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“ ‘Tell me, though, Miss Whittaker, what is it that you admire in mosses?’. ‘Their dignity,’ 

Alma replied without hesitation. ‘Also, their silence and intelligence. I like that—as a point 

of study—they are fresh. They are not like other bigger or more important plants, which 

have all been pondered and poked at by hordes of botanists already. I suppose I admire 

their modesty, as well. Mosses hold their beauty in elegant reserve. By comparison to 

mosses, everything else in the botanical world can seem so blunt and obvious. Do you 

understand what I am saying? Do you know how the bigger, showier flowers can look at 

times like dumb, drooling fools—the way they bob about with their mouths agape, appearing 

so stunned and helpless?’ […] ‘Somebody must defend them, Mr. Pike! For they have been 

so overlooked, and they have such a noble character! In fact, I find the miniature world to 

be a gift of disguised greatness, and therefore an honor to study.’ “ 

 

- Elizabeth Gilbert, The Signature of All Things 

(S.201, Bloomsbury Publishing. Kindle-Version) 
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1 Abstract 

The complex sphingolipid classes glycosylceramides (GlcCers) and glycosyl 

inositolphosphorylceramides (GIPCs) are essential membrane components in plant cells. 

However, the regulation of their synthesis and their distinct physiological roles in plants is 

still poorly understood. GlcCers and GIPCs both contain a ceramide backbone consisting 

of a long-chain base (LCB) that is connected to a fatty acid. The syntheses of these two 

complex sphingolipids are alternative pathways in plant metabolism. It is assumed that 

distinct structural modifications in the LCB moiety determine the metabolic fate and 

physiological function of sphingolipids. In the bryophyte Physcomitrella patens, channelling 

of sphingolipid metabolites into complex sphingolipid formation appears to be stricter than 

in vascular plants. The physiological relevance of GlcCers, GIPCs, and their specific LCB 

moieties was therefore investigated in P. patens. P. patens GlcCers are enriched in 

ceramides with a dihydroxy, Δ4,8-diunsaturated LCB moiety while P. patens GIPCs mostly 

contain ceramides with a trihydroxy LCB moiety. The establishment of a sophisticated 

cultivation system and of various mutant characterisation assays is a prerequisite for in-

depth examinations of P. patens mutants. P. patens knockout mutants were generated by 

homologous recombination that targeted key steps of sphingolipid biosynthesis. Disruption 

of the LCB C-4 hydroxylase, PpS4H, which is involved in GIPC formation, resulted in plants 

that were severely impaired in growth and development. These growth impairments might 

have derived from cell plate formation defects during cytokinesis. Loss of the trihydroxy LCB 

moiety also caused global changes in all sphingolipid classes. Disruption of the LCB Δ4-

desaturase, PpSD4D, did not substantially affect plant viability. The mutant only showed 

mild cell elongation defects. However, sd4d-1 mutants had substantially reduced GlcCer 

levels, which confirms that LCB Δ4-desaturation is important for channeling sphingolipids 

into GlcCer formation in P. patens. In contrast, P. patens plants that had a disturbed 

glycosylceramide synthase, PpGCS, activity, were affected in plant growth and cell 

differentiation and showed cell death-like lesions. gcs-1 plants lacked all GlcCers and 

accumulated precursor hydroxyceramides. Cumulative findings from this work show that 

disruption of individual steps in P. patens sphingolipid biosynthesis differently affect plant 

physiology. The results give first insights into sphingolipid biosynthesis in P. patens. While 

some aspects of plant sphingolipid metabolism known from studies in Arabidopsis thaliana 

have been confirmed in the bryophyte, novel features of the sphingolipid pathway could 

also be identified in P. patens. These new findings contribute to our knowledge on how 

sphingolipid synthesis and function have diversified during land plant evolution. 
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2 Introduction 

2.1 Structure and function of biological membranes  

Biological membranes are natural barriers that separate the inside of a cell from its external 

environment. They also act as an interface between the intracellular and extracellular space 

and therefore enable the exchange of nutrients and information. Intracellular membranes 

further restrict individual organelles and thereby establish compartmentalisation within a 

eukaryotic cell. The spatial restriction of subcellular compartments enables the 

simultaneous performance of numerous processes in close proximity to each other. Cell 

viability relies on the orchestration of these different physiological processes. Biological 

membranes play pivotal roles in synchronising cellular processes. The major constituent of 

biological membranes is a phospholipid bilayer. Phospholipids contain one or two 

hydrophobic hydrocarbon chains that are connected to a hydrophilic head group. The 

combination of hydrophilic and hydrophobic building blocks defines lipids as amphipathic 

molecules which is a crucial feature for membrane bilayer formation. The polar head group 

is oriented towards the surrounding aqueous phase, while the non-polar hydrocarbon 

chains face each other. They thereby form the inner and outer leaflets of biological 

membranes. The inner leaflet faces the cytosol of a cell or the lumen of an organelle while 

the outer leaflet faces the extracellular space or in case of plant cells, the apoplast. 

The plasma membrane (PM) is a semipermeable lipid bilayer that defines the 

boundary of a cell. It separates the intracellular space from the extracellular environment. 

In plant cells the PM more accurately defines the symplast of a cell. The plant PM is 

additionally attached to a surrounding cell wall. The entirety of the intercellular space and 

all cell walls is called the apoplast. The PM is composed mainly of phosphoglycerolipids, 

sterols, sphingolipids, membrane proteins, and carbohydrates that are attached to some of 

the lipids and proteins at the exterior surface (Mamode Cassim et al., 2019). At the 

cytoplasmic side the PM is connected to the cytoskeletal network and therefore offers 

structural support of the cell (Sackmann, 1990). Through incorporated ion channels and 

surface proteins the PM regulates the import and export of nutrients, metabolites, and 

signalling compounds and therefore has a vital role in the perception and transduction of 

incoming information.  

Membrane lipids are not equally distributed between the two monolayers of the PM 

which results in lipid asymmetry. While phophatidylcholine (PC), sterols, and sphingolipids 

are prevalent lipids in the apoplastic outer monolayer of the PM, other unsaturated 

phospholipids like phosphatidylethanolamine (PE), phosphatidylinositol (PI) and 

phosphatidylserine (PS) are more abundant in the cytosolic inner monolayer (Devaux & 

Morris, 2004; Tjellström et al., 2010; Cacas et al., 2016; Mamode Cassim et al., 2019). This 
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unequal distribution of membrane lipids equips each PM leaflet with distinct biophysical 

properties. The two monolayers have differing charges which together with incorporated ion 

channels contribute the establishment of the membrane potential. Furthermore, sugar 

residues and glycosylphosphatidylinositol- (GPI) anchored proteins at the outer monolayer 

serve in cell and pathogen recognition and hence in the activation of downstream signalling 

cascades (Borner et al., 2005; Lenarčič et al., 2017). 

Plants are sessile organisms and are therefore restricted in their abilities to protect 

themselves against unfavourable environmental conditions. Therefore, they had to develop 

different adaptation strategies to surrounding putative threats. A major strategy is the 

dynamic adjustment of membrane properties. For instance, PM lipid composition can be 

adjusted to maintain membrane fluidity in changing temperatures, which increases plant 

tolerance of cold stress (Miquel et al., 1993; Uemura et al., 1995). Surface proteins 

embedded into the PM bilayer perceive pathogen components such as pathogen 

associated molecular patterns (PAMPs) and microbe-associated molecular patterns 

(MAMPs) which in turn initiates a signal transduction cascade that activates the plant’s 

immune response (Gómez-Gómez & Boller, 2000; Sanabria et al., 2010). The dynamic 

short-term adjustment of membrane properties underlies strict control mechanisms that 

mediate membrane organisation. 

2.2 The evolution of membrane organisation models 

The fluid-mosaic model proposed by Singer and Nicolson in 1972 describes a membrane 

as a heterogenous, fluid phospholipid bilayer into which membrane proteins are randomly 

incorporated in a mosaic-like pattern (Singer & Nicolson, 1972). The fluid-mosaic model is 

the first model that described the membrane as a dynamic compartment and has been a 

widely accepted concept of PM organisation. Following studies concerning lipid trafficking 

and membrane-associated signal transduction suggested that proteins may not be 

randomly distributed within membranes (van Meer & Simons, 1982; Lisanti & Rodriguez-

Boulan, 1990). Based on these and other studies, the fluid mosaic model had been adjusted 

over the past decades. However, the basic principle has been maintained. 

In 1997 Simons and co-workers proposed a new model of PM organisation, which 

is known as the ‘lipid raft hypothesis’ (Simons & Ikonen, 1997). The model describes the 

presence of micro- and nanoscale, temporary membrane regions, or ‘lipid rafts’, that are 

enriched in sterols, sphingolipids, and certain proteins (Simons & Vaz, 2004). According to 

this new concept, membrane proteins are distributed in these lateral lipid partitions instead 

of being randomly dispersed in the membrane. The proposed function of the sterol- and 

sphingolipid-rich domains is the lateral segregation and diffusion of membrane components, 
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especially of proteins. This becomes most important during membrane-associated 

signalling cascades that are induced by incoming stimuli (Simons & Toomre, 2000).  

In lipid bilayers with high levels of sterols the co-existence of two liquid lipid phases 

is observed (Recktenwald & McConnell, 1981). Co-existence of distinct liquid phases is 

enabled by lateral phase separation. This means that different phases are laterally 

separated within the plane of the membrane. Two liquid crystalline lamellar phases are 

described: the liquid-ordered (Lo) phase and the liquid-disordered (Ld) phase (Ipsen et al., 

1987; Scheiffele et al., 1997). The Lo phase is characterised by high levels of sterols, 

sphingolipids, and saturated phospholipids. Because of the high content of saturated lipids 

and the intercalation of sterols, Lo phases are more rigid due to tight lipid packaging and 

are therefore considered more ‘ordered’. The Ld phase has higher levels of unsaturated 

phospholipids. Lipids in the Ld phase can diffuse and rotate more freely within the bilayer 

plane and the phase is therefore more fluid, or ‘disordered’. Membrane domains can have 

either a Lo or a Ld phase-like structure. Lipid rafts have high levels of sterols and 

sphingolipids and are therefore considered to be in the Lo phase (Scheiffele et al., 1997). 

The term ‘membrane domain’ is hence a more general description for regions with distinct 

lipid and protein composition, while ‘lipid rafts’ are a subtype of membrane domains. 

According to the raft hypothesis, membrane domains with distinct phase structures are 

considered to control membrane protein clustering. 

Experimental evidence for the raft hypothesis has been provided by lipid purification 

studies using detergents. Detergents have a conical, amphiphilic molecular structure which 

causes spontaneous micelle formation in aqueous solutions. These compounds are 

therefore referred to as ‘curvophilic’. Phospholipids, however, form lipid bilayers and are 

therefore referred to as ‘curvophobic’ (Lichtenberg et al., 2005). High detergent 

concentrations cause membrane solubilisation with phospholipids residing in detergent 

micelles. Membrane fractions with different lipid compositions are solubilised at different 

lipid/detergent ratios (Lichtenberg, 1985). This aspect has been used as a biochemical tool 

in studying the composition of biological membranes. Some membrane fractions are highly 

resistant against detergent solubilisation and stay in the lipid bilayer conformation at even 

high detergent levels. Lipid rafts that contain mixtures of sphingolipids, sterols, and GPI-

anchored proteins are described as highly resistant to detergent solubilisation (Hanada et 

al., 1995). Therefore, detergent-resistant membranes (DRMs) have often been identified as 

in vitro versions of lipid rafts. However, this association might be misleading since the 

experimental extraction procedure might induce artificial DRM formation which might not be 

found in native membranes (Lichtenberg et al., 2005). This controversy caused many 

scientific debates over the existence of lipid rafts in biological membranes and called for 

new methods to investigate membrane lipid heterogeneity. Over the years, new 
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technologies including advanced lipid analytics, proteomics, and methods to visualise lipid 

raft markers in vivo have provided more evidence for lipid clustering in cell membranes 

(Pike, 2009; Cacas et al., 2016). These studies have supported the lipid raft hypothesis. 

Especially investigations of model membranes that mimic the lipid composition of native 

membranes have been useful tools in improving our understanding of membrane 

organisation (Wesołowska et al., 2009; Lin & London, 2014; Grosjean et al., 2015; Grosjean 

et al., 2018). Most membrane studies have been conducted on animal systems. However, 

animal membranes have different lipid compositions compared to plant membranes. In the 

mammalian PM cholesterol, sphingomyelin, and glycosphingolipids are the most abundant 

sterol and sphingolipid compounds. Hence, lipid rafts are considered to be mainly formed 

by the interaction between these compounds (Simons & Ikonen, 1997).  

2.3 Plant lipid diversity 

Plants contain a variety of lipids with different head group and backbone compositions 

(Table 1). These structurally varying lipid classes have different cellular distribution patterns 

and confer a multitude of physiological functions in the plant cell. Triacylglycerols (TAGs) 

are located in lipid droplets and are enriched in seeds where they serve as high-energy 

storage compounds (Xu & Shanklin, 2016). Diacylglycerols (DAGs) were described to act 

in lateral root development under mild salt stress in A. thaliana and may therefore play a 

role as second messengers in plants (Peters et al., 2014). DAGs are further assumed to be 

important building blocks of plant cell membranes where they induce a negative curvature, 

which might be an important feature during membrane fusion events (Szule et al., 2002). 

The majority of lipids have a function as structural elements in various membranes. 

Galactolipids such as monogalactosyldiacylglycerols (MGDGs) and 

digalactosyldiacylglycerols (DGDGs) represent highly abundant plant lipids that are 

enriched in thylakoid membranes where they have crucial roles in maintaining the integrity 

of photosynthetic active membranes (Dorne et al., 1990; Joyard et al., 1998; Dörmann & 

Benning, 2002). DGDGs are also found in minor amounts in the plasma membrane and are 

specifically enriched upon phosphate deprivation (Andersson et al., 2003; Andersson et al., 

2005). Membranes of the endoplasmic reiticulum (ER), the Golgi apparatus, and the 

tonoplast are part of the secretory pathway and make up a big proportion of the lipid content 

of a plant cell. The organelle membranes contain large amounts of phosphoglycerollipids 

and minor amounts of sterols and sphingolipids. A gradient of sterols and sphingolipids is 

observed along organelles of the secretory pathway with highest levels being found in the 

plant plasma membrane. The two lipid classes define the thickness and rigidity of 

membranes which are critical features in membrane organisation (Casares et al., 2019). 
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Table 1. Plant lipid classes, lipid composition, and abbreviations 

Lipid classes Lipid composition and abbreviations 

Sphingolipids 

Long-chain bases (LCBs) 

Ceramides (Cers) 

Glycosylceramides (GlcCers) 

Glycosyl inositiolphosphorylceramides (GIPCs) 

Sterol lipids 

Free sterols 

Steryl glycosides (SG) 

Acylated steryl glycosides (ASG) 

Steryl esters (SE) 

G
ly

ce
ro

lip
id

s 

Polar phosphoglycerolipids 

Phosphatidylcholines (PC) 

Phosphatidylethanolamines (PE) 

Phosphatidylglycerols (PG) 

Phosphatidylinositols (PI) 

Phosphatidylserines (PS) 

Phosphatidic acid (PA) 

Lysoglycerophospholipids (LGPL) 

Polar glycoglycerolipids 

Monogalactosyldiacylglycerols (MGDG) 

Digalactosyldiacylglycerols (DGDG) 

Sulfoquinovosyldiacylglycerols (SQDG) 

Diacylglyceryltrimethylhomo-Ser/-A (DGTS/A) 

Lysoglyceroglycolipids (LGGL) 

Neutral glycerolipids 
Diacylglycerols (DAG) 

Triacylglycerols (TAG) 

 

The plant PM has a specific lipid composition which is similar to animal PM lipid 

composition. Sterols represent 20–50 mol %; sphingolipids, 5–40 mol %; and 

phospholipids, 10–60 mol % of plant PM lipids (van Hooren & Munnik, 2017). The lipid 

constitution varies not only between different plant species but also between different tissue 

types (Sperling et al., 2005; Markham et al., 2006; Resemann, 2018). Furthermore, the 

composition is dynamically adjusted when plants are exposed to different biotic and abiotic 

stresses (Uemura et al., 1995; Nagano et al., 2014). As in animal systems, lipid asymmetry 

is proposed between the two monolayers of plant PM. DGDG and 60 % of the phospholipids 

are described to be located in the inner PM leaflet, while glycosylceramides (GlcCers), 

glycosyl inositolphosphorylceramides (GIPCs), and sterols are mainly found in the outer 

leaflet (Tjellström et al., 2010; Cacas et al., 2016).  

The main phytosterol species are campesterol, ß-sitosterol, and stigmasterol (Furt 

et al., 2011). The plant PM contains free phytosterols as well as the conjugated phytosterol 

forms steryl glycosides (SG) and acyl steryl glycosides (ASG) (Furt et al., 2010). 

Sphingomyelin is not detected in plants. However, plants contain GIPCs which have varying 

head group compositions depending on the plant species (Buré et al., 2011; Cacas et al., 

2013). The plant equivalent of mammalian glycosphingolipids are GlcCers. The major 

phospholipids in the plant PM are PC and PE. Phosphatidylglycerol (PG), phosphatidic acid 
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(PA), PS, PI, and phosphatidylinositol-phosphates (PIPs) are low abundant phospholipids 

(Mamode Cassim et al., 2019).  

The large diversity of the plant plasma membrane lipid composition has raised the 

question of the involvement of different lipid species in PM organisation. Similar to animal 

membranes, DRM fractions of plant PMs have been found to be enriched in sterols and 

sphingolipids (Mongrand et al., 2004; Borner et al., 2005; Minami et al., 2009; Moscatelli et 

al., 2015). Like the mammalian cholesterol, phytosterols have been described to be able to 

induce Lo phase formation (Roche et al., 2008; Gerbeau-Pissot et al., 2014). Recent studies 

on model membranes such as giant unilamellar vesicles (GUVs) and giant vesicles of native 

PMs (GVPMs) that mimic plant lipid mixtures reported varying abilities of different 

phytosterols to order membranes (Grosjean et al., 2015; Grosjean et al., 2018). Especially 

campesterol appears to strongly promote ordered domain formation. Interactions with the 

highly glycosylated GIPCs were described to enhance the ordering effect of campesterol 

(Grosjean et al., 2015). In addition to that, immunogold electron microscopy in tobacco 

(Nicotiana tabacum) PM showed clustering of GIPCs in 35 nm diameter membrane 

domains (Cacas et al., 2016). Other membrane sub compartments were also found to be 

enriched in phosphatidylinositol 4,5-bisphosphate (PIP2) (Furt et al., 2010). Localisation 

studies on membrane proteins further revealed clustering of different proteins in distinct 

membrane domains (Raffaele et al., 2009; Jarsch et al., 2014; Noirot et al., 2014).  

These previous reports hint at lateral heterogeneity in the plant PM that is similar to 

that observed in animal cells. Membrane domains with different lipid and protein 

compositions and hence varying biophysical properties appear to co-exist in the plant PM. 

The contribution of individual lipid species to membrane organisation is a current research 

subject. Combining proteomics, lipidomics, and different imaging techniques with the study 

of mutant plants that are disturbed in PM organisation has greatly helped in understanding 

membrane dynamics (Grison et al., 2015; Grosjean et al., 2015; Grosjean et al., 2018). 

However, the highly complex and dynamic nature of biological membranes poses major 

challenges to study in vivo mechanisms of plant membrane organisation and leave many 

unanswered questions that have to be addressed in the future.  

2.4 The enigma of the plant sphingolipids 

As described, sphingolipids are ubiquitous and essential membrane components in 

eukaryotes that play major roles in PM organisation. They were first described as lipid 

components of the brain tissue in the late nineteenth century by Johann Ludwig Wilhelm 

Thudichum (Thudichum, 1884). It is claimed that he named the newly discovered lipid class 

‘sphingolipid’ in allusion to the Sphinx, a creature from Greek mythology. The unique 

structure of sphingolipids was equally cryptic to scientists at the time of their discovery as 
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the riddles of the Sphinx. Nowadays, the structure and function of sphingolipids in 

mammalian cells is well investigated, mainly because of their association with severe 

metabolic and nervous disorders, some of them known as sphingolipidoses. Lipid storage 

disorders are genetically inherited and affect various organs and the nervous system. Other 

disorders that affect sphingolipid metabolism include autoimmune diseases. Examples for 

sphingolipid-associated diseases are Tay-Sachs disease, Niemann-Pick disease, and 

Guillain-Barré syndrome (Yu & Ariga, 1998; Sandhoff & Harzer, 2013).  

In plants, however, sphingolipids have been an overlooked lipid class for many 

years. Over the past three decades plant sphingolipids have been associated with multiple 

essential cellular processes and therefore attracted more attention by the plant science 

community. Plant sphingolipids may account for up to 10 % of total lipids from plant tissues 

(Lynch & Dunn, 2004). The structural diversity and complexity of plant sphingolipids 

requires powerful analytical tools. Up to 200 molecular species in the plant sphingolipidome 

have been described using advanced mass spectrometric approaches (Markham et al., 

2006; Markham & Jaworski, 2007; Cacas et al., 2013). Several plant enzymes involved in 

sphingolipid biosynthesis have been identified by sequence similarity to characterised 

enzymes in the baker’s yeast Saccharomyces cerevisiae. Mutants that are disturbed in 

different sphingolipid enzyme activities have been generated and showed major 

physiological and metabolic phenotypes (Luttgeharm et al., 2016). The combination of 

analytical approaches, in vitro enzyme assays, and investigations of plant mutants that are 

compromised in sphingolipid metabolism have been valuable tools in expanding our 

understanding of plant sphingolipid structure, metabolism, and function. 

2.5 Sphingolipid biosynthesis and structure 

Sphingolipids are amphipathic compounds. Their hydrophobic backbone includes an amino 

alcohol, referred to as long-chain base (LCB). LCBs are the characteristic core of 

sphingolipids that identify them as a distinct lipid class. LCBs may be connected to a fatty 

acid moiety. The resulting product is referred to as ceramide, which is the hydrophobic 

component of sphingolipids. More complex sphingolipid classes are formed through the 

conjugation of hydrophilic polar head groups to the LCB moiety of the ceramide backbone. 

The polar head groups of sphingolipids largely differ between animal, yeast, and plant cells. 

Plant sphingolipids are categorised into the following four classes: LCBs, ceramides, 

GlcCers, and GIPCs (Fig. 1). LCBs and ceramides are minor sphingolipid compounds that 

constitute 0.5 % and 2 % of the total sphingolipid content in Arabidopsis thaliana leaf 

extract, respectively (Markham et al., 2006). GlcCers and GIPCs are the most abundant 

plant sphingolipids and represent 34 % and 64 % of the total sphingolipid content in 

A. thaliana leaf extract, respectively (Markham et al., 2006). 
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Fig. 1. Plant sphingolipids are divided into four main classes. Plant sphingolipids are categorised into long-
chain bases (LCBs), ceramides, glycosylceramdies (GlcCers), and glycosyl inositolphosphorylceramides 
(GIPCs). The simplest sphingolipid compound, the LCB, is an amino alcohol. The LCB moiety may be connected 
via its amino group to a fatty acid moiety. The resulting product is called ceramide. Addition of a glucose moiety 
to the ceramide backbone results in the formation of GlcCers. Addition of an inositolphosphate and subsequent 
glycosylation results in the formation of GIPCs, whereby the number of added sugar groups may vary. The 
overview represents the four plant sphingolipid classes without detailed structural modifications on the ceramide 
backbone. Modified from (Lynch and Dunn, 2004). 

The following description of sphingolipid biosynthesis in plants is based on findings from 

A. thaliana. Sphingolipids are mainly synthesised via the de novo pathway that is acyl-

coenzyme A (CoA) dependent (Fig. 2). Sphingolipid biosynthetic enzymes are located in 

the membrane of the ER. The de novo pathway is initiated by the condensation of serine 

and palmitoyl-CoA. The reaction is catalysed by the serine palmitoyltransferase and results 

in the formation of the intermediate 3-ketosphinganine (Chen et al., 2006; Dietrich et al., 

2008; Teng et al., 2008). The enzyme 3-ketosphinganine reductase catalyses the reduction 

of 3-ketosphinganine to the simplest sphingolipid compound: the LCB sphinganine (Chao 

et al., 2011). Sphinganine is also referred to as dihydrosphingosine, a dihydroxy LCB, or in 

short d18:0 (Fig. 2). As the name indicates, d18:0 has a chain length of 18 carbon atoms 

and contains two hydroxyl groups at the C-1 and C-3 positions. The two hydroxyl groups 

derive from the serine and palmitoyl-CoA precursors. Different modifications are introduced 

to the LCB moiety that define its downstream metabolic fate. A third hydroxyl group may be 

introduced to the C-4 position by an LCB C-4 hydroxylase (Sperling et al., 2001; Chen et 

al., 2008). The resulting LCB is referred to as phytosphinganine, a trihydroxy LCB, or in 

short t18:0 (Fig. 2). Most LCB moieties of plant sphingolipids are trihydroxylated (Markham 

et al., 2006). Double bonds can be introduced to the LCB moiety by two distinct classes of 
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LCB desaturases. Double bonds may be inserted between the C-4 and C-5 position, 

designated as Δ4, and between the C-8 and C-9 position, designated as Δ8 (Sperling et al., 

1998; Ryan et al., 2007; Michaelson et al., 2009). The most common LCB moiety found in 

A. thaliana and other plants is trihydroxylated with a double bond in Δ8 position, t18:1 (Fig. 

2) (Markham et al., 2006). While the Δ4 double bond is only inserted in trans (E) 

configuration, the Δ8 double bond can be inserted in either cis (Z) or trans (E) configuration. 

The prevalence of the two Δ8 configuration states largely varies between different plant 

species and tissue types and may change when plants are exposed to external stresses 

(Markham et al., 2006; Sato et al., 2019).  

N-acylation of LCBs is catalysed by ceramide synthases and results in the formation 

of ceramides (Fig. 2). In plants, LCBs may be connected to fatty acids with chain lengths 

varying from 16 to 26 carbon atoms. Fatty acids with chain lengths of 16 or 18 carbons 

(C16, C18) are called long-chain fatty acids (LCFAs), while fatty acids with chain lengths 

longer than 18 carbons (≥ 20C) are called very long-chain fatty acids (VLCFAs). In 

A. thaliana distinct ceramide synthases have been described that have different substrate 

preferences. The class I ceramide synthase generates ceramides with dihydroxy LCBs and 

LCFAs, while the class II ceramide synthases prefer trihydroxy LCBs and VLCFAs 

(Markham et al., 2011; Ternes et al., 2011a) (Fig. 2). LCBs and ceramides may also be 

phosphorylated at the C-1 position of the LCB moiety by the action of LCB and ceramide 

kinases and are subsequently referred to as LCB phosphates (LCB-Ps) and ceramide 

phosphates, respectively (Liang et al., 2003; Imai & Nishiura, 2005; Worrall et al., 2008). 

Structural modifications may also be introduced to the fatty acid moiety of ceramides. The 

acyl chain may be hydroxylated at the C-2 or ‘α’ position through the activity of a fatty acid 

hydroxylase. Ceramides with α-hydroxylated fatty acid moieties are often termed 

hydroxyceramides. In the nomenclature, a saturated, α-hydroxylated fatty acid moiety with 

a 24-carbon chain can be called h24:0. If the fatty acid moiety is not hydroxylated, it is often 

called c24:0. The fatty acid moiety may also carry a cis double bond in n-9 position (Imai et 

al., 2000).  

Ceramides are the precursor molecules for the more complex sphingolipid classes 

GlcCers and GIPCs. The formation of GlcCers and GIPCs are alternative routes within 

sphingolipid metabolism (Fig. 2). The second most abundant plant sphingolipid class, 

GlcCer, is generated by the attachment of a hexose moiety, mostly glucose and sometimes 

mannose, to the C-1 of the LCB moiety. The transfer of a sugar moiety from uridine 

diphosphate-glucose (UDP-Glc) is catalysed by a glucosylceramide synthase (Leipelt et al., 

2001; Melser et al., 2010; Msanne et al., 2015). The hexose is connected to the ceramide 

backbone by a 1,4-glycosidic linkage (Leipelt et al., 2001) (Fig. 2).  
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Fig. 2. Abbreviated de novo sphingolipid biosynthesis in A. thaliana. The majority of reactions within 
sphingolipid biosynthesis takes place in the endoplasmic reticulum (ER). During the initial steps, the simplest 
sphingolipid compound, the long-chain base (LCB) sphinganine (d18:0), is formed. The d18:0 LCB is 
subsequently applied to modifications such as Δ4-desaturation and C-4 hydroxylation. N-acylation of the LCB 
moiety results in ceramide formation. Depending on the structural features of the LCB, different ceramide 
synthases, class I or class II, are active that connect dihydroxy LCBs either with long-chain fatty acids (LCFAs), 
or trihydroxy LCBs with very long-chain fatty acids (VLCFAs). The ceramide backbone may subsequently be 
modified by additional Δ8-desaturation of the LCB moiety, fatty acid α-hydroxylation, or fatty acid n-9 
desaturation. The combination of structurally different LCB and fatty acid moieties results in a large variety of 
ceramide species that are subsequently channelled into the glucosylceramide (GlcCer) or glycosyl 
inositolphosphorylceramide (GIPC) formation. The demonstrated pathway is an abbreviated version of 
sphingolipid biosynthesis, not including reactions such as phosphorylation, de-phosphorylation or breakdown of 
complex sphingolipids. Abbreviations are as follows: CoA: Coenzyme A; GDP-Man: Guanosine Diphosphate 
Mannose; GINT1: Glucosamine Inositolphosphorylceramide Synthase; GMT: GIPC Mannosyl Transferase; 
GONST1: GDP-Mannose Transporter; IPCS: Inositolphosphorylceramide Synthase; IPUT: 
Inositolphosphorylceramide Glucuronosyl Transferase; UDP-Glc: Uridine Diphosphate Glucose. 

In contrast to the previous steps in sphingolipid biosynthesis that happen in the ER, 

modification of the most abundant plant sphingolipid class, GIPC, happens in the Golgi 

apparatus (Wang et al., 2008). GIPC synthetic enzymes reside in the Golgi membrane and 

ceramide substrates are therefore exported from the ER and transported to the Golgi 

apparatus for further processing. Inositolphosphorylceramide synthases transfer an 

inositolphosphate head group from PI to the ceramide backbone (Wang et al., 2008; Mina 

et al., 2010). Subsequent glycosylation steps can add up to seven additional sugar residues 

to the inositolphosphorylceramide head group, leading to a variety of GIPC species with 

different head group compositions (Mortimer et al., 2013; Rennie et al., 2014; Fang et al., 
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2016; Tartaglio et al., 2017; Ishikawa et al., 2018). The first sugar moiety linked to the 

inositolphosphorylceramide backbone is usually glucuronic acid. The following sugar 

moieties may be hexosamine, N-acetylhexosamine, or a variety of different pentoses and 

hexoses. If only one sugar moiety is attached to the glucuronic acid, the GIPCs are called 

series A GIPCs. If two sugar moieties are attached, GIPCs are termed series B GIPCs. The 

glycan head group composition varies between different plant species and tissue types 

(Buré et al., 2011; Cacas et al., 2013). 

The introduced modifications in the ceramide backbone including the hydroxylation 

status (Fig. 3A), the number and position of inserted double bonds (Fig. 3B), the 

composition of polar head groups (Fig. 3C), and the variation of the acyl chain length (Fig. 

3D) are the main causes for the diversity found among plant sphingolipids. The structural 

features of individual sphingolipid species offer them an array of different biophysical 

properties including size, charge, or polarity and are likely key to their varied physiological 

functions. 

 

Fig. 3. Structural modifications on the ceramide backbone broadens variety of A. thaliana sphingolipids. 
Structural modifications on the ceramide backbone include (A) hydroxylation of the LCB and the fatty acid 
moieties, (B) desaturation of the LCB and the fatty acid moieties, (C) the composition of the polar head group, 
and (D) the chain length of the fatty acid moiety. (A) Hydroxylation can happen on the C-4 position of the LCB 
moiety or on the C-2 or α position of the fatty acid moiety. (B) Double bonds may be introduced at the Δ4 and 
Δ8 position of the LCB and at the n-9 position of the fatty acid moiety. (C) Different polar head groups 
(designated as R) such as glucose (Glc) or inositolphosphate and additional sugar residues (IPGlc) may be 
added to the C-1 of the LCB moiety. (D) In plants, the fatty acid chain length varies from 16 to 26 carbon atoms. 
Modified from (Berkey et al., 2012). 

Sphingolipids are involved in various signal transduction processes both during plant 

development as well as in immune responses. Especially LCBs and ceramides, which are 

believed to be second messengers in signalling cascades, are considered essential for the 

establishment of adaptive responses. Minor amounts of LCBs and ceramides may be 

provided by the breakdown of more complex sphingolipids which enables their re-entry into 

synthetic pathways. This process is referred to as salvage pathway. Different degradation 
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enzymes are active during the salvage pathway, including glucosylceramidases (Dai et al., 

2020), various ceramidases (Chen et al., 2015; Li et al., 2015; Wu et al., 2015; Zienkiewicz 

et al., 2020) and an LCB-P lyase (Tsegaye et al., 2007; Nishikawa et al., 2008). In contrast 

to the de novo biosynthesis pathway, the salvage pathway is fatty acid and not acyl-CoA 

dependent. To ensure fast responses of plants to their environment, conversion of 

sphingolipid compounds through anabolic and catabolic enzyme reactions has to adapt 

quickly. 

2.6 Plant sphingolipids have diverse physiological and metabolic functions 

Sphingolipids have roles as structural elements in membranes and as bioactive molecules 

during signal transduction (Greenberg et al., 2000; Coursol et al., 2003; Markham et al., 

2006; Shi et al., 2007). Disruption of sphingolipid metabolism causes severe defects in 

essential cellular processes such as development and the plant’s ability to respond to 

external stresses (Chen et al., 2008; Msanne et al., 2015; Gonzalez-Solis et al., 2020). 

Alterations in sphingolipid structure may influence the overall biophysical properties of 

membrane domains. Furthermore, disruption of sphingolipid metabolism may interfere with 

signalling cascades during essential cellular processes. This shows that an imbalance of 

sphingolipid homeostasis has drastic and harmful effects on plant viability (Abbas et al., 

1994; Chen et al., 2008; König et al., 2012; Msanne et al., 2015; Gonzalez Solis et al., 2020; 

Zienkiewicz et al., 2020). Therefore, the conversion of sphingolipids must be controlled in a 

dynamic manner to avoid an unusual accumulation of certain sphingolipid compounds that 

negatively affect plant viability (Abbas et al., 1994; Liang et al., 2003; Shi et al., 2007; Chen 

et al., 2008).  

Because of their distinct structural features, the four plant sphingolipid classes and 

even certain sphingolipid species have been ascribed to different physiological functions. 

The less abundant LCBs and ceramides appear to mostly act as bioactive mediators of 

cellular functions. LCBs, ceramides and their phosphorylated forms seem to be antagonistic 

partners in these processes. Especially the balance between LCBs, ceramides and their 

phosphorylated counterparts are important factors in regulating physiological processes. 

The activity of sphingolipid kinases and lyases controls the ratio of the free and 

phosphorylated forms (Liang et al., 2003; Imai & Nishiura, 2005; Worrall et al., 2008). LCBs 

and ceramides both have been reported as triggers of programmed cell death (PCD) 

(Greenberg et al., 2000; Liang et al., 2003; Shi et al., 2007; Alden et al., 2011). First 

indications for the involvement of LCBs and ceramides in PCD induction were observed 

during studies with fungal-derived sphingosine analogues. The mycotoxins from Alternaria 

alternata f. sp. lycopersici (AAL) and fumonisin B1 (FB1) from Fusarium species are able to 

elicit PCD in plants. The two mycotoxins have structural similarity to sphingosine and 
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therefore act by competitively inhibiting ceramide synthase activity. Blockage of ceramide 

synthesis resulted in elevated levels of LCBs (Abbas et al., 1994; Stone et al., 2000). 

Following studies reported the specific inhibition of the class II ceramide synthase LOH1 by 

FB1, which in turn resulted in elevated levels of dihydroxy ceramides with LCFAs (Markham 

et al., 2011; Molino et al., 2014). LCBs and ceramides were later also directly shown to elicit 

PCD symptoms. Exogenous application of LCBs to A. thaliana leaves resulted in the 

induction of reactive oxygen species (ROS) dependent PCD (Shi et al., 2007). Conversely, 

simultaneous application of LCBs and LCB-Ps suppressed the onset of PCD, which 

indicated that LCBs and LCB-Ps appear to counteract with each other (Shi et al., 2007; 

Alden et al., 2011). Similarly, investigation of the ceramide kinase mutant acd5 revealed 

accumulation of ceramides, which was accompanied by PCD symptoms (Greenberg et al., 

2000; Liang et al., 2003). Analogous to the ratio of LCBs to LCB-Ps, the balance of 

ceramides and phosphorylated ceramides was also observed to be a critical factor in cell 

death induction (Liang et al., 2003). In general, ceramides and LCBs appear to play crucial 

roles in plant resistance to pathogens. Elevated levels of LCBs and ceramides were not 

only associated with the onset of PCD but also with upregulation of defence-related genes 

and higher levels of certain phytohormones. Especially a correlation of sphingolipid 

metabolism and phytohormone signalling appears to be a key factor in mediating the plant 

immune response. The fatty acid hydroxylase mutant, fah1 fah2, was shown to accumulate 

LCBs and ceramides, had constitutive PR1 and PR2 expression, and higher salicylic acid 

(SA) levels (König et al., 2012). More recently, A. thaliana mutants disrupted in neutral 

ceramidase activities, ncer1 and ncer2, accumulated jasmonic acid-isoleucine (JA-Ile) and 

SA, respectively (Zienkiewicz et al., 2020). ncer1 plants had higher levels of 

hydroxyceramides, which was associated with early leaf senescence (developmentally 

controlled PCD), while ncer2 plants had higher levels of t18:0 LCBs, which was associated 

with defence-related cell death (pathogen-triggered PCD). The differing cell death 

symptoms in the two independent neutral ceramidase knockouts indicate that elevated 

levels of LCBs and ceramides may elicit different downstream signalling cascades that 

include either JA or SA pathways. In addition to their role in plant immune responses, LCB-

Ps were also associated with abscisic acid (ABA) dependent guard cell closure (Ng et al., 

2001; Coursol et al., 2003). Mutants disrupted in their sphingosine kinase (SphK1) activity 

were less sensitive to ABA-promoted stomatal closure. ABA is proposed to activate SphK1 

which in turn caused an increase in LCB/LCB-P ratio. The signalling cascade affected 

cytosolic ion levels and hence opened ion channels that in turn caused turgor reduction of 

the guard cells, resulting in stomatal closure. Cumulative findings concerning LCB and 

ceramide signalling in plant cells indicate the participation of different LCB and ceramide 

species in response to biotic and abiotic stresses.  
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The more abundant complex plant sphingolipid classes GlcCers and GIPCs are 

ubiquitous structural elements of the plant PM and of endomembrane systems. They have 

been detected as components of intracellular membranes, including ER, Golgi apparatus, 

tonoplast, and endosomes (Moreau et al., 1998; Mongrand et al., 2004; Sperling et al., 

2005; Bayer et al., 2014). A sphingolipid gradient is observed along the secretory pathway 

with highest sphingolipid levels found in the PM. GlcCers and GIPCs compose around 5-

10 % and 40 % of all plant PM lipids, respectively, and are considered to be enriched in the 

outer leaflet (Tjellström et al., 2010; Cacas et al., 2016). The relative abundances of GlcCer 

and GIPCs in the plant PM likely contribute to adaptive processes towards biotic and abiotic 

stresses. For instance, the ratio of GlcCers to GIPCs in the plant PM has been associated 

with membrane adjustments in response to cold stress. Nagano et al. (2014) reported an 

increase in GIPC levels and a decrease in GlcCer levels in A. thaliana cold 

acclimation(Nagano et al., 2014). Although both complex sphingolipid classes are assumed 

to be enriched in the plasma membrane (Cacas et al., 2016), the two classes are structurally 

distinguishable in their head group and in their ceramide backbone composition. Therefore, 

they might have different functions in plant physiology. However, differences in their 

physiological activities are still poorly understood. 

GlcCers are described to be specifically enriched in A. thaliana pollen and floral 

tissue (Luttgeharm et al., 2015b). GlcCer-deficient mutants cannot develop beyond seedling 

stage, are defective in organ-specific cell differentiation, have an altered Golgi morphology, 

and impaired pollen transmission (Msanne et al., 2015). Inhibition of the glucosylceramide 

synthase, GCS, from A. thaliana with the chemical inhibitor D,L-threo-1-phenyl-2-

palmitoylamino-3-morpholino-1-propanol (PDMP) was similarly associated with an altered 

Golgi morphology (Melser et al., 2010). Cumulative findings indicate a role for GlcCers in 

Golgi-mediated protein secretion and subsequent vesicle trafficking to the plant PM. The 

desaturation status of GlcCers was also found to be important in plant response to chilling 

and freezing. While in chilling-resistant plants the fatty acid moiety of GlcCers was mainly 

composed of unsaturated α-hydroxylated fatty acids (Cahoon & Lynch, 1991; Imai et al., 

1995), GlcCers of chilling sensitive plants did not have those fatty acids (Imai et al., 1995).  

GIPCs are considered to be the most abundant plant sphingolipid class, however, 

the relative abundances of GlcCers and GIPCs may vary depending on the investigated 

plant species, the tissue type, and the applied external conditions (Sperling et al., 2005; 

Markham et al., 2006; Markham & Jaworski, 2007; Luttgeharm et al., 2015b). Due to their 

complex, highly polar head group compositions, GIPCs have limited solubility in traditionally 

used extraction solvents. Only recently, extraction methods for plant GIPCs have been 

optimised and enabled first investigations on this long-overlooked plant sphingolipid class 

(Buré et al., 2011; Cacas et al., 2013). Their high abundance in the PM, which was recently 
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described to be around 40 mol % of tobacco PM lipids, puts them into the spotlight as most 

abundant plant sphingolipids (Cacas et al., 2016; Gronnier et al., 2016). As described in 

part 2.3, lipid rafts are highly enriched in sterols and sphingolipids. The biggest proportion 

of sphingolipids found in lipid rafts is represented by GIPCs. GIPCs were found to be 

enriched in DRM fractions of tobacco Bright Yellow 2 (BY-2) cell cultures (Cacas et al., 

2016). Microscopic evidence for GIPC enrichment in certain membrane domains was given 

by Cacas et al. (2016), who performed immunogold labelling of tobacco PM vesicles. 

Subsequent tissue investigation with electron microscopy revealed clustering of highly 

glycosylated GIPCs in distinct membrane domains (Cacas et al., 2016). GIPCs were further 

reported to enhance the campesterol-induced ordering effect of membrane domains 

(Grosjean et al., 2015). Through their structural function in lipid rafts, GIPCs are assumed 

to be involved in a multitude of PM-associated signal transduction processes. They are 

described as lipid anchors for GPI-anchored surface proteins (Borner et al., 2005; Lefebvre 

et al., 2007). Plant GIPCs might also act as cell wall anchors (Voxeur & Fry, 2014). 

