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Preface

How can the concept of Rao–Blackwellization deal with misspecification
issues in statistical models?

This question links two apparently quite different areas of statistics.
The first, the so-called Rao–Blackwellization, concerns the concept of data
reduction to the sufficient information. It refers to the classical theory of
mathematical statistics and may rather appeal to theoretically minded
statisticians. The second, namely misspecification issues of statistical
models, is of practical concern and deals with building and justifying
statistical models for complex dependent data.

Statisticians with some background in classical statistical theory
might simply reply to the initially stated question as follows: Rao–
Blackwellizations are not affected by the model misspecification, since the
data reduction to sufficient information even has to be independent of the
parameter of interest. The question, however, aims at a different aspect.
Due to the misspecification, parameter values can be interpreted less
reliably. Hence, not every source of information, even within the so-called
minimal sufficient information, has a reasonable interpretation. In other
words, there is still some kind of data which does not help toward making
inference on the parameter. The present thesis addresses this issue and
consequently aims at a generalized Rao–Blackwellization concept through
regularizing an ill-posed inverse problem.

This thesis was written in the inspiring and motivating atmosphere of
the Institute for Mathematical Stochastics (IMS) at the University of Göt-
tingen. Many people have accompanied and supported me in writing this
thesis, either by sharing their knowledge, by providing useful feedback,
or by encouraging me when needed. I shall be more specific about this,
with apologies to those I neglect to mention explicitly.

To begin with, I would like to thank my first supervisor Prof. Dr. Do-
minic Schuhmacher for introducing me to the field of Gibbs point process
statistics. I am most grateful for the time and effort he spent in numerous
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discussions and also for many stimulating suggestions, comments, and
remarks. With his support I have been able to complete this thesis.

My thanks go also to my second supervisor Prof. Dr. Stephan Hucke-
mann for providing full and kind support for all of my intentions in this
PhD project.

I would like to express my gratitude to Prof. Dr. Lutz Mattner for
fruitful discussions, comments, and suggestions. I am very appreciative
of invaluable literature references about classical mathematical statistics
he gave me. Especially, he called my attention to the conference papers
of Schmetterer

.

(1977

.

, 1978

.

) which indicate an early attempt to benefit
from regularizing the ill-posed problem that is inherent in the theory
of unbiased estimation. I am very pleased about his commitment for
conducting the second review.

Furthermore, I am very grateful to Jun.-Prof. Dr. Daniel Rudolf for
his encouragement and kind support, in particular for useful feedback on
early drafts of different parts. All of this was frequently accompanied by
inspiring discussions on a broad range of topics, which I always enjoyed.

I also want to thank Prof. Dr. Thorsten Hohage and Prof. Dr. Frank
Werner for valuable conversations on the theory of regularization of ill-
posed problems and for helpful remarks and hints on the literature.

For the simulation study in the present thesis, I have greatly bene-
fited from unpublished R codes which were kindly provided by Prof. Dr.
Adrian Baddeley (implementation of the variational estimator, see also
Baddeley & Dereudre

.

(2013

.

)) and by Philipp Möller and Prof. Dr. Dominic
Schuhmacher (implementation of the maximum likelihood estimator).

I am indebted to Christian Böhm and Dr. Carsten Gottschlich for tack-
ling and solving technical difficulties immediately and in a very straight-
forward and uncomplicated way.

Many thanks go to all of my (former) colleagues from the IMS for
providing an encouraging, supporting, and friendly working place. In
particular, I would like to mention Dr. Merle Behr, Dr. Anne Hobert, Dr.
Claudia König, Dr. Fabian Kück, Raoul Müller, Viacheslav Natarovskii,
Ass.-Prof. Dr. Katharina Proksch, Dr. Robin Richter, Dr. Laura Fee
Schneider, Marco Seiler, Dr. Max Sommerfeld, Jun.-Prof. Dr. Björn
Sprungk, Dr. Carla Tameling, and Johannes Wieditz.

My absorption in the work on this thesis has also demanded much
patience and tolerance from my family. I owe them a very special thank
you for their faithful and consistent moral support.

Göttingen, October 2020 Henning Höllwarth
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Abstract

Parametric specifications of statistical models often fail to describe com-
plex dependent data precisely. Inference then cannot go beyond that
inaccuracy. Consequently, a statistical procedure that maps the observed
data to a statistical statement is required to be stable in the sense that
small errors in the parametric specification can be taken into account by
at most small changes of the statistical procedure.

The popular likelihood based statistical analysis of parametrized sta-
tistical models is, in fact, stable against such misspecifications (invariance
property of the maximum likelihood (ML) estimator). However, likeli-
hood approaches often suffer from an intractable normalizing constant.
ML estimates and likelihood based confidence sets are hence not known
explicitly and even numerically they are hard to compute, if at all.

Therefore, alternative estimation procedures arose, which are simple
to compute, however, less efficient. When complete sufficient information
is known, Rao–Blackwellizations of these estimators gain central impor-
tance. Apparently, however, neither their stability issues were studied
nor is it known how to compute Rao–Blackwellizations analytically or
numerically. The situation is therefore still quite unsatisfactory, especially
for statistical disciplines that deal with complex dependent data such as
point patterns.

The present thesis concerns Rao–Blackwellizations in misspecified
models. It is demonstrated that this elegant technique to improve es-
timators fails to be stable. To put it differently, it is shown that the
classical Rao–Blackwellization is an ill-posed inverse problem. Regu-
larizations are proposed and, consequently, the concept of regularized
Rao–Blackwellization is introduced. In classical examples, this leads
to new estimators and new interpretations of existing ones. For more
complex examples like several ones in Gibbs point processes statistics, reg-
ularized Rao–Blackwellizations can be computed at least approximately.
A simulation study where we consider the Lennard-Jones model demon-
strates the computational feasibility and the benefit from these results,
especially in constructing parametric bootstrap confidence regions on the
basis of the maximum likelihood estimator.





Introduction

Statistical analysis of complex dependent data meets the difficulty of build-
ing and dealing with an appropriate statistical model. An exponential
family, for example, may be a suitable modeling approach, which enables
a flexible and intuitive description of the principal components of the
underlying dependence structure. Remaining components in turn have
often to be neglected to keep things tractable or due to a lack of knowledge
of the dependence mechanism. Consequently, statistical analysis has then
to cope with model misspecification, even with slight ones.

To be more explicit, consider some parameter set Θ ⊂�k and recall
that an exponential family is a Θ-indexed family of distributions (Pϑ)ϑ∈Θ
that is dominated by a common σ-finite reference measure µ on a mea-
surable space (X,A). It is assumed that each Pϑ has a probability density
w. r. t. µ which is of the form

fϑ(x)∝ exp
(〈ϑ,S(x)〉) for x ∈X,

where S : (X,A) → (�k,B(�k)) is a statistic that summarizes the main
features in the raw data x ∈X.

Within this context, we then believe that Pϑ0 for some ϑ0 ∈Θ describes
the stochastic law that we are looking for, may be not exactly, but up to a
reasonable approximation in a certain sense. We additionally assume that
an approximation can be arbitrarily close to the stochastic law under in-
vestigation by increasing the amount of parameters, that is, by increasing
k. Furthermore, interpretations of Pϑ0 through ϑ0 require in some cases a
transformation of ϑ0, that is, one considers κ(ϑ0) ∈�l , where κ : Θ→�l

for some l ∈� is a known parameter function of interest.

The Problem
Given an observation x ∈X, we are looking for accurate statements about
the value of interest κ(ϑ0) which are also stable against misspecifications.

To make that clearer, note that a statement might be given, for exam-
ple, in terms of a point estimate κ̂(x) ∈ κ(Θ). For a precision statement
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as well, a (parameter) set estimate1

.

K̂1−α(x) ⊂ κ(Θ) might be of inter-
est, where K̂1−α is required to cover κ(ϑ0) under Pϑ0 with a preassigned
probability 1−α. We call κ̂ and K̂1−α estimator and (1−α)-confidence
region, respectively, and in general any function that maps the data to a
statistical statement about the parameter a (statistical) procedure.

Of course, we aim at extracting information about the stochastic mech-
anism behind the data x as much as possible. Regarding an estimator κ̂,
this means we want the distribution of κ̂ under Pϑ to be as close to δϑ
(for ϑ ∈Θ) as possible. For a confidence region K̂1−α, we correspondingly
require that the distribution of K̂1−α under Pϑ is as close to δ{ϑ} (for ϑ ∈Θ)
as possible. According to the assumed statistical model, information that
cannot be described by S does not help toward making inference on the
parameter. Hence, we at least look for σ(S)-measurable procedures.

Furthermore, the assumed statistical model usually does not account
for every source of dependence that underlies the data. The construction
method which yields the statistical procedures, such as estimators κ̂ or
confidence sets K̂1−α, should therefore be stable against such model mis-
specifications. In other words, small errors in the specification should then
be able to be accounted for by small changes of κ̂ and K̂1−α, respectively.

Statistical procedures based on the likelihood ϑ 7→ fϑ(x), especially
maximum likelihood estimation, often have this stability property and
can often be deemed an accurate procedure. However, the required nor-
malizing constant c(ϑ)−1 B

∫
exp

(〈ϑ,S(x)〉)µ(dx) for ϑ ∈Θ is in many cases
analytically and numerically intractable. This raises the following ques-
tions which are still of current research.
Questions How to compute maximum likelihood estimates efficiently
and how to construct confidence regions based on the likelihood? _

One may also consider the conditional expectation of some inefficient
estimator λ̂ given S under Pϑ, which is in fact independent of ϑ. This is
the so-called Rao–Blackwellization E(λ̂|S) that leads to the questions:
Questions How to compute the Rao–Blackwellization E(λ̂|S) at least
approximately and how can the concept of Rao–Blackwellization deal with
misspecifications? _

All of these questions finally aim at getting accurate and stable statis-
tical procedures. However, the first two seem to have been studied more
than the latter two.

Background and State of the Art
For more than forty years, the challenging obstacle of intractable like-
lihoods has proved to be quite stimulating for statistics. It led to so-

1Throughout this thesis we write A ⊂ B iff A is a subset of B, that is, x ∈ B for all
x ∈ A. We are less often faced with proper subsets which will be denoted by ( .
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phisticated tools for computing maximum likelihood estimates at least
approximately by Markov chain Monte Carlo approaches (see Penttinen

.

,
1984

.

; Geyer & Thompson

.

, 1992

.

). Additionally, several computationally
efficient alternative estimation methods were developed, analyzed, and
discussed, for example, composite likelihood (Besag

.

, 1974

.

, 1975

.

; Lindsay

.

,
1988

.

) and variational estimation procedures (Almeida & Gidas

.

, 1993

.

). All
of this was motivated by a broad range of modern statistical problems.
With regard to Varin et al.

.

(2011

.

), Larribe & Fearnhead

.

(2011

.

), Almeida
& Gidas

.

(1993

.

), and the references therein, image analysis, statistical ge-
netics, and speech recognition may be mentioned as notable applications
that gave rise to these developments due to their complex data structures.

Regarding the present thesis, specific attention is paid to Gibbs point
process statistics. This well-established subject made in fact extensive
use of the above-mentioned developments. Composite likelihood, includ-
ing pseudo-likelihood, and variational methods were proposed and an-
alyzed with respect to their asymptotic properties and their computa-
tional efficient implementation, see for example Ripley

.

(1988

.

); Møller &
Waagepetersen

.

(2004

.

); Coeurjolly & Rubak

.

(2013

.

); Baddeley et al.

.

(2014

.

)
and Baddeley & Dereudre

.

(2013

.

); Coeurjolly & Møller

.

(2014

.

). In contrast,
not much is known about the MLE regarding asymptotic normality. Strong
consistency of the MLE was shown only recently by Dereudre & Lavancier

.

(2017

.

). However, based on simulation studies (see for example Diggle
et al.

.

, 1994

.

; Baddeley & Dereudre

.

