alone. This requires information about the drought tolerance of the prospective

timber species, which is available in Central Europe only for a few widely planted species
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such F. sylvatica, P. abies, and P. sylvestris, but is mostly lacking for putatively more

drought-tolerant alternative native tree species.

In drought-prone regions in Central Europe, the promotion and establishment of

alternative, more drought-tolerant species is broad consensus in silviculture, but the

criteria for the choice of species are heavily debated. A widely preferred option is the

introduction of non-native conifers with proven or assumed higher drought tolerance,

such as Pseudotsuga menziesii and Pinus nigra J.F. Arnold (Eilmann and Rigling, 2012;

Isaac-Renton et al., 2014). However, this approach raises concerns regarding the species’

invasive potential and associated negative effects on native biodiversity (Felton et al.,

2016), unpredictable risks regarding future susceptibility to pests (Roques et al., 2019),

and soil acidification by conifers (Cremer and Prietzel, 2017; Hobbie et al., 2006). For

that reason, concepts to admix and promote native, putatively drought-tolerant species

that are currently only secondary timbers in Central Europe, are gaining growing interest

(Brang et al., 2008; Grundmann and Roloff, 2009; Kunz et al., 2018; Vitali et al., 2017).

The tree flora of Central Europe contains several tree species of the genera Acer,

Carpinus, Fraxinus, Quercus, Sorbus and Tilia, which occur also in the more continental

climate of eastern Central and Eastern Europe, indicating that they might be more drought

tolerant than the major timbers. Scattered information from ecophysiological studies on

juvenile or mature trees additionally suggest that Acer platanoides L. (Norway maple),

Fraxinus excelsior L. (European ash), and Tilia cordata Mill. (Small-leaved lime) may

be promising candidate species with a putatively higher drought tolerance (Hemery et al.,

2010; Jaegere et al., 2016; Köcher et al., 2009; Kunz et al., 2016; Leuschner et al., 2019;

Leuschner and Meier, 2018; Scherrer et al., 2011; Schumann et al., 2019).

The bulk of dendroecological studies in Central Europe have dealt with the

economically most important tree genera (Picea, Pinus, Fagus, and Quercus), while the

minor timber species have only rarely been studied. The dendroecology of A. platanoides

has been compared to that of sessile oak (Quercus petraea Matt. Liebl) and F. sylvatica

by Zimmermann et al. (2015) in Central Germany and by Kunz et al. (2018) in south-

west Germany with partly diverging conclusions. In terms of radial growth patterns, T.

cordata turned out to be more drought tolerant than F. sylvatica in Belgium (Latte et al.,

2020), but the results from this moist and oceanic climate may only partly be transferable

to more continental climates. Most of the published dendroecological studies on F.

excelsior were either conducted under climates very different to that of Central Europe,

or the study focus did not allow for a comparative assessment of the species’ drought



DENDROECOLOGY

119

tolerance (Jalilvand, 2008; Koval and Maksymenko, 2020; Roibu et al., 2020; Weemstra

et al., 2013). According to the study of Zimmermann et al. (2015) in mixed stands, F.

excelsior is similarly drought tolerant as Q. petraea, and both species are more tolerant

than F. sylvatica.

To fill the knowledge gap with respect to the drought tolerance of minor broadleaf

timber species in Europe’s temperate forests, we studied the growth patterns and climate

response of A. platanoides, F. excelsior and T. cordata in comparison to Q. petraea, a

major timber species in Central Europe that is dendroecologically well studied (Härdtle

et al., 2013; Mette et al., 2013; Mayer et al., 2020; Scharnweber et al., 2011; Zang, 2011)

and known to be drought-tolerant. The study was conducted in mixed forests along a

precipitation gradient from sub-oceanic to sub-continental climate (ca. 900 to 500 mm

annual precipitation) in Central Germany, i.e. from hydrologically optimal conditions

close to the assumed drought limit of the species. The species sample consists of two ring-

porous (Q. petraea, F. excelsior) and two diffuse-porous species (A. platanoides, T.

cordata), representing two tree functional types with a likely different climate sensitivity

of growth (Elliott et al., 2015). In 3 to 7 stands per species, we investigated temporal

changes in climate-growth relationships with a moving window approach (Biondi, 1997)

for the last 50 years, testing the common assumption of stationarity in the climate

dependence of growth (Wilmking et al., 2020). For selected climatically defined

droughts, we conducted superposed epoch analyses (SEA) to quantify growth depressions

and lag effects, and calculated growth resistance and resilience indices (Lloret et al.,

2011).

Based on earlier dendroecological studies in diffuse- and ring-porous species in

temperate forests (Cavin et al., 2013; Muffler et al., 2020; Zimmermann et al., 2015), we

formulated the following four hypotheses that guided our research: (i) Summer drought

and heat are the main climatic determinants of radial growth in all four species. (ii) The

sensitivity of radial growth to low summer precipitation and summer heat decreases

toward the drier sites due to local adaptation. (iii) Radial growth is more resistant to

summer drought events in the ring-porous than the diffuse-porous species, while growth

resilience is similar. With complementary data from earlier studies on the drought

sensitivity of the hydraulic system and the fine root system (Fuchs et al., 2020, Fuchs et

al., submitted), and information on crown defoliation of the same species in a severe

drought, we aimed at developing a comparative assessment of the suitability of A.
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platanoides, F. excelsior and T. cordata for Central European silviculture in a future drier

and warmer climate.

4.3 Material and methods

4.3.1 Study sites and tree species

Eight study sites were selected along a precipitation gradient in the planar to colline

belt (110-440 m a.s.l.) of Central Germany. The climate is cool temperate with mean

annual temperatures (MAT) ranging from 7.5 to 9.6°C and mean annual precipitation

(MAP) from 502 to 894 mm, with cooler and moister climate found in the west and

warmer and drier climate in the east (Figure 4.1, Table 4.1).

The four investigated tree species (Acer platanoides, Fraxinus excelsior, Quercus

petraea, and Tilia cordata) are widespread in Central European broadleaf mixed forests,

when Fagus sylvatica, the dominant species of Central Europe’s natural forest vegetation,

is absent. They occur mostly in communities assigned to the phytosociological alliances

Carpinion betuli (oak-hornbeam forests) and Tilio-Acerion (mixed maple slope forests,

Leuschner and Ellenberg, 2017). All four species are thought to be more drought tolerant

than F. sylvatica (Leuschner, 2020), which is reflected in their occurrence in the more

continental east of Europe. While Q. petraea is a primary timber species with high

economic importance in most Central European countries on drier and more acidic soils,

the other three species are only rare secondary timbers.

Figure 4.1: Map of the study region between the cities of Göttingen and Halle/S. in Central Germany with
the precipitation gradient from west to east. The study sites are marked with red dots, the background colors
indicate the long-term mean growing season precipitation (MGSP, April – September, 1967 - 2016) in mm.
The area with MGSP >500 mm north-east of Göttingen is the Harz mountain range.
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Due to their widespread but infrequent occurrence in Central Europe, not all of the

four species are present at each site. F. excelcior and Q. petraea occurred at seven sites

along the transect, and A. platanoides and T. cordata at only five sites. Unfortunately, we

had to exclude two stands in case of T. cordata due to a large numbers of missing rings,

and poor cross-dating results that did not match the criteria for trustworthy chronologies.

All eight sites consisted of several neighboring mixed and species-rich hardwood forest

stands of variable species composition, and the target species grew in a maximum

distance of several hundred meters to a few kilometers within those sites. The local

edaphic and climatic conditions were investigated separately for those species that did

not grow in close proximity to each other in the mixed stands (Table 4.1).

Primary criteria for stand selection were the presence of at least 12 (co-)dominant

individuals of a given species in the upper canopy, no groundwater influence, and the

absence of steep slopes and stony or very shallow soils. We aimed at selecting mature

trees of about 90-120 years in age growing on silty to loamy soil of at least 40 cm of soil

depth, but these conditions could not always be met regarding stand age and soil texture

(cf. Table 4.1). To account for differences in soil texture, we included plant-available soil

water capacity (AWC) as an additional factor besides climatic variables in the analysis of

tree growth responses.

4.3.2 Climate

We used monthly precipitation and temperature data provided by the German

Meteorological Service (DWD, Deutscher Wetterdienst, Offenbach, Germany) as gridded

datasets with 1 km-mesh width, which provides precise local climatic data (Kaspar et al.,

2013; Maier and Müller-Westermeier, 2010). The largest distance between any of our

study sites and a weather station was 7.1 km. All long-term means were calculated for the

investigation period 1967-2016.

The non-dimensional, multi-scalar standardized precipitation-evapotranspiration

index (SPEI) was calculated with the R package SPEI using monthly precipitation sums

and potential evapotranspiration data based on the approach of Thornthwaite (1948). To

conduct correlation analyses with monthly climate data, we calculated the SPEI for a three

months-window, assuming that drought conditions in the current month mainly depend

on precipitation and evapotranspiration patterns in the recent and the two preceding

months. In order to identify drought years in a climatological sense, we used the SPEI

score of the month August calculated with a six months-window (SPEIsummer) to consider

the drought conditions of the main vegetation period in combination with the spring and
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early summer conditions as the period with highest physiological relevance. By

definition, a drought year was characterized by a SPEIsummer <-0.84, a threshold also used

by Sohn et al. (2016) in a study in a cold-temperate climate and the SPEI Global Drought

Monitor (http://sac.csic.es/spei/map/maps.html).

Mean growing season precipitation (April – September; MGSP) does not show a clear

trend during the study period from 1967 to 2016, while mean growing season temperature

(MGST) increased by roughly 1°C (Figure 4.2). The warming was associated with a

decrease in the standardized precipitation evapotranspiration index (SPEI; Vicente-

Serrano et al., 2010) from +0.6 to -0.4 from 1967 to 2016.

Figure 4.2: Temporal variation and long-term trend (25 year moving average) of growing season
precipitation, temperature and SPEI (standardized precipitation-evapotranspiration index) in the period
1965-2016 in the study region (averaged over all study sites).

4.3.3 Edaphic conditions

Per site, soil samples were collected at three soil depths (0-10 cm, 10-30 cm, 30-60

cm), analyzed for soil chemical and physical parameters and subsequently averaged. We

determined soil texture, bulk density, stone content (gravel >2 mm), and soil depth (using

a Pürckhauer soil corer). Soil chemical variables quantified were soil pH (measured in

H2O), soil carbon and soil nitrogen content (measured with gas chromatography). Values

reported in Table 4.1 are weighted means of the upper 60 cm of the soil. To estimate soil

hydrologic characteristics (van Genuchten parameters; van Genuchten, 1980) from bulk

http://sac.csic.es/spei/map/maps.htm
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density and soil texture data, we employed the pedo-transfer functions proposed by

Schaap et al. (2001) using the module “ROSETTA light” implemented in the software

RETC (version 6.02, van Genuchten et al., 1991). Based on the van Genuchten

parameters, we modelled water retention curves and estimated the soil water content at

field capacity (soil matric potential of -300 hPa) and at the permanent wilting point (-1.5

MPa). Subsequently, the soil capacity for plant-available water (AWC) was calculated as

the difference between these two water contents. The profile total of AWC (in mm) of a

given stand was obtained by adding the AWC values of the three measured layers for the

0-60 cm profile, and extrapolating AWC to 120 cm depth or to bedrock depth by assuming

uniform soil texture below 60 cm depth.

4.3.4 Sampling and processing of wood cores, and quality assessment of chronologies

At each study site, 12-18 dominant or co-dominant tree individuals from the upper

canopy layer of each present species were cored in spring 2017. One core per tree (322

cores in total) was taken at breast height in the direction, where the influence of tension

wood and other anomalies was assumed to be smallest. The cores were planed with a core

microtome (WSL, Zürich, Switzerland; Gärtner and Nievergelt, 2010), colored with

safranin and chalked. Tree-ring widths (TRW) were measured with a Lintab digital

positioning table (Lintab 5, Rinntech, Heidelberg, Germany) using the software TSAP-

Win v. 4.67c (Rinntech, Heidelberg, Germany).

Cross-dating and synchronization of the tree-ring series were performed both visually

and by means of statistical analysis in TSAP-Win, employing the interval-sign test

(“Gleichläufigkeit”, Eckstein and Bauch, 1969) and calculating t-values (Baillie and

Pilcher, 1973). Several ring series could not be synchronized, leaving 249 cross-dated

tree-ring series for further analysis (9-13 per site and species).