Moreover, GIPCs were recently also identified as toxin receptors and are known to be 

involved in salt sensing (Lenarčič et al., 2017; Jiang et al., 2019). In addition to that, 

purification of plasmodesmata membrane fractions reported a similar lipid composition as 

described for membrane rafts (Grison et al., 2015). GIPCs are therefore likely involved in 

plasmodesmal cell-to-cell transport of nutrients and signalling compounds (Yan et al., 2019; 

Liu et al., 2020).  

2.7 Metabolic routing of sphingolipid intermediates 

Apart from their physiological function in plants, structural modifications on the ceramide 

backbone may also have a role in channelling ceramide substrates into downstream 

complex sphingolipid synthesis. As mentioned, GlcCer and GIPC formation display two 

alternative pathways in sphingolipid metabolism (Fig. 2). Especially the hydroxylation and 

desaturation state of the LCB moiety is considered to be responsible for dictating the 

metabolic fate of precursor compounds. Previous studies on A. thaliana showed that the 

trihydroxy LCB, mostly t18:1 with the double bond in Δ8 position, is the most abundant 

moiety in GIPCs while LCB Δ4-desaturation likely plays a key role in channelling substrates 

into GlcCer formation (Chen et al., 2008; Michaelson et al., 2009). The t18:1 LCB moiety of 

GIPCs is mainly found in association with α-hydroxylated VLCFAs, while the d18:2 LCB 

moiety of A. thaliana pollen GlcCers and of species such as tomato (Solanum lycopersicum) 

and soybean (Glycine max) is mostly connected with the α-hydroxylated LCFA C16. The 

channelling function of the C-4 hydroxylation and the LCB Δ4-desaturation is supported by 

the fact that both reactions happen on the C-4 position of the LCB moiety which makes 

them mutually exclusive.  
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The prevalence of certain ceramide modifications in GlcCers and GIPCs appears to 

have direct effects on the physiological functions of the two complex sphingolipid classes. 

The typical ceramide backbone found in GlcCer and GIPC species is usually highly 

hydroxylated, both on the LCB as well as on the fatty acid side. The hydroxylation status of 

sphingolipids is considered essential for building up an extensive hydrogen bond network 

with other membrane components (Slotte, 1999; Mombelli et al., 2003; Slotte, 2016). This 

is especially important for the interaction with phytosterols during lipid raft formation 

(Mamode Cassim et al., 2019). A. thaliana has two functionally redundant LCB C-4 

hydroxylases, SBH1 and SBH2. The combined activities of both enzymes account for all 

trihydroxy LCB formation in the plant. Both genes were able to complement the S. cerevisae 

LCB C-4 hydroxylase knockout sur2Δ (Sperling et al., 2001). Knockout of both hydroxylase 

encoding genes led to severely dwarfed plants that were likely disturbed in cell elongation 

and division and that did not reach reproductive maturity (Chen et al., 2008). Additionally, 

knockout plants showed necrotic cotyledon lesions which were accompanied by the up-

regulation of defence-related marker genes. Knockout of both genes caused serious 

alterations in all sphingolipid classes (Chen et al., 2008). The most prominent observation 

was a drastic accumulation of sphingolipids containing dihydroxy LCB moieties and C16 

fatty acid moieties. Furthermore, the most abundant LCB moiety in all sphingolipid classes 

switched from trihydroxy LCBs to dihydroxy LCBs (Chen et al., 2008). Since sphingolipid 

content and composition were both affected in the mutant, the phenotype was speculated 

to derive either from the unusual accumulation of sphingolipids with dihydroxy LCBs and 

C16 fatty acids or from a global change in the most abundant LCB moiety from trihydroxy 

to dihydroxy LCBs. Similar to the LCB C-4 hydroxylases, A. thaliana harbours two 

redundant fatty acid hydroxylases, FAH1 and FAH2 (König et al., 2012). The fah1 fah2 

mutant has reduced levels of α-hydroxylated sphingolipids and instead showed elevated 

levels of sphingolipids with unhydroxylated fatty acid moieties. Furthermore, trihydroxy 

LCBs and ceramides were enriched five- and ten-fold, respectively, and total GlcCer levels 

were reduced by 25 % compared to the wild type. These alterations in the sphingolipidome 

were accompanied by reduced plant size, elevated SA levels, constitutive PR gene 

expression and an associated increased resistance against the obligate biotrophic 

pathogen Golovinomyces cichoracearum (König et al., 2012).  

Another important feature is the prevalence of VLCFAs in GlcCers and GIPCs. 

Longer acyl chains increase the hydrophobicity and the membrane transition from fluid to 

gel phase state (Pinto et al., 2014; Mamode Cassim et al., 2019). Additionally, the chain 

length of the fatty acid moiety is considered a crucial feature in the interdigitation and 

therefore in the connection of the inner and outer PM monolayers (Mamode Cassim et al., 

2019). Sphingolipids with VLCFAs are reported to have a crucial role in development 
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(Markham et al., 2011; Molino et al., 2014). Inhibition of ceramide synthases that are specific 

for VLCFA substrates caused defects in root-outgrowth. On a subcellular level, defects in 

VLCFA-containing sphingolipids resulted in impaired membrane trafficking of auxin proteins 

to the PM (Markham et al., 2011). Molino et al. (2014) also demonstrated altered cell plate 

formation in plants whose VLCFA incorporating ceramide synthase LOH1 was blocked by 

the mycotoxin FB1 (Molino et al., 2014). The authors propose a function for VLCFA-

containing sphingolipids in lipid bilayer fusion and therefore in vesicle dynamics during 

development. 

Although GlcCer and GIPC architectures share some structural features, the 

A. thaliana GlcCer pool differs in certain molecular species from the GIPC pool. 

A. thaliana GlcCers are enriched in the Δ4,8-diunsaturated, d18:2, LCB moiety 

compared to GIPCs (Markham et al., 2006). Plants lacking the two LCB Δ8-desaturases, 

SLD1 and SLD2, have GlcCer levels that are 50 % reduced compared to the wild type and 

the mutants are more sensitive to cold stress (Chen et al., 2012). It might be that the 

configuration state of the Δ8 double bond plays a role in shunting t18:1 species into GlcCer 

or GIPC formation. In contrast to that, knockout mutants of the A. thaliana LCB Δ4-

desaturase did not show any obvious phenotypes (Michaelson et al., 2009). In A. thaliana 

the d18:2 LCB moiety is enriched in pollen and floral tissue (Michaelson et al., 2009). GlcCer 

levels were also significantly reduced in the LCB Δ4-desaturase knockout plant, indicating 

that LCB Δ4-desaturation has indeed a channelling function for GlcCer formation 

(Michaelson et al., 2009). However, pollen and general plant viability was not affected in the 

A. thaliana mutant plants. While Δ8-desaturation is one of the most abundant LCB 

modifications found in A. thaliana sphingolipids, LCB Δ4-desaturation appears to not have 

a significant physiological role in Brassicaceae (Markham et al., 2006). A lipidomics screen 

covering 21 plants from different lineages identified the prevalence of the LCB double bond 

position in d18:1 LCB moieties (Islam et al., 2012). They revealed that LCB Δ4-desaturation 

is most common to non-vascular plants and to the Poales family whereas LCB Δ8-

desaturation is most abundant in plants like Brassicaceae. The authors speculated that LCB 

Δ4-desaturation appears to be more ancient than LCB Δ8-desaturation. Interestingly, in 

plants like tomato and soybean ceramides with a Δ4,8-diunsaturated LCB moiety and C16 

fatty acids are most abundant (Markham et al., 2006). This suggests that the LCB 

desaturation state was subject to divergent evolution and that LCB Δ4-desaturation likely 

has a more important physiological role in plants outside the Brassicaceae family. In the 

filamentous fungus Pichia pastoris loss of LCB Δ4-desaturation has more pronounced 

metabolic effects resulting in complete abolishment of GlcCers (Michaelson et al., 2009). 

Plants that lack all GlcCers are seedling lethal and plants with a disturbed GlcCer formation 

show defects in cell differentiation and organogenesis, likely due to an impaired intracellular 
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membrane trafficking (Melser et al., 2010; Melser et al., 2011; Krüger et al., 2013). The 

structural features of GlcCers therefore appear to have an important role in vesicle 

dynamics. 

GIPCs have a characteristic head group. The glycan residues of the GIPC head 

group might be important for pathogen perception and cell recognition (Lenarčič et al., 

2017). The head group composition is strongly specific for certain plant species and tissue 

types (Buré et al., 2011; Cacas et al., 2013; Luttgeharm et al., 2015b). Alterations of the 

glycan head group composition is reported to have severe effects on plant viability. 

Knockout of one of the three inositolphosphoceramide synthases, ERH1, resulted in GIPC 

reduction and accumulation of the ceramide precursor, which was accompanied by the 

onset of cell death symptoms (Wang et al., 2008). Knockout of subsequent enzymes that 

catalyse conjugation of different sugar residues resulted in mutants that were either lethal 

or had severe growth defects (Mortimer et al., 2013; Rennie et al., 2014; Tartaglio et al., 

2017). 

 Taken together, studies on distinct A. thaliana sphingolipid mutants indicate that 

LCB modifications have a strong influence on the metabolic flux of sphingolipid compounds, 

and that distinct structural features of GlcCers and GIPCs have important effects on their 

physiological function. Especially LCB C-4 hydroxylation and LCB Δ4-desaturation appear 

to be of great importance for the downstream metabolic fate of sphingolipids. In A. thaliana, 

the channelling of sphingolipid metabolites seems to also be partially controlled by the ratio 

of cis and trans Δ8 double bonds (Markham et al., 2006; Markham & Jaworski, 2007). 

However, the exact channelling process of sphingolipid intermediates in plants is not yet 

fully elucidated, in part because of the large complexity of the A. thaliana sphingolipidome. 

Furthermore, although sphingolipid biosynthesis is broadly conserved among plants of 

different taxonomic groups, sphingolipid composition differs between plant species and 

even between different tissues of the same plant (Sperling et al., 2005; Markham et al., 

2006; Markham & Jaworski, 2007; Luttgeharm et al., 2015b). This underlines that distinct 

sphingolipid species have different physiological roles which may be more or less important 

in certain plants and plant tissues. This also includes a potential divergent evolution of 

different pathogen interaction systems in plants of different taxonomic groups. A recent 

study gave a great example for this and showed that GIPCs can act as necrosis and 

ethylene-inducing peptide 1–like (NLP) toxin receptors in eudicots but not in monocots 

(Lenarčič et al., 2017). The authors concluded that this host selectivity may be due to the 

glycan head group composition which is known to be plant species- and tissue-dependent 

(Buré et al., 2011; Cacas et al., 2013). These observations indicate that sphingolipid 

metabolism diverged during land plant evolution. However, the functional relevance for this 

diversification is largely unknown. 
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2.8 The value of bryophytes in sphingolipid studies 

Most findings on plant sphingolipid biosynthesis have been gained from studies on the 

vascular model A. thaliana (Luttgeharm et al., 2016). While observations made in this 

commonly used model contributed greatly to our knowledge on plant sphingolipid 

metabolism, the sole focus on the A. thaliana sphingolipidome may also present some 

limitations. As the previous paragraph explained, sphingolipid metabolism in plants appears 

to have diverged during land plant evolution. Therefore, structural modifications such as 

LCB Δ4-desaturation, which is an essential feature for GlcCer formation in plants like tomato 

or soybean, is nearly absent in A. thaliana (Markham et al., 2006; Michaelson et al., 2009). 

To study the physiological relevance of compounds that are not important for Brassicaceae, 

it is therefore crucial to study plants beyond A. thaliana (Michaelson et al., 2009; Islam et 

al., 2012; Markham et al., 2013). Another disadvantage of studying sphingolipid 

biosynthesis in vascular land plants is their complex body plan. Disruption of sphingolipid 

genes in vascular plants therefore often results in pleiotropic phenotypes, making it difficult 

to ascribe distinct sphingolipids to certain physiological functions (Chen et al., 2008; König 

et al., 2012; Msanne et al., 2015). Our recently acquired knowledge on the importance of 

plant GIPCs in membrane organisation furthermore calls for novel tools to study in planta 

membrane dynamics. Previous studies focused on working with model membrane systems 

of decreasing complexity to decipher the role of individual sphingolipid classes on 

membrane organisation (Grosjean et al., 2015; Grosjean et al., 2018). While these studies 

gave undeniably valuable insights of how different sphingolipid classes influence the 

membrane order in vitro, they unfortunately omit the complex background of biological 

membranes in native tissues. This includes the presence of integral or peripheral membrane 

proteins and intercellular communication. The study of plants with simpler tissue types and 

a sphingolipidome of lower complexity might therefore be key in advancing our knowledge 

on the sphingolipid function in plants.  

The study of different plant lineages displays a valuable tool in understanding the 

evolution of physiological processes. Around 400 million years ago the first plants 

conquered terrestrial environments as habitat. A sister lineage of vascular plants are the 

bryophytes that comprise three groups of non-vascular land plants: mosses, liverworts, and 

hornworts (Hedges, 2002). Emerging model organisms from this group are the liverwort 

Marchantia polymoropha and the moss Physcomitrella patens. Mosses share the same 

essential metabolic and physiological processes with vascular plants. However, their body 

plans are much simpler than the highly complex vascular tissues. P. patens has gained 

increased attention in plant research over the past three decades due to a plethora of 

advantageous properties (Cove, 2005; Cove et al., 2006; Rensing et al., 2008). In 2008 the 
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P. patens genome was completely sequenced (Rensing et al., 2008). Since then an 

advanced molecular toolkit for gene editing of the plant has been developed. The moss has 

a haplodiplontic life cycle with the alternation of two generations: the haploid gametophyte 

and the diploid sporophyte. The dominant haploid gametophytic phase of the moss is easily 

accessible for genetic manipulation. Homologous recombination has for a long time been 

the method of choice for targeted gene disruption in P. patens (Schaefer & Zrÿd, 1997). 

More recently, the use of the CRISPR-Cas9 system has been established in the moss, 

enabling simultaneous disruption of numerous genes (Lopez-Obando et al., 2016; 

Collonnier et al., 2017).  

Compared to vascular plants, the architectural design of P. patens is relatively 

simple. The gametophyte consists of two developmental stages: the initially formed 

protonema and the shoot-like gametophore (Prigge & Bezanilla, 2010) (Fig. 4). The 

protonema is a two-dimensional network of filamentous cells. Two cell types compose the 

protonema. The first cells to be generated are the assimilatory chloronema that harbour 

numerous chloroplasts. Chloronema cells gradually differentiate into the foraging 

caulonema cells, which are much longer and grow faster than chloronema cells (Fig. 4). In 

dark conditions, only caulonema cells are able to grow against the gravity vector and are 

then referred to as skotonema cells (Cove et al., 1978; Rensing et al., 2020). The 

filamentous cells grow via polarized tip growth and side-branching is initiated at subapical 

cells.  

 

Fig. 4. P. patens life cycle. The haplodiplontic P. patens life cycle is dominated by the haploid gametophyte 
that consists of spores, protonema, and gametophore. It starts with a single spore that germinates into the 
filamentous protonema. The protonema is composed of two cell types: the chloronema and the caulonema cells. 
Buddings that emerge from the protonema grow out into the gametophore. The gametophore has leaf-like 
phyllids and root-like rhizoids. The reproductive organs, the female archegonia and the male antheridia, are 
located at the tip of the gametophore. After the egg inside the archegonium is fertilised by spermatozoids, the 
zygote matures into the spore capsule. The diploid sporophyte consists of a spore capsule and a short seta. 
Modified from (Rensing et al., 2020). 

Once the protonema has ensured proper establishment of the plant, the development of the 

adult stage, the gametophore, is initiated (Fig. 4). The gametophore is a three-dimensional 

structure that is most similar to the shoot of vascular plants. However, the individual organs 
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of the plant have a much simpler architecture than the ones of vascular land plants. The 

gametophore shoot carries leaflets that are only one cell layer thick. They also have root-

like structures, filamentous rhizoids, which anchor the shoot to the ground and ensure 

nutrient supply (Fig 4). Sexual reproduction of the moss is dependent on autumn-like 

environmental conditions. Colder temperatures induce the formation of the sexual organs, 

the gametangia, at the tip of the gametophore (Hohe et al., 2002) (Fig 4). Subsequent 

submersion with water enables spermatozoids to swim from the male antheridia to the 

female archegonia and to fertilise the egg inside the female organ. The zygote matures into 

the sporophyte, the only diploid phase of the life cycle, which consists of a spore capsule 

and a short seta (Landberg et al., 2013; Hiss et al., 2017). Bursting of the spore capsule 

results in the release of haploid spores that initiate a new life cycle (Engel, 1968).  

In addition to sexual reproduction P. patens can also be propagated vegetatively. 

Disruption of gametophytic tissue results in a high regeneration rate. This might be 

especially interesting for studying mutants disturbed in sphingolipid metabolism since many 

A. thaliana sphingolipid mutants are unable to reach reproductive maturity. Disturbed sexual 

reproduction is often associated with embryo lethal phenotypes. True A. thaliana 

sphingolipid knockout plants are therefore often not accessible for detailed phenotype 

characterisation, forcing scientists to instead work on knockdown plants. The life cycle of 

P. patens can easily be completed under laboratory conditions making each developmental 

stage easily accessible for thorough phenotypic investigations.  

All these aspects have put P. patens into the spotlight for developmental and 

evolutionary genetic studies. Because of its anatomical simplicity, the yeast S. cerevisiae 

has been a valuable model in investigating the sphingolipid pathway (Riezman, 2006; 

Dickson, 2010). The same reasoning may be applied in using the bryophyte P. patens as 

plant model with a simple non-vascular anatomy. In terms of studying sphingolipid 

biosynthesis in plants, discoveries of individual reactions in P. patens sphingolipid 

biosynthesis may allow us to take a step back from the thoroughly investigated A. thaliana 

sphingolipidome and put new findings on plant sphingolipid biosynthesis into an 

evolutionary context. This might help us to understand the divergence of sphingolipid 

metabolism in different land plant lineages.  

2.9 The P. patens sphingolipidome 

A recent study conducted a global lipid analysis on P. patens protonema (Resemann, 

2018). For the lipidomics screen a multiple reaction monitoring (MRM)-based ultra-

performance liquid chromatography (UPLC) coupled with nanoelectrospray ionisation 

(nanoESI) and triple quadrupole tandem mass spectrometry (MS/MS) approach was 

applied that was adjusted from a screen for A. thaliana lipids (Tarazona et al., 2015). The 
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authors described over 700 lipid species in the moss that were divided into 20 lipid classes 

(Resemann, 2018). These classes included the four introduced plant sphingolipid classes. 

One of the major differences to the sphingolipidome of vascular plants was the prevalence 

of the t18:0 LCB moiety in all sphingolipids instead of the t18:1 LCB moiety. The t18:1 LCB 

moiety was only detected in low amounts or did not exist in P. patens. Furthermore, unlike 

A. thaliana, P. patens GlcCers were mainly composed of a single molecular species with a 

d18:2/h20:1 ceramide backbone. This GlcCer composition rather resembles GlcCers found 

in plants such as tomato and soybean. In addition, P. patens sphingolipids mostly harbour 

VLCFAs (≥ 20C) while A. thaliana contains two main classes of ceramide species that 

derive from the activity of two distinct substrate-specific ceramide synthases (Markham et 

al., 2011; Ternes et al., 2011a). One class consists of ceramides with a dihydroxy LCB and 

LCFAs, the other one of ceramides with trihydroxy LCBs and VLCFAs (Markham et al., 

2011; Ternes et al., 2011a). This structural distinction of ceramides was, however, not 

described for sphingolipids in P. patens.  

Sphingolipid diversity in A. thaliana partially derives from the presence of redundant 

genes for key enzymes within the sphingolipid pathway. An aspect that may facilitate the 

study of sphingolipid enzymes in P. patens is the lack of redundant genes for some key 

steps in sphingolipid biosynthesis. The LCB-C4 hydroxylase, the LCB Δ4- and Δ8-

desaturases, and the glycosylceramide synthase may all be represented by single genes in 

P. patens. 

 In addition to the determination of the lipid profile of P. patens, Resemann (2018) 

also identified the sphingolipid fatty acid desaturase, PpSFD (Resemann, 2018). The gene 

was first described in a transcriptomic screen where it was upregulated when P. patens was 

exposed to cold temperatures (Beike et al., 2015). While sfd mutants did not show growth 

defects under normal temperature, the plants were more sensitive to cold stress. A. thaliana 

plants that had a disturbed fatty acid desaturase activity, ads2.1, were similarly sensitive to 

cold stress (Chen & Thelen, 2013). Complementation of the A. thaliana mutant ads2.1 with 

PpSFD resulted in a rescue of the cold phenotype. Analytical investigation of the double 

bond position revealed that PpSFD inserts the fatty acid double bond mainly at n-8 position. 

The AtADS2, however, specifically introduces the fatty acid double bond at position n-9. 

These findings indicate independent evolutionary backgrounds of the sphingolipid fatty acid 

desaturases of the two plant organisms. Although the two desaturases evolved 

convergently to each other, they appear to confer the same physiological function in both 

plants. This and other studies on convergent evolution demonstrate the utility of bryophytes 

as model organisms. They allow us to identify fundamental aspects of metabolic pathways 

and help us to understand how certain metabolic pathways evolved and adapted in the 

process of plant terrestrialisation and diversification.  
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2.10 Aim of this study 

The metabolic routing of sphingolipid intermediates and the diversification of plant 

sphingolipid metabolism is still poorly understood in vascular plants. While A. thaliana has 

been an invaluable model that has helped us to broaden our knowledge of plant sphingolipid 

biosynthesis and function, it also shows clear limitations. The A. thaliana sphingolipidome 

is highly diverse and complex. A. thaliana sphingolipid mutants that are disturbed in single 

reactions hence often show global changes in all sphingolipid classes that cause pleiotropic 

downstream effects. Moreover, certain reactions that may not play an important 

physiological role in A. thaliana might be crucial for plants of other taxonomic groups. The 

physiological relevance of these compounds in other plants has therefore been largely 

omitted in previous studies.  

The sphingolipidome of P. patens is much less complex than the sphingolipidome of 

A. thaliana (Resemann, 2018). The routing of structurally distinct sphingolipid compounds 

into complex sphingolipid formation appears stricter in P. patens than in vascular plants. 

GlcCers contain a ceramide backbone with a Δ4,8-diunsaturated LCB moiety and GIPCs a 

ceramide backbone with a t18:0 LCB moiety. LCB C-4 hydroxylation and LCB Δ4-

desaturation therefore appear to dictate the metabolic fate of sphingolipids in P. patens. 

The predominance of GlcCer species with a d18:2 LCB moiety also indicates a greater 

physiological role for Δ4-unsaturated sphingolipids in P. patens than in A. thaliana. In 

P. patens the LCB C-4 hydroxylase and the LCB Δ4-desaturase are most likely single genes 

and are therefore both easy targets for genetic manipulation. Moreover, the first committed 

step of GlcCer synthesis is catalysed by the glycosylceramide synthase, which is also very 

likely represented by a single gene in P. patens. To study the metabolic routing and the 

physiological relevance of sphingolipid species with distinct structural features, null mutants 

of the three key enzymes within P. patens sphingolipid biosynthesis were generated by 

homologous recombination. In order to perform extensive examinations of the sphingolipid 

knockouts, P. patens cultivation and characterisation assays had to be established and 

optimised (chapter 1). The effects of disrupting the individual sphingolipid enzymes were 

assessed via macro- and microscopic investigation of different developmental stages of the 

mutants as well as by determination of the underlying lipid profiles by UPLC-nanoESI-

MS/MS. The LCB C-4 hydroxylase, PpS4H, is located in the pathway leading to GIPC 

formation. Investigation of the s4h mutant is described in chapter 2. The LCB Δ4-desaturase 

and the glycosylceramide synthase are both parts of the GlcCer synthetic pathway. 

Knockout mutants of the two genes were designated as sd4d-1 and gcs-1, respectively, 

and mutant characterisations are shown in chapter 3. Comparison of all three mutants might 

help to dissect the specific physiological roles of GlcCers and GIPCs in plants. It may also 
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reveal if and how certain structural modifications of the LCB moiety influence the function 

of complex sphingolipids. Combining the findings from P. patens sphingolipid mutants with 

results from studies on the corresponding A. thaliana mutants may contribute to our 

understanding of how and why sphingolipid biosynthesis in plants diversified during land 

colonisation.  
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3 Chapter 1 

Establishment and optimisation of Physcomitrella patens cultivation, 

characterisation assays, and analytic techniques 

 

 

 

The following chapter demonstrates the establishment and optimisation of a toolkit for using 

P. patens as a model system in the department. 

 

 

 

Author contribution: 

Jasmin Gömann evaluated the liquid culture system for P. patens cultivation. She 

researched commonly used cultivation strategies and consequently replaced the liquid 

media cultivation system used in the department. She established and optimised P. patens 

cultivation on solidified mineral medium plates. She used the new system to selectively 

cultivate different developmental stages of P. patens. She maintained and cultivated the 

different P. patens tissues for lipid and phytohormone analyses. She planned and 

performed the lipid extractions and measurements using UPLC-nanoESI-MS/MS. She 

analysed and processed the lipid data. She maintained and cultivated the P. patens wild 

type and mutant material for macro- and microscopic phenotype investigation. She planned 

and performed the particle bombardment assay. Finally, she displayed, interpreted, and 

discussed the results and wrote the chapter.  
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Abstract 

Over the past few decades bryophyte model organisms attracted increased attention in the 

plant science community. By now, one of the most promoted models is Physcomitrella 

patens. The moss is a multicellular, terrestrial plant that shares fundamental metabolic and 

physiological processes with vascular plants. Its architectural design and some of its 

metabolic pathways are of lower complexity than in vascular plants. The P. patens genome 

is completely sequenced since 2008 and the life cycle of the moss is dominated by the 

haploid gametophyte. Both aspects make the plant easily accessible for genetic 

manipulation. Furthermore, the moss can be grown under laboratory conditions and 

individual developmental stages can be thoroughly investigated. P. patens therefore 

combines favourable aspects for genetic, developmental, and biochemical studies. Its 

phylogenetic position offers the opportunity to study diversification of metabolic pathways 

in different plant lineages. The establishment of appropriate cultivation conditions and 

characterisation assays is a time-consuming but essential aspect of implementing new 

model organisms in a laboratory. Luckily, the increased attention of P. patens in plant 

research resulted over the years in the publication of protocols and reviews concerning 

P. patens growth and mutant characterisation. However, depending on the anticipated 

purpose of certain studies, the conditions and characterisation assays need to be adjusted 

individually. Lipidomic screens often require large amounts of biological material. P. patens 

may be grown in bio reactors that are suited for the production of large amounts of biomass. 

However, the system displays limitations in terms of tissue and cell differentiation. 

Therefore, prior to sphingolipid mutant characterisation, the P. patens cultivation was 

shifted to a plate-based cultivation system, which enables completion of the P. patens life 

cycle. By this re-establishment, phenotype characterisations could be conducted on each 

developmental stage. Furthermore, upscaling of P. patens plate cultivation enabled 

sphingolipidomic profiling of individual developmental stages and tissues. New assays for 

analytical studies were applied and partially optimised. This work built the framework for the 

subsequent sphingolipid mutant characterisations and is the basis for future P. patens 

mutant studies.  
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Introduction 

Plant sphingolipids are a lipid class with an exceptionally large structural diversity. This 

diversity arises from various modifications introduced to the sphingoid backbone. The 

backbone of sphingolipids consists of an amino alcohol or long-chain base (LCB), which is 

the characteristic subunit of all sphingolipids. LCBs may be esterified to a fatty acid moiety 

and are subsequently referred to as ceramides. Structural decorations are introduced to the 

LCB and/ or the fatty acid moieties. Modifications may be LCB C-4 hydroxylation, LCB Δ4- 

and Δ8-desaturation, phosphorylation or the addition of polar head groups to the C-1 of the 

LCB, and α-hydroxylation, desaturation, and chain length variation of the fatty acid. Different 

structural features affect the biophysical properties of individual sphingolipid species, 

including their size, charge and solubility (Luttgeharm et al., 2016). There is a connection 

between this structural variability and the involvement of sphingolipids in a multitude of 

physiological processes like development (Chen et al., 2008; Msanne et al., 2015), 

programmed cell death (Brodersen et al., 2002; Liang et al., 2003; Shi et al., 2007; Alden 

et al., 2011), abscisic acid mediated stomatal closure, and tolerance towards drought (Ng 

et al., 2001; Coursol et al., 2003), cold (Chen et al., 2012; Dutilleul et al., 2012; Zhou et al., 

2016) and other biotic and abiotic stresses. Sphingolipids may have either a structural or a 

signalling function in these processes. Four main classes represent the plant 

sphingolipidome: LCBs, ceramides, and the two complex sphingolipid classes 

glycosylceramides (GlcCers) and glycosol inositolphosphorylceramides (GIPCs). LCBs, 

ceramides and their phosphorylated counterparts are only present in minor amounts in plant 

cells (Markham et al., 2006; Markham & Jaworski, 2007). They mainly have roles as 

bioactive compounds mediating various processes (Ng et al., 2001; Shi et al., 2007). 

Complex sphingolipids, however, are the most abundant plant sphingolipids (Markham et 

al., 2006). They mainly have roles as membrane components that maintain the structural 

integrity and permeability of plant membranes and that mediate membrane-bound signal 

transduction processes by the formation of micro- and nanodomains (Simons & Toomre, 

2000).  

Sphingolipids represent approximately 10 % of all plant lipids (Lynch & Dunn, 2004). 

The plant membrane lipid composition is specific for different organisms and tissues and 

may be dynamically altered in response to environmental and endogenous stimuli (Sperling 

et al., 2005; Markham et al., 2006). Differences between the sphingolipidomes of various 

plants may be found in the relative abundances of the individual sphingolipid classes. In 

Arabidopsis thaliana leaves, GIPCs represent two thirds and GlcCers represent one third 

of all sphingolipids (Markham et al., 2006). In tomato (Solanum lycopersicum) leaves, 

however, GIPCs and GlcCers appear to be present in equal amounts (Markham et al., 2006; 

Markham & Jaworski, 2007). The simpler sphingolipid classes, LCBs and ceramides, are 



Chapter 1 

30 
 

only found in low amounts (less than 3 % of the total sphingolipid content) in all plants 

(Markham et al., 2006; Markham & Jaworski, 2007). Alterations between the sphingolipid 

profiles of different taxonomic groups may also be found in their specific LCB and fatty acid 

moieties. For example, the dihydroxy, Δ4,8-diunsaturated LCB moiety, d18:2, is detected in 

low to non-existent amounts in A. thaliana and other plants from the Brassicaceae family, 

in intermediate amounts in Fabaceae (pea and soybean), and in high amounts in 

Solanaceae (tomato and tobacco) (Markham et al., 2006). A recent study further identified 

d18:2 as the exclusive LCB moiety in Physcomitrella patens GlcCers (Resemann, 2018). It 

was also shown that different tissues from A. thaliana have varying sphingolipid profiles. 

A. thaliana leaves have high levels of GIPCs (Markham et al., 2006), while pollen and floral 

tissues are enriched in GlcCers (Michaelson et al., 2009; Luttgeharm et al., 2015b). 

Sphingolipids also have different subcellular distribution patterns with GIPCs and GlcCers 

being mainly enriched in the tonoplast and the plasma membrane (Tjellström et al., 2010; 

Cacas et al., 2016). These observations demonstrate that plant sphingolipid metabolism 

diverged during land colonisation and may have adapted according to the specific needs of 

individual plant species. The functional relevance of the varying sphingolipid profiles in 

different plants, tissues and membranes has, however, not yet been elucidated.  

P. patens is a non-vascular model moss. It belongs to the group of bryophytes that 

diverged around 450 million years ago from vascular land plants (Rensing et al., 2008). It 

has a haplodiplontic life cycle with the haploid gametophyte being the dominant phase of 

the cycle (Fig. 1) (Prigge & Bezanilla, 2010). Haploid spores or protoplasts (Fig. 1A, B) give 

rise to a two-dimensional filamentous network, the protonema. The protonema is the 

juvenile stage of the moss. Two functionally and morphologically distinct cell types 

constitute the protonema, the chloronema and the caulonema cells (Fig. 1C, D). Single 

spores or protoplasts first differentiate into highly photosynthetically active chloronema 

cells. These harbour many, well-developed chloroplasts and have cell plates that are 

oriented in a perpendicular angle to the surrounding cell wall. Chloronema cells differentiate 

gradually into caulonema cells. This cell type has fewer and poorly developed chloroplasts, 

is much longer and thinner, grows faster than chloronema cells, has an exploratory growth 

behaviour and has cell plates that are oriented in an oblique angle to the surrounding cell 

wall. Protonema cells grow via polarised growth during which cell wall material is 

transported to the tip of the apical cell (Menand et al., 2007). Branching of filaments happens 

at the subapical cell. Bud initials mark the transition to three-dimensional growth. Outgrowth 

of the buddings results in the formation of gametophores, the adult stage of the life cycle 

(Fig. 1E). The gametophore is a shoot-like structure that is anchored to the soil or medium 

through root-like rhizoids. The shoot carries little leaflets or phyllids that are only a single 

cell layer thick. Transition to the diploid sporophyte is induced by transferring fully grown 
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gametophores to autumn-like conditions and flooding them with water. The reproductive 

organs, gametangia, then develop at the tip of the gametophore (Hohe et al., 2002) (Fig. 

1F). Female gametangia are referred to as archegonia and male gametangia as antheridia. 

The water submersion enables spermatozoids that are released by the antheridia to swim 

to and fertilise the egg that is located within the archegonium. Subsequently, the maturing 

zygote develops into the diploid sporophyte which is composed of the mature spore capsule 

and a short seta (Landberg et al., 2013; Hiss et al., 2017) (Fig. 1G). After the spore capsule 

releases the haploid spores, the life cycle starts from the beginning (Engel, 1968).  

 

Fig. 1. P. patens life cycle. (A) Haploid spores or (B) protoplasts differentiate into filamentous protonema cells. 
Protonema is composed of (C) photosynthetically active chloronema and (D) explorative caulonema. (E) 
Gametophores emerge from the protonema and mark a transition to three-dimensional growth. (F) Male 
(antheridia) and female (archegonia) gametangia are located at the tip of the gametophore. (G) The diploid 
sporophyte develops after fertilisation and is composed of a spore capsule and a short seta. Haploid spores are 
released from the spore capsule and initiate the next life cycle. Stages A-F belong to the haploid stage. F is the 
only diploid stage of the life cycle. A was taken from (Stumpe et al., 2010). 

The non-vascular morphology of P. patens enables visualisation of subcellular mechanisms 

on a single cell level. The unique evolutionary position of P. patens, the tools available for 

the genetic manipulation of the haploid gametophyte, and its simple morphology may put 

this model plant into the spotlight of studies concerning plant sphingolipid metabolism. 

Findings about P. patens sphingolipids may help to shed light onto the general roles of 

sphingolipids in plants. 

A recent study conducted in our department focused on the description of the 

P. patens lipidome (Resemann, 2018). Along with other lipids, the study revealed the 
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sphingolipid composition of P. patens protonema. The moss protonema can be easily 

propagated under laboratory conditions and may even be cultivated in large-scale 

bioreactors (Decker & Reski, 2004). A similar cultivation procedure was applied to collect 

P. patens material for the lipidomics screen. Protonema tissue was grown in liquid medium 

using aerated glass columns. While this cultivation was suitable to generate large amounts 

of biomass for performing the global lipid analyses, it is less appropriate for phenotype 

studies. The system promotes protonema growth but neglects differentiation into other 

developmental stages like the gametophore or the sporophyte generation. While the study 

revealed the lipid composition of P. patens protonema, it could not give any information 

about lipids of other growth stages of the moss. Additonally, the system does not represent 

the natural growth condition of the moss.  

Classical small-scale P. patens cultivation is performed on agar-based medium in 

petri dishes. The two most commonly used media for P. patens cultivation are the Knop 

medium (Reski & Abel, 1985) and the BCD medium (Ashton & Cove, 1977) that only vary 

in minor ingredients. For protonema growth, medium dishes are overlaid with sterile 

cellophane. The protonema is cultivated on top of the cellophane and can be easily 

harvested by scraping off the plant material. Gametophores are grown on medium without 

cellophane so that they can anchor with their rhizoids into the agar and thereby allow full 

expansion of the shoot.  

P. patens growth and tissue differentiation is strongly influenced by external 

conditions. Nutrient supply and light conditions are critical factors that determine protonema 

cell differentiation in P. patens. For example, the presence of ammonium tartrate as 

nitrogen source promotes chloronema growth and branching, while differentiation into 

caulonema cells and gametophores is favoured in the absence of ammonium tartrate 

(Thelander et al., 2005). Sporophyte induction is dependent on moist and autumn-like 

conditions. Therefore, gametophore colonies are moved to 15-19 °C, with a photo period of 

8 h light/ 16 h dark and a lower light intensity. Moss development and cell differentiation is 

also controlled by the presence of different phytohormones (Decker et al., 2006). Auxin 

levels mediate the transition from chloronema to caulonema cells, cytokinin is responsible 

for bud induction, and abscisic acid initiates the formation of vegetative cells that are 

resistant to unfavourable conditions (Decker et al., 2006). Changes in the cultivation 

conditions are essential tools to manipulate the development of P. patens.  

As mentioned, sphingolipid profiles and the presence of specific molecular species 

may vary greatly between organisms and tissue types. To fully understand the divergent 

evolution of plant sphingolipid metabolism and the physiological role of different sphingolipid 

species, it is of great importance to describe the sphingolipid profiles of different P. patens 

tissues and to investigate different sphingolipid mutant phenotypes. This chapter 
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demonstrates differences in the sphingolipidomes of P. patens wild type protonema and 

gametophores. Furthermore, relevant aspects of the P. patens cultivation in respect to 

phenotype characterisations such as cell differentiation ability are demonstrated and 

discussed. These aspects are exemplified by describing mutant phenotypes of three 

P. patens sphingolipid mutants that are defective in distinct sphingolipid enzyme activities: 

the LCB C-4 hydroxylase mutant s4h, the LCB Δ4-desaturase mutant sd4d-1, and the 

glycosylceramide synthase mutant gcs-1. Thorough examinations of the three enzymes and 

the corresponding mutant phenotypes are found in chapter 2 and chapter 3 of this thesis.  

Materials and methods 

Plant material and growth conditions 

The P. patens ‘Gransden’ strain (Hedw.) Bruch & Schimp was used as wild type. Plants 

were grown in a 16 h light/ 8 h dark photoperiod at 25 °C and with a light intensity of 50–

70 µmol m 2 s-1. Protonema was regularly sub-cultivated on BCD agar medium plates 

(90 mm diameter) supplemented with 1 mM CaCl2 and 5 mM ammonium tartrate (BCDAT) 

(Ashton & Cove, 1977). Protonema was grown on medium plates that were covered with 

sterile cellophane discs (folia, Wendelstein, Germany). Protonema sub-cultivation was 

achieved by harvesting one- to two-week-old tissue and disrupting the material in sterile 

water for 20 s using a tissue lyser (Ultra Turrax, Ika, Staufen, Germany). The cell 

suspension was spread onto fresh BCDAT plates. Plates were sealed with micropore tape 

before incubation. 

Lipid and phytohormone measurements were conducted on protonema that was 

cultivated on cellophane-covered BCD plates. For direct comparison of different mutant 

lines, the dry weight of the cell suspension was determined after tissue lyser treatment. 

Plate cultures were subsequently inoculated with a volume equal to 5 mg dry weight. After 

ten days of incubation, protonema material from eight 90 mm plates was pooled. After the 

harvest the plant material was frozen in liquid nitrogen and subsequently lyophilised. 

Gametophores that were used for lipid analyses were induced by placing spot inocula 

(around 1 mm) on BCD medium. Culture plates were enclosed with micropore tape and 

gametophores were grown for 42 days. Rhizoids were cut off during the harvest. 200 

Gametophore colonies were collected during one cultivation round. Gametophores were 

frozen in liquid nitrogen and lyophilised. 

For imaging of protonema and gametophore development, 1 mm spot inocula of seven- to 

ten-day-old protonemal tissue were placed on plates containing BCD medium with 1 mM 

CaCl2. For protonema development, colonies were imaged after one to two weeks. Fully 

grown gametophores were imaged after six weeks. Plates were sealed with micropore tape 

during cultivation.  
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Selective induction of skotonema cells followed the protocol described in (Saavedra 

et al., 2015). In short, protonema spot inocula of around 1 mm diameter were placed on 

square BCDAT plates supplemented with 2 % sucrose. P. patens colonies were grown in 

horizontal position under continuous light for one week. Afterwards, plates were rotated into 

vertical position and moved to the dark. Growth was continued for another four weeks. 

Images were recorded as described above. Images were recorded with a binocular 

(Olympus SZX12 binocular, Olympus Corporation, Tokio, Japan) attached to a camera (R6 

Retiga camera, QImaging, Surrey, Canada) with the Ocular scientific image acquisition 

software (version 1.0, Digital Optics Ltd, Auckland, New Zealand). Images were processed 

with ImageJ 1.52b software (Schneider et al., 2012). 

Fluorescence microscopy 

One- to two-week-old protonema was bleached overnight in ethanol/acetic acid (3:1) prior 

to callose labelling. Callose staining was adjusted from a protocol described before 

(Schuette et al., 2009). The moss tissue was incubated for 30 min at room temperature in 

0.1 % aniline blue solution in 50 mM sodium phosphate buffer (pH 9). After aniline blue 

staining, the plant tissue was washed in in 50 mM sodium phosphate buffer (pH 9). Images 

were visualised using an excitation wavelength at 405 nm and an emission wavelength at 

500 nm. Images were recorded with a fluorescence microscope (Olympus BX51, Olympus 

Corporation, Tokio, Japan) attached to a camera (C11440, ORCA-flash 4.0, Hamamatsu 

Photonics, Hamamatsu, Japan) with the HOKAWO scientific image acquisition software 

(version 2.10, Hamamatsu Photonics, Hamamatsu, Japan). Images were processed with 

ImageJ 1.52b software (Schneider et al., 2012). 

Cloning and transient transformation via particle bombardment 

PpS4H and PpSD4D coding sequences were cloned into a pEntry vector that contained a 

sequence encoding a C-terminal yellow fluorescent protein (YFP). PpS4H was cloned with 

restriction sites ApaI/XhoI into the vector system using the following primer combinations: 

ApaI S4H-fw: 5’-GGAgggccc ATGGTGTTCTGGG-3’ and XhoI S4H-rev: 5’-

GGActcgagCCTCGATCTTCTTC-3’. PpSD4D was cloned with restriction sites ApaI/ XhoI 

into the vector system using the following primer combinations: ApaI SD4D-fw: 5’-

GGAgggcccATGAGTGATGTTGG-3’ and XhoI SD4D-rev: 5’-

GGActcgagCGTTGGTTTTGCC-3’. Successful cloning was confirmed by sequencing of the 

plasmids.  

50 mg of gold particles were prepared by washing three times with 96 % ethanol 

and dividing them into 10 µL aliquots. 50 ng/µL plasmid DNA, 1 M CaCl2 and 10 mM 

spermidine were added to one 10 µL gold particle aliquot and the mixture was vortexed 

thoroughly. The mixture was centrifuged for 10 s at 10000 g.  
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The supernatant was discarded, and particles were washed twice with 96 % ethanol. 