, 2013

.

) and due to asymptotic results
of Mase

.

(1992

.

) for the ML estimation in a restrictive class of Gibbs point
processes (see also the argumentation in Dereudre & Lavancier

.

(2017

.

)),
there is the common belief that the MLE is, at least asymptotically, more
efficient than its surrogates.

Non-asymptotic, that is, fixed sample size results were developed
within the theory of unbiased estimating functions. A pioneering pa-
per is Godambe

.

(1960

.

), where it is proved that under some regularity
properties the MLE can be derived from an optimal unbiased estimat-
ing function, the so-called score, where optimality refers to an intuitive
efficiency criterion. Due to the intractabilities of the score, one then
looks for optimal estimating functions in a certain subclass (see also
e. g. Heyde

.

, 1997

.

). Small & McLeish

.

(1988

.

) extended notions like suffi-
ciency, ancillarity, and completeness to estimating functions and proved a
corresponding Rao–Blackwell–Lehmann–Scheffé theorem regarding an
efficiency criterion which is closely related to that of Godambe, see also
Small & McLeish

.

(1994

.

). With respect to point process statistics, we
may mention Guan et al.

.

(2015

.

), who proposed optimal estimating func-
tions within a certain class. Concerning specifically Gibbs point process
models, Coeurjolly et al.

.

(2016

.

) proposed at least a “semi-optimal” choice
within the class of so-called Takacs–Fiksel estimating functions. This
can lead to a more efficient estimating procedure than the well-known
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maximum pseudo-likelihood method (e. g. Møller & Waagepetersen

.

, 2004

.

).
However, Coeurjolly et al.

.

(2016

.

) finally concluded that their approach is
computationally demanding and that further improvements are required.

The above-mentioned stability aspect especially with regard to model
misspecification appears to be hardly studied. While this may in fact be
less relevant for the maximum likelihood estimator, it becomes of more
relevance if we deal with Rao–Blackwellizations of alternative estimation
methods.

Main Contributions of the Present Thesis
The main contributions of the present thesis belong to non-asymptotic
statistics with applications particularly to exponential families.

First, a new generalized concept of Rao–Blackwellization is provided
through regularization techniques. This is preceded by an appropriate
introduction of the Rao–Blackwell projection and the demonstration that
this projection yields the best approximation to the initial estimator
w. r. t. “ancillary information” (Proposition 1.34

.

, page 25

.

). To examine the
amount of ancillarity (of first order), topological and metrical structures
are introduced and analyzed which then lead to an inverse problem that is
usually ill-posed (see Chapter 3

.

). We introduce the concept of regularized
Rao–Blackwellization (see Chapter 4

.

) and, consequently, propose a cor-
responding regularized version of the Rao–Blackwell–Lehmann–Scheffé
theorem (see Theorem 4.12

.

, page 86

.

). Furthermore, we get new estima-
tors and also new interpretations of already existing estimators (see for
example Example 4.5

.

, page 74

.

or Example 4.8

.

, page 81

.

).
Second, a new method for computing an approximate distribution of

the MLE under Pϑ0 is given that is closely related to the regularized
Rao–Blackwellization idea (see Proposition 4.20

.

, page 95

.

). The method
is straightforward to implement using standard software that fits linear
models. It is also computationally much faster than simulating from the
distribution of the MLE (see also Algorithm 4.21

.

). Furthermore, we use
our method to propose heuristic construction procedures of confidence
regions. Finally, the performance of these results will be demonstrated
by simulation studies considering specifically the situation of Gibbs point
process statistics (see Part III

.

, Chapter 7

.

, page 157

.

ff.).
The main contributions are presented in more detail in the introduc-

tion to Part II

.

on page 43

.

ff.

Spatial Distribution of Envelope Spike Proteins
What are the above-mentioned results good for? In order to give an
illustrative answer, we take a brief look at an application. Specifically,
under the current prevalent of the SARS-CoV-2 pandemic, we consider
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some questions in virology, concerning the spatial distribution of so-called
envelope spike proteins (see e. g. Zhu et al.

.

(2006

.

) and Klein & Bjorkman

.

(2010

.

)). Since the present illustration is intended for the mathematical
community, the biological viewpoint is simplified to a minimum. For
details references are provided.

First, it should be noted that many viruses are enveloped, for example,
Corona-, Herpes-, human immunodeficiency (HI), influenza, and also
simian immunodeficiency (SI) viruses, to mention just a few. The envelope
consists of a membrane where so-called spike proteins are embedded and
which enclose the viral genome (see Figure A

.

for a simplified scheme, see
for example Mateu

.

(2013

.

) for detailed descriptions).
Second, since these envelope spike spike protein

genome

membrane

Figure A: Schematic profile of an en-
veloped virus. The regular arrangement
of the spike proteins is oversimplified.

proteins may have several functions
with regard to the infection of host
cells, they constitute a central object
of study for understanding the be-
havior of a virus and, consequently,
for developing vaccines. Zhu et al.

.

(2006

.

, page 847 f.) studied the distri-
bution of envelope spikes of HI and
SI viruses and concluded that “[enve-
lope] spikes are not free to diffuse in the plane of the membrane” and,
apparently, are not arranged through “a geometrically arrayed set of ma-
trix pores”. Furthermore, Klein & Bjorkman

.

(2010

.

, page 1) argued that
the spatial distribution of the envelope spike proteins is one strategy of

Figure B: Realization of
spikes distributed accord-
ing to a homogeneous Pois-
son point process on a unit
sphere with intensity pa-
rameter β = 130. (Com-
plete spatial randomness)

Figure C: Realization
of spikes distributed ac-
cording to a Strauss point
process on a unit sphere
with interaction range R =
0.25, interaction parame-
ter γ = 0.05 and intensity
parameter β = 5000. (Re-
pulsion between spikes)

Figure D: Realization of
spikes distributed accord-
ing to a (12,6)-Lennard-
Jones point process on a
unit sphere with inten-
sity parameter β = 100
and interaction parame-
ters σ = 0.25 and ε = 10.
(Repulsion and attraction
between spikes)
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the HI virus to evade antibodies successfully. Through mutations, the HI
virus can adapt and change the spatial distribution of spike proteins to
make use of “an inherent limitation [of] the architecture of an antibody.”

These observations and hypotheses raise several statistical issues.
What are suitable statistical models for different kinds of viruses? How
to fit these models to the data, that is, how to estimate such statistical
models and how to evaluate the precision of these estimates? Also, how to
decide if differences in observations of viruses are significant regarding
their spatial arrangement of proteins?

Zhu et al.

.

(2006

.

) proposed a first, quite elementary statistical model
for a certain HI and SI virus. However, since some summary statistics
of synthetic data from the fitted model differ from those of the observed
data, the proposed model seems to be overly simplistic.

The next step is, therefore, to consider more flexible statistical models
for enveloped viruses. Various Gibbs point process models on the sphere
meet this requirement. For illustrations, Figures B

.

, C

.

, and D

.

show
realizations of spike arrangements according to a Poisson, a Strauss, and
a Lennard-Jones point process on the unit sphere, respectively (see also
Chapter 6

.

). Statistical inference within such models can be done by the
proposed methods in this thesis.

Organization of the Present Thesis
This thesis is divided into three parts. The first part reviews fundamental
notions of mathematical statistics, in particular concepts such as suf-
ficiency, ancillarity, and completeness. Essential results are provided
– some of them seem to be unknown in the literature – which prepare
the subsequent Part II

.

. The latter contains the main contributions of
this thesis about the study of the Rao–Blackwellization as an ill-posed
inverse problem. Standard examples from classical statistics accompany
the presentation in this part, while some of the methods are separately
examined for Gibbs point process statistics in Part III

.

. This last part
begins with a fundamental account on point process theory emphasizing
some peculiarities. After some theory on Gibbs point processes, three
established estimation methods for Gibbs point process models are pre-
sented with some regard to measurability aspects. This part concludes
with a simulation study that illustrates the proposed methods.

More details, especially about the minor and major contributions of
this thesis are given in separate introductions to Part I

.

, II

.

, and III

.

.



PART I
General Statistics

This part provides the required mathematical account on statistics and
some preliminaries that seems to be unknown in the literature. Starting
with a brief decision theoretical introduction, we proceed with the princi-
ple notions of sufficiency, ancillarity, and completeness. We demonstrate
a close relationship to one of the central objects of this thesis, the Rao–
Blackwell projection (see page 16

.

ff.). To study and to benefit from the
interaction of statistical and topological-algebraic structures, we propose a
functional analytic treatment (see Theorem 1.27

.

, see also Proposition 1.29

.

,
1.30

.

, and Corollary 1.31

.

) which seems to be unknown in the literature
and leads in particular to the following statement: the Rao–Blackwell
projection yields the best approximation w. r. t. “first-order ancillarity in-
formation” (see Proposition 1.34

.

, page 25

.

), an observation which will serve
as a starting point for the main contributions of this thesis in Part II

.

.1

.

The first chapter is then concluded with a review of basic properties of
exponential families, which constitute a rich class of statistical models
that is popular in theory and practice and to which the findings of the
present thesis can be applied.

Two fundamental decision rules will be of greater interest in this
thesis, namely, estimation and confidence procedures. A closer look at
estimators, which are often introduced implicitly through estimating
equations, is taken in Chapter 2

.

. We introduce the notion of a stable
estimator construction principle. Confidence regions that are constructed
based on the distribution of estimators are considered later (see Section
7.4

.

in Part III

.

.)
The rather technical style is tailored to what we require in the main

contribution. Apart from Section 1.2

.

where larger parts cannot be found
in the literature, the style and the chosen content are mainly guided by
Barra

.

(1981

.

), Torgersen

.

(1991

.

), Small & McLeish

.

(1994

.

), Heyde

.

(1997

.

),

1In Part II

.

we especially introduce norms that measure the “first-order ancillarity
information”. Consequently, Proposition 1.34

.

will then be generalized according to these
distances, see Theorem 4.1

.

, page 70

.

.



2 GENERAL STATISTICS I

Song

.

(2007

.

), Godambe & Heyde

.

(2010

.

), and Gaetan & Guyon

.

(2010

.

).
For some aspects concerning well-known classical statistics, we refer to
books like Witting

.

(1985

.

), Strasser

.

(1985

.

), Pfanzagl

.

(1994

.

), or Lehmann
& Casella

.

(1998

.

).
Basically, proofs are given whenever they contribute to a comprehen-

sive presentation or if there is no easy reference. Otherwise, we frequently
refer to the mentioned textbooks.



CHAPTER 1
Fundamentals of Statistics

1.1 Basic Notions and Concepts
Statistical investigation consists of making statements about a random
observation. To this end, we first introduce fundamental definitions and
notions that are used throughout this thesis.

Statistical Spaces
Let all possible outcomes of a random observation of interest be given by a
measurable space (X,A), which is called sample space. A random sample
is a (X,A)-valued random element X on some probability space (Ω,F,P).

To make statements about the distribution of X , prior assumptions
and information on1

.

PX is summarized by a non-empty class of distribu-
tions P⊂ Prob(X,A), where Prob(X,A) denotes the set of all probability
measures on (X,A).

1.1 Definition A non-empty class of distributionsP⊂Prob(X,A) is called
statistical model on the sample space (X,A). Furthermore, the triple
(X,A,P) is called statistical space. _

A probability space (X,A,P) is a trivial example of a statistical space,
where the statistical model is {P}, that is, it contains exactly one element.
While probability theory is concerned with statements about a known
distribution P ∈ {P}, statistical theory is concerned with statements about
an unknown distribution PX ∈P, where P is non-trivial, that is, |P| > 1.

A map κ from P to some space K containing characteristics of interests
is called K-valued parameter and ΘB κ(P) is called κ-parameter space

1We denote the distribution of a random element X under a probability measure P
by PX ,P X−1 or P◦ X−1. More generally, the image measures of a measure µ under a
function f is denoted µ f , µ f −1 or µ◦ f −1.
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of P. That parameter κ is said to parametrizes P iff2

.