We applied conservative and rigorous detrending techniques, since our stands differed

in age and management intensity, and we focused on single-year climate-growth

interactions and short-term reactions to drought events. Flexible cubic smoothing splines

with 50% frequency cut-off at 25 years were used to detrend and standardize the raw ring-

widths series and we removed first-order autocorrelation by autoregressive modelling to

eliminate age- and management-related trends and to accentuate year-to-year variability

(Cook and Peters, 1981; Speer, 2010). Following Thurm et al. (2016), we additionally

used basal area increment (BAI) time series and detrended them in the same manner as

the ring-width series. All analyses were then carried out with detrended ring-width and
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BAI data, revealing very similar results for both procedures. We therefore report only the

results of the detrended ring-width index series.

Chronologies were built for all sites and species with Tukey’s bi-weight robust mean

(Cook and Kairiukstis, 1990) and truncated to the period of 1967-2016 to exclude younger

tree life stages. The quality and strength of the common signal of the chronologies was

assessed by means of the inter-series correlation (Rbar) and the expressed population

signal (EPS) of the 50-year time series (Table 4.2). EPS was >0.85 in 20 of the 22

chronologies (0.84 and 0.80 in the other two). Rbar was further calculated for the

chronologies in a 20-year moving window to search for temporal changes in growth

synchronicity.

To assess long-term trends (only for Figure 4.9, Appendix C), ring-width series were

age-detrended using the regional curve standardization (RCS) method (Biondi and

Qeadan, 2008; Briffa et al., 1992). The regional age trend of all investigated species was

estimated by aligning all tree-ring series per species based on the cambial age and the

estimated average growth curve was used to detrend single series. Subsequently, RCS-

chronologies were built using Tukey’s bi-weight robust mean (Figure 4.9, Appendix C).

All detrending procedures and the statistical analyses of chronologies were performed

with the software R (version 4.0, R Core Team, Vienna) using the package

“dendrochronology program library in R”, dplR (Bunn, 2008).

4.3.5 Climate sensitivity analysis

Climate-growth relationships were analyzed with the R package treeclim (Zang

and Biondi, 2015) by exploring the correlation between various current-year and

previous-year climate parameters and annual ring width indices in the residual

chronologies. With 1000-fold bootstrapping against random climate-growth pairs of the

respective chronologies, the 95%-confidence intervals of the correlation coefficients were

calculated and used to decide whether a coefficient was significantly different from zero

or significantly different from another coefficient (when comparing the correlation

coefficients of different chronology sections).

Several approaches were applied to investigate temporal and spatial variation of the

climate sensitivity of growth: (1) Principal climate-growth relationships of the four

species and different sites were calculated for the whole study period of 50 years between

monthly precipitation, temperature and SPEI values of the previous or current season and

annual radial increment to compare species and sites in terms of the general drought and
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heat sensitivity of growth, and to identify the climatic parameters with largest influence.

(2) After having identified the six most influential aggregated climatic parameters

(previous-summer precipitation, current-spring precipitation, current-summer

precipitation, previous-summer temperature, winter temperature, current-summer

temperature), we calculated correlation coefficients for these parameters using a moving

window approach (window size: 20 years, window offset: 1 year) to search for temporal

change over the 50 years in the sensitivity of growth to these climatic drivers. (3) Due to

the finding that the influence on growth of several factors changed markedly between the

first (1967-1991) and the second half of the investigation period (1992-2016), we

repeated the correlation analyses separately for the first and second 25 years of the period

and tested for significant differences in the correlation coefficients of the two periods. We

further searched for spatial variation in the trends of growth sensitivity to climatic aridity

(SPEIsummer) along the precipitation gradient using linear models that relate the correlation

coefficients of this relation to mean growing season precipitation (MGSP) and AWC at

the respective site (cf. Weigel et al., 2018; and Muffler et al., 2020).

4.3.6 Drought response: pointer years, superposed epoch analysis, resistance and

resilience indices

For exploring whether synchronous negative growth departures increase in frequency

over time or with site aridity, negative pointer years were analyzed based on Cropper-

values (Cropper, 1979) with normalization in a 5-year moving window (cf. Neuwirth et

al. 2007). Thresholds for weak, strong, and extreme negative pointer years were 0.8, 1.2,

and 1.5 standard deviations of growth decline, respectively, for at least 60% of the

population (Figure 4.13, Appendix C).

To avoid bias due to the pre-selection of pointer years according to growth

performance (Schwarz et al., 2020), we based the definition of a climatic drought year on

the SPEIsummer threshold of < -0.84 only, independent of the degree of growth depression.

This resulted in the identification of 9-13 drought years at the different sites.

The selected drought years were used for superposed epoch analysis (SEA) of growth

depressions and for calculation of the indices of growth resistance and resilience (as

defined by Lloret et al., 2011). An epoch of 11 years (five years before and after the

drought year) was chosen as recommended by Kunz et al. (2018). SEA calculates the

mean departure in growth performance of each year in the epoch from the mean of all

analyzed epochs per chronology (Lough and Fritts, 1987). Bootstrapping (5000-times)

against randomly drawn epochs from the respective chronology was used for defining
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95% confidence intervals of the departure. SEAs were performed with the R package

dplR (Bunn, 2008).

The indices of growth resistance and resilience were calculated for each tree and each

drought year using detrended ring-width index data. Resistance was defined as the

drought/pre-drought and resilience as the post-drought/pre-drought ratio of growth,

averaging over the five pre-drought and five post-drought years (Lloret et al., 2011). The

index values were averaged across the different drought years for a given tree and tree-

wise mean values were used for further analyses. To test for significant differences in

indices between the species, linear mixed effects models (R package lme4, Bates et al.,

2015) were fitted, where “species” was introduced as fixed effect and the “site×species”

interaction as a random intercept in order to take the hierarchical variance structure of the

dataset into account and correct for random site effects per species. Significant differences

between species were identified using Tukey-adjusted p-values with degrees of freedom

based on Satterthwaite’s approximation. To test whether the indices varied across sites,

we fitted sets of linear mixed effects models for every species with MGSP and AWC as

fixed effects and “site” as a random intercept to account for the hierarchical variance

structure of the dataset. Various other climatic and soil physical or chemical parameters

were tested, but none had a significant effect on growth resistance and resilience in any

of the species. P-values were calculated with the R package lmerTest (Kuznetsova et

al., 2017) with degrees of freedom based on Satterthwaite’s approximation and R2 values

calculated according to Nakagawa and Schielzeth (2013).

4.4 Results

4.4.1 General characteristics of the chronologies and long-term trends in radial growth

Mean annual tree-ring width (TRW) varied between 1.2 and 2.7 mm in Q. petraea, A.

platanoides and T. cordata and between 1.7 and 3.0 mm in F. excelsior (Table 4.2)

without a clear trend from the moister western to the drier eastern sites. Mean basal area

increment (BAI) across all sites in the 50-year period was higher in the ring-porous

species (23.5 and 23.2 cm2 year-1) than in the diffuse-porous species (16.8 and 16.8 cm2

year-1). Mean sensitivity of radial growth was nearly twice as high in the two diffuse-

porous species (0.39-0.49) as compared to the two ring-porous species (0.20-0.27; Table

4.2). Despite marked increases in temperature and climatic aridity since the 1980s, none

of the four species showed growth trends over time that were consistent across the sites,
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neither in the 50-year study period since 1967 nor in the more distant past, and neither in

the age-detrended index nor in the raw data (Figure 4.9 and 4.10, Appendix C).

The inter-series correlation (Rbar) of the detrended chronologies, i.e. the growth

synchronicity within a population, was higher for A. platanoides and Q. petraea than for

F. excelsior and T. cordata (Table 4.2). In most cases, growth synchronicity either

increased or decreased during the study period, but a clear pattern among species and sites

with different precipitation levels did not appear (Figure 4.16, Appendix C).

Table 4.2: Statistics of ring-width series (raw data) and index-based chronologies (all truncated to the
period 1967-2016) of the four species at the different sites. MRW = mean ring width of all series ± SD, AC
(1) = first order autocorrelation ± SD, MBAI = mean basal area increment of all series ± SD, Rbar = inter-
series correlation, MS = mean sensitivity, EPS = expressed population signal. The different sites of a species
are sorted in ascending order of mean growing season precipitation.

4.4.2 Climate sensitivity of growth

The SPEI index, which combines precipitation and temperature effects, showed a

significant positive influence on growth through a more humid weather (positive SPEI)

in the current and previous year’s summer months (May-August) in all four species and

Site Species n series MRW (mm) AC (1) MBAI (cm2) Rbar MS EPS
HA A. platanoides 12 2.65 ± 0.49 0.56 ± 0.20 20.30 ± 5.05 0.47 0.49 0.92
HK A. platanoides 11 1.33 ± 0.40 0.62 ± 0.15 12.91 ± 3.27 0.45 0.39 0.90
HL A. platanoides 12 1.33 ± 0.46 0.48 ± 0.19 13.74 ± 5.62 0.56 0.48 0.94
LB A. platanoides 11 2.17 ± 0.70 0.47 ± 0.16 21.87 ± 7.46 0.61 0.41 0.95
RH A. platanoides 11 1.51 ± 0.34 0.52 ± 0.15 15.41 ± 6.02 0.54 0.4 0.93
HA F. excelsior 11 3.01 ± 0.88 0.40 ± 0.20 27.15 ± 8.82 0.33 0.27 0.84
ZR F. excelsior 12 1.68 ± 0.33 0.58 ± 0.11 19.32 ± 5.15 0.53 0.26 0.93
HK F. excelsior 11 1.95 ± 0.48 0.61 ± 0.20 21.72 ± 6.16 0.44 0.21 0.90
GW F. excelsior 13 2.70 ± 0.56 0.44 ± 0.10 19.66 ± 5.24 0.33 0.22 0.86
HL F. excelsior 13 1.93 ± 0.38 0.46 ± 0.09 21.23 ± 6.88 0.46 0.22 0.92
LB F. excelsior 12 3.00 ± 1.09 0.54 ± 0.15 31.60 ± 12.07 0.36 0.22 0.87
RH F. excelsior 11 2.29 ± 0.54 0.22 ± 0.11 23.90 ± 6.24 0.43 0.2 0.89
HA Q. petraea 11 1.38 ± 0.51 0.45 ± 0.25 19.83 ± 8.71 0.47 0.26 0.91
ZR Q. petraea 11 1.58 ± 0.59 0.63 ± 0.16 19.25 ± 6.98 0.48 0.26 0.91
HK Q. petraea 11 1.21 ± 0.50 0.38 ± 0.17 18.66 ± 6.89 0.45 0.22 0.90
GW Q. petraea 12 1.32 ± 0.42 0.36 ± 0.15 16.40 ± 5.60 0.51 0.21 0.93
HL Q. petraea 12 1.62 ± 0.37 0.53 ± 0.16 14.45 ± 3.83 0.66 0.32 0.96
HR Q. petraea 11 2.05 ± 0.51 0.47 ± 0.20 27.13 ± 7.36 0.47 0.22 0.91
LB Q. petraea 12 2.26 ± 0.60 0.52 ± 0.16 32.94 ± 12.87 0.48 0.25 0.92
HA T. cordata 9 1.86 ± 0.76 0.51 ± 0.13 18.72 ± 6.21 0.56 0.49 0.92
GW T. cordata 10 1.34 ± 0.34 0.48 ± 0.16 13.26 ± 2.97 0.28 0.44 0.80
RH T. cordata 10 1.48 ± 0.31 0.49 ± 0.14 18.50 ± 5.48 0.36 0.45 0.85

Raw ring-width data Chronologies
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at nearly all sites (Figure 4.3). While T. cordata and F. excelsior were supported equally

by a higher summer SPEI in the current and previous summers, A. platanoides and Q.

petraea responded more strongly to the current than the previous season. All four species

showed a positive effect of higher precipitation on radial growth, which was most

pronounced for current June rainfall in all species and visible at most sites. In the ring-

porous species Q. petraea and F. excelsior, growth was further stimulated by the

precipitation of current spring (February, March or April), while the influence of previous

summer precipitation was generally not significant (Figure 4.11, Appendix C). Less clear

was the influence of temperature, with all species showing a negative effect of higher

temperature in single months of current and previous year’s summer (Figure 4.12,

Appendix C). On the other hand, Q. petraea responded positively to mild winter and

spring temperatures at several sites, while F. excelsior reduced growth after warm

Septembers in the previous year (Figure 4.12, Appendix C). Comparing the eight sites

along the precipitation gradient revealed no trends in the growth dependence on climatic

factors that could be explained by the decrease in MGSP. Q. petraea showed a weaker

SPEI influence at the intermediate sites HK and GW than at the moister and drier sites

(Figure 4.3).
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Figure 4.3: Correlation between radial growth (ring width index values) and the SPEI (standardized
precipitation-evapotranspiration index) for months in the previous and current year for the four species at
eight sites. The SPEI is calculated on a timescale of 3 months, because the drought conditions in the current
month mainly depend on precipitation and evapotranspiration patterns in the current and the two preceding
months. Months abbreviated with lower case letters refer to the previous year, months with capital letters
to the current year. Given is the size of the correlation coefficient and the significance of the relation (black
bars: p<0.05; grey bars: p>0.05). The color spectrum from orange to green indicates the position of the site
in the gradient of mean growing season precipitation. For site abbreviations see Figure 4.1.