The particles were finally re-suspended in 20 µL 96 % ethanol and ready to use for the 

bombardment. 4 µL of the DNA-coated gold particles were used for each shot. The macro 

carrier and rupture discs of 900 or 1000 psi were soaked in propan-2-ol, and dried. The gold 

suspension was pipetted onto the centre of the macro carrier and dried again. The 

components of the particle gun (Bio-Rad Laboratories, Inc., Hercules, California, USA) were 

assembled. One-week-old protonema grown on cellophane-covered BCD medium was 

transiently transformed. After bombardment, the tissue was incubated for 12 h before 

visualisation with a confocal laser scanning microscope. Images were analysed with Leica 

TCS SP5 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) and 

processed with ImageJ 1.52b software (Schneider et al., 2012). 

Sphingolipid extraction and analysis 

Sphingolipid extraction from different P. patens tissues was achieved by performing a 

monphasic extraction as described by (Grillitsch et al., 2014) with minor modifications. 

20 mg of lyophilised and homogenised protonema and gametophore material were 

immersed in propan-2-ol/hexane/water (60:26:14, v/v/v) and incubated at 60 °C for 30 min. 

After incubation, samples were centrifuged for at 20 °C for 20 min at 635 g. The supernatant 

was collected into new glass vials. After solvent evaporation under a nitrogen stream, lipids 

were re-suspended in 800 µL tetrahydrofuran/methanol/water (4:4:1, v/v/v). Samples were 

centrifuged for 10 min at 635 g and 20 °C before transferring them to glass micro-vials. 

Samples were directly used for ultra-performance liquid chromatography (UPLC) coupled 

with nanoelectrospray ionisation (nanoESI) and triple quadrupole tandem mass 

spectrometry (MS/MS) (UPLC-nanoESI-MS/MS) analysis (AB Sciex, Framingham, 

Massachusetts, USA). 

UPLC-nanoESI-MS/MS molecular species analysis was performed as previously 

described (Resemann, 2018). Separation of constituents was achieved by UPLC using an 

ACQUITY UPLC® I-class system (Waters Corp., Milford, Massachusetts, USA) equipped 

with an ACQUITY UPLC® HSS T3 column (100 mm × 1 mm, 1 μm; Waters Corp., Milford, 

Massachusetts, USA). The flow rate was set to 0.1 mL/min and the injection volume to 2 µL. 

The separation temperature was 35 °C. Solvent B was 

tetrahydrofuran/methanol/ammonium acetate (20 mM) (6:3:1; v/v/v) containing 0.1 % (v/v) 

acetic acid; and solvent A was methanol/ammonium acetate (20 mM) (3:7; v/v) containing 

0.1 % (v/v) acetic acid. All sphingolipids were separated with linear binary gradients 

following the same scheme: start conditions (40, 65, or 80 % solvent B) held for 2 min, linear 

increase to 100 % solvent B for 8 min, 100 % solvent B held for 2 min and re-equilibration 
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to start conditions in 4 min. The start conditions were 40 % solvent B for LCB, 65 % solvent 

B for inositol-containing sphingolipids and 80 % solvent B for ceramides and GlcCers.  

Chip-based nanoelectrospray ionisation was achieved with a TriVersa Nanomate® 

(Advion, Inc., Ithaca, New York, USA) in the positive ion mode with 5 μm internal diameter 

nozzles. By using a post-column splitter 255 nL/min of the eluent were directed to the 

nanoESI chip. Sphingolipid molecular species were detected with a 6500 QTRAP® tandem 

mass spectrometer (AB Sciex, Framingham, Massachusetts, USA) by monitoring (i) the 

transition from [M+H]+ molecular ions to dehydrated LCB fragments for ceramides, GlcCers 

and LCBs; and (ii) the transition of [M+NH4]+ molecular ions to ceramide fragments as loss 

of phosphoinositol-containing head groups for inositol-containing sphingolipids. 

Determination of head group-specific ions was done as described (Buré et al., 2011). Dwell 

time was either 5 ms (ceramide/ GlcCer), 15 ms (inositol-containing sphingolipids) or 20 ms 

(LCB) and MS parameters were optimised to maximise detector response. The integration 

workflow made use of the Analyst® IntelliQuan (MQII) peak-finding algorithm. 

For data acquisition Analyst 1.6.2 (AB Sciex, Framingham, Massachusetts, USA) 

was used. The chip ion source TriVersa Nanomate® was controlled with ChipSoft 8.3.1 

(Advion, Inc., Ithaca, NY, USA)  

LC-MS data was processed using Analyst 1.6.2 and MultiQuant 3.0.2 software (both 

AB Sciex, Framingham, Massachusetts, USA). 

Phytohormone extraction and analysis 

Phytohormone extraction was achieved by a two-phase extraction method using methyl 

tert-butylether (MTBE) according to (Matyash et al., 2008) with minor modifications. 10 mg 

of lyophilised and homogenised P. patens protonema was immersed in 0.75 mL methanol. 

After addition of an internal standard mixture containing: 10 ng D4-SA, 10 ng D6-ABA (both 

from C/D/N Isotopes Inc., Pointe-Claire, Canada), 30 ng D5-OPDA (kindly provided by Otto 

Miersch, Halle/Saale, Germany), 20 ng D5-IAA (Eurisotop, Freising, Germany), 2.5 mL of 

MTBE was added, and the mixture was covered with argon. Extraction was performed for 

1 h at 4 °C while shaking in the dark. Subsequent phase separation was achieved by the 

addition of 0.6 mL of water. The sample was mixed and incubated for 10 min at room 

temperature. After centrifuging for 15 min at 450 g, the upper phase was collected and 

transferred to a new vial. The lower phase was re-extracted by the addition of 0.7 mL 

methanol/water (3:2.5, v/v) and 1.3 mL MTBE. Upper phases were combined and 

evaporated under a stream of nitrogen. The residue was resuspended in 200 µL methanol. 

Prior to measurements, the sample was centrifuged at 16000 g for 2 min and the methanol 

was evaporated. The sample was dissolved in 20 µL solvent B (acetonitrile/water, 90:1, v/v, 

containing 0.3 mmol/L NH4HCOO, adjusted to pH 3.5 with formic acid). After adding 80 µL 
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of solvent A (water containing 0.3 mmol/L NH4HCOO, adjusted to pH 3.5 with formic acid) 

the mixture was vortexed and centrifuged for 10 min at 16000 g. Samples were transferred 

to glass micro-vials and used for phytohormone analysis. 

Phytohormone measurement and analysis was done according to (Herrfurth & 

Feussner, 2020). In short, reversed phase separation of constituents was achieved by 

UPLC using an ACQUITY UPLC® system (Waters Corp., Milford, Massachusetts, USA) 

equipped with an ACQUITY UPLC® HSS T3 column (100 mm x 1 mm, 1.8 μm; Waters 

Corp., Milford, Massachsetts, USA). Aliquots of 10 μL were injected in a partial loop with 

needle overfill mode. Elution was adapted to (Balcke et al., 2012). The flow rate was set to 

0.16 mL/min and the injection volume to 3 µL. The sample manager temperature was set 

to 18 °C and the column oven temperature was constantly at 40 °C. The solvent gradient 

used as mobile phase for chromatographic separation was as follows: for 0.5 min at 10 % 

solution B, followed by a linear increase to 40 % solution B in 2 min, this condition was held 

for 2 min, followed by a linear increase to 95 % solution B in 1 min, this condition was held 

for 2.5 min. The column was re-equilibrated for start conditions in 3 min. 

Nanoelectrospray analysis was achieved using the chip ion source TriVersa 

Nanomate® (Advion Inc., Ithaca, New York, USA). For stable nanoESI, 70 μL/min of 2-

propanol/acetonitrile/water (70:20:10, v/v/v) containing 0.3 mmol/L NH4HCOO (adjusted to 

pH 3.5 with formic acid) delivered by Agilent 1100 HPLC isocratic pump (Agilent, 

Waldbronn, Germany) with mixing tee valve and equipped with nanoESI chip with 5 μm 

internal diameter nozzles. Ionisation voltage was set to -1.7 kV. Phytohormones were 

ionised in a negative mode and determined in scheduled multiple reaction monitoring 

(MRM) mode with an AB Sciex 4000 QTRAP® tandem mass spectrometer (AB Sciex, 

Framingham, Massachsetts, USA). Mass transitions were as previously described (Iven et 

al., 2012), with some modifications and were as follows: 141/97 [declustering potential (DP) 

-25 V, entrance potential (EP) -6 V, collision energy (CE) -22 V] for D4-SA, 137/93 (DP -25 

V, EP -6 V, CE -20 V) for SA, 179/135 (DP -35 V, EP -9 V, CE -14 V) for D5-IAA, 269/159 

(DP -30 V, EP -5 V, CE -16 V) for D6-ABA and 263/153 (DP -35 V, EP -4 V, CE -14 V) for 

ABA. The mass analysers were adjusted to a resolution of 0.7 amu full width at half-height. 

The ion source temperature was 40 °C, and the curtain gas was set at 10 (given in arbitrary 

units). Quantification was carried out using a calibration curve of intensity (m/z) ratios of 

[unlabelled]/[deuterium-labelled] vs. molar amounts of unlabelled (0.3-1000 pmol). For data 

acquisition Analyst 1.6.2 (AB Sciex, Framingham, Massachsetts, USA) was used. nanoESI 

was controlled with ChipSoft 8.3.1 (Advion, Inc., Ithaca, New York, USA).  

LC-MS data was processed using Analyst 1.6.2 and MultiQuant 3.0.2 software (both 

AB Sciex, Framingham, Massachsetts, USA). 
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Results and discussion 

Previous P. patens studies performed in our department focused on describing the lipidome 

and required the generation of large amounts of biomass for extraction. P. patens cultivation 

in liquid cultures produces large amounts of biomass in relatively short time. Cultivation of 

P. patens in aerated glass columns was therefore the method of choice for generating 

protonema biomass for the global lipid profiling of P. patens performed by Resemann 

(2018). While this research laid the groundwork for our understanding of the P. patens 

lipidome, it just represents a snapshot of the lipid composition in P. patens during a specific 

time of development. Furthermore, the natural habitats of mosses are terrestrial 

ecosystems. Although mosses are mostly found in moist environments, they can also 

withstand prolonged exposure to drought. The laboratory cultivation in liquid culture is 

therefore a rather artificial system and may not reflect the endogenous membrane 

compositions under natural conditions. The next steps in the P. patens lipidome research 

would therefore benefit from the establishment of a cultivation system that resembles the 

natural growth conditions of P. patens.  

P. patens cultivation was changed from liquid cultures to solidified medium  

P. patens has been used for decades as a model organism in plant biology research. 

Cultivation methods are therefore thoroughly described in several publications and reviews 

(Frank et al., 2005; Strotbek et al., 2013). Literature research revealed a common technique 

for small-scale P. patens cultivation on solidified medium plates. In the beginning of this 

study the established liquid culture system used in the department was therefore evaluated 

for its applicability and suitability for P. patens mutant characterisation. The following 

section demonstrates the advantages of P. patens cultivation on solidified medium plates 

over cultivation in liquid cultures. 

Phenotype investigations of mutant plants require the establishment of a highly 

controllable cultivation system. In liquid cultures, P. patens only grows in the filamentous 

protonema stage. Routine disruption of the plant material for plant propagation prevents 

gametophore development. Furthermore, gametophores are shoot-like structures with 

assimilatory rhizoids that anchor into solid ground or medium. In liquid cultures, 

gametophores are floating and therefore do not have defined anchor points. Since the 

gametophores are the adult stage of the moss that carry the gametangia, liquid cultivation 

also neglects sporophyte development. Moreover, monitoring of P. patens growth is a 

challenge with liquid cultures because samples are taken from the sterile culture for 

microscope imaging. This increases the chance of contamination. Additionally, time course 

visualisation of P. patens growth cannot be performed because the liquid culture samples 

always contain a new set of cells whose growth cannot be continued after they were 
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removed from the sterile culture. In contrast to that, P. patens growth on solidified medium 

can be easily controlled. Colonies are started from spores, protoplasts, single leaflets, or 

protonema spot inocula. P. patens development is influenced by medium supplements. 

During the first two weeks, protonema growth can be monitored. Afterwards, gametophore 

growth is initiated. Plates with fully expanded gametophores can be transferred to autumn-

like conditions to induce sporophyte development. The P. patens life cycle can therefore be 

completed during cultivation on solidified medium plates. Furthermore, growth of a single 

colony or even single cells can be visualised over long periods of time. Plate cultivation 

represents a highly controllable system that allows the identification of morphological and 

physiological peculiarities of mutant plants. Different developmental stages can be 

selectively cultivated which allows for in-depth investigations of distinct growth patterns and 

differentiation processes of P. patens. 

Moreover, the lipid profiles of different growth stages can be assessed. Therefore, 

plate cultivation allows a direct connection between the morphological phenotypes 

observed in the mutants and the underlying metabolic changes in lipid metabolism. 

Another important consideration is the maintenance and propagation of P. patens 

mutants. Mutants may be affected in their growth and development and therefore might 

have special requirements for cultivation. In the course of this study, it was observed that 

the investigated sphingolipid mutants had substantial variations in their growth behaviours. 

P. patens s4h mutants were not able to develop fully grown gametophores and had to be 

maintained in protonema stage (chapter 2). gcs-1 mutants, however, could not be kept for 

a long time in protonema stage without showing cell death-like symptoms (chapter 3). 

Although reduced in size, gcs-1 gametophores had a normal morphology and plants could 

easily be maintained in this developmental stage over longer time periods. The specific 

requirements for maintenance of different mutant lines can therefore only be identified and 

fulfilled when plants are grown on solidified medium plates.  

Additionally, application of external stressors and investigation of the responses of 

P. patens to these stresses can be performed on colonies grown on solid medium without 

having to account for the added stresses introduced by the continuous, artificial liquid 

environment. 

In light of these observations made during the first months of the study, the 

established liquid culture system used in the department was found unsuitable for the 

planned sphingolipid mutant characterisation studies. The system was therefore replaced 

by a more appropriate cultivation system that is based on P. patens growth on solidified 

mineral medium plates. Change of the cultivation system may give a more elaborate picture 

of the involvement of distinct sphingolipids in various plant developmental and physiological 

processes. 
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Establishment of a regular P. patens maintenance system 

Before phenotype studies of P. patens mutants could be addressed, regular plant 

maintenance had to be established. The applied continuous plant propagation system 

ensured a constant provision of fresh P. patens material for phenotype and chemotype 

investigations. 

A scheme of the regular sub-cultivation cycle is depicted in Fig. 2. P. patens 

protonema has a high regeneration rate. The regular propagation of the plant material was 

therefore performed with protonema material. The protonema was cultivated for one to two 

weeks on cellophane-covered solidified mineral medium supplemented with ammonium 

tartrate (BCDAT) (Fig. 2A). Ammonium tartrate is a nitrogen source that promotes growth 

of photosynthetically active chloronema cells. The cellophane is permeable for water and 

nutrients. Cultivation of P. patens protonema on sterile cellophane discs prevents the 

filamentous tissue to grow into the agar medium and therefore enables easy harvesting of 

the plant material. For sub-cultivation, the material was scraped off the cellophane and was 

immersed in 10 mL sterile water (Fig. 2B). The protonema was subsequently disrupted 

using a homogeniser to generate a cell suspension (Fig. 2C). The protonema suspension 

was applied to fresh medium plates that were overlaid with cellophane (Fig. 2D). The tissue 

was allowed to dry before enclosing the cultivation plates with micropore tape to enable 

aeration during the cultivation period (Fig. 2E). Standard growth conditions for P. patens 

cultivation were a 16 h light/ 8 h dark long-day cycle with a light intensity of 50–

70 µmol m 2 s-1 and a temperature of 25 °C. The protonema was maintained on the plates 

for one to two weeks until the next sub-cultivation round was performed.  
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Fig. 2. Regular sub-cultivation of P. patens. (A) A one- to two-week-old protonema plate is used for sub-
cultivating P. patens tissue. (B) The protonema is harvested by scraping off the material from the cellophane. 
(C) The material is immersed in 10 mL sterile water and treated with a tissue lyser for disruption. (D) The cell 
suspension is applied to a fresh plate overlaid with cellophane. (E) Cultivation plates are allowed to dry and are 
enclosed with micropore tape to allow aeration. Cultures are incubated for one to two weeks.  

The routinely cultivated protonema was used for different applications. It was used as 

starting material for phenotype studies or to start cultures for the collection of material used 

in lipid analyses. The material was also directly applied for the isolation of protoplasts. 

Usually, five- to seven-day-old protonema is used during the protoplasting procedure. 

Protoplasts were subsequently used for polyethylene-glycol (PEG) mediated 

transformations or directly regenerated for phenotype studies. Before the switch from liquid 

to solid medium cultures, protonema was grown and routinely sub-cultivated in non-aerated 

liquid cultures for around three months until the tissue was ready for transformation. 

Protonema growth on solidified medium therefore greatly shortened the cultivation period 

of tissue used for transformations and allowed for more flexible and efficient P. patens 

transformations.  

Protonema cultivation for lipid analyses 

As explained, plate cultivation is an appropriate system for phenotype characterisations. 

Sphingolipid mutant characterisations of this study involved the description of their lipid 

profiles. However, the solid medium cultivation system is only a small-scale method. To 

obtain sufficient amounts of plant material for lipid extractions, the cultivation needed to be 

scaled up. A critical aspect to be considered in the work with mutants is that the plants might 

be affected in their growth and development. This was especially true for the investigated 
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sphingolipid mutants, since the corresponding A. thaliana knockout plants also exhibited 

severe growth defects (Chen et al., 2008; Msanne et al., 2015). To ensure comparable 

cultivation, inoculation of the cultivation plates had to be normalised. For normalisation, the 

dry weight of the protonema cell suspension was determined. Normalisation was modified 

from the procedure described in the dissertation of Dr. Anna Ostendorf (née Beike) from 

2013 (Beike, 2013). In that study, liquid cultures were inoculated with a certain amount of 

tissue that was determined by drying the cell suspension on filter paper. A drawback of filter 

paper is, however, that it tends to soak up moisture from its environment quickly after being 

dried and therefore may falsify the dry weight determination. Aluminium cups were used in 

this study for tissue drying and dry weight determination (Fig. 3F). After treatment with the 

tissue lyser, 1 mL of the cell suspension was transferred to the aluminium cups and dried 

at 110 °C for 45 min. After the liquid was completely evaporated, the dry weight of the cell 

suspension was determined. Volumes that corresponded to 5 mg dry weight proved ideal 

for starting the plate cultures (Fig. 3G). Larger amounts turned out to be disadvantageous 

for protonema growth indicated by browning and hence putative cell death of the tissue. 

This might have been due to a too high density of the tissue. Lower amounts, however, 

resulted in a too low recovery rate of protonema tissue. The protonema of all plant lines was 

harvested after ten days (Fig. 3H). Longer incubation resulted in browning of gcs-1 

protonema tissue and was therefore avoided. Tissue cultivation for lipid analyses was 

performed on mineral medium without ammonium tartrate (BCD). The presence of 

ammonium tartrate enhances growth of chloronema cells but inhibits differentiation into 

caulonema cells. Absence of ammonium tartrate in the medium allows for protonema cell 

differentiation. Lipid screens performed on BCD medium grown tissue therefore covered all 

protonema cell types. Several plates were inoculated for each plant line. The tissue from all 

plates was pooled after harvesting and the fresh weight was determined. Subsequently, the 

plant material was frozen in liquid nitrogen and stored at -80 °C. After the material was 

lyophilised, the dry weight was determined, and the material was used for lipid and 

phytohormone analyses.  
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Fig. 3. Cultivation of protonema for lipid analyses. (A) A one- to two-week-old protonema plate is used for 
sub-cultivating P. patens tissue. (B) The protonema is harvested by scraping off the material from the 
cellophane. (C) The material is immersed in 10 mL sterile water and treated with a tissue lyser for disruption. 
(D) The cell suspension is applied to a fresh plate overlaid with cellophane. (E) Cultivation plates are allowed to 
dry and are enclosed with micropore tape to allow aeration. Cultures are incubated for one to two weeks. (F) To 
standardise cultivations, 1 mL of the cell suspension prepared in (C) is dried in aluminium cups at 110 °C for 
45 min. (G) Cultivation plates are subsequently inoculated with a volume corresponding 5 mg dry weight. (H) 
Protonema is harvested after ten days of incubation, weighed for fresh weight determination, lyophilised and 
used for chemotype analyses. 

Gametophore cultivation for lipid analyses 

Gametophore induction was achieved by placing protonema spot inocula of around 1 mm 

in diameter onto BCD plates that were not overlaid with cellophane. Growth on medium 

plates without cellophane allowed gametophores to anchor through their rhizoids into the 

solidified medium. The plates were enclosed with micropore tape to ensure aeration during 

the cultivation period. The first gametophores emerged two weeks after inoculation. Fully 

grown and expanded gametophores are obtained after five-to seven weeks incubation 

(Fig. 4F). To obtain sufficient amounts of gametophore material for lipid extractions, around 

200 wild type colonies were collected during one cultivation round. Gametophores were 

harvested by cutting the colonies at their basis to avoid collection of rhizoids. Gametophore 

tissue was subsequently lyophilised and used for lipid analyses.  
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Fig. 4. Cultivation of gametophores for lipid analyses. (A) A one- to two-week-old protonema plate is used 
for sub-cultivating P. patens tissue. (B) The protonema is harvested by scraping off the material from the 
cellophane. (C) The material is immersed in 10 mL sterile water and treated with a tissue lyser for disruption. 
(D) The cell suspension is applied to a fresh plate overlaid with cellophane. (E) Cultivation plates are allowed to 
dry and are enclosed with micropore tape to allow aeration. Cultures are incubated for one to two weeks. For 
gametophore induction, protonema is taken from (B) and spot inocula of around 1 mm in diameter are placed 
on BCD plates without cellophane. Gametophore plates are enclosed with micropore tape and incubated for 
five to six weeks. (F) Fully expanded gametophore colonies are harvested but cutting the gametophores at their 
bases. The gametophore tissue was then frozen in liquid nitrogen, lyophilised and used for chemotype analyses. 

Sphingolipid profiles vary in different P. patens tissues 

Sphingolipids were extracted from wild type protonema and gametophores and lipid profiles 

were determined using UPLC-nanoESI-MS/MS.  

LCB profiles of protonema and gametophores were very similar with the t18:0 LCB 

predominating in both tissues at around 90 % and the d18:0 LCB being found in minor 

amounts (Fig. 5A). 

The most significant differences between protonema and gametophores were found 

in the fatty acid composition of ceramides (Fig. 5B). In protonema, ceramides with a t18:0 

LCB moiety predominated. The five most abundant fatty acid moieties were h24:0 (52 %), 

h22:0 (10 %), c24:0 (10 %), h24:1 (10 %), and c24:1 (4 %). All other molecular species 

represented less than 4 % of all ceramides. The ceramide profile of gametophores showed 

major variations compared to the ceramide profile of protonema. The three most abundant 

ceramide species in gametophores were only found in trace amounts in the protonema. 
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They had the following LCB/fatty acid moiety combinations: t18:0/c20:0 (21 %), d18:0/h20:0 

(20 %), and d18:0/c20:0 (19 %). The next two most abundant ceramide species were 

t18:0/h24:0 (15 %) and t18:0/c24:0 (10 %). The remaining profile was composed of minor 

molecular species each representing less than 5 % of total ceramides.  

The GlcCer profiles of protonema and gametophores looked the same (Fig. 5C). A 

single species composed of d18:2/h20:0 represented more than 90 % of all GlcCers in both 

tissues. All other molecular species were only detected in trace amounts.  

GIPC profiles with a head group composition consisting of one hexose (Hex) moiety 

connected to a glucuronic acid (GlcA) linked to the inositolphosphate ceramide (IPC) 

backbone (Hex-GlcA-IPC) were analysed in both tissue types. Hex-GlcA-IPC profiles of 

gametophores differed slightly from Hex-GlcA-IPC profiles of protonema (Fig. 5D). The 

most abundant Hex-GlcA-IPC species in the protonema were composed of a t18:0 LCB 

moiety and the following fatty acid moieties: h24.0 (45 %), h24:1 (35 %), h22:0 (8 %), and 

h20:0 (5 %). Most abundant Hex-GlcA-IPC species in the gametophores also had a t18:0 

LCB moiety that was connected to the following fatty acid moieties: h24:0 (52 %), h20:0 

(18 %), h24:1 (13 %), h26:0 (7 %), and h22:0 (6 %). The other Hex-GlcA-IPC species in the 

protonema and the gametophore profiles represented each less than 5 % of total Hex-GlcA-

IPCs. 

The different ceramide profiles of protonema and gametophores raised the question 

why ceramide species composed of fatty acids with a 20-carbon chain length were 

significantly enriched in the gametophore. This is especially interesting since not all of these 

enriched ceramide species were found in significantly larger amounts in the downstream 

complex sphingolipid classes. It indicated that these species are not channelled into GlcCer 

or GIPC synthesis but that they might have immediate activities as ceramides. Ceramides 

are usually only found in minor amounts in plants and as those they mainly function as 

signalling molecules (Liang et al., 2003). This suggested that the identified enriched 

ceramide species might have signalling activities in P. patens gametophores. However, this 

does not exclude a putative structural role of those compounds. Gametophores are 

differently structured than the protonema. While the protonema consists of filamentous 

cells, gametophores have leaflets that are a single cell layer thick. Cells in these tissues are 

therefore connected in different patterns, and it would not be surprising if the membranes 

of leaflets and protonema cells have different lipid compositions. Ceramides lack a polar 

head group and therefore induce a negative membrane curvature. This might suggest an 

increased vesicular transport in tissues with higher ceramide levels. While the comparison 

of the relative profiles of different sphingolipid classes in P. patens tissues revealed a 

different distribution of specific molecular species, the results cannot be interpreted 

quantitatively. The individual sphingolipid classes and molecular species have different 
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ionisation efficiencies in the UPLC-nanoESI-MS/MS. In future, combination with other 

measuring techniques might help to provide a quantitative description of single sphingolipid 

classes and species in P. patens. It could further be assessed whether the absolute 

amounts of individual classes vary significantly among different developmental stages of 

P. patens. The varying sphingolipid profiles in different P. patens tissues may represent a 

useful tool in future sphingolipid mutant studies. Depending on the target gene, the focus 

may be put on distinct developmental stages in which the gene seems more active 

according to the wild type lipid profile. Furthermore, since different sphingolipid profiles were 

identified in different P. patens tissues, it might also be worthwhile to look at other lipid 

classes outside the sphingolipids. This will greatly extend our knowledge on the P. patens 

lipidome. 
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Fig. 5. Sphingolipid profiles of P. patens wild type protonema and gametophores. (A-D) Ceramides were 
extracted from ten-day-old wild type (WT) protonema and from 45-day-old WT gametophores and analysed with 
UPLC-nanoESI-MS/MS. Relative profiles of (A) long-chain bases (LCBs), (B) ceramides, (C) glycosylceramides 
(GlcCers), and (D) glycosyl inositolphosphorylceramides (GIPCs). Ceramide, GlcCer, and GIPC molecular 
species are shown with their LCB (column colour) and fatty acid (x-axis) moieties. Dihydroxy LCB moieties are 
indicated by a ‘d’ and trihydroxy LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated 
fatty acid moiety are indicated by a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are 
indicated by an ‘h’. Protonema sphingolipid data represent the mean ± SD of measurements from four 
independent cultivations each containing protonema material from eight cultivation plates. Gametophore 
sphingolipid data represent the mean ± SD of measurements from three independent cultivations each 
containing gametophore material from approximately 200 gametophore colonies. Abbreviations are as follows: 
GlcA: glucuronic acid, Hex: hexose, IPCs: inositolphosphorylceramides. 
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Phenotype characterisation of different developmental stages  

Phenotype investigations were started with protonema spot inocula. Spot inocula of around 

1 mm in diameter were placed onto BCD medium plates and incubated for five to six weeks. 

During the first two weeks, protonema development was investigated (Fig. 6F). After 

approximately two weeks, gametophore growth initiated in wild type plants (Fig. 6G). 

Gametophores were fully expanded after five to six weeks of incubation. The growth and 

development of the different tissue types was monitored using different macro- and 

microscopic observation techniques and revealed substantially different growth behaviours 

in all investigated sphingolipid mutants (chapter 2 Fig. 7, chapter 3 Fig. 5). 

 

 

 

Fig. 6. Cultivation of protonema and gametophores for phenotype analyses. (A) A one- to two-week-old 
protonema plate is used for sub-cultivating P. patens tissue. (B) The protonema is harvested by scraping off the 
material from the cellophane. (C) The material is immersed in 10 mL sterile water and treated with a tissue lyser 
for disruption. (D) The cell suspension is applied to a fresh plate overlaid with cellophane. (E) Cultivation plates 
are dried and are enclosed with micropore tape to allow aeration. Cultures are incubated for one to two weeks. 
For phenotype analysis of protonema and gametophore development, protonema is taken from (B) and spot 
inocula of around 1 mm in diameter are placed on BCD plates without cellophane. (F) Protonema development 
can be monitored during the first two cultivation weeks. (G) Gametophore development can be observed from 
the onset of buddings after two weeks until full gametophore expansion after five to six weeks. 
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Protonema cell types are identified by their cross-wall orientation 

As discussed, protonema and gametophore tissues are anatomically very different 

structures and can therefore be easily distinguished. The two protonema cell types can be 

identified by the orientation of the cross-wall that separates two adjacent filamentous cells. 

Chloronema cells have a cross-wall that is oriented perpendicular to the surrounding cell 

wall (Fig. 7A, B). Caulonema cells are identified by cross-walls that are oriented in an 

oblique angle to the surrounding cell wall (Fig. 7C, D). Initially, this characteristic feature 

was used for determining if the investigated sphingolipid mutants had cell differentiation 

defects. A unique component of protonema cross-walls is the polysaccharide callose (ß-

1→3-glucan). Callose is deposited after phragmoplast and subsequent cell plate formation 

at newly synthesised cell walls. To accurately identify the cross-wall orientation, the tissue 

was therefore stained with 0.1 % aniline blue which is a fluorescent stain for callose. 

 

Fig. 7. Cross-wall orientation in chloronema and caulonema cells. Callose in the cross-walls of P. patens 
protonema cells was stained with 0.1 % aniline blue. The orientation of the cross-walls indicates the identity of 
protonema cell types. Pictures were taken as bright field (A, C) and fluorescent (B, D) images. Perpendicular 
cross-walls are characteristic to chloronema cells (A, B), oblique cross-walls are characteristic to caulonema 
cells (C, D). Scales bars are 20 µm. Staining of the cross-walls with aniline blue was regularly performed with 

the same results. Pictures are representative images for at least three independent experiments.  

Microscopic channels, plasmodesmata, traverse cross-walls of plant cells. Plasmodesmata 

enable communication and transport between two adjacent cells. Callose deposition at 

plasmodesmata neck regions regulates permeability of the symplastic channels (Vatén et 

al., 2011; De Storme & Geelen, 2014). The level of deposits influence plasmodesmata 

structure and therefore cause narrowing or opening of the channels. Sphingolipids and 

sterols were recently found enriched in the plasmodesmata membrane in A. thaliana 
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(Grison et al., 2015; Liu et al., 2020). Furthermore, changes in sphingolipid metabolism 

affect plasmodesmata ultrastructure and consequently influence plasmodesmal cell-to-cell 

transport (Yan et al., 2019; Liu et al., 2020). In addition to determining the cross-wall 

orientation, the callose stain can therefore be applied to investigate plasmodesmata defects 

in sphingolipid mutants. Callose deposition in s4h protonema cells indicated altered cross-

walls in the mutant. This phenotype is demonstrated and discussed in chapter 2 (Fig. 8). 

Protonema cell differentiation ability is determined in a dark growth assay 

Although the cross-wall can be specifically stained with aniline blue, the protonema cell type 

identity could not always be determined with absolute certainty. The transition from 

chloronema to caulonema cells happens gradually and is represented in a transition zone. 

The onset of differentiation can therefore not be determined accurately. Cross-wall staining 

could hence not be used to determine the protonema cell differentiation ability in the 

sphingolipid mutants as initially expected.  

For a more detailed analysis of the cell differentiation ability of different plant lines, 

a dark growth assay was performed that promotes selective cultivation of caulonema cells. 

The assay was described in (Saavedra et al., 2015). Caulonemata that are grown in the 

dark are referred to as skotonema cells. To start the assay, spot inocula were placed on 

BCDAT medium that was supplemented with 2 % sucrose as external carbon source. 

Colonies were grown for the first week under continuous light to generate enough tissue for 

skotonema induction. After one week, the light was switched off and cultivation plates were 

rotated to a vertical position. Colonies were incubated for another three to four weeks. After 

the cultivation period, the wild type generated long, brown filaments that reached upwards. 

As skotonema cells grow straight upwards, cell length measurements could easily be 

performed on individual cells. This assay is therefore a suitable approach to observe 

protonema cell differentiation and elongation and revealed developmental defects in the 

different sphingolipid mutants that are described in chapter 2 (Fig. 7b) and chapter 3 

(Fig. 6, 7). 

Determination of phytohormone levels in P. patens sphingolipid mutants 

Another idea to examine the cell differentiation ability of sphingolipid mutants was to 

determine their phytohormone levels. External and internal phytohormones influence a wide 

variety of physiological processes in P. patens (Decker et al., 2006). Phytohormones like 

auxin, cytokinin, and abscisic acid have different effects on early moss development. Auxin 

is a thoroughly studied and versatile phytohormone in P. patens. A major role of auxin in 

P. patens physiology is the regulation of protonema cell differentiation, where it is 

responsible for the transition from chloronema to caulonema cells and in maintenance of 

caulonema cell identity (Ashton et al., 1979). Endogenous auxin levels were therefore of 
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particular interest during the characterisation of the different sphingolipid mutants. 

Especially the gcs-1 mutant, which was unable to generate skotonema cells, was expected 

to have altered auxin levels compared to the wild type. The tightly controlled and 

standardised cultivation conditions were considered appropriate to detect differences in 

auxin levels and hence to explain the inability of gcs-1 plants to generate skotonema cells. 

Phytohormones were extracted from protonema that was cultivated for ten days on 

cellophane-covered BCD plates. As already explained, BCD medium lacks ammonium 

tartrate and should therefore promote the transition from chloronema to caulonema cells. 

Unfortunately, measurements of the bioactive auxin compound indole-3-acetic acid (IAA) in 

the protonema of different sphingolipid mutants did not lead to conclusive results. IAA levels 

were very low in all analysed plant lines (0.1-0.2 nmol/ g d.w.) (Fig. 8). Furthermore, drastic 

variations between different replicates were observed, which resulted in substantial error. 

These variations in IAA levels inhibited proper interpretation of the data. Previous studies 

on P. patens auxin metabolism measured the auxin levels in the protonema tissue and in 

the medium (Viaene et al., 2014). It appears that IAA is released by P. patens to the 

surrounding medium (Reutter et al., 1998; Viaene et al., 2014). Therefore, a future approach 

might be to target the determination of IAA levels in liquid culture grown protonema and to 

determine IAA levels in the moss tissue as well as in the medium. It would further be 

interesting to determine the levels of conjugated IAA, which was previously found in larger 

amounts in P. patens than free IAA (Ludwig-Müller et al., 2009). It might also be that 

differences in IAA cannot be determined by measuring total free IAA content. Auxin 

gradients are assumed to be the driving force for differentiation and polar growth processes. 

It is therefore possible that the distribution of auxin within the cell may not be established 

properly in sphingolipid mutants. A failed establishment of an auxin gradient can, however, 

not be determined by extraction and analysis of total auxin. Another way to determine 

changes in auxin metabolism could be to target the gene expression of different auxin 

metabolic genes in P. patens sphingolipid mutants by qRT PCR analysis. Various genes 

involved in auxin metabolism have already been identified and studied in P. patens 

(Thelander et al., 2018). The subcellular localisation of the auxin efflux carriers (PIN 

proteins) may also be determined to assess whether sphingolipid mutants have problems 

in directional auxin transport. The PIN-dependent intercellular transport was shown to be 

important for developmental processes in tip-growing filaments in P. patens (Viaene et al., 

2014). 
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Fig. 8. Free IAA levels in P. patens wild type, sd4d-1, gcs-1, s4h-1, and s4h-2 plants. Free indole-3-acid 
(IAA) was extracted from ten-day-old protonema grown on cellophane-covered BCD medium and analysed 
using UPLC-nanoESI-MS/MS. Data represent the mean ± SD of measurements from four independent 
cultivations each containing protonema material from eight cultivation plates. 

Other phytohormone levels were determined in addition to auxin, including abscisic acid 

and salicylic acid levels. As observed for IAA levels, most of the determined phytohormone 

levels did not give any conclusive results. However, levels of the jasmonate precursors 12-

oxo-phytodienoic acid (OPDA) and dinor-OPDA (dn-OPDA) were significantly increased in 

the gcs-1 mutant. The results are presented and discussed in chapter 3. 

Phytohormone measurements demonstrated that the standardised cultivation 

method using solidified medium plates can only partially be used for the analysis of 

phytohormone levels in P. patens. Future studies should focus on optimising phytohormone 

measurements and on detection of hormone derivatives that were previously described in 

P. patens (von Schwartzenberg et al., 2007; Ludwig-Müller et al., 2009).  

Subcellular localisation of PpS4H and PpSD4D in P. patens protonema cells 

Another approach investigated the subcellular localisation of the sphingolipid enzymes 

within the P. patens protonema. The simple anatomy of P. patens allows for transient 

expression assays. Therefore, the protonema was transiently transformed through particle 

bombardment using DNA-coated gold particles. Subcellular localisation studies on 

sphingolipid metabolic enzymes in A. thaliana showed localisation in the membrane of the 

endoplasmic reticulum (ER) (Chen et al., 2008; Melser et al., 2010). However, while most 

A. thaliana sphingolipid enzymes are located in the ER (Luttgeharm et al., 2016), individual 

enzymes may also reside in the membrane of the Golgi apparatus. For instance, GIPC 

synthetic enzymes that transfer GIPC head group units to the ceramide backbone are found 

exclusively in the Golgi membrane (Wang et al., 2008; Rennie et al., 2014). This shows that 

sphingolipid metabolic enzymes may either be located in the ER or in the Golgi apparatus.  

In general, plant sphingolipid enzymes are highly conserved. The corresponding 

A. thaliana enzymes of the investigated P. patens sphingolipid enzymes are described in 

the ER (Chen et al., 2008; Melser et al., 2010). Moreover, all of the investigated enzymes 
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in P. patens had predicted transmembrane domains (chapters 2 and 3). Therefore, it was 

expected that these would also localise to the ER.  

A YFP fluorescent tag was attached to the C-terminus of PpS4H and PpSD4D. The 

gene constructs were cloned into a pEntry vector backbone (pUC18 derived, approximately 

4.5 kb) provided by Dr. Ellen Hornung. PpS4H and PpSD4D expression was driven by a 

35S promoter. The gene constructs were co-transformed with a CFP-tagged ER marker in 

a pCAT vector backbone (approximately 6.2 kb) provided by Dr. Martin Fulda. The 

protonema was grown for one to two weeks on cellophane covered BCD medium before 

the bombardment. The transformed protonema was incubated for twelve hours under 

standard conditions before visualisation using a confocal laser scanning microscope. 

Several cells showed clear YFP signals that indicated successful transformation of the 

PpS4H-YFP and the PpSD4D-YFP constructs (Fig. 9).  

The PpS4H-YFP signal was found distributed throughout the cell in globular 

structures (Fig. 9D). The signal was also detected at the cell border. The observed 

structures might have been ER aggregates. Unfortunately, the used ER marker did not label 

the ER (Fig. 9B). Since the ER marker did not show ER localisation, it cannot be concluded 

with absolute certainty that PpS4H really locates to the ER. 

 

Fig. 9. Subcellular localisation of PpS4H and ER marker in a transiently transformed P. patens 

protonema cell. Transient transformation of P. patens was achieved through particle bombardment of one- to 

two-week-old protonema tissue. A transformed protonema cell is shown as (A) bright field, and (B-D) 

fluorescence images. (B) shows localisation of the endoplasmic reticulum (ER) that was tagged with CFP (cyan). 

(C) shows chloroplast autofluorescence (green). (D) shows the PpS4H localisation that was tagged with YFP 

(magenta). (E) shows the merged image of the bright field image and the PpS4H signal (magenta). (F) shows 

the merged image of PpS4H signal (magenta) and the ER signal (cyan). (G) shows the merged image of the 

PpS4H signal (magenta) and the chloroplast autofluorescence (green). (H) shows the merged image of the 

PpS4H signal (magenta), the ER signal (cyan), the chloroplast autofluorescence (green), and the bright field 

image. The scale bars represent 20 µm. The experiment was done once. The bombardment resulted in 

fluorescent signal detection in several protonema cells. Pictures are representative images for at least three 

transformed cells. 
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The PpSD4D-YFP signal showed a more network-like pattern throughout the protonema 

cell (Fig. 10D). Within the network were also small globular structures that might have 

represented ER aggregates. The signal was also observed at the border of the cell and 

around a spherical structure within the cell, which most likely represented the nucleus. The 

fluorescent signal within the cell was only detected in one half which might be due to the 

fact that only one part of the filamentous cell was in the focus plane. As with the PpS4H-

YFP construct, the CFP-tagged ER marker did, unfortunately, not visualise the ER 

(Fig. 10B). However, the spherical structure in the centre of the cell might represent the 

nuclear envelope, which is a hallmark of ER localisation. 

 

Fig. 10. Subcellular localisation of PpSD4D and ER marker in a transiently transformed P. patens 

protonema cell. Transient transformation of P. patens was achieved through particle bombardment of one- to 

two-week-old protonema tissue. A transformed protonema cell is shown as (A) bright field, and (B-D) 

fluorescence images. (B) shows localisation of the endoplasmic reticulum (ER) that was tagged with CFP (cyan). 

(C) shows chloroplast autofluorescence (green). (D) shows the PpSD4D localisation that was tagged with YFP 

(magenta). (E) shows the merged image of the bright field image and the PpSD4D signal (magenta). (F) shows 

the merged image of PpSD4D signal (magenta) and the ER signal (cyan). (G) shows the merged image of the 

PpSD4D signal (magenta) and the chloroplast autofluorescence (green). (H) shows the merged image of the 

PpSD4D signal (magenta), the ER signal (cyan), the chloroplast autofluorescence (green), and the bright field 

image. The scale bars represent 20 µm. The experiment was done once. The bombardment resulted in 

fluorescent signal detection in several protonema cells. Pictures are representative images for at least three 

transformed cells. 

Both of the sphingolipid enzymes were expected to locate to the ER. The PpS4H-YFP and 

PpSD4D-YFP fluorescent signals showed similar distribution patterns within the cell. The 

observed spherical structures likely represented ER aggregates. ER aggregation may occur 

when overexpression of genes affects cell viability and results in subcellular 

rearrangements. PpS4H and PpSD4D overexpression might have interfered with the 

structural organisation of the cellular elements, causing reshaping of the ER. However, ER 

morphology may also change over the course of cell growth and development. It might 
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therefore also be that cells bombarded with PpS4H and PpSD4D constructs were in certain 

developmental stages. Finally, also the particle bombardment itself may cause a shift in 

subcellular arrangement. 

