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1 ABSTRACT 

Although cancer is among the most common causes of death worldwide, successful 

treatment options for most cancer entities remain elusive, raising the need for novel 

therapies. One attractive target of current drug candidates is the stress-inducible heat 

shock protein 90 (HSP90) chaperone machinery. Its normal chaperoning function is 

subverted in tumors to protect numerous mutated and overexpressed proteins from 

misfolding and degradation. Hence, it is playing a central role in oncogenic signaling. 

The addiction of cancer cells to the HSP90 chaperone machinery provides 

opportunities for targeting the stability of HSP90-dependent oncoproteins (clients).  

To dissect the importance of the HSP90 chaperone machinery in tumor progression, 

we investigated two HSP90-stabilized proteins: the macrophage migration inhibitory 

factor (MIF) in colorectal cancer (CRC) and mutant p53 (mutp53) in pancreatic ductal 

adenocarcinoma (PDAC). Both proteins were shown to be elevated in cancer cells via 

the HSP90 chaperone machinery, correlating with worse prognosis for cancer patients.  

MIF is a pro-inflammatory cytokine which is known to promote tumor progression in 

various cancer entities. Indeed, we demonstrate that loss of HSP90-stabilized MIF in 

CRC results in reduced tumor growth. This effect was accompanied by decreased 

macrophage recruitment and angiogenesis in established CRC tumors. Our data 

suggest that MIF acts via the CD74/MAPK axis and is indeed a cancer-relevant HSP90 

client in CRC.  

The tumor suppressor p53 (p53) is mutated in approximately 50% of all human 

cancers. We found that the mutp53R248W variant is highly stabilized by the HSP90 

chaperone machinery in pancreatic ductal adenocarcinoma (PDAC) cells. 

Furthermore, we identified a unique gain-of-function role of this p53R248W mutant on 

cell migration. Mechanistically, mutp53R248W specifically interacts with the 

phosphorylated transcription factor STAT3 and thus contributes to the aggressiveness 

of pancreatic cancer. 

Our results further corroborate HSP90 as an attractive target to counteract tumor 

development, and we identified two HSP90 clients as cancer drivers, outlining 

additional target structures for cancer therapy.  
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2 INTRODUCTION 

Cancer is one of the leading causes of death in the world, with rising incidence every 

year [1, 2]. It is considered a ‘disease of change’, marked by broad genetic and 

phenotypic heterogeneity and plasticity [3]. Remarkable efforts and advances have 

been made trying to understand the complexity of this disease. However, clinical trials 

for cancer therapies are the least successful compared to major other diseases [4, 5]. 

To address this issue, researchers from all over the world are focusing on targeted 

therapy and personalized oncology in order to develop tailor-made and specialized 

treatments for cancer patients [3, 5]. In this respect, it is particularly important to identify 

cancer-relevant biomarkers to increase the success rates of clinical trials [4, 5]. Several 

driver mutations have been identified to be essential for tumor initiation, providing a 

selection advantage for mutated cells [6-8]. However, throughout tumor development, 

cancer cells acquire genetic and epigenetic mutations as well as molecular alterations 

[9, 10]. Together with environmental factors such as nutrient/oxygen starvation and 

oxidative stress, these mutations and alterations induce different stress responses in 

cancer cells [11-15]. One of these responses is the heat shock response (HSR), 

leading to the induction of stress proteins such as heat shock protein 90 (HSP90) [14-

16]. By assisting in the stabilization and activation of many proteins (termed clients), in 

particular oncogenes, HSP90 constitutes a suitable target for cancer therapy [16, 17]. 

Given the plethora of stabilized oncogenes, HSP90 inhibitors provide a possibility to 

overcome resistance mechanisms of cancer cells towards conventional chemotherapy 

[18-21].  

 

2.1 HSP90 CHAPERONE MACHINERY  

2.1.1 HSP90 chaperone machinery in normal cells 

Heat shock proteins (HSPs) are a highly conserved ubiquitous family [16, 22-24]. Since 

their first discovery in 1962 [25], these proteins have been extensively studied and 

classified according to their molecular weights [26, 27]. Through assisting in the 

regulation of turnover, cellular localization and trafficking as well as activity of various 

proteins, HSPs can regulate growth, survival and differentiation of cells [16, 23, 28-30]. 
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One of the most abundant stress proteins is the molecular chaperone HSP90 [24, 31, 

32]. For HSP90, two major cytoplasmic isoforms have been identified: the inducible 

HSP90𝛼 isoform and the constitutive HSP90β isoform [24, 33]. HSP90 predominantly 

exists as homodimer of either isoform; however, monomers and heterodimers have 

also been reported [24, 33, 34]. Both isoforms consist of a C-terminal domain as well 

as a middle and N-terminal domain which are connected via a charged linker [23, 33]. 

The C-terminal domain is necessary for the interaction of two HSP90 monomers in 

order to form a functional dimer [35-37]. In contrast, the N-terminal domain is required 

for binding and hydrolysis of ATP molecules [35]. Importantly, assembly with other co-

chaperones is necessary to form the full functional HSP90 chaperone machinery [29, 

38]. An ATP-dependent chaperone cycle contains various steps of temporary and 

dynamic protein interactions, posttranslational modifications and conformational 

changes [23, 38] (Figure 1). In this manner, HSP90 can affect structure and 

functionality of its client proteins [38, 39]. For proper maturation, the chaperones 

HSP40 and HSP70 are the first to bind to the nascent polypeptide chain, forming the 

early complex [23, 39, 40]. HSP70 of the early complex can bind to HSP90 via the 

adaptor protein HOP (HSP70/HSP90 organizing protein), allowing the client to be 

transferred to HSP90 (intermediate complex) [23, 39-43]. If a polypeptide chain cannot 

be formed properly, the presence of co-chaperones such as the E3 ubiquitin-protein 

ligase CHIP (C-terminus of Hsc70-interacting protein) target the client peptide for 

proteasomal degradation [43, 44]. In contrast, proper maturation of clients are 

achieved by binding of ATP to HSP90, resulting in a transition into a ‘closed and 

twisted’ conformation, which is characterized by the interaction of the middle and N-

terminal domains [45]. At this stage, binding of the other co-chaperones triggers the 

dislocation of HOP, HSP70 and HSP40 to form the late complex [29, 39]. After 

hydrolysis of ATP, the mature protein is released. Dissociation of ADP reinstates the 

initial open conformation of HSP90, thus allowing binding of new clients [38, 39]. 
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Figure 1: ATPase cycle of the HSP90 chaperone machinery.  (I) Nascent polypeptide chains 

are being captured by HSP90 co-chaperones HSP70, HSP40 to form the early complex. (II) Binding of 

HSP70 to HSP90 via HOP allows translocation of the nascent polypeptide chain from the early complex 

to the HSP90 chaperone (intermediate complex). (III) Binding of the co-chaperone CHIP or other E3 

ubiquitin protein ligases mark nascent proteins for proteasomal degradation. (IV) In contrast, binding of 

ATP to the N-terminal domain of HSP90, results in its transition into the ‘closed and twisted’ 

conformation, which is characterized by interaction of its middle and N-terminal domains. Other co-

chaperones displace HSP70/HSP40 and HOP and assist in stabilizing the conformation of the late 

complex. After hydrolysis of ATP, the mature protein is released, and dissociation of ADP reverts HSP90 

into its initial open conformation.  

To this date, the mechanism behind how HPS90 recognizes its client proteins remains 

elusive, since no common patterns have been discovered thus far [23]. In the past 

decades, more than 20 co-chaperones have been identified, exhibiting different 

molecular functions [23, 39]. Additionally, a variety of post-translational modifications 

of HSP90 such as acetylation, phosphorylation and nitrosylation are known to regulate 

the activity of the protein and modulate its specificity to other co-chaperones or clients 

[17, 23, 46]. Therefore, the exact composition of co-chaperones and the dynamics of 

the ATPase cycle highly depend on the molecular context, the presence of post-

translational modifications and the client to be processed [23, 45, 47, 48].  

Among the main transcriptional regulators of HSPs are the members of the heat shock 

factor (HSF) family [49]. In vertebrates, the most important regulator of HSPs is the 

heat shock factor 1 (HSF1) [49, 50]. Under physiological conditions, inactive 
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monomeric HSF1 is bound to HSP90 [51-54]. However, cellular stress can trigger the 

accumulation of unfolded proteins which activates HSP90 [23, 51]. Unfolded proteins 

are captured by HSP70 and HSP40, for further translocation of the unfolded protein to 

HSP90 [42, 51]. The unfolded or misfolded proteins are further processed as described 

more detailed in section 2.1.1 to form a mature protein. This process leads to the 

displacement of HSF1 from HSP90, allowing the formation of an active trimeric HSF1 

complex [49, 53] (Figure 2). The trimeric HSF1 molecule translocates to the nucleus 

to act as a transcription factor [49, 51]. It binds to heat shock elements (HSE), a 

promotor region upstream of the HSP genes to initiate the expression of heat shock 

proteins such as HSP90 and HSP70 [49, 50].  

 
Figure 2: Transcriptional regulation of HSPs in normal cells.  Nascent polypeptide chains 

accumulate to unfolded or misfolded proteins due to cellular stress. (I) HSP40 and HSP70 capture these 

unfolded proteins for translocation to HSP90. (II) Under physiological conditions, inactive monomeric 

HSF1 is bound to HSP90. Under stressed conditions, HSF1 dissociates from HSP90, resulting in its 

trimerization and transcriptional activation. (III) In the nucleus, HSF1 binds to heat shock elements 

(HSE) upstream of the heat shock protein genes such as HSP90 and HSP70.  

According to the updated list by the Picard Lab, more than 800 HSP90 client proteins 

have been identified thus far [21]. Given the plethora of clients, it is not surprising that 

heat shock proteins can contribute to the development and progression of many 

pathological conditions such as cancer, neurodegenerative or infectious diseases [30, 

38, 42, 43, 55]. Two HSP90-stabilized clients which have been associated with tumor 

progression are the macrophage migration inhibitory factor (MIF) and mutant p53 

(mutp53) [56, 57]. 
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2.1.2 HSP90 response in cancer 

The elevated expression of HSP90 and other co-chaperones have been reported 

previously for many different cancer entities [17, 58], such as breast [59, 60], colorectal 

[61, 62] or pancreatic cancers [63, 64]. In most cases, the overexpression of 

chaperones in general and HSP90 in particular, correlates with decreased survival of 

cancer patients [59, 61, 62]. Cancer cells are rapidly proliferating cells, with a high 

demand for newly synthesized proteins [13, 15]. The extensive amount of cytotoxic 

stress, caused by the high mutational load, oxygen and nutrient starvation, can give 

rise to an accumulation of unfolded or misfolded proteins [15, 16, 23, 51, 65]. In order 

to cope with this cellular stress, which could be detrimental and cytotoxic in the long 

run, cancer cells respond by inducing HSP expression [16, 66] (Figure 2). While HSF1 

and HSP90 strongly co-regulate each other in normal cells [49], constant cellular stress 

in cancer cells results in a constitutive activation of HSF1 and HSF1-mediated 

chaperone expression, which can favor the formation of superchaperone complexes 

[67-71] (Figure 3).  

 
Figure 3: Native forms of HSP90 in normal compared to cancer cells.  In normal cells, 

HSP90 exists as a transient dimer in order to assist in protein turnover and activity. Cellular homeostasis 

is achieved by counter regulation between HSF1 and HSP90. Due to high stress levels in cancer cells, 

HSF1 is constitutively active, resulting in increased expression of HSP90 and other chaperones. The 

association of multiple co-chaperones with HSP90 leads to the formation of superchaperone complexes, 

which in turn support increased stabilization and decreased degradation of its client proteins.  

These superchaperone complexes further support tumor development by assisting in 

the proper maturation, stabilization and activity of a plethora of oncogenes (such as 

mutp53, AKT, v-SRC) [16, 56, 71, 72]. Thus, HSP90 helps to fulfill the hallmarks of 

normal cells cancer cells
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cancer defined by Hanahan and Weinberg, which includes increased proliferation, 

angiogenesis, invasion and metastasis [17, 73, 74].  

In that context, several cancer-relevant HSP90 clients have already been identified 

across different cancer origins [72, 75]. In breast cancer for example, the human 

epidermal growth factor receptor-2 (HER2; ErbB2/Neu) was described as an important 

client of the HSP90 chaperone machinery [72, 76, 77]. Interestingly, a previous 

publication from our group found that HER2 overexpression regulates hyperactivation 

of HSF1, resulting in increased induction of the HSP90 chaperone machinery (Figure 
2) and thus further stabilization of HSP90 clients, providing a positive feed-forward loop 

[76]. In comparison, the androgen receptor was identified as important HSP90 client 

relevant for prostate cancer progression [75, 78]. 

Because of its pleiotropic functions, the abundance of clients and large impact on 

tumor development and progression, HSP90 is considered a promising therapeutic 

target in cancer therapy [16, 72, 75].  

 

2.1.3 HSP90 as therapeutic target  

The aberrant activation of HSP90 within the superchaperone complexes results in 

higher ATPase activity of HSP90 in cancer cells compared to normal cells [68, 71, 79]. 

Consequently, HSP90 is considered a potential target to selectively affect cancer cells 

[71, 80]. In the past decades, several clinical trials have been performed using small 

molecules, which are able to bind and inhibit the N-terminal ATP binding pocket of 

HSP90, resulting in client degradation of cells with high ATPase activity such as cancer 

cells [71, 79, 81]. Unfortunately, first-generation inhibitors such as Tanespimycin 

(17AGG) showed low efficacy, high toxicity and reduced solubility [82, 83]. In order to 

address this issue, second-generation inhibitors such as Ganetespib (STA9090) and 

Onalespib (AT13387) have been developed and applied to clinical trials [20, 82, 84]. 

Using these inhibitors, several in vivo studies confirmed decreased tumor development 

for T-cell lymphomas [85], non-small cell lung cancers [86, 87] and breast cancers [88]. 

However, other studies in cancer entities such as colorectal cancer demonstrated low 

antitumor efficacy of HSP90 inhibition alone, with efficacy only observed in the 

presence of other chemotherapeutics [89, 90].  
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Even though second-generation inhibitors have shown lower cytotoxicity compared to 

first-generation inhibitors [20, 83],only limited efficacies have been reported in some in 

vivo studies and clinical trials [20, 84, 89, 90]. So far, none of the 18 HSP90 inhibitors 

in development have shown sufficient efficacy for FDA (Food and Drug Administration) 

approval [14, 89, 91]. The limited efficacy of these HSP90 inhibitors was thought to be 

caused by the activation of HSF1 [84, 92]. The HSF1 mediated heat shock response 

(HSR) results in increased expression and activation of HSPs such as HSP70 (Figure 
2) which can diminish the effects of an HSP90 inhibitor [49, 92]. In order to reduce the 

HSR, inhibitors binding to the C-terminal domain or those that disrupt the HSP90 

protein-protein interactions are currently investigated [67, 92-95]. Such inhibitors have 

shown encouraging results thus far, causing the degradation of client proteins with 

limited induction of the HSF1 response compared to the N-terminal inhibitors [67, 92, 

94].  

Taken together these results have further emphasized the need to investigate the 

molecular basis of the disease for targeted and personalized medicine and the need 

for predictive cancer-relevant biomarkers for HSP90 inhibitors. Because of that, we are 

investigating the role of two important HSP90 clients: the macrophage migration 

inhibitory factor (MIF) and mutant p53 (mutp53). 

 

2.2 MACROPHAGE MIGRATION INHIBITORY FACTOR IN COLORECTAL 
CANCER 

2.2.1 Colorectal Cancer 

Colorectal cancer (CRC) is the third most common cancer worldwide, with rising 

incidence every year [96-98]. In the majority of cases, the disease is caused by 

sporadic mutations due to environmental factors like age or lifestyle factors such as 

improper diet and the lack of physical exercise [96, 99]. However, a minority of CRC 

cases occur as a result of inherited genetic mutations [96, 99]. As early as in the late 

1980s, Vogelstein and colleagues demonstrated, that a series of oncogene mutations 

and loss of tumor suppressors are essential for the development and progression of 

sporadic CRC [100, 101]. Genetic alterations of APC (adenomatosis polyposis coli), 

CTNNB1 (catenin beta-1), KRAS (Kirsten ras oncogene homolog), TP53 (tumor 

protein 53), and SMAD4 (mothers against decapentaplegic homologue 4) are essential 
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drivers for the successive malignant degeneration of normal mucosa to carcinoma and 

metastasis [96, 99, 101]. Other important causative factors for colorectal cancer are 

inflammatory bowel diseases (IBD) such as ulcerative colitis and crohn’s disease [96, 

99, 102]. Due to the characteristic chronic and relapsing inflammation of these 

diseases, leading to inflammation-induced damage of the intestinal tissues, IBD 

patients are highly susceptible to developing CRC [99, 102].  

To investigate a colitis-associated type of colorectal cancer, the AOM/DSS mouse 

model can be used [103-105]. This model entails a single injection of azoxymethane 

(AOM), a carcinogenic chemical agent causing DNA damage in the colon due to 

methylation of guanosine [103, 104]. After one week of rest, dextran sodium sulfate 

(DSS) is added to the drinking water, causing an acute inflammation in the intestine, 

due to the disruption of the epithelial barrier and infiltration of the microbiome into the 

tissue [103, 106]. After administration of both agents, rodents develop tumors in the 

colorectal part of the intestine, mimicking the human patient situation [103, 105].  

In sum, inflammation can play a crucial role in the development of colorectal cancer. 

Due to the long symptom-free tumor growth and the broad range of occurring 

symptoms, most patients are diagnosed at later stages of the disease [107, 108]. Thus, 

preventive CRC screenings as well as development of predictive biomarkers are 

essential to allow earlier detection and better prognosis of these tumors [102, 107, 

108]. 

It has been shown in various human cancer entities that elevated MIF levels in 

epithelial tumor cells correlated with poorer patient prognosis [109-112]. In a mouse 

model for breast cancer, we previously showed that elevated MIF levels are due to a 

stabilization through the HSP90 chaperone machinery, thus contributing to tumor 

progression [57, 80]. Hence, in the current study we investigated whether MIF is a 

tumor driver and can serve as potential drug target in CRC.  

Before describing the role of MIF in cancer cells, the next section depicts the functions 

of the pro-inflammatory cytokine under physiological and inflammatory conditions.  
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2.2.2 Macrophage migration inhibitory factor – a pro-inflammatory cytokine 

under physiological and inflammatory conditions 

Macrophage migration inhibitory factor (MIF) is a ubiquitous pro-inflammatory cytokine 

involved in inflammatory and immune responses [113-115]. First discovered in 1966, 

it was shown to inhibit random migration of peritoneal macrophages [116-118] and to 

function as a homotrimer [119, 120]. Besides its function as a pro-inflammatory 

cytokine, it was also reported to have enzymatic activity via its tautomerase domain 

[119-121]. MIF was shown to be involved in a plethora of disorders such as 

cardiovascular [122-124], neurodegenerative [125] and pulmonary diseases [126].  

MIF can fulfil its pleiotropic functions either via receptor-mediated pathways by binding 

to CD74/CD44, CXCR2, CXCR4 and CXCR7 [113, 123, 127-130] or through receptor-

dependent or independent endocytosis [113, 124, 131, 132] (Figure 4). By binding to 

transmembrane receptors extracellular MIF initiates various downstream signaling 

cascades and assists in diverse cellular functions [113, 123]. Depending on the cellular 

context, these receptors function individually or as heterocomplexes [124, 129, 130]. 

The exact signaling pathway for MIF highly depends on the cellular context, the 

expression of the receptors on different cell types as well as environmental factors 

such as the expression of ligands that compete with MIF for binding to non-cognate 

receptors [128-130]. Binding of MIF to the non-cognate receptors CXCR2 or CXCR4 

actives G-proteins, whereas interaction with CXCR7 activates ß-arrestin which inhibits 

short term G-protein coupled receptor signaling and results in a long-lasting ERK1/2 

(extracellular regulated MAP kinase) and PI3K (phosphoinositide 3 kinase) activation 

[130, 133]. Binding to the cognate CD74 receptor triggers its dimerization with CD44 

and the activation of a downstream signaling cascade, for example via the tyrosine 

kinase SRC [127, 134]. The individual and combined activation of these pathways can 

result in the activation of MAP-kinases or PI3K/AKT, that results in cell proliferation, 

migration and angiogenesis [113, 124, 128, 129, 133, 134]. Furthermore, activation of 

ERK1/2 promotes induction of phospholipase A2 (PLA2) and cyclooxygenase 2 

(COX2) resulting in transformation of arachidonic acid to prostaglandin E2 (PGE2), an 

essential driver of inflammatory responses [113, 135-137]. Simultaneously, MIF-

mediated activation of COX2 is suggested to have an inhibitory impact on p53, 

resulting in decreased apoptosis and further supporting cellular survival and 

proliferation [113, 133, 138]. However, MIF can also enter cells via endocytosis [113, 
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124]. Intracellular MIF can for instance bind to JAB1 (JUN-activation domain-binding 

protein 1) resulting in its inactivation [139, 140]. The inactivation of JAB1 prevents 

activation of cJUN (AP1 transcription factor subunit), which functions as a co-activator 

of the activator protein 1 (AP1), known to be involved in the regulation of proliferative 

and inflammatory signals [113, 139-141]. Furthermore, MIF-JAB1 diminishes JAB1 

induced degradation of the cyclin-dependent kinase inhibitor KIP1 (p27), resulting in 

increased cell cycle arrest [113, 139, 142, 143]. In this respect, high levels of 

intracellular MIF can counteract MIF-receptor induced pathways [122, 124].  

 
Figure 4: Pleiotropic MIF functions under physiological  and inflammatory 
conditions.  Macrophage migration inhibitory factor (MIF) acts in a receptor-dependent manner by 

binding to CD74/CD44, CXCR2/4/7 or can enter cells via endocytosis. Depending on the molecular 

context, the different MIF receptors can form heterocomplexes, which trigger downstream activation of 

MAPKs ERK1/2, p38 or PI3K/AKT supporting migration, proliferation, angiogenesis and inflammation of 

cells. MIF-induced activation of COX2 can have an inhibitory impact on p53, further promoting cellular 

survival by inhibiting apoptotic responses. High intracellular levels of MIF can counteract the receptor-

induces pathways, caused by MIF-mediated inhibition of JAB1. This subsequently, leads to an induction 

of cell cycle arrest (via KIP1) and a reduction of inflammatory and proliferative signals (via cJun/AP1).  

Counter regulatory activity has been reported between MIF and glucocorticoids (GC), 

hormones which are important anti-inflammatory players [113, 122, 144]. By inhibiting 

PLA2 or inducing the expression of mitogen-activated protein kinase phosphatase 1 

(MKP1, the main negative regulator of ERK), high levels of glucocorticoids, can 

hamper MIF-induced pathways [137]. Similarly, it has been reported that MIF is able 

to counteract glucocorticoids for example through inhibition of MKP1 [113, 137, 144]. 
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Therefore, a balance between the pro-inflammatory cytokine MIF and the anti-

inflammatory glucocorticoids is essential for proper cellular homeostasis in order to 

prevent the development of diseases [122, 130].  

Taken together, there is an increasing amount of evidence over a number of years, 

that MIF is not just a pro-inflammatory cytokine involved in inflammatory responses but 

is also a potential driver of tumor development [145, 146]. 

 

2.2.3 Macrophage migration inhibitory factor – a tumor promotor under 

oncogenic conditions 

It has been shown in various human cancer entities such as breast [109], prostate 

[110, 147], colon [111, 148] and hepatocellular carcinomas [112] that elevated MIF 

levels in epithelial tumor correlated with poorer patient prognosis.  

Thus far, the role of MIF in intestinal cancer has been investigated in vivo by using 

Apcmin mice [149] or xenograft tumor models [111, 150, 151], confirming the tumor 

supportive role of MIF is this cancer entity. However, a causative in vivo model, 

mimicking the human patient situation remains elusive, since patients with malignant 

intestinal neoplasia mostly develop tumors in the distal part of the intestine (colon and 

rectum) [105]. Only a minority of tumors grow in the small intestine, as observed for 

the Apcmin mice [152]. Therefore, we have chosen to investigate the role of MIF as 

cancer-relevant HSP90 client in a more clinically relevant approach using the 

AOM/DSS mouse model to induce colitis-associated cancer [103].  

In a recent study, our research group was able to show that MIF levels are elevated in 

breast cancer cells [57]. These high MIF levels (Figure 5) arise as a consequence of 

cellular stress induced activation of HSF1, triggering the expression of various 

chaperones [49, 57, 76, 80] (Figure 2). As a consequence, the formation of 

superchaperone complexes (Figure 3) leads to high stabilization of the MIF protein 

[57, 67, 76]. Furthermore, oxygen starvation in cancer cells triggers the activation of 

hypoxia inducible factor 1 alpha (HIF1𝛼), a major transcription factor of MIF and pro-

angiogenic genes such as VEGF [153-156]. In addition, extracellular MIF can bind to 

its receptors in an autocrine or paracrine fashion in order to trigger proliferation, 

angiogenesis, migration or apoptosis of cells via induction of the MAP kinases (p38, 

ERK1/2) or PI3K/AKT [111, 150, 151, 157-162]. In a positive feed-forward loop, these 
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proteins can further contribute to the activation of HSF1 and HIF1𝛼 to trigger MIF 

expression and stabilization [70, 76, 155, 163, 164]. In cancer cells, MIF can also 

contribute to inflammatory processes by activation of PLA2 [159]. The inhibitory impact 

of COX2 on the tumor suppressor p53 contributes to decreased apoptosis, which 

further supports cancer cell survival and proliferation [138, 159, 165, 166].  

 
Figure 5: MIF stabilization and functions in cancer cells.  Stabilization of MIF via HSP90 

multichaperone complexes results in elevated MIF protein levels in cancer cells and serum. 

Furthermore, constant cellular stress and oxygen starvation induce constitutive activation of HIF1𝛼 and 

HSF1. HSF1 further promotes activation and expression of the HSP90 chaperone machinery. HIF1𝛼 

can function as a transcription factor for MIF further promoting elevation of MIF levels on gene 

expression levels in cancer cells. Increased binding of MIF to its receptors enhances activation of 

downstream signaling pathways to promote proliferation, migration and inflammation to promote 

carcinogenesis.  

Notably, the increased expression, stabilization and secretion of MIF from cancer cells 

and its chemokine like properties, can further contribute to the recruitment and 

activation of tumor promoting immune cells such as tumor associated macrophages 

[123, 154, 155, 167]. Constituents of the tumor microenvironment can support tumor 

progression, not just by expressing and secreting MIF themselves [148, 168], but also 

by producing and secreting various cytokines which can further promote tumorigenic 

proliferation and angiogenesis [167, 169, 170].  

 

In cancer cells, MIF has also been shown to promote cellular resistance to stress or 

chemotherapeutics via regulation of MAPKs, STAT3 or AMPK, subsequently 
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promoting tumor cell survival [157, 171, 172]. Because of its pleiotropic functions 

associated with tumor progression, MIF has been considered a promising selective 

target for cancer therapy [80, 157, 159]. Targeting of MIF can be achieved by three 

main strategies:  

(I) Direct binding of small molecules to the tautomerase domain, which is known to 

be important for the interaction with other proteins [173, 174].  
 

(II) By using monoclonal antibodies against MIF or its cognate receptor CD74, 

resulting in a modulation of the downstream signaling cascades and interference 

with MIF induced tumorigenic pathways [175].  
 

(III) Indirect inhibition through its destabilization using HSP90 inhibitors, resulting in 

decreased MIF levels in cancer cells and diminished MIF-induced tumorigenic 

functions [57, 76].  

 

To exploit the potential of anti-MIF therapy in the field of oncology, a number of 

approaches have also been used in preclinical as well as some clinical trials supporting 

MIF’s tumorigenic potential [159, 175]. However, additional research is necessary to 

fully understand the tumor promoting mechanism of action and the potential of using 

MIF as a biomarker for CRC. 

 

2.3 MUTANT P53 IN PANCREATIC DUCTAL ADENOCARCINOMA 

2.3.1 Pancreatic ductal adenocarcinoma  

Pancreatic cancer is the seventh leading cause of cancer death worldwide, with rising 

fatalities every year [2, 98]. Of all pancreatic malignancies, pancreatic ductal 

adenocarcinoma (PDAC) occurs with a frequency of more than 90% and is considered 

as highly chemoresistent and poorly treatable due to limited medical and surgical 

options [176-179]. The late onset of symptoms combined with a high capability to 

metastasize and high plasticity of the cancer cells, make PDAC one of the most 

aggressive entities with a five-year survival rate of around 8% [176-178]. Due to the 

broad heterogeneity of PDAC, several efforts have been made in order to specify 

defined PDAC subtypes based on histological findings as well as transcriptome 

analysis. Taken together, it is suggested to distinguish between the epithelial-like 
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classical subtype and the more aggressive basal-like quasi-mesenchymal subtype 

[177, 180-183].  

PDAC derives from pancreatic intraepithelial neoplasia which are categorized into 

three stages (PanIN1-3) and characterized by successive accumulation of genetic 

mutations and increasing desmoplasia [177, 184]. Whereas mutations in KRAS are 

sufficient for the initiation of PanINs, additional genetic hits in tumor suppressor genes 

such as TP53 (tumor protein p53), CDKN2A (cyclin-dependent kinase inhibitor 2A), 

and SMAD4 (mothers against decapentaplegic homologue 4) are required for PanIN-

PDAC lineage [177, 184, 185]. A significant hallmark of PDAC is the presence of a 

dense stromal matrix, known as the tumor microenvironment, which accounts for up to 

90% of the tumor bulk and has been shown to further promote PDAC progression [177, 

179]. Unfortunately, targeting components of the tumor microenvironment using anti-

stromal therapies to diminish PDAC progression has not been successful in clinical 

trials so far [179]. 

In CRC we previously demonstrated that mutp53R248Q/W is stabilized by the HSP90 

chaperone machinery, contributing to tumor progression and aggressiveness [56]. In 

PDAC, approximately 70% of patients carry mutations in TP53 which is mutated as a 

late genetic event during tumor development [177, 186, 187]. Thus, we aimed to 

investigate whether mutant p53 (mutp53) is also a cancer-relevant HSP90 client in 

PDAC. To understand the altered functions of p53 mutants in cancer cells, the next 

section describes the physiological functions of the tumor suppressor p53. 

 

2.3.2 Wildtype p53 – a tumor suppressor 

Since its first discovery in 1979, the tumor suppressor p53, referred to as the ‘guardian 

of the genome’, has been extensively studied [188-190]. The genetic structure of TP53 

was shown to be highly evolutionarily conserved across species [191, 192]. It consists 

of an N-terminal transactivation domain, followed by a core DNA-binding domain and 

a C-terminal oligomerization domain [191, 193]. Under physiological conditions, p53 

levels are tightly regulated and kept low, by its major antagonist, the E3 ubiquitin ligase 

MDM2, targeting it for proteasomal degradation [194-196]. However, a variety of 

different stressors such as nutrient starvation, DNA damage or hypoxia result in post-

translational modifications of both proteins, leading to an induction of p53 activity [193, 
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195, 197]. Proper tetramerization of p53 is required for DNA binding, post-translational 

modifications as well as protein-protein interactions [197]. Following nuclear 

translocation, active p53 can bind to its target genes, and prevents the accumulation 

of mutagenic DNA [193, 195, 198]. As a transcription factor p53 regulates the 

expression of a large variety of genes involved in cell cycle progression (such as 

CDKN1A, GADD45A) as well as cellular survival and apoptosis (such as BAX, PUMA, 

NOXA) [193, 197, 199]. In a negative feedback loop, p53 induces the expression of 

MDM2, resulting in increased MDM2-mediated degradation of p53 to ensure normal 

cellular homeostasis [194, 195, 199]. 

Because of its pleiotropic functions in cellular protection and tumor suppression, 

mutation or ablation of TP53 is an essential step in human tumor development [188, 

200, 201]. Indeed, TP53 has been shown to be mutated in approximately 50% of all 

human cancers, making it the most frequently mutated gene in a variety of cancer 

entities [202, 203].  

 

2.3.3 Mutant p53 – a tumor promoter 

The majority of TP53 mutations are missense mutations in the central region of the 

gene, the DNA binding domain (DBD) [202, 204-206]. Some of these mutations occur 

with high frequency among different cancer entities and are so called hotspot 

mutations [202, 205, 206]. These mutations in the DNA binding domain can be 

distinguished in two main groups: ‘DNA-contact’ mutants (e.g.: R273H, R248Q), 

directly affecting residues necessary for DNA binding or ‘conformational’ mutants 

harboring mutations which are causing structural changes (e.g.: R282W, R175H) [205, 

207]. Most mutations in the DNA binding domain result in the loss of the DNA binding 

capacity, leading to a loss of wildtype (WT) p53 tumor suppressor function (loss-of-

function, LOF) [202, 205]. Especially in early stages of tumor development, mutations 

of TP53 due to genotoxic stress occur only on one allele [208]. This results in an 

intermediate stage, characterized by the presence of heterocomplexes between 

mutp53 and the remaining WTp53 [205, 208]. This interaction of mutp53 and WTp53 

results in diminished WTp53 activity, known as the dominant-negative effect of the 

mutant on the wildtype protein [202, 205, 208]. However, as tumors progress, loss-of-

heterozygosity (LOH) results in the loss of the remaining WTp53 allele, which is a 

prerequisite for stabilization of mutp53 in cancer cells [208, 209]. Most of the DBD 
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mutants have been shown to be highly unfolded or less structurally stable than WTp53 

[210-212]. The stabilization of these mutants is achieved by increased binding to the 

aberrantly activated HSP90 chaperone machinery (Figures 2 and 3), preventing it 

from proteasomal degradation (Figure 1), which results in elevated mutp53 levels in 

cancer cells [16, 56, 85, 213-215]. However, mutation of p53 can result in the exposure 

of a hydrophobic aggregation sequence within the DNA binding domain contributing to 

the formation of oligomers and prion-like proteins [216-219]. Co-aggregation of mutp53 

and WTp53 in these prion-like structures is thought to contribute to the dominant 

negative effect [219, 220]. 

We propose that stabilization of mutp53 by HSP90 is a requirement for the gain of new 

tumorigenic functions (gain-of-function, GOF), providing a selection advantage for 

cancer cells [56, 208, 221, 222]. DBD hotspot mutants can no longer bind to the DNA 

to activate the transcriptional machinery, but still maintain the N-terminal 

transactivation domain [210]. Therefore, several mechanisms have been described 

through which p53 mutants can still fulfil their transcriptional activity (Figure 6):  

(I) Binding of mutp53 to other proteins and transcription factors can results in their 

enhanced functional or transcriptional activity (hyperactivation) [210, 223].  
 

(II) Binding of mutp53 to other proteins or transcription factors (TF) can diminish their 

functional or transcriptional activity (inactivation) [223, 224].  
 

(III) Interaction of mutp53 with other proteins and transcription factors may contribute 

to a change of existing signaling pathways (reprogramming) [210, 224].  
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Figure 6: Gain-of-function of mutant p53 via interaction with other proteins.  High 

stabilization of mutp53 via the HSP90 chaperone machinery is a prerequisite for gain-of-function (GOF). 

To fulfil its tumorigenic functions despite loss of DNA binding capacity, mutp53 interact with other 

proteins (such as co-factors) and transcription factors (TF). These interactions can trigger a 

hyperactivation (I), inactivation (II) or reprogramming (III) of these target proteins in order to drive tumor 

progression.  

These mechanisms provide examples on how different p53 mutants (despite loss of 

DNA binding capacity) can gain new tumor promoting functions to support for example 

therapy resistance, invasion and metastasis of cancer cells [56, 210, 222, 224].  

Because of the increasing network of mutp53 interactions with other proteins and 

regulation of pathways, several efforts have been made to target mutp53 in cancer 

therapy. In order to achieve this, two main strategies can be used:  

(I) Small molecules to restore WTp53 conformation and activity to induce cell cycle 

arrest and apoptosis in cancer cells and to prevent oligomerization of mutp53 

proteins [225-228].  

(II) Destabilization of mutp53 proteins by inhibition of the HSP90 chaperone complex 

[56, 85, 214, 226, 229]. 
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The underlying mechanism of the gain of function is highly dependent on the mutant 

itself as well as the cellular context [204, 210]. Due to the different structures and 

functions caused by distinct mutations on p53, each mutant has to be considered as 

an individual protein [204]. Different mutp53 variants might result in unequal gain of 

new functions and show diverse tumor promoting activities and prognostic potentials 

[230, 231]. The existing controversies in the field of mutant p53 emphasize the 

necessity to further explore the exact mechanism of individual mutants and their 

relevance in tumor progression [231].  

Thus, our research group investigates the specificity of the hotspot mutant p53R248Q/W, 

its stabilization via the HSP90 chaperone system and its GOF to support cancer 

progression.  