The moving-window analysis of climate-growth relations in the 1967-2016 period

proved for all four species non-stationarity. For most of the aggregate climate variables

(averaging or summing over seasons instead of months), clear differences in the direction

and strength of the correlation became evident between the first and the second half of

the study period. In the majority of cases, a general trend towards declining growth

sensitivity to both temperature and precipitation-related variables in the last 25-year

period appeared (Figure 4.4). Especially for A. platanoides and F. excelsior, the positive

effect of precipitation and negative effect of temperature declined markedly in importance

at almost all sites over time. The correlation coefficient for the effect of temperature

(previous summer, winter and current summer) became more positive over the 50 years

in almost all species-site combinations, suggesting a diminishing negative effect and/or
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increasing stimulating effect of elevated temperatures. In case of Q. petraea, higher

winter temperatures became at nearly all sites a growth-stimulating factor over the past

two decades, which was not the case in the first 30 years. In contrast to the other three

species, Q. petraea did not show the general decline in its positive responsiveness to

precipitation. Yet, the positive effect of spring precipitation on growth became significant

at most sites only after 1995 (Figure 4.4).

Testing for differences between the climate-growth correlation coefficients of a

species for the first (1967-1991) and the second half of the investigation period (1992-

2016) confirmed in many cases significant changes primarily for the influence of winter

and current summer temperatures (Figure 4.5). All significant changes in temperature

correlation coefficients were positive, i.e. negative influences of temperature on growth

weakened or turned into a positive effect. In contrast, observed changes in the correlation

coefficients with previous and current summer precipitation were mostly negative, but

changes were significant in only a few cases. This suggests that the positive influence of

summer precipitation on radial growth tendentially decreased over time in the majority

of species.

Figure 4.4 (next page): Moving window analysis of climate-growth relationships in the four species at
eight sites for the period 1967-2016. Shown are the central years of the respective 20-year periods, testing
for the correlation between six aggregate climate variables and annual ring width indices. Given is the size
and sign of the correlation coefficient for the six relationships (red: negative relation, blue: positive relation,
black frame: p <0.05). Summer stands for June-August, Winter for December-February, spring for March
and April. The color spectrum from orange to green indicates the position of the site in the gradient of mean
growing season precipitation (orange: low, green: high).
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Figure 4.5: Change in the climate-growth correlation coefficients between the 1967–1991 and the 1992-
2016 period. The “+”/“-“ signs indicate positive/negative changes in the correlation coefficients,
respectively. Bold red signs represent significant changes (p < 0.05), grey shading stands for missing data.
Note: A positive change in the correlation coefficient can mean the switch from no to a positive correlation,
or a switch from a negative to no correlation, a negative change means a shift in the opposite direction; see
Figure 4.4 for a more detailed picture of temporal changes in the correlation coefficients.

Regressing the SPEIsummer-growth correlation coefficients against site specific MGSP

for the first and second half of the investigation period separately revealed strong spatial

trends for all species except Q. petraea in the first half of the investigation period (Figure

4.6). Sensitivity to SPEIsummer increased significantly towards the moister sites for

A. platanoides and F. excelsior (R2 of 0.89 and 0.55, respectively) and the same trend was

visible for T. cordata, which unfortunately could not be tested due to the low number of

sites in this species. These trends, together with the underlying positive influence of the

SPEI on growth, disappeared in the second half of the investigation period (Figure 4.6).

Regressing SPEIsummer-growth correlation coefficients against AWC (plant-available

water capacity of the soil) revealed no trends at all (data not shown).

HA ZR HK GW HR HL LB RH
+ - - - - A. platanoides
- - - - - - - F. excelsior
- - + - - - - Q. petraea
+ - - T. cordata
- - - - - A. platanoides
- + - - + - - F. excelsior
+ + + + + + - Q. petraea
- - - T. cordata
+ - - - - A. platanoides
- - - - - - - F. excelsior
- - - + - + + Q. petraea
+ - - T. cordata
- + + + + A. platanoides
+ + + + + + + F. excelsior
- - - - + + + Q. petraea
+ + - T. cordata
- + + + + A. platanoides
+ + + - + + + F. excelsior
+ + + + + + + Q. petraea
+ + + T. cordata
- + + - + A. platanoides
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Figure 4.6: Relationship between annual ring width indices and summer SPEI (= standardized
precipitation-evapotranspiration index of the month August, calculated for a 6-months window) for the four
species in dependence on mean growing season precipitation (MGSP) of the stand for the 25-year periods
1967-1991 and 1992-2016. Significant correlation coefficients are marked by red 95%-confidence interval
bars. Each dot represents one site per species; MGSP refers to the corresponding 25-year periods. The blue
regression lines with 95% confidence interval display significant relationships between correlation
coefficient and MGSP, non-significant regression lines are not shown.

4.4.3 Growth response to drought years

Negative pointer years did not show a trend over time in the 50-year study period in

any of the species, nor a clear pattern in dependence on MGSP (Figure 4.13, Appendix

C).

Superposed epoch analysis (SEA) conducted for 9-13 climatically defined drought

events revealed reduced growth in drought years for most site-species combinations, but

this pattern was significant at p<0.05 only in 5 of the 22 site-species combinations

(Figure 4.7). The negative growth deviations were stronger and more often significant in

the diffuse-porous than in the ring-porous species. F. excelsior did not show a single

significant growth reduction in any of the drought years, but revealed a lagged negative

growth departure one to three years after the drought at several sites. T. cordata showed

the strongest and most consistent lag effect after drought years with an always

significantly reduced increment in the first year after drought and at two of the three sites
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in the second year after drought as well (Figure 4.7). In three of the species, MGSP had

no influence on the pattern of post-drought growth response. Only A. platanoides showed

tendentially stronger and more often significant growth reductions towards the moist end

of the precipitation gradient (Figure 4.7).

Figure 4.7: Results of superposed epoch analyses on the response of radial growth of the four species at
the eight sites to drought events with a SPEIsummer < -0.84. Shown is the deviation of mean ring width in an
11-year period with the drought years in the center from the mean ring widths in all analyzed 11-year epochs
of the chronology. Significant departures (p<0.05) are shown in dark grey with red frame. The color
spectrum from orange to green indicates the position of the site in the gradient of mean growing season
precipitation (orange: low, green: high).

With respect to the two tested drought tolerance indices, A. platanoides showed the

lowest drought resistance, i.e. the strongest growth depression in drought years with a

median increment reduction of 21%, followed by T. cordata, F. excelsior, and Q. petraea

with 19%, 11%, and 8%, respectively (Figure 4.8). The differences between the species

were only significant between A. platanoides and the ring-porous species. Growth
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resilience, i.e. the ratio of post-drought to pre-drought increment, was similar among the

four species without significant differences and values close to 1 (Figure 4.8). This

indicates that all species regained their pre-drought increment level within less than five

years and were able to compensate possible lags in growth recovery in the first years after

drought that were visible in the SEA (Figure 4.7) by overshooting in the 3rd to 5th year

after drought.

Figure 4.8: Resistance and resilience of radial growth of the four species to selected droughts in an 11-year
window with the drought year in the centre of the period. All drought events with a SPEI < -0.84 (based on
the SPEI of the month August with consideration of a six-months window) in the study period were
considered. The indices were calculated using detrended ring width indices pooling for every species over
all sites and all identified drought years. Resistance is the growth depression in a drought year compared to
the 5 years prior to drought, resilience the ratio of mean radial growth in the five post-drought years relative
to the growth in the five years prior to drought. Different small letters indicate significant differences
between species based on Tukey-adjusted p-values from linear mixed effects models with degrees of
freedom based on Satterthwaite’s approximation. Number of trees was n = 57 for A. platanoides, n = 83 for
F. excelsior, n = 80 for Q. petraea, and n = 29 for T. cordata; the number of studied drought events varied
between 9 and 13, depending on sites.

We are aware that many studies use raw ring widths or raw BAI to calculate tolerance

indices (70% according to Schwarz et al. 2020). However, using detrended data seems to

be the safe choice when dealing with all the heterogeneity and irregular management
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effects that come with minor timber species and species-rich stands. Nevertheless, the

same patterns of the indices were found, when resistance and resilience were calculated

with raw BAI data (Figure 4.15, Appendix C).

No relationship was observed between measures of site-specific water availability

(MGSP or AWC) and growth resistance or resilience (Table 4.3). The marginal R2s of all

models were very low (0.02-0.12), indicating low explanatory power of the predictors; a

considerable portion of the variance was explained by random site-effects (site SD), but

most of the variance occurred between individuals (residual SD).

Table 4.3: Results of linear mixed effects models exploring the relationship between various environmental
variables and the tolerance indices growth resistance and resilience. Given are the scaled estimates for the
effect of MGSP (mean growing season precipitation) and AWC (soil capacity for plant-available water), as
well as the standard deviation for the random effect “Site” (Site SD), the residual standard deviation (Res.
SD), and marginal and conditional R2 values of the models. None of the fixed effects was significant at p <
0.05. As data were available for T. cordata only at three sites, this species is omitted here.

4.5 Discussion

4.5.1 Higher drought tolerance of the ring-porous species

We found a nearly twice as high mean sensitivity of radial growth for the diffuse-

porous species (A. platanoides, T. cordata) as compared to the ring-porous species (F.

excelsior, Q. petraea). This was linked to the ring-porous species’ lower growth

sensitivity to severe drought events, as revealed in the superposed epoch analysis (SEA),

Species Term Resistance Resilience
Acer platanoides, MGSP estimate -0.042 0.204
n = 57 AWC estimate -0.157 0.080

Site SD 0.681 0.234
Res. SD 0.894 0.884
Marg. Rsq. 0.026 0.064
Cond. Rsq. 0.384 0.164

Fraxinus excelsior MGSP estimate 0.065 -0.082
n = 83 AWC estimate -0.205 -0.380

Site SD 0.461 0.431
Res. SD 0.918 0.881
Marg. Rsq. 0.048 0.124
Cond. Rsq. 0.239 0.293

Quercus petraea MGSP estimate -0.051 0.335
n = 80 AWC estimate 0.193 -0.264

Site SD 0.578 0.777
Res. SD 0.893 0.742
Marg. Rsq. 0.028 0.094
Cond. Rsq. 0.316 0.567
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supporting our third hypothesis. A relatively low growth sensitivity to drought of

temperate ring-porous tree species is a well-recognized phenomenon (Kunz et al., 2018;

Meyer et al., 2020; Scharnweber et al., 2011; Zimmermann et al., 2015). While the high

drought tolerance of Q. petraea has been reported in many dendrochronological studies

(Cavin et al., 2013; Elliott et al., 2015; Kunz et al., 2018; Zang, 2011; Zimmermann et

al., 2015), much less is known about the drought response of F. excelsior. Our results

confirm the judgement of Zimmermann et al. (2015) that the drought tolerance of growth

of F. excelsior is comparable to that of Q. petraea.

A plausible explanation of the higher drought sensitivity of growth of diffuse-porous

species is provided by the different seasonality of cambial activity and the contrasting

hydraulic importance of early-wood formation in ring- and diffuse-porous species.

Earlywood formation in ring-porous species usually occurs before and during bud burst

(Barbaroux and Bréda, 2002), and the hydraulic capacity of ring-porous species is highly

dependent on these newly formed early-wood vessels. In fact, the bulk of the hydraulic

conductance in the stem xylem is provided by the current-year ring, while older vessels

typically suffer from drought- or frost-induced embolism formation (Cochard and Tyree,

1990; Michelot et al., 2012b).