Of the investigated sphingolipid enzymes only PpS4H and PpSD4D were examined 

for their subcellular localisation. Subcellular localisation of PpGCS was not determined 

because the gene could not be amplified from P. patens cDNA. 

To confirm the subcellular localisations of PpS4H and PpSD4D to the ER, a co-

localisation to the organelle would need to be observed. Since the used plasmid harbouring 

the ER marker did not work in the applied assay, another plasmid carrying an ER marker 

sequence should be designed that properly labels the ER. Ideally, the pEntry vector system 

should be used as it proved functional in P. patens for the gene constructs. For future 

studies, it would even be reasonable to generate a plasmid library consisting of pEntry 

vectors that harbour marker sequences for different organelles. That way, the subcellular 

localisation of future proteins of interest can be identified that are expected to localise to 

different cellular organelles. Another possibility would be to generate stable P. patens 

marker lines that constitutively express fluorescent proteins targeted to various cellular 

organelles. 

Conclusion and outlook 

In summary, the establishment and optimisation of an appropriate toolkit for using P. patens 

as model system in the department proved to be essential in the beginning of the study for 

the subsequent sphingolipid mutant characterisations. A thorough understanding of 

P. patens growth and development mechanisms was beneficial to target selective 

cultivation of different tissues. Growth on solidified medium greatly facilitated the 

maintenance of P. patens sphingolipid mutant lines that showed different growth behaviours 

and therefore had varying cultivation requirements. The highly standardised cultivation 

procedure enabled comprehensive and quantitative mutant phenotype investigations of s4h 

(chapter 2), sd4d-1, and gcs-1 (chapter 3) mutants and laid the groundwork for future 

P. patens mutant characterisation studies. Furthermore, the identified P. patens 

sphingolipid profile from Resemann (2018) was extended by performing separate lipid 

extractions and analyses on protonema and gametophore tissue.  

Although the newly established cultivation system enabled thorough examination of 

sphingolipid mutants, future work needs to target optimisation of cultivation conditions for 

certain applications, such as phytohormone measurements. Future studies concerning 

P. patens sphingolipid metabolism may also reveal even more detailed analytics of distinct 

tissue types, such as the sporophyte, rhizoids, or skotonema cells. Advanced microscopic 

studies of membrane dynamics may be key in determining the role of sphingolipids in 
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membrane organisation. P. patens represents a model plant that may be easily accessible 

for in planta membrane studies.  
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4 Chapter 2 

Sphingolipid long-chain base hydroxylation influences plant growth and 

cross-wall formation in Physcomitrella patens  

 

 

The article is ready for submission. The supplemental material can be found at the end of 

the main part. 
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Summary  

• Sphingolipids and sterols are enriched in microdomains in the plant plasma 

membrane. Lipid microdomains are assumed to be important sorting platforms for 

proteins involved in cellular processes such as signalling, responses to biotic and 

abiotic stresses and cell wall synthesis and degradation. Free hydroxyl groups in the 

characteristic long-chain base (LCB) moiety of sphingolipids are believed to be 

essential for the interaction network between sphingolipids and sterols. The 

hydroxylation status of the LCB moiety of sphingolipids therefore influences the 

biophysical properties of the plant plasma membrane and thus affects membrane-

associated cellular signalling cascades.  

• Physcomitrella patens null mutants for the LCB C-4 hydroxylase S4H were 

generated by homologous recombination. The mutants were characterised 

chemically by identification of their sphingolipid and glycosylated sterol (SG) profiles, 

and phenotypically by macro- and microscopic investigation of different 

developmental stages (protonema, gametophore). 

• s4h mutants lost the hydroxyl group at the C-4 position of their LCB moiety in 

sphingolipids. Loss of the t18:0 LCB moiety caused global changes in all 

sphingolipid classes. The predominant t18:0 LCB moiety was replaced by the d18:0 

LCB moiety in LCBs, phosphorylated LCBs (LCB-Ps), ceramides, and glycosyl 

inositolphosphorylceramides (GIPCs). These changes in the P. patens 

sphingolipidome were correlated with alterations in the SG composition. As 

physiological consequence, s4h mutants were substantially impaired in growth and 

development. Growth defects may possibly be triggered by an impaired cell division 

as indicated by the misplacement of the cell-plate marker callose resulting in 

malformed cross-walls in protonema cells.  

• Loss of LCB-C4 hydroxylation substantially changes the P. patens sphingolipidome 

and reveals a key role for S4H during cell division and general growth in non-

vascular plants. P. patens represents a valuable model organism for studying the 

diversification of the plant sphingolipid metabolism. Compared to Arabidopsis 

thaliana the simple structural design of P. patens greatly facilitates visualisation of 

physiological processes in biological membranes. 

 

 

Key words: callose, long-chain base (LCB) hydroxylation, LCB C-4 hydroxylase, 

microdomain, non-vascular plants, plasma membrane, plant development, Physcomitrella 

patens, sphingolipid metabolism 
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Introduction 

Sphingolipids are involved in essential cellular and subcellular processes in eukaryotes, 

some prokaryotes and viruses (Smith & Merrill, 2002; Lynch & Dunn, 2004; Sperling et al., 

2005). As abundant lipid molecules their predominant role is to maintain the structural 

integrity of the plasma membrane and of endomembrane systems. Their amphipathic 

nature arises from their unique hydrophobic sphingoid backbone that is connected to 

hydrophilic head groups (Lynch & Dunn, 2004). The backbone contains an N-acylated 

amino alcohol, also known as long-chain base (LCB). LCBs are characteristic for 

sphingolipids and therefore define them as a distinct lipid class. Sphingolipids account of 

around 40 mol % of plasma membrane lipids in plants (Sperling et al., 2005; Cacas et al., 

2016) and are believed to play a key role in membrane organisation by participating in 

micro- and nanodomain formation. In addition to their structural role, some sphingolipids act 

as signalling molecules during processes including programmed cell death (PCD) (Liang et 

al., 2003; Shi et al., 2007; Zienkiewicz et al., 2020) and responses to biotic and abiotic 

stresses (Huby et al., 2020). They further play a role as necrosis and ethylene-inducing 

peptide 1-like toxin receptors during plant pathogen interactions (Lenarčič et al., 2017). 

The plant sphingolipidome can be broken down into four classes which are sorted 

in the following according to their relative abundance in Arabidopsis thaliana leaf extract: 

LCBs (0.5 %), ceramides (2 %), glycosylceramides (GlcCer) (34 %), and glycosyl 

inositolphosphorylceramides (GIPC) (64 %) (Markham et al., 2006; Markham & Jaworski, 

2007). Sphingolipid biosynthesis takes place in the endoplasmic reticulum (ER) and starts 

with the condensation of palmitoyl-CoA and serine forming 3-ketosphinganine. This is 

reduced to the LCB sphinganine, which is also referred to as dihydroxy LCB, or in short 

d18:0. Plant LCBs typically have a hydrocarbon chain length of 18 carbon atoms. The LCBs 

are the core structure of ceramides and complex sphingolipids and can be N-acylated 

through the action of ceramide synthases. N-acylation of LCBs to long-chain fatty acids 

(LCFAs) or very long-chain fatty acids (VLCFAs) results in the formation of ceramides. In 

plants, the pool of acyl chain lengths of sphingolipids typically ranges from 16 to 26 carbons. 

Complex sphingolipids (GlcCers and GIPCs) are generated through the attachment of a 

polar head group to the C-1 position of the LCB moiety. Sphingolipids are a diverse lipid 

class in part due to different structural modifications on either their LCB or fatty acid moiety. 

These include phosphorylation, hydroxylation and desaturation and are usually introduced 

at the level of LCBs, acyl-CoAs or ceramides. Even small modifications have a great impact 

on the biophysical properties of sphingolipids. Structural changes in the sphingoid backbone 

therefore determine the metabolic and physiological fate of individual sphingolipid species. 

Most of our knowledge of plant sphingolipid metabolism has been gained from 

studying the vascular model plant A. thaliana. Many different enzymes within the 
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sphingolipid pathway have been thoroughly investigated, and a multitude of mutants with 

severe, pleiotropic phenotypes haven been identified (Luttgeharm et al., 2016). However, 

the tissue and organ complexity of vascular plants has made it difficult to assign specific 

sphingolipid molecules distinct functions. Furthermore, many A. thaliana sphingolipid 

mutants are embryo lethal or severely dwarfed making it challenging or even impossible to 

perform phenotypic characterisation on true knockout plants (Msanne et al., 2015; Tartaglio 

et al., 2017; Gonzalez-Solis et al., 2020). Thus, there are clear limitations to the utility of 

A. thaliana as model organism to study sphingolipid functions.  

The moss Physcomitrella patens belongs to the group of bryophytes and can be 

used as amodel organism with a remarkably simple morphology. Its dominant haploid life 

cycle starts with a single spore that develops into a two-dimensional filamentous network, 

the protonema. From this juvenile stage buddings arise that induce three-dimensional 

growth. The buddings grow out into the gametophore, a shoot-like structure with leaflets or 

phyllids that consist of only a single cell layer (Prigge & Bezanilla, 2010). In contrast to the 

more complex organs of vascular plants, the simplicity of these different moss tissue types 

greatly facilitates visualisation of inter- and intracellular processes. Additionally, P. patens 

can be propagated vegetatively, meaning that mutants which do not reach reproductive 

maturity can still be investigated. Bryophytes and vascular plants began to diverge early in 

land plant evolution, around 450 million years ago (Rensing et al., 2008). Therefore, 

studying a bryophyte model, in addition to the work carried out in classical, vascular plant 

models, is going to provide insight into conserved features of land plants. 

A recent study conducted a global lipid profile analysis in P. patens (Resemann, 

2018). Besides glycerolipids and sterol lipids, the identified lipids include the four plant 

sphingolipid classes: LCBs, ceramides, GlcCers and GIPCs. The analysis revealed that 

most essential and characteristic parts of plant sphingolipid metabolism are conserved from 

non-vascular to vascular land plants. An overview of the P. patens sphingolipid metabolism 

with focus on trihydroxy sphingolipids is depicted in Fig. 1. The figure combines the findings 

on P. patens sphingolipid metabolism from the lipidomics approaches from (Resemann, 

2018) and (Cacas et al., 2013) with current knowledge on plant sphingolipid metabolism in 

general (Luttgeharm et al., 2016). While GlcCers contain with over 90 % the dihydroxy LCB 

moiety with two double bonds, d18:2, GIPCs contain mainly the saturated trihydroxy LCB 

moiety t18:0 (Resemann, 2018). This observation of distinct LCB moieties in different 

sphingolipid pools may facilitate studying specific enzymatic reactions in sphingolipid 

metabolism. Furthermore, the P. patens sphingolipidome may be considered less complex 

than the A. thaliana sphingolipidome regarding the combination variety of different LCB and 

fatty acid moieties.  



Chapter 2 

62 
 

 

Fig. 1. Trihydroxy sphingolipids are mainly channelled into GIPC formation in P. patens. The depicted 
sphingolipid metabolism shows the two pathways for glycosylceramide (GlcCer) and glycosyl 
inositolphosphorylceramide (GIPC) synthesis in P. patens. Dihydroxy long-chain bases (LCBs) are channelled 
into GlcCer formation (grey) and trihydroxy LCBs are channelled into GIPC formation (blue). Asterisks indicate 
functionally characterised enzymes in P. patens. Abbreviations are as follows: HS-CoA: Coenzyme A; GDP-
Man: Guanosine Diphosphate Mannose; GINT1: Glucosamine Inositolphosphorylceramide Synthase 1; 
GlcA: Glucuronic Acid; GMT1: GIPC Mannosyl Transferase 1; GONST1: GDP-Mannose Transporter 1; 
Hex: hexose; HexNAc: N-acetylhexosamine; IPCS: Inositolphosphorylceramide Synthase; Ins: Inositol; IPUT1: 
Inositolphosphorylceramide Glucuronosyl Transferase 1; Man: Mannose; SFD: Sphingolipid Fatty acid 
Desaturase; VLCFA: Very Long-Chain Fatty Acid; UDP-Glc: Uridine Diphosphate Glucose.  

Resemann (2018) also characterised the first sphingolipid enzyme from P. patens: 

SPHINGOLIPID FATTY ACID DESATURASE (PpSFD). PpSFD and its A. thaliana 

counterpart ADS2 introduce double bonds at different positions of the fatty acid backbone 

and are therefore believed to have independent evolutionary backgrounds (Fukuchi-

Mizutani et al., 1995; Heilmann et al., 2004; Resemann, 2018). However, both mutants 

exhibit a cold-sensitive phenotype and ads2.1 plants complemented with PpSFD re-

established resistance to cold stress (Resemann, 2018). This confirms that both enzymes 

confer the same physiological function despite their independent evolutionary origin.  

One essential modification of plant sphingolipids is the hydroxylation of the LCB and 

fatty acid moieties. Following initial formation, the LCB moiety contains two hydroxyl groups 

and is referred to as d18:0 LCB or sphinganine. The C-1 and C-3 hydroxyl groups result 

from the precursor molecules serine and palmitoyl-CoA, respectively (Dunn et al., 2004; 

Lynch & Dunn, 2004). A hallmark of plant and yeast sphingolipids is a third hydroxyl group 

added to C-4 of the LCB moiety by an LCB hydroxylase (Haak et al., 1997; Sperling et al., 

2001; Markham et al., 2006; Chen et al., 2008). This LCB moiety is referred to as t18:0 LCB 

or phytosphingosine. Around 90 % of all LCB moieties found in total leaf extract from 
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A. thaliana contain trihydroxy LCBs (Markham et al., 2006; Tarazona et al., 2015). 

Trihydroxy LCBs are mainly acylated to VLCFA and are mostly found in the GIPC pool (Buré 

et al., 2011). 

GIPCs are the most abundant plant sphingolipids and account for ~64 % of total 

sphingolipids in A. thaliana leaves (Markham et al., 2006). Furthermore, they make up 30 

to 40 mol % of the plasma membrane lipids of Nicotiana tabacum and represent 60 % to 

80 % of the total outer leaflet lipids (Cacas et al., 2016). The presence of additional hydroxyl 

groups in the sphingoid backbone allows sphingolipids to form more hydrogen bonds with 

other membrane components, such as sterols and saturated phospholipids, which affects 

the biophysical properties of the membrane in a dynamic manner (Quinn & Wolf, 2009; 

Klose et al., 2010; Mamode Cassim et al., 2019). Membrane fractions enriched in sterols 

and sphingolipids form stable gel phases with increased melting temperatures, so called 

liquid-ordered domains or lipid rafts (Simons & Ikonen, 1997; Pike, 2009). These domains 

have a role as protein sorting platforms in the plasma membrane (Simons & Ikonen, 1997; 

de Almeida et al., 2003; Huang et al., 2019). A. thaliana mutants with altered sphingolipid 

homeostasis that affect GIPC structure exhibit severe growth and developmental 

phenotypes, which could be caused by defects in cytokinesis, involving altered cell plates 

and impaired plasmodesmal cell-to-cell transport (Chen et al., 2008; Molino et al., 2014; Liu 

et al., 2020; Yan & Liu, 2020). GIPCs are therefore believed to have an important role in 

orchestrating membrane dynamics during plant developmental processes. 

Even though the presence of three hydroxyl groups in the LCB moiety is considered 

a characteristic and crucial feature for plants, sphingolipid C-4 hydroxylases have only been 

characterised in A. thaliana (Sperling et al., 2001; Chen et al., 2008). A. thaliana 

SPHINGOID BASE HYDROXYLASE1 (AtSBH1) and AtSBH2 are functionally redundant 

LCB C-4 hydroxylases. Only knockout of both genes led to a complete loss of trihydroxy 

LCBs. This resulted in disruption of the overall sphingolipid composition of sbh1 sbh2 

double mutants. The mutants were severely dwarfed, were impaired in cell expansion and 

division, and failed to transition from vegetative to reproductive development. The authors 

concluded that LCB C-4 hydroxylation is crucial for A. thaliana growth and viability.  

The following study shows the significance of the t18:0 LCB moiety in sphingolipids 

of the bryophyte model P. patens. By generating a loss-of-function mutant of the single gene 

Sphinganine C-4 Hydroxylase (S4H) via homologous recombination, a complete loss of 

t18:0 LCB containing sphingolipids was achieved. This resulted in global changes across 

all sphingolipid classes. Expression of S4H in the Saccharomyces cerevisiae LCB C-4 

hydroxylase knockout mutant sur2Δ restored the formation of t18:0 LCB containing 

sphingolipids in yeast. Similar to the A. thaliana sbh1 sbh2 mutant, the P. patens s4h 

mutants showed severely stunted growth in all developmental stages. The growth 
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phenotype might be attributed to impaired cytokinesis as indicated by altered deposition of 

the cell plate marker callose. The study highlights the advantages of P. patens as model 

plant to investigate the role of sphingolipids in membrane dynamics.  

Materials and methods 

Plant material and growth conditions 

In this study the ‘Gransden’ wild type strain of P. patens (Hedw.) Bruch & Schimp was used. 

Plant material was grown per default at 25 °C in long-day conditions (16 h light/ 8 h dark) 

with a photon flux of 50–70 µmol m-2 s-1. Protonema material was weekly cultivated on BCD 

agar medium plates (90 mm diameter) containing 1 mM CaCl2 and 5 mM ammoniumtartrate 

(BCDAT) (Ashton & Cove, 1977) covered with sterile cellophane discs (folia, Wendelstein, 

Germany). Regular maintenance was achieved by collecting one-to two-week-old 

protonema tissue and disrupting it for 20 s using a tissue lyser (Ultra Turrax, Ika, Staufen, 

Germany). The cell suspension was spread onto fresh medium plates.  

For lipidomics analysis of protonema and determination of fresh weight, BCD plates 

covered with sterile cellophane were inoculated with a volume of tissue suspension 

corresponding to 5 mg dry weight. The protonema material was harvested after ten days, 

weighed for fresh weight biomass determination and frozen in liquid nitrogen. Collected 

tissue was lyophilised and weighed again for determination of dry weight. To obtain enough 

material for analyses, tissue from eight plates were pooled during each cultivation round. 

For imaging of protonemal development, approximately 1 mm spot inocula of one- 

to two-week-old protonema were placed on plates containing BCD medium with 1 mM 

CaCl2. Plates were sealed with micropore tape and imaged after the indicated time points. 

For induction of gametophores, spot inocula were incubated on BCD medium plates for five 

to six weeks.  

For targeted cultivation of skotonema filaments, spot inocula were placed on square 

petri dishes containing BCDAT medium with 2 % (w/v) sucrose and were grown horizontally 

for one week under continuous light. Plates were subsequently shifted into vertical position 

and grown in darkness for another three to four weeks.  

Images were taken with a binocular (Olympus SZX12 binocular, Olympus 

Corporation, Tokio, Japan) linked to a digital camera (R6 Retiga camera, QImaging, Surrey, 

Canada). Pictures were acquired with the Ocular scientific image acquisition software 

(version 1.0, Digital Optics Ltd, Auckland, New Zealand). Images were processed using 

ImageJ 1.52b software (Schneider et al., 2012). 
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Generation of targeted knockout plasmids 

To construct the vector for targeted knockout of the S4H gene, 750 bp genomic DNA 

fragments of the 5’ region and the 3’ region of S4H were amplified using the primer pairs 5' 

ApaI S4H-fw (5'-atgggcccATGGGCCCATGGTGTTCTGGGAGGATTATGTC-3')/ 5' SalI 

S4H-rev (5'-atgtcgacACCATGTTTAACCTAGAGCCCGC-3') and 3' BamHI S4H-fw (5'-

atggatccGTGGCGGCTTATCGCCTAATTAC-3')/ 3' XbaI S4H-rev (5'-

attctagaCACTCGATCTTCTTCACAGGCATG-3'), respectively. The fragments were cloned 

into a pBluescript vector flanking a kanamycin cassette under the control of a 35S promotor. 

Correct cloning of the fragments into the destination vector was confirmed via sequencing. 

Prior to transformation into the P. patens wild type strain, the fragment used for homologous 

recombination, containing the 5’ and the 3’ flanking regions, was linearised using the 

restriction enzymes ApaI and XbaI. 

P. patens transformation and molecular characterisation of knockout mutants 

Transgenic plants were generated via polyethylene glycol (PEG)-mediated transformation 

of protoplasts according to (Schaefer et al., 1991). 

The linearised fragment containing the 5’ and 3’ S4H flanking regions and the 

kanamycin selection cassette was used for PEG-mediated transformation.  

The used protonema material was cultivated in non-aerated, shaking liquid cultures 

in sterile Erlenmeyer flasks under long-day conditions (16 h light, 8 h dark) at 25 °C and a 

photon flux of 50–70 µmol m-2 s-1. The protonema was routinely sub-cultivated in liquid Knop 

medium (Reski & Abel, 1985) until transformation. One week prior to the transformation, the 

plant material was transferred to liquid Knop medium containing 1/10 of the original 

Ca(NO3)2 amount. Protonema was harvested using a 100 µm mesh size nylon sieve and 

immersed in 1.3 % (w/v) sterile driselase in 0.5 % (w/v) mannitol solution for protoplast 

isolation. After overnight incubation, the protoplast suspension was applied consecutively 

to a 100 µm and a 50 µm sieve. Protoplasts were washed in 0.5 % mannitol solution and 

centrifuged after each wash at 50 g without acceleration and break. Cell number was 

determined using a Fuchs-Rosenthal cell count chamber (Paul Marienfeld GmbH&Co.KG, 

Lauda-Königshofen, Germany). Protoplasts were adjusted with MMM solution 

(15 mM MgCl2, 0.1 % (w/v) MES, 0.48 M Mannit, pH 5.6) to a cell count of 

1.2 *106 protoplasts/mL. 3*105 protoplasts/mL were gently mixed with 20-30 µg plasmid 

DNA in sterile 0.1 M Ca(NO3)2 and 350 µL sterile 40 % (w/v) PEG 4000 solution. 

Transformation mixture was incubated in the dark for 30 min with occasional gently mixing. 

The PEG in the transformation mixture was gradually diluted by adding in total 10 mL of 

MMM solution over 30 min. The diluted mixture was centrifuged at 50 g for 10 min. 

Protoplasts were re-suspended in MMM solution and incubated for 24 h in the dark. 
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Protoplasts were maintained in liquid medium for another week under long-day conditions 

(16 h light, 8 h dark) and were subsequently spread on cellophane-covered Knop medium 

plates. After one week, the cellophane with the regenerating protoplasts was transferred to 

selection plates containing the selection agent G418 (Geneticin) (40 mg/L). The selection 

pressure was released after one week by transferring cellophanes back to medium plates 

without G418. After growing the moss for two weeks without antibiotics, another two-week 

selection round on G418-containing plates was applied. Individual plants were 

subsequently separated and transferred to medium plates without cellophane. 

Molecular characterisation of targeted gene disruption 

A small explant of regenerated protonemal tissue was used for DNA isolation. Genomic 

DNA was extracted using the cetyl trimethylammonium bromide (CTAB) extraction method. 

First, integration of the kanamycin cassette into the P. patens genome was checked by PCR 

using a primer pair combination that was specific for the selection cassette (fw: 

ATGGGGATTGAACAAGATGGATTGCAC/ rev: TCAGAAGAACTCGTCAAGAAGGC). 

Subsequently, insertion of the selection cassette into the correct locus was confirmed by 

PCR using primer pair combinations specific for the selection cassette and the 

corresponding untranslated regions of S4H 5’ (fw: 5’-GAGGGCTTCGACAAAAGAAG-3’/ 

rev: 5’-GATAGCTGGGCAATGGAATCCG-3’) and 3’ (fw: 5’-

TAGGGTTCCTATAGGGTTTCGCTC-3’/ rev: 5’-GTAAAAACCAGGTCCAGCCC-3’). 

Reverse transcriptase PCR for mutant characterisation 

Total RNA was extracted from wild type and mutant gametophytic tissue using TRIzolTM 

reagent (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Prior to cDNA synthesis 

RNA was treated with DNaseI (Thermo Fisher Scientific, Waltham, Massachusetts, USA) 

according to manufacturer’s instructions. 1 µg of DNA-free RNA was applied for cDNA 

synthesis using RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher 

Scientific Waltham, Massachusetts, USA). The following primer pairs were used for 

determination of S4H (fw: 5'-ATGTCAGCGATGAGGTGCTG-3'/ rev: 5'-

AACATGGCCACCACAAACTG-3') and for determination of ACTIN8 transcripts (fw: 5'-

GCTGGTTTCGCTGGAGACGATGC-3'/ rev: 5'-ATCGTGATCACCTGCCCGTCC-3'). 

Heterologous expression in S. cerevisiae LCB C-4 knockout mutant sur2∆ 

P. patens S4H gene was synthesised and codon usage optimised for S. cerevisiae 

expression (Genscript, Piscataway Township, New Jersey, USA) and cloned into the 

pYES2-CT vector (Thermo Fisher Scientific, Waltham, Massachusetts, USA) using BamHI 

and XhoI restriction sites. The Kozak consensus sequence was added to enhance protein 

translation initiation. The following primer pairs were used for molecular cloning of P. patens 
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S4H into into the pYES2-CT vector: fw: 5'-GGAggatccAAACGATGGTATTCTGGGAAG-3'/ 

rev: 5'-GGActcgagTTCTATTTTCTTGACTGG-3'. Successful cloning was confirmed by 

sequencing of the plasmid. The empty vector and the S4H-containing plasmid were 

transformed into the sur2∆-null mutant (Desfarges et al., 1993; Haak et al., 1997) using 

LiAc/SS carrier DNA/PEG method according to (Gietz & Schiestl, 2007). Transformed yeast 

and the corresponding wild type strain (BY4741) were cultivated in pre-cultures for 24 h in 

single dropout (SD) medium lacking uracil and containing 2 % glucose. For gene induction, 

yeast main cultures were inoculated to a final OD600 of 0.02 in SD dropout medium lacking 

uracil and containing 2 % galactose and 2 % raffinose and grown for another 24 h. Yeast 

cultivations were performed at 30 °C in shaking flasks. Cells were harvested at 3000 g for 

10 min, washed with water and stored at -80 °C. Yeast cells were lyophilised prior to lipid 

extraction and analysis. 

Lipid extraction 

Lipids were extracted using a monophasic extraction method according to (Grillitsch et al., 

2014) with minor modifications. 20 mg lyophilised and homogenised P. patens or 

S. cerevisiae material were immersed in a 60 °C pre-heated solvent mixture containing 

propan-2-ol/hexane/water (60:26:14, v/v/v). The mixture was incubated for 30 min at 60 °C 

with every 10 min vortexing. The solution was centrifuged, the supernatant was collected 

and evaporated under a stream of nitrogen. Dried lipids were dissolved in 800 µL 

tetrahydrofuran/methanol/water (4:4:1, v/v/v). Extracts were directly applied for LCB 

measurement by ultra-performance liquid chromatography (UPLC) coupled with 

nanoelectrospray ionisation (nanoESI) and triple quadrupole tandem mass spectrometry 

(MS/MS) (UPLC-nanoESI-MS/MS) analysis (AB Sciex, Framingham, Massachusetts, USA) 

or further processed as described in the following. 

Methylamine treatment 

For ceramide and GlcCer analysis 50 µL of the lipid extract were evaporated. 

1.4 mL 33% (w/v) methylamine dissolved in ethanol together with 600 µL H2O were added 

to the dried extract (Markham and Jaworski, 2007). The mixture was incubated for 1 h at 

50 °C in a water bath. After methylamine treatment the solvent was evaporated, dried lipids 

were dissolved in 50 µL tetrahydrofuran/methanol/water (4:4:1, v/v/v) and applied for 

UPLC-nanoESI-MS/MS. 

Derivatisation with acetic anhydride 

Acetic anhydride treatment was performed according to (Berdyshev et al., 2005; Yanagawa 

et al., 2017). For detection of LCB phosphates (LCB-Ps) 50 µL of the lipid extract were 

evaporated and subsequently re-suspended in 100 µL pyridine and 50 µL acetic anhydride. 
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The mixture was incubated for 30 min at 50 °C. After solvent evaporation samples were 

dissolved in 50 µL tetrahydrofuran/methanol/water (4:4:1, v/v/v). The samples were applied 

for UPLC-nanoESI-MS/MS analysis. 

Microsome preparation 

For enhanced detection of GIPC and SG species, microsomal fractions were prepared from 

the collected protonemal tissue. Microsome preparation was done according to (Abas & 

Luschnig, 2010). All steps were performed at 4 °C. A 1.5x fractionation buffer (FB) stock 

containing 150 mM Tris-HCl (pH 7.5), 37.5 % (w/w), 7.5 % glycerol, 15 mM EDTA (pH 8.0), 

15 mM EGTA (pH 8.0) and 7.5 mM KCl was prepared. 1.1x and 1x solutions were diluted 

from the 1.5x stock. 20 mg of homogenised material were mixed with 1.5x FB, vortexed, 

and centrifuged at 600 g for 3 min. The supernatant was collected into a new tube. The 

pellet was re-extracted with 1.1x FB and the supernatant was combined with the first one. 

The pellet was re-extracted a last time with 1x FB and centrifuged at 2.000 g for 30 s. 

Combined supernatants were diluted 1:1 with water and divided into 600 µL aliquots. 

Supernatant samples were centrifuged at 20817 g for 2 h. The supernatant (soluble fraction) 

was discarded and the pellet was washed with water. The sample was centrifuged again at 

20817 g for 45 min. The wash was discarded, and the sample was stored at -80 °C until 

further processing. 

The microsomal pellet was dissolved in water and lipids were extracted according 

to lipid extraction described above. Samples were applied for UPLC-nanoESI-MS/MS 

analysis.  

Lipid analysis 

Measurement of targeted molecular lipid species was performed using the multiple reaction 

monitoring (MRM)-based UPLC-nanoESI-MS/MS approach described in (Resemann, 

2018). LCB-Ps were measured in negative ionisation mode with [M-H]− as precursor ions. 

The more complex GIPC classes Hex(NAc)-GlcA-IPCs and Hex-Hex(NAc)-GlcA-IPCs were 

measured in positive ionisation mode with [M+NH4]+ as precursor ions and ceramide 

fragments as product ions. Head group-specific ions were detected as described before 

(Buré et al., 2011). LC-MS data was processed using Analyst 1.6.2 and MultiQuant 3.0.2 

software (both AB Sciex, Framingham, Massachusetts, USA). 

Confocal Laser Scanning Microscopy (CLSM) 

For callose labelling one- to two-week-old protonema was bleached overnight in 

ethanol/acetic acid (3:1, v/v). Callose labelling was modified from the protocol described in 

(Schuette et al., 2009). The bleached plant tissue was incubated in 0.1 % (w/v) aniline blue 

in 50 mM sodium phosphate buffer (pH 9) for 30 min at room temperature. Before 
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visualisation, the tissue was rinsed in 50 mM sodium phosphate buffer (pH 9). Images were 

captured using an excitation wavelength at 405 nm and an emission wavelength at 500 nm. 

Images were analysed with Leica TCS SP5 confocal microscope (Leica Microsystems 

GmbH, Wetzlar, Germany) and processed with ImageJ 1.52b software (Schneider et al., 

2012). 

Webtools 

BLAST search 

Sphinganine C-4 hydroxylases were searched by BLAST of A. thaliana SBH1 and SBH2 in 

the NCBI proteome database (National Center for Biotechnology Information (NCBI), U.S. 

National Library of Medicine, Maryland, USA) (http://www.ncbi.nlm.nih.gov/BLAST/) for 

P. patens (Altschul et al., 1990). 

Conserved domain prediction (CDD) 

S4H was assigned to “Fatty acid hydroxylase superfamily” with CDD database (Marchler-

Bauer et al., 2015; Lu et al., 2020). 

Membrane protein topology prediction 

Membrane protein topology was predicted with TMHMM software (Sonnhammer et al., 

1998; Krogh et al., 2001). 

Electronic fluorescent pictograph (eFP) browser 

Gene expression information was obtained using P. patens eFP browser at: 

http//www.bar.utoronto.ca (Winter et al., 2007; Ortiz-Ramírez et al., 2016). 

Results 

PpS4H is a putative LCB C-4 hydroxylase in P. patens 

In A. thaliana LCB C-4 hydroxylation is catalysed by two redundant LCB C-4 hydroxylases 

SBH1 and SBH2 (Sperling et al., 2001; Chen et al., 2008). BLAST search using both 

proteins revealed the presence of only one putative LCB C-4 hydroxylase in the P. patens 

proteome with 68 % and 63 % identity, respectively. The P. patens protein has a length of 

256 amino acids and is annotated in the NCBI database as Sphinganine C4-

Monooxygenase 1-like (XP_024362887.1). Here, the protein is designated as Sphinganine 

C-4 Hydroxylase (S4H). Exploration of the organ-specific gene expression pattern of S4H 

in P. patens using the gene investigation tool eFP browser (Winter et al., 2007; Ortiz-

Ramírez et al., 2016), revealed a strong expression of S4H in all organs (Fig. S1a). Highest 

expression could be detected in the protonema, the gametophore, and the mature spore 
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capsule. The constitutive expression pattern confirms with the expression of SBH1 and 

SBH2 in A. thaliana and suggests an important role of S4H function in all developmental 

stages of P. patens. Similar to other identified membrane-bound hydroxylases and 

desaturases, S4H contains three characteristic histidine motifs within its hydroxylase 

domain that are believed to be responsible for coordinating the di-iron cluster in the active 

site (Shanklin & Cahoon, 1998; Bai et al., 2015) (Fig. S1b, c). S4H further contains two 

transmembrane domains as predicted by the TMHMM web tool (Fig. S1d). Since most 

identified plant sphingolipid enzymes are located in the ER membrane (Luttgeharm et al., 

2016), including the A. thaliana SBH1 and SBH2, S4H likely localises within the membrane 

of the ER as well.  

PpS4H restores trihydroxy LCB formation in S. cerevisiae LCB C-4 hydroxylase 

knockout mutant sur2Δ 

To confirm the annotated LCB C-4 hydroxylase function of S4H, its coding sequence was 

codon usage optimised for S. cerevisiae expression. The optimised gene was expressed in 

the LCB C-4 hydroxylase S. cerevisiae knockout mutant sur2Δ. sur2Δ lacks all trihydroxy 

LCBs but the yeast cells remain viable (Haak et al., 1997). Expression of P. patens S4H in 

sur2Δ successfully restored formation of trihydroxy LCBs, both in the ceramide pool (Fig. 2) 

as well as in the LCB pool (Fig. S2). Notably, plants usually exclusively contain C18 LCBs, 

while S. cerevisiae contains both C18 and C20 LCBs. Both C18 and C20 LCBs were 

hydroxylated in S. cerevisiae by P. patens S4H. This confirms the predicted enzymatic 

activity of S4H and shows that S4H is independent from the LCB carbon chain length. 

 

Fig. 2. Complementation of S. cerevisiae LCB C-4 hydroxylase knockout mutant sur2Δ with P. patens 
S4H restores formation of trihydroxy ceramides. Ceramide profiles of S. cerevisiae wild type (WT), sur2Δ 
knockout strain, and sur2Δ knockout strain complemented with P. patens LCB C-4 hydroxylase S4H are shown. 
Ceramide species (Cers) with the same LCB moiety are summed up and are categorised into dihydroxy (d18:0, 
d20:0) or trihydroxy (t18:0, t20:0) ceramides with 18 or 20 LCB carbon chain lengths. Data represent the mean 
± SD of four independent biological replicates.  
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Loss of trihydroxy LCBs reshapes sphingolipid metabolism in P. patens 

After the enzymatic activity of S4H was confirmed in S. cerevisiae, P. patens loss-of-

function s4h mutants were generated by homologous recombination. Two independent 

mutant lines (s4h-1 and s4h-2) were obtained. In both lines the S4H transcript was 

completely absent, as determined by reverse transcriptase PCR analysis (Fig. 3a, Fig. S3a). 

To study the in vivo effects of the complete loss of LCB C-4 hydroxylation on the 

sphingolipidome of P. patens, protonema was cultivated for ten days on BCD medium 

covered with cellophane. Covering of the agar medium with cellophane enabled agar-free 

and easy harvesting of the protonema tissue. After lipid extraction, the sphingolipid profiles 

were determined using the UPLC-nanoESI-MS/MS approach described in (Resemann, 

2018). Relative profiles and fold changes of absolute peak areas compared to the wild type 

were analysed for all four plant sphingolipid classes (LCBs, ceramides, GlcCers and 

GIPCs). LCBs, LCB-Ps, ceramides, and GlcCers were analysed in crude protonema lipid 

extract. GIPC content was measured in microsomes prepared from protonema to enrich 

these membrane-bound sphingolipids. 

The simplest sphingolipid classes LCBs and LCB-Ps are depicted in Fig. 3b-e. While 

in the wild type t18:0 LCBs accounted for 94 % and d18:0 LCBs for 6 % of the total, s4h-1 

and s4h-2 had no t18:0 LCBs and instead contained 99 % d18:0 LCBs (Fig. 3b). The 

mutants additionally contained minor amounts of d18:1 and d18:2 LCBs (0.5 % and 0.1 %, 

respectively). In the wild type LCB-P profile t18:0 LCB-P also predominated with more than 

60 % of the total (Fig. 3c). d18:0 LCB-P accounted for around 30 % of the total in the wild 

type. In s4h-1 and s4h-2 no t18:0 LCB-P were detected. Instead, over 99 % were d18:0 

LCB-P and around 0.3 % d18:1 LCB-P. d18:2 LCB-P were only detected in trace amounts 

in the s4h mutants. Overall, there was a > 60-fold accumulation of LCBs and a > 2000-fold 

accumulation of LCB-Ps in the s4h mutants compared to the wild type (Fig. 3d, e).  
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Fig. 3. s4h mutant characterisation and altered LCB content of s4h-1 and s4h-2. (a) S4H transcript 
determination by reverse transcriptase PCR. ACTIN8 (ACT8) was used as reference gene and water as 
negative control (neg. ctrl). (b-e) Long-chain bases (LCBs) and phosphorylated LCBs (LCB-Ps) were extracted 
from protonema of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens and analysed with UPLC-nanoESI-
MS/MS. Dihydroxy LCBs are indicated by a ‘d’ and trihydroxy LCBs are indicated by a ‘t’. Relative profiles of (b) 
LCBs and (c) LCB-Ps in WT, s4h-1, and -2 lines. Fold changes of (d) LCBs and (e) LCB-Ps to the WT were 
calculated using absolute peak areas. Fold changes are depicted in linear scale. The WT, which is not shown, 
is set to 1. Sphingolipid data represent the mean ± SD of measurements from four independent cultivations 
each containing protonema material from eight cultivation plates. Statistical analysis was done using Student’s 
t-test. Asterisks indicate different significance levels with *** significance at P < 0.001 compared to the WT. 

The drastic increase of LCBs and LCB-Ps is consistent with findings from A. thaliana 

sbh1 sbh2 double knockout mutant (Chen et al., 2008). Since the absolute content of 

downstream sphingolipid classes was also affected in the sbh1 sbh2 double mutant in 

A. thaliana, it was hypothesised, that this might also be the case in P. patens. Surprisingly, 

there was no change in the total ceramide amount of the s4h mutants compared to the wild 

type (Fig. S3b). In the wild type, ceramides with the t18:0 LCB moiety predominated 

(Fig. 4a, d), while in the s4h mutants the most abundant LCB moiety was majorly d18:0 and 

in minor amounts d18:1 and d18:2 (Fig. 4b, c, e, f).  

Ceramides were grouped according to the hydroxylation state of their fatty acids. By 

this categorisation, ceramides contain unhydroxylated fatty acids, which is indicated by a ‘c’ 

in front if the chain length number (Fig. 4a-c), and hydroxyceramides contain α-hydroxylated 

fatty acids, which is indicated by an ‘h’ in front of the chain length number (Fig. 4d-f). 

Relative ceramide and hydroxyceramide profiles revealed that the wild type contained more 
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hydroxyceramides, while the s4h mutants contained more ceramides (Fig. 4a-f). Fold 

change calculations confirmed this observation with s4h-1 having 4.7-fold more and s4h-2 

having 4.4-fold more ceramides than the wild type (Fig. 4g). Hydroxyceramides decreased 

in s4h-1 to 40 % and in s4h-2 to 35 % of the wild type content. In logarithmic scale this 

corresponds to an increase in ceramide content in s4h mutants by around 0.65 (Fig. 4g) 

and a reduction of hydroxyceramide content in s4h mutants by around 0.42 (Fig. 4h).  

The wild type fatty acid profile of all ceramides was mainly composed of saturated 

fatty acids and a few unsaturated fatty acids ranging from C20 to C26 (Fig. 4a, d). 

Ceramides in s4h-1 and s4h-2 mutants showed a similar fatty acid profile with c16:0 

emerging additionally in minor amounts (Fig. 4b, c, e, f).  
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Fig. 4. s4h-1 and s4h-2 have an altered ceramide content. (a-h) Ceramides were extracted from protonema 
of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens and analysed with UPLC-nanoESI-MS/MS. Relative 
profiles of (a-c) ceramide and (d-f) hydroxyceramide molecular species are shown with their long-chain base 
(LCB) (column colour) and fatty acid (x-axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and 
trihydroxy LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated fatty acid moiety are 
indicated by a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are indicated by an ‘h’. Relative 
profiles of (a) WT, (b) s4h-1, and (c) s4h-2 ceramides with unhydroxylated fatty acid moieties. Relative profiles 
of (d) WT, (e) s4h-1, and (f) s4h-2 hydroxyceramides with α-hydroxylated fatty acid moieties. (g) Ceramide and 
(h) hydroxyceramide fold changes to the WT were calculated using absolute peak areas and are depicted in 
log10 scale. The WT, which is not shown, is set to 0. Sphingolipid data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance levels with 
*** significance at P < 0.001 and ** significance at P < 0.01 compared to the WT. 

Relative profiles of the complex sphingolipid classes GlcCers and GIPCs are shown in 

Fig. 5. Shown GIPCs have a head group composition consisting of a hexose unit (Hex) that 

is connected to glucuronic acid (GlcA) linked IPC. Over 90 % of the GlcCer profile of the 
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wild type was made up by a single molecular species, with a sphingoid backbone consisting 

of a d18:2 LCB moiety and a h20:0 fatty acid moiety (Fig. 5a). The predominant LCB moiety 

found in GlcCers of s4h mutants was also d18:2. The fatty acid profile of the s4h GlcCers 

was substantially broadened compared to the wild type profile (Fig. 5b, c). The most 

abundant fatty acids in the mutants were saturated and unsaturated fatty acids ranging from 

C20 to C24 chain length. Total GlcCer levels were not significantly changed in s4h mutants 

compared to the wild type control (Fig. S3c). 