 

2.3.4 Specific gain of new tumorigenic functions by mutp53R248Q/W 

Mutp53R248Q/W is a hotspot missense mutant in the DNA binding domain (contact 

mutant), that has been shown to be elevated in cancer cells and to correlate with a 

worse prognosis in cancer patients [56, 209, 230].  

In a murine model for colorectal cancer, our group has previously shown that 

mutp53R248Q/W is highly stabilized by the HSP90 chaperone machinery [56]. It exerts 

its gain-of-function on migration through interaction with the transcription factor 

pSTAT3, resulting in hyperactivation of the transcription factor STAT3 via 

displacement of its phosphatase SHP2 [56, 210] (Figure 6). Hence, mutp53R248Q/W 

leads to an increased transcriptional regulation of STAT3 target genes involved in 

proliferation and invasion [56]. Concomitantly, an ablation of mutp53 decreases 

pSTAT3 levels, and diminishes tumor promoting target gene expression [56] 

(Figure 7). 
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Figure 7: Gain-of-function of mutp53R 248Q/W on proliferation and invasion through 
interaction with pSTAT3 in CRC. In CRC mutp53R248Q/W is highly stabilized via the HSP90 

chaperone machinery, which is a known prerequisite for its gain-of-function (GOF) effects. 

mutp53R248Q/W binds to phosphorylated STAT3 (pSTAT3), resulting in a hyperactivation of the 

transcription factor via displacement of the phosphatase SHP2. The increased pSTAT3 level support 

expression of genes involved in proliferation and invasion. Ablation of mutp53R248Q/W strongly diminished 

pSTAT3 level and respective target gene expression.  

Indeed, high levels of mutp53R248Q/W in colorectal cancer patients mostly correlated 

with high levels of pSTAT3 which was associated with poorer survival [56].  

Importantly, the exact interaction partners of mutp53R248Q/W and the functional outcome 

(Figure 6) highly depend on the molecular and cellular context [204]. Besides 

colorectal cancer, mutp53R248Q/W has also been reported as potential tumor driver in 

breast cancer by upregulation of HER2 (human epidermal growth factor receptor 2) 

[232] or in ovarian cancer by inducing invasive gene expression via interaction with 

Rad21 [233]. In both cases, mutp53R248Q/W has been suggested to interact with other 

proteins to promote tumor progression and aggressiveness [232, 233].  

Taken together these data suggest the need to further investigate the specificity of 

different p53 mutants in cancer entities based on the molecular context.  
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2.4 PROJECT SCOPE 

The aim of this thesis is to investigate HSP90-stabilized proteins as therapeutic targets 

in cancer. We evaluated if the two HSP90 clients MIF and mutp53 are cancer-relevant 

HSP90 clients and thus, suitable drug targets in colorectal cancer and pancreatic 

ductal adenocarcinoma respectively. 

2.4.1 Macrophage migration inhibitory factor in colorectal cancer 

We aimed to investigate the role MIF in AOM/DSS induced colitis-associated tumor 

development (described in section 2.2.1 in more detail). This chemically induced 

cancer model is known to mimic the human patient situation better than previously 

described Apcmin or xenograft mouse models [105, 149, 151]. To evaluate the impact 

of HSP90-stabilized MIF in CRC progression we made use of a conditional Mif 

knockout mouse as well as murine and patient-derived colonic tumor organoids. Our 

first and most important question was:  

 

Are MIF levels elevated in AOM/DSS induced tumors and patient CRC samples? 

  

To answer this question, mice were treated with AOM/DSS to induce tumor 

development. Mice were dissected 12 weeks after AOM injection and colon was 

prepared to evaluate the tumor burden and Mif level in CRC cells. By this approach, 

we were able to address the second most important question:  

 

Are colorectal tumors dependent on MIF? 

 

Since MIF as a pro-inflammatory cytokine is involved in immune and inflammatory 

responses, we first investigated the overall inflammation in established tumors (week 

12 post-AOM) and during tumor initiation (3 days after DSS start: ‘short’ and 8 days 

after DSS stop: ‘recovery’). Furthermore, we investigated tumorigenic mechanisms 

such as angiogenesis and proliferation in established tumors and recovering tissue.  

To further clarify whether effects derive from epithelial cells or from stromal cells of the 

tumor bulk, Mif-depleted tumor organoids were prepared to assess tumorigenic MIF 

activity.  
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Additionally, different HSP90 inhibitors (first-generation inhibitor 17AAG; second-

generation inhibitors Ganetespib and Onalespib) were used to evaluate susceptibility 

of tumor organoids harboring elevated Mif levels, compared to normal colon and small 

intestinal epithelia-derived organoids.  

 

2.4.2 Mutp53R248W specificity in pancreatic ductal adenocarcinoma 

Using a panel of seven different cell lines, we wanted to elucidate the specificity of 

different mutp53 (mutant p53) variants in PDAC. Based on our results previously 

gained in a mouse model for colorectal cancer [56], we hypothesized that mutp53R248W 

is stabilized through the HSP90 chaperone machinery resulting in a gain-of-function 

effect on proliferation and invasion via interaction with phosphorylated STAT3 

(pSTAT3). Therefore, our most important question was:  

 

Is mutant p53 stabilized via the HSP90 chaperone machinery in PDAC cells? 

 

We evaluated the levels and stability of mutp53 in different PDAC cells. Using the two 

HSP90 inhibitors Gantespib and Onalespib, we investigated whether different mutp53 

variants are stabilized by the HSP90 chaperone machinery. Using transwell migration 

and wound healing assays we elaborated on the functional role of different p53 

mutants in migration. Next, we aimed to understand the underlying molecular 

mechanism, driving mutp53-dependent migration in PDAC.  

 

Is mutp53-pSTAT3 complex formation necessary for migration in PDAC? 

 

Therefore, co-immunoprecipitation experiments were performed to explore if different 

p53 mutants (and specifically R248W) are able to bind pSTAT3. To further analyze 

whether migration effects are due to a possible interaction with pSTAT3, migration 

assays were performed after STAT3 knockdown (siRNA) or STAT3 inhibition using the 

small molecule inhibitor Stattic. 
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3 RESULTS 

3.1 PUBLICATION: MIF IN CRC 
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Hsp90-stabilized MIF supports tumor progression
via macrophage recruitment and angiogenesis in
colorectal cancer
Luisa Klemke 1, Tiago De Oliveira 2, Daria Witt1, Nadine Winkler1, Hanibal Bohnenberger3, Richard Bucala4,
Lena-Christin Conradi2 and Ramona Schulz-Heddergott 1

Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is
increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is
tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions
and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth.
Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-
associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage
recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are
established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to
an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate
angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the
shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological
inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of
organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells.
Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF
in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth
defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data
support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and
selective therapeutic target in CRC.

Introduction
Macrophage migration inhibitory factor (MIF), which

was originally discovered as a secreted proinflammatory
cytokine with a central role in immune and inflammatory
responses, has also been identified as a tumor promoter1,2.

MIF is known to exert effects in epithelial cancer cells,
stromal fibroblasts, endothelial cells, and immune cells3–10.
In tumors, the major source of MIF is the epithelial cells
themselves11–13, followed by a minor secretory contribu-
tion from constituents of the tumor microenvironment,
such as stromal and inflammatory cells5,14,15. Therefore,
tumor cells aberrantly elevate MIF expression via Hsp90-
mediated protein stabilization10,11,16. The HSP90 chaper-
one machinery is a prerequisite for tumorigenesis because
it stabilizes oncogenic and tumor-promoting proteins,
protecting them from degradation17,18. We previously
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identified MIF as an Hsp90-stabilized protein in breast
cancer cells11.
Colorectal cancer (CRC) patients also present elevated

MIF levels, which are associated with a worse prog-
nosis12,15,19–22. Among cancers, CRC has the third highest
incidence23. Previous in vitro studies in human CRC cells
showed that MIF increases proliferation, angiogenesis,
and migration12,24,25. Functionally, MIF can bind to its
main receptor CD74 to activate p38, MAPKs, or PI3K/
AKT, which induces the expression of angiogenic fac-
tors4,12,24,26–28. Furthermore, MIF regulates therapeutic
resistance via regulation of STAT3, MAPKs, AMPK, or
hypoxia-dependent mechanisms28–31. Other studies using
CT26 allograft models support that MIF promotes CRC
progression12,24. In vivo, it has been shown that MIF sti-
mulates the early stages of small intestinal adenomas in
Apcmin mice27. Although all these studies showed a
positive correlation between aberrant MIF function and
CRC growth, an in vivo model of causative and severe
CRC that mimics the human CRC was not available.
In our study, we investigated whether MIF promotes

tumor growth in an autochthonous colorectal azox-
ymethane (AOM)/dextran sodium sulfate (DSS) mouse
model and whether MIF can serve as a potential drug
target. Because of the tumor-specific Hsp90-mediated
stabilization of MIF, this protein could be selectively tar-
geted in CRC. Our data suggest that MIF increases CRC

growth and supports tumor-specific macrophage recruit-
ment, tumor cell proliferation, and neoangiogenesis with-
out affecting overall inflammation in established tumors.
Strikingly, a recent study in a mouse model of chronic

colitis-dependent CRC reported a tumor-protective role
for MIF32. This phenomenon was not observed in neither
the Apcmin mouse model27 nor several other in vivo
cancer studies, including myc-induced lymphoma,
chronic lymphocytic leukemia, breast, prostate, bladder,
and skin cancer3,4,11,33–38. An important difference
between the previous work and our study is that we used a
mouse model of acute colitis-associated CRC, which is
more similar to human sporadic CRC39. Importantly, in
our sporadic CRC model, MIF as a tumor-promoting
factor is selectively targetable in tumor cells by inhibiting
Hsp90, supporting a strong rationale for MIF as a
potential therapeutic target in sporadic CRC.

Results
MIF supports tumor growth in a mouse model of CRC
Given the importance of MIF in cancer and to deter-

mine whether MIF supports CRC tumorigenesis, we used
the severe CRC AOM/DSS mouse model, which includes
one phase of acute colitis (Fig. 1A). After a recovery phase,
mice exclusively develop tumors within 12 weeks in the
large intestine40. At 5 weeks post-AOM, when the tumors
were macroscopically visualized by colonoscopy, Mif−/−
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Fig. 1 MIF supports tumor growth in a CRC mouse model. A Schematic of the AOM/DSS CRC mouse model. Visualization of tumor burden
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mice showed a reduction in the tumor burden (Fig. 1B).
Quantification of colonic tumors by a scoring system41,42

revealed a reduction in tumor multiplicity in Mif−/− mice
(Fig. 1C). Moreover, at 12 weeks post-AOM, during which
the CRC tumors are well established, MIF deficiency
decreased tumor burden and numbers (Fig. 1D, E). In
summary, MIF supports tumor growth in an acute colitis-
associated CRC mouse model.

MIF levels are elevated in CRC cells
During tumorigenesis, MIF protein levels are

increased12,27. Our data confirm elevated MIF levels in
cancer cells from CRC patients (Figs. 2A–C, S1A).
Compared to the moderate increase in MIF mRNA levels
(Figs. 2A, S1A), MIF protein levels were strongly
increased in tumors from patients (Fig. 2B, C). Similar to
the patient tumors, established AOM/DSS-induced

tumors confirmed tumor-specific elevation of MIF
expression (Fig. 2D). Intriguingly, epithelial cancer cells
express high levels of MIF compared to those in the
normal surrounding epithelium (Fig. 2D), indicating that
the major source of MIF is tumor epithelial cells. Mea-
surement of MIF expression in murine tumor lysates
indicated increased MIF expression in tumors compared
to normal colonic tissue (Figs. 2E, F and S1B, C). Taken
together, these results confirm an enhanced tumor-
specific increase in MIF occurrence within the epithelial
tumor compartment.

A Mif deletion protects mice from inflammation-associated
cancer initiation
As a proinflammatory cytokine, MIF regulates immune

responses and is suggested to be a link between inflam-
mation and cancer1,2. Therefore, we hypothesized that the
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loss of Mif expression protects mice during the colitis-
associated phase of tumor initiation. Indeed, during the
recovery phase, colonic tissue damage and epithelial cell
loss, as reflected by the inflammatory score, were
increased in Mif+/+ mice compared to Mif−/− mice and
were accompanied by increased immune cell infiltration
(Fig. 3A, B). To further examine the inflammatory
response, we histologically analyzed the immune cell
composition within the tumor microenvironment. Infil-
trates from the colonic tissue of Mif+/+ mice had higher
percentages of CD3-positive (T-lymphocyte marker),
MPO-positive (neutrophil/granulocyte marker), and
FoxP3-positive (regulatory T-cell marker) cells than did
colonic tissue from Mif−/− mice (Figs. 3C, S2A). Immune
infiltrates and the inflammatory score showed a positive

correlation (Figure S2B). Interestingly, CD68-positive
(monocyte/macrophage marker) cell infiltration was
unchanged between the two mice groups (Fig. 3C, S2A).
Similar to the changes in the inflammatory cell compo-
sition, the expression of inflammation-associated cyto-
kines was downregulated in Mif−/− tissues during the
recovery period, confirming a reduction in inflammation
in the absence of Mif (Fig. 3D, S2C). Consistent with the
protective effect of Mif deletion during recovery, Mif−/−

mice showed a reduced overall inflammatory response
under DSS administration (Figures S2D-G). Furthermore,
since MIF inhibits p53 activity11,43, we pursued whether
MIF interferes with the DNA damage response and
apoptosis in response to AOM treatment. Surprisingly,
neither the levels of phosphorylated histone H2A.X
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(a DNA damage marker) nor the expression of p53 target
genes (Mdm2, Cdkn1a, Ccnd1, Gadd45a, and Bax) was
altered in colonic tissues in Mif−/− mice compared to
those in Mif+/+ mice, suggesting that MIF failed to reg-
ulate an AOM-induced p53-dependent response in colo-
nic epithelia (Figures S2H, I).
Overall, aMif deficiency protected mice during the early

phases of inflammation in the AOM/DSS model and
demonstrated that during colitis-associated tumor initia-
tion, MIF acts as a proinflammatory cytokine.

MIF supports CRC development via tumor-specific
macrophage recruitment and angiogenesis without
affecting overall inflammation
To determine whether MIF also acts as an inflamma-

tory cytokine to support established tumors, we analyzed
the expression of inflammatory markers at 12 weeks
post-AOM. Interestingly, immunohistological staining
(Figure S3A) and their corresponding quantifications
(Fig. 4A) did not show any differences in the extent of
infiltrating lymphocytes, regulatory T-cells or neu-
trophils/granulocytes within established tumors. In line
with these findings, an assessment of inflammatory
cytokines from tumor lysates failed to show major dif-
ferences between Mif-expressing and Mif-deficient
tumors, although all cytokines were upregulated in
tumor samples (‘T’) compared to normal epithelium
samples from untreated animals (‘N’) (Figure S3B).
However, interestingly, CD68-positive macrophage/
monocyte infiltration was decreased in Mif−/− tumors
compared to Mif+/+ tumors (Fig. 4B, upper panel),
supporting the function of MIF as a chemokine to
mediate macrophage recruitment3,4,44. To clarify whe-
ther elevated MIF expression in tumor cells mediates
tumor-specific macrophage recruitment, we monitored
the adjacent epithelium (Fig. 4B, lower panel). Indeed,
macrophages specifically infiltrated tumors, suggesting
that MIF regulates the chemotaxis of tumor-associated
macrophages to promote CRC tumorigenesis. Tumor-
associated macrophages are known to secrete tumor-
promoting cytokines during cancer progression to
stimulate tumor cell proliferation and angiogenesis45,46.
Indeed, levels of Vegfa, an angiogenic cytokine known to
be secreted by macrophages46,47, are reduced in Mif−/−

tumors (Figs. 4C, F, G, S3C). Moreover, in established
CRC tumors, Mif+/+ mice showed stronger vessel for-
mation, as indicated by CD31-positive staining, com-
pared to Mif−/− mice (Fig. 4D, E). Immunoblots
confirmed increased activation of proangiogenic factors
such as p38 and ERK in Mif-containing samples (Fig. 4F),
an effect described previously3,10,12,27,48. MIF also affec-
ted tumor cell proliferation in AOM/DSS-induced
tumors (Fig. 4H), which might explain the smaller
tumors observed in Mif−/− mice (Fig. 1D, E).

Interestingly, Akt activity remained unchanged in Mif-
deficient AOM/DSS tumors (Figure S3D), despite strong
evidences that MIF activates PI3K/AKT in CRC26 and
other cancers49,50.
Given that MIF also intrinsically regulates apoptosis via

p53, e.g., in HER2-positive breast cancer or macro-
phages11,51, we clarified whether the loss of MIF expres-
sion also activates p53 target genes in AOM/DSS tumors.
In our CRC mouse model, Mif deficiency did not upre-
gulate the expression of p53 target genes involved in
apoptosis (e.g., Bax, Bcl2l1, Bcl2, and Mcl1) (Figure S3E).
TUNEL staining confirmed the lack of altered apoptosis
in Mif−/− tumors (Figure S3F). However, the expression
of the cell cycle inhibitor p21/Cdkn1a was upregulated in
Mif−/− tumors (Figure S3E), supporting the diminished
proliferation upon MIF loss (Fig. 4H).
To assess whether angiogenesis and proliferation are

affected during the recovery phase, we evaluated Vegfa,
CD31, and Ki67 expression in colonic tissues at 8 days post-
DSS (Figures S3G-K) and found that neither vessel forma-
tion and Vegfa expression nor proliferation was dependent
on the presence of MIF during colonic tissue recovery.
Albeit our data confirmed that MIF supports inflam-

matory processes during colitis-associated tumor-initiat-
ing phases, we identified that in established tumors, MIF
contributes to tumor-specific macrophage recruitment,
tumor cell proliferation, and vessel formation without
affecting overall inflammatory responses. Whether these
infiltrated macrophages release proangiogenic cyto-
kines45,47 or whether MIF regulates angiogenic pathways
in tumor cells themselves52 must be further elucidated.

The CD74-MIF receptor complex facilitates the expression
of proangiogenic factors in human CRC cells
MIF functions through CD74/CD44 and/or CXCR2/4

receptor complexes in proliferation, angiogenesis, and
with its chemokine-like properties in monocyte and leu-
kocyte recruitment3,8,53–55. The CD74 receptor is the
main MIF receptor53,56. Since the expression of Vegfa is
downregulated inMif-deficient tumors (Figs. 4C, S3C), we
examined whether tumor cells themselves are able to
express angiogenic genes via MIF binding to CD74 to
activate MAP kinases to induce VEGF and IL8 expres-
sion12,24,26–28. First, we used the CD74-expressing (Fig.
5A) and MIF secreting HCT116 cell line29,57. Indeed,
knockdown of either MIF or CD74 in HCT116 cells
reduced VEGFA and CXCL8/IL8 expression supporting a
MIF-CD74 axis (Figs. S4A, 5B). Second, we used DLD-1
cells which do not express CD74 and are not shown to
secrete MIF (Fig. 5A), thus, missing the prerequisites
(secreted MIF and CD74) for a MIF-CD74 axis. As
expected, in parental DLD-1 cells, depletion of MIF did
not show any alterations in VEGFA and CXCL8/IL8
expression (Figs. S4B, 5C). Moreover, supplementation of
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recombinant MIF (rhMIF) in DLD-1 cells to mimic MIF
secretion, also failed to activate ERK or angiogenic gene
expression (Fig. 5D, E). Importantly, supplementation of
both, MIF by rhMIF and CD74 by plasmid-based ectopic
expression, lead to ERK activation and increased VEGFA
and CXCL8/IL8 expression confirming that concomitant
CD74 and secreted MIF are necessary for expression of
angiogenic markers (Fig. 5F, G). To further investigate the
MIF-CD74 axis, we performed clinical correlation studies

based on MIF and CD74 expression levels of human CRC
patients (Fig. 5H, I, J). Interestingly, simultaneous high
levels of MIF and CD74 showed a trend for patient
shortest survival (53.1 months) compared to stabilized
MIF alone (71.4 months) (Fig. 5I). In contrast,
CD74 status in patients with low MIF levels did not
impact overall survival (Fig. 5J).
These findings underline the importance of MIF in

cancer and support that MIF acts via CD74 in CRC.
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MIF-driven CRC is vulnerable to Hsp90 inhibition
Next, we asked whether constitutive MIF stabilization in

CRC cells creates vulnerabilities that can be ther-
apeutically targeted. Since MIF is stabilized by Hsp9011,
we used the pharmacological Hsp90 inhibitor 17AAG.
When Mif+/+ and Mif−/− mice reached a defined tumor
burden, they were treated with 17AAG (Fig. 6A). Hsp90
inhibition reduced MIF protein levels in AOM/DSS
tumors (Fig. 6B) and showed a trend for decreased tumor
burden in Mif+/+ mice (Fig. 6C–E). Differences were not
statistically significant but showed a trend in Mif+/+ mice
(Fig. 6D, E, left panels). By contrast, Hsp90 inhibition in
Mif−/− mice failed to achieve tumor reduction (Fig. 6D, E,
right panels).
To further support MIF as tumor-relevant Hsp90 client

in CRC progression, we used genetically deleted MIF
tumor organoid cultures. We observed a decreased
growth in Mif-depleted organoids (Fig. 6F, G), further
confirming, that MIF loss reduces tumor cell proliferation
(Fig. 4H). Whether these growth defects arise from
intracellular MIF functions and/or an MIF-CD74 axis
remains elusive. Moreover, Vegfa expression was reduced
in those organoids (Fig. 6G). To further support MIF as a
tumor-relevant Hsp90 substrate in CRC, we analyzed
theseMif-depleted organoids after treatment with 17AAG
(Fig. 6G, H). Indeed, a Mif depletion led to a decreased
susceptibility toward 17AAG treatment compared to Mif-
proficient organoids (Fig. 6H). Furthermore, apoptotic
markers such as cleaved caspase-3 and Parp were only
upregulated after 17AAG treatment in Mif-proficient
organoids, but not in Mif-deficient organoids (Fig. 6I).
These data support a relevant point: Hsp90 inhibition

seems to stronger target CRC tumors with elevated MIF,
although the HSP90 system stabilizes innumerable
oncogenes. These findings support that MIF is a tumor-
relevant Hsp90 substrate in CRC.

MIF is a selective therapeutic target of Hsp90 inhibition in
CRC-derived organoids
To exploit further therapeutically targeting of stabilized

MIF, we administered Hsp90 inhibitors to healthy epithe-
lial/mucosal-derived and tumor-derived murine colonic
organoids from the same AOM/DSS-induced mice (i.e.,
matched pairs). Since organoids derived from mice with a
129S1/SvImJ background failed to grow in vitro in our
laboratory (Figure S5A), we used C57BL/6 mice. Observa-
tion of the organoid morphology and the subsequent
quantifications showed higher levels of cell death after
17AAG in tumor-derived organoids, compared to the
epithelial-derived organoids (Fig. 7A). Immunoblot analysis
confirmed strong reduction of Mif levels especially after
treatment with 500 nM 17AAG (Fig. 7B). This prompted us
to test Ganetespib and Onalespib, two clinically relevant
second-generation HSP90 inhibitors that have been

extensively tested in clinical trials and have a suitable
toxicity profile58–61. Both inhibitors induced cell death to a
far lesser extent in normal epithelial-derived organoids than
in tumor-derived organoids (Fig. 7C) and showed promising
specificity toward tumor organoids. Although Mif protein
was degraded by Hsp90 inhibition in normal and tumor-
derived organoids treated with either inhibitor (Fig. 7D),
only tumor-derived organoids were morphologically dis-
rupted upon Hsp90 inhibition (Fig. 7C), indicating that MIF
plays a tumorigenic role rather than an essential function in
normal epithelial cells. Importantly, and in line with our
findings, we confirmed the enhanced Mif levels in tumor-
derived organoids (Fig. 7B, D). Furthermore, in MIF-
expressing patient-derived CRC organoids, Ganetespib
markedly increased organoid death compared to that
observed in the control organoids (Fig. 7E).
Therapeutic selectivity toward tumor cells plays an

important role in therapy implementation. To further test
whether Hsp90 inhibitors affect healthy tissues, we used
organoids derived from the murine small intestine. Upon
implementing the same treatment scheme as that used for
colonic tumor-derived organoids, we discovered that
17AAG, Ganetespib, and Onalespib only exerted minor or
no effects on the small intestine-derived organoids (Figure
S5B). Indeed, Ganetespib failed to significantly degrade
Mif protein in those organoids (Figure S5C), while
another Hsp90 substrate, Stat3, was degraded. This con-
firms the selectivity of Hsp90 inhibition toward stabilized
MIF in tumors. Even though immuno blot analysis also
showed reduction of Mif levels after 17AAG treatment
(Figure S5C), again depletion of unstabilized Mif in small
intestinal organoids, did not impact morphology or sur-
vival of organoids (Figure S5B) as observed for normal
colonic epithelia-derived organoids (Fig. 7A, B).
Thus, our findings highlight that MIF degradation via

Hsp90 inhibition is a promising mechanism in CRC
therapy. MIF acts not only as a critical driver in CRC but
also as a selective target for Hsp90 inhibition in tumors.

Discussion
We used the immune-competent AOM/DSS mouse

model, which mimics CRC progression in humans, to
exploit the therapeutic potential of MIF. We demonstrated
that MIF is specifically elevated in tumor cells and drives
tumor growth in this acute colitis-associated (‘sporadic’)
CRC model. Thus, in established tumors, stabilized MIF
preferentially supports tumor-specific macrophage infiltra-
tion, vessel formation, and tumor cell proliferation.
Concomitantly, we also showed within this model that

MIF regulates overall inflammatory signatures but espe-
cially during tumor initiation. Compared with Mif+/+

mice, Mif−/− mice were protected against acute colitis-
associated tumor initiation (Fig. 3), confirming the general
function of MIF as a proinflammatory cytokine3,10. By
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contrast, established Mif-deficient tumors did not show
reductions in overall inflammation (Fig. 4); rather, only
tumor-associated macrophages significantly infiltrated
Mif+/+ tumors. Thus, MIF seems to lose its overall
proinflammatory function once CRC tumors are

established. Proliferation, vessel formation and angiogenic
cytokine expression were reduced in Mif-deficient
tumors, an effect described previously3,10,27,48.
Studies showing that human tumor cells themselves are

able to activate MAPK-mediated IL8 and VEGF
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expression by binding of MIF to its main receptor
CD747,12,27,28,35,53 were confirmed within this study in
human CRC cells (Fig. 5). Our data support that MIF can
act in an autocrine MIF-CD74 manner in HCT116 CRC
cells, resulting in accelerated expression of angiogenic

factors. Furthermore, in DLD-1 cells, we supplemented
recombinant MIF concomitantly with ectopic CD74
which mimics paracrine MIF-CD74 interactions to induce
VEGF and IL8. In the in vivo CRC model, we assume that
tumor epithelial cells do both, secrete MIF to recruit
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macrophages to the tumor (which consequently secrete
angiogenic factors) (Fig. 4B); and provide an autocrine
MIF-CD74 interaction to induce the MAPK-VEGF axis
(Fig. 5B and F), albeit we have not specifically tested it in
this study. However, reduced expression of VEGF in Mif-
deficient organoids (Fig. 6G), support the idea, that tumor
cells themselves contribute to VEGF expression. Never-
theless, MIF is known to act as chemokine on tumor-
specific macrophage recruitment and/or macrophage
polarization, and macrophages are known to secrete
angiogenic factors, further promoting CRC tumorigen-
esis44,55. In sum, tumor cells and tumor-associated
macrophages might contribute to angiogenic factor
expression but stabilized MIF in epithelial tumor cells
provides the prerequisite for both scenarios.
To further test whether tumor epithelial cells with

elevated MIF expression provide dual control over
tumor growth, additional experimental models with
inducible, tissue-specific Mif deletions are required. In
principle, reduced chemotaxis of Mif−/− macrophages62

or Mif-depleted fibroblasts within the tumor
stroma63 might also contribute to tumor reduction in
Mif−/− mice.
The co-expression of MIF and CD74 seems to be

important in tumorigenesis (Fig. 5), and either MIF or
CD74 alone might not be strong tumor biomarkers. Our
CRC patient study (Fig. 5H-J) as well as patient studies of
lung cancer and colon carcinomatosis indicate that MIF/
CD74 co-expression corresponds to an even worse prog-
nosis28,64. Moreover, a recent mouse study revealed a
strong upregulation of CD74 during colonic inflammation,
promoting mucosal healing, and epithelial tissue recovery
by enhanced cell proliferation65. While this study confirms
the importance of a MIF/CD74 co-existence in prolifera-
tion, it also clarified that a CD74 deficiency alone mas-
sively increases overall inflammation with a reduced
recovery rate65. In contrast, MIF deletion or ablation alone
protects against inflammation, demonstrated in experi-
mental models of gastrointestinal inflammation66–68. Why
a CD74 single deletion intensifies inflammation remains
speculative65,69. One explanation might be altered mac-
rophage recruitment. MIF−/− macrophages exhibited
reduced overall chemotaxis compared to wild-type mac-
rophages, whereas CD74−/− macrophages showed random
chemokinesis62, leading to an accelerated inflammatory
response. Moreover, receptors often co-regulate each
other, and after CD74 loss, MIF might increase its affinity
to CXCR2 and/or CXCR4 receptors driving inflammation
instead of proliferation and angiogenesis54,70. Dual roles
for ligand-receptor complexes are becoming increasingly
evident in the context of active inflammation and mucosal
recovery69. In sum, MIF/CD74 co-expression might be the
major predictor for tumor growth in CRC.

MIF is mainly stabilized in tumors but not stromal or
inflammatory cells (Fig. 2). MIF stabilization occurs via
binding to Hsp9016, which offers therapeutic approaches to
target cancer cells via Hsp90 inhibition. We showed for the
first time that clinically relevant Hsp90 inhibitors decreased
MIF levels in CRC and subsequently reduced tumor growth
(Figs. 6 and 7). Given the plethora of known Hsp90-
stabilized oncogenes18, it is interesting to see that Hsp90-
mediated stabilization of MIF is critical for the survival of
Mif-proficient murine colonic tumor-derived organoids (Fig.
6H). MIF reduced tumor-derived organoids show a reduced
antitumor response to Hsp90 interference compared to that
in Mif-proficient organoids, indicating that MIF is an
important Hsp90-stabilized protein in CRC. Moreover,
Hsp90 interference provides therapeutic selectivity toward
tumor cells (Fig. 7). Since Hsp90 inhibitors exhibit funda-
mental differences in action71, we focused on newly devel-
oped inhibitors such as Ganetespib and Onalespib.
In summary, since MIF stabilization is a crucial event,

specifically in tumor cells, Hsp90 inhibition provides a
potential approach to target MIF function in CRC.
These findings support the tumor-promoting role
of MIF in CRC and highlight the necessity to better
understand the underlying MIF-induced tumorigenic
mechanisms in CRC.

Materials and methods
Patient samples
Clinical samples (protein samples, RNA samples, PFA-

fixed paraffin-embedded sections, patient tissue for cul-
tivation) were provided by the Department of General,
Visceral and Pediatric Surgery of the University Medical
Center Göttingen (UMG, Germany).

Mouse models and genotyping
Mouse experiments were approved by state (Nie-

dersächsisches Landesamt für Verbraucherschutz und
Lebensmittelsicherheit, LAVES, Germany) and institu-
tional (Göttingen University Medical Center) committees,
which ensured that all experiments conformed to the
relevant regulatory standards. Constitutive Mif knockout
in the 129S1/SvImJ background has been described in
detail in ref. 72. DNA isolation and genotyping were per-
formed using DirectPCR lysis Reagent and One-
Taq®Quick-Load® MasterMix. Genotyping primers are
specified in Supplemental Table 1. Mifflox/flox mice in
C57BL/6NCrl background were described in detail72,73;
and were used for the development of murine organoids.
In brief, to remove floxed MIF alleles from colonic epi-
thelial tissue, we crossed Miffl/fl mice with villinCreERT2-
harboring mice to generate Miffl/fl;villincreERT2 trans-
genic mice. Mice were housed and handled under
pathogen-free barrier conditions.
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Murine CRC induction, colonoscopy, and treatment
For experiments, randomly selected 10-week-old female

and male mice (>20 g) were used. For the induction of
colorectal tumors, mice were treated with a single intra-
peritoneal injection of 10 mg/kg azoxymethane (AOM,
Sigma-Aldrich) in 0.9% sodium chloride. After 1 week of
rest, 1.5% (129S1/SvImJ background) or 2% (C57BL/6
background) DSS (MP-Biomedicals) was added to the
drinking water for 6 consecutive days. Throughout the
AOM/DSS phase, the body weights of the mice were
continuously measured.
Five weeks after AOM induction, tumor development

was monitored weekly by conducting a colonoscopy (Karl
Storz GmbH) on anesthetized mice (1.5–2% isoflurane
inhalation). Tumor sizes were determined according to
the method described by Becker and Neurath41 based on
the colonic luminal perimeter as follows: S1= just
detectable, S2= 1/8 of the lumen, S3= 1/4 of the lumen,
S4= 1/2 of the lumen, and S5 > 1/2 of the lumen. For
analysis of established tumors, we chose an endpoint
study design, terminating the experiment at 12 weeks
after AOM treatment to avoid losing mice to extraneous
reasons such as intestinal obstruction and anal prolapse.
For pharmacological Hsp90 inhibitor analysis, tumors

were visualized and validated by colonoscopy. Reaching a
defined tumor burden, at least one S2/3 tumor and at least
three S1/2 tumors when scored by colonoscopy, mice were
treated with 17-allylamino, 17-demethoxygeldanamycin
(17AAG, provided by the National Cancer Institute, NCI).
Therefore, 17AAG was pre-dissolved in DMSO and fur-
ther diluted in 10% DMSO/18% Kolliphor® RH40/3.6%
Dextrose (Sigma-Aldrich) in H2O. 60mg/kg of 17AAG or
vehicle were given by intraperitoneal injection for 5 days
per week for 3 consecutive weeks. During 17AAG treat-
ment, tumors were weekly visualized and monitored by
colonoscopy.
At endpoints, mice were euthanized and the entire

large intestine was harvested, longitudinally opened,
and displayed. Tumor numbers were counted and sizes
were measured with an electronic caliper. For sub-
sequent analysis, single tumor biopsies were taken. Each
large intestine was ‘swiss rolled’, fixed in 3.7% paraf-
ormaldehyde/PBS, processed for embedding and bisec-
ted. Both halves were placed into a mold for paraffin
embedding.
For Mif depletion in vivo, AOM/DSS-treated Miffl/fl

mice were used for Tamoxifen (TAM, Sigma-Aldrich) or
respective vehicle control (oil). Reaching a defined tumor
burden, at least one S2/3 tumor and at least three S1/2
tumors when scored by colonoscopy, mice were treated
for 5 consecutive days, followed by 2 days of rest and
another 3 days TAM/oil treatment. Twelve days after
TAM-end, mice were dissected, and organoids were
prepared (see section above).

All animal experiments were carried out in full agree-
ment with the guidelines outlined above.

Human cell cultures, treatment, and transfection
The human CRC cell line DLD-1 was cultured in RPMI

1640 medium, whereas HCT116 CRC cells were cultured
in McCoy’s 5A modified medium. Media were supple-
mented with 10% FBS, Penicillin-Streptomycin, and L-
glutamine (RPMI 1640). Cell lines were cultured at 37 °C
and 5% CO2 in a humidified atmosphere and were reg-
ularly tested for Mycoplasma contamination.
Knockdown of MIF or CD74 was achieved by siRNA

transfection using Lipofectamine™3000 reagent according
to the manufacturer’s instructions. All siRNAs were pur-
chased from Ambion and used according their guidelines;
the sequences are listed in Supplemental Table 2. CD74
overexpression in DLD-1 cells was performed using Lipo-
fectamine™3000 transfection reagent. In brief, 24 h after
cell seeding, DLD-1 cells were cotransfected with 0.5 μg of
GFP-containing plasmid and 1.5 μg of either pcDNA3.1-
CD74 expression plasmid56 or the corresponding
pcDNA3.1/V5-His-TOPO control plasmid. Forty-eight
hours post-transfection, cells were treated with recombi-
nant human MIF as indicated.

HEK293T cell media conditioning for organoid culture
medium
HEK293T cells expressing murine R-spondin-1 and

Noggin or Wnt3a were cultivated in DMEM supplemented
with 10% FBS, Penicillin-Streptomycin and Sodium Pyr-
uvate in a humidified atmosphere at 37 °C with 5% CO2.
For HEK293T-mR-spondin-1 Zeocin and for HEK293T-
mNoggin Geneticin were added to the medium during
cultivation and expansion. For conditioning, medium was
replaced by advanced DMEM/F12 medium supplemented
with GlutaMAX™, Penicillin-Streptomycin, and 10mM
HEPES, and cells were cultivated for 1 week. For murine R-
spondin-1-containing and Noggin-containing media, batch
quality was examined using Dot-blot analysis. Murine
colonic organoid culture medium contains advanced
DMEM/F12 medium supplemented with 50% conditioned
Wnt3a medium, 20% conditioned Noggin medium, 10%
conditioned R-spondin-1 medium, N-2, B-27, 3.4 μg/mL
ROCK inhibitor, 5 μM CHIR 99021, 500 nM A83-01,
10mM Nicotinamide, 80 µM N-Acetyl-L-Cysteine, and
200 ng/mL rmEGF.