κ is injective, that
is, there is a map P : Θ → P such that P ◦κ = idP. The map (Pϑ)ϑ∈Θ
is then called a parametrization of P or parametrized statistical model.
Any statistical model P can be parametrized by κB idP. However, if P
can be parametrized by an �k-valued parameter then P is said to be
k-parametric. Further, we call P non-parametric if there is no k ∈� and
no �k-valued parameter that parametrizes P.

In what follows we will often write P= {
Pϑ : ϑ ∈Θ}

to denote the (un-
parametrized) statistical model P(Θ) and, simultaneously, to indicate the
corresponding parametrized statistical model (Pϑ)ϑ∈Θ. If no clarification
is needed, we write P even if the parametrized statistical model is meant.

As already indicated above, a fundamental assumption in statistical
theory is that the unknown distribution PX that underlies the observation
of the investigator is contained in the model P. In most cases, however,
especially parametric specifications result from simplified assumptions
about the random mechanism. Consequently, we may usually assume at
most that PX can be “well” approximated within P, since PX ∉P. The
statistical model is then called misspecified or incorrectly specified.

In a statistical space (X,A,P), statements concerning random ele-
ments, for example, can usually be made at most in the almost sure sense
with respect to every P ∈P. A set N ∈ A with P(N) = 0 for all P ∈P is
called P-null set. Correspondingly, a statement about the elements of X
characterized by an event A ∈Aholds P-almost surely iff Ac is a P-null
set.

A statistical modelP is called dominated iff there is a σ-finite measure
µ on (X,A) such that every µ-null set is a P-null set. We will then write
P¿ µ. Dominated models constitute an important class of statistical
models. A first pleasant consequence is that we may deal with probability
densities rather than probability distributions. Second, dominated models
exhibit an important technical property, which is, if P is dominated, then
P-null sets are determined by a countable submodel P0 ⊂P.

1.2 Proposition (Halmos & Savage

.

(1949

.

)) A statistical model P is
dominated if and only if there is a countable P0 ⊂P and a distribution π

on P0 such that QB
∫
P0

P(·)π(dP) dominates P. _

Proof: For the sufficiency of that equivalence we refer to Halmos &
Savage

.

(1949

.

, Lemma 7, page 232) which yields the existence of

P0 = {Pk : k ∈�}⊂P

such that Q defined by

2We mostly write “iff” instead of “if and only if”.
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Q(A)B
∑

k∈�
2kPk(A) for A ∈A

dominates P. The necessity is evident. ■

The countable structure of dominated models will turn out to be very
beneficial, not just within the discussion of the sufficiency concept (see
next section and the references therein), but also for purposes of this
thesis (see Part II

.

).

Statistical Morphisms
There are several ways and several starting points to formulate prior
assumptions about PX . Some statistical models are equivalent, some
are more, and some are less informative. To compare statistical models
in this sense, we introduce the notions of a statistical morphism and
isomorphism, for more details see e. g. Torgersen

.

(1991

.

).

1.3 Definitions (Statistical Morphism) Let (X,A,P) and (Y,B,Q) be two
statistical spaces with parametrized statistical models P= {

Pϑ : ϑ ∈Θ}
and QB

{
Qϑ : ϑ ∈Θ}

. Note that P and Q have the same parameter space.
A Markov kernel K from (X,A) to (Y,B) is called a statistical morphism
from (X,A,P) to (Y,B,Q) iff

PK
ϑ B

∫
X

K(x, ·)Pϑ(dx)=Qϑ for all ϑ ∈Θ.

Furthermore, if K is a Markov kernel on (X,A), it is called an identity on
(X,A,P) iff PK

ϑ
= Pϑ holds for all ϑ ∈Θ.

We call K statistical isomorphism iff there is a statistical morphism L
from (Y,B,Q) to (X,A,P) such that K ◦L given by

(K ◦L)(x, A)B
∫
Y

L(y, A)K(x,dy) for all x ∈X, A ∈A

and correspondingly L ◦K are identities on (X,A,P) and (Y,B,Q), respec-
tively. Then, L is called an inverse of K and vice versa. Moreover, we say
that (X,A,P) is isomorphic to (X,B,Q) and write (X,A,P)� (Y,B,Q). _

Whenever the underlying sample spaces are clear, we will use the
notions and conventions just for the statistical models instead of the
whole statistical spaces. For example, we will just write P�Q instead of
(X,A,P)� (Y,B,Q) if no clarification is needed.

1.4 Remark (Morphism and Image Measure) A transformation by a
morphism is a generalization of the usual imaging of measures. Let
T : (X,A)→ (Y,B) be a measurable function and consider K(x, ·)B δT(x)(·)
for x ∈ X. Then we have indeed PT = PK for every distribution P ∈
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Prob(X,A). That means, K is a statistical morphism from PBProb(X,A)
to QB

{
PT : P ∈Prob(X,A)

}
. _

1.5 Example Let P be a statistical model on (X,A) and let Q be an
arbitrary distribution on (Y,B). Then, the statistical model

P⊗QB
{
P ⊗Q : P ∈P}

(1.1)

on (X×Y,A⊗B) is isomorphic to P.
We denote by pr1 : X×Y→ X, (x, y) 7→ x the projection on the first

component. Obviously, K
(
(x, y), ·)B δpr1(x,y)(·) for (x, y) ∈ X×Y defines a

morphism from P⊗Q to P. Conversely, L(x, A×B)B δx(A)Q(B) for x ∈X
and A ∈ A, B ∈ B determines uniquely a Markov kernel from (X,A) to
(X×Y,A⊗B). Furthermore,

PL(A×B)=
∫

L(x, A×B)P(dx)= P(A)Q(B)

for all A ∈AB ∈B and, hence, L is a morphism from P to P⊗Q. Note,
L ◦K and K ◦L are identities on P⊗Q and P, respectively. _

Decision Rules
To make statements about PX , we consider statistical morphisms that
transform (X,A,P) to a decision space.

1.6 Definition A measurable space (D, D) representing a class of pos-
sible statements about PX is called decision space. A measurable map
δ : (X,A)→ (D, D) is called decision rule or decision procedure. _

The δ-induced class of probability measures Pδ B
{
Pδ : P ∈ P}

on
(D, D) describes the behavior of the decision rule δ. Therefore, a decision
rule yields the transformation

(X,A,P) (D, D,Pδ).
δ

This general concept is illustrated by the following types of decision
procedures.

1.7 Example (Test Procedure) We consider the decision space DB {0,1},
that is, a certain statement about PX is true or false. By that the statisti-
cal model P is divided into the so-called hypothesis

P0 B
{
P ∈P : statement about P is true

}
and the alternative P1 BP\P0. The tuple (P0,P1) is called test problem.
A measurable map ψ : X→ {0,1} is a so-called test procedure or test for
short. _
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Another decision rule aims at estimating the parameter value κ(PX ),
where κ : P→K is some K-valued parameter of P.

1.8 Example (Estimation Procedure) Let κ : P→K be some parameter,
then (P,κ) is called estimation problem. Let K be a σ-algebra on K, a
measurable function κ̂ : (X,A)→ (K,K) is called estimation procedure or
estimator, which is a decision rule with decision space (D, D)= (K,K). _

An estimator is sometimes called point estimator. This refers to the
fact that an estimation procedure picks a point in K. If we relax this
requirement in favor of a set-valued function K̂ with K̂(x) ⊂ K for x ∈ X
satisfying a “confidence” statement like “P

(
K̂ 3 κ(P)

)≥ 1−α” for every P ∈
P and some fixed α ∈ [0,1], we arrive at the following decision procedure.

1.9 Example (Confidence Procedure) Consider a parameter κ : P→K
and the decision space (D, D) given through a set system D ⊂ 2K and a
σ-algebra D on D such that

σ
(
{D ∈D : D∩ {η},;} : η ∈K)⊂ D. (1.2)

Any decision procedure K̂ : (X,A)→ (D, D) is called confidence procedure
or confidence region for (P,κ). By the measurability of K̂ we have that for
every η ∈ κ(P){

K̂ 3 η}B {
x ∈X : K̂(x) 3 η}= K̂

−1({
D ∈D : D∩ {η},;})

is an A-event describing the coverage of the parameter value η. On P we
may therefore consider the function

P 7→ P
(
{K̂ 3 κ(P)}

)
,

which is called coverage map of K̂. Furthermore, infP∈PP({K̂ 3 κ(P)}) is
called effective confidence level. If infP∈PP({K̂ 3 κ(P)}) ≥ 1−α for some
α ∈ [0,1], then K̂ is called (1−α)-confidence region and 1−α is called
confidence level of K̂. _

A confidence region is therefore a set-valued random element. The
set D of the corresponding decision spaces (D, D) may be the system of
subsets of K that are open, closed, or compact. Interestingly, there are
Borel-σ-algebras D with (1.2

.

) that come from a so-called hit and miss
topology T such that (D,T) is a Polish space. For a discussion of such
measure spaces and random elements, in particular random closed sets,
see for example Molchanov

.

(2005

.

) and the references therein.

Spaces of Decision Rules
Each type of decision rule is accompanied with a natural set of corre-
sponding procedures whose structure is determined by the underlying
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statistical space (X,A,P). For the purpose of introducing these sets, a
kind of Lebesgue–Bochner space w. r. t. the considered statistical space
will serve as a starting point. This subsection is devoted to introducing
this space. We discuss some technical details which facilitates an exact
formulation of statements and proofs later on.

Let k ∈�, p ∈ [1,∞] and denote by Lp(X,A,P)B Lp(X,A,P;�k) the
vector space of (�k,‖ ·‖)-valued and A-measurable functions ϕ such that∫

‖ϕ‖p dP <∞.

With respect to a statistical space (X,A,P), the relevant functions are in

Lp(X,A,P)B
⋂

P∈P
Lp(X,A,P).

Note that in this space interesting quantities will be described by integrals
w. r. t. P ∈P, which do not care about changes on null sets w. r. t. P. In
what follows, we denote by [P] the subspace of Lp(X,A,P) containing all
functions that equal the null function P-almost surely. We then define the
quotient space

Lp(X,A,P)BLp(X,A,P)
/

[P]B
{
ϕ+ [P] : ϕ ∈Lp(X,A,P)

}
.

For some ϕ ∈Lp(X,A,P), we will write ϕ+[P] to denote the corresponding
[P]-equivalence class of ϕ in Lp(X,A,P), especially if there is a need
to emphasize the difference between ϕ and ϕ+ [P]. We often deal with
elements in Lp(X,A,P) for which we usually write small Latin letters.
That is, we write f ∈ Lp(X,A,P) which is consequently the equivalence
class f = ϕ+ [P] for some ϕ ∈ Lp(X,A,P). For any P ∈ P, we may then
consistently write

∫
f dP for

∫
ϕdP and any ϕ ∈ f . In what follows, we will,

for the sake of convenience, call f a function, too, rather than referring to
f as equivalence class.

On Lp(X,A,P) we may introduce the following canonical locally convex
topological structure given by the semi-norms

‖ f ‖P,p B
p

√∫
‖ f (x)‖p P(dx) for f ∈Lp(X,A,P)

and for P ∈P. Hence, we define TLp(P) = τ(‖·‖P,p : P ∈P), which is referred
to the canonical topology on Lp(X,A,P). Note that (Lp(X,A,P),TLp(P)) is
a topological vector space (TVS).3

.

Furthermore, note that ‖ ·‖P,p for P ∈P
3A pair (E,T) consisting of a linear space E (over a field K ∈ {�,�}) and a topology

T is called topological vector space iff the vector space operations, that is, ( f , g) 7→ f + g
and (α, f ) 7→α f are continuous on (E×E,T⊗T) and (K ×E,τ(| · |)⊗T), respectively.
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usually does not constitute a norm on Lp(X,A,P), since in general [P],
[P]. However, TLp(P) is a Hausdorff topology on Lp(X,A,P), which follows
easily from, for example, Werner

.