Over 90 % of the Hex-GlcA-IPC molecular species of wild type P. patens had a t18:0 

LCB moiety (Fig. 5d). Similar to alterations in ceramide profiles, the predominant LCB 

moiety was changed from t18:0 to d18:0 in the s4h mutants. In contrast to the LCB moiety, 

the fatty acid composition of Hex-GlcA-IPCs was not changed in s4h mutants compared to 

the wild type (Fig. 5d, e, f). The four most abundant fatty acids found in the Hex-GlcA-IPC 

pool were h20:0, h22:0, h24:0 and h24:1. Relative profiles were also determined for GIPCs 

with different polar head groups (Fig. S4). GIPCs may be grouped according to the 

complexity of their head group composition. Series A GIPCs contain one additional sugar 

residue, Hex-GlcA-IPCs, which may also be converted to N-acetylhexosamine (HexNAc), 

HexNAc-GlcA-IPCs. Series B GIPCs contain two additional sugar residues, Hex-Hex-GlcA-

IPCs, of which one may be converted to HexNAc, Hex-HexNAc-GlcA-IPCs. The relative 

profiles of these complex GIPCs in the wild type and in the s4h lines were comparable to 

the described Hex-GlcA-IPC profiles (Fig. S4). Interestingly, fold change calculations 

revealed a slight increase (around 1- to 2-fold) of series A GIPCs and a significant 

accumulation (around 6-fold) of series B GIPCs in s4h lines compared to the wild type (Fig 

S5).  

Analogous to ceramides, molecular species of GlcCers and Hex-GlcA-IPCs were 

sorted according to the hydroxylation status of their fatty acid moieties. Again, an increase 

in species with unhydroxylated fatty acids and a decrease in species with hydroxylated fatty 

acids was observed in the s4h lines (Fig. S6). 



Chapter 2 

76 
 

 

Fig. 5. s4h-1 and s4h-2 have altered GlcCer and Hex-GlcA-IPC profiles. (a-c) Glycosylceramides (GlcCers) 
were extracted from protonema of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens. (d-f) Glycosyl 
inositolphosphorylceramides (GIPCs) were extracted from microsomes prepared from protonema of ten-day-
old WT, s4h-1, and s4h-2 P. patens. Sphingolipids were analysed with UPLC-nanoESI-MS/MS. GlcCer and 
Hex-GlcA-IPC molecular species are shown with their long-chain base (LCB) (column colour) and fatty acid (x-
axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and trihydroxy LCB moieties are indicated by a ‘t’. 
Molecular species with an unhydroxylated fatty acid moiety are indicated by a ‘c’ and molecular species with an 
α-hydroxylated fatty acid moiety are indicated by an ‘h’. (a-c) Relative GlcCer profiles of (a) WT, (b) s4h-1, and 
(c) s4h-2. Only molecular species with a peak area ≥ 1 % in at least one of the three lines were included in the 
GlcCer graphs. (d-f) Relative Hex-GlcA-IPC profiles of (d) WT, (e) s4h-1, and (f) s4h-2. Only molecular species 
with a peak area ≥ 0.5 % in at least one of the three lines were included in the Hex-GlcA-IPC graphs. 
Sphingolipid data represent the mean ± SD of measurements from four independent cultivations each containing 
protonema material from eight cultivation plates. Abbreviations are as follows: GlcA: glucuronic acid; Hex: 

hexose; IPCs: inositolphosphorylceramides. 

Taken together, these results demonstrate that loss of LCB C-4 hydroxylation in P. patens 

causes a substantial shift in the composition of all sphingolipid classes. Depending on the 

sphingolipid class, most obvious changes were observed in either the LCB (LCBs, LCB-Ps, 

ceramides, GIPCs) or in the fatty acid moiety (GlcCers). There was a substantial increase 

of LCBs as potential substrates of S4H. Except for significant accumulation of series B 

GIPCs, loss of LCB C-4 hydroxylation had no substantial effect on total content of 

downstream sphingolipid classes. 
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Loss of trihydroxy LCBs causes change in composition of conjugated sterols 

Several studies on plasma membrane organisation have demonstrated a strong interaction 

network between different free and conjugated phytosterols and sphingolipids (Grosjean et 

al., 2015; Grosjean et al., 2018). A result of these interactions is the formation of micro- and 

nanodomains, which are considered to be important sorting platforms for membrane 

proteins (Simons & Ikonen, 1997; Cacas et al., 2012). Connections between sterols and 

sphingolipids are believed to take place in form of hydrogen bonds (Slotte, 2016). The 

change of the hydroxylation pattern of sphingoid backbones in the s4h mutants was 

therefore expected to influence interactions between sterols and sphingolipids in the plasma 

membrane, and perhaps, by extension, sterol content. To test this hypothesis, the relative 

profile of steryl glycosides (SGs) was analysed in microsomes obtained from protonema of 

wild type and s4h plants (Fig. 6). At 47 % of the total, campesteryl represented the most 

abundant steryl moiety of SGs in the wild type, followed by isofucosteryl (27 %), sitosteryl 

(15%), stigmasteryl (9 %) and brassicasteryl (2 %). Cholesteryl was only detected in trace 

amounts (0.07 %). While the general SG profile was maintained in s4h mutants, a significant 

increase compared to the wild type was observed for sitosteryl and isofucosteryl. A 

significant decrease was observed for stigmasteryl and brassicasteryl. However, changes 

in SG composition had no significant effect on total SG content (Fig. S7). 

 

Fig. 6. s4h-1 and s4h-2 have altered steryl glycoside profiles. Steryl glycosides (SGs) were extracted from 
microsomes prepared from protonema of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens and analysed 
with UPLC-nanoESI-MS/MS. Relative SG profiles of WT, s4h-1, and s4h-2. SG data represent the mean ± SD 
of measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance levels with 
*** significance at P < 0.001, ** significance at P < 0.01 and not significant (ns) at P > 0.05 compared to the WT. 

Abbreviation is as follows: Glc: glycoside. 

 



Chapter 2 

78 
 

s4h mutants show impaired growth and development in all tissues  

The observed changes in sphingolipid and sterol composition suggest a change in 

membrane organisation, which could affect cell growth and division. Furthermore, the 

A. thaliana double knockout mutant sbh1 sbh2 showed defects in cell elongation and 

division causing severely dwarfed plants that fail to reach reproductive maturity (Chen et 

al., 2008). Gametophyte development of the P. patens s4h mutants was studied to 

determine whether they were similarly affected. Protonema spot inocula of around 1 mm in 

diameter were placed on BCD medium and incubated for up to five weeks. After 12 days of 

growth the wild type plant developed a star-shaped colony with long, branched protonemal 

filaments that reached outwards from the dense centre (Fig. 7a). Small gametophores were 

observed developing in the centre of the colony. s4h mutants also developed protonemal 

filaments from the dense centre, however colonies had a rounded, less branched 

appearance than the wild type. Furthermore, no gametophores could be observed emerging 

from the centre of the colony. After 24 days of growth, the wild type showed fully developed 

gametophores that completely overgrew the protonemal tissue. s4h mutants showed no 

gametophore development and protonema filaments still grew in a stunted manner. After 

37 days of growth severely dwarfed gametophores were observed in s4h colonies. The 

gametophores had diameters of around 0.4 mm. A photo taken with the same magnification 

of a wild type gametophore of the same age could only capture the phyllids at the tip of the 

shoot. Gametophytic development, including both gametophore and protonemal tissues, 

was drastically impaired in s4h mutants. 

Protonema consists of two cell types: chloroplast-rich chloronema cells and 

caulonema cells that contain fewer and less-well developed chloroplasts. Regarding s4h 

colony growth behaviour it was speculated that the transition from chloronema to 

caulonema cells might be impaired. To have a more extensive look at protonema 

differentiation, a dark growth experiment was performed. Protonema spot inocula of the wild 

type, s4h-1, and s4h-2 lines were placed on BCDAT medium supplemented with 2 % 

sucrose. After growth for one week under continuous light the wild type and s4h mutant 

colonies looked alike (Fig. 7b). Colonies developed a dense green centre consisting of 

filamentous protonema cells. Subsequently, plates were transferred to the dark and put into 

vertical orientation. Cultivation under these conditions was continued for three weeks. The 

developing filamentous cells in the wild type did not contain chloroplasts and had a brownish 

appearance. The developed cells are a subtype of caulonema, specified as skotonema. 

Wild type skotonema cells formed numerous long filaments reaching upwards. Although 

s4h mutants were able to generate skotonema cells, their filaments were much smaller, and 

with an altered morphology compared to wild type cells. Although counting of filaments was 
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not feasible with this experimental setup, their number appeared to be drastically reduced 

in s4h mutants.  

To quantify the growth defect of s4h mutants, protonema biomass production was 

determined. Protonema cultures were inoculated on cellophane-covered BCD medium 

plates. Each plate was inoculated with a protonemal cell suspension that was adjusted to a 

volume corresponding to 5 mg dry weight. Protonemal tissue was maintained on plates for 

ten days before harvesting and determination of fresh weight. In four independent 

experiments, wild type tissue reached a mean biomass of around 4.4 g (Fig. 7c). s4h 

mutants generated with a mean biomass of around 2.3 g significantly less material than the 

wild type. Determination of the dry weight confirmed the observed effect (Fig. S8). 
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Fig. 7. s4h-1 and s4h-2 lines exhibit a growth phenotype in all gametophytic stages. (a) 1 mm protonema 
spot inocula of wild type (WT), s4h-1 and s4h-2 were placed on BCD medium and grown for the indicated time 
periods. Scale bars in 12-day colony pictures are 4 mm. Scale bars in 24-day colony pictures are 1 mm. Scale 
bars in 37-day colony pictures are 0.4 mm. Arrowheads indicate gametophores on s4h-1 and s4h-2 colonies. 
(b) Spot inocula of P. patens WT, s4h-1, and s4h-2 were placed on BCDAT+ 2 % sucrose and grown under 
continuous light for one week (upper row). Plates were moved to the dark and rotated into vertical position. 
Colonies were grown for another three weeks to induce skotonema development (lower row). Scale bares are 
0.5 cm. (c) Growth of WT, s4h-1, and s4h-2 was quantified by collecting ten-day-old protonema tissue grown 
on cellophane-covered BCD medium and determining the fresh weight. Data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate significance level with *** 
significance at P < 0.001 compared to the WT. 

Imbalance of sphingolipid metabolism alters callose deposition at protonema cross-

walls 

P. patens s4h mutants have severe growth defects, similar to A. thaliana sphingolipid 

mutants (Chen et al., 2008). In A. thaliana sbh1 sbh2 these growth defects were attributed 

to impaired cell elongation and division (Chen et al., 2008). Another study showed that 

inhibition of VLCFA sphingolipid synthesis caused abnormal cell plate formation in root tips 
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(Molino et al., 2014). Defects in cell plate formation are believed to arise from impaired 

vesicle and membrane trafficking affecting the deposition of cell wall material during cell 

division. Callose is a cell wall component deposited during plant cytokinesis; in P. patens 

protonema, callose is deposited during cell division at the cross-walls separating two 

filamentous cells (Scherp et al., 2001; de Keijzer et al., 2017). To determine whether s4h 

mutants also have abnormal cell plate formation, callose was stained using aniline blue in 

protonema tissue. Protonema was cultivated on cellophane-covered BCD medium for one 

to two weeks before visualisation using confocal laser scanning microscopy. In wild type 

protonema cells callose was exclusively found in the cross-walls between two filamentous 

cells (Fig. 8). The cross-wall displayed a plain line-shaped structure without irregularities. 

Cross-walls in s4h mutants, however, were abnormally shaped. Callose was still deposited 

at cross-walls but irregular stretches could be seen on both sides of the wall. Callose 

expansions were oriented perpendicular to the cross-wall and extended towards the centre 

of both adjacent filamentous cells. A vast majority of s4h protonema cells showed cross-

wall malformations of different degrees.  

 

Fig. 8. Irregular callose deposition at cross-walls of s4h-1 and s4h-2 protonema cells. Cross-walls of one- 
to two-week-old filamentous wild type (WT), s4h-1, and s4h-2 protonema cells were captured using confocal 
laser scanning microscopy. Callose was stained with aniline blue. Pictures are shown in bright field (upper row), 
in aniline blue fluorescence (middle row) and as merge of both (lower row). Scale bars are 10 µm. Pictures are 

representative for three independent experiments.  
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Discussion 

Sphingolipids containing trihydroxy LCB moieties predominate in plants (Markham et al., 

2006). From characterisation of the A. thaliana sbh knockout and knockdown mutants it is 

known that trihydroxy sphingolipids are crucial for plant growth and development (Chen et 

al., 2008). To examine the role of trihydroxy sphingolipids in non-vascular plants, the LCB 

C-4 hydroxylase S4H from P. patens was characterised. The enzyme was identified based 

on sequence homology, and its metabolic activity was confirmed by complementation of the 

S. cerevisiae sur2Δ mutant. Sphingolipid analysis of s4h null mutants revealed complete 

depletion of trihydroxy sphingolipids, and substantial enrichment of LCB substrates. 

Consistent with sbh1 sbh2 in A. thaliana, s4h plants were impaired in growth and 

development. The developmental phenotype was accompanied by irregular callose 

depositions at the cross-walls of filamentous s4h protonema cells.  

Disruption of P. patens S4H resulted in loss of all t18:0 LCB-containing 

sphingolipids. This confirmed that the LCB C-4 hydroxylase is encoded by a single gene in 

P. patens. As in A. thaliana sbh1 sbh2, loss of the trihydroxy LCB moiety in s4h caused a 

shift of most abundant species from tri- towards dihydroxy LCB moieties. The shift was 

observed in P. patens for LCBs, ceramides, and GIPCs, but not for GlcCer. This can be 

explained by the fact that the wild type P. patens GlcCer pool only contains d18:2 LCBs but 

no t18:0 LCBs (Resemann, 2018). 

Loss of trihydroxy LCBs in A. thaliana was accompanied with a total increase of all 

sphingolipid classes (Chen et al., 2008). In P. patens only LCBs, LCB-Ps and series B 

GIPCs were found to have strongly elevated levels in s4h mutants compared to the wild 

type. The total contents of ceramides, GlcCers and series A GIPCs were only slightly or not 

significantly affected. P. patens s4h had a much higher fold change for LCB-Ps (around 

2000-fold) than for LCBs (around 60-fold) compared to the wild type. One explanation may 

be that several substrate-specific ceramide synthases are active in wild type P. patens. The 

excess of d18:0 LCBs may exceed the capacity of d18:0-specific ceramide synthases to 

incorporate all LCBs into ceramides. It is known from vascular plants that application of 

LCBs induces PCD (Shi et al., 2007). Application of LCB-Ps suppresses the LCB-induced 

PCD (Shi et al., 2007; Alden et al., 2011). The balance of LCBs and LCB-Ps is therefore 

believed to be an important factor in PCD induction (Shi et al., 2007; Alden et al., 2011). To 

dispose of excess LCBs in P. patens s4h, it could be that a large portion is phosphorylated. 

Resulting higher levels of LCB-Ps might outweigh accumulation of LCBs and therefore 

suppress LCB-induced cell death. This is supported by the phenotype since no cell death 

was observed in s4h mutants.  

It should further be noted that LCB-Ps are very low abundant molecules in plants, 

representing around 0.03 % of total sphingolipids in A. thaliana leaf extracts (Markham et 
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al., 2006; Yanagawa et al., 2017). Their detection in wild type plants therefore requires 

optimised extraction conditions, derivatisation techniques, and a high detection sensitivity. 

Although the detection of LCB-Ps in A. thaliana has been improved over the past years 

(Yanagawa et al., 2017; Zienkiewicz et al., 2020), these sphingolipid compounds have not 

yet been identified in P. patens (Resemann, 2018). This study identified LCB-Ps for the first 

time in P. patens. The strongly elevated levels of LCB-Ps in s4h mutants largely facilitated 

the detection of the molecular species that are only present in minor amounts in the wild 

type. This underlines the utility of sphingolipid mutants in the technical establishment of 

sphingolipid detection.  

A. thaliana sbh1 sbh2 showed an accumulation of sphingolipids with C16 fatty acids 

(Chen et al., 2008). Chen et al. (2008) therefore speculated that the growth phenotype 

resulted from accumulation of LCFAs, likely due to the action of different substrate specific 

ceramide synthases. In the P. patens sphingolipidome, C16 fatty acids only represent a 

minor fatty acid moiety that was not enriched in s4h mutants. Therefore, it appears unlikely 

that the growth phenotype observed in A. thaliana and P. patens results from accumulation 

of LCFAs. 

Another important aspect was that P. patens s4h-1 and s4h-2 showed accumulation 

of ceramides, Hex-GlcA-IPCs, and GlcCers with unhydroxylated fatty acids. While this was 

not observed for A. thaliana sbh1 sbh2, it was, however, described for S. cerevisiae sur2Δ 

cells (Haak et al., 1997). It indicates that the fatty acid hydroxylase might prefer ceramides 

containing trihydroxy LCBs as substrates. The sphingolipid profiles of the A. thaliana fatty 

acid hydroxylase mutant fah1 fah2 were investigated by König et al. (2012). Indeed, the 

mutant had elevated levels of sphingolipids with trihydroxy LCB moieties, indicating that 

these compounds are the favoured substrates of fatty acid hydroxylases. To test whether 

this is also true for fatty acid hydroxylases in non-vascular plants, further studies would have 

to be conducted on fatty acid hydroxylase function in P. patens.  

The LCB profiles in the complex sphingolipids GlcCers and GIPCs indicated that 

enzymes adding different head groups to the ceramide backbone have preferences for 

ceramides with certain LCB modifications; while P. patens homologues for 

inositolphosphorylceramide synthases prefer ceramides with a t18:0 LCB moiety, the 

glycosylceramide synthase homologue works on ceramides with a d18:2 LCB moiety. 

Another notable observation was that series B GIPCs (Hex-Hex(NAc)-GlcA-IPCs) 

accumulated more strongly in s4h-1 and s4h-2 than series A GIPCs (Hex(NAc)-GlcA-IPCs). 

Since detection of GIPC classes with more complex head groups is a recent achievement 

(Buré et al., 2011; Cacas et al., 2013), it is not known whether GIPC classes in A. thaliana 

sbh1 sbh2 were also differently affected. To learn more about the impact of different GIPC 
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head groups on the physiology of non-vascular plants, enzymes involved in GIPC head 

group assembly will have to be investigated in P. patens. 

LCB C-4 hydroxylases are functionally related to sphingolipid Δ4-desaturases. In 

mammals, LCB C-4 hydroxylase and sphingolipid Δ4-desaturase activities are carried out 

by a bifunctional enzyme, designated DES2 (Ternes et al., 2002; Mizutani et al., 2004). In 

A. thaliana sphingolipid Δ4-desaturase is only expressed in flowers and its activity might 

therefore not have been detected in the sphingolipid analyses conducted by Chen et al. 

(2008), which was performed on vegetative tissue. The authors could therefore not exclude 

that the sphingolipid Δ4-desaturase from A. thaliana also contributes a portion of 

hydroxylated LCBs. They speculated that sphingolipid Δ4-desaturase might exhibit a more 

prominent hydroxylase activity in plants containing high amounts of Δ4-unsaturated LCBs 

such as Solanaceae (Dunn et al., 2004; Sperling et al., 2005; Markham et al., 2006; 

Markham & Jaworski, 2007). In these plants, the desaturase may be ubiquitously 

expressed, and could contribute either or both hydroxylase/desaturase functions in different 

tissues. The P. patens sphingolipidome more closely resembles that of Solanaceae than of 

Brassicaceae with d18:2 LCB being the only LCB moiety identified in the GlcCer pool of 

P. patens (Markham et al., 2006; Resemann, 2018). This hints at a high sphingolipid Δ4-

desaturase activity in P. patens. However, with respect to hydroxylase/desaturase 

bifunctionality, the fact that the knockout of S4H in P. patens resulted in loss of all detectable 

trihydroxy LCBs indicates that S4H likely accounts for all trihydroxy LCB synthesis. 

Sphingolipid Δ4-desaturase, however, probably does not contribute to LCB hydroxylation in 

P. patens. 

Loss of trihydroxy LCBs caused fundamental alterations of the sphingolipid 

homeostasis in A. thaliana and P. patens resulting in severe growth phenotypes. 

Cumulative findings from both organisms indicate that defects in growth and development 

may be caused by the shift from tri- to dihydroxy LCB moieties and the accompanied 

biophysical changes in the membrane. Changes in the SG composition in P. patens s4h 

mutants is evidence of this. Free phytosterols and their conjugated forms, SGs and acylated 

SGs (ASGs), were shown to induce microdomain formation (Grosjean et al., 2015; Grosjean 

et al., 2018). These domains are enriched in sterols and hydroxylated sphingolipids, mainly 

GIPCs (Cacas et al., 2016). Microdomains are believed to be formed and maintained in part 

through an intermolecular hydrogen bond network (Slotte, 1999; Mombelli et al., 2003; 

Slotte, 2016). As indicated by the lipidomics data in this study, loss of one hydroxyl group 

in the sphingoid backbone of GIPCs may not only reduce the strength of the hydrogen bond 

network between sterols and sphingolipids, but also changes the membrane sphingolipid 

composition. A resulting failure of microdomain formation might hamper protein sorting 

downstream and therefore influence developmental processes. 
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Altered membrane composition would explain the observed impaired callose 

deposition in the s4h mutants. Callose is a cell wall component that is deposited at the cell 

plate during plant cytokinesis (Scherp et al., 2001). Several mutations that affect GIPC 

structure (head group, trihydroxy LCB moiety, α-hydroxylated VLCFA moiety) cause 

developmental phenotypes in A. thaliana (Chen et al., 2008; Bach et al., 2011; Markham et 

al., 2011; König et al., 2012; Molino et al., 2014). Molino et al. (2014) observed malformed 

cell plates in root tip cells in which synthesis of VLCFA-containing sphingolipids, mainly 

GIPCs, is inhibited by fumonisin B1. Cell plates were either incomplete or were tilted, and 

their alteration was explained by defects in membrane fusion and vesicle trafficking. In 

P. patens s4h protonema cells the cross-walls resulting from cytokinesis still appeared to 

be formed normally, however, stretches of callose were observed reaching into the centre 

of both adjacent cells. The stretches resembled the microtubule network, which is 

responsible for transporting vesicles loaded with cell wall material towards the cell plate 

during cytokinesis. This phenotype suggests disturbed vesicle trafficking during cell division. 

The altered callose deposition at newly formed cross-walls in P. patens is a valuable 

indicator of the involvement of trihydroxy LCB-containing sphingolipids in cell division. 

Consistent with this hypothesis are findings from Luttgeharm et al. (2015), who reported 

that overexpression of the ceramide synthases LOH1 and LOH3 resulted in accumulation 

of sphingolipids with trihydroxy LCBs and VLCFAs (Luttgeharm et al., 2015a). In 

consequence, the transgenic plants had higher biomasses that resulted in part from 

increased cell division. However, more detailed investigation of P. patens sphingolipid 

biosynthesis should be done to finally confirm the involvement of certain sphingolipid 

species in cytokinesis. 

Callose deposition regulates the size exclusion limit of plasmodesmata (Vatén et al., 

2011; De Storme & Geelen, 2014). Plasmodesmata are symplastic channels that traverse 

the cell wall between two adjacent cells. They enable intercellular transport during growth 

and development by linking the cytoplasm and the ER of two cells (Gallagher et al., 2014; 

Tilsner et al., 2016). Their membrane is enriched in sterols and sphingolipids, the same 

lipids found in microdomains (Grison et al., 2015; Liu et al., 2020). Callose deposition is 

regulated by biosynthesis and degradation enzymes, which were found to be 

glycosylphosphatidylinositol- (GPI) anchored proteins (Simpson et al., 2009; Zavaliev et al., 

2011). Impaired sterol biosynthesis affects localisation of callose metabolic enzymes, 

causing abnormal callose accumulation and thereby limiting plasmodesmal transport 

(Grison et al., 2015). Recent studies confirmed that disruption of sphingolipid metabolism 

also alters callose deposition in response to Botrytis cinerea infection and at plasmodesmal 

sites (Bi et al., 2014; Grison et al., 2015; Liu et al., 2020). If the callose dislocation in 

P. patens s4h also influenced plasmodesmal transport must be targeted in future studies.  
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Membrane studies in vascular plants like A. thaliana and N. tabacum are mainly 

restricted to protoplasts, root tips, or pollen tubes (Molino et al., 2014; Moscatelli et al., 2015; 

Lenarčič et al., 2017; Huang et al., 2019). Many studies also focused on mimicking lipid 

interactions by generating membrane model systems such as giant unilamellar vesicles 

(Wesołowska et al., 2009; Grosjean et al., 2015; Grosjean et al., 2018). These systems, 

however, might not reflect the complexity and high dynamics of biological membranes in 

plant tissues. Studying the involvement of different sphingolipids in lateral partitioning and 

in interactions between domains of various order is still a challenging task. P. patens with 

its simple non-vascular morphology may facilitate detailed investigation of sphingolipid 

interactions in planta. 

In summary, LCB hydroxylation has an important role in maintaining sphingolipid 

homeostasis in vascular and non-vascular plants, and loss of trihydroxy sphingolipids 

causes substantial growth defects. P. patens with its simple non-vascular morphology offers 

a valuable platform to study physiological and biochemical processes in complex and highly 

dynamic biological membranes. Together with findings from vascular plants and simple 

model membrane systems this may contribute in future studies to fully elucidate the 

physiological and metabolic function of sphingolipids. 
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Supplemental material 

 

Fig. S1. Prediction data for gene expression, functional domains, and transmembrane domains. (a) Gene 
expression atlas was generated using eFP browser. (b) Information about hydroxylase domain prediction was 
found in the NCBI database. (c) Three characteristic histidine motifs were identified in P. patens S4H by 
alignment with amino acid sequences from S. cerevisiae SUR2 and A. thaliana SBH1 and SBH2. Histidine 
residues are highlighted in grey. (d) Transmembrane domain prediction was done using TMHMM webtool.  

 

 

 

Fig. S2. Complementation of S. cerevisiae sur2Δ with P. patens S4H restores formation of free 
trihydroxy LCBs. Long-chain base (LCB) profiles of S. cerevisiae wild type (WT), sur2Δ knockout strain and 
sur2Δ knockout strain complemented with P. patens S4H are shown. LCB species are categorised into 
dihydroxy (d18:0, d20:0) or trihydroxy (t18:0, t20:0) LCBs with 18 or 20 LCB carbon chain lengths. Data 
represent the mean ± SD of four biological replicates. 
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Fig. S3. s4h mutant characterisation and ceramide and GlcCer fold changes in s4h lines. (a) Complete 
gel picture of S4H transcript determination by reverse transcriptase PCR. ACTIN8 was used as reference gene 
and water as negative control (neg. ctrl). (b, c) Ceramides and glycosylceramides (GlcCers) were extracted from 
protonema of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens and analysed with UPLC-nanoESI-MS/MS. 
Fold changes of (b) total ceramides and (c) GlcCers were calculated using absolute peak areas. Fold changes 
are depicted in linear scale. The WT, which is not shown, is set to 1. Sphingolipid data represent the mean ± 
SD of measurements from four independent cultivations each containing protonema material from eight 
cultivation plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance 
levels with not significant (ns) at P > 0.05 compared to the WT. Abbreviations are as follows: kb: kilo base. 
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Fig. S4. s4h-1 and s4h-2 have altered GIPC profiles. Glycosyl inositolphosphorylceramides (GIPCs) were 
extracted from microsomes prepared from protonema of ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens 
and analysed with UPLC-nanoESI-MS/MS. GIPC molecular species are shown with their long-chain base (LCB) 
(column colour) and fatty acid (x-axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and trihydroxy 
LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated fatty acid moiety are indicated by 
a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are indicated by an ‘h’. Relative HexNAc-
GlcA-IPC profiles of (a) WT, (b) s4h-1, and (c) s4h-2. (d-f) Relative Hex-Hex-GlcA-IPC profiles of (d) WT, (e) 
s4h-1, and (f) s4h-2. (g-i) Relative Hex-HexNAc-GlcA-IPC profiles of (g) WT, (h) s4h-1, and (i) s4h-2. Only 
molecular species with a peak area ≥ 0.5 % in at least one of the three lines were included in the GIPC graphs. 
Sphingolipid data represent the mean ± SD of measurements from four independent cultivations each containing 
protonema material from eight cultivation plates. Abbreviations are as follows: GlcA: glucuronic acid; Hex: 
hexose; HexNAc: N-acetylhexosamine; IPCs: inositolphosphorylceramides. 
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Fig. S5. Series B GIPCs strongly accumulate in s4h-1 and s4h-2. Glycosyl inositolphosphorylceramides 
(GIPCs) were extracted from microsomes prepared from ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens 
protonema and analysed with UPLC-nanoESI-MS/MS. Fold changes of (a) Hex-GlcA-IPCs, (b) HexNAc-GlcA-
IPCs, (c) Hex-Hex-GlcA-IPCs, and (d) Hex-HexNAc-GlcA-IPCs were calculated using absolute peak areas. Fold 
changes are depicted in linear scale. The WT, which is not shown, is set to 1. Sphingolipid data represent the 
mean ± SD of measurements from four independent cultivations each containing protonema material from eight 
cultivation plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance 
levels with *** significance at P < 0.001, * significance at P < 0.05 and not significant (ns) at P > 0.05 compared 
with the WT. Abbreviations are as follows: GlcA: glucuronic acid; Hex: hexose; HexNAc: N-acetylhexosamine; 

IPCs: inositolphosphorylceramides. 
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Fig. S6. Molecular species with unhydroxylated fatty acid accumulate in s4h-1 and s4h-2. Sphingolipids 
were analysed with UPLC-nanoESI-MS/MS. (a, b) Glycosylceramides (GlcCers) were extracted from ten-day-
old wild type (WT), s4h-1, and s4h-2 P. patens protonema. (c, d) Hex-GlcA-IPCs were extracted from 
microsomes prepared from ten-day-old WT, s4h-1, and s4h-2 P. patens protonema. (a-d) Fold changes of (a) 
GlcCers with unhydroxylated fatty acids (FAs), (b) GlcCers with hydroxylated FAs, (c) Hex-GlcA-IPCs with 
unhydroxylated FAs, and (d) Hex-GlcA-IPCs with hydroxylated FAs were calculated using absolute peak areas. 
Fold changes are depicted in linear scale. The WT, which is not shown, is set to 1. Sphingolipid data represent 
the mean ± SD of measurements from four independent cultivations each containing protonema material from 
eight cultivation plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different 
significance levels with *** significance at P < 0.001, ** significance at P < 0.01, * significance at P < 0.05, and 
not significant (ns) at P > 0.05 compared with the WT. Abbreviations are as follows: GlcA: glucuronic acid; Hex: 
hexose; HexNAc: N-acetylhexosamine IPCs: inositolphosphorylceramides. 
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Fig. S7. Total levels of steryl glycosides are not affected in s4h-1 and s4h-2. Steryl glycosides (SG) were 
extracted from microsomes prepared from ten-day-old wild type (WT), s4h-1, and s4h-2 P. patens protonema 
and analysed with UPLC-nanoESI-MS/MS. SG fold changes were calculated using absolute peak areas. Fold 
changes are depicted in linear scale. The WT, which is not shown, is 1. SG data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test with not significant (ns) at P > 0.05 compared to the 
WT. 

 

 

 

 

 

 

 

Fig. S8. Dry weight protonema biomass of P. patens wild type, s4h-1, and s4h-2. Growth of the wild type 
(WT), s4h-1, and s4h-2 lines was quantified by collecting and lyophilising ten-day-old protonema grown on 
cellophane-covered BCD medium and determining the dry weight. Data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate significance level with 

*** significance at P < 0.001 and ** significance at P < 0.01 compared to the WT. 
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5 Chapter 3 

Sphingolipid Δ4-desaturation is an important regulatory mechanism in 

Physcomitrella patens for GlcCer formation 

 

 

The article is ready for submission. The supplemental material can be found at the end of 

the main part. 
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Abstract 

Glycosylceramides (GlcCers) are abundant components of plant membranes. They were 

associated with processes such as cell differentiation, organogenesis, intracellular 

membrane trafficking, and protein secretion. LCB Δ4-desaturation was described as a 

crucial structural feature responsible for metabolic channeling of sphingolipids into GlcCer 

formation in plants and fungi. However, LCB Δ4-unsaturated GlcCers are restricted in 

Arabidopsis thaliana to pollen and floral tissue, indicating that LCB Δ4-desaturation has a 

less important overall physiological role in A. thaliana. In P. patens, Δ4-desaturation is a 

typical structural modification of the LCB moiety of most abundant GlcCers. The P. patens 

sphingolipid Δ4-desaturase, PpSD4D, and the glycosylceramide synthase, PpGCS were 

identified as single genes via sequence similarity to the respective, characterised 

A. thaliana proteins. P. patens null mutants of the two genes, sd4d-1 and gcs-1, were 

generated by homologous recombination and CRISPR-Cas9. Changes in the 

sphingolipidomes of both mutants were determined via UPLC-nanoESI-MS/MS 

measurements. sd4d-1 and gcs-1 plants were both devoid of almost all GlcCers. gcs-1 

plants additionally accumulated hydroxyceramides relative to the wild type. gcs-1 mutants 

were strongly impaired in growth and development. The mutant plants were unable to 

differentiate into skotonema cells, they had dwarfed gametophores, and showed cell death-

like lesions. Additionally, gcs-1 plants had elevated levels of OPDA and dn-OPDA and 

showed upregulation of the defence-related marker genes. sd4d-1 plants, however, mostly 

resembled wild type morphology and only exhibited minor cell elongation defects. Taken 

together, the results indicate that LCB Δ4-desaturation is a prerequisite for GlcCer formation 

in P. patens. Similar to the situation in vascular plants, P. patens GlcCers are likely involved 

in cell differentiation processes, however, their quantitative relevance in the moss has yet 

to be determined.  
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Introduction 

Sphingolipids are essential structural elements in eukaryotic membranes. They represent 

up to 40 mol % of plant plasma membrane lipids (Tjellström et al., 2010; Cacas et al., 2016; 

Luttgeharm et al., 2016). Together with sterols they form so called micro- and nanodomains 

that are thought to act as sorting platforms for membrane proteins (Borner et al., 2005; 

Grosjean et al., 2015; Grosjean et al., 2018). Sphingolipids can further act as second 

messengers during developmental processes, abscisic acid-mediated guard cell closure, 

and in response to biotic and abiotic stresses (Shi et al., 2007; Alden et al., 2011; Chen et 

al., 2012; Guo et al., 2012; Guo & Wang, 2012). 

Their involvement in a multitude of plant physiological processes likely results from 

the large structural diversity among sphingolipids. All plant sphingolipids have the same 

characteristic non-polar backbone consisting of a long-chain base (LCB). Plant LCBs 

typically have a chain length of 18 carbon atoms and may be N-acylated to a long-chain 

fatty acid (LCFA) or a very-long-chain fatty acid (VLCFA). LCBs that are connected to fatty 

acids are called ceramides. The chain length of the fatty acid moiety of plant sphingolipids 

ranges from 16 to 26 carbon atoms. Structural modifications such as hydroxylation and 

desaturation in the LCB and in the fatty acid moieties substantially increase the diversity of 

the sphingolipid pool. 

The simpler sphingolipid classes, LCBs and ceramides, are low abundant molecules 

which represent around 2 % and 0.5 %, respectively, of all sphingolipids in 

Arabidopsis thaliana leaves (Markham et al., 2006; Markham & Jaworski, 2007). They are 

important messenger molecules in different cellular functions including programmed cell 

death (PCD) (Greenberg et al., 2000; Liang et al., 2003; Shi et al., 2007; Alden et al., 2011). 

Most plant sphingolipids have a polar head group attached to their non-polar 

ceramide backbone. These sphingolipids are referred to as complex sphingolipids and are 

divided into two classes: Glycosylceramides (GlcCers) and glycosyl 

inositolphosphorylceramides (GIPCs). GlcCers contain one sugar residue as head group 

and are the simplest complex sphingolipids. GIPCs contain an inositol-1-phosphate with up 

to seven different sugar moieties (Buré et al., 2011; Cacas et al., 2013). GlcCers and GIPCs 

are the most abundant plant sphingolipids and represent around 34 % and 64 % of all 

sphingolipids in A. thaliana leaves, respectively (Markham et al., 2006). Complex 

sphingolipids have structural functions in plant membranes and the relative abundance and 

composition of each class influences the plant’s ability to respond to abiotic stresses such 

as drought and cold stress (Ng et al., 2001; Coursol et al., 2003; Nagano et al., 2014). 

Complex sphingolipid composition likely affects trafficking of secretory proteins and signal 

transduction during cellular processes through the formation of microdomains (Simons & 

Toomre, 2000; Melser et al., 2010). 
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Whether sphingolipid species are channelled into GlcCer or GIPC formation is 

determined by certain LCB modifications. After their formation, LCBs harbour two hydroxyl 

groups at the C-1 and C-3 position that derive from their precursor molecules serine and 

acyl-CoA. The initial LCBs are thus referred to as dihydroxy LCBs, or in short d18:0 when 

palmitoyl-CoA was the acyl-CoA substrate. A third hydroxyl group may be introduced at the 

C-4 position through the action of an LCB C-4 hydroxylase (Sperling et al., 2001; Chen et 

al., 2008). The resulting LCBs are referred to as trihydroxy LCBs, or in short t18:0. The 

dihydroxy LCB moiety is enriched in GlcCers while trihydroxy LCBs are enriched in GlcCers 

and GIPCs (Markham et al., 2006).  

Another crucial modification is the insertion of double bonds into the LCB moiety. 

Double bonds may be introduced at the Δ4 or at the Δ8 position by the activity of distinct 

LCB desaturases (Napier et al., 2002). LCB C-4 hydroxylation and LCB Δ4-desaturation 

both act on the C-4 position of d18:0 LCBs and are therefore mutually exclusive. Hence, 

insertion of two double bonds can only occur in a d18:0 but not in a t18:0 LCB moiety. 

Resulting LCBs are referred to as d18:1 or d18:2 and t18:1, depending on the hydroxylation 

state of the LCB moiety and on the number of inserted double bonds. Sphingolipids with a 

t18:1Δ8 LCB moiety predominate in all A. thaliana sphingolipid classes and in other 

Brassicaceae species (Imai et al., 2000). LCB Δ8-desaturation is therefore considered an 

important reaction during A. thaliana sphingolipid biosynthesis. Expression of the LCB Δ4-

desaturase (At4g04930), however, is limited to A. thaliana floral and pollen tissue 

(Michaelson et al., 2009). LCB Δ4-desaturation is therefore considered a less important 

LCB modification during A. thaliana sphingolipid biosynthesis. However, the LCB Δ4-

desaturase appears to play a more important role in other plant species outside the 

Brassicaceae family. In tomato (Solanum lycopersicum) and soybean (Glycine max), LCB 

Δ4-desaturation mostly occurs in combination with LCB Δ8-desaturation and the resulting 

Δ4,8-diunsaturated LCB moiety is enriched in GlcCers throughout the plant (Sperling et al., 

2005; Markham et al., 2006). Marine plants may further contain sphingolipid species with 

an LCB moiety that contains more than two double bonds. For instance, in the alga 

Thalassiosira pseudonana a diglycosylceramide was detected that had a ceramide 

backbone composition with a d18:3 LCB moiety and a C24:0 fatty acid moiety (Hunter et 

al., 2018).  

The physiological role of the LCB Δ4-desaturase was investigated in A. thaliana. In 

contrast to the LCB Δ8-desaturase, the LCB Δ4-desaturase is not a cytochrome b5-fusion 

protein and exclusively introduces the double bond in trans configuration. LCB Δ4-

desaturases therefore define a new class of desaturases (Napier et al., 2002). Orthologs of 

mammalian and fungal LCB Δ4-desaturases were identified by sequence homology in 

plants like A. thaliana, rice (Oryza sativa) and tomato (Ternes et al., 2002). Functional 
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characterisation of the A. thaliana LCB Δ4-desaturase was achieved by heterologous 

expression in a Pichia pastoris LCB Δ4-desaturase knockout mutant (Michaelson et al., 

2009). The P. pastoris LCB Δ4-desaturase knockout not only lacks Δ4-unsaturaturated 

sphingolipids but is also devoid of GlcCers. Expression of A. thaliana LCB Δ4-desaturase 

in the P. pastoris LCB Δ4-desaturase knockout restored GlcCer formation (Michaelson et 

al., 2009). LCB Δ4-desaturase expression in A. thaliana is restricted to floral and pollen 

tissues. Although knockout of the LCB Δ4-desaturase caused a significant reduction in 

pollen GlcCer levels compared to the wild type, it had no effect on plant viability 

(Michaelson, 2009). Together, these studies suggest that LCB Δ4-desaturation has a minor 

role in the Brassicaceae family, but that it is a crucial modification for channelling ceramides 

into GlcCers in some plants and fungi. 

The occurrence of LCB Δ4-unsaturated sphingolipids exemplifies how sphingolipid 

composition is tissue and organism dependent (Sperling et al., 2005; Luttgeharm et al., 

2015b). This highlights the importance of choosing appropriate model systems to study 

individual molecular species and classes. While A. thaliana has been an invaluable model 

for studying plant metabolism in general, it has clear limitations for the study of 

sphingolipids, in particular Δ4-desaturation of LCBs. 

To better understand the physiological role of Δ4-desaturation of LCB moieties, the 

research focus should therefore be directed towards plants outside the Brassicaceae family. 

Islam et al. (2012), surveyed 21 plant species from different phylogenetic groups to analyse 

the position of the double bond in the d18:1 LCB moiety to determine the prevalence of 

d18:1Δ4 and d18:1Δ8 in different plants. They found that d18:1Δ4 is evolutionary more ancient 

than d18:1Δ8. Among the 21 surveyed plants in that study was the bryophyte Physcomitrella 

patens. The d18:1 LCB moiety of P. patens has the double bond at the Δ4 position and 

therefore qualifies as suitable plant system to study the role of Δ4-unsaturated sphingolipids 

in land plants.  

A recent study described the lipidome of P. patens, including the four sphingolipid 

classes: LCBs, ceramides, GlcCers, and GIPCs (Resemann, 2018). In the P. patens 

sphingolipidome ceramides with specific LCB modifications show distinct channelling into 

either the GlcCer or the GIPC pool. This observation is consistent with findings from fungi 

and vascular land plants, however, the presence of exclusive LCB modifications in distinct 

complex sphingolipid classes is stricter in P. patens. GlcCers exclusively carry a d18:2 LCB 

moiety in their backbone, whereas GIPCs only carry a t18:0 LCB moiety. This simplifies the 

study of physiological functions of distinct sphingolipid species. The data further suggests 

that LCB Δ4-desaturation is a requirement for GlcCer formation in P. patens. The 

physiological role of Δ4-unsaturated sphingolipids is therefore expected to be tightly bound 

to the role of GlcCers in plants.  
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Although GlcCers are the second most abundant sphingolipids found in A. thaliana, 

their physiological function is not fully understood. GlcCers are generated by the transfer of 

a glucose residue from uridine diphosphate (UDP)-glucose to the ceramide backbone. This 

reaction is catalysed by a glucosylceramide synthase (GCS). A. thaliana only has one GCS 

gene (At2g19880). gcs null mutants lacked all GlcCers and had a higher GIPC content than 

wild type plants. The mutants were seedling lethal and were impaired in cell-type 

differentiation and organogenesis (Msanne et al., 2015).  