Preparation and cultivation of colonic and small intestinal
organoids
Tumor-harboring large intestines of C57BL/6 mice

were harvested. Three to four tumors per mouse and in
parallel, parts of the normal epithelium were biopsied
from the same mouse allowing generation of matched
organoid pairs. Normal epithelial tissue was cut, washed,
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and incubated in 4mM EDTA/PBS for 30min on ice.
Pieces were thoroughly, mechanically dissociated in PBS.
Tumor samples were digested with 2 mg/mL Collagenase
type-I solution at 37 °C for 30min. Normal crypts and
tumor fragments were filtered using cell strainers. Cell
pellets were washed, resuspended in cold Matrigel, and
droplet-plated allowing Matrigel polymerization at 37 °C
for 30 min. Organoids-containing domes were covered
with organoid culture medium, cultivated at humidified
37 °C with 5% CO2. Medium was exchanged every 2 to
3 days. Organoids splitting was performed once a week.
For passaging, organoids were manually disrupted in ice-
cold PBS, and cultured as described above.
Small intestinal tract starting from jejunum to the end of

ileum were prepared from C57BL/6 mice, incubated in
5mM EDTA/PBS for 30min on ice, washed, and
mechanically dissociated. Crypts were resuspended in cold
Matrigel and cultured as colonic organoids, but with small
intestinal organoid medium containing advanced DMEM/
F12 supplemented with 20% conditioned mNoggin medium,
10% conditioned R-spondin-1 medium, N-2, B-27, 80 µM
N-Acetyl-L-Cysteine, 50 ng/mL rmEGF.

Organoid treatments and morphological quantification
Experiment with matched pairs of normal epithelia-

derived and tumor-derived colonic organoids, murine
small intestinal organoids, and human organoids were
performed between passage 2–7. HSP90 inhibitors
17AAG (National Cancer Institute, NCI), Onalespib and
Ganetespib (Synta Pharmaceuticals) were dissolved in
DMSO and used as indicated. For quantification of
treatment response, light microscopy images of ≥5
Matrigel domes were taken from each condition. The
amount of images was dependent on size and culture
density as indicated. Based on morphology, dead orga-
noids were defined as organoids with a partial or complete
loss of outer epithelial barrier leading to disruption into
clumps of dead cells or separation of dead cells74. The
percentage of dead organoids was calculated relative to
the total amount of organoids per image. For dead orga-
noid quantification and measurement of organoid dia-
meter ImageJ was used. For analysis of organoid lysates,
Matrigel domes were disrupted using ice-cold PBS. Sus-
pension was centrifuged and organoid-containing pellets
were further washed and incubated with Cell Recovery
solution (Corning) for complete removal of Matrigel.
Organoids were resuspended in standard RIPA buffer for
protein lysates and in TRIZOL for RNA isolation.

Histological analysis
Immunohistological stainings were performed with stan-

dardized protocols for formalin-fixed paraffin-embedded
(FFPE) tissues. Following primary antibodies were used:
MIF (Sigma-Aldrich, HPA003868), CD74 (Sigma-Aldrich,

HPA010592), phospho-histone H2A.X (Ser139, Cell Sig-
naling, #9718), Ki67 (Abcam, ab15580), Cluster of differ-
entiation 31 (CD31 (SZ31), Dianova, DIA-310), Cluster of
differentiation 3 (CD3 [SP7], Abcam, ab16669), Forkhead-
box protein p3 (FoxP3, Abcam, ab54501), Myeloperoxidase
(MPO, R&D Systems, AF3667). For CD68, two different
antibodies were used to double-check staining (Abcam,
ab53444 and eBioscience™, 14-0681-82). For detection of
primary antibodies from rabbit and rat, ImmPRESS™
Reagent anti-Rabbit IgG and ImmPressTM Reagent anti-
Rat IgG (both Vector Laboratories) were used. For anti-
bodies from goat, the ABC detection system was used,
entailing a biotinylated goat/sheep antibody (GE Health-
care) and ExtrAvidin®−Peroxidase (Sigma-Aldrich). As
substrate for the horseradish peroxidases served 3,3′-Dia-
minobenzidine tetrahydrochloride (DAB, Roth). Counter-
stain of the nuclei was achieved using Mayers Hämalaun
solution (Merck). Alexa Fluor®594-coupled secondary
antibody was used as detection system for immuno-
fluorescence with DAPI (Sigma-Aldrich) as counterstain for
nuclei. Images were taken using a standard microscope
(Carl Zeiss AG) with the ZEN imaging program from Zeiss.
Figures were further prepared using Adobe Photoshop
software. For quantification of staining, samples were blin-
ded and positively stained cells were counted manually
using CellCounter function of ImageJ. Percentage of epi-
thelial Ki67-positive cells was determined relative to the
total number of epithelial cells. For staining of CD31, CD68,
CD3, FoxP3, and MPO, the number of positive cells was
counted per image.
Hämalaun & Eosin G stained sections were used to

determine the inflammatory score. The inflammatory
score is based on morphological changes (grade of
damage) of the tissue due to immune cell infiltration and
epithelial layer disruption. Grade 0= factor 0, no infil-
tration of immune cells, normal distribution of epithelia
and amount of goblet cells; grade 1= factor 1, minor
infiltration of immune cells, epithelia is still intact and
minor changes in goblet cell number; grade 2= factor 2,
moderate infiltration of inflammatory cells, epithelia is
partly damaged and reduced number of goblet cells; grade
3= factor 3, massive infiltration of immune cells, com-
plete disruption/loss of epithelia and loss of goblet cells.
For calculation, amount of tissue in percentage with
respective grade of tissue damage was multiplied with the
corresponding factor (factor 0–3). The obtained percen-
tages were summed, resulting in a value for the inflam-
matory score (minimum 0–maximum 300) for each
mouse. To ensure unbiased quantification, the inflam-
matory score was individually determined by one scientist
and one pathologist.
TUNEL staining was used to detect DNA-strand breaks

occurring during apoptotic cell death in established tumors.
TUNEL reaction mix (Sigma-Aldrich) consists of TUNEL
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enzyme solution and TUNEL label mix. The assay was
performed according to manufactures guidelines. DAPI
served as counterstaining, slides were mounted with
Fluorescent Mounting Medium (DakoCytomation).

Quantitative immunohistochemistry on colon cancer
patient samples
Section of a tissue micro array (TMA) for primary

colonic tumors was kindly provided by the Department of
Pathology of the University Medical Center Göttingen
(UMG, Germany). According to described standard pro-
tocols for immunohistochemistry (see above), TMAs were
stained for MIF (Sigma-Aldrich, HPA003868) and CD74
(Sigma-Aldrich, HPA010592). For CD74 staining tumors
with more than 10% strongly positive stained cells or
more than 40% overall stained cells with lower intensity
were graded as high (CD74high). For MIF staining, biopsis
with high intensity in more than 70% of cells were graded
as MIFhigh. Biopsis with moderate or low intensity were
graded as MIFlow.

Immunoblot analysis
For Whole lysates from human CRC cell lines and

murine organoids were made with standard RIPA buffer
(1% sodium deoxycholate, 10 mM EDTA, 1% Triton X-
100, 0.1% SDS, 150 mM NaCl, 20 mM Tris-HCl pH 7.5,
cOmpleteTM mini protease inhibitor cocktail and phos-
phatase inhibitor mix consisting of 2 mM Imidazol, 1 mM
sodium orthovanadate, and 1mM sodium fluoride) was
used. For protein extraction from human and murine
samples, tissues were minced, lysed in RIPA buffer, and
further processed by sonication. For determination of
protein concentrations using BCA protein assay (Pierce),
samples were centrifuged and supernatants were col-
lected. Equal protein concentrations were separated by
SDS gel electrophoresis and transferred onto nitrocellu-
lose membranes (Amersham). After blocking with 5%
milk (Roth), membranes were incubated with the fol-
lowing antibodies: MIF and CD74 (both Sigma-Aldrich);
CDK4 and β-Actin (both Abcam); HSC70 [B-6], total
AKT, phospho-AKT [D9E], phospho-p44/42 MAPK
(ERK1/2), phospho-p38 MAPK [3D7], p38 MAPK,
cleaved caspase-3, and PARP (all Cell Signaling); VEGF,
STAT3, and ERK (all Santa Cruz). All primary antibodies
were detected with HRP-conjugated secondary antibodies.
Development of the signal was performed using Immo-
bilion western chemiluminescent HRP substrate (Milli-
pore/Merck) or Clarity Max™ Western ECL Substrate
(BioRad). Detailed antibody information in Supplemental
Table 2.

Quantitative real-time PCR (qRT-PCR)
RNA from human cell lines and colonic tissues and

tumors was isolated using Trizol reagent (Invitrogen)

according to manufacturer guidelines. Tissues and tumor
pieces were shredded using a homogenizer (T10 basic
ULTRA-TURRAX). After reverse transcription (M-MuLV
Reverse Transcriptase from NEB) of equal amounts of
mRNA, quantitative real-time PCR analysis was per-
formed using a qPCR MasterMix (72 mM Tris-HCl pH
8.8 (Roth), 19 mM (NH4)2SO4 (Roth), 0.01% Tween-20
(AppliChem), 3 mM MgCl2, (Sigma-Aldrich), 1:80,000
SYBR Green (Invitrogen), 0.24 mM dNTPs, (dATP, dCTP,
dGTP, dTTP, all dNTPs from Primetech), 19 U/ml Taq-
polymerase (Primetech), 0.24% Triton X-100 (Appli-
Chem), 300mM Trehalose (Roth). Used primers are listed
in Supplemental Table 1. For gene analysis, at least two
different cDNAs (technical replicates) were used for qRT-
PCR runs from one biological replicate. Biological repli-
cates are independent experiments.

Quantification and statistical analysis
Statistics of each experiment such as number of ani-

mals, number of tumors, biological replicates, technical
replicates, precision measures (mean and ±SD), and the
statistical tests used for significance are provided in the
figures and figure legends.
Densitometric measurements for quantification of

immunoblot bands were done with the gel analysis soft-
ware Image Lab™ (BioRad) and normalized to loading
controls.
Pearson correlation factor R was used for analysis of

immunohistochemical correlation studies on CRC tissue.
GraphPad Prism was used for analysis of Kaplan–Meier
survival curves with the Log-rank (Mantel-Cox) test.
The following designations for levels of significance

were used within this manuscript: *p ≤ 0.05; **p ≤ 0.01;
***p ≤ 0.001; ns, not significant.
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Figure S1: Related to Figure 2. MIF levels are elevated in colorectal cancer cells. (A) Pooled cases 

of single patients (P1-P3), including tumor samples (’T’) and their adjacent normal epithelium (‘N’) (n=3 

each). qRT-PCRs normalized to RPLP0 mRNA. MIF expression in tumor samples was calculated 

relative to respective adjacent epithelium. Mean r SD of 3 technical replicates in duplicates. (B) Mif 

protein level in pooled samples of tumors (‘T’) and normal epithelium (‘N’) of Mif+/+ mice. Mif-/- tumors 

serve as negative staining control. Mif ratios (Mif/Actin) were calculated by densitometry, normalized to 

loading control, relative to Mif+/+ epithelium (‘N’). (C) Relative Mif mRNA levels of pooled normal (‘N’, 

n≥2) and tumor (‘T’, n=6) samples from Mif+/+ and Mif-/- mice. Mean r SD of 5 technical replicates in 

duplicates. (A, C) Student’s t test used for comparison of indicated groups: ***p≤0.001. 

  

B C

Supp Figure 1

A
Mif -/-

Mif

Mif +/+

N

Actin 
1        3.1        0 Mif/Actin

12

42

T TkDa

0
0.5

1
1.5

2

re
la

tiv
e 

m
R

N
A ***

N T
0

1

2

3

re
la

tiv
e 

m
R

N
A ***

M
if 

+/
+

N T

M
if 

-/-

M
if 

+/
+

M
if

-/-

MIF Mif



Klemke et al. Cell Death and Disease (2021) 
Supplemental material 

 

 

 

 

 

M
if 

+/
+

M
if 

-/-

non-treated (N) short (S)

inflammatory score [%]

C
D

3 
in

fil
tra

tio
n

R² = 0.9
0

15
30
45
60
75

0 40 80 120 160 200

B

R² = 0.3
0

10
20
30
40

0 40 80 120 160 200
inflammatory score [%]Fo

xP
3 

in
fil

tra
tio

n

inflammatory score [%]

M
P

O
 in

fil
tra

tio
n

R² = 0.6
0

50

100

0 40 80 120 160 200

Mif +/+

Mif -/-

D
H2O

AOM

DSS H2O

short

week 0    1      2     3    4               12                      E

F

Supp Fig 2

MPO

MPO

A

M
if 

+/
+

M
if 

-/-

FoxP3

FoxP3

CD3

CD3

CD68

CD68

0
50

100
150
200
250

in
fla

m
m

at
or

y
sc

or
e 

[%
] p=0.02

N S

M
if

+/
+

M
if 

-/-

M
if

+/
+

M
if

-/-

C

0

5

10

15

20 Il1b

R
el

at
iv

e 
m

R
N

A

1 2 3 4 1 2 3 4
Mif +/+ Mif -/-

0
5

10
15
20
25
30
35 Mmp9

1 2 3 4 1 2 3 4
Mif +/+ Mif -/-

0

3

6

9 Cxcl1

1 2 3 4 1 2 3 4
Mif +/+ Mif -/-

0

30

60

90 Cxcl2

1 2 3 4 1 2 3 4
Mif +/+ Mif -/-



Klemke et al. Cell Death and Disease (2021) 
Supplemental material 

 

 

 

 

0

20

40

60

Supp Fig 2 ext

I

Gadd45a

0 8 24 72 0 8 24 72

Time [hrs]

Bax

0 8 24 72 0 8 24 72

Time [hrs]

Ccnd1

0 8 24 72 0 8 24 72

Time [hrs]

re
la

tiv
e 

m
R

N
A Mif +/+

Mif -/-

Cdkn1a

0 8 24 72 0 8 24 72

Time [hrs]

Mdm2

0 8 24 72 0 8 24 72

Time [hrs]

re
la

tiv
e 

m
R

N
A Mif

0 8 24 72 0 8 24 72

Time [hrs]

Mif +/+

Mif -/-

H

M
if 

+/
+

M
if 

-/-

0 hrs 24 hrs 72 hrs8 hrs
post-AOM treatment

G

CD68 FoxP3 MPOCD3

M
if 

+/
+

CD68 FoxP3 MPOCD3

M
if 

-/-

Mif +/+

n=6
Mif -/-

n=6

p=0.04

ce
ll+

/ i
m

ag
e CD68

0

10

20

30

Mif +/+

n=4
Mif -/-

n=6

ce
ll+

/ i
m

ag
e FoxP3

p=0.02

Mif +/+

n=5
Mif -/-

n=6

ce
ll+

/ i
m

ag
e MPO

p=0.01

0

20

40

60

Mif +/+

n=4
Mif -/-

n=4

ce
ll+

/ i
m

ag
e CD3

p=0.8

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.0

0.5

1.0

1.5

2.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.0

0.5

1.0

1.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0
50

100
150
200



Klemke et al. Cell Death and Disease (2021) 
Supplemental material 

 

Figure S2: Related to Figure 3. A MIF deletion protects mice from inflammation-associated cancer 

initiation. (A) Histological staining of colonic tissues 8 days after DSS (recovery period) of indicated 

genotypes. Inflammatory marker CD68 (Cluster of Differentiation 68) for monocytes/macrophages, CD3 

(Cluster of Differentiation 3) for T-lymphocytes, FoxP3 (Foxhead-box-protein P3) for regulatory T-cells 

and MPO (Myeloperoxidase) for neutrophils/granulocytes. Scale bars, 100 µm. (B) Correlation between 

the inflammatory score of Mif+/+ and Mif-/- mice (Figure 3B) and the respective quantification of infiltrating 

immune cells (CD3, MPO and FoxP3 staining) in the recovery group from (Figure 3C). CD3, MPO and 

FoxP3 with Mif+/+ n=6 and Mif-/- n=7. R, Pearson correlation factor. (C) mRNA expression of 

representative cytokines of individual mice from recovery group (8 days post-DSS) from single samples 

(4 mice per group). Via qRT-PCR, expression levels were normalized to those of Rplp0. Means r SD of 

≥2 technical replicates in duplicates. (D) Treatment scheme of the AOM/DSS colorectal cancer mouse 

model. Mice of the ‘short’ group were dissected at day 3 after starting DSS administration. (E) 

Representative H&E staining of colonic tissues of indicated genotype at day 3 after DSS start (short, 

‘S’) or in untreated control tissue (‘N’). Scale bar, 100 µm. (F) The inflammatory score of the ‘short’ DSS 

and control groups was assessed based on H&E stained tissue morphology in (E). Non-treated control 

n=3 mice per group, short n=6 mice per group. Black line, mean. p value with Student’s t test. (G) 

Representative histology of inflammatory cells (CD68, CD3, FoxP3, MPO staining) in Mif+/+ and Mif-/- 

colonic tissues at day 3 after DSS start. Scale bars, 100 µm. For quantifications of histological staining, 

4-5 images (area=40x magnification) per mouse were counted for positive stained stromal cells. n, 

number of mice. Black line, mean. p values were calculated via Student’s t test. (H) A MIF loss is 

dispensable for AOM-induced DNA damage response. Representative immunohistological phospho-

Histone H2A.X staining after the initial AOM injection at indicated time points. Scale bars, 100 µm. (I) A 

MIF loss does not impair the AOM-induced p53 response. mRNA level of Mif and WTp53 target genes 

of indicated groups at different time points after a single AOM injection. Single colonic tissues of 

indicated time points and genotypes were pooled (n≥3 mice per group). qRT-PCRs normalized to Rplp0 

mRNA. Mean r SD of 2 technical replicates, pipetted in duplicates. 
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Figure S3: Related to Figure 4. MIF supports CRC tumor growth and macrophage infiltration 

without affecting overall inflammation. (A) Representative histology of CD3, FoxP3 and MPO 

staining of Mif+/+ and Mif-/- tumors. Scale bars, 100 µm. (B) mRNA expression of inflammatory genes in 

tumors (‘T’) and nontreated control tissues (‘N’) of indicated genotypes. Single colonic tissues (n≥2) or 

single tumors (n≥6) of indicated genotypes were pooled. qRT-PCR, expression levels were normalized 

to those of Rplp0. Means r SD of 3-4 technical replicates in duplicate. Student’s t test. (C) Relative 

expression of Vegfa, averaged from single tumor samples (7-8 mice) (Figure 4C). Means r SD of 4 

technical replicates. (D) Phospho (p)-Akt level of single tumors (T1-T3) of Mif+/+ and Mif-/- mice. Hsc70, 

loading control. (E) Apoptotic gene expression of indicated tumors. Pooled single tumors (n≥6). qRT-

PCR normalized to Rplp0 mRNA. Mean r SD of ≥5 technical replicates in duplicates. p value with 

Student’s t test. ***p≤0.001; ns, not significant. (F) TUNEL staining in Mif+/+ and Mif-/- tumors at 12 weeks 

post-AOM. Scale bars, 100 µm. (G, H) Representative immunofluorescence of Mif+/+ and Mif-/- colonic 

tissue at 8 days post-DSS (recovery group), for CD31 (red) and DAPI (blue). Scale bars, 100 µm. 

Quantification of tumor vessel fragment density from (G). At least 6 images (area=40x magnification) 

per colonic tissue were counted and calculated. Black lines, mean. n, number of mice. p value with 

Student’s t test. (I) Relative expression of Vegfa in recovering Mif+/+ and Mif-/- colonic tissue (pool of 4-5 

mice per group). Via qRT-PCR expression was calculated relative to those of Rplp0. Mean r SD of 3 

technical replicates in duplicates. p value with Student’s t test. ns, not significant. (J, K) Quantification 

of epithelial Ki67 staining (J) and representative histology of recovering Mif+/+ and Mif-/- colonic tissue at 

8 days post-DSS (K). Ki67 positivity was performed using 6 images per mouse. n, number of mice. 

Normalization of positive epithelial cells to total number of epithelial cells. p value with Student’s t test. 

Scale bars, 100 µm. 

  



Klemke et al. Cell Death and Disease (2021) 
Supplemental material 

 

 

Figure S4: Related to Figure 5. Knockdown efficiency of MIF and CD74 by small interfering RNA 

(siRNA) in CRC epithelial cells. (A, B) Expression of MIF and CD74 in HCT116 (A) and DLD-1 (B) 

cells normalized to RPLP0 or HPRT1 respectively for evaluation of knockdown efficiency after 72 hrs 

siRNA transfection against MIF, CD74 or respective scrambled control (‘con’). Mean r SD of 5-6 

technical replicates in duplicates from 2 biological replicates. Student’s t test: ns=not significant, *p≤0.05; 

**p≤0.01; ***p≤0.001. 
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Figure S5: Related to Figure 7. MIF is an actionable and selective therapeutic target by Hsp90 

inhibition in colorectal cancer-derived organoids. (A) Representative images to evaluate growth and 

development of normal colonic organoids from two different mouse strains (129S1/SvImJ and C57BL/6). 

Images were taken at day of organoid preparation (d 0) as well as two (d 2) and six (d 6) days after 

preparation (p0=passage 0). Additional image taken three (d 3) days after splitting (p1=passage 1). 

Scale bars, 200 µm. (B) Representative images of murine normal small intestinal organoids after 

treatment with DMSO control (‘con’) and indicated concentrations of 17AAG, Ganetespib (‘Ganet’) or 

Onalespib for 21 hrs. Scale bars, 200 µm. Quantification reveal percentage of dead organoids relative 

to the total amount of organoids (≥9 images per condition from ≥5 gel domes). Mean r SD from different 

images. p values in relation to control (‘con’). *p≤0.05; ***p≤0.001. (C) Hsp90 inhibitor treatment as in 

(B) of matched pairs. Immunoblot analysis to evaluate Mif degradation. Well known Hsp90-stabilized 

protein Stat3 used as positive control for the treatment. Actin, loading control. Mif expression ratios 

(Mif/Actin) were calculated by densitometry, normalized to the loading control, vehicle control.  
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Supplemental Table 1: Primers  
 
Gene  Origin  Forward  Reverse  
Quantitative RT-PCR 
RPLP0 
(36B4)  Human  5’-GATTGGCTACCCAACTGTTG  5’-CAGGGGCAGCAGCCACAAA  

HPRT1 Human 5’-CCTGGCGTCGTGATTAGTGAT 5’-GGGCTACAATGTGATGGCCT 
MIF_1 Human 5’-AGCAGCTGGCGCAGGCCAC 5’-CTCGCTGGAGCCGCCGAAGG 
MIF_2 Human 5’-GCAGCTGGCGCAGGCCAC 5’-GGAGCCGCCGAAGGCCATGA 
CD74 Human 5’-GGCAACATGACAGAGGACCA 5’-AGTGACTCTTTCGGTGGAGC 
CXCL8 
(IL8)_1 Human 5’-GCTCTGTGTGAAGGTGCAGTT 5’-AATTTCTGTGTTGGCGCAGT 

CXCL8 
(IL8)_2 Human 5’-ACACTGCGCCAACACAGAAA 5’-TTGCTTGAAGTTTCACTGGCAT 

VEGFA Human 5’-CTCCACCATGCCAAGTGGT 5’-GTCCACCAGGGTCTCGATTG 
Rplp0 
(36B4)  Mouse  5’-GCAGATCGGGTACCCAACTGTT  5’-CAGCAGCCGCAAATGCAGATG  

Mif_1 Mouse 5’-TCCGTGCCAGAGGGGTTTCTGT 5’-ACGTTGGCAGCGTTCATGTCG 
Mif_2 Mouse 5’-CTCCGTGCCAGAGGGGTTTCT 5’-GCACCACCGATCTTGCCGATG 
Arg1 Mouse 5’-GAGCATGAGCTCCAAGCCAA 5’-TCTCTCACGTCATACTCTGTTTCT 
Bax Mouse 5’-GCTGATGGCAACTTCAACTGG 5’-TGATCAGCTCGGGCACTTTAG 
Bcl2 Mouse 5’-GACTGAGTACCTGAACCGGC 5’-AGTTCCACAAAGGCATCCCAG 

Bcl2l1 Mouse 5’-
TCGCCGGAGATAGATTTGAATAACC 5’-TGGGCTCAACCAGTCCATTG 

Ccl2 Mouse 5’-GTCCCTGTCATGCTTCTGGG 5’-GAGTAGCAGCAGGTGAGTGG 
Ccl5 Mouse 5’-TCACCATATGGCTCGGACA 5’-TTCTCTGGGTTGGCACACAC 
Ccnd1  Mouse  5’-GGAGCTGCTGCAAATGGAAC  5’-CAGTCCGGGTCACACTTGA  
Cdkn1a 
(p21)  Mouse  5’-GTGGCCTTGTCGCTGTCTT  5’-GCGCTTGGAGTGATAGAAATCTG  

Clec7a_1 Mouse 5’-AGGAAGCCGGGCTCCAT 5’-
TACCACAAAGCACAGGATTCCTAAA 

Clec7a_2 Mouse 5’-TGGGTGCCCTAGGAGGTTT 5’-AACCATGGCCCTTCACTCTG 
Cxcl1 
(Kc) Mouse 5’-GCTGGGATTCACCTCAAGAA 5’-CTTGGGGACACCTTTTAGCA 

Cxcl2  Mouse  5’-CTCTCAAGGGCGGTCAAAAAG  5’-TTGGTTCTTCCGTTGAGGGAC  
Gadd45a Mouse 5’-AAGCTGCTCAACGTAGACCCC 5’-ATCCATGTAGCGACTTTCCCG 
Il1b Mouse 5’-AGCTTCCTTGTGCAAGTGTCT 5’-GACAGCCCAGGTCAAAGGTT 
Mcl1 Mouse 5’-TAAGGACGAAACGGGACTGG 5’-AGTTTGGTGGCTGGAGCTTTA 
Mdm2 Mouse 5’-GGTCCCTGTCCTTTGATCCG 5’-GCTCACTTACGCCATCGTCA 
Mmp9 Mouse 5’-TCTGTCCAGACCAAGGGTACA 5’-GCCTTGGGTCAGGCTTAGAG 
Mrc1 Mouse 5’-TTGGTGGCAATTCACGAGAG 5’-GGGAAGGGTCAGTCTGTGTTTG 
Nos2 Mouse 5’-CCCTCCTGATCTTGTGTTGGA 5’-CAACCCGAGCTCCTGGAAC 
Ptgs2 Mouse 5’-TCCTGACCCACTTCAAGGGA 5’-CTCCTTATTTCCCTTCACACCCA 
Tnfa Mouse 5’-AGGGATGAGAAGTTCCCAAATG 5’-TGTGAGGGTCTGGGCCATA 
Vegfa_1 Mouse 5‘-ACTGGACCCTGGCTTTACTG 5‘-GATCCGCATGATCTGCATGG 
Vegfa_2 Mouse 5‘-CTGGACCCTGGCTTTACTGC 5‘-TGAACTTGATCACTTCATGGGACT 
Genotyping  
Mif A1 Mouse  5’-AGGTTAGTCACTCTACTGGCC  
Mif B1 Mouse  5’-TCTCACTGTTCTGGTGTGAGG  
Mif C1 Mouse  5’-GGCTCCTGGTCTCAGTCAGG  
Vil Cre Mouse 5’-CGCGAACATCTTCAGGTTCT  
Vil Cre Mouse 5’-CAAGCCTGGCTCGACGGCC  
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Supplemental Table 2: Reagents and Resources  
 

REAGENT or RESOURCE SOURCE IDENTIFIER (Cat#) 
Antibodies 
Rabbit polyclonal anti-Akt Cell Signaling 9272, RRID:AB_329827 
Rabbit monoclonal anti-phospho-Akt 
(Ser473) [D9E] Cell Signaling 4060, RRID:AB_2315049 

Mouse polyclonal anti-beta-Actin  Abcam ab6276, RRID:AB_2223210 
Rabbit polyclonal anti-beta-Actin Abcam ab8227, RRID:AB_2305186 
Rabbit monoclonal anti-CD3 [SP7] Abcam ab16669, RRID:AB_443425 
Rat monoclonal anti-CD31 [SZ31] Dianova DIA-310, RRID:AB_2631039 
Rat monoclonal anti-CD68 [FA-11] Abcam ab53444, RRID:AB_869007 
Rat monoclonal anti-CD68 [FA-11] eBioscience™ 14-0681-82, RRID:AB_2572857 
Rabbit polyclonal anti-CD74 Sigma-Aldrich HPA010592, RRID:AB_1078482 
Rabbit monoclonal anti-Cleaved Caspase-3 
[5A1E] Cell Signaling 9664, RRID:AB_2070042 

Rabbit polyclonal anti-FoxP3 Abcam ab54501, RRID:AB_880110 
Rabbit monoclonal anti-Histone H2A.X, 
phospho (Ser139) [20E3] Cell signaling 9718, RRID:AB_2118009 

Mouse monoclonal HSC70 [B-6] Santa Cruz sc-7298, RRID:AB_627761 
Rabbit polyclonal anti-Ki67 Abcam ab15580, RRID:AB_443209 
Rabbit polyclonal anti-p38 MAPK  Cell Signaling 9212, RRID:AB_330713 
Rabbit monoclonal anti-phospho-p38 MAPK 
(Thr180/Tyr182) [3D7] Cell Signaling 9215, RRID:AB_331762 

Rabbit polyclonal anti-ERK Santa Cruz sc-94, RRID:AB_2140110 
Rabbit monoclonal anti-phospho-p44/42 
MAPK (Erk1/2) (Thr202/Tyr204) [D13.14.4E] Cell Signaling 4370, RRID:AB_2315112 

Rabbit polyclonal anti-MIF Sigma-Aldrich HPA003868, RRID:AB_1079290 
Goat polyclonal anti-MPO R&D system AF3667, RRID:AB_2250866 
Rabbit polyclonal anti-PARP Cell Signaling 9542, RRID:AB_2160739 
Rabbit polyclonal anti-STAT3 Santa Cruz sc-482, RRID:AB_632440 
Mouse monoclonal anti-VEGF [C1] Santa Cruz sc-7269, RRID:AB_628430 
donkey anti-rat IgG (H+L) Alexa Fluor 594 Invitrogen A-21209, RRID:AB_2535795 
ExtrAvidin®−Peroxidase Sigma-Aldrich E2886, RRID:AB_2620165 
biotinylated goat/sheep antibody GE Healthcare RPN1025-2ML, RRID:AB_1082105 
ImmPRESS™ Reagent Anti-Rabbit IgG Vector Laboratories MP-7401, RRID:AB_2336529 
ImmPRESS™ Reagent Anti-Rat IgG, mouse 
adsorbed Vector Laboratories MP-7444, RRID:AB_2336530 

goat anti-rabbit IgG-HRP Santa Cruz sc-2004, RRID:AB_631746 
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ABSTRACT 

 
Missense p53 mutations (mutp53) occur in approx. 70% of pancreatic ductal adenocarcinomas 

(PDAC). Typically, mutp53 proteins are aberrantly stabilized by Hsp90/Hsp70/Hsp40 chaperone 

complexes. Notably, stabilization is a precondition for specific mutp53 alleles to acquire powerful 

neomorphic oncogenic gain-of-functions (GOFs) that promote tumor progression in solid cancers 

mainly by increasing invasion and metastasis. In colorectal cancer (CRC) we recently established 

that the common hotspot mutants mutp53R248Q and mutp53R248W exert GOF activities by 

constitutively binding to and hyperactivating STAT3. This results in increased proliferation and 

invasion in an autochthonous CRC mouse model and correlates with poor survival in patients.  

 

Comparing a panel of p53 missense mutations in a series of homozygous human PDAC cell lines, 

we show here that similar to CRC the mutp53R248W protein again undergoes a strong Hsp90-

mediated stabilization and selectively promotes migration. Highly stabilized mutp53 is degradable 

by the Hsp90 inhibitors Onalespib and Ganetespib, and correlates with growth suppression, 

possibly suggesting therapeutic vulnerabilities to target GOF mutp53 proteins in PDAC.  

 

In response to mutp53 depletion only mutp53R248W harboring PDAC cells show STAT3 de-

phosphorylation and reduced migration, again suggesting an allele-specific GOF in this cancer 

entity, similar to CRC. Moreover, mutp53R248W also exhibits the strongest constitutive complex 

formation with phosphorylated STAT3. The selective mutp53R248W GOF signals through enhancing 

the STAT3 axis, which was confirmed since targeting STAT3 by knockdown or pharmacological 

inhibition phenocopied mutp53 depletion and reduced cell viability and migration preferentially in 

mutp53R248W-containing PDAC cells. Our results confirm that mutp53 GOF activities are allele 

specific and can span across tumor entities.  
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INTRODUCTION  

 

Already in the early 1990s the tumor suppressor p53 was coined as ‘guardian of the genome’ 

(Lane, 1992; Zilfou and Lowe, 2009) and it was known that mutation of the TP53 gene (tumor 

protein p53, HGNC:11998) is an essential step in human tumor development (Hollstein et al., 

1991; Lane, 1992). Ever since scientists have tried to understand the influence of the TP53 status 

within the mutational landscape in different cancer entities and to investigate the role of different 

variants in tumorigenic pathways. It became evident that some p53 mutant protein variants do not 

only abrogates tumor suppressor functions (loss-of-function, LOF), but also gain new tumorigenic 

functions (gain-of-functions; GOFs). Given that approx. 70% are missense mutations leading to 

amino acid substitutions mostly in the DNA binding domain, some alleles are selected and occur 

at a high frequency, termed hotspots. Most hotspot mutants gain neomorphic tumorigenic 

functions, particularly in invasion and metastasis of solid tumors (Brosh and Rotter, 2009; Oren 

and Rotter, 2010; Goh et al., 2011; Kim and Lozano, 2018; Sabapathy and Lane, 2018; Mantovani 

et al., 2019). A key prerequisite for GOFs of some missense p53 mutants (termed here ‘mutp53’) 

is protein stabilization through the Hsp90/Hsp70/Hsp40 (heat shock protein 90/70/40) chaperone 

machinery, resulting in protection from MDM2 (mouse double minute 2) and other E3 ligases and 

thus proteasomal degradation (Walerych et al., 2004; Walerych et al., 2009; Wiech et al., 2012; 

Parrales et al., 2016; Schulz-Heddergott and Moll, 2018; Wawrzynow et al., 2018; Mantovani et 

al., 2019).  

 

Due to the heterogeneity of TP53 point mutations, whose phenotype in addition are highly 

dependent on the cellular context, different missense mutants exert different cellular responses 

(Freed-Pastor and Prives, 2012; Lee et al., 2012; Gencel-Augusto and Lozano, 2020). Thus, it is 

important to consider the context- and allele-dependent specificity of different mutp53 proteins 

(Lee et al., 2012; Walerych et al., 2015; Ubby et al., 2019; Kadosh et al., 2020). To investigate 

the mutp53 specificity, different groups have dissected the impact of various mutp53 GOF alleles 

on tumorigenesis using autochthonous mouse models (Hanel et al., 2013; Alexandrova et al., 

2015; Kim et al., 2015; Schulz-Heddergott et al., 2018; Zhang et al., 2018) or clinical correlation 

studies (Said et al., 2013; Xu et al., 2014; Alexandrova et al., 2017; Schulz-Heddergott et al., 

2018). Recent results from our group highlight the GOF hotspot mutp53R248Q/W specificity in mouse 

and human colorectal cancer (CRC). mutp53R248Q/W binds to and deregulates phosphorylated 

STAT3 (signal transducer and activator of transcription 3) by protecting it from SHP2 phosphatase 

(PTPN11, protein tyrosine phosphatase non-receptor type 11), its major negative regulator. Thus, 



Klemke et al., manuscript provisionally accepted by Frontiers in Oncology (April 2021) 
 

4 
 

depletion of mutp53R248Q/W inhibits STAT3 signaling and causes suppression of tumor invasion 

and proliferation (Schulz-Heddergott et al., 2018). The p53 R248 hotspot is the single most 

common variant in all TP53-altered tumor types occurring in 9%, of cases which translates to 

about 66,000 newly diagnosed cancer patients in the US per year harboring R248 variants. Of 

R248 substitutions, over 90% are either Q or W, with similar frequencies (The Cancer Genome 

Atlas Program – National Cancer Institute). 