(2018

.

, Lemma VIII.1.4, page 429).
If C⊂ A is a sub-σ-algebra, then Lp(X, C,P) is a linear subspace

of Lp(X,A,P). Turning to the corresponding quotient spaces, we point
out that Lp(X, C,P) can at least be identified with a linear subspace of
Lp(X,A,P). This is due to the fact that [P]∩Lp(X, C,P) can be identified
with [P]. In the following, we may therefore just write [P] to denote the
null element in the quotient space regardless of the considered σ-algebra.

We will use the conditional expectation in the spirit of these con-
siderations, too. Let P ∈P and let C⊂A be a sub-σ-algebra. By defini-
tion, the conditional expectation of f ∈L1(X,A,P) given C is the unique
[P]-equivalence class EP(ϕ|C) ∈L1(X, C,P) which consists functions ϕ ∈
L1(X, C,P) fulfilling the Radon–Nikodým equations∫

C
f dP =

∫
C
ϕdP for C ∈ C.

Recall furthermore that EP (·|C) is a well-defined continuous linear projec-
tion on the subspace (L1(X, C,P),‖·‖P,1) for every sub-σ-algebra C⊂Aand
every single probability measure P. If C and the model P are well-related
to each other, there is a statistical analog, the Rao–Blackwell projection.
This is a linear projection on L1(X, C,P) which will be made precise in the
next section (see Proposition 1.26

.

, page 17

.

).

Evaluation of Decision Rules
The basic problem is to select “good” decision rules, which in particular
means that we have to evaluate them first. To this end, we consider the
loss that a decision d ∈D yields if P ∈P is the underlying true distribution.
A non-negative measurable function L : (d,P) 7→ L(d,P) is called loss func-
tion. The expected loss of decision procedure δ under P is EP(L(δ(·),P)).
The function P 7→EP (L(δ(·),P)) is called risk function of δ.

For estimation procedures there is a popular loss function that is
widely used in the literature.

1.10 Example (Mean Squared Error) ConsiderP= {
Pϑ : ϑ ∈Θ}

and some
parameter κ : Θ→�l . Let κ̂ be an estimator for an estimation problem
(P,κ). Then the expected loss w. r. t. the squared error loss function L : �l×
�k →�+ with (d,ϑ) 7→ ‖d−κ(ϑ)‖2

�l is

MSE(κ̂,ϑ)B
∫

‖κ̂(x)−κ(ϑ)‖2
�l Pϑ(dx) for ϑ ∈Θ,

which is called mean squared error. _
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Loss functions for confidence regions appear to be less obvious, com-
pared to the situation for estimators. Within the class of confidence
regions with an effective level 1−α, we clearly would prefer smaller ones.
This can be reflected by the following loss.

1.11 Example (Confidence Region Volume) Consider P = {
Pϑ : ϑ ∈Θ}

with λl(Θ) > 0 and some parameter κ : Θ→ �l . Let K̂ be a confidence
region for (P,κ) with an effective level 1−α. The loss of a realization
K̂(x) ∈B(�l) for some x ∈X may be represented by λl(K̂(x)) if each false
parameter η ∈ K̂(x)\{κ(ϑ)} is associated with the same loss.

The expected loss is therefore the expected volume of K̂, that is,
Eϑ

(
λl(K̂)

)
for ϑ ∈Θ. Due to Fubini’s theorem, we may note furthermore

that
Eϑ

(
λl(K̂)

)= ∫
Pϑ(K̂ 3 η)λl(dη).

For confidence regions K̂ with Pϑ(K̂ 3 κ(ϑ))≥ 1−α for all ϑ ∈Θ, it is desired
that Pϑ(K̂ 3 η) for all η, κ(ϑ) and all ϑ ∈Θ is small. _

The remainder of this section provides some further considerations
of the loss for multivariate estimators, in particular in the case of prior
knowledge. For the sake of completeness, we first note the case for a gen-
eral decision procedure δ. If there is a prior belief in terms of a distribution
π on P, then ∫

EP (L(δ(·),P))π(dP)

constitutes the so-called Bayes risk of δ w. r. t. prior π. Eventually, we are
looking for decision rules with low (Bayes) risk.

Consider specifically a k-parametric statistical model P= {
Pϑ : ϑ ∈Θ}

.
The Bayes risk w. r. t. the (Euclidean) squared error loss of an estimator
κ̂ ∈L2(X,A,P;�k) for the parameter idΘ and w. r. t. π is

r(κ̂,π)B
∫ ∫

‖κ̂(x)−ϑ‖2 Pϑ(dx)π(dϑ).

We may generalize this as follows. Recall that any positive semi-definite
symmetric matrix W defines a semi-norm which we denote by ‖x‖W Bp

xTWx. If W is positive definite, ‖ · ‖W is even a norm. For W = I we get
the Euclidean norm ‖ ·‖ = ‖ ·‖I. The Bayes risk w. r. t. the ‖ ·‖W -weighted
squared error loss of an estimator κ̂ ∈L2(X,A,P;�k) for idΘ and w. r. t. π
is

r(κ̂,π;W)B
∫ ∫

‖κ̂(x)−ϑ‖2
W Pϑ(dx)π(dϑ). (1.3)

For W = I we have r(κ̂,π; I) = r(κ̂,π). We furthermore may consider the
matrix

R(κ̂,π)B
∫ ∫

(κ̂(x)−ϑ)(κ̂(x)−ϑ)T Pϑ(dx)π(dϑ), (1.4)
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which we then compare with respect to the Löwner order4

.

≤L .
According to these evaluation concepts, we are interested in corre-

sponding minimizers.

1.12 Definition (Bayes Estimate) An estimator which minimizes the
risk (1.3

.

) among all estimators is called Bayes estimator w. r. t. the ‖ · ‖W -
weighted squared error loss. An estimator which minimizes the risk (1.4

.

)
among all estimators is called Bayes estimator w. r. t. ≤L . _

We note a first relation between these two partial orders.

1.13 Proposition (Löwner Order, Weighted Squared Error Loss) Con-
sider two estimators κ̂, λ̂ ∈ L2(X,A,P;�k) for the canonical parameter
idΘ. Then, the following statements are equivalent:
(a) R(κ̂,π)≤L R(λ̂,π);

(b) r(κ̂,π;W)≤ r(λ̂,π;W) for every positive semi-definite W . _

Proof: By definition of the Löwner order we have R(κ̂,π)≤L R(λ̂,π) if and
only if

uTR(κ̂,π)u ≤ uTR(λ̂,π)u for all u ∈�k.

Note that uTR(κ̂,π)u corresponds to

uTR(κ̂,π)u =
∫ ∫ (

uT(κ̂(x)−ϑ)
)2 Pϑ(dx)π(dϑ)

= r(κ̂,π;uuT),

which represents a uuT-weighted squared error loss. Furthermore, by the
spectral decomposition theorem, we have for every positive semi-definite
symmetric matrix W vectors u1, ...,un ∈ �k such that W = ∑n

i=1 uiui
T.

Hence,

r(κ̂,π;W)=
n∑

i=1
r(κ̂,π;uiui

T)≤
n∑

i=1
r(λ̂,π;uiui

T)= r(λ̂,π;W)

and thus R(κ̂,π) ≤L R(λ̂,π) if and only if r(κ̂,π;W) ≤ r(λ̂,π;W) for all
positive semi-definite matrices W . ■

Clearly, the Löwner order is stronger than any weighted squared error
loss ordering. However, as long as a ≤L-least element exists, we may
restrict ourselves to the usual squared error loss. To show this, we first
present the following elementary lemma.

1.14 Lemma (Chandrasekar & Kale

.

(1984

.

)) LetW be a set of symmetric,
positive semi-definite matrices with existing ≤L-least element A ∈W.
Then the following two statements are equivalent:5

.

4The Löwner order is a partial order on the set of all symmetric matrices defined by
A ≤L B iff B− A is positive semi-definite.

5We denote by tr(A) the trace of a matrix.
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(a) A ≤L B for all B ∈W;

(b) tr(A)≤ tr(B) for all B ∈W. _

Proof: Obviously, (a) implies (b), since by definition A ≤L B means B− A
is positive semi-definite and hence

tr(B)− tr(A)= tr(B− A)≥ 0

for all B ∈W.
To show that (b) implies (a), let A∗ ∈W be the ≤L-least element. Then

A∗ ≤L A, that is, A − A∗ is positive semi-definite and, hence, we have
tr(A− A∗)≥ 0. By assumption, we also have

tr(A− A∗)= tr(A)− tr(A∗)≤ 0.

Hence, tr(A − A∗) = 0 which means together with the positive semi-
definiteness of A− A∗ that A− A∗ = 0, that is, A∗ = A. ■

According to Heyde

.

(1997

.

), the following observation was first given by
Chandrasekar & Kale

.

(1984

.

) for estimating functions (see next chapter).
Here, we consider a corresponding result for estimators.

1.15 Corollary Let H be a set of estimators which contains a Bayes
estimator w. r. t. ≤L . Then the following statements are equivalent:
(a) R(κ̂,π) ≤L R(λ̂,π) for all λ̂ ∈ H, that is, κ̂ is a Bayes estimator w. r. t.

≤L in H;

(b) r(κ̂,π) ≤ r(λ̂,π) for all λ̂ ∈ H, that is, κ̂ is a Bayes estimator w. r. t.
squared error loss in H. _

Proof: We just note that for any estimator κ̂ ∈ L2(X,A,P;�k) we have
tr(R(κ̂,π))= r(κ̂,π; I). Hence, the claim follows directly by Lemma 1.14

.

. ■

1.2 Sufficiency, Ancillarity, and
Completeness

The performance of a decision procedure highly depends on the informa-
tion at hand. This concerns not just the amount, but also the quality of
the data. Clearly, we only want to take account of the useful, that is, the
sufficient information of our sample. In contrast, the useless, that is, the
ancillary data should be eliminated as much as possible because, roughly
speaking, it only adds noise to our decision-making process.

This section is devoted to these notions and corresponding concepts.
We start with the classical notions sufficiency, ancillarity and complete-
ness and recall some results that relate these concepts to one another.
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We conclude the section with a study of corresponding spaces of decision
procedures. These spaces are required to introduce the Rao–Blackwell
projection which plays an essential role in this thesis.

Information and σ-Algebras
Intuitively, the information given by a σ-algebra C⊂ A is “sufficient”
for P iff any information beyond C fails to separate distributions of P.
Mathematically speaking, there should be a common version of conditional
probabilities given the sufficient information, that is, we precisely define:6

.

1.16 Definition A σ-algebra C⊂A is called sufficient for P iff for every
A ∈A ⋂

P∈P
P

(
A|C)

,;.

A statistic S is called sufficient iff σ(S) is sufficient. _

To argue the other way around, we specify the intuition of useless
information. This consists of events that do not help toward making
statements about PX .

1.17 Definition Any event D ∈ A such that P 7→ P(D) is constant is
called ancillary for P. A set system D⊂A is called ancillary iff every set
in D is ancillary. _

An ancillary set system D⊂A is not generally useless toward making
statements about PX . This is due to the fact that σ(C∪D), where C⊂A

is some σ-algebra, may contain more information than C alone (see for
example Pfanzagl

.

, 1994

.

, page 45). The following theorem due to Basu

.

(1955

.

, 1958

.

) shows when it is possible to remove ancillary events and
reveals the complementary nature of the two concepts of sufficiency and
ancillarity.

1.18 Theorem (Basu) Let P be a statistical model without a singular
pair, that is, P 6⊥Q for any choice P, Q ∈P.7

.

Furthermore, let C⊂Abe
sufficient for P. Then the independent complement of C (w. r. t. P)

CyB
{
D ∈A : P(C∩D)= P(C)P(D) ∀P ∈P, ∀C ∈ C

}
is ancillary for P. _

Proof: See Barra

.