In this study, the physiological roles of sphingolipids with a Δ4-unsaturated LCB 

moiety and of GlcCers were investigated in P. patens. The LCB Δ4-desaturase and the 

glycosylceramide synthase, designated here as PpSD4D and PpGCS, respectively, were 

both identified in P. patens by sequence similarity to their A. thaliana orthologs. Loss-of-

function mutants were generated by homologous recombination and by CRISPR-Cas9. In 

both knockout mutants GlcCer formation was inhibited. The sd4d-1 mutant additionally 

lacked Δ4-unsaturated LCB moieties in other sphingolipid classes. Although GlcCers were 

nearly absent in both mutants, sd4d-1 and gcs-1 plants were differently affected in their 

growth and development. sd4d-1 plants had almost no morphological impairments whereas 

gcs-1 plants had substantial growth and development defects. This indicates a less 

important role for Δ4-unsaturated LCB moieties in P. patens GlcCers than expected. 

Materials and methods 

Plant material and growth conditions 

The P. patens ‘Gransden’ strain (Hedw.) Bruch & Schimp was used as wild type. Plants 

were grown at 16 h light/ 8 h dark cycle at 25 °C and with a light intensity of 50–70 µmol m 2 

s-1. Protonema was cultivated on BCD agar medium plates (90 mm diameter) containing 

1 mM CaCl2 and 5 mM ammoniumtartrate (BCDAT) (Ashton & Cove, 1977). For protonema 

cultivation, the medium plates were covered with sterile cellophane discs (folia, 

Wendelstein, Germany). For protonema maintenance and propagation one- to two-week-

old tissue was scraped off the cellophane and disrupted in sterile water for 20 s using a 

tissue lyser (Ultra Turrax, Ika, Staufen, Germany). The cell suspension was spread onto 

fresh BCDAT plates. Plates were sealed with micropore tape before incubation. 

Protonema material for lipid analysis was cultivated on cellophane-covered BCD 

plates. To be able to compare measurements of different mutant lines, the dry weight of the 

disrupted material was determined after tissue lyser treatment. All plate cultures were 

subsequently started with a cell suspension volume equal to 5 mg dry weight. To obtain 

enough amounts for lipid measurements, plant material grown on eight plates was pooled. 

The protonema was cultivated for ten days before harvesting, and the material was 

immediately frozen in liquid nitrogen after the harvest. Prior to lipid extraction, plant material 
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was lyophilised. Plant growth capacities were determined by determination of the fresh 

weight after harvesting and before freezing material in liquid nitrogen. Protonema was 

weighed again after lyophilisation for determination of the dry weight. This experiment was 

part of a larger experiment and the lipid data for wild type protonema were used recently in 

a different study as well (Gömann et al., 2021). 

For imaging of gametophore development, 1 mm spot inocula of seven- to ten-day-

old protonemal tissue were placed on plates containing BCD medium with 1 mM CaCl2. 

Fully grown gametophores were imaged after six weeks. For visualisation of protonema 

development, colonies were imaged after one to two weeks. Plates were sealed with 

micropore tape during cultivation.  

For sporophyte induction, gametophores were cultivated as described above. After 

fully grown gametophores were observed five to six weeks after inoculation, plates were 

transferred to short day cultivation conditions with a light cycle of 8 h light/ 16 h hour dark 

at 17 °C and lower light intensity. Gametophores were grown under these conditions until 

gametangia development was observed. Plant colonies were subsequently flooded with 

sterile tap water and kept under the described conditions for another month before imaging.  

Dark growth experiments for skotonema induction were performed as described in 

(Saavedra et al., 2015). For this, protonema spot inocula were placed on square BCDAT 

plates supplemented with 2 % sucrose. Colonies were grown for one week under 

continuous light and subsequently moved to the dark and rotated into vertical orientation. 

Colonies were grown for another four weeks before imaging.  

Images were captured using a binocular (Olympus SZX12 binocular, Olympus 

Corporation, Tokio, Japan) or a microscope (Olympus Corporation, Tokio, Japan) that were 

connected to a camera (R6 Retiga camera, QImaging, Surrey, Canada). Images were 

analysed with the Ocular scientific image acquisition software (version 1.0, Digital Optics 

Ltd, Auckland, New Zealand). Images were processed using ImageJ 1.52b software 

(Schneider et al., 2012). 

Generation of targeted knockout plasmids 

Targeted knockout plasmids were assembled by cloning 750 bp fragments from the 5’ and 

the 3’ genomic DNA untranslated regions (UTR) of the respective SD4D and GCS genes 

into a pBluescript vector backbone. The 5’ and 3’ fragments flanked a kanamycin cassette 

for future selection of knockout mutants. The following primer pairs were used for SD4D 

cloning: 5' SacI SD4D-fw (5'-gagctcATGGACTTCTACTGGGCTGAGG-3')/ 5' BamHI 

SD4D-rev (5'-ggatccTCCTGACTCTAAGAAAGAAAAGTATAG-3') and 3' HindIII SD4D-fw 

(5'-gtcgacCTTCTATGCGTTCAGGCCTCTC-3')/ 3' ApaI SD4D-rev (5'-

gggcccTCAGTTGGTTTTGCCATGCTTTGTC-3'). The following primer pairs were used for 
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GCS cloning: 5' SacI GCS-fw (5'-gagctcATGGCGTTTGTGGAGGCCATG -3')/ 5' XbaI GCS-

rev (5'-tctagaCCAATACCTGACTACGCCAATTGC-3') and 3' HindIII GCS-fw (5'-

aagcttGTGATTTTTGTGAACTCAGTGAAATTG-3')/ 3' ApaI GCS-rev (5'-

gggcccTCATTGTACCTGACAAATGTTTCCATT-3'). Correct cloning of the fragments into 

the destination vector was confirmed by plasmid sequencing. To linearise the SD4D and 

GCS fragments used for P. patens homologous recombination, the restriction enzymes 

SacI and ApaI were used for both gene constructs.  

P. patens transformation and molecular characterisation of knockout mutants 

Knockout plants were generated via polyethylene glycol (PEG)-mediated transformation of 

P. patens protoplasts according to (Schaefer et al., 1991). 

The knockout constructs containing the 5’ and 3’ SD4D and GCS flanking regions 

and the kanamycin selection cassette were used for homologous recombination in 

P. patens.  

To confirm the correct insertion of the selection cassette into the P. patens genome, 

genomic DNA (gDNA) was extracted from a small sample of gametophytic tissue. gDNA 

was isolated using cetyl trimethylammonium bromide (CTAB) extraction. In a first step, 

successful integration of the kanamycin selection cassette was confirmed by PCR using the 

following primer combination: (kan fw: 5’-ATGGGGATTGAACAAGATGGATTGCAC-3’/ kan 

rev: 5’-TCAGAAGAACTCGTCAAGAAGGC-3’). In a second PCR, insertion of the selection 

cassette into the SD4D and GCS sites was confirmed. Following primer combinations were 

used to confirm insertion into the SD4D locus: 5’ UTR region (fw: 5’-

GTGGTGTGGTTGCCGTCAAGAC-3’/ rev: 5’-TAGGGTTCCTATAGGGTTTCGCTC-3’), 3’ 

UTR region (fw: 5’-GATAGCTGGGCAATGGAATCCG-3’/ rev: 5’-

GCATATTGTGGGTGCTGATGATTAGG-3’). Following primer combinations were used to 

confirm insertion into the GCS locus: 5’ UTR region (fw: 5’-

GCAACAATGTGCCCGAGCAGATC-3’/ rev: 5’-TAGGGTTCCTATAGGGTTTCGCTC-3’), 

3’ UTR region (fw: 5’-GATAGCTGGGCAATGGAATCCG-3’/ rev: 5’-

GATGCAGATGATAAGGAGAATCTCAGC-3’). 

Reverse transcription PCR verification of mutants 

RNA was obtained from P. patens wild type and mutant gametophytic tissue using TRIzolTM 

Reagent according to manufacturer’s instructions (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Total RNA was treated with DNAseI (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) prior to cDNA synthesis. 1 µg of the DNAseI-treated RNA 

was used for cDNA synthesis. cDNA was synthesised using the RevertAid H Minus First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The 

following primer pairs were used for amplification of SD4D (fw: 5'-
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CCGGTTGCTTGGCATATTCG-3'/ rev: 5'-CAATGGGGTGCATACCACCT-3'), GCS (fw: 5’-

CGCGTTATCAGCTCACCAGA-3’/ rev: 5’-TCCTTCCCAGGTGACAATGC-3’) and ACTIN8 

transcript (fw: 5'-GCTGGTTTCGCTGGAGACGATGC-3'/ rev: 5'-

ATCGTGATCACCTGCCCGTCC-3'). 

Gene editing by CRISPR-Cas9  

CRISPR-Cas9 was performed using the plasmid pUC57-PpU6pro-2XBbsI-etracRNA 

obtained from and designed by Tegan M. Haslam. Gene expression was driven by the U6 

promoter used in (Collonnier et al., 2017). The inserted etracRNA was described in (Castel 

et al., 2019). A dual BbsI site was further introduced into the plasmid for cloning. Prediction 

of protospacers was done using the CRISPOR software (Haeussler et al., 2016) 

(http://tefor.net/crispor/crispor.cgi). The single-guide RNA (sgRNA) gcs-1 was designed to 

target the first exon of PpGCS. Oligos for gcs-1 sgRNA Oligo 1 (5’-

AACCGGGATGGCAGAACACTAAGC-3’)/ gcs-1 Oligo 2 (5’- 

AAACGCTTAGTGTTCTGCCATCCC-3’) were aligned and cloned into the pUC57-

PpU6pro-2XBbsI-etracRNA vector. Successful cloning was confirmed by sequencing. The 

plasmid carrying the sgRNA was co-transformed with pAct-Cas9 (Collonnier et al., 2017) 

and pBNRF (Schaefer et al., 2010) that carries resistance to G418 (Geneticin) into 

P. patens protoplasts. PEG-mediated protoplast transformation was performed as 

described before. Putative knockout mutants were confirmed by sequencing of the PCR 

product using the following primer combination that surrounded the target sequence: gcs-

1-fw (5’-GGAGATGCGGTGAGAAGAAAC-3’)/ gcs-1-rev (5’-

TAAACCCCCACGATCACTGC-3’). 

Heterologous expression in S. cerevisiae sur2∆ 

The P. patens SD4D and GCS genes were artificially synthesised (Genscript, Piscataway 

Township, New Jersey, USA). During synthesis, genes were codon usage optimised for 

S. cerevisiae expression. PpSD4D and PpSD8D were cloned into the pESC-His yeast 

expression vector (Thermo Fisher Scientific, Waltham, USA). PpGCS was cloned into the 

pYES2-CT yeast expression vector (Thermo Fisher Scientific, Waltham, USA). P. patens 

PpSD8D was amplified from P. patens cDNA and the first 60 bp of the coding sequence 

were codon usage optimised for S. cerevisiae gene expression using the following primer 

combination: PpSD8D-fw (5’-

ATGGGTCCATTGGCTGCTGAAGACGAATTGGGTTCTTTCCCACAAGAATTGAAGGTT

GAC-3’)/ PpSD8D-rev (5’-TCAACCCTTGGAGTTCACAG-3’) The following primer 

combinations were used to clone the genes into the multiple cloning sites (MCS) of the 

pESC-His vector. PpSD4D was cloned into MCS2 with BamHI-SD4D-fw (5’-

GGAGGATCCAAACGATGTCAGATGTTGGAG-3’)/ SalI-SD4D-rev (5’-
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GGAGTCGACGTTAGTTTTTCCGTGTTT-3’). PpSD8D was cloned into MCS1 with NotI-

SD8D-fw (5’-GGAGCGGCCGCAAACGATGGGTCCATTGGCTGCTG-3’)/ SpeI-SD8D-rev 

(5’-GGAACTAGTGCACCCTTGGAGTTCACAGC-3’). PpGCS was cloned into the pYES2-

CT vector with BamHI-GCS-fw (5’-GGAGGATCCAAACGATGGCATTCGTTGAAGC-3’)/ 

XhoI-GCS-rev (5’-GGACTCGAGAGAGTTTTTCAATTTACAAGA-3’). Gene constructs 

were transformed into the S. cerevisiae LCB C-4 hydroxylase sur2∆ mutant (Desfarges et 

al., 1993; Haak et al., 1997) using LiAc/SS carrier DNA/PEG method according to (Gietz & 

Schiestl, 2007). The BY4741 S. cerevisiae strain was used as corresponding wild type 

strain for the sur2∆ knockout. Yeast cells were grown in pre-cultures for 24 h in the 

respective single dropout (SD) medium (for pYES2-CT transformants without uracil, for 

pESC-His transformants without histidine) and with 2 % glucose. Main cultures were 

inoculated with the cells to a final OD600 of 0.02 in SD dropout medium without uracil and 

with 2 % galactose and 2 % raffinose. Main cultures were grown for 24 h. All yeast 

cultivations were performed at 30 °C in non-aerated shaking flasks. Harvesting was done 

by spinning cells down at 3000 g for 10 min. Cells were washed with water and stored at -

80 °C. Yeast cells were lyophilised before lipids were extracted. 

Sphingolipid extraction and analysis 

Sphingolipid extraction was achieved by application of the lipid extraction protocol described 

in (Grillitsch et al., 2014) with minor modifications. Lipids were extracted from 20 mg of 

lyophilised and homogenised P. patens protonema or S. cerevisiae material. The tissue 

was extracted at 60 °C using an extraction solvent composed of propan-2-ol/hexane/water 

(60:26:14, v/v/v). Lipids were re-suspended in 800 µL of a final solvent mixture composed 

of tetrahydrofuran/methanol/water (4:4:1, v/v/v). Samples were chemically modified or 

directly analysed with ultra-performance liquid chromatography (UPLC) coupled with 

nanoelectrospray ionisation (nanoESI) and triple quadrupole tandem mass spectrometry 

(MS/MS) (AB Sciex, Framingham, Massachsetts, USA) for LCB measurement. 

Methylamine treatment 

Lipid extracts were treated with methylamine solution for the analysis of ceramides, GlcCers 

and GIPCs. 50 µL of the lipid extract were evaporated. Dried lipids were re-suspended in 

1.4 mL 33 % (w/v) methylamine dissolved in ethanol and 600 µL of water (Markham & 

Jaworski, 2007). The methylamine/lipid mixture was incubated for 1 h at 50 °C. The solvent 

was subsequently evaporated and dried lipids were dissolved in 50 µL of the final solvent 

mixture composed of tetrahydrofuran/methanol/water (4:4:1, v/v/v). The samples were used 

for UPLC-nanoESI-MS/MS analysis. 
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Derivatisation with acetic anhydride 

Phosphorylated LCBs (LCB-Ps) were detected after acetic anhydride derivatisation using a 

modified protocol from (Berdyshev et al., 2005). After 50 µL of the lipid extract were 

evaporated, the dried lipids were dissolved in 100 µL pyridine and 50 µL acetic anhydride. 

Derivatisation was performed at 50 °C for 30 min. The solvent mixture was subsequently 

evaporated, and samples were dissolved in 50 µL tetrahydrofuran/methanol/water 

(4:4:1, v/v/v). The samples were used for UPLC-nanoESI-MS/MS analysis. 

Lipid analysis 

Molecular lipid species measurement was performed using the UPLC-nanoESI-MS/MS with 

multiple reaction monitoring (MRM) approach described in (Resemann, 2018). LCB-Ps 

were measured in negative ionisation mode with [M-H]− as precursor ions. Series A and 

series B GIPC classes were analysed in positive ionisation mode with [M+NH4]+ as 

precursor ions and ceramide fragments as fragment ions. Determination of head group-

specific ions was done as described before (Buré et al., 2011). LC-MS data were processed 

using Analyst 1.6.2 and MultiQuant 3.0.2 software (both AB Sciex, Framingham, 

Massachusetts, USA). 

Gene expression analysis by quantitative real-time PCR (qRT PCR) 

RNA was extracted from two-week-old protonema tissue grown on cellophane-covered 

BCDAT medium using the TRIzol™ Reagent (Thermo Fisher Scientific, Waltham, USA) and 

cDNA was synthesised as described before. qRT PCR analyses were done using the 

Takyon™ No Rox SYBR® MasterMix dTTP Blue (Eurogentec Deutschland GmbH, Köln, 

Germany) in the iQTM5 RT PCR detection system according to the manufacturer’s 

instructions. Adenine phosphoribosyltransferase (Ade PRT) (Le Bail et al., 2013) was used 

as reference gene. Normalisation was done using the 2-ΔΔCT method (Livak & Schmittgen, 

2001). The following primer combination was used for Ade PRT amplification: Ade PRT_fw: 

5’-AGTATAGTCTAGAGTATGGTACCG-3’ and Ade PRT_rev: 5’-

TAGCAATTTGATGGCAGCTC-3’ (Le Bail et al., 2013). Primer combinations for 

amplification of the defence-related marker genes phenylalanine lyase 4 (PAL4), chalcone 

synthase (CHS), and the transcription factor ethylene‐responsive element‐binding factor 5 

(ERF5) were: PAL4_fw: 5’-TGGCCTACTCGGTAATGGAG-3’/ PAL4_rev: 5’-

GTCAACCATCCGCTTGATTT-3’, CHS_fw: 5’-GGCATGGAACGAGATGTTCT-3’/ 

CHS_rev: 5’-CCTTGCATCTTGTCCTTGGT-3’, ERF5_fw: 5’-

GCTCCGCTGTATCGAAAGTC-3’/ ERF5_rev: 5’-TCGAAGTTGCTGACAAGGTG 3’ all 

from (Bressendorff, 2012).  
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Phytohormone extraction and analysis 

Phytohormone extraction was done according to (Matyash et al., 2008) with minor 

modifications. Phytohormones were extracted from 10 mg of lyophilised and homogenised 

P. patens protonema. The protonema was grown for ten days on cellophane-covered BCD 

medium. The material was pooled from eight 90 mm petri dishes. Phytohormone 

measurement and analysis was done according to (Herrfurth & Feussner, 2020).  

Webtools 

BLAST search 

P. patens sphingolipid Δ4-desaturase, sphingolipid Δ8-desaturase and glycosylceramide 

synthase were identified via sequence homology to the corresponding A. thaliana proteins. 

BLAST search using the NCBI proteome database for P. patens from the National Center 

for Biotechnology Information (NCBI) (U.S. National Library of Medicine, Maryland, USA) 

(http://www.ncbi.nlm.nih.gov/BLAST/) for P. patens (Altschul et al., 1990). 

Transmembrane domain prediction 

Transmembrane domain prediction for PpSD4D and PpGCS was done using the TMHMM 

software (Sonnhammer et al., 1998; Krogh et al., 2001). 

Gene expression  

Information about PpSD4D and PpGCS gene expression was obtained using P. patens 

electronic fluorescent pictograph (eFP) browser (http://www.bar.utoronto.ca) (Winter et al., 

2007; Ortiz-Ramírez et al., 2016). 

Results 

Sequence similarity indicates PpSD4D and PpGCS are single genes with similar 

expression patterns in P. patens 

Candidate proteins homologous to the characterised sphingolipid Δ4-desaturase 

(At4g04930) (Michaelson et al., 2009) and the glucosylceramide synthase (GCS) 

(At2g19880) (Msanne et al., 2015) from A. thaliana were identified in the P. patens 

proteome via BLAST search in the NCBI database. PpSD4D (XP_024361943.1) and 

PpGCS (XP_024399720.1) had 63 % and 57 % identity, respectively, to their corresponding 

A. thaliana orthologs. Based on sequence similarity of the P. patens enzymes, both proteins 

are considered to be encoded by single genes. The cDNA of PpSD4D encoded an enzyme 

of 382 amino acids. Like its A. thaliana counterpart, PpSD4D did not have an N-terminal 

cytochrome b5 fusion domain (Napier et al., 1999; Sperling et al., 2003). PpSD4D included 

three histidine boxes that are characteristic for membrane-bound desaturases and 
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hydroxylases and that coordinate the di-iron cluster in the active site (Shanklin & Cahoon, 

1998; Bai et al., 2015). The cDNA of PpGCS encodes an enzyme of 518 amino acids with 

a conserved glycosyl transferase domain. 

 Using the webtool TMHMM, transmembrane domains were predicted for both 

proteins (Fig. S1A, B). According to this prediction, PpSD4D contained four and PpGCS 

contained two transmembrane domains. Enzymes involved in sphingolipid biosynthesis, 

including the GCS, are located in the endoplasmic reticulum (ER) in A. thaliana (Melser et 

al., 2010). The presence of transmembrane domains in the P. patens proteins is therefore 

consistent with the assumption that they are also localised to the ER. The expression 

pattern reported in the eFP browser (Winter et al., 2007; Ortiz-Ramírez et al., 2016) 

revealed that PpSD4D and PpGCS had similar expression in P. patens tissues (Fig S1C, 

D). Highest expression was found in the protonema, the spores, and the sporophyte 

generation. PpGCS had a generally higher expression than PpSD4D. PpSD4D appeared 

to be especially upregulated in caulonema cells whereas PpGCS is highly expressed 

throughout the whole protonema. These similar expression patterns are in agreement with 

the notion that both genes could contribute to the same processes. This idea is supported 

by the P. patens sphingolipid profile identified by (Resemann, 2018), in which LCB Δ4-

desaturation seems to be a prerequisite for GlcCer formation.  

S. cerevisiae is an unsuitable host for functional characterisation of PpSD4D and 

PpGCS 

To confirm the predicted enzymatic activities of both proteins, the open reading frames were 

codon usage optimised and heterologously expressed in S. cerevisiae. S. cerevisiae does 

endogenously not contain an LCB Δ4-desaturase. However, LCB C-4 hydroxylation, which 

is an abundant modification in yeast sphingolipids, and LCB Δ4-desaturation both work on 

the C-4 LCB position and therefore exclude each other. Functional characterisation of the 

LCB Δ4-desaturase therefore had to be performed with the LCB C-4 hydroxylase knockout 

mutant sur2Δ (Haak et al., 1997). The enzymatic functions of several mammal and fungal 

LCB Δ4-desaturases were already successfully verified using this yeast expression system 

(Ternes et al., 2002). However, S. cerevisiae turned out to be an unsuitable host for the 

functional characterisation of vascular plant LCB Δ4-desaturases, including the A. thaliana 

and the tomato enzymes (Sperling & Heinz, 2003). Napier et al. (2002) speculated that plant 

LCB Δ4-desaturases might require some plant-specific substrates or co-factors that are yet 

unknown. Dunn et al. (2004) further suggested that the substrate for LCB Δ4-desaturases 

in vascular plants might be the d18:1Δ8-unsaturated LCB moiety. This was speculated 

because the Δ4,8-diunsaturated LCB moiety is common in plants while the d18:1Δ4 LCB 

moiety is only found in trace amounts. S. cerevisiae does endogenously not contain 



   Chapter 3 

107 
 

GlcCers and Δ8-unsaturated LCBs. To overcome this issue, Ternes et al. (2006) 

engineered a S. cerevisiae strain for the functional characterisation of the P. pastoris C9-

methyltransferase. C9-methylation is an abundant LCB modification in GlcCers of fungi 

sphingolipids (Ternes et al., 2006). In vitro characterisation of the enzyme activity required 

the presence of GlcCers with a Δ4,8-diunsaturated LCB moiety. The authors successfully 

expressed the P. pastoris LCB Δ4- and Δ8-desaturases, the human glucosylceramide 

synthase, and the P. pastoris C9-methyltransferase in S. cerevisiae sur2Δ cells. They 

thereby confirmed the formation of GlcCers in S. cerevisiae, showing that the engineered 

strain is an appropriate host for the confirmation of GlcCer production. Taking these results 

into consideration, PpSD4D was expressed alongside the P. patens LCB Δ8-desaturase in 

sur2Δ cells. Having both double bonds integrated into the LCB backbone would also 

putatively enable PpGCS activity in this system. The composition of the P. patens GlcCer 

pool (Resemann, 2018) suggested that the preferred substrate of PpGCS is a ceramide 

with a d18:2 LCB moiety. In this study, a similar attempt to the strategy from Ternes et al. 

(2006) was therefore applied to confirm PpSD4D and PpGCS enzymatic activities (Ternes 

et al., 2006). PpGCS and the two sphingolipid desaturases, PpSD4D and PpSD8D were 

simultaneously expressed in S. cerevisiae sur2Δ. Unfortunately, neither PpGCS activity nor 

PpSD4D or PpSD8D activities were detected. Further work should determine whether the 

transcripts and proteins were present in the transgenic lines. However, since heterologous 

expression of other plant LCB Δ4-desaturases also failed in S. cerevisiae, it is likely that the 

yeast is an inappropriate host system to determine the enzymatic activity of plant LCB 

desaturases. In conclusion, to determine the enzyme activities of PpSD4D and PpGCS in 

vitro, another host system might be required. A suitable yeast host that was already used 

to confirm the activity of the LCB Δ4-desaturase from A. thaliana is P. pastoris (Michaelson 

et al., 2009).  

GlcCers are nearly absent in sd4d and gcs plants  

To determine the enzymatic function of PpSD4D and PpGCS in vivo, knockout mutants for 

both single genes were generated by homologous recombination. Seven independent sd4d 

knockouts were obtained. Absence of the transcript was confirmed by semiquantitative 

reverse transcriptase PCR (Fig. 1A, Fig. S2A). In contrast, only a single true gcs mutant 

was obtained by homologous recombination (Fig. 1B, Fig. S2B), and so CRISPR-Cas9 

genome editing was additionally applied to target PpGCS. Three more mutants were 

generated using CRISPR-Cas9 targeting the first exon (Fig. S2C) that showed the same 

growth phenotype as the gcs-1 mutant from homologous recombination. The knockout was 

confirmed by sequencing of the targeted gene region (Fig. S2D). All three mutants had 

frame-shift deletions that intervened with proper translation of the protein. 
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 Sphingolipid measurements were conducted on P. patens wild type, sd4d, and gcs 

mutants to determine their sphingolipid composition. For better visualisation of the ceramide 

backbone composition, molecular species of GlcCers (Fig. 1C), ceramides (Fig. 2C-H), and 

GIPCs (Fig. 3) were divided into species with unhydroxylated fatty acids, indicated by a ‘c’ 

in front of the chain length number and species with α-hydroxylated fatty acids, indicated by 

an ‘h’ in front of the chain length number. Lipids were extracted from ten-day-old protonema 

grown on cellophane-covered BCD medium and applied to UPLC-nanoESI-MS/MS. Growth 

on cellophane-covered solid medium enabled easy harvesting of the filamentous tissue. 

Previous sphingolipid analyses on P. patens showed that around 94 % of GlcCers contain 

the d18:2 LCB moiety (Resemann, 2018).  

 The P. patens wild type GlcCer profile was confirmed in this study (Fig. 1C). The 

profile suggested that GlcCer formation might be disturbed in sd4d-1 and gcs-1 mutants. 

The lipid data served as second line of evidence for the functional disruption of PpSD4D 

and PpGCS genes in the mutant lines. Fold changes compared to the wild type were 

determined to show the abolishment of GlcCers. All tested sd4d and gcs lines had 

substantially reduced GlcCer levels compared to the wild type (Fig. 1D, Fig S3A, B). After 

confirmation of several independent knockout lines for each gene, all following mutant 

characterisations were performed only on the sd4d-1 and gcs-1 alleles. In sd4d-1 and gcs-

1 GlcCer levels were reduced by 99.8 % and 99.9 %, respectively (Fig. 1D). More than 92 % 

of the wild type GlcCer pool consisted of a single sphingolipid species (Resemann, 2018). 

This had a Δ4,8-diunsaturated LCB moiety with two hydroxyl groups, d18:2, conjugated to 

an α-hydroxylated 20-carbon fatty acid with no double bonds, h20:0 (together d18:2/h20:0). 

Minor species like d18:1/h20:0, d18:2/h22:0, and d18:2/c20:0 accounted for 4 %, 2 %, and 

1 % of P. patens GlcCers, respectively. All other detected species represented < 1 % of all 

GlcCers. Interestingly, the sd4d-1 mutant still had residual amounts of GlcCer d18:2/h20:0 

that might derive from a putative desaturase activity of the LCB C-4 hydroxylase (Ternes et 

al., 2002). sd4d-1 plants also contained GlcCer species with a d18:0 LCB moiety that were 

not affected by the mutation. However, all GlcCer species found in sd4d-1 were in trace 

amounts and therefore did not produce a substantial GlcCer pool. The residual GlcCer 

amounts found in the gcs-1 mutant were attributed to background signals. The GlcCer 

results verified the generation of null mutants for both genes and confirmed that PpSD4D 

and PpGCS are the only enzymes in P. patens that catalyse the respective reactions in the 

tested conditions and tissues. 
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Fig. 1. P. patens sd4d-1 and gcs-1 mutant characterisation and GlcCer content of P. patens wild type, 
sd4d-1, and gcs-1. (A) PpSD4D and (B) PpGCS transcript determination by reverse transcriptase PCR. 
ACTIN8 (ACT8) was used as reference gene and water as negative control (neg. ctrl). (C, D) Glycosylceramides 
(GlcCers) were extracted from protonema of ten-day-old wild type (WT), sd4d-1, and gcs-1 P. patens and 
analysed with UPLC-nanoESI-MS/MS. (C) Relative GlcCer profile of P. patens WT. GlcCers are shown with 
their LCB (column colour) and fatty acid (x-axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and 
trihydroxy LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated fatty acid moiety are 
indicated by a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are indicated by an ‘h’. Only 
molecular species with a peak area ≥ 0.1 % were included in the GlcCer graphs. Please note that this 
experiment was part of a larger experiment and the data for wild type protonema were shown recently in a 
different study as well (Gömann et al. 2021). (D) GlcCer fold changes to the WT were calculated using absolute 
peak areas. Fold changes are depicted in linear scale. The WT is set to 1. Sphingolipid data represent the mean 
± SD of measurements from four independent cultivations each containing protonema material from eight 
cultivation plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance 
levels with *** significance at P < 0.001 compared to the WT. 

Loss of GlcCers and of Δ4-unsaturated LCB moieties affects relative profiles of other 

sphingolipid classes 

Sphingolipidomics revealed changes in profiles of other sphingolipid classes upon loss of 

either PpSD4D or PpGCS activity, including LCBs and ceramides (Fig. 2).  

 The most abundant LCB and LCB-P species in the wild type was t18:0, representing 

94 % and 69 %, respectively (Fig. 2A, B). Lesser amounts of d18:0 was also found in LCB 

(6 %) and LCB-P (31 %). Although the overall LCB and LCB-P profiles were maintained in 

sd4d-1 and gcs-1 mutants, minor changes were observed in the relative abundances of 

individual species. In the sd4d-1 mutant t18:0 LCB was reduced to 91 %, and the LCB-P to 

60 %. sd4d-1 plants further had a slight increase of d18:0 LCB to 8 % and the LCB-P to 

40 %. The gcs-1 mutant had reduced t18:0 LCB, at 82 %, and LCB-P, at 37 %. gcs-1 plants 
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also had more d18:0 LCB, at 14 %, and LCB-P, at 51 %, compared to wild type. Additionally, 

d18:2, which was not found at all in the wild type, emerged as new LCB at 4 % of the total 

LCB content, and LCB-P at 12 % of the total LCB-P content in gcs-1.  

 In wild type, ceramides harbouring the t18:0 LCB moiety predominated, representing 

more than 90 % of all ceramides (Fig. 2C, F). Only minor amounts of ceramides with d18:0, 

d18:1, and d18:2 LCB moieties were detected. The most abundant fatty acid moiety at 52 % 

of the total, was h24:0, followed by fatty acid moieties with carbon chain lengths ranging 

from C20 to C26. sd4d-1 plants had similar ceramide profiles as the wild type (Fig. 2D, G). 

However, no ceramide species with d18:1 and d18:2 LCB moieties were found. The gcs-1 

mutant also had comparable ceramide profiles to the wild type control (Fig. 2E, H). However, 

gcs-1 specifically accumulated one ceramide species: d18:2/h20:0. This ceramide 

backbone is characteristic for the most abundant GlcCer species in P. patens wild type 

plants (Fig. 1C). Taken together, the data showed that sd4d-1 lacked ceramides with d18:1 

and d18:2 LCB moieties. gcs-1 plants accumulated d18:2 LCBs and LCB-Ps, and the 

ceramide that is the characteristic backbone of wild type GlcCers, d18:2/h20:0, indicating 

that this might be the main substrate of PpGCS. 
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Fig. 2. Relative profiles of LCBs, LCB-Ps, and ceramides in P. patens wild type, sd4d-1, and gcs-1. Long-
chain bases (LCBs), phosphorylated LCBs (LCB-Ps) and ceramides were extracted from protonema of ten-day-
old wild type (WT), sd4d-1, and gcs-1 P. patens and analysed with UPLC-nanoESI-MS/MS. Relative profiles of 
(A) LCBs, (B) LCB-Ps, and (C-H) ceramides in WT, sd4d-1, and gcs-1 lines. Dihydroxy LCB moieties are 
indicated by a ‘d’ and trihydroxy LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated 
fatty acid moiety are indicated by a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are 
indicated by an ‘h’. Please note that this experiment was part of a larger experiment and the data for wild type 
protonema were shown recently in a different study as well (Gömann et al. 2021). Relative profiles of (C-E) 
ceramide and (F-H) hydroxyceramide molecular species are shown with their LCB (column colour) and fatty 
acid (x-axis) moieties. Arrows highlight changes to the WT. Sphingolipid data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 

plates. 

GlcCers and GIPCs are both complex sphingolipids that contain polar head groups at the 

C-1 position of the LCB moiety. Depending on the hydroxylation and desaturation state of 

the LCB moiety of ceramides, either GlcCers or GIPCs are synthesised. Therefore, GlcCer 

and GIPC formation represent alternative sphingolipid metabolic pathways. The blockage 

of GlcCer synthesis in sd4d-1 and gcs-1 mutants might result in changes of GIPC synthesis 
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and composition. This was confirmed in the study from Msanne et al. (2015) in which they 

demonstrated that A. thaliana gcs-1 null mutants had a higher GIPC content compared to 

the wild type. To check this for P. patens, GIPCs with different head groups were analysed. 

Series A GIPCs include species with one hexose (Hex) moiety that may be converted to N-

acetylhexosamine (HexNAc), that is connected to glucuronic acid (GlcA) linked IPC, 

Hex(NAc)-GlcA-IPCs. Series B GIPCs include species with two Hex moieties of which one 

may be be converted to HexNAc, Hex-Hex (NAc)-GlcA-IPCs. Changes in GIPC profiles 

were most prominent in the Hex-HexNAc-GlcA-IPC profile (Fig. 3, Fig. S4). The wild type 

Hex-HexNAc-GlcA-IPC profile consisted mainly of species with a t18:0 LCB moiety in their 

backbone (Fig. 3A). d18:0, d18:1, and d18:2 LCB moieties were only present in low amounts 

in the wild type. Most abundant fatty acid moieties in the wild type were h24:0 (53 %), h24:1 

(17 %), h22:0 (9 %), and h20:0 (5 %). Other less abundant fatty acids ranged from acyl 

chain lengths of C20 to C26 that were mostly α-hydroxylated. In the sd4d-1 Hex-HexNAc-

GlcA-IPC profile, molecular species containing a d18:1 or d18:2 LCB moiety were missing 

(Fig. 3B). Otherwise, the Hex-HexNAc-GlcA-IPC profile looked similar to the wild type 

profile. gcs-1 mutants had a comparable Hex-HexNAc-GlcA-IPC profile as the wild type 

(Fig. 3C). However, minimal amounts of species with d18:2/h20:0 (1.5 %) ceramide 

composition emerged in the mutant. Similar changes were observed for GIPC classes with 

a different head group composition; however, differences were not as prominent as for Hex-

HexNAc-GlcA-IPCs (Fig. S4). To summarise, GIPC profiles were affected to a minor 

degree, which reflected the changes to the ceramide profiles in these mutants. 
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Fig. 3. Relative Hex-HexNAc-GlcA-IPC profiles in P. patens wild type, sd4d-1, and gcs-1. (A-C) Glycosyl 
inositolphosphorylceramides (GIPCs) with one hexose moiety and one N-acetylhexosamine unit (Hex-HexNAc-
GlcA-IPCs) were extracted from protonema of ten-day-old wild type (WT), sd4d-1, and gcs-1 P. patens and 
analysed with UPLC-nanoESI-MS/MS. Hex-HexNAc-GlcA-IPC molecular species are shown with their LCB 
(column colour) and fatty acid (x-axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and trihydroxy 
LCB moieties are indicated by a ‘t’. Molecular species with an unhydroxylated fatty acid moiety are indicated by 
a ‘c’ and molecular species with an α-hydroxylated fatty acid moiety are indicated by an ‘h’. (A-C) Relative Hex-
HexNAc-GlcA-IPC profiles of (A) WT, (B) sd4d-1, and (C) gcs-1. Only molecular species with a peak area 
≥ 0.5 % in at least one of the three lines were included in the Hex-HexNAc-GlcA-IPC graphs. Arrows highlight 
changes to the WT. Sphingolipid data represent the mean ± SD of measurements from four independent 
cultivations each containing protonema material from eight cultivation plates. Abbreviations are as follows: GlcA: 
glucuronic acid; Hex: hexose; HexNAc. N-acetylhexosamine, IPCs: inositolphosphorylceramides. 

sd4d-1 and gcs-1 mutants have altered sphingolipid contents 

The loss of GlcCers and of sphingolipids with Δ4-unsaturated LCBs influenced the relative 

profiles of other sphingolipid classes in gcs-1 and sd4d-1 mutants (Fig. 2, Fig. 3). To 

investigate whether total sphingolipid contents were also affected, fold changes compared 

to the wild type were calculated for the individual sphingolipid classes using absolute peak 

areas of the analysed compounds (Fig. 4). In sd4d-1 only LCBs were significantly increased 

compared to the wild type (Fig. 4A). sd4d-1 also had two-fold higher levels of ceramides 

with d18:0 LCB moieties and lacked ceramides with d18:1 and d18:2 LCB moieties (Fig. 

S5A). Total amounts of all other sphingolipid classes were not significantly affected (Fig. 

4B-D, Fig. S6). In contrast to that, gcs-1 showed significant accumulation of LCBs, 

hydroxyceramides, and Hex-HexNAc-GlcA-IPCs compared to the wild type (Fig. 4A, C, D). 

gcs-1 also had 25-fold more ceramides with a d18:2 LCB moiety than wild type (Fig. S5B). 

Total levels of ceramides, LCB-Ps, Hex-GlcA-IPCs, HexNAc-GlcA-IPCs, and Hex-Hex-

GlcA-IPCs were not significantly affected in gcs-1 compared to wild type (Fig. 4B, Fig. S6). 

These findings indicated that disruption of PpGCS function influences the P. patens 

sphingolipidome more strongly than disruption of PpSD4D.  
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Fig. 4. Total contents of LCBs, ceramides, and GIPCs in P. patens sd4d-1 and gcs-1. Long-chain bases 
(LCBs), ceramides, hydroxyceramides, and glycosyl inositolphosphorylceramides (GIPCs) were extracted from 
protonema of ten-day-old wild type (WT), sd4d-1, and gcs-1 P. patens and analysed with UPLC-nanoESI-
MS/MS. Fold changes of (A) LCBs, (B) ceramides, C) hydroxyceramides, and (D) Hex-HexNAc-GlcA-IPCs to 
the WT were calculated using absolute peak areas. Fold changes are depicted in linear scale. The WT, which 
is not shown, is set to 1. Sphingolipid data represent the mean ± SD of measurements from four independent 
cultivations each containing protonema material from eight cultivation plates. Statistical analysis was done using 
Student’s t-test. Asterisks indicate different significance levels with *** significance at P < 0.001, ** significance 
at P < 0.01, * significance at P < 0.05 and not significant (ns) at P > 0.05 compared to the WT. Abbreviations 
are as follows: GlcA: glucuronic acid; Hex: hexose, HexNAc: N-acetylhexosamine IPCs: 
inositolphosphorylceramides. 

gcs-1 has a more severe growth and development phenotype than sd4d-1 

The A. thaliana mutant whose LCB Δ4-desaturase activity is disrupted does not show any 

growth or development phenotype. This observation might be explained by its expression 

pattern which is restricted to A. thaliana pollen and floral tissue (Michaelson et al., 2009). 

Although mutant pollen and floral tissue had reduced GlcCer levels, the knockout did not 

show reduced pollen viability. The plants further did not have any impairment in response 

to drought stress and in transpiration rate, leading the authors to conclude that sphingolipids 

with Δ4-unsaturated LCB moieties do not have an essential role in A. thaliana physiology 

(Michaelson et al., 2009). Disruption of A. thaliana GCS, however, caused seedling lethality, 

impaired cell differentiation and organogenesis, and defects in pollen transmission (Msanne 

et al., 2015). In A. thaliana most GlcCer species have either a t18:1 or a d18:1 LCB moiety 
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(Markham et al., 2006). Given that in P. patens the d18:2 LCB moiety is the most abundant 

LCB moiety in the GlcCer pool and that this sphingolipid class was found throughout the 

plant, PpSD4D and PpGCS were both expected to have major physiological roles in the 

moss. The sphingolipid data from this study showed that both independent knockout 

mutants, sd4d-1 and gcs-1, were devoid of GlcCers (Fig. 1D). It was therefore assumed 

that both knockout mutants would exhibit similar phenotypes. To perform phenotype 

investigations, colonies were started by placing protonema spot inocula of similar size 

(around 1 mm in diameter) onto BCD medium. After ten days of growth, wild type colonies 

developed long stretched and branched protonema filaments (Fig. 5). After 14 days, the 

emergence of gametophores was observed. After 52 days, wild type colonies consisted of 

fully expanded gametophores that overgrew the protonema tissue. sd4d-1 showed similar 

protonema and gametophore development as the wild type control plants (Fig. 5). However, 

sd4d-1 protonema filaments appeared shorter and in consequence, sd4d-1 colony outreach 

was more restricted than in the wild type. gcs-1 mutants had much shorter protonema 

filaments than wild type and sd4d-1 plants and had dwarfed gametophores compared to the 

wild type and sd4d-1 (Fig. 5). The shorter appearance of sd4d-1 and gcs-1 protonema 

filaments was also observed when the tissue was investigated under the microscope (Fig. 

S6). It further appeared that gcs-1 plants developed brown patches in the centre of the 

colony and at the basis of gametophores. 
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Fig. 5. Growth phenotypes of P. patens wild type, sd4d-1, and gcs-1. Gametophore and protonema growth 
of P. patens wild type (WT), sd4d-1, and gcs-1. Colonies were grown for seven weeks and imaged at the 
indicated time points. Scale bars are 2 mm.  

The browning of the gcs-1 gametophyte tissue indicated cell death induction in that mutant 

line. Therefore, gene expression levels of defence-related marker genes were determined. 

Genes that are involved in defence responses are often associated with PCD, which is a 

common defence strategy in plants (Zienkiewicz et al., 2020). In Bressendorff et al. (2012) 

and Overdjik et al. (2016) several gene candidates were analysed and used as defence-

related marker genes in P. patens (Bressendorff, 2012; Overdijk et al., 2016). The gene 

expression of some of these genes was determined in ten-day-old protonema of P. patens 

wild type, sd4d-1, and gcs-1. Genes of interest were CHS, ERF, and PAL4. Appropriate 

reference genes for qRT PCR analyses in P. patens were investigated by Le Bail et al. 