 

Here we asked whether mutp53R248W also exhibits tumor-promoting functions affecting migration 

in pancreatic ductal adenocarcinoma (PDAC). Note, the TP53R248Q allele is not available in 

established PDAC lines. PDAC is currently the fourth leading cause of cancer death worldwide 

with a rapidly ascending trajectory, and incidence is predicted to increase even further in the 

future (Orth et al., 2019; Siegel et al., 2020). PDAC, which constitutes around 90% of all 

pancreatic malignancies, is highly aggressive and chemoresistant and still has a dismal 5 year 

survival rate of only approx. 9% (Grasso et al., 2017; Smigiel et al., 2018; Orth et al., 2019; 

American-Cancer-Society, 2020).  

 

In approx. 70% of PDAC patients TP53 undergoes mainly missense mutations 

(www.cbioportal.org) as a late genetic event at the transition from high grade PanIN dysplasia to 

invasiveness during pancreatic cancer progression (Guo et al., 2016; Cicenas et al., 2017). Here 

we show in a panel of common human PDAC cell lines harboring different homozygous missense 

p53 mutants that mutp53 variants differ in their protein stability, with mutp53R248W again 

accumulating the highest protein levels also in the pancreatic cell context. Importantly, comparing 

all PDAC lines only mutp53R248W depletion strongly reduced migration capacity. In support, 

mutp53R248W specifically showed the strongest binding to phosphorylated STAT3 under baseline 

and cytokine-stimulated conditions, forming a constitutive mutp53R248W-pSTAT3 complex. Only 

mutp53R248W depletion was able to reduce pSTAT3 levels. Consequently, targeting the tumor-

promoting mutp53R248W-pSTAT3 complex by pSTAT3 depletion or pharmacological inhibition 

diminished cell viability and migration in mutp53R248W expressing, but not in mutp53R273H or 

mutp53R282W expressing PDAC cells. Our results support a GOF function of mutp53R248W in 

pancreatic cancer cell lines, justifying future investigations in this tumor entity in vivo. 
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RESULTS 
 

p53 missense mutants in human PDAC cell lines are stabilized via HSP90  

Since different p53 mutants have different conformations and thus different tumorigenic functions 

that additionally depend on specific cellular/oncogenic context, each allele and tumor type 

constellation should be considered separately (Bullock et al., 2000; Freed-Pastor and Prives, 

2012; Kim and Lozano, 2018; Schulz-Heddergott and Moll, 2018). To investigate the allele 

specificity of mutated TP53 in pancreatic ductal adenocarcinoma (PDAC), we used homozygous 

human PDAC cell lines expressing different endogenous p53 hotspot and non-hotspot missense 

mutants. The panel included CAPAN-1 (p53A159V), BXPC-3 (p53Y220C), PANC-1 (p53R273H), MIA-

PACA-2 (p53R248W), PA-TU-8902 (p53C176S) and PA-TU-8988T (p53R282W). L3.6pl harbors a 

truncating LOF mutation and served as p53null control. Unfortunately, an established PDAC line 

with a mutated TP53R248Q allele is not available. The absence of wildtype p53 function was verified 

in all cases (Figure S1).  

 

Comparative immunoblot analysis identified the highest steady state protein levels in MIA-

PACA-2 cells expressing the R248W mutant (Figure 1A). The second highest levels were 

observed in C176S and R282W harboring PA-TU-8902 and PA-TU-8988T cells, respectively. The 

lowest level was seen in A159V expressing CAPAN-1 cells (Figure 1A). Cycloheximide chase 

experiments confirmed that the highest p53 steady state levels in cells harboring mutp53R248W, 

mutp53C176S and mutp53R282W were also the most stable proteins with the longest half-lives, while 

mutant p53 protein with the lowest level (A159V) had the shortest half-life (Figure 1B).  

 

A key prerequisite for the gain-of-function (GOF) of some missense p53 mutants is protein 

stabilization through the Hsp90 chaperone machinery. Importantly, the clinically relevant Hsp90 

inhibitors Ganetespib or Onalespib provide therapeutic selectivity towards tumor epithelial cells 

but not normal cells, making them attractive for anti-cancer therapies (Klemke et al., 2021). 

Furthermore, in other cellular contexts such as lymphoma (Alexandrova et al., 2015), treatment 

with the Hsp90 inhibitors Ganetespib or Onalespib also downregulated mutp53 protein levels in 

most PDAC cells, except BXPC-3 cells (Figure 2A), indicating that mutp53 proteins are mainly 

stabilized in this context by the Hsp90 chaperone machinery. In line, PANC-1, MIA-PACA-2, PA-

TU-8902 and PA-TU-8988T cells showed diminished cell growth by about 40%, while the other 

lines had less reduction (Figure 2B). These data reinforce that at least some mutp53 proteins in 

PDAC might also be targetable with Hsp90 inhibitors. 
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The p53R248W mutant selectively promotes migration in PDAC cells  

We previously established that a main GOF activity of the mutp53R248W and mutp53R248Q in 

colorectal cancer compared to p53 null is promotion of cell migration and invasion in tumors in 

vivo and in vitro (Schulz-Heddergott et al., 2018). To test whether this is also the case in PDAC 

we performed migration assays. Of note, transwell migration assays showed that only siRNA-

mediated depletion of mutp53R248W decreased the migration capacity of MIA-PACA-2 cells, while 

depletion of other alleles failed to do so (Figures 3A-D). Interestingly, PA-TU-8988T and PA-TU-

8902 cells which also express high levels of stabilized mutp53R282W or mutp53C176S respectively 

(Figures 1A, B) did not show reduced migration after mutp53 depletion (Figure 3C) or were 

completely unable to migrate through the pores of the transwell membrane (Figure 3E). This 

remained even after treatment of PA-TU-8902 cells with the cytokines Interleukin-6 (IL-6) and 

Oncostatin M (OSM) (Figure 3E), known to induce migration and proliferation in numerous cell 

types (Natesh et al., 2015; Razidlo et al., 2018; Che et al., 2019). This suggests that high mutp53 

stabilization per se is a necessary but not sufficient precondition for acquiring a GOF on migration.  

 

To confirm the effects seen in migration assays, 3 cell lines were further analyzed by wound 

healing scratch assays. Again, specifically MIA-PACA-2 cells bearing the R248W mutation 

showed the strongest reduction in wound closing capacity upon mutp53 depletion (Figures 3F-

H).  

 

Mutp53R248W selectively binds to phosphorylated STAT3 in PDAC cells 

In colorectal carcinoma an important mechanism of tumor invasion is mediated by mutp53R248Q/W-

pSTAT3 signaling by forming a physical complex (Schulz-Heddergott et al., 2018). Reduced 

migration capacity of MIA-PACA-2 cells after mutp53R248W depletion (Figures 3A, F) suggests a 

similar mechanism. Since the STAT3 pathway is also an important driver of PDAC tumorigenesis 

(Denley et al., 2013; Nagathihalli et al., 2015), we asked whether mutp53R248W-regulated migration 

is similarly mediated through STAT3 signaling. The PDAC panel showed high constitutive levels 

of phosphorylated STAT3 (pSTAT3) in 5 of the 7 cell lines (Figure 4A). Only 2 cell lines, PA-TU-

8902 and PA-TU-8988T, had very low levels of activated STAT3 (yet exhibited significant 

stabilization of mutp53). On the other hand, this immunoblot analysis which examines relative 

ratios of both proteins indicated that 4 lines with high pSTAT3 had very low or undetectable 

mutp53 levels. Importantly, MIA-PACA-2 cells, as the only cell line with dually high levels of both 

mutp53 and pSTAT3, seem to fulfill the best precondition to promote migration via this axis. 
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Thus, co-immunoprecipitations (CoIPs) were performed to test which of the various mutp53 

proteins are able to bind STAT3. Indeed, R248W in MIA-PACA-2 cells showed the strongest 

binding to total STAT3 protein compared to BXPC-3 and PANC-1 cells, forming a constitutive 

endogenous signaling complex (Figure S2A). Since phosphorylation status is another important 

parameter for binding to STAT3, these cell lines with different mutp53 variants and stabilization 

levels were subjected to CoIPs with an antibody specific for phosphorylated STAT3. Among these 

mutants analyzed, mutp53R248W in MIA-PACA-2 cells again showed the strongest binding to 

pSTAT3 (Figure 4B). CAPAN-1 cells with low mutp53 level showed a minor binding to pSTAT3 

(Figure 4C) such as BXPC-3 and PANC-1 cells (Figure 4B) (yet exhibited moderate levels of 

mutp53 compared to CAPAN-1). However, PA-TU-8988T cells with intermediate mutp53 levels 

(lower than in MIA-PACA-2 but higher than in PANC-1 or BXPC-3 cells) again showed a strong 

binding of mutp53R282W to pSTAT3 (Figure 4D). This confirms a point made in colorectal 

carcinoma that the ability of mutp53 to bind to pSTAT3 correlates with the degree of its 

stabilization (Schulz-Heddergott et al., 2018).  

To investigate if the mutp53-pSTAT3 complex can directly regulate the phosphorylation status of 

STAT3 as shown in CRC (Schulz-Heddergott et al., 2018), we depleted mutp53 in MIA-PACA-2, 

PA-TU-8988T, PANC-1, BXPC-3 and PA-TU-8902 cells (Figures 4E, S2B). In MIA-PACA-2 and 

PA-TU-8988T cells, both with a strong mutp53-pSTAT3 complex formation, only mutp53R248W 

regulated STAT3 activity in PDAC cells, as indicated by decreased STAT3 phosphorylation 

selectively in MIA-PACA-2 cells (Figure 4E). In all other cell lines tested, pSTAT3 level were not 

decreased after mutp53 depletion (Figures 4E, S2B). Why mutp53 binding to pSTAT3 failed to 

reduce STAT3 activity in PA-TU-8988T cells remains speculative but confirms the reduced 

migration capacity after mutp53 depletion exclusively in MIA-PACA-2 cells (Figures 3A-D). These 

data further underline the strong invasive GOF function of the mutp53R248Q/W allele reaching 

across cancer entities.  

Although most PDAC cell lines already exhibited high constitutive levels of pSTAT3 at baseline 

(Figure 4A), treatment with Interleukin-6 (Figure 4F) or Oncostatin M (Figure 4G) further 

stimulated the STAT3 pathway and induced additional increase in phosphorylated STAT3. Thus, 

to further evaluate whether the mutp53 binding capacity to pSTAT3 increases with higher pSTAT3 

levels, MIA-PACA-2, as well as PANC-1 and BXPC-3 cells (both with a low binding capacity) were 

treated with IL-6, OSM or solvent control. Interestingly, even after this strong induction of pSTAT3, 

the p53R248W mutant showed by far the strongest binding to pSTAT3, again emphasizing allele 

selectivity (Figure 4H). These data suggest that it is not the level of pSTAT3 that predicts p53 

binding in PDAC, but rather the nature of the mutp53 variant. In sum, mutp53R248W shows a strong 
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ability for complexing with pSTAT3 and regulation of migration, independent of the levels of 

phosphorylated STAT3.  

 

Mutp53R248W selectively regulates STAT3 phosphorylation and activity in PDAC cells 
The above findings led us to hypothesize that mutp53R248W binds to and deregulates pSTAT3 in 

PDAC cells by forming an oncogenic complex. Since mutp53R248W depletion also selectively 

suppressed phosphorylation and thus activation of STAT3 (Figure 4E), we next asked whether 

the R248W mutant can be functionally linked to STAT3 dependency for migration in PDAC cells. 

To this end we determined migration capacity after STAT3 ablation. Indeed, depletion of STAT3 

suppressed migration ability in mutp53R248W expressing MIA-PACA-2 cells (Figure 5A) but not in 

mutp53R273H expressing PANC-1 cells (Figure 5B). 

 

To confirm that phosphorylated STAT3 is critical for the oncogenic mechanism of the tumor-

promoting mutp53R248W-pSTAT3 complex, we used the small-molecule STAT3 inhibitor Stattic. 

Stattic selectively inhibits activation of STAT3 through interference with dimerization and nuclear 

translocation (Schust et al., 2006). It has been shown that Stattic substantially reduces STAT3 

phosphorylation in colorectal, liver and breast cancer cells (Schust et al., 2006; Lin et al., 2011; 

Spitzner et al., 2014) as well as in PDAC cells such as MIA-PACA-2 and PANC-1 (Cardoso et al., 

2012; Lin et al., 2016; Nagathihalli et al., 2018). Importantly, among the panel of PDAC cells, 

R248W expressing MIA-PACA-2 cells were again the most susceptible to pSTAT3 inhibition by 

Stattic with the lowest IC50 value (8 µM) in cell viability assays (Figure 5C). Likewise, migration 

after Stattic treatment was strongly suppressed in MIA-PACA-2 cells (by ~70%), but lower 

suppressed in PANC-1 (by ~15%) or PA-TU-8988T cells (by ~45%) cells (Figure 5D).  

 

The mutp53R248W-STAT3 complex might accelerate tumor progression in PDAC patients as we 

had previously seen in CRC patients (Schulz-Heddergott et al., 2018). Indeed, TCGA patient data 

support this notion since PDAC patients harboring TP53R248Q or TP53R248W mutations showed a 

trend for reduced survival compared to patients with loss-of-function NS+FS mutation (Figure 5E), 

supporting the mutp53R248W-pSTAT3 complex as a potentially attractive target in PDAC. 

 

In conclusion, targeting the tumor-promoting mutp53R248W-pSTAT3 complex by STAT3 depletion 

or pharmacological inhibition diminished cell viability and migration in mutp53R248W expressing, 

but not in mutp53R273H expressing, PDAC cells.  
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DISCUSSION 
 

The phenotype of p53 missense mutants is heterogenous and moreover depends on the cellular 

context (Freed-Pastor and Prives, 2012; Lee et al., 2012; Gencel-Augusto and Lozano, 2020). 

Here we analyze a panel of p53 missense mutants (mutp53) in a series of homozygous human 

PDAC cell lines and compare the impact of various mutants on protein properties and functions. 

We find that mutp53R248W protein undergoes strong Hsp90-mediated stabilization and selectively 

promotes migration by engaging in the strong constitutive complex formation with phosphorylated 

STAT3 at baseline and upon cytokine stimulation. Our data in pancreatic cancer suggest a 

R248W allele-specific gain-of-function on migration via STAT3 deregulation. These data mirror 

our previous findings in colorectal cancer (Schulz-Heddergott et al., 2018) and further underline 

the necessity to investigate p53 missense mutants in a context and allele-dependent manner (Lee 

et al., 2012; Walerych et al., 2015; Ubby et al., 2019).  

 

Interestingly, PA-TU-8902 cells expressing intermediate stabilized mutp53C176S showed strong 

STAT3 pathway stimulation by OSM or IL-6 (Figures 4F, G) but did not migrate at all through the 

transwell assay (Figure 3E), indicating that STAT3 fails to impact migration in these cells. 

Furthermore, PA-TU-8988T cells harboring intermediate levels of mutp53R282W showed a strong 

binding to pSTAT3 but failed to regulate pSTAT3 level (indicating STAT3 activity) (Figure 4E) and 

failed to influence the migratory capacity in transwell assays as seen in mutp53R248W-containing 

MIA-PACA-2 cells (compare Figure 3A and 3C). However, in principle, the mutp53R282W-pSTAT3 

complex confirms a point made in our colorectal carcinoma study that the ability of mutp53 to bind 

pSTAT3 correlates with the degree of its stabilization (Schulz-Heddergott et al., 2018). The 

function which is acquired by the mutp53R282W-pSTAT3 complex in PA-TU-8988T remains 

speculative. STAT3 is not just an important factor for PDAC migration (Cardoso et al., 2012; Patel 

et al., 2014; Nagathihalli et al., 2016), but is also involved in many other hallmarks of cancer to 

promote tumor progression (Siveen et al., 2014; Zou et al., 2020).  

Thus, we find that different p53 mutants have different impacts on migration- and cell growth-

associated STAT3 functions. Importantly, among TP53 mutations, several other common 

alterations exist that drive PDAC (Bailey et al., 2016). We cannot exclude that molecular PDAC 

subtypes influence mutp53 GOF activities. Other mutations and alteration might also contribute 

to migratory differences after depletion of mutp53 variants. To address this question, an isogenic 

cell panel with various TP53 mutations is necessary. Since the maintenance of the TP53 copy 
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number is very crucial in relation to mutp53 protein stabilization, a CRISPR/Cas9-based isogenic 

cell panel might be most useful. 

Mechanistically, the favored gain-of-function hypothesis is that the nuclear presence of highly 

abundant stabilized mutp53 proteins, which have lost specific DNA binding capacity on their own, 

results in hijacking of (by binding to) other transcription factors and their specific cofactors, thereby 

building a complex network to divert and oncogenically reprogram their transcriptional activity 

(Muller and Vousden, 2013; 2014; Kim et al., 2015; Walerych et al., 2015; Bellazzo et al., 2018; 

Kim and Lozano, 2018; Mantovani et al., 2019). Regarding co-factors, it is conceivable that the 

mutp53 protein also adds p53-specific coactivators into this illegitimate mix, and/or that the 

canonical coactivator specific for the partnering transcription factor might get displaced. Thus, 

interplay networks of mutp53 with co-regulation of various tumor drivers is essential for GOF 

mediated cancer progression (Oren and Rotter, 2010; Muller and Vousden, 2013; Kim et al., 2015; 

Kim and Lozano, 2018; Grzes et al., 2020). This concept could explain why the mutp53 status or 

the status of STAT3 phosphorylation alone is not yet a determinant for migration but depends on 

the specific missense mutation, resulting in specific mutp53-STAT3 complexes with mutp53 

variant-specific transcriptional cofactors. In line, it is shown that mutp53R273H and mutp53R175H can 

regulate NF-KB activity in cancer cells (Weisz et al., 2007; Cooks et al., 2013). Interestingly, NF-

KB and STAT3 also physically interact and coregulate transcriptional pathways in cancer 

(Grivennikov and Karin, 2010; Ji et al., 2019). Together with our finding that mutp53R273H does not 

significantly bind to pSTAT3 in PANC-1 cells (Figures 4B) and does not regulate their migration 

(Figures 3B, G), it further emphasizes the allele specificity of oncogenic mechanisms. Other 

studies also show context-dependent mutp53 specificities (Freed-Pastor and Prives, 2012; Kim 

and Lozano, 2018). One example is mutp53R175H which promotes aberrant self-renewal in 

leukemic cells through binding to FOXH1 as critical regulator of stem cell–associated genes 

(Loizou et al., 2019). Furthermore, mutp53R175H or mutp53R273H/C form complexes with NF-Y and 

p300 proteins to override cellular failsafe programs thus, permitting tumor progression (Di 

Agostino et al., 2006). Mutp53 promotes invasion, e.g. via constitutive activation of EGFR/integrin 

signaling (Muller et al., 2009) and by antagonizing TAp63 (Adorno et al., 2009).  

 

Mutp53 stabilization occurs via binding to Hsp90 (Alexandrova et al., 2015; Mantovani et al., 

2019) which offers therapeutic approaches to target stabilized GOF mutp53 protein in cancer cells 

via Hsp90 inhibition. Thus, treatment with the HSP90 inhibitors Ganetespib and Onalespib 

diminished mutp53 levels in most analyzed PDAC cells (Figure 2A). However, in BXPC-3 cells, 

both Hsp90 inhibitors failed to destabilize Hsp90 clients (also see functional control AKT). Why 
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remains speculative but resistance mechanisms are known such as an UGT1A (UDP 

glucuronosyltransferase 1A) overexpression (Landmann et al., 2014). Importantly, in cells with a 

strong stabilization of mutp53 (MIA-PACA-2, PA-TU-8902 and PA-TU-8988T, Figure 1B), 

inhibition of HSP90 resulted in significant suppression of cell growth (Figure 2B). In CAPAN-1 

cells with a low degree of mutp53 stabilization (Figures 1A, B), HSP90 inhibition did not 

substantially impact cell confluency (Figure 2B).  

 

In sum, our preliminary in vitro results support a GOF of mutp53R248W in pancreatic cancer, 

justifying future in vivo investigations on stabilized mutp53 as putative therapeutic target in this 

important tumor entity that is in dire need of new therapeutic concepts.  
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MATERIAL AND METHODS 
 

All materials used and corresponding information are provided as supplemental Table 1. 

 

Cell Culture 
Homozygous mutant human pancreatic cancer cell lines MIA-PACA-2 (mutp53R248W) (DZMS, 

RRID:CVCL_0428), PANC-1 (mutp53R273H) (ATCC, RRID:CVCL_0480), BXPC-3 (mutp53Y220C) 

(ATCC, RRID:CVCL_0186), and PA-TU-8902 (mutp53C176S) (DSMZ, RRID:CVCL_1845) were 

grown in DMEM (Gibco) with 10% FBS (Merck). PA-TU-8988T (mutp53R282W) (DSMZ, 

RRID:CVCL_1847) were grown in DMEM medium with 5% FBS. CAPAN-1 (mutp53A159V) (ATCC, 

RRID:CVCL_0237) were grown in RPMI 1640 (Gibco) with 20% FBS, and L3.6pl cells (truncating 

frameshift p53 mutation) (Bruns et al., 1999; Herreros-Villanueva et al., 2013) were grown in RPMI 

1640 with 10% FBS. All media were supplemented with Penicillin-Streptomycin (10,000 U/mL, 

Gibco) and L-Glutamine (Gibco). All cell lines were grown at 37°C at 5% CO2 in a humidified 

atmosphere and tested for Mycoplasma contamination on a regular basis (Mycoplasma Detection 

Kit, Lonza). Cell line authentication certificates are provided as supplemental material.  

 

Transfection with siRNA  

Depletion of human TP53 or STAT3 mRNAs was achieved by siRNA transfection using 

Lipofectamine™ 3000 (Invitrogen) or Lipofectamine™ 2000 (Invitrogen) transfection reagents. 

siRNA sequences are listed in supplemental Table 1. Cells were reverse transfected in 6-well 

plates (Sarstedt) according to manufacturer guidelines. After 24 hrs supernatant was collected 

and replaced by fresh culture medium. 72 hrs post-transfection cells were harvested for analyses. 

 

Immunoblot analysis  

Cell lysates were prepared with RIPA buffer containing 20 mM Tris-HCl pH 7.5, 10 mM EDTA, 

1% sodium deoxycholate, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, phosphatase inhibitor 

consisting of 2 mM imidazol, 1 mM sodium orthovanadate and 1 mM sodium fluoride, and 

cOmpleteTM mini protease inhibitor cocktail (Roche). Samples were lysed in RIPA buffer with 

sonication. Protein concentrations were determined by BCA protein assay (Pierce). Equal 

amounts of lysates were loaded (15-30 µg) and separated by SDS-polyacrylamide gel 

electrophoresis followed by transfer onto nitrocellulose membranes (Amersham). After blocking 

with 5% milk (Roth), membranes were incubated with the following antibodies: HSC70 [B-6] 

(Santa Cruz), beta-Actin (Abcam), total-AKT [D9E] (Cell Signaling), p53 [DO-1] or HRP-
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conjugated p53 [DO-1] (Santa Cruz), phospho-Y705 STAT3 [EP2147Y] (Abcam), total STAT3 

(Santa Cruz) or total STAT3 [79D7] (Cell Signaling), MDM2 [IF-2] (Calbiochem®/Millipore), p21 

Waf1/Cip1 [12D1] (Cell Signaling). Primary antibodies were detected with HRP-conjugated 

secondary antibodies. Signal was developed using Clarity Max™ Western ECL Substrate 

(BioRad), SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher Scientific) 

or Immobilion Western chemiluminescent HRP substrate (Millipore/Merck). For antibody details 

see Table 1.  

 

Co-immunoprecipitation  

For coIP cells were lysed in buffer containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% 

NonidetTM P40, 10 μM MG-132, phosphatase inhibitor consisting of 2 mM Imidazol, 1 mM sodium 

orthovanadate and 1 mM Sodium Fluoride, and cOmpleteTM mini protease inhibitor cocktail 

(Roche), followed by sonication. After centrifugation samples were precleared with protein G 

Sepharose (GE Healthcare) and equal amounts of protein were immunoprecipitated using 

antibodies against total STAT3 (Santa Cruz), phospho-Y705 STAT3 (Abcam) or control IgG 

antibody (Abcam). Precipitates were analyzed by immunoblotting. For coIPs, p53 was 

immunoblotted with an HRP-conjugated p53 antibody (Santa Cruz). 5% of each input was used 

as input control and stained with beta-Actin (Abcam) as loading control. To stimulate STAT3, cells 

were treated with 50 ng/mL IL-6 or OSM 24 hrs prior to performing the CoIP. 

 

Cycloheximide chase 

To evaluate the stability of different mutp53 proteins in the panel of PDAC cell lines Cycloheximide 

(CHX) chase experiments were performed. Cells were treated with 40 µg/mL Cycloheximide 

(Sigma-Aldrich) or ethanol vehicle control for 8 h and 24 hrs. Protein lysates were prepared with 

RIPA buffer as described in immunoblot analysis.  

 

Treatment with Hsp90 inhibitors and STAT3 inhibitor  

To investigate HSP90 chaperone dependent stabilization of different mutp53 proteins, cells were 

treated with Hsp90 ATPase inhibitors Ganetespib (Synta Pharmaceuticals) or Onalespib 

(Selleckchem). To investigate dependency on STAT3, small-molecule inhibitor Stattic (Santa 

Cruz) was used which prevents STAT3 phosphorylation and activation. Cells were seeded in 6-

well plates (Sarstedt) and treated with the inhibitors or respective DMSO control for 24 hrs 

followed by harvesting protein lysates and immunoblot analysis. To determine cell confluency, 
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cells were seeded in 96-wells (Corning) and treated with Onalespib or Ganetespib for 24 hrs. 

Confluency was determined using the Celigo Imaging Cytometer (Nexcelom, Software v5.0.0.0).  

 

Treatment with cytokines (IL-6, OSM) 

To stimulate the STAT3 pathway, cells were seeded in 6-well plates (Sarstedt) and treated with 

Interleukin-6 (IL-6) or Oncostatin M (OSM 209a.a.) (both from Immunotools) or solvent control for 

24 hrs and analyzed by immunoblots. 

 

Cell viability assay after Stattic treatment 

Cells were seeded in 96-well plates (Corning) and treated with increasing concentrations (0-

80 µM) of Stattic or solvent control for 24 hrs. The CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega), based on detectable ATP, was performed according to manufacturer’s guidelines. 

Each biological replicate was measured in triplicates and viability was calculated relative to the 

solvent control for each cell line. 

 

Wound healing assay 

24 hrs after transfection with siRNAs or scrambled control, cells were incubated in serum-reduced 

media (1% FBS). 48 hrs post transfection, three scratches per well were made with a 1ml pipette 

tip or 200µl pipette tip as dublicates. 48 hrs after scratching, at least 5 images per scratch were 

taken, quantified, and averaged per experiment. The degree of wound healing was determined 

by measuring the scratched area per image using the ‘polygon selection function’ of Image J 

software. Wound healing rate was measured by averaging each scratch area after 48 hrs relative 

to the initial area at 0 hrs. Biological replicates are defined as independent experiments with cells 

at different passages and different days. For technical replicates cells from one experiment were 

seeded in two different wells (duplicates). 

 

Transwell migration assay 

Cells were either transfected with siRNA against TP53 mRNA, STAT3 mRNA or scrambled 

control, or treated with STAT3 inhibitor Stattic. 72 hrs after siRNA transfection, cells were 

trypsinized and seeded into transwell inserts (Corning) in serum-reduced media (1% FBS for MIA-

PACA-2, PANC-1, BXPC-3 and PA-TU-8902; 0.5% FBS for PA-TU-8988T). Wells (Corning) were 

filled with the respective complete medium of each cell line.  
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To investigate migration potential upon Stattic treatment, cells were seeded in transwell inserts 

as described above. Different concentrations of Stattic or respective control were added to the 

cells 1-2 hrs after seeding, allowing cells to settle before treatment.  

Final 24 hrs after seeding, cells that had migrated to the underside of the membrane were 

carefully washed with PBS, fixed in ice cold methanol for 10 min and stained with crystal violet 

(0.1% in 20% EtOH) for 20 min. After washing, remaining cells inside the insert were removed 

using a pre-wet Q-tip. Migrated cells were visualized by light microscopy and analyzed using 

Image J. Migration rate was calculated relative to scrambled siRNA or solvent control, 

respectively. Biological replicates are defined as independent experiments with cells at different 

passages and different days. For technical replicates cells from one experiment were seeded in 

two different transwell inserts (dublicates). 

Attempting to induce migration of PA-TU-8902 cells, cells were seeded in 6-well plates (Corning) 

and treated with 50 ng/mL IL-6 or OSM (Immunotools). After 24 hrs pre-treatment, cells were 

transferred to transwell inserts, cytokines added again. And followed as described above.   

 

 

Analysis of human patient TCGA data 

Human genomic data including TP53 gene mutation and clinical information was downloaded 

from cBioPortal (www.cbioportal.org). We used cBioportal Pancreatic ductal adenocarcinoma 

database in this analysis (Cerami et al., 2012; Gao et al., 2013). Two datasets were used to detect 

mutated samples and the clinical data, QCMG, Nature 2016, and TCGA, PanCancer Atlas (Bailey 

et al., 2016; Cancer Genome Atlas Research Network. Electronic address and Cancer Genome 

Atlas Research, 2017). TP53 R248Q/W missense mutant group was sampled with TP53 

missense mutations (MS) with amino acid change R248, and TP53 LOF group was sampled with 

frameshift (FS) and nonsense (NS) TP53 mutations. R language (The R Project for Statistical 

Computing, https://www.r-project.org, version 4.0.2) and the package “survival” were used in the 

analysis, including calculating log-rank p-value and Kaplan-Meier curves. 

 

Statistical analysis 

The number of biological and technical replicates (mean ± SEM) is provided in the figure legends. 

For all experiments, an unpaired Student’s t test was used to calculate p-values.  
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Figures/Figure Legends 

 
Figure 1: Stabilization of various missense p53 mutants in human PDAC cell lines. (A) Six 

PDAC cell lines harbouring various missense mutant p53 variants exhibit differential steady state 

protein levels. One representative immunoblot analysis out of 4 is shown. Actin as loading control. 

‘p53 high’ and ‘p53 low’ mean exposure time. CAPAN-1 (mutp53A159V), BXPC-3 (mutp53Y220C), 

PANC-1 (mutp53R273H), MIA-PACA-2 (mutp53R248W), PA-TU-8902 (mutp53C176S) and PA-TU-

8988T (mutp53R282W). L3.6pl cells harboring a truncating LOF mutation served as p53 null control. 

(right) Diagrams represent the means ± SEM of densitometric quantifications of two independent 

experiments with two technical replicates each (total n=4 immunoblots), normalized to actin or 

HSC70 and calculated relative to mutp53 level in BXPC-3 cells (patterned bar). (B) Differential 

half-lives of mutp53 proteins. Cycloheximide (CHX) chase experiment. Cells were treated with 

CHX for 8 and 24 hrs or vehicle control (0 hrs). One representative immunoblot. Actin, loading 

control. (right) Diagrams represent mutp53 protein levels as means ± SEM of densitometric 

quantifications of two independent experiments (n=2), normalized to actin or HSC70. Calculated 

relative to control treatment (0 hrs). (A, B) Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, 

not significant.  
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Figure 2: Missense p53 mutants in PDAC cells are stabilized by HSP90. (A) Hsp90 dependent 

aberrant stabilization of mutp53 proteins in PDAC cell lines. Cells were treated for 24 hrs with the 

indicated concentrations of Ganetespib, Onalespib or DMSO. One representative immunoblot out 

of 3 each is presented. HSC70, loading control. Total AKT (‘tAKT’, AKT serine/threonine kinase 

1) as well-known Hsp90 client serves as functional control for an Hsp90 inhibition. (right) 

Diagrams represent the means ± SEM of densitometric quantifications of at least two independent 

experiments with technical replicates (total n≥3 immunoblots), normalized to HSC70. Calculated 

relative to control DMSO treatments (con). (B) Cell confluence determination. Representative 

images of cells after treatment with 200 nM Ganetespib, Onalespib or solvent control for 24 hrs. 

Cell confluency was analysed using a Celigo imaging cytometer. Scale bars, 100 µm. Confluence 

was calculated relative to their respective DMSO control from n=3 biological replicates. Student’s 

t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant. 
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Figure 3: Mutp53R248W selectively promotes migration in PDAC cells. (A-D) Transwell 

migration assays of MIA-PACA-2, PANC-1, PA-TU-8988Tand BXPC-3 cells to evaluate mutp53-

dependent migration activity. mutp53 was depleted with three different siRNAs against TP53 

mRNA (sip53 1-3). 72 hrs post-transfection with siRNAs, cells were seeded into transwell inserts 

and migration to the membrane underside was determined after 24 hrs. MIA-PACA-2 cells: 3 

biological replicates (n=3), PANC-1 cells: 2 biological replicates (n=2), PA-TU-8988T cells: 3 

biological replicates (n=3), BXPC-3 cells: 3 biological replicates, one with a technical replicate 

(n=4). Note, siRNA ‘sip53-3’ reduced migration in BXPC-3 cells might be a consequence of siRNA 

off-target effects. Migration was calculated relative to scrambled control (scr, set as 100%). 

Representative images of membrane undersides are shown. Scale bars, 200 µm. Immunoblot 

analysis verifies knockdown of mutp53. Actin, loading control. (E) Transwell migration assay of 

PA-TU-8902. Representative images of stained transwells after 24 hrs of migration are shown. 

To induce migration cells had been stimulated for 24 hrs with 50 ng/mL Interleukin-6 (IL-6), 

Oncostatin M (OSM) or solvent control (con) prior to seeding into inserts, followed by additional 

cytokine treatment for another 24 hrs. Gray dots are pores of the membrane. Scale bars, 200 µm. 

(F-H) mutp53-dependent wound healing of MIA-PACA-2, PANC-1 and PA-TU-8988T cells. 

mutp53 knockdown for 48 hrs using three different siRNAs (sip53 1-3). 48 hrs post-transfection, 

scratch assays were performed for another 48 hrs. A minimum of 5 images were taken and 

quantified. MIA-PACA-2 cells: 3 biological replicates, 1 out of 3 with a technical replicate (n=4), 

PANC-1 cells: 2 biological replicates, 1 out of 2 with a technical replicate (n=3), PA-TU-8988T 

cells: 2 technical replicates (n=2). Wound healing capacity was calculated relative to scrambled 

control (scr). Representative images after 0 hrs and 48 hrs are shown. Solid lines represent edges 

of the scratch. Immunoblots verify knockdown of mutp53. Actin, loading control. (A-D, F-H) 

Diagrams represent the means ± SEM. Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not 

significant. 
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Figure 4: Mutp53R248W selectively binds to phosphorylated STAT3 in PDAC cells. (A) 

Representative immunoblot analysis of seven different PDAC cell lines. pSTAT3, pTyr 705-

STAT3 (Y705) and total STAT3 (tSTAT3). Actin, loading control. (B-D) Co-immunoprecipitations 

(CoIPs) of untreated MIA-PACA-2, PANC-1, BXPC-3 (B), CAPAN-1 (C) and PA-TU-8988T (D) 

cells using anti-pSTAT3 (Y705) or IgG antibodies followed by immunoblot analysis. MIA-PACA-2 

cells were always used as positive control. Note, the pSTAT3 band marked by an asterisk in (B) 

is an artefact due to a leaky pocket from the neighbouring MIA-PACA-2 lane. (E) Knockdown of 

mutp53 in MIA-PACA-2, but not in PA-TU-8988T cells downregulates pSTAT3 levels. Cells were 

transfected with two different siRNA against TP53 mRNA (sip53-1, -2) or scrambled control (scr) 

for 72 hrs followed by immunoblot analysis. Representative immunoblot out of 3 (MIA-PACA-2) 

and out of 4 (PA-TU-8988T). Actin, loading control. (right) Diagrams represent the means ± SEM 

of densitometric quantifications of three (MIA-PACA-2, n=3) or two (PA-TU-8988T, n=4) 

independent experiments, normalized to actin. Calculated relative to control scrambled siRNA 

(scr). Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ns, not significant. (F, G) Treatment of PDAC cell lines 

with the indicated concentrations of Interleukin-6 (IL-6, F), Oncostatin M (OSM, G) or respective 

solvent controls for 24 hrs. Representative immunoblot for pSTAT3 (Y705) induction is shown. 

Quantification by densitometry, normalized to actin loading control (pSTAT3/actin ratio) and 

calculated relative to solvent control. ‘pSTAT3/actin’, densitometric quantifications of the 

representative immunoblot, normalized to actin and relative to 0 ng/ml IL-6 or OSM treatments. 

(H) CoIPs of MIA-PACA-2, PANC-1 and BXPC-3 cells stimulated with 50 ng/mL IL-6, OSM or 

solvent control for 24 hrs. Immunoprecipitation using anti-pSTAT3 (Y705) or IgG antibodies, 

followed by immunoblot as indicated. Actin in unprecipitated input lysates, loading control. (B-D 

and H) 5% of input were used for input control. 
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Figure 5: p53R248W mutant selectively regulates STAT3 phosphorylation and activity in 
PDAC cells. (A, B) STAT3 knockdown phenocopies mutp53 knockdown in migration assays. 