Temporal avoidance of drought effects on cambial activity may be a main cause of the

reduced inter-annual variation in tree-ring widths (TRW) in ring-porous species. In

agreement with this interpretation, we did not find a single missing ring in any of the ring-

porous cores. Drought stress during spring has been identified as the single most

important climatic factor controlling radial increment in oak (Tardif and Conciatori,

2006). This is supported by the growth response to the 1976 drought with water deficits

already in spring, when negative growth departures were similarly strong in Q. petraea

and F. excelsior as in A. platanoides and T. cordata (Figure 4.14, Appendix C). However,

when the drought occurs later in the season, as usually does in Central Germany, ring-

porous species may show smaller growth reductions than diffuse-porous species.

4.5.2 Climatic drivers of radial growth

The SPEI index as a proxy of the climatic water balance had in all species a larger

influence on radial growth than precipitation or temperature alone, which suggests that

water availability acts together with the atmospheric evaporative demand in the control

of foliar, stem and root water status and thus cambial growth activity. Many

dendrochronological studies in Central European lowland forests have shown that the

growth of beech, oak and other broadleaf trees is primarily limited by moisture
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availability (Knutzen et al., 2017; Latte et al., 2016; Scharnweber et al., 2011). A reduced

TRW in dry summers might be caused by processes that impair the growth potential of

the stem cambium, among others reduced carbon gain due to partial stomatal closure,

turgor loss in cambial cells due to a reduction in the tree’s hydraulic capacity, and reduced

allocation of carbohydrates to radial growth due to enhanced investment in roots (Allen

et al., 2010; Bréda et al., 2006; Müller-Haubold et al., 2013). However, smaller annual

rings can also mirror an acclimation response of the tree to increase drought hardiness

through the production of thicker pit membranes and narrower and/or a smaller number

of conduits that accompany smaller tree rings (Fonti et al., 2013). This reduces hydraulic

efficiency, but increases hydraulic safety (Hacke and Sperry, 2001). Reduced radial

growth could then increase fitness in the longer term, and the growth reduction may

represent a strength rather than a weakness in the face of drought (Bréda et al., 2006;

Gessler et al., 2020, Lloret et al., 2011). In the absence of long-term mortality records of

the stands, it remains questionable whether the ring-porous species of our sample with

their lower responsiveness to summer droughts are more successful than the diffuse-

porous species.

The consistent influence of previous-year’s summer SPEI on the growth of F. excelsior

and T. cordata indicates that radial growth relies strongly on stored carbohydrates of the

past summer in these species (Kozlowski and Pallardy, 1997). In accordance, earlier

studies on F. excelsior also observed that the previous years’ summer climate explains

most of the current-year growth (Jalilvand, 2008; Koval and Maksymenko, 2020; Roibu

et al., 2020). Important carry-over effects on radial growth have also been found in other

temperate broadleaf species such as F. sylvatica (Di Filippo et al., 2007; Dittmar et al.,

2003; Lebourgeois et al., 2005; Müller-Haubold et al., 2015). In our study, A. platanoides

showed a significant and consistent influence of the previous summer only for the

negative temperature effect, but a much weaker influence of previous year’s precipitation.

For the radial growth of Q. petraea, in contrast, previous summer’s weather was relatively

unimportant, matching the generally lower susceptibility of oak growth to variation in

precipitation and temperature (Friedrichs et al., 2009b; Mérian et al., 2011; Michelot et

al., 2012a; Meyer et al., 2020). One possible explanation of species differences in the

importance of carry-over effects on radial growth is the extent of carbohydrate allocation

to the fine root system. Q. petraea seems to maintain a smaller fine root system than the

other species and its fine roots are less drought-sensitive than in the other species (Fuchs
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et al., 2020). Temporal shifts in the carbohydrate allocation to the root system might

therefore be less important in oak than in the other species.

4.5.3 Climate sensitivity of growth and drought acclimation

Our data demonstrate non-stationarity in the relationship between climate factors and

TRW during the last 50 years for all species with a major change in the correlation

patterns occurring in the 1980s/90s. All four species showed distinct and similar temporal

trends of the climate sensitivity of growth, notably a loss of temperature and summer

precipitation sensitivity from the 1970s and 1980s towards the 1990s and 2000s. This

unexpected trend was particularly strong in A. platanoides and F. excelsior and less clear

in Q. petraea. While age- and size-related processes often affect the climate-growth

relationships of trees (Carrer and Urbinati, 2004; Rozas, 2005; Trouillier et al., 2019),

this influence can be excluded as the predominant driver in our study, as the sensitivity

decline was observed across all age classes and in stands of different height and stem

diameter. For the same reason, an increase in competition intensity, which has been

shown to cause a gradual loss of climate sensitivity (Piutti and Cescatti, 1997; Rozas,

2001), can be excluded as a driver as well. The stands have been subject to repeated

selective cutting in the past, yet at different intervals and intensities. Since the climate-

growth response was similar, but the management regime different in the stands, low-

intensity timber extraction cannot be the underlying cause either. Thus, the ongoing

temperature increase and decrease in the SPEI in the growing season must be the principal

driver of the declining climate sensitivity of growth.

Our finding relates to the ‘divergence problem’ (D'Arrigo et al., 2008) and the ‘loss of

track’ phenomenon (Wilmking et al., 2020) that have been reported mostly in forests at

colder sites, where radial growth failed to capture the climate warming trend of the past

decades and concomitantly lost its temperature sensitivity. However, most of the

observations refer to tree line or high-latitude forests, where the temperature influence on

growth is positive (D'Arrigo et al., 2008). In lowland forests, in contrast, summer

temperature is usually negatively correlated with growth. Here, edaphic and atmospheric

drought and heat exposure are usually the main climatic drivers of growth (Knutzen et

al., 2017; Scharnweber et al., 2011). Increases in temperature and climatic aridity should

increase the drought sensitivity of tree growth in such environments, which has been

observed for various species including Q. petraea (Friedrichs et al., 2009b; Kolář et al.,

2017; Roibu et al., 2020). In contrast, other authors reported decreases in growth

sensitivity to summer temperature or summer SPEI during the last decades (Mérian et al.,
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2011; Dobrovolný et al., 2016) and during the warm decade in the 1940s for Q. petraea

(Friedrichs et al., 2009a), which is in line with our results.

One possible explanation for such a phenomenon may be offered by the analysis of

theoretical environment-growth response curves (Wilmking et al., 2020). Applying this

concept to our observations suggests that episodically increased drought intensities in an

already drought-limited environment should reduce the drought sensitivity of the species,

because water shortage is limiting growth in every year. However, this concept does not

provide a plausible explanation for the climate sensitivity decrease in our study, because

a general growth reduction over time was absent.

We observed in none of the species a clear decrease in mean radial growth rate towards

the drier end of the transect, which might indicate acclimation or adaptation of the local

populations to reduced water availability either genetically or within the frame of

phenotypic plasticity. This is supported by the decreasing sensitivity to summer SPEI

towards the dry end of the climatic gradient in all species except Q. petraea, which was

found for the period 1967-1991 (but not in the 1992-2016 period; Figure 4.6).

Corresponding patterns of apparent adaptation to drier habitats were reported for F.

sylvatica in pan-European studies (Cavin and Jump, 2017; Muffler et al., 2020), but

lacked in Q. petraea in our study. Whatever the cause, constant growth rates in a period

of increasing climatic aridity, in association with reduced climatic sensitivity of growth,

must be interpreted as a sign of a considerable drought tolerance of all four tree species.

In conclusion, the decreasing drought sensitivity towards drier conditions in the three

minor timber species, both on a spatial and a temporal scale, indicates adaptation and

acclimation processes to drier conditions.

4.5.4 Growth resistance and resilience to severe drought events

The results of the SEA study on the species’ growth response to climatically defined

droughts revealed species differences. The growth depression in the drought year was

generally greater in the two diffuse-porous species (smaller resistance), suggesting that

diffuse-porous species may be more flexible in their carbon allocation by reducing radial

growth more strongly in drought years. This could be a result of higher investment in fine

root production, which seems to be rather low in ring-porous Q. petraea (Fuchs et al.,

2020; Hertel and Leuschner, 2002). Yet, all species showed high growth resilience in the

five post-drought years with partial overshoot in some cases. This suggests that the four

species may pursue different growth and allocation strategies in response to severe

droughts, while fitness maintenance after drought is similar. This is indicated by the 50-
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year TRW chronologies (Figure 4.9 and 4.10, Appendix C), which show for none of the

species a lasting growth depression after the severe 1976 drought.

To which extent radial growth reductions after drought and mortality are interlinked

in the four species is largely unknown. However, many temperate tree species exhibit

decades of reduced growth before they die (Cailleret et al., 2017). This suggests that the

studied populations of the four species are unlikely to suffer increased drought-induced

dieback in the near future, as none of the TRW chronologies showed marked declines.

The survey of crown conditions conducted on all study sites in late summer 2019 after

two consecutive drought years with the most extreme heatwaves in Central Europe since

the beginning of climate records supports this assumption, as no severe defoliation or

partial canopy dieback was observed (Figure 4.17, Appendix C).

Growth resistance and resilience did not vary systematically with the local climate and

soil water capacity of the sites.  The high residual variance of the models indicates that

most of the variation found in the resistance and resilience indices occurs between

individuals and not sites. This is plausible, as small-scale heterogeneity in stand

microclimatic and soil physical properties at the position of the tree individuals is large

in mixed stands with bigger distance between the sampled individuals.

Climate and soil are not the only factors influencing the growth response to drought,

tree age may also be important. We tested for tree age effects on growth resistance and

resilience but did not find any effect (but see Kunz et al., 2018). We attribute this to the

fact that most trees of our study were of mature age (90-130 years).

4.5.5 Other sources of growth reductions

Negative pointer years may not only be caused by exceptional droughts, but can result

from other abiotic and biotic factors as well. The two most important biotic factors are

masting years (Pearse et al., 2016) and infestations with insects, fungi or other pests

(Schweingruber, 1996). Within our species sample, Q. petraea is by far most affected by

these biotic stress factors with a large number of periodically upcoming pests and insect

infestations (Gibbs and Greig, 1997; Roloff et al., 2010). Oak is also a distinct mast-

fruiting species with a large seed mass amplitude between years and related high carbon

costs (Nussbaumer et al., 2018). F. excelsior is a mast-fruiting species as well (Tapper,

1996), whereas fluctuations in seed production of A. platanoides and T. cordata are rather

low (Roloff et al., 2010; Wesołowski et al., 2015). The species-specific masting behavior

offers a possible explanation of the high frequency of negative pointer years in Q. petraea
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that mostly did not coincide with drought years, in contrast to the small number of

negative pointer years in T. cordata.

Mast years in F. excelsior are, in a similar manner as in F. sylvatica, typically cued by

a warm and sunny previous summer with a long foliation period (Piovesan and Adams,

2001; Tapper, 1996; Vacchiano et al., 2017). In contrast, mast-fruiting in Q. petraea is

triggered by a warm spring of the current year (Bogdziewicz et al., 2019). These species

differences between F. excelsior and Q. petraea can explain the different lag effects of

warm and dry previous years on radial growth (Figure 4.3), because low SPEI values over

the previous vegetation period may have induced masting years with reduced TRW in F.

excelsior but not in Q. petraea. The consistent negative growth reaction of F. excelsior

to a higher previous year’s September temperature, which is associated with a longer

foliation period, supports this explanation.

Due to large differences in pest-induced vitality fluctuation and in inter-annual

variability of masting intensity and related carbon costs among the four species, we rate

pointer year frequency as a weak tool for drought-sensitivity assessments in species

comparisons. Conventional pointer year definitions (e.g after Cropper, 1979) depend on

growth synchronicity in the stand, with higher growth synchronicity increasing the

probability of pointer year identification. Yet, low synchronicity is not necessarily an

indicator of high drought tolerance. In our study, pointer year frequency was not

consistently related to the frequency and severity of drought events during the past 50

years. The strongest and regionally most consistent negative pointer year in Q. petraea

was 1996, a cold and moist year, in which negative growth deviations of Q. petraea were

most likely caused by a relatively short vegetation period due to cold spring temperatures.