(2013). Of the proposed reference gene candidates Ade PRT proved to be a stably 

expressed gene in all developmental tissues. Stable gene expression was confirmed before 

application for qRT PCR analysis in this study. Fold over reference was calculated in each 

line and for each gene of interest. Relative gene expression of CHS, ERF5, and PAL4 in 

sd4d-1 and gcs-1 was normalised to the wild type. All three defence-related marker genes 

were upregulated in gcs-1 plants but not in sd4d-1 plants (Fig. 6A-C). This result is 

consistent with the different mutant morphologies and the observed tissue browning in gcs-

1 plants may therefore indeed indicate cell death. 
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It was speculated that changes might also be determined in phytohormones that are 

known to be involved in plant defence. Previous studies showed that 12-oxo-phytodienoic 

acid (OPDA) inhibits P. patens growth and that its production is induced upon wounding 

(Ponce De León et al., 2012; Scholz et al., 2012). gcs-1 had significantly elevated levels of 

the oxylipin-derived phytohormones OPDA and dinor-OPDA (dn-OPDA) compared to the 

wild type (Fig.6D, E). Consistent with previous studies on OPDA function in P. patens was 

the observation that gcs-1 plants appeared to have growth defects (Fig. 5). To quantify 

growth of the P. patens wild type, sd4d-1, and gcs-1, protonema was cultivated for ten days 

on cellophane-covered BCD plates. All cultivation plates were inoculated with the same 

amount of starting material. After harvesting, the material was weighed for fresh weight 

determination. sd4d-1 and gcs-1 mutants generated significantly less biomass than the wild 

type (Fig. 6F). After lyophilisation, the dry weight of the material was also determined, 

revealing the same effect (Fig. S7). This indicated that both mutant lines had quantifiable 

growth defects. However, the gcs-1 growth defect was more severe than the sd4d-1 growth 

defect, which was consistent with the determined OPDA and dn-OPDA levels.  
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Fig. 6. Defence-related marker gene expression, OPDA and dn-OPDA levels, and biomass generation in 
P. patens wild type, sd4d-1, and gcs-1 plants. (A-C) RNA was extracted from two-week-old wild type (WT), 
sd4d-1, and gcs-1 protonema grown on cellophane-covered BCDAT medium. Gene expression of defence-
related marker genes (A) chalcone synthase (CHS), (B) the transcription factor ethylene‐responsive element‐
binding factor 5 (ERF5), and (C) phenylalanine lyase 4 (PAL4) was determined. Fold over reference was 
calculated using adenine phosphoribosyltransferase (Ade PRT) as reference gene. Data was normalised to 
gene expression in the WT, which is set to 1. (A, B) Data represent the mean ± SE of measurements of three 
(WT, sd4d-1) and two (gcs-1) replicates from one experiment. (C) Data represent the mean ± SE of 
measurements of three replicates from one experiment. (D) 12-oxo-phytodienoic acid (OPDA) and (E) dinor-
OPDA (dn-OPDA) were extracted from ten-day-old protonema grown on cellophane-covered BCD medium and 
analysed using UPLC-nanoESI-MS/MS. (F) Growth of WT, sd4d-1, and gcs-1 was quantified by collecting ten-
day-old protonema tissue grown on cellophane-covered BCD medium and determining the fresh weight. Data 
represent the mean ± SD of measurements from four independent cultivations each containing protonema 
material from eight cultivation plates. Statistical analysis was done using Student’s t-test. Asterisks indicate 
different significance levels with *** significance at P < 0.001, ** significance at P < 0.01, * significance at 

P <0 .05 and not significant (ns) at P > 0.05 compared to the WT. 

gcs-1 has impaired protonema cell differentiation 

The protonema is a two-dimensional filamentous network that consists of two cell types: 

chloronema cells that are rich in chloroplasts and caulonema cells that have fewer and less 

developed chloroplasts. The chloronema cells are the first ones to be generated from a 

germinating spore. They differentiate gradually into caulonema cells during development. 
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As mentioned, A. thaliana gcs-1 plants were impaired in cell differentiation (Msanne et al., 

2015). To asses whether differentiation was also affected in P. patens sd4d-1 and gcs-1, a 

dark growth assay was performed. During this assay, cultivation of a subtype of caulonema 

cells, specified as skotonema cells, is induced by growing plants in the dark. Protonema 

spot inocula were placed on medium supplemented with 2 % sucrose. Colonies were grown 

for one week under continuous light. Subsequently, culture plates were transferred to the 

dark, rotated into vertical orientation and cultivation was continued for another three weeks. 

After one week under continuous light, the wild type, the sd4d-1, and the gcs-1 mutants 

developed into dense green protonema colonies of similar size (Fig. 7, upper row). After 

three more weeks of cultivation in the dark and in vertical orientation, the wild type 

developed long, brown, and unbranched filaments that reached upwards (Fig. 7 lower row). 

sd4d-1 colonies looked similar to the wild type colonies. The mutant filaments, however, 

appeared to be slightly shorter than wild type filaments. In contrast to wild type and sd4d-1 

colonies, gcs-1 colonies failed to develop any skotonema cells. Protonema differentiation 

ability therefore appeared to be strongly affected in gcs-1 mutants but not in sd4d-1 mutants.  

 

Fig. 7. Skotonema development of P. patens wild, type, sd4d-1, and gcs-1. 1 mm protonema spot inocula 
of wild type (WT), sd4d-1, and gcs-1 lines were placed on BCDAT+2 % sucrose and grown under continuous 
light for one week (upper row). Plates were transferred to the dark and rotated into vertical orientation. Colonies 
were grown for another three weeks to induce skotonema development (lower row). The experiment was 

repeated three times with similar results. Scale bares are 0.5 cm. 

sd4d-1 may be impaired in cell elongation 

sd4d-1 mutants appeared to have slightly shorter skotonema filaments than the wild type 

(Fig. 7). The dark growth experiment was performed several times and the observed shorter 

sd4d-1 filaments were in some experiments more obvious than in others. A possible 

explanation for the shortened filaments might be that sd4d-1 cells were generally shorter. 
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To determine the cell lengths, the dark growth experiment was started with smaller spot 

inocula to obtain fewer filaments (Fig. 8A, upper row). This facilitated examination of 

individual filaments. The experiment was repeated with the same conditions as described. 

Photos of the filaments were additionally taken at higher magnification to identify individual 

cells (Fig. 8A, lower row) and the separating cross walls (Fig. 8B). 428 cells were measured 

for each plant line. At 0.17 mm, the mean sd4d-1 cell length was significantly shorter than 

the mean wild type cell length at 0.2 mm (Fig. 8C). Although sd4d-1 plants were not affected 

in their cell differentiation ability, they appeared to have impaired protonema cell elongation.  

 

Fig. 8. Determination of skotonema cell length of P. patens wild type and sd4d-1 plants. Wild type (WT) 
and sd4d-1 protonema spot inocula were placed on BCDAT +2 % sucrose and grown under continuous light for 
one week. Plates were transferred to the dark and rotated to vertical orientation. (A) Colonies were grown for 
another three weeks to induce skotonema development. Pictures were taken at different magnifications. Scale 
bares in upper row are 0.5 cm. Scale bares in lower row are 0.2 mm. (B) Skotonema cells are separated by 
cross-walls. (C) Skotonema cell length measurements of P. patens WT and sd4d-1 plants. The experiment was 
repeated twice with similar results. Statistical analysis was done using Student’s t-test. Asterisks indicate 
different significance levels with *** significance at P < 0.001 compared to the WT. 

gcs-1 gametophores develop cell death-like lesions when flooded with water 

While in A. thaliana Δ4-desaturase mutants were not affected in pollen viability, gcs-1 

mutants were affected in pollen transmission (Michaelson et al., 2009; Msanne et al., 2015). 

According to the predicted gene expression of PpSD4D and PpGCS in P. patens, both 

genes were highly expressed in spores and the sporophyte generation (Fig. S1). The 

specific expression of both genes in P. patens reproductive organs raised the question 

whether sd4d-1 and gcs-1 were also affected in their fertilisation and sporulation efficiency. 

To test this, P. patens gametophores were induced to generate gametangia. After 

gametophores reached full size, cultivation plates were moved to short-day conditions. 

When gametangia were observed on the tip of the gametophores, the plants were flooded 

with water and placed for several weeks in short-day conditions. No spore capsules were 
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observed for either the sd4d-1 or for the gcs-1 mutant. The wild type, however, also showed 

a very low sporulation efficiency with only one- to two spore capsules per cultivation plate. 

The ‘Gransden’ strain, which has been used for decades as a wild type strain, is recognised 

to have low sporulation efficiency (Hiss et al., 2017; Meyberg et al., 2020). It is therefore not 

clear, whether the lack of spore capsules in sd4d-1 and gcs-1 colonies was due to the 

inability of the mutants to sporulate or if it was rather due to the general low sporulation 

ability of the selected wild type strain. However, the experiment led to another interesting 

observation. While wild type and sd4d-1 gametophores looked alike with elongated stems 

and expanded leaflets at the gametophore tip, gcs-1 gametophores had elongated brownish 

stems (Fig. 9). Leaflets of gcs-1 gametophores were smaller in size the more elongated the 

stem was. Furthermore, the leaflets had brown patches that resembled PCD lesions in 

vascular plants.  

 

Fig. 9. Gametophore morphology during gametangia induction in P. patens wild type, sd4d-1, and gcs-
1. Gametophore colonies were grown under normal conditions for five weeks. Gametophores were transferred 
to short-day conditions at 17 °C and flooded with water. Gametophores were kept in water for another month 
before pictures were taken. Scale bares are 1 mm. 

Discussion 

Sphingolipid metabolism has diversified across different plant lineages over the course of 

evolution. However, the causes and consequences of this divergent evolution are still 

unknown. An example of this is the LCB composition of GlcCers. In bryophytes and 

Solanaceae GlcCers are characterised by a Δ4,8-diunsaturated LCB moiety that is only 

present in the floral tissue sphingolipidome of A. thaliana (Sperling et al., 2005; Markham 

et al., 2006; Michaelson et al., 2009; Resemann, 2018). While the Δ8-unsaturated LCB 

moiety predominates in A. thaliana sphingolipids and its physiological function has been 

thoroughly investigated, the role of the Δ4-unsaturated LCB moiety is not yet understood. 

The characterised A. thaliana LCB Δ4-desaturase only has a restricted expression pattern 

and is not physiologically relevant in the tested tissues and conditions. In contrast to 

A. thaliana, P. patens GlcCers have high levels of the Δ4,8-diunsaturated LCB moiety. It 

was therefore expected that LCB Δ4-desaturase activity is physiologically more relevant in 

P. patens. Investigation of the P. patens LCB Δ4-desaturase might therefore give new 

insights into the metabolic and physiological roles of Δ4-unsaturated molecular species in 
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plant GlcCers. Loss-of-function mutants of the P. patens LCB Δ4-desaturase and the GCS 

were generated and characterised. Both mutant lines lacked nearly all GlcCers but exhibited 

unexpectedly different phenotypes. Although both enzymes are located in the same 

metabolic pathway, their physiological impact appears to vary greatly. 

Analysis on the P. patens lipidome conducted by Resemann (2018) included GlcCer 

composition. Over 94 % of the GlcCer pool consisted of a single molecular species with a 

Δ4,8-diunsaturated LCB moiety connected to a h20:0 fatty acid moiety, d18:2/h20:0 

(Resemann, 2018). This composition indicated that GlcCers should be strongly affected by 

the loss of either PpSD4D or PpGCS. Initially, it was hypothesised that disruption of 

PpSD4D might result in 1) a structural change of the LCB moiety of P. patens GlcCers or 

2) in loss of GlcCers. Disruption of PpGCS was expected to result in a depletion of all 

GlcCers. UPLC-nanoESI-MS/MS analyses revealed that GlcCers were nearly absent in 

sd4d as well as in gcs knockouts. The results were consistent with findings from the 

corresponding knockouts in A. thaliana. Knockouts of the A. thaliana LCB Δ4-desaturase 

had a significant reduction in GlcCer levels in pollen (Michaelson et al., 2009) and 

A. thaliana gcs plants were devoid of all GlcCers (Msanne et al., 2015).  

Michaelson et al. (2009) already speculated that LCB Δ4-desaturation may have a 

significant role in channelling ceramide substrates into GlcCers in some plants and fungi. 

The observed metabolic changes in the P. patens sd4d-1 and gcs-1 mutants were similar 

to changes in sphingolipid profiles of the corresponding P. pastoris knockout mutants 

(Ternes et al., 2011b). The P. pastoris LCB Δ4-desaturase knockout mutant, Δ4Δ, and the 

glucosylceramide synthase knockout mutant, gcsΔ, were also both devoid of GlcCers. 

Ternes et al., 2011b therefore confirmed the channelling function of LCB Δ4-desaturation 

for the yeast P. pastoris, whereas our study confirmed the function for the non-vascular 

plant P. patens.  

In addition to the lack of GlcCers, P. patens sd4d-1 plants were also devoid of d18:1 

and d18:2 LCB moieties. This observation implied that double bond insertion into the 

P. patens LCB moiety follows a sequential order. The Δ4 double bond appears to be 

inserted first, followed by insertion of the Δ8 double bond. The d18:1Δ4 LCB might therefore 

be the substrate for the LCB Δ8-desaturase. If the Δ4 double bond insertion is inhibited, as 

in case of the sd4d-1 mutant, Δ8 double bond insertion could also not take place, and hence, 

no double bonds are present in sd4d-1 LCB moieties. This suggestion is supported by the 

sphingolipid screen conducted by Islam et al., 2012. They investigated the double bond 

position in d18:1 LCB moieties and found that in the P. patens d18:1 LCB moiety, the double 

bond is present in Δ4 position.  

An accumulation of putative substrate molecules of the LCB Δ4-desaturase reaction 

was observed in P. patens sd4d-1. The LCB Δ4-desaturase is assumed to use the d18:0 
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LCB moiety as substrate. Therefore, an enrichment of d18:0 LCBs or of ceramides with a 

d18:0 LCB moiety was expected. Significant increases were observed for d18:0 LCBs and 

for ceramides with a d18:0 LCB moiety in sd4d-1 plants. The obtained data, however, does 

not indicate whether the P. patens LCB Δ4-desaturase preferably acts on LCBs or on LCBs 

bound in ceramides. 

Interestingly, although in sd4d-1 plants GlcCer formation was drastically reduced, 

residual GlcCers were still present. These leftover GlcCers contained a d18:0 moiety. This 

can be explained by the fact that GlcCers with a d18:0 LCB moiety were not affected by 

loss of the LCB Δ4-desaturase activity. However, in wild type and sd4d-1 plants these 

molecular species were only present in trace amounts. Surprisingly, also the d18:2/h20:0 

GlcCer species was detected in trace amounts in the sd4d-1 mutant. This might be 

explained by the close functional relation of the LCB Δ4-desaturase to the LCB C-4 

hydroxylase. Both enzymes have three characteristic histidine boxes in their active site and 

are part of a bifunctional enzyme complex in mammals (Ternes et al., 2011a). The LCB C-

4 hydroxylase might therefore have a low level of desaturase activity that is normally 

negligible in comparison to that of the desaturase. The LCB C-4 hydroxylase could have 

partially compensated for loss of the LCB Δ4-desaturase activity, however, the efficiency of 

the enzyme might only result in formation of trace amounts of the d18:2 LCB moiety. 

Loss of almost all GlcCers in sd4d-1 plants indicated that PpGCS preferentially uses 

ceramides with a Δ4,8-diunsaturated LCB moiety as substrates. Furthermore, accumulation 

of the d18:2/h20:0 ceramide species in gcs-1 mutants identified this compound as putative 

substrate of PpGCS. gcs-1 plants also accumulated d18:2 LCBs and d18:2 LCB-Ps. These 

sphingolipid compounds are upstream of the d18:2/h20:0 ceramide species; this result 

indicates that ceramide formation is a limiting step in sphingolipid biosynthesis.  

Another interesting observation was the emergence of the d18:2/h20:0 species in 

the Hex-HexNAc-GlcA-IPC pool of the gcs-1 mutant, which was associated with an increase 

of the total Hex-HexNAc-GlcA-IPC content. This implied that the P. patens enzymes 

involved in GIPC synthesis are able to metabolise ceramides with a d18:2 LCB moiety and 

are not restricted to ceramides with a t18:0 LCB moiety. As mentioned, GlcCer and GIPC 

synthesis are two alternative pathways within plant sphingolipid metabolism. The separation 

of these complex sphingolipids synthetic pathways likely relies on certain LCB modifications 

(Markham et al., 2006). However, P. patens GIPC synthetic enzymes appear to be less 

restrictive in their substrate usage than PpGCS. Further work is needed to better 

understand the regulation of complex sphingolipid biosynthesis in P. patens. Accumulation 

of GIPCs was also detected in the A. thaliana gcs-1 null mutant. However, A. thaliana gcs-

1 cells did not accumulate the precursor ceramides (Msanne et al., 2015). Instead, 

ceramides that were usually incorporated into GlcCers were channelled into GIPC formation 
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in A. thaliana. Consequently, this would indicate that GlcCer and GIPC synthetic enzymes 

compete more strongly for ceramide substrates in A. thaliana than in P. patens, in which 

the ceramide substrates of the corresponding complex sphingolipids enzymes are 

structurally more different. Consistent with the P. patens and A. thaliana gcs knockouts, 

P. pastoris gcsΔ had increased levels of the yeast equivalent for plant GIPCs: mannose-

inositol-phosphoceramides (MIPCs) and mannose-(inositol phosphate)2-ceramides 

(M(IP)2Cs) (Ternes et al., 2011b). The similar metabolic changes observed in gcs mutants 

from different organisms indicate that channelling of ceramide substrates into complex 

sphingolipids formation underlies regulatory processes that are conserved in filamentous 

fungi and in plants.  

Changes in the sphingolipid profiles also affected gcs-1 and sd4d-1 morphology. 

Since sd4d-1 and gcs-1 mutants were both deficient in GlcCer synthesis, it was expected 

that they would exhibit similar morphological phenotypes. However, surprisingly, while 

sd4d-1 plants had almost normal growth and development in all investigated developmental 

stages, gcs-1 plants had dwarfed gametophores and impaired protonema cell 

differentiation. Msanne et al., 2015 showed that A. thaliana gcs RNAi suppression lines with 

as little as 2 % of wild type GlcCer levels were fertile, whereas gcs null mutants were 

seedling lethal and had impaired organogenesis. As mentioned, P. patens sd4d-1 plants 

had residual GlcCer levels. The cumulative findings from vascular and non-vascular plants 

suggest that plant performance and cell differentiation are not highly sensitive to GlcCer 

quantity, but a threshold level of GlcCers is required for normal growth and development 

(Melser et al., 2011; König et al., 2012; Msanne et al., 2015). 

 Studies on A. thaliana mutants that had reduced GlcCer levels described defects in 

organ-specific cell differentiation and an altered Golgi morphology (Melser et al., 2010; 

Krüger et al., 2013; Msanne et al., 2015). The authors therefore speculated about a role of 

GlcCers in Golgi-mediated protein trafficking. An impaired cell differentiation was also 

observed in P. patens gcs-1 mutants which is consistent to the vascular plant studies. 

GlcCers may therefore potentially also be involved in endomembrane trafficking in 

P. patens.  

P. patens gcs-1 mutants also developed cell death-like lesions, especially in 

chloronema cells and when gametophores were flooded with water and cultivated under 

short-day conditions at 17 °C. A strong indicator for cell death symptoms in P. patens is the 

upregulation of the defence-related marker genes PAL4, CHS, and ERF5 (Bressendorff, 

2012; Overdijk et al., 2016) in gcs-1 (Fig. 6A-C). The results further indicate that the 

P. patens sphingolipid metabolism may be associated with the initiation of defence 

responses and that metabolic changes in the gcs-1 sphingolipidome may be specifically 

responsible for the induction of these plant defence mechanisms. However, it has to be 
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considered that all the analysed genes have multiple alleles in P. patens that are highly 

homologous to each other. Therefore, the gene fragments that were amplified during qRT 

PCR likely derived from gene families within the P. patens genome and not from a single 

gene. It is assumed that the alleles have redundant functions within the P. patens 

physiology and the results therefore allow for conclusions about their functional activity in 

the gcs-1 mutant.  

Which exact metabolic changes induce the defence signalling cascade still needs to 

be elucidated. In contrast to sd4d-1, gcs-1 accumulated LCBs, hydroxyceramides and Hex-

HexNAc-GlcA-IPCs. LCBs and ceramides are known signalling compounds that are able to 

induce PCD in A. thaliana (Greenberg et al., 2000; Liang et al., 2003; Shi et al., 2007; Alden 

et al., 2011). Their elevated levels in P. patens gcs-1 plants might therefore also stimulate 

cell death induction. Especially the enrichment of hydroxyceramides appears to be specific 

for gcs-1 mutants, putting this compound into the spotlight as potential inducer for the 

observed phenotype. (Fig. 5).  

Previous studies showed that jasmonic acid (JA) is not produced by P. patens. 

However, its precursor molecules OPDA and dn-OPDA were determined (Stumpe et al., 

2010). This indicates that JA signalling in non-vascular plants differs from JA signalling in 

vascular plants with OPDA and dn-OPDA being the active compounds. For another 

bryophyte, Marchantia polymorpha, it was recently shown that dn-OPDA indeed binds 

instead to the JA receptor COI1 (Monte et al., 2018). A connection between the sphingolipid 

metabolism and JA signalling was already described for vascular plants (Magnin-Robert et 

al., 2015; Zienkiewicz et al., 2020). Accumulation of JA-Ile was observed in response to 

pathogen infection and in developmentally controlled PCD (dPCD). Zienkiewicz et al. (2020) 

reported a correlation between hydroxyceramide accumulation in A. thaliana neutral 

ceramidase 1 knockout plant, ncer1, and elevated levels of jasmonate-isoleucine (JA-Ile). 

A correlation of JA signalling and sphingolipid metabolism has not yet been described for 

P. patens and was observed during this study for the first time. The accumulation of 

jasmonates in P. patens gcs-1 plants may be associated with the observed accumulation 

of hydroxyceramides, which in combination might cause the cell death lesions in the mutant. 

As described, gcs-1 plants showed PCD like lesions in chloronema cells and in 

gametophores that were flooded with water. Browning of the tissue may indicate early 

senescence symptoms. To fully elucidate the connection between JA signalling and 

sphingolipid metabolism in P. patens, more studies have to be conducted on other 

sphingolipid mutants. 

Although P. patens gcs-1 mutants were substantially impaired in growth and 

development, they could be maintained and investigated without major challenges. This 

was not the case for A. thaliana gcs-1 null mutants whose development did not progress 
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beyond the seedling stage. However, it remains unclear whether fertility and reproduction 

were affected in P. patens gcs-1 and sd4d-1. Their involvement in these processes is 

strongly indicated by their specific gene expression in spores an in the sporophyte 

generation. Future studies should therefore focus on identification of defects in reproductive 

tissue and in sporulation possibly by using the Reute ecotype which showed enhanced 

sporulation compared to the Gransden strain (Hiss et al., 2017).  

In summary, our findings show that LCB Δ4-desaturation is an important regulatory 

mechanism in P: patens to channel ceramides into GlcCer formation. Although P. patens 

sd4d-1 and gcs-1 plants were both mostly devoid of GlcCers, the two mutant lines had 

substantially different morphological phenotypes. Phenotype differences may be explained 

by the stronger accumulation of precursor LCBs and hydroxyceramides in gcs-1 compared 

to sd4d-1. These sphingolipid compounds might act as signalling molecules that trigger 

induction of processes such as PCD. Even if GlcCers with a Δ4,8-diunsaturated LCB moiety 

are abundant membrane compounds in P. patens, their complete abolishment did not 

interfere with plant survival, which questions their quantitative relevance in plants. P. patens 

is a valuable model organism in the study and understanding of plant sphingolipid 

metabolism.  
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Supplementary data 

 

 

Fig. S1. Prediction data for transmembrane domains and gene expression. Transmembrane domain 
prediction was done for (A) PpSD4D and (B) PpGCS using TMHMM webtool. Gene expression for (C) PpSD4D 

and (D) PpGCS in P. patens organs was predicted using eFP browser. 
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Fig. S2. sd4d and gcs mutant characterisation. Complete gel picture of (A) PpSD4D and (B) PpGCS 
transcript determination by real-time PCR. ACTIN8 was used as reference gene and water as negative control 
(neg. ctrl). (C) CRISPR-Cas9 gene editing strategy for PpGCS targeting. Single-guide RNA (sgRNA) was 
designed to target the first exon of PpGCS. White boxes indicate exons, grey boxes indicate untranslated 
regions and lines indicate introns. (D) Sequencing of the targeted locus revealed three gcs mutants with frame 

shift deletions. 
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Fig. S3. GlcCer content of P. patens wild type, sd4d, and gcs mutants. Glycosylceramides (GlcCers) were 
extracted from protonema of ten-day-old wild type (WT), sd4d-2, -3, -4, -5, -6 and gcs-2, -3, -4 P. patens and 
analysed with UPLC-nanoESI-MS/MS. Fold changes of (A) sd4d GlcCers and (B) gcs GlcCers to WT GlcCers 
were calculated using absolute peak areas. Fold changes are depicted in linear scale. The WT is set to 1. 
Sphingolipid data represent the measurement from one cultivation.  
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Fig. S4. GIPC profiles of P. patens wild type, sd4d-1, and gcs-1. (A-C) Glycosyl inositolphosphorylceramides 
(GIPCs) were extracted from protonema of ten-day-old wild type (WT), sd4d-1, and gcs-1 P. patens and 
analysed with UPLC-nanoESI-MS/MS. GIPC molecular species are shown with their LCB (column colour) and 
fatty acid (x-axis) moieties. Dihydroxy LCB moieties are indicated by a ‘d’ and trihydroxy LCB moieties are 
indicated by a ‘t’. Molecular species with an unhydroxylated fatty acid moiety are indicated by a ‘c’ and molecular 
species with an α-hydroxylated fatty acid moiety are indicated by an ‘h’. (A-C) Relative Hex-GlcA-IPC profiles 
of (A) WT, (b) sd4d-1, and (C) gcs-1. (D-F) Relative HexNAc-GlcA-IPC profiles of (D) WT, (E) sd4d-1, and (F) 
gcs-1. (G-I) Relative Hex-Hex-GlcA-IPC profiles of (G) WT, (H) sd4d-1, and (I) gcs-1. Only molecular species 
with a peak area ≥ 0.5 % in at least one of the three lines were included in GIPC graphs. Sphingolipid data 
represent the mean ± SD of measurements from four independent cultivations each containing protonema 
material from eight cultivation plates. Abbreviations are as follows: GlcA: glucuronic acid; Hex: hexose; HexNAc. 
N-acetylhexosamine, IPCs: inositolphosphorylceramides. 
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Fig. S5. Total content of LCB moieties in P. patens sd4d-1 and gcs-1 ceramides. Ceramides were extracted 
from protonema of ten-day-old wild type (WT), sd4d-1, and gcs-1 P. patens and analysed with UPLC-nanoESI-
MS/MS. Species with the same LCB moiety were summed up. Fold changes of ceramide LCB moieties from 
(A) sd4d-1 and (B) gcs-1 to the WT were calculated using absolute peak areas. Fold changes are depicted in 
linear scale. The WT, which is not shown, is set to 1. Sphingolipid data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate different significance levels with 
*** significance at P < 0.001, ** significance at P < 0.01, and not significant (ns) at P > 0.05 compared to the 
WT. 
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Fig. S6. Total contents of LCB-Ps and other GIPC classes in sd4d-1 and gcs-1. Phosphorylated long-chain 
bases (LCB-Ps), and glycosyl inositolphosphorylceramide (GIPCs) were extracted from protonema of ten-day-
old wild type (WT), sd4d-1, and gcs-1 P. patens and analysed with UPLC-nanoESI-MS/MS. Fold changes of (A) 
LCB-Ps, (B) Hex-GlcA-IPCs, (C) HexNAc-GlcA-IPCs, and (D) Hex-Hex-GlcA-IPCs to the WT were calculated 
using absolute peak areas. Fold changes are depicted in linear scale. The WT, which is not shown, is set to 1. 
Sphingolipid data represent the mean ± SD of measurements from four independent cultivations each containing 
protonema material from eight cultivation plates. Statistical analysis was done using Student’s t-test. Letters 
indicate no significance (ns) to the WT with P > 0.05. Abbreviations are as follows: GlcA: glucuronic acid; Hex: 
hexose, HexNAc: N-acetylhexosamine, IPCs: inositolphosphate. 
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Fig. S7. Protonema filaments of P. patens wild type, sd4d-1 and gcs-1 plants. Pictures of wild type (WT), 
sd4d-1, and gcs-1 protonema were captured after plants were grown for two weeks on cellophane-covered 
medium. Scale bars are 0.2 mm. 

 

 

 

 

 

 

 

Fig. S8. Dry weight protonema biomass of P. patens wild type, sd4d-1, and gcs-1. Growth capacities of 
the wild type (WT), sd4d-1, and gcs-1 lines were quantified by collecting and lyophilising ten-day-old protonema 
grown on cellophane-covered BCD medium and determining the dry weight. Data represent the mean ± SD of 
measurements from four independent cultivations each containing protonema material from eight cultivation 
plates. Statistical analysis was done using Student’s t-test. Asterisks indicate significance level with 
** significance at P < 0.01 and not significant (ns) at P > 0.05 compared with the WT. 
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6 Discussion 

The plant PM is a highly dynamic and complex structure. It represents a semipermeable 

barrier that separates the inside of a cell to its external environment. Plants are constantly 

exposed to external stimuli and stresses and rely on intercellular communication to respond 

to these incoming signals appropriately. The PM therefore has a vital role during signal 

perception and transmission. Different membrane components are responsible for 

coordinating membrane-associated signal transduction processes. More and more 

evidence indicates a heterogenous lateral distribution of membrane lipids and proteins 

within the plant PM (Grison et al., 2015; Grosjean et al., 2015; Cacas et al., 2016; Grosjean 

et al., 2018). The plant PM is considered as a fluid and dynamic system with various lipid 

micro- and nanodomains. PM organisation needs to be orchestrated in a flexible manner 

and membrane domains are assumed to be key players in PM organisation. Some of these 

domains are enriched in sterols and sphingolipids (Grosjean et al., 2015; Grosjean et al., 

2018; Cacas et al., 2016). This distinct lipid composition equips the membrane fractions 

with different biophysical properties, making them more ordered and thicker than the 

surrounding membrane regions (Mamode Cassim et al., 2019). These domains function as 

sorting platforms for membrane proteins and are therefore considered crucial for mediating 

signalling cascades (Mamode Cassim et al., 2019). GlcCers and GIPCs are the two most 

abundant sphingolipids in plants and are expected to be the main sphingolipids involved in 

membrane domain formation and other physiological processes (Borner et al., 2005; 

Markham et al., 2006; Grosjean et al., 2015). The two classes have different head groups 

and ceramide backbones and are therefore assumed to have distinct physiological 

functions. However, their exact roles within the plant membrane system remain to be 

determined. The tissue and organ complexity of commonly used model plants are a 

challenge in the study of in vivo PM dynamics. Furthermore, disruption of genes that are 

involved in the formation of complex sphingolipids cause severe growth and development 

defects in vascular plants and in some cases even result in embryo lethality (Chen et al., 

2008; Msanne et al., 2015; Gonzalez Solis et al., 2020).  

The bryophyte model P. patens has a simple anatomy compared to vascular plants, 

allowing for in-depth investigations of subcellular processes on a single cell level. A recent 

study determined the sphingolipidome composition of P. patens and revealed significant 

differences to the A. thaliana sphingolipidome (Markham et al., 2006; Resemann, 2018). 

However, this comprehensive lipidomics analysis of about 700 lipid species was conducted 

on liquid-grown P. patens protonema and may therefore not reflect the sphingolipid 

composition under native conditions and in different tissues. The roles of individual 

sphingolipid classes during P. patens growth and development therefore remain elusive.  
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To determine the physiological functions of sphingolipids in distinct tissues and 

development stages of P. patens, a tightly controlled cultivation method is required. An 

appropriate cultivation system was therefore established and optimised for in-depth 

phenotype and chemotype examinations of sphingolipid mutants (chapter 1). Independent 

P. patens sphingolipid pathway mutants disturbed in GIPC or GlcCer synthesis were 

investigated. While PpS4H is involved in GIPC formation (chapter 2), PpSD4D and PpGCS 

are involved in GlcCer formation (chapter 3). The cumulative findings from all three chapters 

allow first conclusions about the involvement of GIPCs and GlcCers in P. patens physiology. 

Table 2 summarises the findings from the three P. patens and the corresponding A. thaliana 

sphingolipid mutants. 
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Table 2. Comparison of three P. patens and A. thaliana sphingolipid mutants. Shown are their phenotypes, 
chemotypes and their suggested physiological impact. 

Organism Designated 
gene symbol 

Gene ID Phenotype Chemotype Physiological 
impact  

LCB C-4 hydroxylase 

 P. patens PpS4H XM_024507119.1 Severely dwarfed 
gametophores, 
stunted, shortened 
protonema, altered 
cross-walls 

Change from t18:0 
to d18:0 LCB 
species, drastic 
accumulation of 
LCBs and LCB-Ps 

Impaired cell growth 
and tissue 
development, 
possibly cytokinesis 
defects  

A. thaliana AtSBH1, 
AtSBH2 
(Chen et al., 
2008) 

At1g69640, 
At1g14290 

Growth reductions, 
cannot progress 
from vegetative to 
reproductive 
growth, 
upregulation of cell 
death-associated 
genes 

Change from t18:1 
to d18:1 and d18:0 
LCB species, drastic 
accumulation of all 
sphingolipid 
classes, 
accumulation of 
dihydroxy/LCFA 
sphingolipids 

Impaired plant 
growth and tissue 
development, cell 
extension and 
division defects 

LCB Δ4-desaturase 

 P. patens PpSD4D  XM_024506175.1 Shorter protonema 
cells 

Substantial 
reduction of 
GlcCers, 
accumulation of 
LCBs and 
ceramides 

Cell elongation 
defects 

A. thaliana None 
(Michaelson et 
al., 2009) 

At4g04930 No phenotype Significant 
reduction of pollen 
GlcCers   

Glycosylceramide synthase/ Glucosylceramide synthase 

P. patens PpGCS  XM_024543952.1 Dwarfed 
gametophores, cell 
differentiation 
defects, cell death-
like lesions, 
upregulation of 
defence-related 
genes,  

No GlcCers, 
increased levels of 
hydroxyceramides, 
LCBs, and GIPCs, 
accumulation of 
OPDA and dn-
OPDA 

Impaired cell 
differentiation, 
developmentally 
controlled PCD 

A. thaliana AtGCS 
(Msanne et al., 
2015) 

At2g19880 Seedling lethality, 
impaired Golgi 
morphology 

No of GlcCers, 
increased levels of 
GIPCs 

Impaired cell 
differentiation, 
organogenesis 
defects, possibly 
protein trafficking 
defects 

 

The following sections discuss the results from this work and contextualise them with 

findings on sphingolipid function in vascular plants. The bryophyte P. patens is proposed 

as suitable model organism to investigate in planta membrane dynamics and to dissect the 

physiological roles of GlcCers and GIPCs. This non-vascular plant may also contribute to 

our understanding of how plant sphingolipid biosynthesis diversified during land 

colonisation.  
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6.1 LCB modifications determine the metabolic fate of P. patens 

sphingolipids 

GIPCs and GlcCers can be structurally distinguished by their head group and ceramide 

backbone composition. The structural difference of their ceramide backbones is likely key 

for channelling substrates into the two alternative complex sphingolipid classes. In 

A. thaliana, GIPCs are highly enriched in molecular species with a t18:1 LCB moiety that is 

connected to VLCFAs (Markham et al., 2006). A. thaliana GlcCers, especially those found 

in pollen tissue, are, however, additionally enriched in 18:2 LCB moieties conjugated to 

LCFAs, mainly C16 (Markham et al., 2006; Markham & Jaworski, 2007). In P. patens, 

GIPCs and GlcCers have different LCB and fatty acid compositions than in A. thaliana 

(Resemann, 2018). P. patens GIPCs are composed of a t18:0 LCB moiety that is 

conjugated to VLCFAs. P. patens GlcCers are mainly (up to 92 %) composed of one single 

species with a Δ4,8-diunsaturated LCB moiety that is conjugated to a h20:0 fatty acid moiety 

(d18:2/h20:0). Other species like d18:1/h20:0, d18:2/h22:0 or d18:2/c20:0 account for 

around 4 %, 2 %, and 1 % of P. patens GlcCers, respectively. The functional rationale of 

the diversification of plant sphingolipid metabolism among different plant lineages is, 

however, not understood.  

PpS4H and PpSD4D activities are considered the first designated steps in GIPC and 

GlcCer synthesis, respectively. The following text therefore compares the lipid profiles of 

the respective knockout mutants of these two key enzymes. 

GIPC and GlcCer synthesis represent alternative pathways in plant sphingolipid 

metabolism. Their syntheses therefore underlie specific control mechanisms. PpS4H and 

PpSD4D activities are considered key modifications for channelling ceramide substrates 

into either GIPC or GlcCer formation. They both act on the C-4 of the LCB moiety and are 

therefore mutually exclusive. PpS4H catalyses C-4 hydroxylation of the LCB moiety and is 

therefore responsible for t18:0 LCB formation. PpSD4D introduces a double bond between 

the C-4 and the C-5 of the LCB moiety and is therefore responsible for the formation of Δ4-

unsaturated LCBs. While ceramides with a t18:0 LCB moiety are channelled into GIPC 

formation, ceramides with a Δ4,8-diunsaturated LCB moiety, d18:2, are shunted into GlcCer 

formation. A proposed scheme for ceramide channelling into complex sphingolipid 

formation in P. patens is depicted in Fig. 5.  

Interestingly, disruption of the P. patens sphingolipid enzymes PpS4H and PpSD4D 

caused significantly different metabolic changes in the mutants. Loss of one hydroxyl group 

in the LCB moiety of s4h mutants caused a global shift in LCB moieties of GIPCs, 

ceramides, and LCBs (chapter 2). Consequently, the prevalent LCB moiety t18:0 in 

P. patens wild type plants was replaced by the d18:0 LCB moiety in s4h plants. 



Discussion 

138 
 

Furthermore, the head group composition of GIPCs was affected. Compared to the wild 

type, s4h mutants accumulated series B GIPCs. Disruption of PpSD4D, however, resulted 

in loss of all double bonds in the LCB moiety of sd4d-1 plants and consequently in loss of 

almost all GlcCers (chapter 3). Only some minor species that represent < 1 % of P. patens 

GlcCers in the wild type were still detected in the sd4d-1 mutant. However, these remaining 

species were only present in trace amounts. These observations give a deeper insight into 

GlcCer and GIPC biosynthesis in P. patens. The shift from a t18:0 to a d18:0 LCB moiety 

in s4h GIPCs demonstrates that enzymes catalysing the transfer of inositolphphate to the 

ceramide backbone are not exclusively using ceramide substrates with a t18:0 LCB moiety 

but can also act on ceramides with a d18:0 LCB moiety. Loss of almost all GlcCers in sd4d-

1 plants, however, indicates that the enzyme catalysing the synthesis of GlcCers, PpGCS, 

is highly selective for ceramides containing dihydroxy LCB moieties but cannot act on 

ceramides with a trihydroxy LCB moiety. 

It is likely that other factors also contribute to the channelling of ceramide substrates 

into either one of the two pathways, such as spatial and temporal separation. A spatial 

separation of GIPC synthesis is described for A. thaliana (Michaelson et al., 2016). While 

almost all enzymes active in sphingolipid biosynthesis are located in the ER, enzymes 

assembling the head groups of GIPCs are located in the Golgi apparatus membrane (Wang 

et al., 2008; Ishikawa et al., 2018). Ceramides with a trihydroxy LCB unit thus need to be 

transported to the Golgi apparatus, where they are further incorporated into GIPCs. Spatial 

separation of enzymes that assemble glycan moieties of the GIPC head groups in the Golgi 

apparatus could be associated with the localisation of cell wall glycan biosynthesis enzymes 

in the Golgi membrane (Oikawa et al., 2013). Co-presence of glycan synthetic and glycan 

transferring enzymes in the Golgi membrane might suggest a division of labor between 

enzymes involved in PM and cell wall biosynthesis. A similar separation system is likely 

also present in P. patens but should be confirmed in future studies. Spatial separation of 

GIPC synthetic enzymes from other sphingolipid enzymes allows them to be less specific 

for a certain ceramide substrate. Findings from the s4h mutant indicate that all ceramides 

exported to the Golgi apparatus are used for GIPC formation.  

The A. thaliana glucosylceramide synthase, however, is located, like other enzymes 

of the sphingolipid pathway, in the ER membrane (Melser et al., 2010). The t18:0 LCB 

moiety is prevalent in all P. patens sphingolipids, except for GlcCers. Its omnipresence in 

P. patens GIPCs, ceramides, and LCBs and the presence of PpGCS in the ER might explain 

the necessity of the high substrate selectivity of PpGCS. The Δ4,8-diunsaturated LCB 

moiety is only found in the GlcCer pool in high levels. It is likely that already small amounts 

of ceramides with a Δ4,8-diunsaturated LCB moiety are immediately metabolised by a 
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highly active and specific PpGCS, instead of being transported to the Golgi for GIPC 

formation.  

In A. thaliana, however, the GlcCer pool contains molecular species with d18:1, 

d18:2, and t18:1 LCB moieties (Markham et al., 2006). This observation indicates that GCS 

enzymes from different plants might have varying substrate preferences. This might be due 

to the provision of structurally different ceramide substrates in individual plant species. For 

instance, t18:1 LCB moieties appear to be absent in P. patens. To determine GCS substrate 

preferences, in vitro enzyme assays might be performed in future studies.  

 

 

Fig. 5. Proposed abbreviated de novo sphingolipid biosynthesis in P. patens. The majority of reactions 
within sphingolipid biosynthesis most likely takes place in the endoplasmic reticulum (ER). During the initial 
steps, the simplest sphingolipid compound, the long-chain base (LCB) sphinganine (d18:0), is formed. The 
d18:0 LCB is subsequently applied to modifications such as Δ4-desaturation (PpSD4D), or C-4 hydroxylation 
(PpS4H). N-acylation of the LCB moiety results in ceramide formation. Depending on the structural features of 
the LCB, different substrate-specific ceramide synthases might be active. The ceramide backbone may 
subsequently be modified by fatty acid α-hydroxylation, or fatty acid n-8 desaturation (PpSFD). The combination 
of structurally different LCB and fatty acid moieties causes channelling of distinct ceramide substrates into 
glycosylceramide (GlcCer) formation (PpGCS) or glycosyl inositolphosphorylceramide (GIPC) formation. The 
demonstrated pathway is an abbreviated version of sphingolipid biosynthesis, not including reactions such as 
phosphorylation, de-phosphorylation or breakdown of complex sphingolipids. Abbreviations are as follows: CoA: 
Coenzyme A; GCS: Glycosylceramide Synthase; GDP-Man: Guanosine Diphosphate Mannose; GINT1: 
Glucosamine Inositolphosphorylceramide Synthase; GMT: GIPC Mannosyl Transferase; GONST1: GDP-
Mannose Transporter; SFD: Sphingolipid Fatty acid Desaturase; IPCS: Inositolphosphorylceramide Synthase; 
IPUT: Inositolphosphorylceramide Glucuronosyl Transferase; SD4D: Sphingolipid delta 4 Desaturase; S4H: 
Sphinganine C-4 Hydroxylase; UDP-Glc: Uridine Diphosphate Glucose. 