MIA-PACA-2 (A) and PANC-1 (B) cells were transfected with two different siRNAs against STAT3 

mRNA (siSTAT3-1, -2) or scrambled control (scr). 72 hrs post-transfection cells were seeded into 

transwell inserts to assess their migration. After 24 hrs cells were fixed, stained and counted at 

the membrane underside. Scale bars, 200 µm. MIA-PACA-2 cells: 4 biological replicates (n=4), 

PANC-1 cells: 3 biological replicates, 2 out of 3 with 2 technical replicates (n=5). Cells were 

calculated relative to scrambled control. Immunoblot analysis to confirm knockdown of STAT3. 

HSC70, loading control. (C) Cell viability assays of the indicated PDAC cell lines. Dose response 

curve after treatment with increasing concentrations of the STAT3 inhibitor Stattic or solvent 

control for 24 hrs. For each cell line 3-4 biological replicates were measured. Diagram represents 

means ± SEM. From these curves IC50 values were determined, indicated in the table. Of note, 

MIA-PACA-2 cells are the most sensitive to Stattic treatment, indicated by the dashed line. (D) 

STAT3 inhibition phenocopies mutp53 knockdown in migration assays. Transwell migrations 

assays of MIA-PACA-2, PANC-1 and PA-TU-8988T cells treated with the indicated concentrations 

of Stattic for 24 hrs. Scale bars, 200 µm. For all cell lines, quantification of 2 biological replicates, 

1 of them with 2 technical replicates (n=3 total), calculated relative to 0 µM control treatment. (E) 

Survival curve of PDAC patients harboring TP53 R248 mutations versus patients harboring TP53 

nonsense or frameshift (NS/FS) mutations. Number of patients and mean overall survival in 

months as indicated. TCGA data. Kaplan-Meier statistic, log-rank test. (A, B and D) Diagrams 

represent the means ± SEM. Student’s t test. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not 

significant. 
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Figure S1: Functional validation of missense p53 mutants in human PDAC cell lines. 
Representative immunoblots of seven PDAC cell lines harbouring various mutant p53 variants. 

Cells were treated with DMSO (-) or 10 µM Nutlin-3a (+) for 8 hrs. Wildtype p53 containing HCT 

116 cells served as functional positive control for p53 activation. ‘high’ and ‘low’ mean exposure 

time. CAPAN-1 (mutp53A159V), BXPC-3 (mutp53Y220C), PANC-1 (mutp53R273H), MIA-PACA-

2 (mutp53R248W), PA-TU-8902 (mutp53C176S) and PA-TU-8988T (mutp53R282W). L3.6pl 

cells harboring a truncating LOF mutation served as p53 null control. Note, all mutp53-containing 

cells failed to induce p53 targets p21 (CDKN1A, cyclin dependent kinase inhibitor 1A) and MDM2 

(mouse double minute 2) after Nutlin-3a treatment.  
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Figure S1: Functional validation of missense p53 mutants in human PDAC cell lines.

Representative immunoblots of seven PDAC cell lines harbouring various mutant p53 variants.

Cells were treated with DMSO (-) or 10 µM Nutlin-3a (+) for 8 hrs. Wildtype p53 containing

HCT 116 cells served as functional positive control for p53 activation. ‘high’ and ‘low’ mean

exposure time. CAPAN-1 (mutp53A159V), BXPC-3 (mutp53Y220C), PANC-1 (mutp53R273H),

MIA-PACA-2 (mutp53R248W), PA-TU-8902 (mutp53C176S) and PA-TU-8988T

(mutp53R282W). L3.6pl cells harboring a truncating LOF mutation served as p53 null control.

Note, all mutp53-containing cells failed to induce p53 targets p21 (CDKN1A, cyclin dependent

kinase inhibitor 1A) and MDM2 (mouse double minute 2) after Nutlin-3a treatment.
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Figure S2 related to Figure 4: Mutp53R248W selectively binds to phosphorylated STAT3 in 
PDAC cells. (A) Co-immunoprecipitation (CoIP) of untreated BXPC-3, MIA-PACA-2 and PANC-

1 cells to investigate mutp53 binding to total STAT3 (tSTAT3). Immunoprecipitation with anti-total 

STAT3 (STAT3) or immunoglobulin G (IgG) antibodies, followed by immunoblot analysis. (B) 

Knockdown of mutp53 in PANC-1, BXPC-3 or PA-TU-8902 cells does not downregulate pSTAT3 

levels. Cells were transfected with two different siRNA against TP53 mRNA (sip53-1, -2) or 

scrambled control (scr) for 72 hrs followed by immunoblot analysis. Representative immunoblots 

are shown. Actin, loading control.  

 

  

Supplemental Figure 2

A

p53

tSTAT3
BXPC-3 

PANC-1

MIA-P
ACA-2 

  
IgG

BXPC-3 

PANC-1

MIA-PACA-2 
  

STAT3

BXPC-3 

PANC-1

MIA-P
ACA-2 

  
input

90

53

kDa

scr 1    2  

PANC-1
R273H 

actin
p53
pSTAT3

scr   1    2  

BXPC-3
Y220C 

scr 1    2  

PA-TU-8902
C176S

sip53

B

42

53

kDa
90



Klemke et al., manuscript provisionally accepted by Frontiers in Oncology (April 2021) 
Supplemental material 

33 
 

 
Supplemental Table 1: Reagents and Resources  
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies   WB Co-
IP 

Rabbit monoclonal anti-Akt [D9E] Cell Signaling 9272, 
RRID:AB_329827 1:1,000  

Mouse polyclonal anti-beta-Actin  Abcam ab6276, 
RRID:AB_2223210 1:10,000  

Rabbit polyclonal anti-beta-Actin Abcam ab8227, 
RRID:AB_2305186 1:10,000  

Mouse monoclonal anti-HSC70 [B-6] Santa Cruz sc-7298, 
RRID:AB_627761 1:5,000  

Mouse monoclonal anti-MDM2 (Ab-1) 
[IF-2]  

Calbiochem®/ 
Millipore 

OP46, 
RRID:AB_2335867 1:300  

Rabbit monoclonal anti-p21 Waf1/Cip1 
[12D1] Cell Signaling 2947, 

RRID:AB_823586 1:1,000  

Mouse monoclonal anti-p53 [DO-1] Santa Cruz sc-126, 
RRID:AB_628082 1:10,000  

Mouse monoclonal anti-p53 [DO-1], 
HRP conjugated Santa Cruz sc-126 HRP, 

RRID:AB_628082 1:1,000 3µg 

Rabbit monoclonal anti-phospho-Y705 
STAT3 [EP2147Y] Abcam ab76315, 

RRID:AB_1658549 1:2,000 3µg 

Rabbit polyclonal anti-STAT3 Santa Cruz sc-482, 
RRID:AB_632440 1:1,000  

Rabbit monoclonal anti-STAT3 [79D7] Cell Signaling 4904, 
RRID:AB_331269 1:1,000 3µg 

Rabbit monoclonal anti-IgG [EPR25A] Abcam ab172730, 
RRID:AB_2687931  3µg 

goat anti-rabbit IgG-HRP Santa Cruz sc-2004, 
RRID:AB_631746 1:10,000  

goat anti-mouse IgG-HRP Santa Cruz sc-2005, 
RRID:AB_631736 1:10,000  

Chemicals, Peptides and Recombinant Proteins  
BCA protein assay Pierce 23227 
CellTiter-Glo® Luminescent Cell Viability 
Assay Promega G7571 

Clarity Max™ Western ECL Substrate BioRad 1705062 
cOmpleteTM mini protease inhibitor 
cocktail Roche 11836170001 

Crystal violet (C.I. 42555) Roth T123.1 
Cycloheximide Sigma-Aldrich C7698 
Dimethyl sulfoxide (DMSO) Cell culture 
grade AppliChem A3672 

EDTA Roth  8040.1 

Ethanol absolut Chemsolute®/ 
Th.Geyer 2246 

Ganetespib 
Provided by 
Synta 
Pharmaceuticals 

N/A 

Imidazol Roth 899.2 
Immobilion Western chemiluminescent 
HRP substrate Millipore/Merck WBKLS0500 
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InSolutionTM MG-132 Calbiochem®/ 
Merck 474791 

Interleukin-6 Immunotools 11340064 
Methanol  Roth 8388.3 
Milk powder Roth T145.4 
NaCl Roth 3957.2 
NaF AppliChem A0401 
Nitrocellulose membranes Amersham GE10600001 
Nonidet™ P 40 Substitute Sigma-Aldrich 74385 
Nutlin-3a BOC Sciences B0084-425358 
Onalespib Selleckchem S1163 
Oncostatin M (209a.a) Immunotools 11344223 
Protein G Sepharose 4 Fast Flow GE Healthcare 17061805 
SDS Roth CN30.3 
Sodium deoxycholate Sigma-Aldrich 30970 
Sodium orthovanadate Sigma-Aldrich S6508 
Stattic Santa Cruz sc-202818 
SuperSignal™ West Femto Maximum 
Sensitivity Substrate 

ThermoFisher 
Scientific 34095 

Tris-HCl Roth 4855.3 
TritonX-100 AppliChem A1388 
Tween-20 AppliChem A4974 
Reagents for Cell culture  
DMEM Gibco 31600091 
FBS Merck S0615 
L-Glutamine Gibco 25030123 
Mycoplasma Detection Kit Lonza LT07-318 
Penicillin-Streptomycin Gibco 15140122 
RPMI 1640 Gibco 42401042 
Lipofectamine™ 3000 Transfection 
Reagent Invitrogen L3000015 

Lipofectamine™ 2000 Transfection 
Reagent Invitrogen 11668019 

TC treated 6 well plates Sarstedt 83.3920 
TC treated 96 well plates Corning 3903 
Falcon® Permeable Support for 24-well 
Plate with 8.0 µm Transparent PET 
Membrane 

Corning 353097 

Falcon® 24-well TC-treated Cell 
Polystyrene Permeable Support 
Companion Plate 

Corning 353504 

Experimental models: Cell lines  

   96 well Transwell 
insert 

6 well 
cmp 

6 well 
transfection 

L3.6pl RRID:CV
CL_0384 

PMID: 
23917223; 
PMID: 
10935470 

5,000 - 150,000 - 

MIA-PACA-2 
DSMZ, 
RRID:CV
CL_0428 

ACC 733  3,000 70,000 120,000 80,000 
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PANC-1 
ATCC, 
RRID:CV
CL_0480 

CRL-1469 5,000 50,000 200,000 100,000 

PA-TU-8988T 
DSMZ, 
RRID:CV
CL_1847 

ACC 162 4,000 70,000 150,000 90,000 

PA-TU-8902 
DSMZ, 
RRID:CV
CL_1845  

ACC 179 4,000 70,000 150,000 100,000 

BXPC-3 
ATCC, 
RRID:CV
CL_0186 

CRL-1687 5,000 100,000 200,000 100,000 

CAPAN-1 
ATCC, 
RRID:CV
CL_0237 

HTB-79 10,000 - 300,000 - 

                                                                                                                            cmp, compound 
Oligonucleotides and Recombinant DNA  
siRNA Silencer™ Select Negative 
Control No. 2 siRNA (scr) Invitrogen 4390847 

siRNA p53 Silencer™ Select No.1 ThermoFisher 
Scientific 4390824, siRNA ID s605 

siRNA p53 Silencer™ Select No.2 ThermoFisher 
Scientific 4390824, siRNA ID s606 

siRNA p53 Silencer™ Select No.3 ThermoFisher 
Scientific AM51331, siRNA ID 106141 

siRNA STAT3 Silencer™ Select No.1 ThermoFisher 
Scientific 4390824, siRNA ID s743 

siRNA STAT3 Silencer™ Select No.2 ThermoFisher 
Scientific 4390824, siRNA ID s744 

Software and Algorithms 
ImageJ software Open source https://imagej.net/Welcome 

Image Lab™ Software Biorad http://www.bio-rad.com/de-
de/product/image-lab-software 

ZEN Zeiss https://www.zeiss.de/mikroskopie/produkte/
mikroskopsoftware/zen.html 

Image Lab™ Software Biorad http://www.bio-rad.com/de-
de/product/image-lab-software 

Adobe Photoshop Software Adobe https://www.adobe.com/de/creativecloud/pl
ans.html 

Celigo Imaging Cytometer Nexcelom 
Bioscience 

https://www.nexcelom.com/nexcelom-
products/cellometer-and-celigo-image-
cytometers/celigo-imaging-cytometer/ 
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Supplemental cell lines authentication 

 

I Leibniz-lnstitut 
DSMZ-Deutsche Sammlung von 
Mikroorganismen und Zellkultu ren GmbH 

Leibniz-lnstitut DSMZ GmbH · lnhoffenstraBe 7 B · 38124 Braunschweig 

Georg-August-Universitat Gottingen 
Frau Luisa Klemke 
Molekulare Onkologie 
Justus-von-Liebig-Weg 11 
37077 Gi:ittingen 

4· 
Leibniz '\1 
Gemeinschaft d 

lhr Zeichen/Your ref. Unser Zeichen/Our ref.: W Di +49(0)531-2616-166 Datum/ Date: 26.02.2021 

Dear Ms. Klemke, 

Thank you for your request for authentication of human cell lines and species verification of animal cell line 
samples. We performed DNA profiling using 17 different and highly polymorphic STR (Short Tandem Repeat) loci. 
In addition, we have tested your human samples for the presence of mitochondrial DNA sequences from rodent 
cells such as mouse, rat, Chinese and Syrian hamster. 
Animal cell line samples have been subjected to the procedure of Cytochrome C Subunit I (COl) DNA Barcoding for 
identification of the species. 
Results (table 1) : 

sample parental/reference line comment/match 

1 L3.6pl Colo-357 (Kajiji SM et al., 1987) full-matching STR profile of cell line COLQ..357 in the reference database, authentic* 

2 MIA-PACA-2 M IA-PACA-2 (DSMZ ACC 733) full, matching STR profile of cell line MIA-PACA-2 in the reference database, authentic• 

3 PANC-1 PANC-1 (DSMZ ACC 783) full-matching STR profile of cell line PANC-1 in the reference database, authentic 

4 BXPC-3 BXPC-3 (D5MZ ACC 760) full-matching STR profile of cell line BXPC-3 in the reference database, authentic 

5 CAPAN-1 CAPAN·1 (DSMZ ACC 244) full-matching STR profile of cell line CAPAN-1 in the reference database, authentic 

6 PA-TU-8902 PA-TU-8902 (DSMZ ACC 179) full-matching STR profile of cell line PA-TU-8902 the reference database, authentic 

7 HCT116 WT HCT-116 WT (DSMZ ACC 581) full-matching STR profile of cell line HCT-116 in the reference database, authentic* 

8 RKO RKO (ATCC CR L-2577) full-matching STR profile of cell line RKO in the reference database, aut hentic• 

9 LS174.T LS174.T (D5MZ ACC 759) full-matching STR profile of cell line LS174.T in the reference database, authentic• 

10 SW480 SW-480 (DSMZ ACC 313) full-matching STR profile of cell line SW-480 in the reference database, authentic 

11 SW837 SW-837 (ATCC CR L-235) fullmatching STR profile of cell line SW-837 in the reference database, authentic 

12 SW620 SW-620 (ATCC CR L-227) matching STR profile of cell line SW-620 in the reference database, authentic 

13 DLD-1 DLD-1 (DSM Z ACC 278) full-matching STR profile of cell line DLD-1 in the reference database, authentic 

14 HT-29 HT-29 (DSMZ ACC 299) full-matching STR profile of cell line HT-29 in the reference database, authentic 

15 H1299 H1299 (ATCC CR L-5803) full-matching STR profile of cell line H-1299 in the reference database, authentic• 

16 SJSA SJSA (ATCC CRL-2098) full-matching STR profile of cell line SJSA in the reference database, authentic 

17 Vera E6 Vera E6 (ATCC CR L-1033) COl DNA Barcoding analysis revealed Chlorocebus aethiops species, species-specific 

18 Calu-3 DPZ Ca lu-3 DPZ (ATCC HTB-055) full-matching STR profile of cell line CAlU-3in the reference database, authentic 

19 Calu-3 ATCC Calu-3 ATCC (ATCC HTB-055) full-matching STR profile of cell line CAlU-3 in the reference database, authentic 

20 RPEWT hTERT-RPE (ATCC CRL-4000) full-matching STR profile of cell line hTERT-RPE in the reference database, aut hentic 

21 HCC1806 HCC1806 (ATCC CR L-2335) full-matching STR profile of cell line HCC1806 in the reference database, authentic 

GeschaftsfUhrung/Directors: 
Prof. Dr. Hirg Overmann 

Braunschweigische Landessparkasse 
(NORD/ LB) Kto.-Nr./Account: 2 039 220 
BLZ/Bank Code: 250 500 00 

Handelsregister I 
Commercial Register: 
Amtsgericht Braunschweig 
HRB 2570 

,,. (( DAkkS 
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Aufsichtsratsvorsitzender/Head of 
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I Leibniz-1 nstitut 
DSMZ-Deutsche Sammlung von 
Mikroorganismen und Zellkult uren GmbH 

The proof for rodent cells in all samples was negative: At a detection limit of 1:10-5 we could not detect 
mitochondrial sequences of Mus musculus, Rattus norvegicus, Cricetulus auratus, and Cricetulus griseus. Vice 
versa, sample 17 Vera E6 of Chlorocebus aethiops species is additionally free of human cells at a detection limit of 
10-3. 

We have carried out a search of the generated STR profiles of your samples which showed predominantly full 
matches with the STR data sets of respective parental human cell lines. With the exception of animal sample 17, 
the human samples are of authentic origin as highlighted in green in table 1. 

*Asteriks-marked samples of table 1 reveal either the phenomenon of Microsatellite Instability (MSI) or Loss of 
Heterozygosity (LoH) at STR loci, which are marked in green color in table 2 (allelic list enclosed). MSI and LoH are 
often observed in cell lines after bottlenecking selection procedures (e. g. immortalization, gene transfer 
experiments etc.) in combination with loss of DNA Mismatch Repa ir. As a consequence respective drifted or lost 
alleles can become visible without any impact on the status of authenticity. To ensure the STR results we have 
performed VNTR Typing which could confirm the predicted identities and are free of additional costs (gel 
documentation in excel sheet). 

For authentication of animal cell line samples we have carried out DNA Barcoding by PCR ampl if ication of t he 5' -
coding region of Cytochrome C Oxidase Subunit I and sequencing of the respective PCR product. Alignment of COl 
sequence revealed that sample Vero-E6 represents a cell culture of Chlorocebus aethiops (Green Monkey) 
indicating the correct species of primate cell line (table 1). 

A further individual ization of an imal cell lines can often not be carried out because of the lack of suitable STR 
typing systems or is not possible in the case of rodent cells because of a lack of genetic variability by inbreeding. 

The exclusion rate of the applied human STR system is indicating authenticity/uniqueness without any doubt, t he 
matching probability of the system ranges f rom 1 in 1,114,000,000 for Ca ucasian and American. 

Please find enclosed the cumentation (STR electropherograms) and the allel ic lists (tables 2 and 3). 
Dr. Wilhelm Dirks 

Sincerely you rs, lkulturen 
he 

W. Dirks 

References for cell line 7B • 38124 Braunschweig • Germany 

COL0-357 (Morgan R.T., 357) of metastatic pancreatic adenocarcinoma. Int. J. Cancer 25:591-

598, 1980) 

COL0357/FG (Kajiji S.M., Oavceva B., Quaranta V. Six monoclonal antibodies to human pancreatic cancer antigens. Cancer Res. 47:1367-1376, 1987) 

l3.1 (Vezeridis M.P., Tzanakakis G.N., Meitner P.A., Doremus C.M., Tibbetts L.M., Calabresi P. In vivo selection of a highly metastatic cell line from a human pancreatic carcinoma in 

the nude mouse. Cancer 69:2060-2063, 1992) 

L3.2 (Vezeridis M.P., Tzanakakis G.N., Meitner P.A., Doremus C.M., Tibbetts L.M., Calabresi P. In vivo self:!'ction of a highly metastatic cell line from a human pancreatic carcinoma in 

the nude mouse. Cancer 69:2060-2063, 1992) 

L3.3 (Vezeridis M.P., Tzanakakis G.N., Meitner P.A., Doremus C.M., Tibbetts l.M., Calabresi P. In vivo selection of a highly metastatic cell line from a human pancreatic carcinoma in 

the nude mouse. Cancer 69:2060-2063, 1992) 

L3.6pl (Bruns C.J., Harbison M.T. , Kuniyasu H., Eue 1., Fidler I.J. In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using 
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Panel Genome Sequencing of human L3.6pl cells 
 

 

 

Index Gene Transcript LocationPos. Type Nuc Change Coverage AA ChangeConditionHintweb Ref. c. HGVS p. HGVSmut Entrymut EffectTValidationMValidationWeightingFilter Step

1 GNAS ENST00000371085E1 -37411   [chr20:g.57428947 (hg19)]C G -> A (het) 22% (356)   [22% (171) / 22% (185)] rs74934823 (1000Genomes; dbSNP)c.-37835G>A distinct

2 MAPK4 ENST00000400384E3 -10553   [chr18:g.48230896 (hg19)]C C -> T (homo) 100% (705)   [100% (442) / 100% (263)] rs7227230 (1000Genomes; dbSNP)c.547-10553C>T distinct

3 FAT4 ENST00000394329E2 -4905   [chr4:g.126315034 (hg19)]C T -> C (homo) 100% (759)   [100% (524) / 100% (235)] rs925243 (1000Genomes; dbSNP)c.5176-4905T>C distinct

4 BRD2 ENST00000449085E1 -3818   [chr6:g.32937043 (hg19)]C G -> A (homo) 99% (427)   [100% (348) / 96% (79)] rs116656352 (1000Genomes; dbSNP)c.-3976G>A distinct

5 BRD2 ENST00000449085E1 -3813   [chr6:g.32937048 (hg19)]C C -> A (homo) 99% (466)   [100% (379) / 97% (87)] rs115634162 (1000Genomes; dbSNP)c.-3971C>A distinct

6 LMNA ENST00000368300E2 -778   [chr1:g.156099630 (hg19)]C C -> G (homo) 100% (291)   [99% (159) / 100% (132)] rs665979 (1000Genomes; dbSNP)c.357-778C>G distinct

7 LMNA ENST00000368300E2 -739   [chr1:g.156099669 (hg19)]C T -> G (homo) 100% (306)   [100% (137) / 100% (169)] rs513043 (1000Genomes; dbSNP)c.357-739T>G 0/2 of 4 distinct

8 BRD2 ENST00000449085E7 -232   [chr6:g.32944987 (hg19)]C A -> G (homo) 99% (391)   [100% (235) / 99% (156)] rs3129307 (1000Genomes; dbSNP)c.1060-232A>G distinct

9 BRD2 ENST00000449085E9 -53..-51 / 3bp   [chr6:g.32945850_32945852 (hg19)]D CTT (homo) 93% (589)   [95% (333) / 91% (256)] c.1438-53_1438-51delCTT distinct

10 KMT2D ENST00000301067E32 -46   [chr12:g.49433446 (hg19)]C G -> A (het) 33% (378)   [32% (202) / 33% (176)] c.8047-46G>A distinct

11 LMNA ENST00000368300E7 -43   [chr1:g.156105962 (hg19)]C A -> G (het) 64% (656)   [68% (273) / 62% (383)] rs16837198 (1000Genomes; dbSNP)c.1158-43A>G distinct

12 SLIT2 ENST00000504154E28 -42   [chr4:g.20569099 (hg19)]C A -> G (het) 31% (267)   [28% (104) / 33% (163)] rs2290750 (1000Genomes; dbSNP)c.2851-42A>G distinct

13 SMARCA4 ENST00000450717E10 -37..-36 / 2bp   [chr19:g.11107133_11107134 (hg19)]Indel TG -> CA (homo) 92% (898)   [94% (421) / 91% (477)] rs386806808 (dbSNP)c.1762-37_1762-36delinsCA distinct

14 MYCBP2 ENST00000357337E42 -20   [chr13:g.77740709 (hg19)]C A -> G (homo) 100% (320)   [100% (233) / 100% (87)] rs3742103 (1000Genomes; dbSNP)c.6001-20A>G distinct

15 SMARCA2 ENST00000349721E9 -19   [chr9:g.2060797 (hg19)]C G -> A (het) 36% (199)   [33% (103) / 39% (96)] rs141618610 (1000Genomes; dbSNP)c.1522-19G>A distinct

16 LRP1B ENST00000389484E36 -17 / 1bp   [chr2:g.141474402_141474403 (hg19)]I (Dup) T (het) 51% (207)   [54% (168) / 43% (39)] rs398104769 (dbSNP), rs5834770 (dbSNP), rs562408545 (1000Genomes; dbSNP)c.5759-18dupT distinct

17 FGFR2 ENST00000358487E14 -17   [chr10:g.123247644 (hg19)]C T -> G (het) 46% (203)   [48% (143) / 44% (60)] rs3135802 (1000Genomes; dbSNP)c.1864-17T>G distinct

18 LRP1B ENST00000389484E34 -17   [chr2:g.141528592 (hg19)]C A -> G (homo) 100% (545)   [100% (323) / 100% (222)] rs7599219 (dbSNP) c.5501-17A>G distinct

19 TLE4 ENST00000376552E11 -16   [chr9:g.82321646 (hg19)]C C -> T (homo) 100% (235)   [100% (206) / 100% (29)] rs73652238 (1000Genomes; dbSNP)c.784-16C>T distinct

20 MARK2 ENST00000402010E18 -16   [chr11:g.63675716 (hg19)]C C -> T (het) 25% (258)   [24% (132) / 25% (126)] c.1962-16C>T distinct

21 KMT2C ENST00000262189E18 -15   [chr7:g.151927127 (hg19)]C T -> C (het) 43% (178)   [46% (120) / 39% (58)] rs62481502 (dbSNP)c.2872-15T>C distinct

22 SF3B1 ENST00000335508E19 -15   [chr2:g.198265173 (hg19)]C A -> T (homo) 100% (209)   [100% (169) / 100% (40)] rs788017 (1000Genomes; dbSNP)c.2719-15A>T distinct

23 LRP1B ENST00000389484E45 -15   [chr2:g.141298682 (hg19)]C C -> G (het) 57% (218)   [61% (142) / 52% (76)] rs11694934 (1000Genomes; dbSNP)c.7388-15C>G distinct

24 ROBO3 ENST00000397801E3 -14   [chr11:g.124739332 (hg19)]C A -> C (het) 69% (11)   [100% (11) / 0% (0)] rs11219820 (1000Genomes; dbSNP), rs201692741 ()c.488-14A>C forced,distinct

25 EGFR ENST00000275493E1 -14   [chr7:g.55086780 (hg19)]C A -> C (homo) 100% (85)   [100% (80) / 100% (5)] rs712830 (1000Genomes; dbSNP)c.-191A>C forced,distinct

26 BRD2 ENST00000449085E2 -13 / 1bp   [chr6:g.32942225_32942226 (hg19)]I (Dup) T (homo) 93% (91)   [93% (86) / 100% (5)] c.-112-14dupT forced,distinct

27 SLIT2 ENST00000504154E12 -12   [chr4:g.20520993 (hg19)]C T -> C (homo) 100% (235)   [100% (154) / 100% (81)] rs519813 (1000Genomes; dbSNP)c.1059-12T>C distinct

28 SF3B1 ENST00000335508E13 -11 / 2bp   [chr2:g.198267770_198267771 (hg19)]I (Dup) TT (homo) 86% (166)   [86% (129) / 86% (37)] rs397804827 (dbSNP), rs386392247 (dbSNP), rs386392246 (dbSNP), rs3217350 (1000Genomes; dbSNP)c.1720-13_1720-12dupTT distinct

29 ROBO2 ENST00000487694E2 -10   [chr3:g.75986622 (hg19)]C C -> G (het) 79% (1972)   [78% (1215) / 80% (757)] rs9631539 (dbSNP) c.-13-10C>G distinct

30 BRD2 ENST00000449085E3 -10   [chr6:g.32943151 (hg19)]C T -> C (homo) 99% (256)   [99% (193) / 100% (63)] rs635688 (1000Genomes; dbSNP)c.193-10T>C distinct

31 MYCBP2 ENST00000357337E13 -10 / 1bp   [chr13:g.77835520_77835521 (hg19)]I (Dup) T (het) 55% (126)   [69% (101) / 30% (25)] rs549452634 (dbSNP), rs398117587 (dbSNP), rs11436373 (dbSNP)c.1534-11dupT distinct

32 KRAS ENST00000256078E6 -9   [chr12:g.25362854 (hg19)]C G -> A (het) 37% (117)   [38% (78) / 34% (39)] rs12313763 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.*5-9G>A distinct

33 SLIT2 ENST00000503837E9 -9   [chr4:g.20492417 (hg19)]C G -> T (het) 30% (191)   [30% (105) / 30% (86)] rs7695303 (1000Genomes; dbSNP)c.776-9G>T distinct

34 KMT2D ENST00000301067E11 -7 / 1bp   [chr12:g.49444580 (hg19)]D C (homo) 96% (946)   [96% (401) / 96% (545)] rs112620957 (dbSNP), rs577620885 (1000Genomes; dbSNP)c.2798-7delC distinct

35 BRAF ENST00000288602E1 -7   [chr7:g.140624571 (hg19)]C A -> C (het) 29% (7)   [32% (7) / 0% (0)] c.-68A>C forced,distinct

36 LRP1B ENST00000389484E27 -7   [chr2:g.141625410 (hg19)]C T -> G (het) 51% (81)   [53% (70) / 44% (11)] rs12987572 (1000Genomes; dbSNP)c.4335-7T>G distinct

37 NARF ENST00000309794E9 -6   [chr17:g.80442683 (hg19)]C T -> G (het) 74% (704)   [73% (336) / 76% (368)] rs12103494 (1000Genomes; dbSNP)c.834-6T>G distinct

38 ROBO1 ENST00000464233E22 -6 / 1bp   [chr3:g.78689054_78689055 (hg19)]I (Dup) T (het) 83% (179)   [88% (127) / 74% (52)] rs369027577 (dbSNP)c.2883-7dupT distinct

39 APC ENST00000257430E5 -4 / 1bp   [chr5:g.112111322 (hg19)]D A (het) 74% (111)   [82% (58) / 68% (53)] COSM19338 (COSMIC)c.423-4delA distinct

40 BRD2 ENST00000449085E8 -4   [chr6:g.32945530 (hg19)]C G -> C (homo) 100% (981)   [100% (597) / 100% (384)] rs3097644 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.1189-4G>C distinct

41 FAT1 ENST00000441802E3 -4   [chr4:g.187584771 (hg19)]C G -> C (homo) 100% (354)   [100% (259) / 100% (95)] rs172903 (1000Genomes; dbSNP)c.3266-4G>C distinct

42 PBRM1 ENST00000394830E11 -4   [chr3:g.52676065 (hg19)]C G -> A (het) 74% (287)   [65% (104) / 81% (183)] COSM4002750 (COSMIC), COSM4002751 (COSMIC), COSM4002749 (COSMIC), rs11719685 (1000Genomes; dbSNP), rs549395630 ()c.996-4G>A distinct

43 LRP1B ENST00000389484E9 3 (1239)   [chr2:g.141816621 (hg19)]C T -> C (het) 65% (77)   [67% (74) / 38% (3)] V -> V (413)rs1525579 (1000Genomes; dbSNP)c.1239T>C p.Val413= forced,distinct

44 LRP1B ENST00000389484E50 5 (8031)   [chr2:g.141274576 (hg19)]C A -> G (het) 32% (122)   [31% (73) / 33% (49)] Q -> Q (2677)COSM4001201 (COSMIC), rs4954672 (1000Genomes; dbSNP)c.8031A>G p.Gln2677= distinct