Further, the species with the lowest growth synchronicity (T. cordata) exhibited the

lowest frequency of pointer years, but showed stronger growth reductions in drought

years than Q. petraea and F. excelsior. Considering the influence of these drought-

unrelated factors suggests that the calculation of growth resistance and resilience to

droughts may in part be biased and the drought tolerance of highly pest-susceptible and

mast-fruiting species such as Q. petraea and partly F. excelsior might be overestimated.

4.5.6 Conclusions

Assessing the drought tolerance of tree species through the analysis of radial growth

resistance to drought events and its responsiveness to climatic factors can provide

valuable information on abiotic drivers of tree vitality. However, a concise drought

tolerance assessment requires additional information on background and drought-induced
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mortality in unmanaged stands, which is difficult to obtain in the managed forests of

Central Europe. A causal analysis of drought-induced mortality events that includes

physiological measurements would help to identify lethal stress levels and critical

elements in the species’ drought response strategy, as it remains questionable whether

growth reductions are always an expression of vitality loss, or are part of a plastic drought

response that leads to morphological, anatomical and physiological acclimation.

All three minor timber species showed decreasing summer drought sensitivities

towards the dry end of the gradient in the 1970s and 1980s and a general loss in climate

sensitivity over time, which may point at considerable potential to acclimate to a warmer

and drier climate. Q. petraea exhibits only minor inter-annual variation in TRW and thus

a low growth sensitivity to climate and the highest resistance to drought years of all

studied species. However, the apparent climate-insensitivity of growth in Q. petraea is

partly caused by the large number of other growth-reducing events, notably pests and

mast-fruiting, which may weaken the climatic signal and lead to overestimation of the

species’ drought tolerance. The dendrochronological data for F. excelsior suggest that the

species is almost as drought tolerant as Q. petraea and thus equally suited for a warmer

and drier climate. However, the species is severely threatened by the pan-European ash

dieback caused by the fungus Hymenoscyphus fraxineus. A. platanoides and T. cordata

showed distinct growth reductions in drought years and a high growth sensitivity to the

SPEI, but both were highly resilient and fully regained their pre-drought growth levels,

which is reflected in only low defoliation and no recorded dieback on the study sites after

the exceptional 2018/19 drought. We conclude that all four studied broadleaf species are

in terms of their radial growth performance relatively drought tolerant. This qualifies the

three minor timbers for further assessment of their suitability for the establishment of

drought-tolerant forests in Central Europe.
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4.6 Appendix C

Figure 4.9: Ring width index chronologies for the four species at the eight sites, age-detrended with
regional curve standardization (RCS). The blue line is a 25-year smoothing spline. The color spectrum from
orange to green indicates the position of the site in the gradient of mean growing season precipitation
(orange: low, green: high).
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Figure 4.10: Ring-width chronologies for the four species at the eight sites using the raw data from 9-13
tree individuals per stand which were averaged using Tukey's bi-weight robust mean. The color spectrum
from orange to green indicates the position of the site in the gradient of mean growing season precipitation
(orange: low, green: high).
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Figure 4.11: Correlation between radial growth (ring width index values) and the precipitation totals of
months in the previous and current year for the four species at eight sites. Months abbreviated with lower
case letters refer to the previous year, months with capital letters to the current year. Given is the size of
the correlation coefficient and the significance of the relation (black bars: p<0.05; grey bars: p>0.05) based
on 1000x bootstrapping against randomly chosen precipitation-growth pairs. The color spectrum from
orange to green indicates the position of the site in the gradient of mean growing season precipitation
(orange: low, green: high).
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Figure 4.12: Correlation between radial growth (ring width index values) and mean temperature of the
months in the previous and current year for the four species at eight sites. Months abbreviated with lower
case letters refer to the previous year, months with capital letters to the current year. Given is the size of
the correlation coefficient and the significance of the relation (black bars: p<0.05; grey bars: p>0.05) based
on 1000x bootstrapping against randomly chosen temperature-growth pairs. The color spectrum from
orange to green indicates the position of the site in the gradient of mean growing season precipitation
(orange: low, green: high).
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Figure 4.13: Negative pointer years of the four species on the eight sites in the period 1967-2016 according
to Cropper-values following the approach of Neuwirth et al. (2007) with normalization in a 5-year moving
window. Thresholds for weak, strong, and extreme negative pointer years were 0.8, 1.2, and 1.5 standard
deviations of growth decline, respectively, for at least 60% of the population. Site are arranged according
to mean growing season precipitation from drier to moister.
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Figure 4.14: Percental reduction in BAI in the drought year 1976 relative to the average BAI of the five
preceding years for the four species at the eight sites. The color spectrum from orange to green indicates
the position of the site in the gradient of mean growing season precipitation (orange: low, green: high).
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Figure 4.15: Resistance and resilience of basal increment of the four species to selected droughts in an 11-
year window with the drought year in the centre of the period. All drought events with a SPEI < -0.84
(based on the SPEI of the month August with consideration of a six-months window) in the study period
were considered. The indices were calculated using raw BAI data pooling for every species over all sites
and all identified drought years. Resistance is the growth depression in a drought year compared to the 5
years prior to drought, resilience the ratio of mean radial growth in the five post-drought years relative to
the growth in the five years prior to drought. Different small letters indicate significant differences between
species based on Tukey-adjusted p-values from linear mixed effects models with degrees of freedom based
on Satterthwaite’s approximation. Number of trees was n = 57 for A. platanoides, n = 83 for F. excelsior,
n = 80 for Q. petraea, and n = 29 for T. cordata; the number of studied drought events varied between 9
and 13, depending on sites.



DENDROECOLOGY

153

Figure 4.16: Within-population growth synchronicity of the four species at the eight sites in the period
1967-2016. Given is the interseries correlation (Rbar) as derived from a moving 20-year window analysis
of ring width index series. The color spectrum from orange to green indicates the position of the site in the
gradient of mean growing season precipitation (orange: low, green: high).
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Figure 4.17: Frequency of crown damage classes in late summer of 2019 (September) in the stands of the
four species at eight sites after the extreme 2018/19 drought as derived from the inspection of each five
individuals. Site acronyms are explained in Figure 1. The crown damage classes 0 to 3 base on a ground-
based visual assessment of the canopy’s defoliation and discoloration (damage is defined as the sum of
discolored and fallen leaves in percent of full foliation; 0 = 0% - 10% damage; 1 = 10% - 25% damage, 2
= 25% - 60% damage, 3 = > 60% damage). Carpinus betulus and Fagus sylvatica trees that occurred in the
same stands are reported for comparison.
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5 SYNOPSIS

In the following, I start with a general overview of drought response strategies and

their implications for the ability of a species to withstand drought in the light of existing

knowledge from literature. Thereafter, I summarize and integrate the main findings of the

three manuscripts presented in my dissertation, incorporating them into a profound

evaluation of the species’ strategies to cope with drought. In doing so, I deduce a drought

stress resistance ranking of the studied species to rate the suitability to grow under

increasingly dry and hot conditions in sub-continental regions in Central Europe.

5.1 Drought response strategies

Drought resistance in a broad sense describes adaptive features of plants to enable

them to either escape, avoid, or tolerate drought stress (Basu et al., 2016; Levitt, 1980).

Applied to trees, escape strategies (e.g. by completion of life cycles before the onset of

drought) are not an option. Thus, trees either tolerate or avoid drought stress.

This dualism is mirrored in the spectrum of anisohydric (tolerating drought stress) and

isohydric strategies (avoiding drought stress; McDowell et al., 2008). Sensu stricto, the

terms iso- and anisohydry originate from a clear distinction between two stomatal control

strategies (Tardieu and Simonneau, 1998), but lately, they have rather been found to

represent the extremes of a continuum (Klein, 2014) and to be interrelated with many

other functional traits (Leuschner et al., 2019; McDowell et al., 2008). Isohydry involves

a stringent stomatal control during drought, keeping the xylem water potential in a range

that protects the rather vulnerable xylem from excessive embolism. This implies restricted

carbon assimilation during drought and therefore large capacities to store assimilates and

water within the plant. Otherwise, isohydric plants are prone to carbon starvation (i.e. the

vitality loss and/or mortality due to a negative carbon balance as a consequence of

reduced assimilation; McDowell et al., 2008). In contrast, anisohydric plants close their

stomata less strictly during drought, allowing for lower xylem water potentials to extract

water from drier soils, maintaining carbohydrate assimilation, and relying on high

resistances against xylem embolism and leaf turgor loss (McDowell et al., 2008). This

strategy allows for a better carbon balance during drought, but low values of minimum

leaf water potentials also imply narrow safety margins.

Stomatal closure, closely correlated with leaf turgor loss (Brodribb et al., 2003) and

controlled by a complex interplay of physiological mechanisms and chemical signaling
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(Guyot et al., 2012; Tardieu and Davies, 1993), is the predominant mechanism to cope

with non-extreme drought conditions (Choat et al., 2018; Meinzer et al., 2009). During

prolonged drought conditions, however, stomatal closure cannot prevent further tissue

desiccation due to residual water loss through bark and cuticle (Choat et al., 2012;

Duursma et al., 2019). At this point, the width of the hydraulic safety margin is critical,

as it represents the safety buffer between stomatal closure and hydraulic failure

(irreversible xylem damage due to embolism). Hydraulic safety margins can therefore be

considered as highly informative for comparing the resistance of given species to

prolonged drought (Choat et al., 2018).

Summing up the above, hydraulic safety-related traits (like xylem embolism

resistance, leaf turgor loss and hydraulic safety margins) in combination with stomatal

control strategies give insights in the physiological drought responses of a species.

Nevertheless, responses to drought stress also occur on other levels across all organs of a

tree. Many species shed their leaves in order to reduce transpiration (Blackman et al.,

2019) and adjust carbon partitioning to root growth (McDowell et al., 2008; Ryan, 2011).

The prominent role of fine roots in plant-water-relations is well accepted (Brunner et al.,

2015), but the role of soil-root-interactions is still underestimated and often neglected in

modelling approaches of drought-related mortality (Carminati and Javaux, 2020).

A higher investment to root growth could find expression in deeper rooting to better

access remaining soil water reserves, a denser fine root system to extract residual soil

water, and higher fine root turn-over. While deeper and denser root systems seem

intuitively the most obvious responses to reduced water availability, field studies are

inconsistent on this matter (Bakker et al., 2006; Blanck et al., 1995; Chenlemuge et al.,

2013; Hertel et al., 2008; Hertel et al., 2013; Kuster et al., 2013; Leuschner et al., 2004;

Meier and Leuschner, 2008; Parker and van Lear, 1996; Santantonio and Hermann, 1985).

In contrast, increased fine root mortality has been concordantly reported (Brunner et al.,

2015; Wang et al., 2018), although a reduction of the absorbing surface in the face of

reduced water availability seems counterintuitive. Explanations are either the quick

replacement by new, physiologically more active roots to increase the absorptive capacity

or the active shedding of fine roots to uncouple more expensive organs from low water

potentials in the dry soil (‘hydraulic fuse theory’; Alder et al., 1996; Jackson et al., 2000;

Kotowska et al., 2015). Alternatively, fine roots may just die due to dehydration and need

to be replaced. Being the most distal organs belowground, fine roots are quickly

replaceable and relatively cheap in terms of carbon costs (only representing a few percent
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of the tree’s total biomass; Jackson et al., 1997) and can be shed or sacrificed in a similar

manner as leaves upon drought. In any case, increased fine root necromass/biomass ratios

indicate an elevated stress level, low drought resistance of the fine roots, and/or a deficient

or slow replacement by new fine roots.

The interplay of stomatal control strategies and associated constraints on carbon

assimilation, leaf shedding, investments in hydraulic safety, and fine root replacement

results in shifts in carbon allocation within the whole tree. In consequence of reduced

carbon assimilation, the allocation to replacement of distal organs, reproduction and even

carbon storage is often prioritized over radial stem growth (Wiley et al., 2017). In

addition, a greater proportion of the fixed carbon is lost through photorespiration during

drought stress (Wingler et al., 1999). Therefore, a higher level of drought exposure in the

growing season is directly affecting a tree’s radial stem growth, which is - in return - a

good proxy of a species ability to tolerate stress and maintain assimilation rates. However,

narrower annual rings are also associated with acclimation and/or adaptation responses in

the stem xylem of the tree to increase drought resistance through the production of thicker

pit membranes and less and smaller conduits (Fonti et al., 2013). This reduces hydraulic

efficiency but increases hydraulic safety (Hacke and Sperry, 2001). Reduced radial

growth could then increase fitness in the longer term, and the growth reduction may

represent a strength rather than a weakness in the face of increasing drought exposure

(Bréda et al., 2006; Gessler et al., 2020; Lloret et al., 2011).