(1981

.

, Theorem 2, page 26). ■

6Recall that for a sub-σ-algebra C ⊂ A and A ∈ A the conditional probability
P(A|C)=EP (1A |C)⊂L1(X, C,P) is a [P]-equivalence class (see remarks on page 9

.

).
7Two measures µ and ν on some measurable space (X,A) are called singular to each

other iff there is an A ∈A such that µ(A)= 0 and ν(Ac)= 0. We then write µ⊥ ν.
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In the situation of Theorem 1.18

.

let D⊂ Cy be an arbitrary σ-algebra.
By the statement above, D is ancillary, that is, P|DB

{
P|D : P ∈P}

has
exactly one element which we denote by Q. Furthermore (see Example
1.5

.

, page 6

.

), we then have8

.

(X, C∨D,P|C∨D)� (X×X, C⊗D,P|C⊗Q).

Hence, every P ∈P|C∨D can be considered as the factorization P|C⊗P|D
on (X×X, C⊗D). This decomposition reveals that P consists of the interest-
ing component P|C plus an additional randomization given by Q = P|D.
Since the latter does not depend on P ∈ P, it is redundant for the cor-
responding statistical problem. We may then conclude by Example 1.5

.

that P|C∨D is isomorphic to P|C, which reflects the intuitive role of the
sufficiency concept. This observation can be extended as follows.9

.

1.19 Proposition Let (X,T) be a Polish space10

.

, letP be dominated, and
let C⊂B(X) be sufficient for P. Then, P is isomorphic to P|C. _

Proof: A morphism from P to P|C is trivially given by LB δidX , where
idX : (X,B(X))→ (X, C), see also Remark 1.4

.

on page 5

.

.
To construct a morphism from P|C to P, we note that due the Pol-

ishness of (X,T), every P ∈ P has a regular conditional distribution
KP ∈ P(·|C). Furthermore, we use that B(X) is generated by a count-
able algebra R (see e.g. Bauer

.

, 1991

.

, proof of Satz 44.3, page 397) and
since C is sufficient for P there is

K0(·,R) ∈ ⋂
P∈P

P(R|C) (1.5)

for every R ∈R. Since R is countable, we have for all P ∈P that K0(·,R)=
P(R|C)= KP (·,R) for all R ∈R almost surely w. r. t. P. Furthermore, P is
dominated, thus there is a countable submodel P0 ⊂P such that N ∈B(X)
is a P0-null set if and only if N is a P-null set (see Proposition 1.2

.

). Hence,
there is a P0-null set N ∈ C such that K0(x,R) = P(R|C)(x) = KP(x,R)
holds for all R ∈R and all x ∈ Nc. Recall that R is an intersection stable
generator of B(X), we therefore have that KP(x, ·) does not depend on P
for all x ∈ Nc. For some P ∈P and some distribution Q on (X,B(X)), we set

K(x,B)BKP (x,B)1Nc(x)+Q(B)1N(x) x ∈X, B ∈B(X).

Then, we have that

P|CK (B)=
∫

K(x,B)P|C(dx)=
∫

P(B|C)dP|C= P(B)

8We write C∨D for σ(C∪D).
9A broader and more detailed view is given by Strasser

.

(1985

.

, Theorem 24.11 and
24.12, p. 107), see also Pfanzagl

.

(1994

.

, Proposition 1.3.1, p. 8 f.) and references therein.
10A topological space (X,T) is called Polish iff there is a metric d on X such that T is

generated by d and (X,d) is separable and complete.
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for all B ∈ B(X) and P ∈ P. Hence, K is a morphism from P|C to P.
Obviously, K ◦L and L ◦K are identities on P and PC, respectively. That
means, we have P�P|C. ■

In the above proposition we need two regularity assumptions in terms
of a countable structure. The first is included by the assumption that
(X,T) is Polish, which yields the existence of a regular conditional distribu-
tion. The second comes from the assumption that P is dominated. Hence,
the P-null sets are described by a countable sub-model P0 ⊂P, see Propo-
sition 1.2

.

.

By the nature of the sufficiency concept, we go for a “minimal” suf-
ficient σ-algebra C. In terms of Theorem 1.18

.

, we want to separate the
ancillary material as an independent complement as much as possible.

1.20 Definition (Free of Ancillarity) We call a σ-algebra C⊂A free from
ancillarity w. r. t. P iff {;,X} coincides P-almost surely with the system of
all C-measurable ancillary events. _

In other words, C is free from ancillarity iff C ∈ Cwith

P 7→ P(C)= const (1.6)

implies that either 1C = 1X or 1C = 1; holds almost surely w. r. t. P.
Clearly, a sufficient σ-algebra that is independent of every ancillary event
needs to be free from ancillarity. This is an observation due to Lehmann

.

(1981

.

, Theorem 2, page 336) which is shown in the following lemma.

1.21 Lemma Let DB
{
D ∈A : P 7→ P(D) ≡ const

}
be the system of all

ancillary events for P. Then, any sub-σ-algebra C⊂Awith

D⊂ Cy (1.7)

is free from ancillarity. _

Proof: Any event in C∩D is P-trivial, that is, any ancillary event in C

has probability either 0 or 1 w. r. t. every P ∈P. Hence, for any C ∈ C∩D

we have either 1C =1X or 1C =1; almost surely w. r. t. P. ■

In general, a sufficient σ-algebra C that is free from ancillarity does
not imply (1.7

.

), see Lehmann

.

(1981

.

, Example 2, page 337). However,
considering a linear extension of these notions will help. That is, instead
of considering a set system containing sets D such that P 7→ ∫

1D dP is
constant, we are now going to extend the notion of ancillarity to elements
of Lp(X,A,P;�k).

1.22 Definition An element h ∈Lp(X,A,P) is called ancillary of first or-
der iff P 7→ ∫

hdP is constant. The set of all first order ancillary functions
in Lp(X,A,P) is denoted by Ap(X,A,P). _



16 GENERAL STATISTICS I

A σ-algebra C is said to be “completely” free of ancillarity iff there is
no non-trivial C-measurable ancillary function of first order. By that we
arrive at the following notion.11

.

1.23 Definition A σ-algebra C is called (boundedly) complete for P
iff every (bounded) C-measurable and P-integrable function h is P-a. s.
uniquely determined by their coordinates (

∫
hdP)P∈P. A model P is called

(boundedly) complete, iff A is (boundedly) complete. _

Any complete σ-algebra is boundedly complete, and any boundedly
complete σ-algebra is free from ancillarity. Conversely, however, bounded
completeness is not equivalent to completeness (see Lehmann & Scheffé

.

,
1950

.

). Furthermore, a σ-algebra that is free from ancillarity is in general
not boundedly complete (see Lehmann

.

, 1981

.

).12

.

Regarding our initial intention to separate the sufficient information
from the ancillary one as well as possible, we note that a bounded complete
and sufficient σ-algebra C fulfills (1.7

.

).

1.24 Theorem (Basu

.

(1958

.

)) Let Cbe boundedly complete and sufficient,
then any ancillary event is P-independent of C, that is, (1.7

.

) holds. _

Proof: See Barra

.

(1981

.

, Theorem 1, page 26). ■

1.25 Corollary Let P be a statistical model without singular pair and
let C⊂Abe boundedly complete and sufficient for P, then

Cy = {
D ∈A : D is ancillary

}
.

_

Proof: Let D⊂Abe the set system of P-ancillary events. By Proposition
1.18

.

we have Cy ⊂ D and by Proposition 1.24

.

we have D⊂ Cy. ■

As we have seen, a complete sufficient σ-algebra C is free from non-
trivial ancillary events. In this sense, C is “completely” reduced.

Information and Decision Procedures
So far, we have decomposed the information A, roughly speaking, into
sufficient and ancillary events w. r. t. the statistical model P. Instead of

11The notion of completeness was systematically introduced and studied by Lehmann
& Scheffé

.

(1947

.

, 1950

.

, 1955

.

). In a more general fashion, the notion of completeness can
be introduced w. r. t. a class of functions. Lehmann

.

(1981

.

) introduced in particular the
notion of completeness w. r. t. to the class of two-valued functions, “F0-completeness” in
his terms, which corresponds to our notion of a σ-algebra that is free from ancillarity.

12Here and in what follows, the notion of completeness could be introduced and
considered in a more differentiated way (see for example Schmetterer

.

, 1960

.

).
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(X,A,P) we may equivalently13

.

consider the statistical subspace (X, C,P|C)
if C⊂A is sufficient (see Proposition 1.19

.

). If in addition C is boundedly
complete, the decomposition is most successful14

.

in the sense of Lemma
1.21

.

and Corollary 1.25

.

.
However, since we are finally interested in decision procedures, we

want to know if these intuitions carry over to decision procedures. The
central question for the remainder of this section is, therefore, how do
the notions of sufficiency, ancillarity and completeness relate to suitable
spaces of decision procedures. We specifically consider the decision space
(D, D)= (�k,B(�k)).

Recall that for every P ∈P and any C⊂A the conditional expectation
EP (·|C) is a continuous linear projection in (L1(X,A,P),‖ ·‖P,1). There is a
statistical analog, if the σ-algebra C⊂A is sufficient for P.

1.26 Proposition (Rao–Blackwell Projection) Let C⊂Abe a sufficient
sub-σ-algebra for P and let p ∈ [1,∞], then the map

E(·|C) : (Lp(X,A,P),TLp(P)) → (Lp(X, C,P),TLp(P))
f 7→ ⋂

P∈PEP ( f |C)

is a well-defined continuous linear projection on Lp(X, C,P). _

Proof: Since C is sufficient, we have
⋂

P∈PP(A|C) ,; for all A ∈A by
definition. Hence, by the standard extension argument, that is, by ap-
proximating non-negative and A-measurable functions f through simple
functions from below and by using monotone limits, we have⋂

P∈P
EP ( f |C),;. (1.8)

Finally, by the linearity of EP(·|C) this holds also for any f ∈Lp(X,A,P)
since f = f +− f −, where f + and f − denote the positive and the negative
part of f , respectively.

Further, (1.8

.

) determines a unique [P]-equivalence class in Lp(X, C,P).
To show this, consider ϕ ∈⋂

P∈PEP ( f |C), that is, we have∫
C

f dP =
∫

C
ϕdP for C ∈ C, P ∈P (1.9)

by the definition of EP( f |C) for all P ∈P. Since condition (1.9

.

) does not
care about P-null sets, we have

ϕ+ [P]⊂ ⋂
P∈P

EP ( f |C).

13Under regularity assumptions about the statistical space (X,A,P) which is: (i) P is
dominated, and (ii) (X,A)= (X,B(X,T)), where (X,T) is a Polish space.

14Under the regularity assumption that P has no singular pair, that is, the existence
of P, Q ∈P with P ⊥Q is excluded.
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Conversely, for any ϕ′ ∉ϕ+ [P], which is equivalent to ϕ′−ϕ ∉ [P], there
is a P ∈P such that ∫

f dP =
∫
ϕdP ,

∫
ϕ′dP

and thus ϕ′ ∉⋂
P∈PEP ( f |C). By that we have the stated well-definedness

of the map E(·|C) from Lp(X,A,P) to Lp(X, C,P).
Since EP (·|C) is a linear projection for every P ∈P, we immediately get

that E(·|C) is a linear projection, too. Furthermore, by Jensen’s inequality
for conditional expectations, we have

‖E( f |C)‖P,p ≤ p

√∫
E(‖ f ‖p

�k |C)dP = ‖ f ‖P,p

for every f ∈ Lp(X,A,P) and every P ∈ P. Hence, E(·|C) is continuous
w. r. t. the canonical topology

TLp(P) = τ
(‖ ·‖P,p : P ∈P)

on Lp(X,A,P) and Lp(X, C,P), respectively (see for example Werner

.

, 2018

.