45 CDKN2A ENST00000304494E2 5 (155)   [chr9:g.21971203 (hg19)]C T -> A (homo) 100% (932)   [100% (567) / 100% (365)] M -> K (52)COSM13436 (COSMIC)c.155T>A p.Met52Lys distinct
46 LRP1B ENST00000389484E54 5 (8526)   [chr2:g.141260668 (hg19)]C T -> C (het) 30% (123)   [30% (78) / 30% (45)] Y -> Y (2842)COSM3757652 (COSMIC), rs4444457 (1000Genomes; dbSNP)c.8526T>C p.Tyr2842= distinct
47 ROBO3 ENST00000397801E21 5 (2991)   [chr11:g.124747837 (hg19)]C G -> A (homo) 100% (569)   [100% (327) / 100% (242)]A -> A (997)rs7933204 (1000Genomes; dbSNP)c.2991G>A p.Ala997= distinct
48 MYCBP2 ENST00000357337E55 8 (7778)   [chr13:g.77699596 (hg19)]C A -> G (homo) 100% (542)   [100% (316) / 100% (226)]N -> S (2593)rs34474844 (1000Genomes; dbSNP)c.7778A>G p.Asn2593Ser distinct
49 EGFR ENST00000275493E23 8 (2709)   [chr7:g.55266417 (hg19)]C T -> C (homo) 100% (1254)   [100% (646) / 100% (608)]T -> T (903)rs1140475 (1000Genomes; ClinVarVCF; dbSNP)c.2709T>C p.Thr903= distinct
50 SF3B1 ENST00000335508E5 8 (423)   [chr2:g.198283305 (hg19)]C A -> G (homo) 100% (380)   [100% (163) / 100% (217)] K -> K (141)COSM1129389 (COSMIC), rs788023 (1000Genomes; dbSNP)c.423A>G p.Lys141= distinct
51 POLR3A ENST00000372371E23 9 (2997)   [chr10:g.79745735 (hg19)]C G -> T (het) 55% (377)   [59% (190) / 52% (187)] V -> V (999)rs12241228 (1000Genomes; dbSNP)c.2997G>T p.Val999= distinct
52 JAG1 ENST00000254958E20 10 (2382)   [chr20:g.10624502 (hg19)]C C -> T (het) 62% (318)   [64% (223) / 60% (95)] S -> S (794)rs56225585 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.2382C>T p.Ser794= distinct
53 FAT4 ENST00000394329E10 20 (11814)   [chr4:g.126384737 (hg19)]C A -> G (het) 68% (262)   [70% (180) / 65% (82)] S -> S (3938)rs17009721 (1000Genomes; dbSNP)c.11814A>G p.Ser3938= distinct
54 KMT2C ENST00000262189E7 22 (871)   [chr7:g.151970931 (hg19)]C C -> T (het) 78% (538)   [81% (387) / 71% (151)] L -> F (291)rs56850341 (1000Genomes; dbSNP)c.871C>T p.Leu291Phe distinct
55 POLR3A ENST00000372371E16 26 (2100)   [chr10:g.79764621 (hg19)]C C -> T (het) 67% (629)   [67% (346) / 67% (283)] I -> I (700) rs79793998 (1000Genomes; dbSNP)c.2100C>T p.Ile700= distinct
56 FAT1 ENST00000441802E11 26 (8904)   [chr4:g.187538330 (hg19)]C C -> T (homo) 100% (277)   [100% (226) / 100% (51)] A -> A (2968)rs1280099 (1000Genomes; dbSNP)c.8904C>T p.Ala2968= distinct
57 SLC25A24 ENST00000565488E1 27   [chr1:g.108742954 (hg19)]C T -> G (het) 78% (101)   [78% (100) / 100% (1)] 5' UTR rs662282 (1000Genomes; dbSNP)c.-194T>G forced,distinct
58 U2AF1 ENST00000291552E1 29   [chr21:g.44527669 (hg19)]C A -> C (het) 49% (298)   [48% (166) / 49% (132)] 5' UTR rs17115876 (1000Genomes; dbSNP)c.-65A>C distinct
59 MYCBP2 ENST00000357337E62 29 (10440)   [chr13:g.77663138 (hg19)]C G -> A (homo) 100% (236)   [100% (139) / 100% (97)] P -> P (3480)rs34700794 (1000Genomes; dbSNP)c.10440G>A p.Pro3480= distinct
60 FAT4 ENST00000394329E16 30 (12846)   [chr4:g.126408529 (hg19)]C C -> T (het) 71% (280)   [73% (187) / 67% (93)] S -> S (4282)rs17009819 (1000Genomes; dbSNP)c.12846C>T p.Ser4282= distinct
61 ROBO2 ENST00000487694E2 32 (19)   [chr3:g.75986663 (hg19)]C C -> A (het) 79% (1720)   [78% (832) / 80% (888)] R -> S (7) rs12171318 (dbSNP), COSM4158658 (COSMIC)c.19C>A p.Arg7Ser distinct
62 NARF ENST00000309794E9 34 (867)   [chr17:g.80442722 (hg19)]C T -> C (het) 78% (726)   [76% (307) / 80% (419)] R -> R (289)rs3829567 (1000Genomes; dbSNP)c.867T>C p.Arg289= distinct
63 MYCBP2 ENST00000357337E46 37 (6520)   [chr13:g.77732208 (hg19)]C C -> T (homo) 100% (329)   [100% (220) / 100% (109)]L -> L (2174)rs34982494 (1000Genomes; dbSNP)c.6520C>T p.Leu2174= distinct
64 FGFR2 ENST00000358487E1 38   [chr10:g.123357561 (hg19)]C G -> A (homo) 100% (275)   [100% (80) / 100% (195)] 5' UTR rs1047111 (1000Genomes; dbSNP)c.-236G>A distinct
65 SMARCC2 ENST00000550164E5 39 (438)   [chr12:g.56578682 (hg19)]C A -> G (homo) 99% (785)   [99% (318) / 100% (467)] P -> P (146)rs7136420 (1000Genomes; dbSNP)c.438A>G p.Pro146= distinct
66 BANF1 ENST00000312175E1 39 / 2bp   [chr11:g.65769587_65769588 (hg19)]I (Dup) AG (het) 42% (291)   [41% (165) / 44% (126)] 5' UTR c.-472_-471dupAG distinct
67 PIK3CA ENST00000263967E12 42 (1788)   [chr3:g.178937400 (hg19)]C A -> G (het) 62% (572)   [65% (322) / 59% (250)] E -> E (596)rs137902538 (1000Genomes; dbSNP)c.1788A>G p.Glu596= distinct
68 TLE4 ENST00000376552E18 42 (2028)   [chr9:g.82337407 (hg19)]C A -> C (homo) 100% (959)   [100% (447) / 100% (512)]A -> A (676)rs34566811 (1000Genomes; dbSNP)c.2028A>C p.Ala676= distinct
69 KRAS ENST00000256078E2 46 (35)   [chr12:g.25398284 (hg19)]C G -> A (het) 48% (318)   [48% (150) / 48% (168)] G -> D (12) rs121913529 (ClinVar; ClinVarVCF; dbSNP), COSM521 (COSMIC), COSM1135366 (COSMIC)c.35G>A p.Gly12Asp distinct
70 LRP1B ENST00000389484E32 47 (5256)   [chr2:g.141571329 (hg19)]C A -> G (homo) 100% (721)   [100% (412) / 100% (309)]S -> S (1752)COSM4133144 (COSMIC), rs3749010 (1000Genomes; dbSNP)c.5256A>G p.Ser1752= distinct
71 ARID2 ENST00000334344E1 52   [chr12:g.46123499 (hg19)]C G -> A (het) 46% (6)   [50% (6) / 0% (0)] 5' UTR c.-121G>A forced,distinct
72 SLC25A24 ENST00000370041E1 53   [chr1:g.108735388 (hg19)]C A -> T (homo) 100% (91)   [100% (91) / 0% (0)] 5' UTR rs524504 (1000Genomes; dbSNP)c.-145A>T forced,distinct
73 ROBO2 ENST00000487694E2 55 (42)   [chr3:g.75986686 (hg19)]C A -> G (het) 79% (2134)   [76% (893) / 82% (1241)] T -> T (14) rs62269817 (dbSNP), COSM4158659 (COSMIC)c.42A>G p.Thr14= distinct
74 SMARCA4 ENST00000450717E5 56 (915)   [chr19:g.11098397 (hg19)]C G -> A (het) 95% (485)   [47% (21) / 100% (464)] P -> P (305)rs149573400 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.915G>A p.Pro305= distinct
75 LRP1B ENST00000389484E27 58 (4392)   [chr2:g.141625346 (hg19)]C A -> G (het) 43% (180)   [44% (118) / 41% (62)] R -> R (1464)rs79054985 (1000Genomes; dbSNP)c.4392A>G p.Arg1464= distinct
76 KMT2C ENST00000262189E15 59 (2591)   [chr7:g.151935853 (hg19)]C A -> G (het) 35% (69)   [41% (56) / 22% (13)] E -> G (864)rs4024420 (dbSNP) c.2591A>G p.Glu864Gly distinct
77 POLR3A ENST00000372371E3 60 (240)   [chr10:g.79785458 (hg19)]C A -> C (het) 74% (330)   [76% (206) / 71% (124)] L -> L (80) rs12248310 (1000Genomes; dbSNP)c.240A>C p.Leu80= distinct
78 PBRM1 ENST00000394830E23 64 (3522)   [chr3:g.52610651 (hg19)]C A -> T (homo) 100% (904)   [100% (389) / 100% (515)]P -> P (1174)COSM4002747 (COSMIC), COSM4002746 (COSMIC), COSM4002748 (COSMIC), rs17264436 (1000Genomes; dbSNP)c.3522A>T p.Pro1174= distinct
79 BRD2 ENST00000449085E2 64   [chr6:g.32942302 (hg19)]C G -> A (homo) 100% (405)   [100% (286) / 100% (119)] 5' UTR rs516535 (1000Genomes; dbSNP)c.-49G>A distinct
80 LRP1B ENST00000389484E30 67 (5006)   [chr2:g.141598595 (hg19)]C A -> C (het) 65% (639)   [67% (399) / 63% (240)] E -> A (1669) c.5006A>C p.Glu1669Ala distinct
81 SLIT2 ENST00000504154E21 68 (2211)   [chr4:g.20544184 (hg19)]C C -> T (het) 28% (204)   [28% (107) / 28% (97)] V -> V (737)rs7690492 (1000Genomes; dbSNP)c.2211C>T p.Val737= distinct
82 APC ENST00000257430E14 69 (1695)   [chr5:g.112164621 (hg19)]C A -> G (homo) 100% (241)   [100% (102) / 99% (139)] E -> E (565)rs77921116 (1000Genomes; dbSNP)c.1695A>G p.Glu565= distinct
83 LRP1B ENST00000389484E8 69 (1082)   [chr2:g.141819774 (hg19)]C G -> A (het) 36% (279)   [35% (131) / 36% (148)] R -> Q (361)COSM1007086 (COSMIC)c.1082G>A p.Arg361Gln distinct
84 SLC25A24 ENST00000565488E1 70..76 / 7bp   [chr1:g.108742905_108742911 (hg19)]D CCTGCGC (het) 65% (112)   [65% (110) / 50% (2)] 5' UTR rs150513527 (1000Genomes; dbSNP)c.-151_-145delCCTGCGC forced,distinct
85 FAT1 ENST00000441802E23 74 (12177)   [chr4:g.187519206 (hg19)]C G -> C (homo) 100% (641)   [100% (300) / 100% (341)]K -> N (4059)rs1280097 (1000Genomes; dbSNP)c.12177G>C p.Lys4059Asn distinct
86 RBM6 ENST00000266022E21 75 (3321)   [chr3:g.50114515 (hg19)]C C -> T (homo) 100% (371)   [100% (112) / 100% (259)]Y -> Y (1107)COSM4158172 (COSMIC), rs7061 (1000Genomes; dbSNP)c.3321C>T p.Tyr1107= distinct
87 CHD1 ENST00000284049E26 77 (3648)   [chr5:g.98208183 (hg19)]C C -> T (homo) 100% (670)   [100% (350) / 100% (320)]S -> S (1216)rs140751250 (1000Genomes; dbSNP)c.3648C>T p.Ser1216= distinct
88 EGFR ENST00000275493E20 78 (2361)   [chr7:g.55249063 (hg19)]C G -> A (homo) 99% (821)   [98% (427) / 99% (394)] Q -> Q (787)COSM1451600 (COSMIC), rs1050171 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.2361G>A p.Gln787= distinct
89 LRP1B ENST00000389484E85 80 (13047)   [chr2:g.141032088 (hg19)]C G -> A (het) 22% (220)   [24% (108) / 21% (112)] T -> T (4349)rs1386356 (1000Genomes; dbSNP)c.13047G>A p.Thr4349= distinct
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90 GNAS ENST00000371085E5 81 (393)   [chr20:g.57478807 (hg19)]C C -> T (het) 81% (740)   [82% (276) / 81% (464)] I -> I (131) COSM3758661 (COSMIC), COSM3758662 (COSMIC), rs7121 (1000Genomes; dbSNP)c.393C>T p.Ile131= distinct

91 SLC25A24 ENST00000565488E4 82 (480)   [chr1:g.108703834 (hg19)]C G -> A (het) 28% (139)   [25% (62) / 31% (77)] E -> E (160)rs11185293 (1000Genomes; dbSNP)c.480G>A p.Glu160= distinct

92 PIK3CA ENST00000263967E6 84 (1143)   [chr3:g.178922374 (hg19)]C C -> G (het) 63% (491)   [61% (178) / 64% (313)] P -> P (381)rs72561481 (1000Genomes; dbSNP)c.1143C>G p.Pro381= distinct

93 ROBO2 ENST00000487694E2 86..88 (73..75) / 3bp   [chr3:g.75986717_75986719 (hg19)]Indel GTG -> ATC (het) 34% (891)   [32% (326) / 36% (565)] V -> I (25) c.73_75delinsATC p.Val25Ile distinct

94 KMT2C ENST00000262189E18 87 (2958)   [chr7:g.151927026 (hg19)]C A -> G (het) 51% (269)   [53% (123) / 50% (146)] P -> P (986)rs28439884 (dbSNP), COSM150429 (COSMIC), COSM150428 (COSMIC)c.2958A>G p.Pro986= distinct

95 CHD1 ENST00000284049E31 87 (4335)   [chr5:g.98199204 (hg19)]C G -> A (homo) 100% (305)   [100% (112) / 100% (193)]E -> E (1445)COSM4003637 (COSMIC), rs161941 (1000Genomes; dbSNP)c.4335G>A p.Glu1445= distinct

96 ROBO2 ENST00000487694E2 88 (75)   [chr3:g.75986719 (hg19)]C G -> C (het) 39% (977)   [36% (347) / 42% (630)] V -> V (25) rs62269818 (dbSNP) c.75G>C p.Val25= distinct

97 LRP1B ENST00000389484E51 89 (8238)   [chr2:g.141272253 (hg19)]C G -> A (het) 65% (284)   [65% (127) / 65% (157)] G -> G (2746)rs61732738 (1000Genomes; dbSNP)c.8238G>A p.Gly2746= distinct

98 SLC25A24 ENST00000565488E1 89   [chr1:g.108742892 (hg19)]C A -> C (het) 75% (115)   [76% (113) / 50% (2)] 5' UTR rs554709 (1000Genomes; dbSNP)c.-132A>C forced,distinct

99 KMT2C ENST00000262189E18 92 (2963)   [chr7:g.151927021 (hg19)]C G -> T (het) 55% (256)   [56% (112) / 54% (144)] C -> F (988)rs28522267 (dbSNP), COSM150426 (COSMIC), COSM150427 (COSMIC)c.2963G>T p.Cys988Phe distinct

100 BRD2 ENST00000449085E8 92 (1280)   [chr6:g.32945625 (hg19)]C C -> T (homo) 100% (807)   [100% (418) / 100% (389)]A -> V (427)rs3918143 (1000Genomes; dbSNP)c.1280C>T p.Ala427Val distinct

101 SLC25A24 ENST00000565488E2 93 (276)   [chr1:g.108728484 (hg19)]C A -> G (het) 71% (195)   [70% (85) / 73% (110)] K -> K (92) COSM3750202 (COSMIC), COSM3750203 (COSMIC), rs862493 (1000Genomes; dbSNP)c.276A>G p.Lys92= distinct

102 BRD4 ENST00000263377E11 95 (2142)   [chr19:g.15364979 (hg19)]C C -> T (homo) 100% (968)   [100% (444) / 100% (524)] S -> S (714)rs114723577 (1000Genomes; dbSNP)c.2142C>T p.Ser714= distinct

103 KMT2C ENST00000262189E7 97 (946)   [chr7:g.151970856 (hg19)]C A -> T (het) 83% (821)   [83% (469) / 82% (352)] T -> S (316)rs10454320 (dbSNP), COSM4162024 (COSMIC), COSM4162023 (COSMIC)c.946A>T p.Thr316Ser distinct

104 ATM ENST00000278616E23 99 (3383)   [chr11:g.108150316 (hg19)]C A -> G (homo) 100% (523)   [99% (136) / 100% (387)] Q -> R (1128)COSM1350830 (COSMIC), COSM21936 (COSMIC), rs2229020 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.3383A>G p.Gln1128Arg distinct

105 FAT1 ENST00000441802E26 101 (13101)   [chr4:g.187516880 (hg19)]C T -> C (homo) 100% (840)   [100% (404) / 100% (436)]S -> S (4367)COSM4158952 (COSMIC), COSM4158951 (COSMIC), rs1298865 (1000Genomes; dbSNP)c.13101T>C p.Ser4367= distinct

106 SMARCA4 ENST00000450717E8 105 (1524)   [chr19:g.11105608 (hg19)]C T -> C (homo) 100% (955)   [100% (480) / 100% (475)]H -> H (508)COSM4131184 (COSMIC), COSM4131185 (COSMIC), rs7935 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.1524T>C p.His508= [c.1524T>C] distinct

107 SMAD4 ENST00000342988E9 112 (1067)   [chr18:g.48591904 (hg19)]C C -> T (homo) 100% (733)   [100% (368) / 100% (365)] P -> L (356)COSM14049 (COSMIC)c.1067C>T p.Pro356Leu distinct

108 FAT1 ENST00000441802E19 112 (10660)   [chr4:g.187525020 (hg19)]C T -> G (homo) 100% (779)   [100% (403) / 100% (376)]S -> A (3554)rs2637777 (1000Genomes; dbSNP)c.10660T>G p.Ser3554Ala distinct

109 LRP1B ENST00000389484E16 113 (2616)   [chr2:g.141751592 (hg19)]C C -> T (homo) 100% (160)   [100% (76) / 100% (84)] D -> D (872)rs13007735 (1000Genomes; dbSNP)c.2616C>T p.Asp872= distinct

110 FGFR2 ENST00000358487E1 117   [chr10:g.123357482 (hg19)]C A -> G (het) 44% (65)   [44% (23) / 44% (42)] 5' UTR rs41258305 (1000Genomes; dbSNP)c.-157A>G distinct

111 EGFR ENST00000275493E15 117 (1839)   [chr7:g.55233089 (hg19)]C C -> T (homo) 100% (676)   [100% (311) / 100% (365)]A -> A (613)rs17290169 (1000Genomes; dbSNP)c.1839C>T p.Ala613= distinct

112 TLE4 ENST00000376552E15 118 (1458)   [chr9:g.82333754 (hg19)]C C -> T (homo) 98% (1502)   [98% (751) / 98% (751)] H -> H (486)rs61742686 (1000Genomes; dbSNP)c.1458C>T p.His486= distinct

113 SF3B1 ENST00000335508E24 118 (3657)   [chr2:g.198257795 (hg19)]C A -> G (homo) 100% (721)   [100% (271) / 100% (450)]V -> V (1219)COSM3757859 (COSMIC), rs4685 (1000Genomes; dbSNP)c.3657A>G p.Val1219= distinct

114 SLIT2 ENST00000504154E1 120   [chr4:g.20255306 (hg19)]C G -> T (het) 26% (10)   [26% (10) / 0% (0)] 5' UTR rs7655084 (1000Genomes; dbSNP)c.-133G>T forced,distinct

115 TP53BP2 ENST00000343537E6 121 (595)   [chr1:g.223991930 (hg19)]C G -> A (het) 60% (380)   [58% (165) / 61% (215)] V -> M (199)rs146703239 (1000Genomes; dbSNP)c.595G>A p.Val199Met distinct

116 FAT1 ENST00000441802E13 122 (9351)   [chr4:g.187534375 (hg19)]C T -> C (homo) 100% (1066)   [100% (477) / 100% (589)]D -> D (3117)COSM4003024 (COSMIC), COSM4003025 (COSMIC), rs2249917 (1000Genomes; dbSNP)c.9351T>C p.Asp3117= distinct

117 SMARCC2 ENST00000550164E25 134 (2682)   [chr12:g.56563346 (hg19)]C C -> T (homo) 100% (291)   [100% (101) / 100% (190)]A -> A (894)rs17852368 (1000Genomes; dbSNP)c.2682C>T p.Ala894= distinct

118 FAT1 ENST00000441802E13 134 (9363)   [chr4:g.187534363 (hg19)]C C -> T (homo) 100% (1039)   [100% (413) / 100% (626)]N -> N (3121)rs2249916 (1000Genomes; dbSNP)c.9363C>T p.Asn3121= distinct

119 SF3B1 ENST00000335508E18 135 (2631)   [chr2:g.198265526 (hg19)]C T -> C (homo) 100% (412)   [100% (128) / 100% (284)]G -> G (877)COSM3757860 (COSMIC), rs788018 (1000Genomes; dbSNP)c.2631T>C p.Gly877= distinct

120 BRD7 ENST00000394689E7 144 (846)   [chr16:g.50368663 (hg19)]C C -> T (het) 50% (356)   [51% (163) / 50% (193)] A -> A (282)COSM3720984 (COSMIC), rs1062348 (1000Genomes; dbSNP)c.846C>T p.Ala282= distinct

121 U2AF2 ENST00000450554E11 159 (1191)   [chr19:g.56180968 (hg19)]C C -> T (homo) 99% (507)   [99% (193) / 99% (314)] D -> D (397)COSM1396639 (COSMIC), rs617073 (1000Genomes; dbSNP)c.1191C>T p.Asp397= distinct

122 TP53 ENST00000269305E4 171 (267) / 1bp   [chr17:g.7579420 (hg19)]D C (homo) 95% (635)   [91% (272) / 98% (363)][STOP] AA 122 (E4/268)RF changedCOSM1180853 (COSMIC), rs587783062 (ClinVar; ClinVarVCF; dbSNP), COSM1268330 (COSMIC), COSM1180854 (COSMIC)c.267delC p.Ser90Profs*33 distinct

123 FAT1 ENST00000441802E5 176 (3818)   [chr4:g.187557893 (hg19)]C A -> G (homo) 100% (991)   [100% (478) / 100% (513)]H -> R (1273)rs328418 (1000Genomes; dbSNP)c.3818A>G p.His1273Arg distinct

124 FAT4 ENST00000394329E4 191 (5760)   [chr4:g.126329789 (hg19)]C T -> C (homo) 100% (627)   [100% (295) / 100% (332)]D -> D (1920)COSM1131273 (COSMIC), COSM1131272 (COSMIC), rs958415 (1000Genomes; dbSNP)c.5760T>C p.Asp1920= distinct

125 FGFR1 ENST00000447712E1 192   [chr8:g.38326161 (hg19)]C C -> T (homo) 100% (13)   [100% (10) / 100% (3)] 5' UTR rs2445003 (1000Genomes; dbSNP)c.-751C>T distinct

126 FGFR2 ENST00000369056E17 196   [chr10:g.123241496 (hg19)]C A -> G (homo) 85% (23)   [0% (0) / 85% (23)] 3' UTR rs1649167 (1000Genomes; dbSNP)c.*190A>G forced,distinct

127 LRP1B ENST00000389484E41 206 (6633)   [chr2:g.141457985 (hg19)]C A -> T (het) 32% (220)   [37% (102) / 29% (118)] P -> P (2211)rs13431727 (1000Genomes; dbSNP)c.6633A>T p.Pro2211= distinct

128 FAT1 ENST00000441802E19 209 (10757)   [chr4:g.187524923 (hg19)]C T -> C (het) 63% (545)   [63% (259) / 63% (286)] M -> T (3586)rs115705222 (1000Genomes; dbSNP)c.10757T>C p.Met3586Thr distinct

129 BRD3 ENST00000303407E6 222 (936)   [chr9:g.136913355 (hg19)]C A -> G (homo) 100% (933)   [100% (440) / 100% (493)] L -> L (312) COSM4163507 (COSMIC), COSM4163508 (COSMIC), rs464826 (1000Genomes; dbSNP)c.936A>G p.Leu312= distinct

130 TGFBR2 ENST00000295754E1 255   [chr3:g.30648248 (hg19)]C C -> G (het) 76% (212)   [76% (192) / 83% (20)] 5' UTR rs2306856 (1000Genomes; dbSNP)c.-128C>G distinct

131 FAT4 ENST00000394329E9 257 (7701)   [chr4:g.126369872 (hg19)]C G -> C (homo) 100% (817)   [100% (399) / 100% (418)]V -> V (2567)rs988863 (1000Genomes; dbSNP)c.7701G>C p.Val2567= distinct

132 BANF1 ENST00000312175E1 260   [chr11:g.65769809 (hg19)]C G -> C (het) 50% (449)   [51% (255) / 49% (194)] 5' UTR rs1786171 (1000Genomes; dbSNP)c.-249G>C distinct

133 BANF1 ENST00000312175E3 275   [chr11:g.65771371 (hg19)]C C -> A (het) 52% (123)   [54% (19) / 52% (104)] 3' UTR rs144367403 (1000Genomes; dbSNP)c.*128C>A distinct

134 PBRM1 ENST00000394830E17 287 (2211)   [chr3:g.52643685 (hg19)]C A -> G (homo) 100% (879)   [100% (457) / 100% (422)] T -> T (737)COSM1566683 (COSMIC), COSM1566685 (COSMIC), COSM1566684 (COSMIC), rs3755806 (1000Genomes; dbSNP)c.2211A>G p.Thr737= distinct

135 SLIT2 ENST00000504154E37 293   [chr4:g.20620683 (hg19)]C G -> A (homo) 100% (809)   [100% (303) / 100% (506)] 3' UTR rs1379659 (1000Genomes; dbSNP)c.*51G>A distinct
136 FGFR1 ENST00000447712E1 307   [chr8:g.38326046 (hg19)]C C -> T (het) 33% (10)   [35% (8) / 29% (2)] 5' UTR rs3213849 (1000Genomes; dbSNP)c.-636C>T forced,distinct
137 LMNA ENST00000368300E12 392   [chr1:g.156109262 (hg19)]C C -> T (het) 75% (6)   [67% (2) / 80% (4)] 3' UTR rs74116489 (1000Genomes; dbSNP)c.*365C>T distinct
138 SETD2 ENST00000409792E3 470 (557)   [chr3:g.47165569 (hg19)]C C -> T (homo) 100% (590)   [100% (268) / 100% (322)] P -> L (186)rs78759480 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.557C>T p.Pro186Leu distinct
139 ACVR2A ENST00000241416E1 472 / 1bp   [chr2:g.148602556_148602557 (hg19)]I (Dup) T (het) 33% (4)   [33% (4) / 0% (0)] 5' UTR c.-166dupT forced,distinct
140 BRD2 ENST00000374825E2 523   [chr6:g.32939894 (hg19)]C G -> T (homo) 100% (312)   [100% (57) / 100% (255)] 5' UTR rs974357 (1000Genomes; dbSNP)c.-782G>T distinct
141 MARK2 ENST00000402010E19 548   [chr11:g.63676896 (hg19)]C A -> C (het) 47% (28)   [0% (0) / 47% (28)] 3' UTR rs182664 (1000Genomes; dbSNP)c.*187A>C forced,distinct
142 RNF43 ENST00000407977E9 633 (1585)   [chr17:g.56435552 (hg19)]C C -> T (het) 75% (1042)   [76% (639) / 74% (403)] R -> W (529)COSM191575 (COSMIC), rs62636625 (1000Genomes; dbSNP)c.1585C>T p.Arg529Trp distinct
143 MYC ENST00000377970E2 708 (738)   [chr8:g.128751201 (hg19)]C G -> A (het) 55% (945)   [50% (303) / 58% (642)] P -> P (246)rs2070582 (1000Genomes; dbSNP)c.738G>A p.Pro246= distinct
144 MYC ENST00000377970E2 708 (738)   [chr8:g.128751201 (hg19)]C G -> A (het) 55% (945)   [50% (303) / 58% (642)] P -> P (246)rs2070582 (1000Genomes; dbSNP)c.738G>A p.Pro246= distinct
145 FAT1 ENST00000441802E27 883   [chr4:g.187509492 (hg19)]C G -> A (het) 30% (9)   [0% (0) / 30% (9)] 3' UTR rs7680937 (1000Genomes; dbSNP)c.*254G>A forced,distinct
146 LRP1B ENST00000389484E1 895   [chr2:g.142888376 (hg19)]C C -> G (homo) 99% (705)   [99% (453) / 99% (252)] 5' UTR rs1375610 (1000Genomes; dbSNP)c.-78C>G distinct
147 KMT2D ENST00000301067E10 1025..1051 (2283..2309) / 27bp   [chr12:g.49445157_49445183 (hg19)]D ATCTCCGCAGGCTGAGGAGCCACACCT (het)74% (366)   [55% (98) / 85% (268)]LSPQAEEPHL -> L (761..770)rs375538882 (dbSNP)c.2283_2309delATCTCCGCAGGCTGAGGAGCCACACCTp.Ala765_Gln773deldistinct
148 KMT2D ENST00000301067E10 1025..1051 (2283..2309) / 27bp   [chr12:g.49445157_49445183 (hg19)]D ATCTCCGCAGGCTGAGGAGCCACACCT (het)74% (366)   [55% (98) / 85% (268)]LSPQAEEPHL -> L (761..770)rs375538882 (dbSNP)c.2283_2309delATCTCCGCAGGCTGAGGAGCCACACCTp.Ala765_Gln773deldistinct
149 TLE4 ENST00000376552E1 1063 (45)   [chr9:g.82187750 (hg19)]C A -> G (homo) 100% (751)   [100% (291) / 100% (460)] P -> P (15) COSM4164047 (COSMIC), rs1934610 (1000Genomes; dbSNP)c.45A>G p.Pro15= distinct
150 FAT1 ENST00000441802E2 1230 (1212)   [chr4:g.187629770 (hg19)]C T -> G (het) 28% (257)   [30% (160) / 26% (97)] S -> R (404)COSM4003044 (COSMIC), COSM4003045 (COSMIC), rs3733414 (1000Genomes; dbSNP)c.1212T>G p.Ser404Arg distinct
151 FAT4 ENST00000394329E1 1371 (1358)   [chr4:g.126238924 (hg19)]C A -> T (homo) 100% (1316)   [100% (665) / 100% (651)]Q -> L (453)COSM3760369 (COSMIC), COSM3760368 (COSMIC), rs6847454 (1000Genomes; dbSNP)c.1358A>T p.Gln453Leu distinct
152 FAT4 ENST00000394329E9 1392 (8836)   [chr4:g.126371007 (hg19)]C A -> G (het) 59% (484)   [59% (245) / 59% (239)] I -> V (2946)rs76048257 (1000Genomes; dbSNP)c.8836A>G p.Ile2946Val distinct
153 FAT1 ENST00000441802E2 1462 (1444)   [chr4:g.187629538 (hg19)]C G -> A (het) 29% (308)   [27% (134) / 31% (174)] V -> I (482) rs3733413 (1000Genomes; dbSNP)c.1444G>A p.Val482Ile distinct
154 FAT1 ENST00000441802E2 1503 (1485)   [chr4:g.187629497 (hg19)]C C -> T (het) 28% (334)   [27% (174) / 30% (160)] N -> N (495)COSM4003040 (COSMIC), COSM4003041 (COSMIC), rs458021 (1000Genomes; dbSNP)c.1485C>T p.Asn495= distinct
155 FAT4 ENST00000394329E17 1520 (14598)   [chr4:g.126412575 (hg19)]C A -> G (het) 64% (560)   [67% (271) / 61% (289)] R -> R (4866)rs1014866 (1000Genomes; dbSNP)c.14598A>G p.Arg4866= distinct
156 APC ENST00000257430E16 1774 (3732)   [chr5:g.112175023 (hg19)]C A -> G (homo) 100% (578)   [100% (242) / 100% (336)]Q -> Q (1244)rs74380081 (1000Genomes; dbSNP)c.3732A>G p.Gln1244= distinct
157 FAT4 ENST00000394329E17 1836 (14914)   [chr4:g.126412891 (hg19)]C C -> T (het) 36% (193)   [40% (65) / 34% (128)] P -> S (4972)COSM4002932 (COSMIC), rs1014867 (1000Genomes; dbSNP)c.14914C>T p.Pro4972Ser distinct
158 FAT1 ENST00000441802E2 1860 (1842)   [chr4:g.187629140 (hg19)]C C -> G (het) 30% (216)   [30% (108) / 30% (108)] F -> L (614)COSM4003038 (COSMIC), COSM4003039 (COSMIC), rs367863 (1000Genomes; dbSNP)c.1842C>G p.Phe614Leu distinct
159 FAT4 ENST00000394329E9 2426 (9870)   [chr4:g.126372041 (hg19)]C G -> A (het) 63% (385)   [61% (169) / 65% (216)] G -> G (3290)rs115219562 (1000Genomes; dbSNP)c.9870G>A p.Gly3290= distinct
160 FAT4 ENST00000394329E1 2433 (2420)   [chr4:g.126239986 (hg19)]C C -> T (homo) 100% (968)   [100% (592) / 100% (376)]A -> V (807)COSM3760371 (COSMIC), COSM3760370 (COSMIC), rs1039808 (1000Genomes; dbSNP)c.2420C>T p.Ala807Val distinct
161 FAT1 ENST00000441802E2 2602 (2584)   [chr4:g.187628398 (hg19)]C G -> C (het) 33% (376)   [33% (212) / 33% (164)] V -> L (862)COSM4003037 (COSMIC), COSM4003036 (COSMIC), rs1877731 (1000Genomes; dbSNP)c.2584G>C p.Val862Leu distinct
162 SETD2 ENST00000409792E3 2617 (2704)   [chr3:g.47163422 (hg19)]C G -> C (homo) 100% (961)   [100% (526) / 100% (435)]E -> Q (902)rs58906143 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.2704G>C p.Glu902Gln distinct
163 FAT4 ENST00000394329E1 2824 (2811)   [chr4:g.126240377 (hg19)]C G -> T (het) 26% (284)   [26% (136) / 26% (148)] K -> N (937)rs112454576 (1000Genomes; dbSNP)c.2811G>T p.Lys937Asn distinct
164 FAT4 ENST00000394329E1 2957 (2944)   [chr4:g.126240510 (hg19)]C T -> C (homo) 100% (667)   [100% (345) / 100% (322)] L -> L (982) rs2940779 (1000Genomes; dbSNP)c.2944T>C p.Leu982= distinct
165 FAT1 ENST00000441802E2 3208 (3190)   [chr4:g.187627792 (hg19)]C A -> G (homo) 100% (959)   [100% (479) / 100% (480)]R -> G (1064)COSM4003035 (COSMIC), COSM4003034 (COSMIC), rs11939575 (1000Genomes; dbSNP)c.3190A>G p.Arg1064Gly distinct
166 FAT1 ENST00000441802E10 3988 (8798)   [chr4:g.187538942 (hg19)]C A -> T (het) 71% (575)   [70% (256) / 73% (319)] Q -> L (2933)rs1280098 (1000Genomes; dbSNP)c.8798A>T p.Gln2933Leu distinct
167 FAT1 ENST00000441802E10 3988 (8798)   [chr4:g.187538942 (hg19)]C A -> C (het) 29% (231)   [30% (111) / 27% (120)] Q -> P (2933)COSM4005727 (COSMIC), COSM4005726 (COSMIC), rs1280098 (1000Genomes; dbSNP)c.8798A>C p.Gln2933Pro distinct
168 FAT4 ENST00000394329E9 4038 (11482)   [chr4:g.126373653 (hg19)]C A -> G (het) 64% (611)   [63% (290) / 65% (321)] K -> E (3828)rs17009684 (1000Genomes; dbSNP)c.11482A>G p.Lys3828Glu distinct
169 FAT4 ENST00000394329E9 4174 (11618)   [chr4:g.126373789 (hg19)]C G -> A (homo) 100% (916)   [100% (454) / 100% (462)]S -> N (3873)rs12650153 (1000Genomes; dbSNP)c.11618G>A p.Ser3873Asn distinct
170 FAT4 ENST00000394329E1 4318 (4305)   [chr4:g.126241871 (hg19)]C C -> T (homo) 100% (1097)   [100% (536) / 100% (561)]I -> I (1435)rs2710555 (1000Genomes; dbSNP)c.4305C>T p.Ile1435= distinct
171 LRP1B ENST00000389484E55 +3   [chr2:g.141259253 (hg19)]C A -> G (het) 24% (72)   [27% (20) / 23% (52)] rs117225004 (1000Genomes; dbSNP)c.8850+3A>G distinct
172 ROBO1 ENST00000464233E26 +4   [chr3:g.78676467 (hg19)]C T -> C (homo) 100% (679)   [100% (303) / 100% (376)] rs7636043 (1000Genomes; dbSNP)c.3875+4T>C distinct
173 LRP1B ENST00000389484E33 +5   [chr2:g.141533662 (hg19)]C A -> G (homo) 100% (380)   [100% (144) / 100% (236)] rs996361 (1000Genomes; dbSNP)c.5500+5A>G distinct
174 PBRM1 ENST00000394830E29 +6 / 3bp   [chr3:g.52584431_52584432 (hg19)]I GAG (homo) 88% (469)   [91% (166) / 87% (303)] rs71084187 (dbSNP), rs34372721 (1000Genomes; dbSNP)c.4576+5_4576+6insGAG distinct
175 SF1 ENST00000377390E6 +6   [chr11:g.64536892 (hg19)]C C -> T (het) 48% (736)   [52% (424) / 42% (312)] rs148875917 (1000Genomes; dbSNP)c.663+6C>T distinct
176 GATA6 ENST00000269216E6 +7   [chr18:g.19763011 (hg19)]C A -> G (homo) 100% (219)   [100% (53) / 100% (166)] COSM4000377 (COSMIC), rs3764962 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.1620+7A>G distinct
177 LRP1B ENST00000389484E19 +10   [chr2:g.141709419 (hg19)]C A -> C (homo) 100% (217)   [100% (78) / 100% (139)] rs1429348 (1000Genomes; dbSNP)c.2968+10A>C distinct
178 LRP1B ENST00000389484E49 +12   [chr2:g.141283401 (hg19)]C A -> T (het) 63% (347)   [62% (101) / 64% (246)] rs13404083 (1000Genomes; dbSNP)c.8026+12A>T distinct
179 LMNA ENST00000368300E4 +13   [chr1:g.156104779 (hg19)]C G -> T (het) 61% (576)   [57% (227) / 64% (349)] rs11264444 (1000Genomes; ClinVarVCF; dbSNP)c.810+13G>T distinct
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180 LRP1B ENST00000389484E30 +14 / 1bp   [chr2:g.141598473_141598474 (hg19)]I A (het) 87% (451)   [79% (152) / 92% (299)] rs78477398 (1000Genomes), rs35745624 (; dbSNP)c.5114+13_5114+14insA distinct
181 LRP1B ENST00000389484E34 +15   [chr2:g.141528435 (hg19)]C A -> G (het) 71% (411)   [72% (155) / 70% (256)] rs13382825 (1000Genomes; dbSNP)c.5626+15A>G distinct
182 MYCBP2 ENST00000357337E42 +15 / 1bp   [chr13:g.77740449 (hg19)]D T (homo) 95% (242)   [100% (33) / 95% (209)] rs397840781 (dbSNP), rs3832881 (1000Genomes; dbSNP)c.6226+15delT distinct
183 KMT2C ENST00000262189E7 +15   [chr7:g.151970775 (hg19)]C G -> C (het) 24% (198)   [23% (59) / 24% (139)] rs201635031 (dbSNP)c.1012+15G>C distinct
184 CHD1 ENST00000284049E13 +16   [chr5:g.98229104 (hg19)]C A -> G (homo) 100% (337)   [100% (93) / 100% (244)] rs17166428 (1000Genomes; dbSNP)c.1991+16A>G distinct
185 SLIT2 ENST00000504154E28 +16   [chr4:g.20569254 (hg19)]C A -> G (het) 23% (102)   [25% (41) / 22% (61)] rs12506323 (1000Genomes; dbSNP)c.2948+16A>G distinct
186 MARK2 ENST00000402010E11 +16   [chr11:g.63668557 (hg19)]C C -> T (het) 51% (405)   [50% (114) / 51% (291)] rs224174 (1000Genomes; dbSNP)c.1101+16C>T distinct
187 SMARCA4 ENST00000450717E31 +16   [chr19:g.11170577 (hg19)]C G -> T (homo) 100% (565)   [100% (282) / 100% (283)] rs151265814 (1000Genomes; dbSNP)c.4675+16G>T distinct
188 NARF ENST00000309794E3 +17   [chr17:g.80422323 (hg19)]C A -> T (het) 74% (577)   [73% (149) / 74% (428)] rs28401416 (1000Genomes; dbSNP)c.252+17A>T distinct
189 ROBO3 ENST00000397801E4 +24   [chr11:g.124739988 (hg19)]C T -> C (homo) 100% (793)   [100% (417) / 100% (376)] rs4936957 (1000Genomes; dbSNP)c.766+24T>C distinct
190 SF1 ENST00000377390E6 +32   [chr11:g.64536866 (hg19)]C A -> G (homo) 100% (1454)   [100% (607) / 100% (847)] rs484886 (1000Genomes; dbSNP)c.663+32A>G distinct
191 POLR3A ENST00000372371E22 +42   [chr10:g.79745789 (hg19)]C T -> C (het) 59% (449)   [58% (226) / 60% (223)] rs3815891 (1000Genomes; dbSNP)c.2988+42T>C distinct
192 BRD2 ENST00000449085E9 +663 / 4bp   [chr6:g.32946827_32946828 (hg19)]I (Dup) GTTT (het) 56% (76)   [79% (55) / 32% (21)] c.1700+659_1700+662dupGTTT distinct
193 BRD2 ENST00000449085E9 +672   [chr6:g.32946837 (hg19)]C A -> T (het) 84% (97)   [85% (52) / 82% (45)] rs2395380 (1000Genomes; dbSNP)c.1700+672A>T distinct
194 BRD2 ENST00000449085E9 +689   [chr6:g.32946854 (hg19)]C G -> T (homo) 95% (109)   [91% (52) / 98% (57)] rs2082260 (1000Genomes; dbSNP)c.1700+689G>T distinct
195 BRD2 ENST00000449085E9 +698 / 1bp   [chr6:g.32946862_32946863 (hg19)]I (Dup) T (het) 40% (47)   [40% (20) / 40% (27)] c.1700+697dupT distinct
196 SLIT2 ENST00000504154E1 +1105   [chr4:g.20256722 (hg19)]C G -> A (het) 28% (334)   [29% (137) / 27% (197)] rs1323066 (1000Genomes; dbSNP)c.179+1105G>A distinct
197 SMAD4 ENST00000342988E4 +2088   [chr18:g.48577782 (hg19)]C G -> C (homo) 100% (89)   [100% (42) / 100% (47)] rs7229678 (1000Genomes; dbSNP)c.454+2088G>C 2/1 of 3 distinct
198 SMAD3 ENST00000327367E1 +32698 / 1bp   [chr15:g.67391396 (hg19)]D T (homo) 98% (1802)   [98% (797) / 97% (1005)] c.206+32698delT distinct
199 ATM ENST00000278616E1 275   [chr11:g.108093833 (hg19)]C G -> A (homo) 100% (280)   [100% (140) / 100% (140)] 5' UTR rs189037 (1000Genomes; dbSNP)c.-111G>A 1/0 of 1DP distinct
200 BRCA1 ENST00000357654E10 1942 (2612)   [chr17:g.41244936 (hg19)]C C -> T (homo) 100% (1429)   [100% (679) / 100% (750)]P -> L (871)COSM148278 (COSMIC), COSM3755564 (COSMIC), rs799917 (1000Genomes; ClinVarVCF; dbSNP)c.2612C>T p.Pro871Leu32/167 of 357 [c.2612C>T]DP, POLY distinct
201 ASCC3 ENST00000369162E12 33 (1935)   [chr6:g.101166095 (hg19)]C C -> T (homo) 100% (525)   [100% (343) / 99% (182)] L -> L (645) rs41288423 (1000Genomes; dbSNP)c.1935C>T p.Leu645=88/187 of 421 (p.=)Ident SNPdistinct
202 MMACHC ENST00000401061E3 45 (321)   [chr1:g.45973928 (hg19)]C G -> A (het) 29% (242)   [28% (107) / 31% (135)] V -> V (107)rs2275276 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.321G>A p.Val107=77/202 of 407 (p.=)Ident-SNP (chr1)distinct
203 TPH2 ENST00000333850E9 57 (1125)   [chr12:g.72416235 (hg19)]C A -> T (homo) 100% (895)   [100% (523) / 100% (372)]A -> A (375)COSM3753489 (COSMIC), rs4290270 (1000Genomes; dbSNP)c.1125A>T p.Ala375=162/165 of 409 (p.=)Ident-SNP (chr12)distinct
204 EDNRB ENST00000446573E4 30 (831)   [chr13:g.78475313 (hg19)]C A -> G (homo) 100% (499)   [100% (286) / 100% (213)] L -> L (277) COSM3753750 (COSMIC), COSM3753749 (COSMIC), COSM3753748 (COSMIC), rs5351 (1000Genomes; dbSNP)c.831A>G p.Leu277=156/171 of 408 (p.=)Ident-SNP (chr13); POLYdistinct
205 GABRG3 ENST00000333743E8 98 (963)   [chr15:g.27772676 (hg19)]C C -> T (het) 37% (629)   [37% (366) / 36% (263)] T -> T (321)rs140679 (1000Genomes; dbSNP)c.963C>T p.Thr321=100/195 of 409 (p.=)Ident-SNP (chr15)distinct
206 GABRG3 ENST00000333743E8 98 (963)   [chr15:g.27772676 (hg19)]C C -> T (het) 37% (629)   [37% (366) / 36% (263)] T -> T (321)rs140679 (1000Genomes; dbSNP)c.963C>T p.Thr321=100/195 of 409 (p.=)Ident-SNP (chr15)distinct
207 ATP13A4 ENST00000392443E6 10 (543)   [chr3:g.193209178 (hg19)]C A -> G (het) 29% (249)   [30% (163) / 28% (86)] I -> M (181)COSM3759936 (COSMIC), COSM3759937 (COSMIC), rs6788448 (1000Genomes; dbSNP)c.543A>G p.Ile181Met55/197 of 410Ident-SNP (chr3)distinct
208 WDFY3 ENST00000322366E6 32 (336)   [chr4:g.85762385 (hg19)]C A -> G (het) 66% (523)   [67% (280) / 65% (243)] L -> L (112) COSM4003176 (COSMIC), rs2046402 (1000Genomes; dbSNP)c.336A>G p.Leu112=56/178 of 409 (p.=)Ident-SNP (chr4)distinct
209 MUT ENST00000274813E3 251 (636)   [chr6:g.49425521 (hg19)]C G -> A (homo) 100% (435)   [100% (226) / 99% (209)] K -> K (212)rs2229384 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.636G>A p.Lys212=151/180 of 410 (p.=)Ident-SNP (chr6)distinct
210 MPDZ ENST00000319217E25 157 (3609)   [chr9:g.13150531 (hg19)]C A -> G (het) 29% (168)   [31% (69) / 27% (99)] K -> K (1203)rs10756457 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.3609A>G p.Lys1203=47/177 of 411 (p.=)Ident-SNP (chr9)distinct
211 LMNA ENST00000368300E9 -41   [chr1:g.156106863 (hg19)]C C -> T (homo) 100% (1131)   [100% (705) / 99% (426)] rs553016 (1000Genomes; ClinVarVCF; dbSNP)c.1489-41C>T 2/5 of 64POLY distinct
212 SMARCA2 ENST00000349721E33 -20   [chr9:g.2191246 (hg19)]C T -> C (homo) 100% (123)   [100% (82) / 100% (41)] rs3818384 (1000Genomes; dbSNP), gnomAD (MutDB)c.4595-20T>C 0/2 of 22POLY distinct
213 CHD6 ENST00000373233E14 -19   [chr20:g.40116467 (hg19)]C G -> A (homo) 100% (974)   [100% (600) / 100% (374)] rs4812516 (1000Genomes; dbSNP), ExAC (MutDB)c.1858-19G>A 0/1 of 5POLY distinct
214 PIK3CA ENST00000263967E6 -17   [chr3:g.178922274 (hg19)]C C -> A (homo) 100% (785)   [100% (497) / 100% (288)] rs2699896 (1000Genomes; dbSNP), ExAc, dbSNP, ClinVar (MutDB)c.1060-17C>A 67/90 of 294POLY distinct
215 MEN1 ENST00000312049E2 -16   [chr11:g.64577620 (hg19)]C C -> G (het) 56% (98)   [56% (96) / 50% (2)] rs509606 (1000Genomes; dbSNP)c.-23-16C>G 1/5 of 26POLY forced,distinct
216 BRAF ENST00000288602E18 -16   [chr7:g.140434586 (hg19)]C C -> T (het) 82% (14)   [100% (10) / 57% (4)] rs368721021 (ClinVar; ClinVarVCF; dbSNP)c.2128-16C>T 1/16 of 79POLY distinct
217 BRCA2 ENST00000544455E17 -14   [chr13:g.32936646 (hg19)]C T -> C (homo) 100% (469)   [100% (365) / 100% (104)] rs9534262 (1000Genomes; ClinVarVCF; dbSNP),BRCA-SEQ (MutDB)c.7806-14T>C 85/156 of 340POLY distinct
218 PIK3CA ENST00000263967E12 -13   [chr3:g.178937346 (hg19)]C T -> C (het) 52% (267)   [57% (200) / 41% (67)] rs41273619 (1000Genomes; dbSNP)c.1747-13T>C 0/15 of 296POLY distinct
219 ATM ENST00000278616E24 -12 / 1bp   [chr11:g.108151709_108151710 (hg19)]I (Dup) A (het) 85% (130)   [80% (89) / 98% (41)] ClinVar ben (MutDB)c.3403-13dupA 38/185 of 314POLY distinct
220 JAG1 ENST00000254958E6 10 (765)   [chr20:g.10633237 (hg19)]C C -> T (het) 35% (310)   [35% (144) / 35% (166)] Y -> Y (255)COSM3758428 (COSMIC), COSM3758427 (COSMIC), rs1131695 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.765C>T p.Tyr255=5/7 of 38 (p.=)POLY distinct
221 KMT2D ENST00000301067E11 29 (2826)   [chr12:g.49444545 (hg19)]C C -> T (homo) 100% (833)   [100% (421) / 100% (412)] I -> I (942) COSM3753294 (COSMIC), rs2241726 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.2826C>T p.Ile942=3/13 of 45 (p.=)POLY distinct
222 ATM ENST00000278616E40 30 (5948)   [chr11:g.108183167 (hg19)]C A -> G (homo) 100% (97)   [100% (44) / 100% (53)] N -> S (1983)rs659243 (1000Genomes; ClinVarVCF; dbSNP)c.5948A>G p.Asn1983Ser272/0 of 318POLY distinct
223 SMARCA2 ENST00000349721E2 32   [chr9:g.2029018 (hg19)]C G -> A (het) 58% (199)   [59% (127) / 58% (72)] 5' UTR rs10964468 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.-5G>A 0/3 of 41POLY distinct
224 KRAS ENST00000256078E5 33 (483)   [chr12:g.25368462 (hg19)]C G -> A (homo) 100% (947)   [100% (422) / 100% (525)] R -> R (161)rs4362222 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.483G>A p.Arg161=79/1 of 123 (p.=)POLY distinct