5.2 Species-specific ability to cope with drought and their suitability

for future silviculture

5.2.1 Quercus petraea

In agreement with various reports in literature, Q. petraea turned out to be the most

drought-tolerant of the five species (e.g. Cavin et al., 2013; Kunz et al., 2018; Leuschner

et al., 2001; Scharnweber et al., 2011; Zimmermann et al., 2015). Its radial increment is

highly resistant to dry conditions (Chapter 4) and it did not suffer crown defoliation or

discoloration after severe drought (Chapter 4). The latter relates to its relatively

xeromorphic and heat resistant leaves (Epron and Dreyer, 1993; Thomas, 2000). Q.

petraea is strictly anisohydric (Aranda et al., 2000; Bréda et al., 1993; Epron and Dreyer,

1993), maintaining high transpiration and assimilation rates under moderate drought

conditions. This is facilitated by an embolism-resistant xylem (Dietrich et al., 2018; Lobo
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et al., 2018), by the capability of xylem anatomical adaptation (Martínez-Sancho et al.,

2017) and leaf osmotic adjustments to drier conditions (Leuschner et al., 2001), and by

drought-resistant fine roots (Chapter 3) and a deep rooting system (Rosengren et al.,

2006), allowing for sustained water uptake. Leaf osmotic adjustments are reflected by the

decreasing turgor loss point (PTLP) with increasing climatic aridity (Figure 5.1). This

anisohydric strategy has also been described in literature (e.g. Renninger et al., 2015) and

enables Q. petraea to maintain fairly constant annual stem increment also in drought years

(Chapter 4). In addition, the physiological responses to drought in juvenile stages indicate

a high drought resistance of saplings in comparison to other broadleaves (Kunz et al.,

2016; Thomas, 2000).

Although deep-rooting, Q. petraea seems to produce a less dense fine root system in

comparison to the other species (Chapter 3; Hertel and Leuschner, 2002) and its fine root

mortality under drought is low (Chapter 3). Shifts in carbon allocation to the root system

might therefore be less important in Q. petraea than in other species.

Figure 5.1: Leaf water potential at turgor loss point (PTLP) of all five species. Sites are sorted in ascending
order according to the climatic water balance. The methodology is described in chapter 2, where Q. petraea
and F. excelsior were not included in the figures.

 However, the apparent climate-insensitivity of growth in Q. petraea is partly caused

by the large number of other growth-reducing events, notably pests and mast-fruiting,

which may weaken the climatic signal and lead to overestimation of the species’ drought

tolerance (Chapter 4). Nevertheless, Q. petraea is a demanded high-quality timber for

construction and furniture and must be seen as an important component of future drought-

tolerant production forests in sub-continental Central Europe.
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5.2.2 Acer platanoides

A. platanoides is an isohydric species that pursues a drought-avoidance strategy. With

a strict stomatal control and a very wide hydraulic safety margin (HSM), it sacrifices

carbon assimilation for the sake of a safe and intact hydraulic system (Leuschner et al.,

2019). This is confirmed by the hydraulic characterization in Chapter 2, and in agreement

with results from a study in Central Germany on mature trees, where minimum xylem

water potential (Pmin) and stomatal conductance were repeatedly measured over several

months during summer, confirming a strictly isohydric stomatal control strategy

(Messinger, 2017, unpublished). In combination with the highly embolism resistant

xylem (Chapter 2), A. platanoides must be suited to survive even prolonged drought

conditions, as isohydric species are less prone to hydraulic failure under severe drought

(Choat et al., 2012; McDowell et al., 2008).

Although A. platanoides suffered the strongest radial growth depressions in drought

years, it was also highly resilient, recovered quickly (Chapter 4), and showed almost no

noticeable crown damage after the droughts of 2018/19 (Chapter 4). This relates to the

isohydric behavior, as this “safe” strategy reduces the likeliness of damage to leaf and

stem xylem tissue and prevents legacy effects of droughts. The fine root system of A.

platanoides proved to be highly plastic, it was the only species adjusting (increasing) its

fine root density towards the drier sites. However, the vulnerability of fine roots and finest

root tips to drought was higher than in the other species (Chapter 3).

In conclusion, A. platanoides emerged as the “safe choice” among the studied species.

Drought-related mortality seems very unlikely, and a high resilience makes up for the

growth sensitivity to drought events. Additionally, a complementary study on saplings

(Kunz et al., 2016) attested a high drought resistance in juvenile stages. Its wood

properties partly resemble F. sylvatica (Roloff et al., 2010), thus, it can be a replacement

species on dry sites, where F. sylvatica is declining (cf. Zimmermann et al., 2015).

5.2.3 Fraxinus excelsior

F. excelsior is known for its exceptionally wide ecological amplitude regarding water

availability (Leuschner and Ellenberg, 2017). This is based on its high ecophysiological

plasticity regarding leaf and xylem-related functional traits. Its xylem embolism

resistance varies in dependence of the site water availability (Lemoine et al., 2001) and it

is capable of significant osmotic adjustments in its leaves by accumulating malate and

mannitol (Guicherd et al., 1997, Lübbe et al., 2017). These strong adjustments are
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reflected in the highly variable turgor loss point (Figure 5.1). Like Q. petraea, F. excelsior

is highly anisohydric with large leaf water potential reductions during drought periods,

which enable the species to maintain water extraction in drying soil (Köcher et al., 2009;

Leuschner et al., 2019), keeping stomata open even at predawn water potentials near -5

MPa (Carlier et al., 1992; Guicherd et al., 1997). With that said, the low defoliation rate

after the two consecutive drought years of 2018/19 is surprising and another indication of

a high drought-hardening potential of the leaves via osmotic adjustments. The anisohydric

behavior relates to its low drought sensitivity of radial growth that is comparable to Q.

petraea (Chapter 4; Zimmermann et al., 2015).

F. excelsior has a uniquely high fine root density (Chapter 3), which may secure water

uptake in drought periods and increase the species’ competitive ability in mixed stands

and on very shallow and dry soils.

Its drought-tolerance and the versatile wood for furniture and tool production could

qualify F. excelsior as a promising candidate for future forestry. However, the species is

severely threatened by the fungus Hymenoscyphus fraxineus, affecting crown, stem base,

and rootstock vitality, causing a pan-European ash dieback. Although the selection of

resistant genotypes might be possible (McKinney et al., 2014), and the virulence of the

fungus seems to be lower in dry and hot years (Goberville et al., 2016; Grosdidier et al.,

2018), the current epidemiologic projections render any recommendations for

silvicultural planning impossible in the near future (Enderle, 2019).

5.2.4 Tilia cordata

Distinct growth reductions in drought years, clearly visible legacy effects in 1-2 years

after drought, and a high growth sensitivity to the SPEI (Chapter 4) indicate a low drought

tolerance. This is in line with the increasing fine root necromass/biomass ratio toward

drier sites and the marked loss of fine root tips after drought (Chapter 3). In addition, its

xylem showed to be highly vulnerable to embolism formation (Chapter 2). However, T.

cordata was very resilient and fully regained its pre-drought growth levels (Chapter 4, in

agreement with Latte et al., 2020) in contrast to co-occurring F. sylvatica (Latte et al.,

2020; Zimmermann et al., 2015).

Characterizations of T. cordata within the isohydry-anisohydry syndrome are

inconsistent in literature. Stomatal control is not stringent under drought, relatively high

stomatal conductance and water losses classify as rather anisohydric (Moser et al., 2016).

This implies a low water use efficiency and is in line with relatively low foliar δ13C-

signatures (Figure 5.2) in comparison to the other species, because higher levels of gas
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exchange accentuate the discrimination in the assimilation of the heavier 13C-isotope.

However, T. cordata keeps the leaf water potentials in a mediocre range by buffering the

water loss with high leaf and stem water capacitance (Köcher et al., 2009; Köcher et al.,

2013; Leuschner et al., 2019). This buffer might as well enable this species to operate

with a very narrow hydraulic safety margin (Chapter 2). Thus, T. cordata is rather a water-

spending, semi-isohydric species, avoiding drought stress by improved water storage

(instead of strict stomatal control; Leuschner et al., 2019) and deep rooting (Pigott, 1991).

In contrast to the other species, T. cordata has highly elastic leaf cell walls and is capable

of reversible wilting (Leuschner et al., 2019).

Figure 5.2: Foliar δ13C-signatures of the leaf bulk tissue of sun leaves of all five species, given in standard
δ notion: δ (‰) = (Rsample / Rstandard - 1) × 1000. Measurements were conducted in the laboratory for stable
isotope measurements (KOSI) at the University of Göttingen with a Delta plus isotope mass spectrometer
(Finnigan MAT, Bremen, Germany), a Conflo III interface (Thermo Electron Cooperation, Bremen,
Germany) and a NA2500 elemental analyzer (CE-Instruments, Rodano, Milano, Italy). Sites are sorted in
ascending order according to the climatic water balance.

Several reviews on the ecology of T. cordata attest a considerable drought tolerance

in comparison to several major timber species (Hemery et al., 2010; Jaegere et al., 2016;

Pigott, 1991), but this tolerance seems to be restricted to short and moderate drought

periods (Jaegere et al., 2016). This is in line with its water-spending, semi-isohydric

strategy, relying on internal water storage and the reversibility of leaf-wilting. Due to its

thermophilic properties and high resistance to heat (Hemery et al., 2010; Jaegere et al.,

2016), as well as its resilience to drought (Latte et al., 2020), it may gain competitive
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advantages over F. sylvatica in Central Europe. However, its drought resistance seems to

be inferior in comparison to A. platanoides, Q. petraea and F. excelsior.

5.2.5 Carpinus betulus

In terms of hydraulic properties, C. betulus has a relatively resistant xylem, a wide

safety margin, and remarkable plasticity (Chapter 2). Especially the P88, (water potential

at 88% loss of conductivity), which is assumed to be the threshold for catastrophic

hydraulic failure for angiosperms (Choat, 2013; Urli et al., 2013), was very low in this

species (Chapter 2). The P88 has also been linked to the drought-induced mortality risk of

angiosperm trees (Li et al., 2016; Li et al., 2018), thus, C. betulus might be resistant to

drought-driven mortality. Its stomatal control strategy is intermediate on the iso-/

anisohydry spectrum (Leuschner et al., 2019), tending towards an anisohydric behavior

(Li et al., 2016), keeping the stomata open during moderate drought conditions. This is in

line with a low turgor loss point found in Chapter 2. However, C. betulus tends to shed

its leaves earlier in severe droughts in comparison to the other species to keep branch and

stem xylem safe. This behavior has been observed in reaction to the 2003 drought

(Leuzinger et al., 2005) and as well to the 2018/2019 drought (Chapter 4, Figure 4.17),

where C. betulus showed high rates of defoliation and prematurely discolored leaves in

August and September, but reached full foliation in the following spring again.

In agreement with Leuzinger et al. (2005) who found C. betulus to be able to efficiently

take up water in the uppermost soil horizon after minor rain events, the fine root density

in the topsoil was high (Chapter 3). Although no increase in its fine root

necromass/biomass ratio after drought was observed, specific root area and fine root tips

were distinctly reduced (Chapter 3). This behavior was similar to T. cordata. In

combination with a medium to shallow rooting system (Köstler et al., 1968), C. betulus

shows no outstanding belowground adaptations to prolonged droughts.

Due to the missing dendroecological results of this species, we cannot pass a

conclusive judgement on the productivity of C. betulus under a drier and warmer climate.

Leuzinger et al. (2005), however, found this species to show rapid radial growth during

moist periods in the early vegetation period, but it ceased radial growth almost completely

in late summer in three consecutive years in Central Europe, demonstrating a high

reliance of its increment on ample water supply. Because of its curvy and irregular stem

shape, spiral growth and mediocre qualities for woodworking, the utilization of this

timber is fairly limited anyway, but its high wood density and caloric value make it useful

for the production of certain tools and for energy generation.
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However, its hydraulic properties and its known shade-tolerance indicate a low

mortality risk and a certain tenacity to cope with unfavorable conditions as admixture in

a resilient future broadleaf forest.