,
Satz VIII.2.3, page 431). ■

Let C⊂ A be a sufficient sub-σ-algebra for P, we then call E(·|C)
the Rao–Blackwell projection given C and w. r. t. P, while E( f |C) for an
f ∈L1(X,A,P) is called Rao–Blackwellization of f w. r. t. C. The name is
due to studies of Rao

.

(1945

.

) and Blackwell

.

(1947

.

) which will be discussed
later (see Theorem 2.17

.

).
The next proposition shows that Lp(X, C,P), that is, the subspace of

all Rao–Blackwellizations, is a complemented subspace15

.

in Lp(X,A,P).
In addition, if C is complete, then the complement is

A0
p(X,A,P)B

{
g ∈Lp(X,A,P) :

∫
gdP = 0 for all P ∈P}

,

that is, Ap(X,A,P) modulo a constant function.

1.27 Theorem (Rao–Blackwellization, TVS Version) Let p ∈ [1,∞] and
let C be sufficient for P, then:16

.

(a) Lp(X,A,P)=Lp(X, C,P) ‘ ker(E(·|C)),

(b) ker(E(·|C))⊂A0
p(X,A,P) with equality, if C is complete. _

15A closed subspace F of a topological vector space E is said to be complemented in E
iff there exists a closed subspace G of E such that E = F+G and F∩G = {0}. In this case,
we write E = F ‘ G and E is said to be the direct sum of F and G, while F, G are called
complementary subspaces (see e. g. Lang

.

, 1993

.

, page 389).
16We denote by ker(T)B {e ∈ E : Te = 0} the kernel of an operator T : E → F.



1.2 SUFFICIENCY, ANCILLARITY, AND COMPLETENESS 19

Proof: Since E(·|C) is a continuous linear projection in the topological
vector space (Lp(X,A,P),TLp(P)), see Proposition 1.26

.

, (a) follows from
(Rudin

.

, 1973

.

, Theorem 5.16, page 126) which yields17

.

Lp(X,A,P)= ran(E(·|C)) ‘ ker(E(·|C)). (1.10)

By definition of E(·|C) we have Lp(X, C,P)= ran(E(·|C)).
To show (b), we note that f ∈ ker(E(·|C)) implies

∫
f dP = 0 for all

P ∈P and, hence, f ∈ A0
p(X,A,P), that is, ker(E(·|C)) ⊂ A0

p(X,A,P). Con-
versely, if f ∈ A0

p(X,A,P), we have that
∫

E( f |C)dP = ∫
f dP = 0 for all

P ∈P. Hence, if C is additionally complete, we can conclude that E( f |C)=
0, since E( f |C) is C-measurable by construction, and consequently that
f ∈ ker(E(·|C)). ■

The factorization (1.10

.

) is of statistical interest since it reveals an
additive superposition of the useful and the useless components of decision
procedures in Lp(X,A,P). Formally, any f ∈Lp(X,A,P) can be represented
as f =E( f |C)+α, where α ∈ ker(E(·|C))⊂A0

p(X,A,P) does not contribute
something on average and can therefore be seen as a noise.

Especially, if p ≥ 2, we have that the noise α is uncorrelated to E( f |C)
w. r. t. every P ∈P, since E(α|C)= 0 and therefore

CovP
(
E( f |C),α

) =
∫

E( f |C)αT dP −EP f
(
EPα

)T

=
∫

E( f |C)
(
E(α|C)

)T dP −EP f
(
EPE(α|C)

)T

= 0

for all P ∈P. Regarding Theorem 1.27

.

, we therefore additionally note:

1.28 Remark If p ≥ 2 the subspace of Rao–Blackwellizations Lp(X, C,P)
is orthogonal18

.

to ker(E(·|C)), that is,

Lp(X,A,P)=Lp(X, C,P) k ker(E(·|C)), (1.11)

where the orthogonality is meant w. r. t. every bilinear form 〈·, ·〉P for P ∈P
defined by ( f , g) 7→ ∫ 〈 f (x), g(x)〉�k P(dx). This is due to the fact that for all
f ∈Lp(X, C,P) and all g ∈ ker(E(·|C)) we have for all P ∈P

〈 f , g〉P =
∫
〈 f , g〉�k dP =

∫
〈 f ,E(g|C)〉�k dP = 0.

17We denote by ran(T)B {Te : e ∈ E}⊂ F the range of an operator T : E → F.
18Let F, G be complementary subspaces of a topological vector space E, that is,

E = F ‘ G. Then F is said to be orthogonal to G w. r. t. a bilinear form b on E iff b( f , g)= 0
for all f ∈ F and g ∈G. Furthermore, F is called the orthogonal complement of G w. r. t. b
and vice versa and we write E = F k G for the so-called orthogonal sum.
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Furthermore, if C is complete then Lp(X,A,P)=Lp(X, C,P) k A0
p(X,A,P).

Related factorizations of this kind emerge implicitly in the theory of
unbiased estimation when characterizing uniformly minimum variance
unbiased estimators, see for example Lehmann & Scheffé

.

(1950

.

, Theorem
5.3) or Rao

.

(1952

.

, Theorem 1). _

Roughly speaking, Theorem 1.27

.

and Remark 1.28

.

summarize Basu’s
Theorems 1.18

.

and 1.24

.

in terms of topological vector spaces. While
Theorem 1.27

.

(a) and (b) corresponds to the statement of Theorem 1.18

.

,
the supplement in part (b) reveals that Lp(X, C,P) is maximally sepa-
rated from ancillary material if C is sufficient and complete which is the
counterpart to Theorem 1.24

.

and Corollary 1.25

.

.
A generalization of Remark 1.28

.

for �-valued functions reveals a way
toward the existence of a maximally complete σ-algebra for an arbitrary
statistical model P. Before we go into that, we describe the (topological)
dual space19

.

of the statistical spaces Lp(X,A,P;�). The proof of the fol-
lowing proposition is similar to that of Werner

.

(2018

.

, Satz II.2.4, page 65)
and was given by the author on MathOverflow (see H. 2020b

.

).

1.29 Proposition Let p, q ∈ [1,∞], p <∞ be conjungate exponents, that
is, 1

p + 1
q = 1, then the dual space of (Lp(X,A,P;�),TLp(P)) is given by

Lp(X,A,P;�)' = span

( ⋃
P∈P

{〈·, g〉P |Lp(X,A,P) : g ∈Lq(X,A,P) / [P]
})

. (1.12)

_

Proof: Consider P ∈P and g ∈Lq(X,A,P) / [P], then by Hölder’s inequal-
ity

|〈 f , g〉P | ≤
∫

| f (x)g(x)|P(dx)≤ ‖ f ‖P,p · ‖g‖P,q.

Recall that TLp(P) = τ(‖ ·‖P,p : P ∈P) and, hence, 〈·, g〉P is a linear contin-
uous functional on (Lp(X,A,P),TLp(P)). Furthermore, any linear combina-
tion of such linear functionals is continuous and, hence, the right-hand
side of (1.12

.

) is contained in the left-hand side.
Conversely, let f ' ∈Lp(X,A,P;�)' and define

ν(A)B f ' (1A) for A ∈A.

Then, ν is a signed measure. Furthermore, since f ' is linear and continu-
ous, there is a finite set I ⊂P and a constant M > 0 such that

| f ' ( f )| ≤ M ·max
{‖ f ‖P,p : P ∈ I

}
for f ∈Lp(X,A,P;�)

19Let (E,T) be a topological vector space. The linear space consisting of all continuous
linear functionals on E is called topological dual space of E and is denoted by E' .
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(Werner

.

, 2018

.

, Satz VIII.2.3, page 431). Hence, ν is dominated by the
finite measure µB

∑
P∈I P(·). According to the theorem of Radon–Nikodým

(see e. g. Elstrodt

.

, 2018

.

, Satz 2.3), ν has a density g w. r. t. µ, that is,

f ' (1A)= ν(A)=
∫
1A gdµ= ∑

P∈I
〈1A, g〉P for A ∈A.

Obviously, by the linearity of both sides we have

f ' (ϕ)=
∫
ϕgdµ= ∑

P∈I
〈ϕ, g〉P for A ∈A (1.13)

for all simple functions ϕ. Furthermore, the continuity w. r. t. ‖·‖∞ of both
sides yields that (1.13

.

) holds on L∞(X,A,µ) / [P].
It remains to show that g can be chosen such that g ∈Lq(X,A,P) / [P]

for all P ∈ I. To this end, we first treat the case q <∞ and define

hB
|g|q

g
,

where 0
0 B 0. Then, |g|q = hg = |h|p and for n ∈� we set An B

{|g| ≤ n
}
.

That means, we have h1An ∈L∞(X,A,µ) / [P] and∫
An

|g|q dµ=
∫
1An hgdµ= f ' (1An h) ≤ ‖ f '‖‖1An h‖µ,p

= ‖ f '‖
(∫

An

|h|p dµ
) 1

p

= ‖ f '‖
(∫

An

|g|q dµ
) 1

p

and, consequently,(∫
An

|g|q dµ
) 1

q =
(∫

An

|g|q dµ
)1− 1

p ≤ ‖ f '‖

for all n ∈�. The continuity of f ' yields that the right-hand side is finite,
and the theorem of monotone convergence yields that g ∈Lq(X,A,µ) / [P].
Since µ=∑

P∈I P(·), we also have g ∈Lq(X,A,P) / [P] for all P ∈ I.
For the case q =∞, and hence p = 1, we show that g ∈L∞(X,A,P) / [P]

for all P ∈ I. To this end, define AB {|g|−‖ f '‖ > 0} and hB 1A
|g|
g . Then,

note that h ∈L∞(µ), µ(A)= ‖h‖µ,1, and

0≤
∫

A
|g|−‖ f '‖dµ=

∫
hgdµ−µ(A)‖ f '‖ ≤ f ' (h)−µ(A)‖ f '‖

≤ ‖ f '‖‖h‖µ,1 −µ(A)‖ f '‖
= 0,
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that is, µ(A) = 0. Hence, g ∈ L∞(X,A,µ) / [P], that is, g ∈ L∞(X,A,P) / [P]
for all P ∈ I.

Finally, since
∑

P∈I〈·, g〉P is a linear continuous functional on L∞(µ),
and since L∞(µ) is a dense subspace of L1(µ), we can uniquely extend
that functional on L1(µ). Furthermore,

∑
P∈I〈·, g〉P is then also a linear

continuous functional on (L1(X,A,µ;�) / [P],TL1(P)) and∑
P∈I

〈·, g〉P |L1(X,A,P;�) = f ' ,

which yields the claim. ■

1.30 Proposition Let C⊂Abe complete and sufficient, and let p, q ∈
[1,∞] with p <∞ be conjungate exponents, then:
(a) For the annihilator20

.

of Lp(X, C,P;�) in Lp(X,A,P;�)' we have

Lp(X, C,P;�)⊥ = span
{〈·, g〉P : g ∈A0

q(X,A,P;�), P ∈P}
.

(b) Furthermore,

Lp(X, C,P;�)=⋂{
ker〈·, g〉P : g ∈A0

q(X,A,P;�), P ∈P}
.

_

Proof: To show (a), let g ∈ A0
q(X,A,P;�) and let P ∈P, then 〈·, g〉P is a

linear continuous functional on (Lp(X,A,P),TLp(P)) according to Propo-
sition 1.29

.

. Furthermore, since C is complete and sufficient, we have
A0

p(X,A,P;�)= ker(E(·|C)) according to Theorem 1.27

.

(b). Consequently,
we have E(g|C)= 0 and hence∫

f gdP =
∫

f E(g|C)dP = 0 for all f ∈Lp(X, C,P).

That means 〈·, g〉P ∈Lq(X, C,P)⊥ and thus

Lp(X, C,P;�)⊥ ⊃ span
{〈·, g〉P : g ∈A0

q(X,A,P;�), P ∈P}
.