It should also be noted that loss of the PpS4H activity caused a 60-fold accumulation of the 

putative substrate d18:0 LCB (chapter 2). LCB levels were also significantly increased (1.5-

fold) upon loss of PpSD4D activity, although to a much lesser degree than in s4h plants 

(chapter 3). As for the respective enzymes from A. thaliana it is assumed that PpS4H may 
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preferably act on d18:0 LCBs, while PpSD4D may act on d18:0 LCBs or ceramide-bound 

d18:0 LCBs. Nevertheless, previous studies on maize microsomes showed that the LCB C-

4 hydroxylase can act on LCBs as well as on bound LCBs in ceramides (Wright et al., 2003). 

While that assay showed the LCB hydroxylase activity on LCBs and ceramides in vitro, it is 

not clear whether it also reflects the in vivo situation. The in vivo LCB and/ or ceramide 

substrate preferences of PpS4H and PpSD4D therefore need to be determined in the future. 

The different accumulation levels of the putative substrates in the two independent 

knockout mutants might give a hint about the physiological relevance of PpS4H and 

PpSD4D activities. The t18:0 LCB moiety is prevalent in LCBs, ceramides, and GIPCs. Loss 

of the LCB C-4 hydroxylation caused an exceptional accumulation of LCBs. In comparison 

to that, d18:1 and d18:2 LCB moieties are only detected in very low amounts in P. patens 

wild type LCBs and ceramides and in high levels in GlcCers. Loss of LCB Δ4-desaturation 

only caused a minor increase of LCBs. The precursor accumulation and the general 

prevalence of the t18:0 LCB moiety might suggest a more important physiological function 

for the LCB C-4 hydroxylase than for the LCB Δ4-desaturation in P. patens. Another aspect 

that would support this hypothesis is that the overall s4h phenotype was much more severe 

than the sd4d-1 phenotype (Table 1). 

Neither of the two enzymes was able to compensate for substrate accumulation 

caused by loss of the other, which would have prevented the observed accumulations in 

the s4h and sd4d-1 knockout mutants (chapter 2, chapter 3). It is not clear how the activities 

of PpS4H and PpSD4D are regulated. Determination of kinetics of the two enzymes in vitro 

might give an idea of their conversion efficiencies. It could also be that PpS4H and PpSD4D 

reactions are spatially separated within the ER. The regulation and localisation of PpS4H 

and PpSD4D activities should therefore be addressed in future studies.  

 It is also unclear whether the prevalences of LCB moieties with different structural 

features in GIPCs and GlcCers play a role in their physiological functions. Studies on other 

plants suggest that the t18:0 LCB moiety of GIPCs is important for the interaction with other 

membrane components during membrane domain formation (Mamode Cassim et al., 2019). 

LCB desaturation, however, has been correlated with low temperature tolerance (Chen et 

al., 2012). The d18:2 LCB moiety of P. patens GlcCers may therefore play a role in cold 

stress adaptation by adjusting membrane fluidity.  

6.2 P. patens GlcCer mutants have similar chemotypes but contradicting 

phenotypes 

PpS4H and PpSD4D are alternative reactions that introduce different modifications to the 

LCB moiety and hence affect the downstream metabolic fate of sphingolipids. The third 

investigated sphingolipid mutant of this study had a disturbed PpGCS function. PpGCS 
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catalyses GlcCer formation. The metabolic differences between the sd4d-1 and gcs-1 

mutants are discussed in chapter 3. The contradicting phenotypes and chemotypes of the 

two mutants, however, put the function of GlcCers in P. patens physiology into question. 

Although both sd4d-1 and gcs-1 mutants lacked most GlcCers, only gcs-1 plants had a 

strong growth and development phenotype and showed cell death symptoms. An 

explanation for this might be the accumulation of hydroxyceramides in gcs-1 mutants that 

is not observed in sd4d-1 mutants. Ceramides are not only precursor molecules for GlcCer 

and GIPC synthesis, but they are also known as signalling molecules with the potential to 

elicit PCD in plants (Greenberg et al., 2000; Liang et al., 2003). A connection between 

hydroxyceramide accumulation, JA signalling, and developmentally controlled PCD (dPCD) 

was already discussed in chapter 3 (Zienkiewicz et al., 2020). If indeed the accumulation of 

hydroxyceramides and not the absence of GlcCers is responsible for the observed cell 

death-like lesions and the growth inhibition of gcs-1 plants, the question arises if GlcCers 

even have an essential function in P. patens. Although reduced in size, gcs-1 mutants were 

still viable and only had defects in the differentiation into skotonema cells (Cove et al., 1978; 

Rensing et al., 2020). It might be that only very low GlcCer amounts are required for certain 

plant physiological processes such as cell differentiation. This would be supported by 

findings from sd4d-1 mutants. In contrast to P. patens gcs-1 plants sd4d-1 plants still had 

trace amounts of GlcCers and showed almost no impairments.  

The quantitative relevance of GlcCers in plants was already discussed by Msanne 

et al. (2015) who characterised the glucosylceramide synthase mutant, gcs-1, from 

A. thaliana. Together with other studies Msanne et al. (2015) provided evidence that strong 

GlcCer reduction to a certain threshold (down to 2 %) does not affect plant viability and a 

reduction of 50-75 % does barely even have an effect on plant growth (Melser et al., 2011; 

Chen et al., 2012; König et al., 2012). They therefore speculated that excess production of 

GlcCers may serve as non-toxic sphingolipid reservoir that avoids a potential harmful 

accumulation of ceramides.  

It might also be that GlcCers become quantitatively more important under 

unfavourable conditions, which were not investigated in the presented studies. In case of 

P. patens, another, although a rather unlikely, explanation might be that not all GlcCer 

species have yet been identified in the bryophyte. While the sphingolipidome of A. thaliana 

is thoroughly investigated and described, only one extensive study has been conducted on 

characterising the P. patens sphingolipidome (Resemann, 2018). The study was performed 

using a targeted MRM-based LC-MS method. This method was also used for the 

investigation of the three sphingolipid mutants in this study. The used strategy only screens 

for molecular species whose MRMs have been generated beforehand. Unexpected 

molecular species might therefore have been omitted in the measurements. The disruption 



Discussion 

142 
 

of PpGCS ensures the abolishment of all GlcCers because hexose moieties cannot be 

conjugated to any possible ceramide backbone anymore. Disruption of PpSD4D, however, 

only prevents LCB double bond introduction. That means that GlcCers with unexpected 

ceramide backbone compositions might exist in P. patens that have yet to be identified.  

To address the question of the physiological impact of GlcCers in the future, a 

P. patens double knockout mutant could be generated that not only targets PpGCS but also 

PpSD4D function. Thereby, a complete abolishment of GlcCers would be achieved without 

initiating the unusual accumulation of the ceramide precursor d18:2/h20:0 that potentially 

induced the observed PCD symptoms in gcs-1 plants. If the gcs-1 mutant phenotype is 

rescued in that double knockout, it would mean that the cell death symptoms and 

development defects are indeed induced by the unusual hydroxyceramide accumulation in 

gcs-1 plants. It would further indicate a less important physiological role for GlcCers in 

P. patens than expected. 

6.3 Lipid profile comparison of P. patens and other plants 

Complex sphingolipids, GIPCs and GlcCers, are the most abundant sphingolipids found in 

plants. GIPCs and GlcCers represent around 64 % and 34 %, respectively, of all 

sphingolipids in total A. thaliana leaf extract (Markham et al., 2006). In tomato and soybean, 

however, both complex sphingolipid classes are found in equal quantities (Sperling et al., 

2005; Markham et al., 2006). Depending on the analysed plant species and tissue type, the 

prevalence of both classes may vary (Sperling et al., 2005; Markham et al., 2006; 

Luttgeharm et al., 2015b). The quantitative distribution of GIPCs and GlcCers in P. patens 

is, however, unknown. The functional significance of the diversification of plant sphingolipid 

metabolism among different plant lineages is poorly understood. The following sections 

discuss the general differences of sphingolipid profiles from different plants. Furthermore, 

the influence of other lipid classes on sphingolipid levels and vice versa is discussed.  

As mentioned, the t18:0 LCB moiety is found in GIPCs and the d18:2 LCB moiety in 

GlcCers of P. patens. The t18:0 LCB moiety also predominates in the precursors LCBs and 

ceramides. It would thus be interesting to know whether the downstream sphingolipid 

classes GIPCs and GlcCers occur in different quantities in P. patens. Sphingolipid data from 

Resemann (2018) and from this work are represented as relative data within individual 

sphingolipid classes. Sphingolipid species and classes could not be compared 

quantitatively with each other because structural features of different molecular species in 

LCBs, ceramides, GlcCers, and GIPCs have different ionisation efficiencies in the applied 

UPLC-nanoESI-MS/MS approach. The different ionisation efficiencies may thus falsify 

quantification of individual sphingolipid species and classes. While the LC-MS approach is 

the method of choice in lipid analyses in terms of coverage, sensitivity, and selectivity it is 
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not appropriate for quantification. Future studies should therefore focus on combining LC-

MS measurements with other techniques such as gas chromatography (GC), thin layer 

chromatography (TLC), or direct infusion mass spectrometry (DI-MS) that are more 

appropriate for absolute compound quantification. 

Another idea would be the establishment of a set of lipid standards for structurally 

different molecular species in LC-MS measurements that would allow for direct comparison 

of molecular species quantities.  

GIPCs and GlcCers are found in varying amounts in different tissues (Sperling et 

al., 2005; Markham et al., 2006; Luttgeharm et al., 2015b). While GIPCs are considered the 

predominant class in A. thaliana leaves, GlcCers are enriched in A. thaliana pollen and floral 

tissue (Michaelson et al., 2009; Luttgeharm et al., 2015b). Therefore, it would be interesting 

to investigate the quantitative distribution of GIPCs and GlcCers in different P. patens 

tissues. The sphingolipid profiles of distinct tissues may indicate different physiological roles 

of GIPCs and GlcCers during P. patens development. The sporophyte tissue, which was 

not analysed in the studies presented in this thesis, would be of particular interest. The 

GlcCer specific enzymes PpSD4D and PpGCS are both highly expressed in P. patens 

sporophyte tissue as reported by the eFP browser (chapter 3). While gene expression may 

not necessarily be linked to a certain physiological function, studies from A. thaliana show 

an involvement of GlcCers in reproduction processes (Msanne et al., 2015). In A. thaliana, 

Δ4,8-diunsaturated GlcCers are enriched in reproductive tissues, including pollen and floral 

tissue (Michaelson et al., 2009). A. thaliana mutants that are deficient in GlcCer also show 

defects in pollen transmission (Msanne et al., 2015). As discussed in chapter 3, the 

P. patens ‘Gransden’ strain that has been propagated for decades as wild type under 

laboratory conditions is acknowledged to have a low sporulation efficiency (Hiss et al., 2017; 

Meyberg et al., 2020). Therefore, it might be helpful to introduce the mutations into another 

ecotype with a higher sporulation rate and to determine sporophyte sphingolipid profiles in 

this other background. The ‘Reute’ ecotype was found to have a much higher sporulation 

efficiency than the ‘Gransden’ strain and therefore appears to be an appropriate candidate 

for future sporophyte studies in P. patens (Hiss et al., 2017). If the sporophyte indeed has 

higher GlcCer levels, the ‘Reute’ ecotype could further be used for generating mutants that 

are disturbed in their GlcCer biosynthesis such as the sd4d-1 and gcs-1 mutants generated 

in the study of chapter 3 in the ‘Gransden’ background. Reproduction processes could then 

be monitored in sd4d-1 and gcs-1 mutants or even in the proposed sd4d gcs double 

knockout in the ‘Reute’ background. 

GlcCer and GIPC localisation has also already been determined on a subcellular 

level in vascular plants. Both were found in membranes of the secretory pathway, with 

highest levels in the tonoplast and the PM (Moreau et al., 1998; Cacas et al., 2016). 
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Sphingolipids are considered to be located in the outer leaflet of the plant PM (Tjellström et 

al., 2010; Cacas et al., 2016). Most sphingolipid analyses conducted in this work were 

performed on crude lipid extract from P. patens protonema tissue. However, a better 

detection for GIPCs was achieved by analysing microsome fractions of P. patens (chapter 

2). Microsomes are artificial vesicles that are rebuilt from intracellular membrane fragments, 

mostly ER and PM. They can be extracted from broken eukaryotic cells and reflect the 

cellular membrane composition. The increased detection of GIPCs in microsomes may 

indicate an enrichment of this lipid class in the extracted membrane fractions. P. patens 

GlcCers (mainly d18:2/h20:0) were detected with high signal intensity in crude lipid extracts 

as well as in microsome fractions. Whether that means that GlcCers are more abundant 

than GIPCs in P. patens is not clear and has to be confirmed with quantitative analytics. For 

an absolute quantification of complex sphingolipids in different membrane compartments, 

improvements in the lipid extraction and an internal standard use would be required.  

Isolation of the plant PM would reveal whether GIPCs are especially enriched in the 

P. patens PM. An appropriate PM isolation method has been established for plant tissue 

and has already been applied for PM purification of A. thaliana leaf tissue (Larsson et al., 

1994). Even more details of the PM composition and especially about a putative plant PM 

lipid asymmetry might give selective analysis of the inner and outer leaflets of the P. patens 

PM. This would show whether complex sphingolipids are enriched in the outer PM leaflet in 

P. patens. Presence of complex sphingolipids in the outer leaflet would enforce their 

presumptive role in signal perception and transmission processes. 

As explained in the introduction, DRM fractions may not necessarily reflect the lipid 

composition of in vivo membrane rafts. However, previous studies on animal and plant 

membrane rafts in vivo showed that although DRM preparation has clear technical 

limitations, the lipid compositions of DRMs and membrane rafts may indeed be similar (Pike, 

2009; Cacas et al., 2016). Therefore, it might be an idea to prepare DRM fractions of 

P. patens PM and investigate the lipid composition of these fragments. The three 

sphingolipid mutants might be useful tools in determining the contribution of GlcCers and 

GIPCs in membrane domain formation in P. patens. 

Next to sphingolipids it could also be interesting to determine levels and 

compositions of other lipid classes in the three P. patens sphingolipid knockouts. It might 

be that metabolic changes in the complex sphingolipid pools and the associated reshaping 

of the membrane lipid composition are reflected in changes of other lipid classes such as 

phosphosglycerolipids, glycoglycerolipids, neutral glycerolipids, and sterol lipids (Table 1). 

P. patens GIPCs and GlcCers both contain VLCFAs. One idea would therefore be to check 

whether the VLCFA content of phosphoglycerolipids such as PS, PE, and PC is affected in 

the investigated sphingolipid mutants. Of particular interest would also be the composition 
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of free and conjugated sterols. Sterols and sphingolipids are considered the key 

components of membrane micro- and nanodomains (Simons & Ikonen, 1997; Mongrand et 

al., 2010). Changes in the GIPC and GlcCer composition are hence expected to influence 

phytosterol composition and maybe to some extent the total sterol content. Both free sterols 

and conjugated sterols were found to induce microdomain formation in artificial vesicles 

from tobacco lipid mixtures (Grosjean et al., 2015; Grosjean et al., 2018). Grosjean et al. 

(2015) also examined the influence of GIPCs and GlcCers on lipid raft formation. Although 

both complex sphingolipid classes appeared to have a role in raft formation, GIPCs were 

described as the main sphingolipid components in lipid rafts. The studies were conducted 

on artificial vesicles built-up of different ratios of tobacco sterol and sphingolipid classes. 

Even though these are first indications for the involvement of different sphingolipids and 

phytosterols in membrane raft formation, it is not known how the situation is in planta and if 

the findings apply to all plant species. The observed changes in the glycosylated sterol 

composition in P. patens s4h microsomes (chapter 2) is a strong indication for the 

interaction between sphingolipids and sterols in P. patens membranes. Accordingly, the 

determination of acyl steryl glycosides (ASG) and free sterol levels in P. patens s4h plants 

might give even more details about the interaction network of GIPCs and sterols in 

P. patens. Sterol levels were not determined in P. patens sd4d-1 and gcs-1 plants in the 

presented study (chapter 3). To get an idea about the interaction between GlcCers and 

sterols in P. patens, microsomes should be prepared from these mutants and free and 

conjugated sterol levels should be determined. Finally, quantification of sterols and other 

lipids in the sphingolipid mutants might give even more detailed insights into the absolute 

P. patens membrane lipid composition.  

Other lipids worth investigating in sphingolipid mutants are PIs and PIPs. PIs and 

PIPs are plant PM components that are involved in directional tip growth of pollen tubes, 

root hairs, and protonema filaments (Ischebeck et al., 2008; Sousa et al., 2008; Stenzel et 

al., 2008; Saavedra et al., 2015). Green fluorescent protein (GFP) fusions of 

phosphatidylinositol phosphate kinase (PIPK) and their transient overexpression in 

P. patens protoplasts located PIPK to the PM (Saavedra et al., 2009). Furthermore, PIPs, 

were found to be enriched in DRM fractions, which indicates their localisation to distinct 

membrane domains (Furt et al., 2010). PIPs were also described to be clustered in 

nanodomains in the PM (Furt et al., 2010). Saavedra et al., (2011) described a role for 

PIPKs in rhizoid elongation and caulonema development in P. patens. Since P. patens s4h, 

sd4d-1, and gcs-1 mutants investigated in this work all showed impaired cell elongation, 

cell differentiation, and general growth and development defects, it would be of interest to 

test whether PI and PIP levels in these mutants are also affected. The phenotype of PIPK 

mutants in P. patens showed stunted protonema and rhizoid growth. The PIPK mutant 
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growth phenotypes were remarkably similar to the described s4h and gcs-1 mutant 

phenotypes from this work (Saavedra et al., 2011). Future studies might reveal interactions 

between sphingolipids and PIPs during P. patens development. It is likely that PIPs as well 

as complex sphingolipids are located in distinct domains in the inner and outer leaflet of the 

plant PM, respectively (Cacas et al., 2016; Gronnier et al., 2017; Mamode Cassim et al., 

2019). These domains might interact through leaflet interdigitation during signal 

transduction processes. Future studies on P. patens membrane dynamics might reveal 

domain interaction among the two leaflets during signalling processes. 

6.4 Differences in other sphingolipid enzyme activities of A. thaliana and 

P. patens 

All three investigated P. patens sphingolipid mutants were also characterised in A. thaliana 

(Chen et al., 2008; Michaelson et al., 2009; Msanne et al., 2015). The lipid profiles of the 

respective knockout mutants from both organisms were already compared and discussed 

in chapters 2 and 3. Comparing the results from P. patens sphingolipid mutants with results 

obtained from the respective A. thaliana mutants even give indications about other 

sphingolipid enzyme activities that were not the focus of the presented studies. In the 

following, differences between the lipid profiles of the P. patens and A. thaliana sphingolipid 

mutants are discussed that might give hints about functions of other P. patens sphingolipid 

enzymes. The findings may broaden our knowledge on the evolution of plant sphingolipid 

metabolism. 

The following text discusses the putative presence of substrate-specific ceramide 

synthases in P. patens, based on the results from the A. thaliana sbh1 sbh2 and the 

P. patens s4h mutants (chapter 2) and on the observed gametophore ceramide profile 

(chapter 1).  

A. thaliana contains two classes of distinct ER-localised ceramide synthases that 

have different substrate preferences (Fig. 6). The class I ceramide synthase LOH2 prefers 

dihydroxy LCBs and LCFAs, mainly C16. Class II ceramide synthases, LOH1 and LOH3, 

prefer trihydroxy LCBs and VLCFAs (Marion et al., 2008; Markham et al., 2011; Ternes et 

al., 2011a). LOH1 and LOH3 share high protein sequence similarity while the sequence of 

LOH2 is substantially different. The divergence of LOH2 from LOH1 and LOH3 likely 

occurred early in land plant evolution because phylogenetic clustering of distinct ceramide 

synthases was already observed in P. patens (Rensing et al., 2008; Ternes et al., 2011a). 

The activity of substrate-specific ceramide synthases in A. thaliana results in two distinct 

ceramide pools that have different structural features. While ceramide backbones with a 

trihydroxy LCB moiety and VLCFAs are detected in GlcCers and GIPCs in A. thaliana, 
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ceramide backbones with a dihydroxy LCB moiety and LCFAs are only enriched in GlcCers 

(Fig. 6).  

 

 

Fig. 6. Ceramide synthase activity of LOH1, LOH2, and LOH3 in A. thaliana. The ceramide synthases LOH1, 
LOH2, and LOH3 from A. thaliana have different substrate preferences for LCBs with specific hydroxylation 
status and fatty acids of different acyl chain lengths. LOH2 prefers dihydroxy LCB moieties (sphinganine) and 
C20 fatty acids, whereas LOH1 and LOH3 prefer trihydroxy LCB moieties (4-hydroxy-sphinganine) and VLCFAs. 
The glycosyl inositolphosphorylceramide (GIPC) pool contains ceramides from LOH1 and LOH3 ceramide 
synthases. The glucosylceramide (GlcCer) pool contains ceramides generated by all three ceramide synthases. 
Font sizes demonstrate the relative size of the complex sphingolipid pools. Different arrow thicknesses indicate 

estimated conversion efficiencies (not to scale). Figure taken from (Ternes et al., 2011). 

According to Ternes et al. (2011a) two putative P. patens ceramide synthases show protein 

sequence similarity to A. thaliana LOH2 and three other putative P. patens ceramide 

synthases show sequence similarity to A. thaliana LOH1 and LOH3. Therefore, it was 

assumed that ceramide synthases in P. patens have similar substrate preferences as 

A. thaliana ceramide synthases.  

First indications for the presence of substrate-specific ceramide synthases in 

A. thaliana were derived from observations made in the LCB C-4 hydroxylase mutant 

sbh1 sbh2 (Chen et al., 2008). The authors found that the absence of trihydroxy LCB 

moieties in the double knockout mutant caused an enrichment in sphingolipids with 

dihydroxy LCB moieties and a C16 fatty acid moiety. They therefore concluded that distinct 

ceramide synthases may act on different LCB and fatty acid substrates. Later studies 

confirmed this hypothesis by describing A. thaliana LOH1, LOH2, and LOH3 enzyme 

activities and metabolic changes in the respective knockout mutants (Markham et al., 2011; 

Ternes et al., 2011a). Comparison of the sphingolipid profiles from A. thaliana sbh1 sbh2 

and P. patens s4h revealed that in contrast to sbh1 sbh2 plants, s4h mutants do not 

accumulate sphingolipids with dihydroxy LCB moieties and C16 LCBs (chapter 2). 

Sphingolipids with a C16 fatty acid moiety are in general minor species in P. patens. 

However, there is a clear distinction in the ceramide backbones of P. patens wild type 

GlcCers and GIPCs. Dihydroxy LCB moieties are mainly connected to a C20 fatty acid 

moiety in GlcCers, while the trihydroxy LCB moiety in GIPCs is connected to C20-C24 fatty 
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acid moieties (chapters 1-3). In addition to that, gametophore tissue is enriched in ceramide 

species with a C20 fatty acid moiety compared to protonema tissue (chapter 1). A. thaliana 

LOH1 and LOH3 showed highest homology to P. patens XP_024374569.1 while A. thaliana 

LOH2 showed highest homology to P. patens XP_024361685.1. The reported expression 

of the two putative P. patens ceramide synthases in the eFP browser revealed that the 

LOH2 P. patens homologue has higher expression in gametophore tissue than the LOH1, 

LOH3 homologue (Fig. S1). These predicted expression patterns strongly suggest that 

distinct substrate-specific ceramide synthases might be active in different developmental 

stages of P. patens. 

Cumulative findings from different parts of this study strongly suggests the presence 

of functionally distinct ceramide synthases in P. patens. While this might be a similar 

situation to A. thaliana ceramide synthases, substrate preferences of ceramide synthases 

from both organisms are likely different. This might indicate a different evolutionary 

background of the enzyme activities in A. thaliana and P. patens. Future studies on 

P. patens ceramide synthase knockout mutants should focus on analysing different growth 

stages and will give more information about ceramide synthase activities in P. patens.  

6.5 Metabolic changes in P. patens sphingolipid metabolism cause varying 

phenotypes 

The functional relevance of complex plant sphingolipids is not yet fully understood. Recent 

studies have unravelled roles for GIPCs and GlcCers in multiple key physiological 

processes in vascular plants. The involvement of GIPCs and GlcCers in these processes is 

assumed partially due to their contribution in membrane domain formation in the PM. GIPCs 

are associated with sensing and responding to salt stress (Jiang et al., 2019), are identified 

as receptors for NLP toxin (Lenarčič et al., 2017), and have a crucial role in controlling 

plasmodesmal cell-to-cell transport (Yan et al., 2019; Liu et al., 2020). GlcCers, on the other 

hand, are essential in organogenesis, cell differentiation, pollen transmission, protein 

secretion, and in tolerance towards cold stress (Uemura et al., 1995; Melser et al., 2010; 

Msanne et al., 2015).  

Examination of knockout mutants is a useful tool to determine the physiological role 

of certain plant metabolites. Mutant phenotypes thereby give indications about the 

physiological relevance of the missing compound. In the following, the three investigated 

P. patens sphingolipid mutant phenotypes are discussed and compared with each other. 

Of all three investigated sphingolipid mutants the s4h mutant, which is involved in 

GIPC formation in P. patens, showed the most severe growth phenotype (chapter 2). The 

plant was unable to develop fully grown gametophores and had a generally dwarfed 

morphology. Also, s4h protonema cross-walls were misshaped compared to the wild type. 
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The altered cross-walls might indicate an involvement of plant GIPCs in cytokinesis 

processes. The observed cross-wall morphology with strands reaching into the cytoplasm 

of both adjacent cells also resembled microtubule structures. Microtubules are part of the 

cytoskeletal network and are involved in vesicular transport of cell wall components to the 

phragmoplast during cytokinesis (de Keijzer et al., 2017). It could be that the cell wall 

component callose is not properly transported to the cell plate destination site because of 

disturbed vesicle dynamics. To confirm a co-localisation of callose and microtubules in s4h 

mutants, the microtubule network would have to be visualised with the help of a tubulin-

specific staining or with stable GFP marker lines. It is, however, not clear whether the 

observed growth defect is attributed to the changed GIPC structure, GlcCer structure, 

ceramide structure, or to the unusual increase of LCBs and LCB-Ps. Even though it is 

tempting to speculate that the observed growth and developmental s4h phenotype is 

attributed to the changed LCB moiety and the resulting biophysical changes in the plasma 

membrane, the exceptional drastic increase of LCBs and LCB-Ps must also be considered 

to have a strong effect on plant physiology. Especially the fact that LCBs are known 

signalling molecules during plant PCD (Abbas et al., 1994; Shi et al., 2007; Alden et al., 

2011) may indicate an involvement of these compounds in physiological changes in s4h 

plants.  

The GlcCer-deficient gcs-1 mutant also showed a dwarfed morphology even though 

it was less severe than the observed phenotype of s4h mutants (chapter 3). Moreover, the 

gcs-1 mutant did not show an altered protonema cross-wall morphology. In contrast to the 

s4h mutant, the gcs-1 mutant had PCD-like lesions in both protonema and gametophore 

tissue, that were accompanied with the up-regulation of defence-related marker genes. On 

top of that, gcs-1 mutants had protonema cell differentiation defects that were not observed 

in s4h mutants. This reflects the metabolic differences between the s4h and in the gcs-1 

mutants and shows that these metabolic changes may have different effects on P. patens 

physiology. Potential inducers of physiological changes in s4h might be the drastic 

accumulation if LCBs, LCB-Ps or the change in GIPC structure. In gcs-1 the resulting 

physiological defects might result from the accumulation of hydroxyceramides or the 

abolishment of GlcCers.  

Unlike the gcs-1 phenotype, the sd4d-1 phenotype was surprisingly mild (chapter 

3). Plant growth and development was very similar to the wild type. In contrast to s4h 

mutants, protonema cross-walls of sd4d-1 did not have an altered morphology. sd4d-1 

plants were, however, impaired in skotonema cell elongation even though the observed 

defect was not very prominent. Although PpSD4D and PpGCS are located in the same 

complex sphingolipid pathway, the phenotypes significantly differed from each other. With 

respect to the similar underlying metabolic changes in the sphingolipid profiles this was a 
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surprising observation. The potential metabolic reasons for the different mutant phenotypes 

were discussed in chapter 3 and part 6.2 of the discussion.  

All these findings indicate that GIPCs and GlcCers might have different functions in 

P. patens physiology. Changes in GIPC composition of s4h mutants caused severe growth 

defects, possibly by interfering with cytokinesis. Lack of GlcCers in the gcs-1 plant caused 

cell differentiation defects and cell death induction that might derive from impaired 

endomembrane trafficking (Melser et al., 2010; Msanne et al., 2015). Strong reduction but 

not complete abolishment of GlcCers in the sd4d-1 mutant, however, had almost no effect 

on plant physiology.  

Analogous to the investigated GlcCer-deficient mutants it would be interesting to 

study sphingolipid mutants that are devoid of all GIPCs. Comparing these mutants with the 

gcs-1 mutant would give an idea about the different physiological relevance of both complex 

sphingolipid compounds. However, the severe s4h growth defect suggests that GIPC-

deficient mutants might be lethal.  

6.6 GIPCs and GlcCers likely confer similar functions in A. thaliana and 

P. patens 

Comparing the P. patens sphingolipid mutant phenotypes to phenotypes of the respective 

knockout mutants in A. thaliana may provide information about the conservation of GlcCer 

and GIPC function during land plant evolution. The following text discusses the 

physiological phenotypes observed in A. thaliana and P. patens sphingolipid mutants. An 

important aspect of A. thaliana sphingolipid mutants is that many plants that have a 

disturbed sphingolipid biosynthesis are embryo lethal or they are unable to reach 

reproductive maturity (Chen et al., 2008; Msanne et al., 2015; Gonzalez Solis et al., 2020). 

This was the case for A. thaliana gcs-1 and sbh1 sbh2 mutants. For mutant studies in 

A. thaliana this is a great disadvantage because plant propagation relies on sexual 

reproduction. To overcome this issue, the authors mostly switch to RNAi suppressor lines 

that exhibit moderate phenotypes (Chen et al., 2008). P. patens, however, can be 

propagated vegetatively. True knockout mutants that might be affected in their sexual 

reproduction can therefore still be easily propagated and phenotypes can be thoroughly 

examined.  

P. patens s4h mutants and A. thaliana sbh1 sbh2 mutants showed similar 

morphological phenotypes. Both plant mutants were severely dwarfed and likely had 

cytokinesis defects. Plant GIPCs mostly consist of a ceramide backbone with a trihydroxy 

LCB moiety and an α-hydroxylated fatty acid moiety (Cacas et al., 2013; Buré et al., 2014; 

Resemann, 2018). Thus, the hydroxylation status of the ceramide backbone appears to be 

an important structural feature for plant GIPCs. Free hydroxyl groups in the LCB moiety and 



   Discussion 

151 
 

in the fatty acid moiety are considered important for the interaction of sphingolipids with 

surrounding membrane molecules, especially with sterols (Mamode Cassim et al., 2019). 

Disruption of the hydroxylation, either on the LCB or on the fatty acid moiety, is therefore 

assumed to have major effects on GIPC structure and thus on the biophysical properties of 

the membrane. As mentioned, P. patens s4h mutants have a different GIPC composition 

than wild type plants (chapter 2). The t18:0 LCB moiety of s4h GIPCs is replaced by the 

d18:0 LCB moiety. Furthermore, s4h plants are enriched in series B GIPCs compared to 

the wild type. The A. thaliana LCB C-4 hydroxylase mutant sbh1 sbh2 showed a similar 

switch from the t18:1 LCB moiety to the d18:1 LCB moiety. Both mutants were not 

investigated for defects in membrane dynamics or organisation. However, the A. thaliana 

fatty acid hydroxylase mutant, fah1 fah2, characterised by König et al. (2012), was 

described to have a disturbed membrane organisation (Lenarčič et al., 2017). Membrane 

organisation was determined using the environment-sensitive, fluorescent probe di-4-

ANEPPDHQ, which enables visualisation of membrane microdomains. The compound 

inserts into the lipid bilayer. Depending on the phase order of the surrounding membrane 

compartment, the dye exhibits either red fluorescence in a Lo phase-like structure or green 

fluorescence in a Ld phase-like structure. The emission shift between images taken in each 

emission spectrum is determined from the red and green ratio of the membrane. The ratio 

of the fluorescence spectrum consequently indicates the relative proportion of each distinct 

phase and hence gives an idea about the order level of the investigated membrane fraction. 

While A. thaliana wild type membranes are mostly found in an Lo phase, the fah1 fah2 

mutant membrane exhibited an Ld phase-like membrane order (Lenarčič et al., 2017). The 

assay may also be applied for P. patens s4h plants. In A. thaliana fah1 fah2 plants the 

experiment was performed on protoplasts. However, P. patens protonema cells are easily 

accessible for in-depth single-cell microscopic examinations and the lipid order may be 

directly determined in protonema cells, which have undergone minimal manipulation and 

retain their cell walls. This would give an idea about the impact of the structure change in 

s4h GIPCs on the overall membrane organisation and hence might explain the observed 

s4h development phenotype. Accordingly, it may also be helpful to generate P. patens 

mutants that are defective in fatty acid hydroxylation and to compare these mutant 

phenotypes with the s4h phenotype. Both of the mutants have an impaired ceramide 

backbone hydroxylation which may influence the hydrogen bond network between 

membrane components and hence the ability to form membrane domains (Slotte, 2016; 

Mamode Cassim et al., 2019). Comparing the two mutants might clarify whether 

hydroxylation on the LCB moiety or on the fatty acid moiety is more important for membrane 

organisation processes. The two GlcCer mutants sd4d-1 and gcs-1 may also be examined 
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for their membrane lipid order to determine the effect of GlcCer loss on membrane 

organisation. 

Recent studies show an involvement of sphingolipids and especially of GIPCs in 

plasmodesmal cell-to-cell transport (Grison et al., 2015). It is assumed that callose 

synthesis and degradation enzymes are transported via membrane domains to the target 

region at plasmodesmal sites. Callose deposition is known to regulate the size exclusion 

limit of plasmodesmata. Since s4h mutants have an unusual callose accumulation at 

protonema cross-walls, it might be that plasmodesmal flux is affected in the mutants. 

Plasmodesmata ultrastructure could be examined by electron microscopy. This would 

reveal whether the symplastic channels are disrupted in the s4h mutants. Another way to 

determine whether plasmodesmal transport is disturbed is to track the distribution of 

metabolites within the protonema network. One idea for this is to bombard protonema cells 

with fluorescent proteins. If no signal peptide is attached to the fluorescent protein, it should 

locate to the cytoplasm. Cell-to-cell migration of the fluorescent signal may then be 

monitored and tracked using fluorescence microscopy. 

The growth and differentiation phenotype of gcs-1 plants might be caused by defects 

in Golgi-mediated protein trafficking. Studies on A. thaliana mutants whose GCS activity 

was inhibited, described growth and differentiation defects that might be caused by an 

altered Golgi morphology and hence by a disturbed endomembrane protein trafficking 

(Melser et al., 2010; Krüger et al., 2013; Msanne et al., 2015). Although cell differentiation 

defects were also observed in P. patens gcs-1 mutants, it is not known whether subcellular 

structures, such as the Golgi apparatus, were also affected. Future studies might apply 

electron microscopy to reveal whether the Golgi morphology in P. patens gcs-1 was also 

altered. Together this would enforce the proposed role of GlcCer in endomembrane 

trafficking. 

It is known that sphingolipids are involved in responses to biotic and abiotic stresses 

in vascular plants. Sphingolipid LCB and fatty acid desaturation is for example determined 

as an important feature in plant adaptation to cold stress to maintain membrane fluidity 

(Chen et al., 2012). GlcCers have also been described to have a putative role in chilling and 

freezing tolerance in plants (Steponkus et al., 1990; Uemura & Steponkus, 1994; Uemura 

et al., 1995). A recent P. patens study showed a role for the sphingolipid fatty acid 

desaturase (PpSFD) in the response to cold stress (Resemann, 2018). Sphingolipid 

profiling of the sfd knockout mutant confirmed loss of sphingolipid molecular species with 

an unsaturated fatty acid moiety. Mutant plants were also indeed more susceptible to cold 

stress. Analysis of sequence and domain annotation identified the P. patens desaturase as 

a front-end Cb5 desaturase whereas the characterised A. thaliana desaturase (AtADS) is a 

methyl-end n-9 desaturase. Although PpSFD showed a conserved desaturase function, it 
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catalyses the introduction of a double bond mostly at the n-8 position of the fatty acid moiety 

instead of at the n-9 position as the AtADS does. These findings indicate an independent 

evolutionary background of the two desaturases. Nevertheless, the PpSFD activity offers 

protection against cold stress in P. patens as well as in A. thaliana and therefore seems to 

confer the same physiological function. It might be interesting to investigate whether LCB 

Δ4-desaturation and GlcCer formation also play a role in cold adaptation in P. patens. The 

LCB Δ8-desaturase (SLD) was shown to be involved in chilling tolerance in A. thaliana and 

tomato (Chen et al., 2012; Zhou et al., 2016). AtSLD catalyses the formation of the Δ8-

unsaturated LCB moiety, t18:1Δ8. t18:1Δ8 is the predominating LCB moiety in all A. thaliana 

sphingolipids. In P. patens, however, the most abundant LCB moiety is t18:0. Δ8-

desaturation occurs in P. patens only in combination with Δ4-desaturation and is only found 

in GlcCers but not in GIPCs. It is not known why Δ8-desaturation is an essential sphingolipid 

modification in vascular plants while it appears not to be essential in non-vascular plants. 

One hypothesis is that vascular land plants had to adapt to greater changes in the 

environmental conditions during land colonisation. This might include an increased 

tolerance towards cold stress. Future studies may target the characterisation of the 

P. patens LCB Δ8-desaturase and assessment of the role of LCB desaturation in cold stress 

adaptation in the moss. It is not known whether the A. thaliana LCB Δ4-desaturase has a 

similar function in the cold stress response as the LCB Δ8-desaturase. Since no obvious 

phenotypes were observed for A. thaliana and P. patens plants whose Δ4-desaturase 

activity was disturbed, it could also be interesting to check the Δ4-desaturase involvement 

in plant response to unfavourable environments, including cold temperatures.  

6.7 Concluding remarks and outlook 

Plant sphingolipid metabolism has been thoroughly investigated in the common vascular 

model A. thaliana. Although functional characterisation of A. thaliana sphingolipid enzymes 

gives us a first insight into sphingolipid function in plants, many aspects are still unknown. 

Several studies on sphingolipids from different plants indicate a diversification of plant 

sphingolipid biosynthesis in various land plant lineages. Together with the yeast 

S. cerevisiae and the vascular plant A. thaliana, P. patens has the potential to become a 

powerful model organism in the study of sphingolipid biosynthesis. 

The aim of this work was to investigate the phenotypes and chemotypes of P. patens 

knockouts of the key sphingolipid enzymes LCB C-4 hydroxylase, LCB Δ4-desaturase, and 

glycosylceramide synthase. Prior to examination of the three P. patens sphingolipid 

mutants, appropriate cultivation systems and characterisation assays have been 

established. These establishments provide the basis for the performed mutant 

characterisations but also for future P. patens mutant studies (chapter 1). Sphingolipid 
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profiling of the P. patens knockout lines indicated that all three proteins are encoded by 

single genes. The lipid profiles also demonstrated that LCB C-4 hydroxylation and LCB Δ4-

desaturation likely dictate the metabolic flux of sphingolipid substrates into GIPC and 

GlcCer formation in P. patens, respectively. Phenotype investigations showed that LCB C-

4 hydroxylase knockout plants were strongly impaired in plant growth and development 

while LCB Δ4-desaturase knockout plants barely showed any defects. LCB C-4 

hydroxylation therefore appears to have a more important physiological function than LCB 

Δ4-desaturation in P. patens. Loss of GlcCers and accumulation of precursor molecules in 

the glycosylceramide synthase mutant affected P. patens protonema cell differentiation and 

was associated with cell death-like lesions.  

Comparison with corresponding A. thaliana mutants shows that despite their distinct 

structural features, complex sphingolipids appear to confer similar physiological functions 

in vascular and non-vascular plants. While observations from the three distinct P. patens 

sphingolipid mutants confirm certain features known from the A. thaliana sphingolipid 

biosynthesis, they also reveal novel aspects of P. patens sphingolipid biosynthesis.  

 Findings from these studies contribute to our understanding of sphingolipid 

biosynthesis and function in P. patens. However, the studies also uncovered questions 

concerning the regulation of plant sphingolipid biosynthesis: How are LCB C-4 hydroxylation 

and LCB Δ4-desaturation regulated in P. patens and in other plants? Do GlcCers and 

GIPCs have different roles in P. patens physiology? Do distinct ceramide backbone 

modifications influence the roles of GlcCers and GIPCs in P. patens physiology? 

 P. patens might represent a valuable plant model in answering these and other 

unanswered questions concerning sphingolipid biosynthesis in plants. Different 

developmental stages of P. patens have simple structures consisting either of a two-

dimensional network of filamentous cells or of single cell layered leaflets (Prigge & 

Bezanilla, 2010). Membrane dynamics may therefore be visualised in planta with the help 

of advanced microscopic techniques in a plant system of lower complexity.  

The less complex P. patens sphingolipidome may also help to dissect the 

involvement of GlcCers and GIPCs in the highly dynamic processes of membrane 

organisation and membrane-associated signal transduction processes. Furthermore, the 

P. patens genome is completely sequenced since 2008 and the toolbox for genetic 

manipulation of the moss is steadily growing (Rensing et al., 2008; Rensing et al., 2020). 

The extension of the genetic toolkit includes use of the CRISPR-Cas9 strategy which 

enables targeting of other sphingolipid genes encoded by gene families in future studies.  

In addition to all these favourable aspects of P. patens, its unique evolutionary 

position which links plants with marine and terrestrial lifestyles offers the chance to 
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understand how sphingolipid biosynthesis has evolved and adapted throughout the 

evolution of land plants.  

The demonstrated studies from this work contribute to our knowledge on 

sphingolipid biosynthesis in plants. However, sphingolipid metabolism in the bryophyte has 

only started to be elucidated. Macro- and microscopic investigations of other P. patens 

sphingolipid mutants in combination with advanced lipid purification methods and mass 

spectrometric approaches will be powerful tools in the future to finally solve the riddle of the 

plant sphingolipids. 
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8 Supplemental material 

 

 

Fig. S1. Predicted expression pattern of putative ceramide synthases in P. patens tissues. The putative 
P. patens ceramide synthase with highest sequence homology to A. thaliana LOH1 and LOH3 
(XP_024374569.1) has higher expression in protonema tissue. The putative P. patens ceramide synthase with 
highest sequence homology to A. thaliana LOH2 (XP_024361685.1) has high expression in gametophore and 
protonema tissue. The expression patterns in P. patens were predicted using the eFP browser at bar.utoronto.ca 
(Winter et al., 2007/ Ortiz-Ramirez et al., 2015). 
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