5.2.6 Drought stress resistance ranking

In comparison to Q. petraea, none of the minor timber species proved to be more

drought resistant. However, F. excelsior pursues a very similar drought tolerance strategy

and seems to be almost on the same level in most aspects. The diffuse-porous species

differ clearly from the ring-porous species in their strategies. Especially A. platanoides

with a strict drought-avoidance behavior, a high embolism resistance, a plastic fine root

system, and high resilience to drought events turned out to be a safe choice for a drier and

warmer climate. Table 5.1 shows a synoptic ranking of the five species including most of

the mentioned drought resistance related aspects and traits and ranks the species in the

following order: Q. petraea > A. platanoides > F. excelsior > C. betulus > T. cordata.

Table 5.1: Overview of drought stress resistance-related traits of the five species. The rates range from
very good (++) over good (+) and mediocre (o) to subpar (-) and the reasoning behind the assessments is
explained in Chapter 5.1 and 5.2. Grey panels are based on knowledge from literature, black panels
represent missing information.
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5.3 Future directions

Generally, transect field studies across climatic gradients as “space-for-time

substitutions” are a valid and established tool in plant ecology to derive climatic limits of

changes in increment, physiological responses, and stress indicators in the face of climate

change. In the present case, however, the predictive power of climatic aridity on stand

water availability was weakened by inhomogeneous soil types. Including plant available

water capacity of the soil as explanatory variable is a way to cope with this problem, but

simultaneously necessitate a higher number of study sites, which is always limited in field

studies with a focus on the comparison of several species. Additionally, differences in

nutrient availability across the gradient might have obscured some relationships. The

mentioned compromises in the homogeneity of the study sites are primarily a

consequence of the infrequent co-occurrence of the targeted minor timbers, rendering the

number of suitable study sites very small. Future transect field studies addressing minor

timbers could reduce the number of compared species in order to increase the number of

stands and facilitate the detection of suitable sites.

The present dissertation provides valuable insights into drought response strategies of

the five species and the plasticity of functional traits along a climatic gradient, closing

several knowledge gaps with respect to rarely studied minor timbers. However, future

studies must consider that resisting drought by either tolerance or avoidance strategies

has different implications on growth performance and mortality risks. Clearly,

retrospective analyses of radial growth, as in Chapter 4, are limited to living trees and the

results therefore might be biased, as they only represent the surviving part of the

populations and do not capture mortality rates. To fully capture the impact of increasing

drought exposure on a species, both, growth reactions and mortality rates, have to be

addressed. To record drought-driven mortality, information on natural (background)

mortality of unmanaged stands is required, which is difficult to obtain in regions as

Central Europe, where most forests are managed. A causal analysis of drought-induced

mortality events which includes physiological measurements would help to identify lethal

stress levels and critical elements in the species’ drought response strategy.

Additionally, short term growth reductions in response to drought should be

complemented with wood anatomical and physiological investigations in the post-

drought phase to assess, whether they are primarily an expression of vitality loss, or are

part of a plastic drought response, which leads to morphological, anatomical and

physiological acclimation and increases future drought tolerance.
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6.1 Index of Figures

Figure 1.1: Distribution ranges of the four minor timber species (A. platanoides, C. betulus, F.

excelsior, and T. cordata) and two major timbers (Q. petraea and F. sylvatica) based on the

synthetic chorology database of Caudullo (2017). ............................................................................ 15

Figure 1.2: Map of the study area between Göttingen and Halle/S. in central Germany with the

precipitation gradient from the west to the east. The nine study sites are marked with red dots.

The background colors and isohyets indicate the mean annual precipitation (MAP 1991–2017).

The area with MAP over 1000 mm north-east of Göttingen is the Harz mountain range. For

further information on the study sites, refer to the detailed tables 2.1, 3.1, and 4.1 in the following
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Figure 2.1: Map of the study area between Göttingen and Halle/S. in central Germany with the

precipitation gradient from west to east. The study sites are marked with red dots, the background

colours indicate the mean annual precipitation (MAP 1991–2017). The area with MAP over

1000 mm northeast of Göttingen is the Harz mountain range. .......................................................... 41

Figure 2.2: Hydraulic safety-related traits: (A) Xylem water potential at 50 % loss of conductivity

(P50), (B) xylem water potential at 12/88 % loss of conductivity (P12/88), (C) leaf water potential

at turgor loss point (PTLP), and (D) hydraulic safety margins of the three tree species at all study

sites. Sites are sorted in ascending order according to the climatic water balance. Box-whisker

plots include median and interquartile ranges (Q1–Q3); whiskers extend to max. 1.5 times the

interquartile range. Different letters denote significantly different means between sites within a

species based on Tukey-adjusted p-values with degrees of freedom based on Satterthwaite’s

approximation from linear mixed effects models with post-hoc tests for pairwise differences. ....... 49

Figure 2.3: Hydraulic efficiency-related traits: (A) AXylem/ALeaves-ratio of branches (Huber value), and

(B) xylem area-specific hydraulic conductivity of branches (KS) of the three tree species at all

study sites. Sites are sorted in ascending order according to the climatic water balance. Box-

whisker plots include median and interquartile ranges (Q1–Q3); whiskers extend to max. 1.5

times the interquartile range. Different letters denote significantly different means between sites

within a species based on Tukey-adjusted p-values with degrees of freedom based on

Satterthwaite’s approximation from linear mixed effects models with post-hoc tests for pairwise

differences. ........................................................................................................................................ 50

Figure 2.4: (A) Coefficient of quartile variation of the studied traits across all species and

measurements; (B) variance decomposition between different levels of organization (between

species, between populations, and between individuals; see Appendix A, Table 2.4 for full model

output). Given are the xylem water potential at 50% loss of conductivity (P50), the leaf water

potential at turgor loss point (PTLP), Axylem/Aleaf − ratio of branches (Huber value, HV) and xylem

area-specific hydraulic conductivity (KS). ‘Residual’ denotes the unexplained variance of the

models (i.e. variability between branches + estimation and measurement uncertainty). ................... 51
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Figure 2.5: Distribution ranges of the three minor timber species (Acer platanoides, Carpinus betulus,

and Tilia cordata) based on the synthetic chorology database of Caudullo et al. (2017). ................. 60

Figure 2.6: Xylem vulnerability curves illustrating percent loss of conductivity vs. xylem water

potential. Plotted lines represent conditional predictions for single branches (colored, dotted),

single trees (colored), and sites (black) based on species-wise non-linear mixed-effects models

(pointsymmetrically, sigmoidal). ....................................................................................................... 61

Figure 2.7: (A) Xylem water potential at 50 % loss of conductivity (P50), (B) leaf water potential at

turgor loss point (PTLP), (C) AXylem/ALeaves-ratio of branches (Huber value), and (D) xylem area-

specific hydraulic conductivity of branches (KS) of the three tree species on all study sites. Sites

are given in ascending order of plant-available water capacity of the soil. Box-whisker plots

include median and interquartile ranges (Q1–Q3); whiskers extend to 1.5 times the interquartile

range. ................................................................................................................................................. 62

Figure 2.8: Pearson correlation matrix of environmental and tree-specific predictors and functional

traits. Given are Pearson correlation coefficients per species in the top right triangle and the

corresponding data in the lower left triangle.  MAP = mean annual precipitation (period 1991–

2017); CWB = climatic water balance; MAT = mean annual temperature; AWC = plant-available

water storage capacity of the soil; DBH = Stem diameter at breast height; P50/P12/P88= xylem

water potential at 50/12/88 % loss of conductivity; Slopevc = slope of the vulnerability curve at

the inflexion point; PTLP = leaf water potential at turgor loss point; KS = xylem area specific

hydraulic conductivity of branches; HV = Huber value (AXylem/ALeaves-ratio of branches). KS and

HV are natural log-transformed, traits measured on branch/leaf-level are means per tree. All

variables are scaled by their standard deviation and centered around zero. ...................................... 63

Figure 2.9: Tendency of a hydraulic safety-efficiency trade-off across species between KS (xylem

area-specific hydraulic conductivity) and P50 (xylem water potential at 50 % loss of

conductivity). Shown are mean values per site and species with standard errors and p-value and

R2 of a linear regression across all species and sites. ......................................................................... 64

Figure 3.1: Map of the study area between Göttingen and Halle/S. in central Germany with the

precipitation gradient from the west to the east. The nine study sites are marked with red dots.

The colors indicate the mean annual precipitation (MAP 1991–2017). The area with MAP over

1000 mm NE of Göttingen is the Harz mountain range. ................................................................... 81

Figure 3.2: Fine root biomass (a), necromass (b), and necromass/biomass (N/B) ratio (c) of the five

tree species in the topsoil (0–10 cm) in April 2017 and September 2018. Box-whisker plots with

median and interquartile ranges (Q1–Q3); whiskers extend to 1.5 times the interquartile range.

Indicated significant differences between the inventories for each species are based on a non-

parametric signed-rank-test; ***: p ≤ 0.001, *: p < 0.05. Note the log-scaled y-axes in (b) and

(c). ..................................................................................................................................................... 90

Figure 3.3: Specific root surface area (SRA) and root tips per fine root biomass of the five tree species

in the topsoil (0–10 cm) in April 2017 and September 2018. Box-whisker plots for all species

and both inventories with median and interquartile ranges (Q1–Q3); whiskers extend to 1.5 times

the interquartile range. Indicated significant differences between the inventories for each species
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are based on a non-parametric signed-rank-test; ***: p ≤ 0.001, **: p ≤ 0.01, *: p < 0.05. Note

the log-scaled y-axes. ........................................................................................................................ 91

Figure 3.4: Fine root biomass (a), necromass (b), and necromass/biomass ratio (c) in the topsoil (0–

10 cm) of the five species in relation to mean annual precipitation (MAP) in the 2017 and 2018

inventories. Data points are tree-level values, lines represent conditional predictions of the linear

mixed effects model (the predictions of the fixed effect “MAP” for each species plus an intercept

for each level of the random factor “site”). Note the log-scaled y-axis. The corresponding p and

pseudo-R2 values are summarized in Table 3.3. Graphs for the morphology variables are given

in Figure 3.6 in the Appendix B. ....................................................................................................... 92

Figure 3.5: Fine root biomass (a), necromass (b) and necromass/biomass ratio (c) in the topsoil (0–

10 cm) of the five species in relation to actual precipitation in the year prior to sampling in the

2017 and 2018 inventories. Data points are tree-level values, lines represent conditional

predictions of the linear mixed effects model (the predictions of the fixed effect “MAP” for each

species plus an intercept for each level of the random factor “site”). Note the log-scaled y-axis.

The corresponding p and pseudo-R2 values are summarized in Table A1. ..................................... 105

Figure 3.6: Specific root area (a), fine root tips per root mass (b), and average fine root diameter (c)

in the topsoil (0–10 cm) of the five species in relation to mean annual precipitation (MAP) in the

2017 and 2018 inventories. Data points are tree-level values, lines represent conditional

predictions of the linear mixed effects model (the predictions of the fixed effect “MAP” for each

species plus an intercept for each level of the random factor “site”). Note the log-scaled y-axis.