Conversely, let f ' ∈Lp(X, C,P;�)⊥ then there is a finite set I ⊂P and
a function g ∈Lq(X,A,

∑
P∈I P) / [P] such that (see Proposition 1.29

.

and its
proof)

f ' = ∑
P∈I

〈·, g〉P = |I|〈·, g〉Q

with QB 1
|I|

∑
P∈I P. Furthermore, f ' ( f )= 0 for all f ∈Lp(X, C,P) implies

0= 〈 f , g〉Q =
∫

f gdQ =
∫

f EQ(g|C)dQ

20Let (E,T) be a topological vector space and let F be a subspace of E. The subspace
of the dual space E' defined by F⊥B { f ' ∈ E' : f ' ( f )= 0 ∀ f ∈ F} is called annihilator of
F in E' .
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for all f ∈ Lp(X, C,P) and hence EQ(g|C) = 0. Since C is also sufficient
and complete for P∪ {Q}, we have thus g ∈ ker(E(·|C))=A0

q(X,A,P;�).
To show (b), we note that by the theorem of Hahn–Banach (see e. g.

Werner

.

, 2018

.

, Theorem VIII.2.11, page 437) the closure21

.

of Lp(X, C,P)
w. r. t. the TLp(P) can be described through the continuous linear function-
als as follows

cl
(
Lp(X, C,P)

)
TLp(P)

= ⋂{
ker(g' ) : g' ∈Lp(X,A,P)' , g' |Lp(X,C,P) = 0

}
= ⋂{

ker(g' ) : g' ∈Lp(X, C,P)⊥
}
.

Since I−E(·|C) is continuous w. r. t. TLp(P), we have that

Lp(X, C,P;�)= ran(E(·|C))= ker(I−E(·|C))

is closed w. r. t. TLp(P) and the claim follows by part (a). ■

1.31 Corollary Let C⊂Abe complete and sufficient and let p, q ∈ [1,∞]
with p <∞ be conjungate exponents. Then, f ∈Lp(X, C,P;�) if and only
if 〈 f , g〉P = 0 for all g ∈A0

q(X,A,P;�) and P ∈P. _

Proof: The claim follows directly by Proposition 1.30

.

(b). ■

In correspondence with Proposition 1.30

.

(b) and Corollary 1.31

.

, we
have an explicit description of a maximally complete σ-algebra (see Propo-
sition 1.32

.

(a) and (b) below). Bahadur

.

(1957

.

) seems to be the first who
mentioned the σ-algebra (1.14

.

) below and, to the best of the author’s
knowledge, the maximality was first noticed by Schmetterer & Strasser

.

(1974

.

), see also Kagan et al.

.

(2014

.

).

1.32 Proposition Let (X,A,P) be a statistical space and let p ∈ [1,∞[ .
(a) The set system

V(P)B
{
A ∈A : 〈1A, g〉P = 0 ∀g ∈A0

1(X,A,P;�), ∀P ∈P}
(1.14)

is a complete σ-algebra for P.

(b) Let W⊂Abe complete for P, then

Lp(X, W,P)⊂Lp(X, V(P),P)

and, accordingly, V(P) is the maximal complete σ-algebra for P.

(c) Let C⊂Abe sufficient for P, then

Lp(X, V(P),P)⊂Lp(X, C,P)

with equality, if C is also complete. Therefore, a σ-algebra that is
complete and sufficient is P-almost surely unique and minimally
sufficient. _

21Let (X,T) be a topological space and let M ⊂ X be a subset. Then, we denote the
closure of M w. r. t. Tby cl(M)T.
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Proof: For part (a), we note that V(P) is an intersection stable Dynkin
system and, hence, a σ-algebra. The completeness follows by the explicit
definition of V(P) (see also Kagan et al.

.

, 2014

.

, Theorem 3.1).
(b) Let W⊂Abe an arbitrary complete σ-algebra for P. By the com-

pleteness of W, we then get

A0
p(X,A,P;�)⊂ ⋂

P∈P
ker(EP (·|W)).

Hence, we have for any W ∈ W

〈1W , g〉P =
∫
1W EP (g|W)︸       ︷︷       ︸

=0

dP = 0 for all g ∈A0
p(X,A,P;�), P ∈P

that is, W ∈ V(P) and consequently W⊂ V(P). Clearly, this implies that

Lp(X, W,P;�k)⊂Lp(X, V(P),P;�k).

(c) Let C⊂Abe an arbitrary sufficient σ-algebra for P. Then by The-
orem 1.27

.

(b), we have ker(E(·|C))⊂A0
p(X,A,P;�). By definition of V(P),

we have that any V ∈ V(P) fulfills 〈1V , g〉P = 0 for all g ∈ A0
1(X,A,P;�)

and all P ∈P, in particular,

〈1V , g〉P = 0 for all g ∈ ker(E(·|C))

and all P ∈P. Hence, the theorem of Hahn–Banach (see also Theorem
1.27

.

and the proof to Proposition 1.30

.

(b)) implies that

1V + [P] ∈Lp(X, C,P;�)=⋂{
ker〈·, g〉P : g ∈ ker(E(·|C))

}
.

Consequently, there is a V ′ ∈ C such that 1V =1V ′ almost surely w. r. t. P,
that is, V(P)⊂ C almost surely w. r. t. P. This corresponds to

Lp(X, V(P),P;�k)⊂Lp(X, C,P;�k).

If C is complete as well, we also have

Lp(X, C,P;�k)⊂Lp(X, V(P),P;�k),

due to (b), and finally the claimed equality and uniqueness. ■

For p = 2 the Rao–Blackwellization w. r. t. an arbitrary sufficient sub-
σ-algebra C⊂Ahas the following well-known geometric interpretation.

1.33 Proposition (Best Approximation w. r. t. Least Squares Errors) Let
C⊂Abe a sufficient sub-σ-algebra for P and let f ∈L2(X,A,P). Then the
Rao–Blackwellization E( f |C) is the unique solution of

argmin
{

sup
{‖ f −Z‖2

P,2 : P ∈P}
: Z ∈L2(X, C,P)

}
in L2(X, C,P). _
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Proof: To begin with, we recall that E( f |C) = ⋂
P∈PEP( f |C). For ϕ ∈

E( f |C) we note that ϕ+ [P]=EP ( f |C) is the unique solution of

argmin
{‖ f −Z‖2

P,2 : Z ∈L2(X, C,P) / [P]
}
,

where P ∈P. Hence, E( f |C) is the common solution of

argmin
{‖ f −Z‖2

P,2 : Z ∈L2(X, C,P) / [P]
}

for every P ∈P, which yields the claim. ■

The Rao–Blackwellization of some f ∈ Lp(X,A,P) is defined as the
sufficient part of the decision procedure f . This statistical point of view
was extended by Theorem 1.27

.

which yields that f −E( f |C) is ancillary of
first order. The following proposition interprets that component of f as a
corresponding best approximation w. r. t. ancillarity of first order.

1.34 Proposition (Best Approximation w. r. t. Ancillarity of First Order)
Let C⊂A be the complete and sufficient sub-σ-algebra for P, then the
Rao–Blackwellization of f ∈Lp(X,A,P) given C is the unique solution of

argmin
{

sup
{‖∫

f −Z dP‖�k : P ∈P}
: Z ∈Lp(X, C,P)

}
(1.15)

in Lp(X, C,P). _

Proof: Note that E( f |C) = ⋂
P∈PEP( f |C) is the unique element in the

space Lp(X, C,P) that fulfills∫
f dP =

∫
E( f |C)dP for all P ∈P

and, thus,
sup

{‖∫
f −E( f |C)dP‖�k : P ∈P}= 0.

Hence, E( f |C) is the unique solution to (1.15

.

). ■

With regard to Proposition 1.33

.

and 1.34

.

, we note the following: Let
B(X,A) be the set of all bounded and measurable functions f : (X,A) →
(�,B(�)), then we have that

‖ f ‖B(P),∞B sup
{‖ f ‖P,2 : P ∈P}

for f ∈B(X,A)
/

[P]

is a norm, while

‖ f ‖LS,B(P),∞B sup
{‖∫ f dP‖ : P ∈P}

for f ∈B(X,A)
/

[P]

is in general not a norm, but just a semi-norm on B(X,A)
/

[P]. The latter,
however, is a norm on B(X, C)

/
[P] if C⊂A is complete. In Chapter 3

.

, we
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will introduce larger normed spaces which yields generalizations of these
approximation statements.

Proposition 1.34

.

offers a new perspective which plays a central role
in Part II

.

. This is explained in the following concluding summary of this
section, which is numbered for the purpose of easy reference.

1.35 Summary and Conclusion Let (X,A,P) be a statistical space and
assume that there is a complete sufficient σ-algebra C⊂ A. The Rao–
Blackwell projection E(·|C) projects decision procedures onto Lp(X, C,P),
which is complemented in Lp(X,A,P) by A0

p(X,A,P), see Proposition 1.26

.

and 1.27

.

. This means that E(·|C) reduces the ancillary information to a
minimum, since C is complete and sufficient (see Proposition 1.32

.

).
The theory on Rao–Blackwellization presented so far considers a sharp

separation between sufficient and ancillary information. This, however,
also means, if f ∈ Lp(X,A,P) has components h ∈ Lp(X, C,P) which are
non-trivially “almost” ancillary of first order, then so has E( f |C). By
non-trivially “almost” ancillary of first order, it is meant that for all P ∈P∥∥∥∥∫

hdP
∥∥∥∥≈ 0 (1.16)

which is understood to be “small” compared to∫
‖h‖ dP > 0.

Hence, in spite of (1.16

.

), h still differs from 0 “significantly”. Therefore,
E( f |C) might still have some useless noise in terms of h if f has such
components.

In this thesis we propose a new, more general kind of Rao–Blackwelliza-
tion that also accounts for a reduction of “almost” ancillary material
through a regularization approach. For example, the optimization problem
(1.15

.

) is extended to take the noise of Z into account. We refer to Part II

.

,
page 43

.

ff., for details and a discussion of similar approaches. _

1.3 Exponential Families
Exponential families constitute a very important class of statistical models.
This class is flexible enough for a broad range of situations in practice and
much is known about sufficiency, ancillarity, and completeness for these
models.

The goal of this section is to recall and provide some results on ex-
ponential families for easy reference. The presentation follows mainly
Pfanzagl

.

(1994

.

, page 22 ff.). We start with the central definition.
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1.36 Definition A statistical model P is called exponential family in
a1, ...,ak : P→ � and measurable S1, ...,Sk : (X,A) → (�,B(�)) w. r. t. a
σ-finite reference measure µ iff P has µ-densities of the form

x 7→ c(P)g(x)exp
( k∑

i=1
ai(P)Si(x)

)
for all P ∈P,

where g is some non-negative measurable function on (X,A). In this case
a1, ...,ak are called canonical parameters. _

In the following we may assume without loss of generality that the
reference measure µ is equivalent to P. We also assume that a1, ...,ak are
affinely independent, that is,

k∑
i=1

ciai(P)= c0 for all P ∈P

implies ci = 0 for i = 1, ...,k. Furthermore, we assume that the functions
S1, ...,Sk are affinely µ-independent, that is,

k∑
i=1

ciSi(x)= c0 for µ-almost all x ∈X

implies ci = 0 for i = 1, ...,k. In this case the exponential family is called
k-parametric and furthermore it is said to have full rank if a(P)⊂�k has
a non-empty interior.

An exponential family P is by definition a parametrized statistical
model. We consider the greatest or natural parameter space which is given
by

ΘB
{
a ∈�k :

∫
g(x)exp(

∑k
i=1 aiSi(x))µ(dx)<∞

}
.

The statistic SB (S1, ...,Sp) is in fact sufficient.

1.37 Proposition Let P be an exponential family in a = (a1, ...,ak) and
S = (S1, ...,Sk). Then, S is sufficient for P. _

Proof: See Pfanzagl

.

(1994

.

, Theorem 1.6.9, page 25 f.). ■

In regular cases, S is complete and therefore the minimal sufficient
statistic for P. A proof of the completeness of S uses the following lemma.