225 APC ENST00000257430E12 50 (1458)   [chr5:g.112162854 (hg19)]C T -> C (homo) 100% (723)   [100% (337) / 100% (386)] Y -> Y (486)COSM1432175 (COSMIC), rs2229992 (1000Genomes; ClinVarVCF; dbSNP)c.1458T>C p.Tyr486=3/2 of 97 (p.=)POLY distinct
226 LMNA ENST00000368300E5 51 (861)   [chr1:g.156105028 (hg19)]C T -> C (het) 32% (339)   [30% (143) / 34% (196)] A -> A (287)rs538089 (1000Genomes; ClinVarVCF; dbSNP)c.861T>C p.Ala287=2/8 of 72 (p.=)POLY distinct
227 FGFR2 ENST00000358487E6 72 (696)   [chr10:g.123298158 (hg19)]C A -> G (homo) 100% (1149)   [100% (490) / 100% (659)]V -> V (232)rs1047100 (1000Genomes; dbSNP), ExAc, ClinVar, dbSNP (MutDB)c.696A>G p.Val232=0/1 of 1 (p.=)POLY distinct
228 FGFR2 ENST00000478859E4 94   [chr10:g.123286375 (hg19)]C A -> G (homo) 100% (668)   [100% (466) / 100% (202)] 5' UTR rs2981437 (1000Genomes; dbSNP)c.-109A>G 1/0 of 1POLY distinct
229 KMT2D ENST00000301067E39 96 (10836)   [chr12:g.49427652 (hg19)]C G -> A (homo) 100% (827)   [100% (365) / 100% (462)]Q -> Q (3612)COSM431202 (COSMIC), rs3782357 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.10836G>A p.Gln3612=3/14 of 47 (p.=)POLY distinct
230 SMAD3 ENST00000327367E2 103 (309)   [chr15:g.67457335 (hg19)]C A -> G (homo) 100% (1004)   [100% (623) / 100% (381)]L -> L (103) rs1065080 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.309A>G p.Leu103=12/2 of 38 (p.=)POLY distinct
231 LMNA ENST00000368300E12 106   [chr1:g.156108976 (hg19)]C G -> C (homo) 100% (503)   [100% (191) / 100% (312)] 3' UTR rs7339 (1000Genomes; ClinVarVCF; dbSNP)c.*79G>C 2/7 of 73POLY distinct
232 MEN1 ENST00000312049E9 114 (1299)   [chr11:g.64572557 (hg19)]C T -> C (homo) 100% (1269)   [100% (670) / 100% (599)]H -> H (433)rs540012 (1000Genomes; ClinVarVCF; dbSNP)c.1299T>C p.His433=20/0 of 25 (p.=)POLY distinct
233 TP53 ENST00000269305E4 119 (215)   [chr17:g.7579472 (hg19)]C C -> G (homo) 100% (735)   [100% (313) / 100% (422)] P -> R (72) COSM3766192 (COSMIC), COSM3766193 (COSMIC), COSM3766191 (COSMIC), COSM250061 (COSMIC), COSM3766190 (COSMIC), rs1042522 (1000Genomes; ClinVar; ClinVarVCF; dbSNP),alle Proben (MutDB)c.215C>G p.Pro72Arg149/102 of 309POLY distinct
234 ARID1B ENST00000346085E6 135 (2172)   [chr6:g.157405930 (hg19)]C G -> A (homo) 100% (969)   [100% (377) / 100% (592)]A -> A (724)COSM1487405 (COSMIC), COSM450794 (COSMIC), rs3734441 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.2172G>A p.Ala724=4/10 of 42 (p.=)POLY distinct
235 BCORL1 ENST00000540052E3 154 (331)   [chrX:g.129147079 (hg19)]C T -> C (homo) 100% (698)   [100% (404) / 100% (294)] F -> L (111)rs4830173 (1000Genomes; dbSNP)c.331T>C p.Phe111Leu1/0 of 1POLY distinct
236 KMT2D ENST00000301067E10 168 (1426)   [chr12:g.49446040 (hg19)]C G -> A (homo) 98% (511)   [94% (127) / 100% (384)] A -> T (476)rs1064210 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.1426G>A p.Ala476Thr0/3 of 44POLY distinct
237 KMT2D ENST00000301067E10 168 (1426)   [chr12:g.49446040 (hg19)]C G -> A (homo) 98% (511)   [94% (127) / 100% (384)] A -> T (476)rs1064210 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.1426G>A p.Ala476Thr0/3 of 44POLY distinct
238 LMNA ENST00000368300E7 181 (1338)   [chr1:g.156106185 (hg19)]C T -> C (homo) 100% (216)   [100% (80) / 100% (136)] D -> D (446)rs505058 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.1338T>C p.Asp446=2/8 of 72 (p.=)POLY distinct
239 LMNA ENST00000368300E7 181 (1338)   [chr1:g.156106185 (hg19)]C T -> C (homo) 100% (216)   [100% (80) / 100% (136)] D -> D (446)rs505058 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.1338T>C p.Asp446=2/8 of 72 (p.=)POLY distinct
240 SMARCA2 ENST00000349721E25 216 (3672)   [chr9:g.2116037 (hg19)]C G -> A (homo) 100% (537)   [100% (269) / 100% (268)]E -> E (1224)COSM3763856 (COSMIC), COSM3763857 (COSMIC), rs6601 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.3672G>A p.Glu1224=0/4 of 42 (p.=)POLY distinct
241 JAG1 ENST00000254958E26 218 (3417)   [chr20:g.10620386 (hg19)]C T -> C (homo) 100% (866)   [100% (403) / 100% (463)]Y -> Y (1139)COSM3758426 (COSMIC), COSM149140 (COSMIC), rs1051419 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.3417T>C p.Tyr1139=5/7 of 38 (p.=)POLY distinct
242 CHD1 ENST00000284049E35 263..265 (5050..5052) / 3bp   [chr5:g.98192165_98192167 (hg19)]D CCT (homo) 97% (1467)   [97% (808) / 96% (659)] P ->  (1684)COSM327350 (COSMIC), rs138635992 (1000Genomes; dbSNP)c.5050_5052delCCT p.Pro1684del0/1 of 1POLY distinct
243 MEN1 ENST00000312049E10 271 (1621)   [chr11:g.64572018 (hg19)]C A -> G (homo) 100% (1341)   [100% (779) / 100% (562)]T -> A (541)COSM255213 (COSMIC), rs2959656 (1000Genomes; ClinVarVCF; dbSNP)c.1621A>G p.Thr541Ala20/0 of 25POLY distinct
244 SMAD3 ENST00000327367E1 296   [chr15:g.67358478 (hg19)]C G -> A (het) 26% (66)   [21% (38) / 36% (28)] 5' UTR rs1061427 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.-15G>A 0/8 of 38POLY distinct
245 RNF43 ENST00000407977E9 300 (1252)   [chr17:g.56435885 (hg19)]C C -> A (homo) 100% (2000)   [100% (1063) / 100% (937)]L -> M (418)COSM4130449 (COSMIC), rs2526374 (1000Genomes; dbSNP)c.1252C>A p.Leu418Met13/31 of 97POLY distinct
246 NF2 ENST00000338641E1 332   [chr22:g.29999878 (hg19)]C G -> C (homo) 95% (158)   [95% (154) / 100% (4)] 5' UTR rs1800540 (1000Genomes; dbSNP)c.-110G>C 12/7 of 25POLY forced,distinct
247 CASR ENST00000490131E7 512 (2244)   [chr3:g.122003045 (hg19)]C G -> C (homo) 100% (2197)   [100% (1122) / 100% (1075)]P -> P (748)rs2036400 (1000Genomes; dbSNP)c.2244G>C p.Pro748=3/1 of 24 (p.=)POLY distinct
248 KMT2C ENST00000262189E14 635 (2448) / 1bp   [chr7:g.151945071_151945072 (hg19)]I (Dup) A (het) 27% (195)   [29% (68) / 27% (127)][STOP] AA 816 (E14/633)RF changedrs150073007 (dbSNP), COSM289942 (COSMIC), COSM289943 (COSMIC)c.2447dupA p.Tyr816Ter0/1 of 1POLY distinct
249 KMT2D ENST00000301067E31 1245 (7479)   [chr12:g.49434074 (hg19)]C G -> T (homo) 100% (1035)   [100% (679) / 99% (356)]G -> G (2493)COSM3722550 (COSMIC), rs10747559 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.7479G>T p.Gly2493=3/11 of 46 (p.=)POLY distinct
250 KMT2D ENST00000301067E31 1245 (7479)   [chr12:g.49434074 (hg19)]C G -> T (homo) 100% (1035)   [100% (679) / 99% (356)]G -> G (2493)COSM3722550 (COSMIC), rs10747559 (1000Genomes; ClinVar; ClinVarVCF; dbSNP), ExAC, ClinVar (MutDB)c.7479G>T p.Gly2493=3/11 of 46 (p.=)POLY distinct
251 CASR ENST00000490131E7 1299 (3031)   [chr3:g.122003832 (hg19)]C G -> C (homo) 100% (1268)   [100% (577) / 100% (691)]E -> Q (1011)rs1801726 (1000Genomes; dbSNP)c.3031G>C p.Glu1011Gln3/1 of 24POLY distinct
252 CASR ENST00000490131E7 1565   [chr3:g.122004098 (hg19)]C A -> T (homo) 100% (623)   [100% (159) / 100% (464)] 3' UTR rs4677948 (1000Genomes; dbSNP)c.*60A>T 3/1 of 24POLY distinct
253 BRCA2 ENST00000544455E11 2654 (4563)   [chr13:g.32913055 (hg19)]C A -> G (homo) 100% (544)   [100% (280) / 100% (264)]L -> L (1521)rs206075 (1000Genomes; ClinVarVCF; dbSNP),BRCA-SEQ (MutDB)c.4563A>G p.Leu1521=657/1 of 693 (p.=)POLY distinct
254 SETD2 ENST00000409792E3 3378 (3465)   [chr3:g.47162661 (hg19)]C T -> C (homo) 100% (1061)   [100% (579) / 100% (482)]N -> N (1155)rs6767907 (1000Genomes; dbSNP), ExAC (MutDB)c.3465T>C p.Asn1155=1/6 of 11 (p.=)POLY distinct
255 APC ENST00000257430E16 3507 (5465)   [chr5:g.112176756 (hg19)]C T -> A (homo) 100% (345)   [100% (152) / 100% (193)]V -> D (1822)COSM3760871 (COSMIC), rs459552 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.5465T>A p.Val1822Asp4/1 of 23POLY distinct
256 BRCA2 ENST00000544455E11 4604 (6513)   [chr13:g.32915005 (hg19)]C G -> C (homo) 100% (335)   [100% (214) / 100% (121)]V -> V (2171)COSM4147689 (COSMIC), COSM4147690 (COSMIC), rs206076 (1000Genomes; ClinVar; ClinVarVCF; dbSNP),BRCA-SEQ (MutDB)c.6513G>C p.Val2171=301/0 of 334 (p.=)POLY distinct
257 CASR ENST00000490131E7 +15 / 1bp   [chr3:g.122004226_122004227 (hg19)]I (Dup) A (het) 29% (22)   [0% (0) / 29% (22)] rs33974189 (MutDB)c.*188dupA 0/2 of 3POLY forced,distinct
258 LMNA ENST00000368300E6 +16   [chr1:g.156105928 (hg19)]C G -> A (het) 37% (422)   [35% (184) / 38% (238)] rs534807 (1000Genomes; ClinVarVCF; dbSNP)c.1157+16G>A 2/8 of 72POLY distinct
259 LMNA ENST00000368300E6 +16   [chr1:g.156105928 (hg19)]C G -> A (het) 37% (422)   [35% (184) / 38% (238)] rs534807 (1000Genomes; ClinVarVCF; dbSNP)c.1157+16G>A 2/8 of 72POLY distinct
260 CASR ENST00000490131E3 +19   [chr3:g.121976253 (hg19)]C G -> A (homo) 99% (373)   [100% (10) / 99% (363)] rs9869985 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.492+19G>A 3/1 of 24POLY forced,distinct
261 TP53 ENST00000269305E2 +38   [chr17:g.7579801 (hg19)]C C -> G (het) 93% (240)   [61% (30) / 100% (210)] rs1642785 (1000Genomes; ClinVar; ClinVarVCF; dbSNP)c.74+38C>G 117/121 of 305POLY distinct
262 BRCA1 ENST00000357654E1 +101   [chr17:g.41277187 (hg19)]C C -> G (homo) 99% (307)   [100% (230) / 99% (77)] rs799905 (1000Genomes; dbSNP)c.-20+101C>G 1/0 of 2POLY distinct
263 KDM6A ENST00000377967E18 -5 / 1bp   [chrX:g.44935937 (hg19)]D T (het) 45% (35)   [42% (16) / 48% (19)]  ExAC, ClinVar (MutDB)c.2703-5delT 0/10 of 30POLY (selten)distinct
264 RNF43 ENST00000407977E2 524 (139)   [chr17:g.56492800 (hg19)]C A -> G (het) 22% (396)   [22% (188) / 21% (208)] I -> V (47) rs3744093 (1000Genomes; dbSNP)c.139A>G p.Ile47Val14/29 of 98Poly distinct
265 SMARCA2 ENST00000349721E4 350..352 (705..707) / 3bp   [chr9:g.2039815_2039817 (hg19)]D GCA (het) 36% (102)   [36% (46) / 36% (56)] QQ -> Q (235..236) c.705_707delGCA p.Gln238del0/4 of 41Sequenzartefaktdistinct
266 BRCA2 ENST00000544455E14 390 (7397)   [chr13:g.32929387 (hg19)]C T -> C (homo) 100% (282)   [100% (91) / 100% (191)] V -> A (2466)rs169547 (1000Genomes; ClinVarVCF; dbSNP)c.7397T>C p.Val2466Ala302/0 of 335Wildtyp distinct
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4 DISCUSSION 

To increase the success rate of clinical trials in the field of oncology, it is necessary to 

direct cancer research towards personalized medicine and precision oncology 

characterized by tailor-made treatments for individual patients [3]. In this study we 

investigated whether HSP90 clients such as MIF (macrophage migration inhibitory 

factor) and mutp53 (mutant p53) can serve as potential biomarkers and drug targets in 

colorectal cancer (CRC) or pancreatic ductal adenocarcinoma (PDAC): 

(I) Figures labeled with ‘Publication’ can be found in the published paper (section 
3.1): Klemke et. al. 2021, Cell Death & Disease [234].  
 

(II) Figures labeled with ‘Manuscript’ can be found in the provisionally accepted but 

not yet published manuscript (section 3.2), Klemke et. al. 2021, Frontiers in 

Oncology. 
 

(III) Figures without any of the mentioned specifications can be found in the 

dissertation itself. 

 

The results gained in these two subprojects, will be discussed in detail in the following 

sections. 

4.1 MIF PROMOTES COLORECTAL CANCER PROGRESSION  

Various efforts have been made to better understand the biological function of MIF. It 

was first discovered as a pro-inflammatory cytokine shown to inhibit random migration 

of immune cells [116]. However, as research progressed it became evident that it has 

a more complex biology than previously described. To date, MIF has not just been 

extensively described as a chemokine but also as a hormone and enzyme [159, 162]. 

Furthermore, with its pleiotropic functions it can regulate tumorigenic pathways by 

supporting all hallmarks of cancer [73, 235]. 

In our current CRC study (Publication in section 3.1) using the colitis-associated 

AOM/DSS mouse model, we investigated the role of MIF in CRC development. We 

showed that Mif levels are elevated in CRC cells and that a depletion of Mif results in 

decreased tumor burden (Publication Figures 1, 2 and S1). These findings are in line 
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with results gained in small intestinal tumors of Apcmin mice [149] and xenograft mouse 

models [111, 151] further supporting MIF as a tumor promoting protein in intestinal 

cancers.  

To understand the core mechanism leading to altered tumor development, we were 

intrigued to answer the following questions:  

(I) Does MIF already affect CRC development during tumor initiation? 
 

(II) Is the tumorigenic effect of MIF limited to established tumors?  

 

Interestingly, we found that MIF is an important player in both phases of CRC tumor 

development. 

To explore the underlying tumorigenic mechanism that could explain the decreased 

tumor burden after Mif depletion, established tumors were biopsied (Publication 
Figure 1A) and recovering tissue was prepared to investigate tumor initiation 

(Publication Figure 3A). The recovery group (representing tumor initiation), is 

characterized by DSS induced disruption of the intestinal epithelial barrier, causing 

massive infiltration of immune cells and disruption of the tissue (Publication Figure 
3B; section 2.2.1). Within this phase of tumor development, we hypothesized that MIF 

promotes DSS-induced inflammation as a pro-inflammatory cytokine and Mif loss 

results in decreased inflammation and better tissue recovery. Therefore, we evaluated 

the infiltration of regulatory T-cells (FoxP3+), neutrophil granulocytes (MPO+) and T-

lymphocytes (CD3+) into the damaged tissue.  

During initial stages, MIF acted as a pro-inflammatory cytokine on overall inflammation, 

particularly on the recruitment of regulatory T-cells, neutrophil granulocytes and T-

lymphocytes (Publication Figures 3B-D and S2A-C). In contrast, this effect was not 

observed in established tumors (Publication Figures 4A and S3A, B). Interestingly, 

monocyte/macrophage infiltration was altered in established tumors but not in adjacent 

normal epithelium (Publication Figure 4B) or during tumor initiation (‘recovery’; 

Publication Figures 3C and S2A). Furthermore, angiogenic (CD31, VEGF) and 

proliferative (Ki67) markers were specifically regulated in established tumors after Mif-

depletion (Publication Figures 4C-H) but not during tumor initiation (Publication 
Figure S3G-K). Our in vitro (HCT116 and DLD-1; Publication Figures 5A-G) and ex 

vivo (Mif-depleted colon-derived tumor organoids; Publication Figures 6F, G) studies 
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confirm involvement of tumor cell-derived MIF in angiogenic pathways. Together with 

clinical patient correlation studies (Publication Figure 5H-J), these data showed that 

MIF acts in a CD74-dependent manner in CRC. Using matched pairs of colonic 

organoids (normal and tumor tissues from the same donor), we confirmed MIF as an 

important HSP90 client and demonstrated that stabilized MIF results in higher 

susceptibility of tumor cells towards HSP90 inhibition (Publication Figures 6H-I, 7A-
D, S5B, C).  

Taken together, these data suggest that MIF function switches from a pro-inflammatory 

cytokine during tumor initiation to a HSP90-stabilized protein driving tumorigenic 

mechanisms in established tumors (Figure 8). 

 
Figure 8: Functional switch of MIF during colorectal cancer progression. During tumor 

initiation MIF functions as a pro-inflammatory cytokine to regulate overall inflammation via recruitment 

of CD3+, FoxP3+, MPO+ immune cells and cytokine expression. In contrast, in established tumors MIF 
regulates the recruitment of tumor-associated macrophages and is involved in tumorigenic pathways 

such as proliferation and angiogenesis. Notably, MIF no longer regulates overall inflammation in 

established tumors.  
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4.1.1 MIF contributes to angiogenesis, but only in established tumors – a CD74-

dependent mechanism 

MIF has been described to promote colorectal tumorigenesis through regulation of 

angiogenesis [111, 149, 151, 236]. In established tumors of Mif-deficient mice, 

angiogenic markers (CD31 and Vegf) were downregulated compared to Mif-proficient 

mice (Publication Figures 4C-G). Furthermore, infiltration of tumor associated 

macrophages was reduced after Mif loss (Publication Figure 4B). From our in vivo 

study, we cannot conclude whether the MIF-dependent angiogenic effects are due to 

receptor mediated pathways in cancer cells themselves (Figure 5) or are a result of 

recruited tumor-associated macrophages, which are known to express and secrete 

angiogenic factors such as VEGF to support tumor progression [167, 170].  

In this context, three different scenarios would be possible (Figure 9):  

(I) Cancer cells harbor high levels of HSP90-stabilized MIF which is secreted into 

the surrounding stroma. The secreted MIF can act in an autocrine manner via the 

CD74 receptor to increase the expression and secretion of angiogenic factors 

such as VEGF and IL-8 from cancer cells [109, 111, 151, 155, 159].  
 

(II) In a paracrine fashion, cancer cell-derived MIF also acts on constituents of the 

stromal compartment. MIF/CD74 interaction has been shown to be particularly 

important for chemotaxis of monocytes/macrophages [237]. In addition, tumor 

cell-derived MIF has been reported to contribute to the angiogenic potential of 

macrophages by inducing the expression of factors such as VEGF [161, 167, 

238, 239]. Furthermore, tumor cell-derived MIF can promote neovascularization, 

by direct interaction with endothelial cells, resulting in their proliferation, migration 

and tube formation [162, 239]. 
 

(III) Stromal cells are also known to express and secrete MIF, which can act in an 

autocrine or paracrine fashion, further contribute to the expression of angiogenic 

factors [117, 167, 239-241]. Thus, the secretion of MIF from stromal cells can 

also contribute to neovascularization of tumors [167, 242].  

 

In a tumor bulk, which consists of epithelial cancer cells and constituents of the tumor 

microenvironment, any combination of the three scenarios might contribute to vessel 

formation [168, 239]. However, scenarios (I) and (II) are most likely, since tumor cells 
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have high levels of stabilized MIF, hence being the major source of secreted MIF [57, 

111].  

 
Figure 9: Possible scenarios on how MIF triggers angiogenesis in cancer. In cancer 

cells, MIF is highly stabilized by the HSP90 superchaperone machinery resulting in elevated MIF levels 

in cancer cells. (I) Secreted MIF acts in an autocrine loop, by binding to the CD74 receptor on cancer 

cells, promoting tumorigenesis via inducing expression and secretion of angiogenic factors (VEGF). (II) 

Moreover, tumor cell-derived MIF can act in a paracrine manner on monocytes/macrophages and 

endothelial cells which further promotes angiogenesis. (III) Macrophages/monocytes and endothelial 

cells also express and secrete MIF, which additionally triggers angiogenic responses by paracrine and 

autocrine loops.  

Colorectal cancer cells have elevated MIF levels due to the stabilization via the HSP90 

chaperone machinery (Publication Figures 2, 6 and 7; Figure 5), suggesting that 

most of the secreted MIF arises from these tumor cells themselves and contributes to 

angiogenesis. To prove this hypothesis, we used epithelial cell cultures to evaluate the 

expression of angiogenic factors. In Mif-deficient tumor organoids (Publication Figure 
6G) as well as in human cancer cells (HCT116) (Publication Figure 5B), we found 

reduced expression of VEGFA or IL8 after MIF loss, suggesting that HSP90-stabilized 

MIF in tumor cells themselves contributes to neovascularization in CRC via an 

autocrine loop. Of note, this effect was only observed in the presence of the cognate 

CD74 receptor (Publication Figures 5A-G). 
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Interestingly, we found that macrophage recruitment was specifically altered in 

established tumors, but not in adjacent normal tissue (Publication Figure 4B). MIF 

has been suggested to drive recruitment and activation of tumor-associated 

macrophages in a CD74-dependent manner, thereby promoting tumor progression via 

immunosuppression and angiogenesis [167, 168]. In line with these findings, Fan et 

al. demonstrated that Mif- and CD74-deficient murine macrophages displayed 

diminished chemotaxis [237]. The reduced chemotactic potential of macrophages in 

the absence of MIF might explain the lower number of macrophages observed in Mif-

depleted tumors in vivo (Publication Figure 4B). In contrast to macrophages, other 

tested immune cells (neutrophil granulocytes, T-lymphocytes or regulatory T-cells) 

were not regulated in established tumors of Mif-deficient mice compared to wildtype 

mice. These immune cells are also known to contribute to tumor progression and to be 

regulated by MIF [161]. Indeed, the recruitment of T-cells [128, 243] and neutrophils 

[244, 245] has been mainly reported via the receptors CXCR2 and CXCR4. Taken 

together, the regulation of tumor associated macrophages but not neutrophil 

granulocytes, T-lymphocytes or regulatory T-cells (Publication Figures 4A, B and 
S3A), confirms the involvement of the MIF/CD74 axis in established CRC. 

Further experiments are necessary to further investigate whether MIF in tumor cells or 

stromal cells (e.g., macrophages, fibroblasts, endothelial cells) constitutes the driving 

force of tumor progression. In that context, Hu et al. demonstrated that human hepatic 

sinusoidal endothelial cells (HHSECs) as well as human umbilical vein endothelial cells 

(HUVECs) cells were able to induce chemotaxis and migration in different CRC cell 

lines (SW480, HCT116) via secretion of MIF [246]. Vice versa, their study also showed, 

that MIF secreted from these cancer cells did not induce migration of endothelial cells 

[246]. In contrast, boyden chamber assays using HUVECs treated with recombinant 

MIF confirm its important role on neovascularization [241]. To further elaborate on the 

communication between cancer and endothelial cells, one could perform transwell and 

boyden chamber assays (with HUVECs) using the supernatant of MIF-proficient and 

MIF-depleted human epithelial cancer cells (e.g., HCT116) or matched pairs normal 

and tumor organoids from CRC patients.  

However, additional preclinical proof-of-principal studies would help to understand the 

importance of cancer-derived MIF in the context of tumor development. Therefore, 

Miffl/fl;villincre mice can be used to specifically deplete MIF from colon epithelial cells, 
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while MIF expression in the tumor stroma remains unaltered [247]. These transgenic 

mice are characterized by the constitutive expression of the cre recombinase under 

regulatory control of the villin promotor [247]. The cre recombinase specifically 

recognizes loxP (floxed allele, fl) sequences allowing the recombination of defined 

target genes [247]. In Miffl/fl;villincre mice, the Mif gene is flanked with two loxP sites, 

allowing the villincre recombinase to deplete Mif from intestinal epithelial cells.  

By using this mouse strain in comparison to our constitutive Mif knockout mouse used 

in the current study, the following results would be expected:  

(I) If MIF in cancer cells is the driving force of CRC development, an epithelial-

specific depletion of MIF would result in decreased tumor burden.  
 

(II) If MIF in stromal cells is the most important source for CRC development, we 

would not see any alteration of tumor growth after MIF loss in epithelial cells. 
 

(III) If a combination of MIF in cancer and stromal cells results in the development of 

colorectal tumors, a milder reduction in tumor burden would be seen compared 

to that observed in the overall constitutive Mif knockout mice.  

 

Evaluation of tumor burden, tumorigenic pathways and macrophage recruitment can 

reveal whether depletion of HSP90-stabilized MIF specifically in the intestinal epithelial 

cancer cells is the driver of tumor development in CRC. 