The corresponding p and pseudo-R2 values are summarized in Table 3.3. ..................................... 106

Figure 3.7: Principal components analysis (PCA) biplot of the 2017 fine root inventory. All data are

aggregated on site and species level. ............................................................................................... 107

Figure 3.8: Principal components analysis (PCA) biplot of the 2018 fine root inventory. All data are

aggregated on site and species level. ............................................................................................... 107

Figure 4.1: Map of the study region between the cities of Göttingen and Halle/S. in Central Germany

with the precipitation gradient from west to east. The study sites are marked with red dots, the

background colors indicate the long-term mean growing season precipitation (MGSP, April –

September, 1967 - 2016) in mm. The area with MGSP >500 mm north-east of Göttingen is the

Harz mountain range. ...................................................................................................................... 120

Figure 4.2: Temporal variation and long-term trend (25 year moving average) of growing season

precipitation, temperature and SPEI (standardized precipitation-evapotranspiration index) in the

period 1965-2016 in the study region (averaged over all study sites). ............................................ 123

Figure 4.3: Correlation between radial growth (ring width index values) and the SPEI (standardized

precipitation-evapotranspiration index) for months in the previous and current year for the four

species at eight sites. The SPEI is calculated on a timescale of 3 months, because the drought

conditions in the current month mainly depend on precipitation and evapotranspiration patterns

in the current and the two preceding months. Months abbreviated with lower case letters refer to

the previous year, months with capital letters to the current year. Given is the size of the

correlation coefficient and the significance of the relation (black bars: p<0.05; grey bars:
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p>0.05). The color spectrum from orange to green indicates the position of the site in the gradient

of mean growing season precipitation. For site abbreviations see Figure 4.1. ................................ 130

Figure 4.4 (next page): Moving window analysis of climate-growth relationships in the four species

at eight sites for the period 1967-2016. Shown are the central years of the respective 20-year

periods, testing for the correlation between six aggregate climate variables and annual ring width

indices. Given is the size and sign of the correlation coefficient for the six relationships (red:

negative relation, blue: positive relation, black frame: p <0.05). Summer stands for June-August,

Winter for December-February, spring for March and April. The color spectrum from orange to

green indicates the position of the site in the gradient of mean growing season precipitation

(orange: low, green: high). .............................................................................................................. 131

Figure 4.5: Change in the climate-growth correlation coefficients between the 1967–1991 and the

1992-2016 period. The “+”/“-“ signs indicate positive/negative changes in the correlation

coefficients, respectively. Bold red signs represent significant changes (p < 0.05), grey shading

stands for missing data. Note: A positive change in the correlation coefficient can mean the

switch from no to a positive correlation, or a switch from a negative to no correlation, a negative

change means a shift in the opposite direction; see Figure 4.4 for a more detailed picture of

temporal changes in the correlation coefficients. ............................................................................ 133

Figure 4.6: Relationship between annual ring width indices and summer SPEI (= standardized

precipitation-evapotranspiration index of the month August, calculated for a 6-months window)

for the four species in dependence on mean growing season precipitation (MGSP) of the stand

for the 25-year periods 1967-1991 and 1992-2016. Significant correlation coefficients are

marked by red 95%-confidence interval bars. Each dot represents one site per species; MGSP

refers to the corresponding 25-year periods. The blue regression lines with 95% confidence

interval display significant relationships between correlation coefficient and MGSP, non-

significant regression lines are not shown. ...................................................................................... 134

Figure 4.7: Results of superposed epoch analyses on the response of radial growth of the four species

at the eight sites to drought events with a SPEIsummer < -0.84. Shown is the deviation of mean

ring width in an 11-year period with the drought years in the center from the mean ring widths

in all analyzed 11-year epochs of the chronology. Significant departures (p<0.05) are shown in

dark grey with red frame. The color spectrum from orange to green indicates the position of the

site in the gradient of mean growing season precipitation (orange: low, green: high). ................... 135

Figure 4.8: Resistance and resilience of radial growth of the four species to selected droughts in an

11-year window with the drought year in the centre of the period. All drought events with a SPEI

< -0.84 (based on the SPEI of the month August with consideration of a six-months window) in

the study period were considered. The indices were calculated using detrended ring width indices

pooling for every species over all sites and all identified drought years. Resistance is the growth

depression in a drought year compared to the 5 years prior to drought, resilience the ratio of
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drought. Different small letters indicate significant differences between species based on Tukey-

adjusted p-values from linear mixed effects models with degrees of freedom based on

Satterthwaite’s approximation. Number of trees was n = 57 for A. platanoides, n = 83 for F.
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excelsior, n = 80 for Q. petraea, and n = 29 for T. cordata; the number of studied drought events

varied between 9 and 13, depending on sites. ................................................................................. 136

Figure 4.9: Ring width index chronologies for the four species at the eight sites, age-detrended with

regional curve standardization (RCS). The blue line is a 25-year smoothing spline. The color

spectrum from orange to green indicates the position of the site in the gradient of mean growing

season precipitation (orange: low, green: high). .............................................................................. 146

Figure 4.10: Ring-width chronologies for the four species at the eight sites using the raw data from

9-13 tree individuals per stand which were averaged using Tukey's bi-weight robust mean. The

color spectrum from orange to green indicates the position of the site in the gradient of mean

growing season precipitation (orange: low, green: high). ............................................................... 147

Figure 4.11: Correlation between radial growth (ring width index values) and the precipitation totals

of months in the previous and current year for the four species at eight sites. Months abbreviated

with lower case letters refer to the previous year, months with capital letters to the current year.

Given is the size of the correlation coefficient and the significance of the relation (black bars:

p<0.05; grey bars: p>0.05) based on 1000x bootstrapping against randomly chosen precipitation-

growth pairs. The color spectrum from orange to green indicates the position of the site in the

gradient of mean growing season precipitation (orange: low, green: high). ................................... 148

Figure 4.12: Correlation between radial growth (ring width index values) and mean temperature of

the months in the previous and current year for the four species at eight sites. Months abbreviated

with lower case letters refer to the previous year, months with capital letters to the current year.

Given is the size of the correlation coefficient and the significance of the relation (black bars:

p<0.05; grey bars: p>0.05) based on 1000x bootstrapping against randomly chosen temperature-

growth pairs. The color spectrum from orange to green indicates the position of the site in the

gradient of mean growing season precipitation (orange: low, green: high). ................................... 149

Figure 4.13: Negative pointer years of the four species on the eight sites in the period 1967-2016

according to Cropper-values following the approach of Neuwirth et al. (2007) with

normalization in a 5-year moving window. Thresholds for weak, strong, and extreme negative

pointer years were 0.8, 1.2, and 1.5 standard deviations of growth decline, respectively, for at

least 60% of the population. Site are arranged according to mean growing season precipitation
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Figure 4.14: Percental reduction in BAI in the drought year 1976 relative to the average BAI of the

five preceding years for the four species at the eight sites. The color spectrum from orange to

green indicates the position of the site in the gradient of mean growing season precipitation
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Figure 4.15: Resistance and resilience of basal increment of the four species to selected droughts in

an 11-year window with the drought year in the centre of the period. All drought events with a

SPEI < -0.84 (based on the SPEI of the month August with consideration of a six-months

window) in the study period were considered. The indices were calculated using raw BAI data

pooling for every species over all sites and all identified drought years. Resistance is the growth

depression in a drought year compared to the 5 years prior to drought, resilience the ratio of

mean radial growth in the five post-drought years relative to the growth in the five years prior to



CHAPTER 6

186

drought. Different small letters indicate significant differences between species based on Tukey-

adjusted p-values from linear mixed effects models with degrees of freedom based on

Satterthwaite’s approximation. Number of trees was n = 57 for A. platanoides, n = 83 for F.

excelsior, n = 80 for Q. petraea, and n = 29 for T. cordata; the number of studied drought events

varied between 9 and 13, depending on sites. ................................................................................. 152

Figure 4.16: Within-population growth synchronicity of the four species at the eight sites in the period

1967-2016. Given is the interseries correlation (Rbar) as derived from a moving 20-year window

analysis of ring width index series. The color spectrum from orange to green indicates the

position of the site in the gradient of mean growing season precipitation (orange: low, green:

high). ............................................................................................................................................... 153

Figure 4.17: Frequency of crown damage classes in late summer of 2019 (September) in the stands

of the four species at eight sites after the extreme 2018/19 drought as derived from the inspection

of each five individuals. Site acronyms are explained in Figure 1. The crown damage classes 0

to 3 base on a ground-based visual assessment of the canopy’s defoliation and discoloration

(damage is defined as the sum of discolored and fallen leaves in percent of full foliation; 0 =

0% - 10% damage; 1 = 10% - 25% damage, 2 = 25% - 60% damage, 3 = > 60% damage).

Carpinus betulus and Fagus sylvatica trees that occurred in the same stands are reported for

comparison. ..................................................................................................................................... 154

Figure 5.1: Leaf water potential at turgor loss point (PTLP) of all five species. Sites are sorted in

ascending order according to the climatic water balance. The methodology is described in

chapter 2, where Q. petraea and F. excelsior were not included in the figures. .............................. 168

Figure 5.2: Foliar δ13C-signatures of the leaf bulk tissue of sun leaves of all five species, given in

standard δ notion: δ (‰) = (Rsample / Rstandard - 1) × 1000. Measurements were conducted in the

laboratory for stable isotope measurements (KOSI) at the University of Göttingen with a Delta

plus isotope mass spectrometer (Finnigan MAT, Bremen, Germany), a Conflo III interface

(Thermo Electron Cooperation, Bremen, Germany) and a NA2500 elemental analyzer (CE-

Instruments, Rodano, Milano, Italy). Sites are sorted in ascending order according to the climatic
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6.2 Index of Tables

Table 2.1: Site and tree characteristics of the studied stands sorted by species and in ascending order

of the local climatic water balance (CWB). MAP = mean annual precipitation (period 1991–

2017); MAT = mean annual temperature; MGSP = mean growing season precipitation (April–

September); CWB = climatic water balance; soil texture is defined according to the

nomenclature of the FAO (Food and Agriculture Organization of the United Nations); AWC =

plant-available water storage capacity of the soil; DBH = Stem diameter at breast height. Tree

age, DBH, and tree height are given as means with standard deviation. Tree age of all sampled

individuals was determined with dendrochronological analyses for increment cores with the

exception of C. betulus, which was not part of the dendrochronological study; age information

was here derived from forestry inventory data of the local forestry offices ...................................... 42

Table 2.2: Means ± SE of measured traits per species pooled over all study sites. Different letters

denote significantly different means based on Tukey-adjusted p-values from linear mixed effects

models with post-hoc tests for pairwise species differences with degrees of freedom based on

Satterthwaite's approximation. P50/12/88 = xylem water potential at 50/12/88 % loss of

conductivity; PTLP = leaf water potential at turgor loss point; HSM = hydraulic safety margin;

Huber value (HV) = AXylem/ALeaves-ratio of branches; KS = xylem area specific hydraulic

conductivity of branches. .................................................................................................................. 48

Table 2.3: Results of the linear mixed effects models examining the relationships between

environmental variables and functional traits. P50 = xylem water potential at 50% loss of

conductivity; PTLP = leaf water potential at turgor loss point; HSM = hydraulic safety margin;

Huber value (HV) = Axylem/Aleaf − ratio of branches; KS = xylem area specific hydraulic

conductivity of branches. Given are the scaled estimates for CWB (climatic water balance) and

AWC (plant-available water storage capacity of the soil), as well as the standard deviation for

the tree-wise random intercept (Tree SD), the residual standard deviation (Res. SD), and

marginal and conditional R2 of the models (Marg. R2 and Cond. R2). Bold estimates represent

significant effects (*, P < 0.05; **, P < 0.01), (a) denotes marginally significant effects

(P < 0.1). The full output of the models is given in Appendix A, Table 2.5. .................................... 53

Table 2.4: Full output table of the linear mixed effects models for the variance decomposition (Fig.

4b). Given are the fixed effect estimates for the intercept (i.e. the Carpinus average), the

differences of Acer and Tilia to Carpinus, with their standard errors, estimated degrees of

freedom (edf) based on Sattherthwaite’s approximation and P-values, as well as the estimates of

the three variance components (tree level, population level and residual SD). ................................. 65

Table 2.5 (next page): Full output table of the linear mixed effects models examining the relationships

between environmental variables and functional traits (corresponds to Table 2.3). Given are the

scaled estimates for CWB (climatic water balance) and AWC (plant-available water storage

capacity of the soil), the standard errors of the estimates (SE), the estimated degrees of freedom

(DF) based on Sattherthwaite’s approximation, P-values, and lower and upper border of

likelihood-profile-based confidence intervals (CI low and CI high). ................................................ 65
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Table 3.4: Results of the principal components analysis for the spring inventory in 2017. Given are

the loadings of the selected variables along the four axes with the highest explained variance in

the dataset. Bold numbers mark the variables with the highest loading (>0.4) on the respective

axis. The values in brackets give the cumulative fraction of variance explained by the variable.

MAP = mean annual precipitation, MAT = mean annual temperature, DMI = de Martonne aridity
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Table 3.5: Results of the principal components analysis for the drought inventory in 2018. Given are

the loadings of the selected variables along the four axes with the highest explained variance in

the dataset. Bold numbers mark the variables with the highest loading (>0.4) on the respective
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index of the three months prior to sampling. ..................................................................................... 95
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actual precipitation in the year prior to sampling (act.PRCP). Given are estimates of the fixed
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± SD, AC (1) = first order autocorrelation ± SD, MBAI = mean basal area increment of all series

± SD, Rbar = inter-series correlation, MS = mean sensitivity, EPS = expressed population signal.

The different sites of a species are sorted in ascending order of mean growing season
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the models. None of the fixed effects was significant at p < 0.05. As data were available for T.
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