An additional step would be to use a conditional Mif knockout mouse 

(Miffl/fl;villincreERT2). In these mice, the cre recombinase is fused with the mutated 

ligand-binding domain of the estrogen receptor ERT2 which interacts with HSP90 [247, 

248]. Upon treatment with Tamoxifen HSP90 dissociates and the creERT2 fusion 

protein translocates into the nucleus to induce recombination of the target gene of 

interest [248]. This mouse model allows the depletion of genes at a defined time point. 

For the current study it would be of interest to use these conditional mice to investigate 

whether tumor cell-derived MIF is important for tumor maintenance. For those 

experiments, mice would be treated with AOM/DSS to induce tumor development. 

Then, Mif recombination is initiated using Tamoxifen at a particular tumor size. These 

approaches are especially important for clinical translation, since CRC patients are 

often diagnosed at a later stage of the disease [107, 108]. Therefore, most of these 

patients would already have established CRC tumors at the start of their treatment 
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[107]. Hence, the Miffl/fl;villincreERT2 mice would be a suitable model to investigate if 

MIF is essential for CRC maintenance and can serve as a suitable biomarker for 

treatment in the clinic. 

Furthermore, these mice provide the possibility of co-cultures between Mif-proficient 

and Mif-deficient colonic tumor organoids together with isolated peritoneal Mif-

proficient macrophages. These approaches enable the analysis of macrophage 

recruitment and activation dependent on the MIF status of the tumor cell. A few other 

groups have recently started using Miffl/fl mice to investigate effects of tissue-specific 

Mif-depletion on renal inflammation [249] or nonmelanoma skin cancer development 

[250]. Thus far, in vivo data from a mouse model for colorectal cancer remain elusive, 

which raises the need for further research. 

To better understand whether tumor cell-derived MIF plays a role in mediating 

tumorigenesis, we investigated the underlying molecular mechanism by which MIF 

contributes to angiogenesis and proliferation. Analysis of ERK and p38 activity in Mif-

deficient tumors revealed decreased phosphorylation of both MAPKs (Publication 
Figure 4F). Both factors are downstream of MIF’s cognate CD74 receptor and are 

involved in proliferation and angiogenesis [127, 134, 159], which is supported by 

decreased VEGF levels after Mif loss in vivo (Publication Figures 4C, F, G; Figure 
5). Concomitantly, in human CRC cells (HCT116, RKO), the regulation of ERK activity 

and downstream angiogenic genes were dependent on the presence of MIF and its 

cognate receptor CD74 (Publication Figures 5A-G). Accordingly, human patient 

correlation studies revealed that high levels of MIF in CRC cells along with high levels 

of CD74 correlated with reduced overall survival of patients compared to high MIF 

levels alone (Publication Figures 5H, I). In contrast, presence of CD74 in the absence 

of high MIF levels (MIFlow) did not impact patient survival (Publication Figure 5J). 

Taken together, these findings suggest that MIF acts on angiogenesis and proliferation 

in a CD74-dependent manner in CRC. Research from other groups confirm the 

importance of MIF and CD74 interaction in tumor progression throughout different 

cancer origins [157, 251, 252].  

In sum, we found that HSP90-stabilized Mif in established colorectal cancer cells acts 

in a CD74-dependent manner, contributing to angiogenesis via regulation of MAPKs 

ERK and p38.  
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4.1.2 MIF contributes to overall inflammation, but only during tumor initiation – 

a CD74-independent mechanism? 

We next aimed to investigate, whether MIF is already important for tumor initiation 

(‘recovery’). Interestingly, angiogenic and proliferative factors, which were regulated in 

a CD74-dependent manner in established tumors (section 4.1.1) remained 

unchanged in Mif-/- mice during tumor initiation (Publication Figures S3G-K) which 

hints towards CD74-independent mechanisms of MIF. Indeed, the complexity of MIF 

receptors is evolving, since CD74/CD44 and non-cognate receptors (CXCR2, CXCR4, 

CXCR7) can signal individually, but have also been reported to form heterodimers 

[124, 128, 130, 159] (section 2.2.2 and 2.2.3).  

Following DSS administration, massive tissue damage was observed in all animals of 

the recovery group; this effect was even more pronounced in Mif-proficient than Mif-

deficient mice (Publication Figure 3B). We hypothesized that MIF loss might result in 

better recovery of the tissue due to decreased inflammatory processes, which led us 

to investigate some major players of the inflammatory pool. A variety of different 

hematopoietic cells such as neutrophils, macrophages and T-cells are essential drivers 

of a rapid wound healing response [253]. Neutrophils (MPO+) are the main immune 

cell population in human blood protecting the host from various infections [245, 254]. 

Bacterial infiltration into the tissue (e.g., by DSS administration, section 2.2.1), causes 

massive infiltration of neutrophils into the damaged area [245]. However, the exact role 

of neutrophils has been controversially discussed and is highly context dependent 

[254]. Besides their role in promoting tissue recovery, neutrophils act against the 

infiltrated microbiome by secreting proteases and reactive oxygen species (ROS) 

which might also contribute to further damage of host tissue and might result in delayed 

regeneration [245, 255]. T-Lymphocytes (CD3+) are known to be potentially harmful 

for tissue recovery [256]. They secrete pro-inflammatory cytokines such as TNF𝛼 , 

which can trigger inflammatory responses and decrease tissue regeneration [256, 

257]. Regulatory T-cells (FoxP3+) are also important drivers of inflammation and tissue 

repair by modulating the infiltration of other immune cells such as neutrophils and T-

lymphocytes [256]. Last but not least, macrophages have also been shown to play an 

important role in tissue repair and regeneration by secreting chemokines and matrix 

metalloproteinases [253].  
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Indeed, we found overall inflammation to be downregulated in Mif-deficient mice during 

tumor initiation (Publication Figures 3C, D and S2A-C). Importantly, T-cell and 

neutrophil recruitment were altered upon Mif loss, while recruitment of CD68 positive 

monocytes/macrophages remained unchanged (Publication Figures 3C and S2A). 

As it has been reported that Mif and CD74 deficient murine macrophages display 

diminished chemotaxis [237], it was interesting to see that Mif loss did not alter 

macrophage recruitment during tumor initiation. In contrast, neutrophils which have so 

far been reported in the literature to be CD74 negative [133, 258, 259] showed 

diminished infiltration in the absence of Mif. 

These data further suggest that CD74-independent mechanisms could be involved in 

the recruitment of immune cells during tumor initiation. Notably, the MIF-mediated 

recruitment of T-cells and neutrophils have been reported to occur mainly via CXCR2 

and CXCR4 [124, 128, 161, 162, 243]. These results hint towards the binding of MIF 

to these receptors, to drive overall inflammation during tumor initiation. In accordance, 

Farr et al. reported that CD74 loss in vivo results in increased inflammation-induced 

tissue damage, caused by decreased tissue recovery [260]. One reasonable 

explanation for this observation could be the shift of MIF towards interaction with its 

non-cognate receptors CXCR2 and CXCR4 [128, 243, 260]. Consequently, due to the 

co-regulation of receptors and the possible shift of ligands/receptor binding, knockout 

or overexpression experiments in this context might not be ideal. Though out of scope 

of our current study, it would be of importance to understand the dynamics of these 

MIF receptors to further understand the role of MIF during CRC initiation. 

Taken together we deduce that the reduction of tumor burden in Mif-/- mice might be a 

combination of: (I) decreased inflammation and better recovery during tumor initiation 

and (II) diminished proliferation and angiogenesis in established tumors.  

 

4.1.3 HSP90-stabilized Mif contributes to tumor cell survival 

Next, we aimed to investigate how Mif levels are elevated in colorectal cancer cells 

and whether it can serve as a drug target in CRC. In established tumors, MIF levels 

were upregulated at mRNA level (approx. 2.5-fold in mouse and human samples; 

Publication Figures 2A, F and S1A, C), which could be due to increased activation 

of its transcription factor HIF1𝛼 [155, 261] (Figure 5). However, using immunoblot 



DISCUSSION 

  106 

analysis, we found that MIF was even more strongly upregulated on protein levels (up 

to 5.1-fold in mouse and up to 8.5-fold in human samples; Publication Figures 2B, E 
and S1B). We previously showed that this protein elevation is due to increased 

stabilization of Mif through the HSP90 chaperone machinery in a mouse model for 

breast cancer [57, 76]. In our current study, we confirm elevation of Mif in CRC cells to 

be driven by stabilization via HSP90 (Publication Figures 6 and 7), thus raising the 

question:  

Is MIF also a targetable, cancer-relevant HSP90 client in colorectal cancer? 

To answer this question, mice were treated with the HSP90 inhibitor 17AAG to assess 

tumor burden. Interestingly, reduction of tumor growth was more pronounced in Mif-

proficient than Mif-deficient mice (Publication Figures 6B-E), suggesting MIF as an 

important HSP90 client in CRC. In line with these results, Mif-depleted colonic tumor 

organoids were less susceptible towards HSP90 inhibitor treatment (17AAG) than Mif-

proficient tumor organoids (Publication Figures 6G-I). Furthermore, we used 

matched pairs of colonic organoids (normal and tumor material derived from the same 

mouse), allowing us to investigate tumor-specificity and toxicities of HSP90 inhibitors 

ex vivo. Importantly, tumor-derived organoids, containing stabilized Mif, showed 

increased death after HSP90 inhibitor treatment compared to matched pairs of normal 

epithelial-derived organoids, containing unstabilized Mif (Publication Figures 7A-D). 

Even though immunoblot analysis reveals degraded Mif in both normal- and tumor-

derived organoids, only degradation of tumor-derived, stabilized Mif resulted in 

increased organoid death. Again, these results confirm tumor promoting functions of 

MIF due to epithelial-specific stabilization through the HSP90 chaperone machinery.  

Taken together, we propose that the combination of novel HSP90 inhibitors (reducing 

HSF1 response, section 2.1.3) together with anti-MIF agents might provide a possible 

way to selectively target tumor cells and increase anti-tumor effects. Furthermore, the 

combination treatments could provide a mechanism to bypass cancer resistance [19, 

80].  

In that respect, inhibition of MIF function can be achieved by using small molecules or 

antibodies against MIF itself or its cognate receptor CD74 [159, 175]. Small molecules 

against the tautomerase domain of MIF like ISO-1 have been extensively studied in 

preclinical trials for different cancers [175, 262, 263]. However, clinical trials were 

mostly conducted using antibodies against MIF or its cognate receptor CD74 [175]. 
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Early phase clinical trials using BAX69 (Imalumab, anti-MIF) or Milatuzumab (hLL1, 

anti-CD74) showed low toxicity; however, efficacy needs to be further assessed [175, 

264, 265]. BAX69 is an antibody particularly raised against oxidized MIF (oxMIF) which 

has been studied in clinical and preclinical cancer trials thus far [175, 265, 266]. To 

date, very little is known about the redox-dependent isoform of MIF and its biological 

properties and more research is needed in this field [267]. However, it has been 

reported that oxMIF might be the disease related isoform which has been shown to be 

upregulated in tumor cells of CRC patients [265, 266]. Thiele et al. proposed that 

oxidation of MIF results in a conformational change of the protein [268]. Based on 

these data, it could be speculated that the conformational change of MIF due its 

oxidation increases its dependency on HSP90 superchaperone binding, resulting in 

stabilization of MIF in colorectal cancer cells. As most other studies in this research 

area, we did not distinguish between reduced and oxidized MIF. Consequently, it would 

be of interest to differentiate the two and to find out if oxMIF is the isoform that is more 

dependent on the HSP90 superchaperone support.  

More recently, the use of nanobodies against MIF has been investigated in the context 

of endotoxic shock [175, 269]. Nanobodies are camelid-derived single-domain antigen-

binding antibody fragments [269, 270]. Compared to conventional monoclonal 

antibodies, nanobodies have been shown to have better solubility and tissue 

penetration, as well as lower immunogenicity [269]. Hence, the use of nanobodies 

might also be of interest for targeting oxidized MIF in preclinical and potential clinical 

studies in order to increase the efficacy of anti-MIF therapy in colorectal cancer.  

In conclusion, post-translational modifications such as oxidation of MIF might provide 

an explanation for the functional switch of MIF from a pro-inflammatory cytokine during 

tumor initiation, to a tumor promoting protein in established tumors. 

Our study confirms that MIF can serve as a biomarker in colorectal cancer. Due to the 

lack of successful clinical studies so far, a combination of different cancer treatments 

might be of interest [265]. We hypothesize that the combination of HSP90 inhibitors 

and anti-MIF or anti-CD74 therapies could provide a novel approach to target 

colorectal cancer cells in individual patients. Of note, we have previously shown that 

mutp53R248Q/W is also a cancer relevant HSP90 client, driving tumor growth and 

invasion in CRC [56]. Hence, in those tumors harboring the stabilized mutp53R248Q/W 

variant HSP90 inhibition would concomitantly result in a degradation of MIF and 
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mutp53R248Q/W. This effect might be a promising basis for novel treatment strategies, 

using biomarkes in order to increase the efficacy of cancer therapy.  

 

4.2 MUTP53R248Q/W PROMOTES MIGRATION IN CRC AND PDAC 

Since decades, researchers from all over the world have been trying to investigate the 

role of the tumor suppressor p53 in cancer. As ‘guardian of the genome’, p53 is 

mutated in a majority of cancers providing a selection advantage for cells [188, 190, 

201, 221]. Over time it became evident, that different mutants of p53 must be 

considered as individual proteins, harboring different functions [204, 213]. The exact 

biological function of mutp53 variants is dependent on the mutation itself as well as 

newly arising complex interactions with other proteins [204, 210, 224] (section 2.3.3). 

In a previous study in colorectal cancer, we showed that the interaction of 

mutp53R248Q/W with pSTAT3 drives proliferation and invasion of cancer cells [56] 

(section 2.3.4). Based on these results, we proceeded to investigate the impact of 

mutp53R248W in PDAC. A panel of different PDAC cell lines revealed high levels of 

stabilized mutp53R248W in MIA-PACA-2, mutp53C176S in PA-TU-8902 and mutp53R282W 

in PA-TU-8988T cells (Manuscript Figure 1A, B). Treatment of PDAC cells with 

second generation HSP90 inhibitors Ganetespib and Onalespib resulted in reduced 

mutp53 levels in all cell lines except BXPC-3 cells harboring mutp53Y220C (Manuscript 
Figure 2A). In PANC-1, MIA-PACA-2, PA-TU-8902 and PA-TU-8988T cells, HSP90 

inhibitor treatment resulted in reduced cell confluency (Manuscript Figure 2B). These 

data reveal that all mutants except Y220C are targetable using HSP90 inhibitors.   

As we have previously shown that stabilized mutp53 variants bind to pSTAT3 in 

colorectal cancer cells [56], we aimed to investigate if this also occurred in PDAC. 

Therefore, we performed co-immunoprecipitations in different PDAC cell lines. 

Strongest interaction was observed between mutp53 and pSTAT3 in MIA-PACA-2 and 

PA-TU-8988T cells (Manuscript Figure 4B-D). Of note, the interaction of mutp53 and 

pSTAT3 was independent of the levels of pSTAT3; even upon pSTAT3 induction in 

MIA-PACA-2, PANC-1 and BXPC-3 cells, strongest interaction was only observed 

between mutp53R248W (MIA-PACA-2 cells) and pSTAT3 (Manuscript Figure 4H). This 

confirmed our results in CRC, indicating that specific variants of stabilized mutp53 

predict new complex formations to drive tumorigenesis. 
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In CRC, mutp53R248Q/W – pSTAT3 complexes drive migration and invasion [56]. To 

evaluate if p53 mutants also acquire such new and specific functions in PDAC, we 

depleted single p53 mutants in different PDAC cells. Importantly, a depletion of mutp53 

only diminished migration in MIA-PACA-2 cells harboring mutp53R248W (Manuscript 
Figure 3A, F). It as to why the PA-TU-8988T cells, which showed a strong binding 

between p53R282W and pSTAT3 failed to have a GOF on migration remains speculative. 

Possible explanations will be discussed in the following sections in more detail.  

Furthermore, an ablation of mutp53 only resulted in reduced pSTAT3 levels in MIA-

PACA-2 cells but not in any other tested cell lines (Manuscript Figure 4E and S2B), 

suggesting that only the specific mutp53R248W regulates the activity of STAT3. 

Concomitantly, the absence of pSTAT3 reduced migration of MIA-PACA-2 cells but 

not PA-TU-8988T or PANC-1 cells (Manuscript Figure 5A-D). Finally, clinical data 

revealed that R248 missense mutations of p53 decrease overall patient survival 

compared to other p53 mutations (Manuscript Figure 5E). In sum, these data suggest 

that mutp53R248W drives migration of PDAC cells via its complex formation with pSTAT3 

in a similar manner to that observed in CRC [56] (Figure 10).  

 
Figure 10: Migratory potential of PDAC cells depends on mutp53 R248W and pSTAT3 
complex formation.  In PDAC cells mutp53R248W is stabilized by the HSP90 superchaperone 

complex. Depletion of mutp53R248W reduces pSTAT3 levels and results in decreased migration of PDAC 

cells. Ablation of STAT3 only diminishes migration of mutp53R248W harboring cells.  
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4.2.1 Distinct complex formation of mutp53 variants 

The current study confirms the importance of mutp53R248W – pSTAT3 complex 

formation on migration in PDAC and the regulatory impact of mutp53R248W on STAT3 

activity, which was already observed in colorectal cancer in vivo and in vitro [56]. To 

date, the only existing PDAC cell line harboring the R248 mutation of p53 is the MIA-

PACA-2 cell line. Options to overcome this issue would be:  

(I) Altering the endogenous alleles using targeted homologous recombination (e.g., 

CRISPR/Cas9) to generate R248W mutations in other cell lines. This approach 

enables the study of proteins under normal regulatory control elements [271, 

272].  
 

(II) Generation of isogenic cell lines, by altering the endogenous alleles using 

homologous recombination. Analyzing different mutation in one genetic cell 

background helps to exclude effects from other cell-specific mutations and 

alterations [272, 273].  

 

In colorectal cancer, Sur et al. made use of this approach to study the physiological 

function of mutp53R248W independent of plasmid overexpression induced effects [271]. 

Furthermore, CRISPR/Cas9 technology helps to maintain the gene copy number [273], 

which might be of tremendous importance in the case of stabilized proteins. Because 

of that, we propose the use of CRISPR/Cas9 or other approaches using homologous 

recombination technology in isogenic cell line models to better understand the impact 

of different single nucleotide polymorphisms on the function of the protein under 

isogenic conditions. 

 

Although our current study shows that the specific variant mutp53R248W regulates 

pSTAT3 in PDAC, further research is needed to investigate the underlying mechanism. 

One possible explanation for increased pSTAT3 levels in the presence of mutp53R248W 

could be the displacement of the phosphatase SHP2, as observed in CRC [56]. 

However, we cannot exclude that other phosphatases known to regulate STAT3 

activity might also be involved [274]. 

As displayed in section 2.3.3, mutp53 has been described to exert its gain of 

tumorigenic functions via interaction with other proteins such as the transcription factor 
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pSTAT3 [56, 210] (Figure 6). However, the exact underlying mechanism and the 

interacting proteins are highly dependent on the cellular context [204, 210]. 

Stabilization of mutp53 through the HSP90 complex is a prerequisite for GOF in cancer 

cells [56, 221, 222] (Figure 3). The presence of certain co-chaperones or post-

translational modifications of the HSP90 chaperone complex are known to define its 

interaction with client proteins [23, 75]. Therefore, different co-chaperones and 

modifications of the HSP90 superchaperone complex might also have an impact on 

interaction partners of mutp53 [210]. In the current study, we did not elaborate on any 

further interaction partners of mutp53R248W in PDAC. Given that many proteins have 

been described to interact with different mutants of p53 [204, 210, 224, 233], we cannot 

exclude that other proteins might also be part of the complex (hetero TF complex 

formation), leading to mutp53R248W-dependent migration in PDAC. This finding is 

further supported by the fact that STAT3 is reported to form hetero transcription factor 

(TF) complexes with other proteins such as other STAT isoforms [275], NF-𝜅B [276] 

or NFATc1 [277] in cancer. 

Based on our current study, we cannot state whether mutp53R248W binds to pSTAT3 

homodimers or hetero TF complexes [277] and/or whether this interaction supports the 

recruitment of additional co-factors that drive the transcriptional program [278]. 

However, the formation of hetero TF complexes might provide an explanation for 

binding of mutp53 to pSTAT3 in various PDAC cells (Manuscript Figures 4B-D), 

without regulating migration (Manuscript Figure 3A-H). One such example is the PA-

TU-8988T cell line, which showed strong binding of mutp53R282W to pSTAT3 

(Manuscript Figure 4D). However, reduced phosphorylation levels upon mutp53 

ablation and diminished migration were not observed (Manuscript Figures 3C, H and 
4E). STAT3 is known to be involved in many of the hallmarks of cancer, such as 

angiogenesis, proliferation and inflammation to promote tumor progression [279, 280]. 

To date, very little is known about the exact interaction partners of mutp53R282W. These 

results again suggest that mutp53R282W might be part of a hetero TF complex, together 

with other proteins and transcription factors, resulting in a gain-of-function other than 

migration.  

Further examples for hetero TF complexes have been proposed for mutp53R273H and 

mutp53R175H. Cooks et al. have previously reported that mutp53R273H in PANC-1 cells 

supports activation of NF-𝜅B to promote inflammation-associated cancer progression 
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[281]. The authors hypothesize that this effect could be due to a direct protein-protein 

interaction as observed for other mutp53 variants [281]. In this context, mutp53R175H 

and the corresponding murine mutp53R172H were also reported to enhance NF-𝜅B 

activity [282, 283]. Murine mutp53R172H was shown to physically interact with NF-𝜅B 

p65 [283] and both homologs were found to colocalize with the transcription factor on 

some of its promotor sites, regulating the transcriptional outcome [283, 284]. 

Interestingly, besides strong interaction of mutp53 to pSTAT3 in MIA-PACA-2 cells, we 

found low binding in PANC-1, BXPC-3 and CAPAN-1 cells (Manuscript Figures 4B, 
C). One explanation for the minor co-precipitation of pSTAT3 in PANC-1 could be the 

formation of hetero TF complexes between mutp53R273H and NF-𝜅B together with 

pSTAT3; this might be triggering inflammatory processes instead of migration in PDAC 

cells. Nevertheless, since levels of phosphorylated STAT3 were not affected after 

mutp53 ablation in PANC-1 cells, binding of mutp53R273H to pSTAT3 might not result 

in a direct displacement of phosphatases to regulate STAT3 activity (Manuscript 
Figure S2B).  

To exploit the exact gain-of-function mechanism of the different mutp53 variants, 

intensive research is required. Binding of mutp53 to pSTAT3 does not necessarily 

result in a gain-of-function on migration. It is more likely that the exact composition of 

the complex and the participation of other proteins and transcription factors might 

define which tumorigenic function is gained. Because of this vast complexity and 

heterogeneity, it is important to further investigate the underlying mechanism of each 

p53 mutant in a context-specific manner.  

  

4.2.2 Stabilized mutp53 as potential therapeutic target 

Since TP53 is mutated in the majority of cancers, resulting in its accumulation 

especially in cancer cells compared to normal cells [285], several efforts have been 

made in different cancer entities to specifically target mutp53 in tumor cells e.g. via 

HSP90 inhibition [56, 85, 226].  

To investigate whether mutp53 is also a potential drug target in PDAC, we treated 

different PDAC cells with the two HSP90 inhibitors Gantespib and Onalespib. 

Interestingly, HSP90 inhibition results in destabilization of the mutp53 protein in all 

analyzed PDAC cells except BXPC-3 cells (Manuscript Figure 2A). However, the 
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positive control AKT also failed to be degraded upon inhibitor treatment in BXPC-3 

cells. These data suggest a resistance mechanism towards HSP90 inhibition. As 

previously shown in CRC, that resistance towards Ganetespib correlates with the 

expression of UDP glucuronosyltransferase 1A (UGT1A) [286]. UGT1A belongs to a 

superfamily of proteins involved in the biotransformation and excretion of various 

compounds and proteins [286, 287]. An overexpression of UGT1A in BXPC-3 cells 

could provide an explanation for the resistance towards both HSP90 inhibitors.  

As in our current PDAC study, many other studies have also shown that different 

mutp53 proteins are stabilized by the HSP90 chaperone machinery, resulting in 

elevated mutp53 levels in cancer cells [56, 85, 214, 229, 288]. In addition, Parrales et 

al. showed that mutp53 can be targeted by interference with the mevalonate pathway, 

using the small molecule inhibitor Statin [289]. An intermediate of this pathway 

(mevalonate-5-phosphate) contributes to the inhibition of the ubiquitin ligase CHIP by 

promoting the interaction between HSP40 and mutp53 [289, 290]. Inhibition of this 

intermediate results in an increased CHIP-mediated degradation of mutp53 [289, 290]. 

Interestingly, one of the investigated cell lines in their study is the BXPC-3 cell line 

harboring the conformational mutant mutp53Y220C [290]. The fact that mutp53Y220C was 

not targetable using HSP90 inhibitors (Manuscript Figure 2A) could also be 

explained, by HSP90-independent stabilization via interaction with other co-

chaperones such as HSP40 [290]. Taken together these results highlight that the entire 

HSP machinery is essential for stabilization of mutp53 which is required for its gain-of-

function activities.  

It has been demonstrated that high levels of stabilized mutp53 are a prerequisite for 

the gain of new tumorigenic functions [221, 222]. However, some controversies exist 

in the literature concerning the exact mechanism that leads to elevated mutp53 levels. 

It is important to note that mutation-induced unstable conformations of some mutant 

p53 proteins such as R248Q, R273H, R175H, R282W and Y220C, might contribute to 

an aggregation of these mutants, either amongst themselves and/or with other proteins 

[217, 291, 292], independent of HSP90. Mutations-induced conformational changes of 

p53 can expose an aggregation-prone sequence within the hydrophopic core of DNA 

binding domain resulting in oligomerization [218]. These prion-like aggregates were 

shown to interact and thereby modulate the transcriptional activity of other proteins 

such as remaining WTp53 as well as p53-family members such as p63 and p73 and 
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[217, 219, 220, 293]. BXPC-3 cells display the Y220C mutation of p53, which was 

described to form oligomeric structures [291]. Therefore, further studies are needed to 

elucidate whether higher concentrations of the HSP90 inhibitors are able to induce 

degradation of mutp53 in these cells at all. Treatment with Statins to inhibit the 

mevalonate pathway could provide some evidence whether mutp53Y220C is stabilized 

in a HSP40-dependent manner in PDAC [290]. Altogether, this would help to 

understand if mutp53Y220C is a client of HSP90/HSP40 in pancreatic cancer cells or if 

moderately elevated levels of mutp53 in these cells are due to self-aggregation of the 

protein. Co-immunoprecipitation of mutp53Y220C and HSP90/HSP40 would help to 

further elucidate whether this mutant in BXPC-3 cells is a client of HSPs or not. 

In contrast, we confirmed mutp53R248W, mutp53R282W and mutp53R273H to be clients of 

the HSP90 chaperone machinery in PDAC (Manuscript Figure 2A). In fact, cancer 

cells might even have an equilibrium of HSP90-stabilized and aggregated proteins, 

resulting in the gain of new tumorigenic functions via interaction of mutp53 with other 

proteins to form complexes in general [217]. The exact mechanism might be highly 

dependent on the cellular and molecular context. Of note, small molecules, such as 

ReACp53 or PRIMA-1, targeting these prion-like heterogeneous aggregates of mutp53 

have been applied to preclinical and clinical trials [228, 291, 294]. This approach 

focuses on personalized drugs in order to change the conformation of different p53 

mutants, leading to their disaggregation or the restoration of wildtype p53 functions 

(reactivators) [228, 291].  

Further investigation of the transient and dynamic nature of these complexes is 

necessary to obtain a better understanding of the different mutp53 GOFs [291]. In the 

current study we provided first evidence that most of the p53 mutants (except Y220C) 

can serve as potential biomarkers for HSP90 inhibitor treatment. Given the plethora of 

HSP90 clients, simultaneous inhibition of cancer-relevant clients can help to overcome 

possible therapy induced resistance mechanisms by targeting more than one tumor 

driving mechanisms [19, 235].  

Apart from the strategies discussed above to target mutp53 itself (HSP90 inhibitors, 

Statins, p53 reactivators), it would also be possible to target mutp53 through targeting 

its interaction partners to disrupt hetero TF complexes. Hence, in the context of 

mutp53R248W, it would be of particular interest to target pSTAT3. In this context, our 

study revealed that siRNA-mediated knockdown or inhibition of STAT3 using Stattic, 



DISCUSSION 

  115 

resulted in diminished migration specifically in mutp53R248W harboring MIA-PACA-2 

cells (Manuscript Figure 5A, B, D). Additionally, MIA-PACA-2 cells were most 

susceptible towards Stattic treatment compared to other PDAC cells (Manuscript 
Figure 5C). However, Stattic was tested in several other preclinical trials, but is not 

considered a potent therapeutic candidate, due to diverse off-target effects and lacking 

efficacy in vivo [295-297]. In contrast BBI608 (Napabucasin), a small molecule shown 

to inhibit stemness pathways such as the STAT3 signaling pathway [298] has achieved 

orphan status by the FDA for treatment of gastric and pancreatic cancers [279, 299]. 

Unfortunately, phase III clinical trial for both cancers were discontinued due to futility 

[298, 300]. In contrast, mutp53R273H might form hetero TF complexes with NF-𝜅B and 

other cofactors such as pSTAT3 (Manuscript Figure 4B) causing a GOF on 

inflammation rather than migration [281]. In that case, a modulator of inflammatory 

pathways might be more relevant Interestingly, the triterpenoid bardoxolone methyl 

(RTA 402 or CDDO-Me) was found to inhibit both: STAT3 and NF-𝜅B pathways [301-

304]. First clinical evaluations for advanced solid tumors showed low toxicity and 

promising anti-tumor efficacy [303].  

Using inhibitors for the specific hetero TF complexes based on specific biomarkers 

might be an important step towards personalized medicine, helping to increase 

success rates of pancreatic cancer treatments. A combination of novel HSP90 

inhibitors (section 2.1.3) together with mutp53 variant-specific STAT3/NF-𝜅B 

inhibitors (BBI608, RTA 402) could provide a good treatment option to selectively 

target tumor cells and prevent acquisition of resistance [19, 235].  

 

4.2.3 Mutp53 and the PDAC tumor microenvironment 

In the past couple of years, it became more evident that mutp53 can influence the 

crosstalk between cancer cells and the components of the tumor microenvironment 

[305]. It is thought that the interaction of mutp53 variants with different transcription 

factors (e.g., NF-𝜅B, pSTAT3, see section 4.2.1) can trigger a pro-tumorigenic 

response of stromal cells either by specific secretion of soluble bioactive mediators 

(e.g. cytokines, angiogenic factors) or the transcription of proteins which are necessary 

for interaction between tumor and stromal cells [305-307]. In that way, mutp53 can 
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regulate the exact composition of the cancer secretome in order to acquire new 

tumorigenic functions and to promote tumor progression [305].  

PDAC is histologically characterized by a very high stromal content (approx. 90% of 

the tumor bulk), also contributing to the broad heterogeneity and plasticity of the 

disease as well as therapeutic resistance [178, 179]. Because of that, it is especially 

important for further studies to take the tumor microenvironment into consideration. A 

recent publication from Butera et al. investigated the impact of different mutp53 

proteins on the tumor secretome [308]. They found that mutp53R175H and mutp53R273H 

can alter the cancer secretome to promote anti-apoptotic and hyperproliferative 

responses as well as chemoresistance of PDAC cells [308]. Interestingly, closer 

analysis of the exact composition of secreted proteins revealed a vast interaction 

network with several proteins, including HSP90 [308]. This is in line with our study 

presenting mutp53R273H as a HSP90 client in PDAC (Manuscript Figure 2A). Taken 

together, HSP90-stabilized mutp53R273H in PDAC cells, might lead to the formation of 

hetero TF complexes with NF-𝜅B, pSTAT3 and potential other cofactors to promote 

inflammatory processes and to regulate the cancer secretome [281, 308]. Thus, 

mutp53R273H in PANC-1 cells might constitute a GOF on inflammation, apoptosis or 

chemoresistance instead of migration.  

Since PDAC is a cancer entity with high desmoplastic reaction, the interaction of the 

tumor microenvironment (predominantly cancer-associated fibroblasts, CAFs) and 

cancer cells has to be taken into account [309]. Models like patient-derived xenograft 

and 3D organoid co-cultures harboring different p53 mutations could allow a crosstalk 

between stromal and cancer cells, mimicking the broad tumor heterogeneity in human 

PDAC patients [309, 310]. In vivo studies and in vitro co-cultures with stromal 

compartments of the tumor microenvironment can help to clarify the impact of different 

mutants on the composition of the secretome, which might help to better understand 

this broad heterogeneity.  

In the context of tumor microenvironment, tumor associated macrophages have been 

extensively studied and are suggested to significantly contribute to tumor progression 

[170, 311]. Cooks et al. propose that mutp53 in colorectal cancer cells, promotes 

increased secretion of miR-1246 containing exosomes [311]. Uptake of these 

exosomes by macrophages results in a phenotypic shift towards M2 
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(immunosuppressive, tumor-promoting) contributing to the progression and metastasis 

of cancer [307, 311]. 

In sum, the current study investigates the role of different p53 mutants in PDAC, 

showing that different mutations are differentially stabilized and that only the HSP90-

stabilized R248W mutant has a GOF on migration. Again, these data further 

emphasize the necessity to investigate the role of mutp53 in a mutant variant and 

context-specific manner. Additionally, it highlights that different mutants of p53 can 

have different GOFs which might be due to different interaction partners and the 

formation of hetero TF complexes. However, intensive research is needed to fully 

understand the underlying GOF mechanism and the clinical potential in cancer entities 

with inadequate therapeutic approaches, such as PDAC.  

 

4.3 CONCLUSION 

In our studies, we aimed to investigated HSP90-stabilized proteins as therapeutic 

targets in cancer.  

We show that mutp53R248W is an important HSP90 client in pancreatic ductal 

adenocarcinoma driving migration via hijacking of pSTAT3 (Manuscript, section 3.2). 

Our data provide first evidence that the mutp53R248W variant is a cancer-relevant 

HSP90 client in PDAC and that its ablation reduces migration of cancer cells. However, 

further research is necessary to elaborate on the exact mechanism of action. Additional 

experimental models could be deployed, to better understand the complexity and the 

impact of stabilized mutp53 variants in cancer cells on the interaction with other 

compartments of the tumor bulk (e.g., cancer-associated fibroblasts or immune cells).  

Furthermore, our data highlight MIF as a cancer-relevant HSP90 client in colorectal 

cancer which can serve as target for cancer therapy (Publication, section 3.1). These 

data are in line with different studies suggesting MIF as a potential target in other 

models for intestinal cancer [111, 149] and other cancer entities [57, 112, 312]. So far, 

little is known about the exact mechanism leading to the stabilization of MIF through 

the HSP90 chaperone machinery. The oxidation of MIF might provide an explanation 

but needs to be further analyzed. Our findings, that MIF is dispensable for normal but 

not for cancer cells make it an interesting target for cancer therapy. In normal cells, 
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other pro-inflammatory cytokines might be able take over the function after MIF 

depletion. In contrast, tumor cells are addicted to tumorigenic function of HSP90-

stabilized MIF. Thus, the combination of novel HPS90 inhibitors and anti-MIF or anti-

CD74 treatments can provide an opportunity to better disrupt cancer cells.  

In this respect, it might also be of interest to investigate whether MIF can serve as 

potential target in PDAC. Two studies have proven that MIF promotes tumor 

aggressiveness, metastasis and invasion in PDAC [312, 313]. Thus, elevated MIF 

levels were also a predictor for worse prognosis for PDAC patients [312, 314]. 

Especially in a stromal dense cancer entity like PDAC [179], investigating the impact 

of MIF especially on the regulation and activation of macrophages and their 

contribution to tumor angiogenesis might be of interest. Therapeutically, it would be 

interesting to understand if MIF can serve as a cancer-relevant HSP90 client also in 

PDAC.  

To date, none of the tested HSP90 inhibitors have passed clinical validation and 

achieved FDA approval [14, 91]. Nevertheless, the vast plethora of clients and the 

specific higher affinity of inhibitors to tumoral Hsp90 make it a preferable target for 

cancer therapies [21, 68, 79]. Simultaneous inhibition of cancer-relevant HSP90 clients 

can also help to overcome resistance mechanism [19, 235]. To improve the clinical 

outcome of HSP90 inhibitors, it is important to investigate possible cancer-relevant 

HSP90 clients that could help to increase efficacy of these inhibitors. Additionally, a 

combination treatment of HSP90 inhibitors and compounds against specific 

biomarkers such as MIF, mutp53 or mutp53-specific hetero TF complexes could be of 

interest to improve the success of cancer therapy.  
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