1.38 Lemma Let µ be a measure on (X,A), f : X→ � and T : (X,A) →
(�,B(�)) measurable. Furthermore, define

AB

{
α ∈� :

∫
| f (x)|exp

(
αT(x)

)
µ(dx)<∞

}
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and assume that A has a non-empty interior, that is, int(A) ,;. Then,
the function defined by

ϕ : int(A)+ i� → �

z 7→ ∫
f (x)exp

(
zT(x)

)
µ(dx)

is holomorphic with

∂

∂z

∫
f (x)exp

(
zT(x)

)
µ(dx)=

∫
T(x) f (x)exp

(
zT(x)

)
µ(dx).

_

Proof: See Pfanzagl

.

(1994

.

, Lemma 1.6.6, page 24). ■

1.39 Proposition Let P be an exponential family in a = (a1, ...,ak) and
S = (S1, ...,Sk). Furthermore, assume that ΘB {a(P) : P ∈P} ⊂�k has a
non-empty interior. Then, S is complete for P. _

Proof: Use Lemma 1.38

.

, induction and the uniqueness theorem for holo-
morphic functions (see also Pfanzagl

.

, 1994

.

, page 26). ■



CHAPTER 2
Estimation Procedures

The purpose of this chapter is to provide necessary parts of estimation
theory. Often estimators are implicitly motivated by comparing the data
hypothetically with distributions of the statistical model. This is consid-
ered in the first section. We then proceed with the evaluation of these
estimators.

Throughout this section we consider a parametrized statistical model
P= {

Pϑ : ϑ ∈Θ}
on the sample space (X,A), where Θ⊂�k is a collection

of finite-dimensional parameters.

2.1 Implicitly Defined Estimators
Suppose we are able to measure some sort of discrepancy of our observa-
tion X to the possible underlying parameters ϑ ∈Θ. By describing this
measurement through a function A : X×Θ→�, we then naturally look
for a parameter which fits best to the data X . Let1

.

A(·,η) be integrable
w. r. t. Pϑ for all ϑ, η ∈Θ, we may then consider the expected discrepancy

α : Θ×Θ → �

(ϑ,η) 7→ EϑA(·,η).

By that α compares or contrasts the choice η with the underlying true
parameter ϑ. If α(ϑ, ·) is uniquely minimized for ϑ= η, we call A a contrast
function and α is called expected contrast of A. For x ∈ X, minimizers of
ϑ 7→ A(x,ϑ), that is, elements of

argmin
{
A(x,ϑ) : ϑ ∈Θ}

are called minimum contrast estimates of x. An estimator κ̂ : (X,A) →
(Θ,B(Θ)) such that κ̂(x) ∈ argmin{A(x,ϑ) : ϑ ∈ Θ} for all x ∈ X is called
minimum contrast estimator according to the contrast function A.

1In what follows, we implicitly assume that A is measurable in the first argument.
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This approach is the so-called minimum contrast approach and its
notions are closely related to the decision theoretic ones.

2.1 Remark (Minimum Contrast and Decision Theory) Let L : Θ×Θ→
�+ be a loss function with L(ϑ,η)= 0 if and only if ϑ= η. For an explicitly
known estimator κ̂, we have that A : (x,ϑ) 7→ L(κ̂(x),ϑ) is a contrast func-
tion. The expected contrast is α : (ϑ,η) 7→Eϑ(L(κ̂,η)). Let DB {(ϑ,ϑ) : ϑ ∈
Θ} be the diagonal in Θ×Θ then the restriction α|D is the risk function. _

Alternatively, we may relax the requirement of the contrast function
A to map in a totally ordered image space. Instead, we just consider a
function h : X×Θ→�k which is assumed to be A-measurable in the first
component. Based on our observation x ∈X, we obtain estimates as roots
of ϑ 7→ h(x,ϑ), that is, by solving

h(x,ϑ)= 0 (2.1)

for given x. The equation (2.1

.

) is called estimating equation, the func-
tion h is called inference function or estimating function. An estimator
κ̂ : (X,A)→ (Θ,B(Θ)) such that h(x, κ̂(x))= 0 for every x ∈X is called esti-
mator according to (the inference function) h.

In the remaining part, we deal with the following class of estimating
functions and estimators, respectively.

2.2 Definition (Unbiasedness) An estimating function h is said to be
unbiased iff Eϑh(·,ϑ)= 0 for all ϑ ∈Θ. An estimator κ̂ is called unbiased for
the parameter κ : Θ→�k iff (x,ϑ) 7→ (κ̂(x)−κ(ϑ)) is an unbiased estimating
function. _

Obviously, unbiased estimators for the canonical parameter idΘ can
be represented in terms of unbiased estimating functions which are linear
in idΘ. Conversely, we can see that estimators according to a “smooth”
unbiased estimating function are at least approximately unbiased.

2.3 Remark (Approximately Unbiased Estimators) Let h be an unbiased
estimating function such that ϑ 7→ h(x,ϑ) is continuously differentiable
and let ϑ̂ be an estimator according to h. Then, the first order Taylor
series expansion of ϑ 7→ h(x,ϑ) at ϑ̂(x) yields that for x ∈X

h(x,ϑ)= h(x, ϑ̂(x))+Dh(x, ϑ̂(x))(ϑ− ϑ̂(x))+remainder, (2.2)

where Dh(x, ϑ̂(x)) denotes the Jacobi-matrix of h(x, ·) at ϑ̂(x). If we assume
that Dh(·, ϑ̂(·)) and ϑ̂ are uncorrelated under each ϑ ∈Θ, that is,

Eϑ

(
Dh(·, ϑ̂(·))(ϑ− ϑ̂(·)))=Eϑ

(
Dh(·, ϑ̂(·)))Eϑ

(
ϑ− ϑ̂)

holds for all ϑ ∈Θ, we have that (2.2

.

) yields

0=Eϑh(·,ϑ)≈EϑDh(·, ϑ̂(·))Eϑ

(
ϑ− ϑ̂)

, (2.3)
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since h(x, ϑ̂(x))= 0 for all x ∈X by definition of ϑ̂. The matrix EϑDh(·,ϑ) is
called sensitivity matrix of h. If we assume furthermore that EϑDh(·,ϑ) is
non-singular for all ϑ, we get by equation (2.3

.

) that Eϑ(ϑ− ϑ̂)≈ 0 for all ϑ
which means that ϑ̂ is approximately unbiased for idΘ. _

The minimum contrast and the estimating function approach may be
related which we illustrate by the following example.

2.4 Example (Maximum Likelihood Estimation) For some non-empty,
open parameter set Θ⊂�k, consider a statistical modelP= {

Pϑ :∈Θ}
that

is dominated by a σ-finite measure µ. Let fϑ denote the corresponding
density of Pϑ w. r. t. µ for ϑ ∈Θ. To a given observation x ∈X, Fisher

.

(1912

.

,
1922

.

) proposed to choose a parameter ϑ̂ML(x) ∈Θ which is most likely in
the sense that fϑ(x)≤ fϑ̂ML(x)(x) for all ϑ ∈Θ. Given data x ∈X, we therefore
look for a maximizer of the so-called likelihood

ϑ 7→ L(x,ϑ)B fϑ(x)

or equivalently a maximizer of the log-likelihood

ϑ 7→ `(x,ϑ)B log fϑ(x). (2.4)

Each ϑ̂ML(x) ∈ argmax{L(x,ϑ) : ϑ ∈Θ} is called maximum likelihood esti-
mate for the data x, in the case of existence. If ϑ̂ML(x) exists for all x ∈X
and if

ϑ̂ML : (X,A)→ (Θ,B(Θ))

is measurable, the function ϑ̂ML is called maximum likelihood estimator
(MLE) for idΘ. Under regularity conditions, the MLE can be obtained as
a minimum contrast estimate as well as a root of an estimating equation.
Here, we give a sketch of both approaches. Concerning the regularity
conditions especially with regard to the existence and uniqueness of an
MLE, we refer to the subsequent Proposition 2.5

.

.
MLE as a Minimum Contrast Estimate. Defining A(x,ϑ)B−`(x,ϑ) for

(x,ϑ) ∈X×Θ yields a contrast function, provided that A(·,ϑ) isP-integrable
for all ϑ ∈Θ. The expected contrast function is

α(ϑ,η)B−�ϑ log fη for ϑ, η ∈Θ.

Note that α(ϑ,η) is minimized if and only if ϑ= η. This is due to

α(ϑ,η)−α(ϑ,ϑ) = −(�ϑ log fη−�ϑ log fϑ)

= −�ϑ log
fη
fϑ

≥ − log�ϑ
fη
fϑ

= 0,
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where equality holds if and only if ϑ= η. The left-hand side is also called
Kullback-Leibler divergence or Kullback-Leibler information which mea-
sures how different distributions are from another.

MLE as a Root of an Estimating Function. According to the initial
motivation, we are looking for maximizer of (2.4

.

). Hence, assuming that
`(x, ·) is differentiable for P-almost all x ∈ X, we are looking for roots of
the so-called score

s(x,ϑ)B
∂

∂ϑ
`(x,ϑ) (2.5)

as a function in ϑ ∈ Θ given the data x ∈ X. If we additionally assume
that the likelihood is strictly concave, there is at most one root of (2.5

.

)
and hence at most one MLE. The score s : X×Θ→ �k is therefore an
estimating function that may be used to define an MLE. _

The existence of MLEs is generally not ensured, especially if the
parameter space is not compact (see for example Liese & Miescke

.

, 2008

.

,
Example 7.90, page 335). For the existence and computation of the MLE
in exponential families, we note the following proposition.

2.5 Proposition (Exponential Family and MLE) Let P= {
Pϑ : ϑ ∈Θ}

be
an exponential family of full rank with canonical parameter idΘ, suffi-
cient statistic S = (S1, ...,Sk) ∈L2(X,A,P), and let suppPS be the common
support of PS. Then, the log-likelihood is twice differentiable and
(a) the score is2

.

∂

∂ϑ
`(x,ϑ)= S(x)−EϑS for ϑ ∈ int(Θ)

and, hence, an unbiased estimating function.

(b) The so-called (observed) Fisher information is

− ∂2

∂ϑ∂ϑT`(x,ϑ)=VarϑS for ϑ ∈ int(Θ) .

(c) For x ∈X such that

S(x) ∈ int
(
cl

(
conv

(
suppPS)))

(2.6)

there is a unique MLE that is given as the root of the score. _

Proof: Barndorff-Nielsen

.

(1978

.

, Section 9.3, in particular Theorem 9.13,
page 150 f.). ■

2For a subset M of�k, we recall that int(M) , cl(M) , and conv(M) denote the interior,
the closure, and the convex hull of M.
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2.6 Remark Assume that (2.6

.

) holds for P-almost all x ∈ X. Then, the
MLE ϑ̂ML is defined except on the P-null set{

S does not fulfill (2.6

.

)
} ∈A.

Furthermore, ϑ̂ML is σ(S)-measurable. This is due to the fact that the set
{S does not fulfill (2.6

.

)} is obviously σ(S)-measurable and for all

x ∈ {
S fulfills (2.6

.

)
}

the MLE exists uniquely as a root of the score, that is, ϑ̂ML(x) is given
such that

Eϑ̂ML(x)S = S(x).

Hence, ϑ̂ML1{S fulfills (2.6

.

)} is measurable w. r. t. σ(S). _

2.7 Remark (MLE, Invariance Property) Consider a parametrized sta-
tistical model P = {

Pϑ : ϑ ∈ Θ}
and assume that the MLE ϑ̂ML for the

canonical parameter exists. Furthermore, for some H⊂�l let κ : Θ→H
be a measurable function. Then, κ(ϑ̂ML) is the MLE for the transformed
parameter κ(idΘ). In the literature this is known as the invariance prop-
erty of the MLE. _

Consider a statistical model P which is misspecified, that is, P does
not contain the distribution of our observation X . Hence, an estimator
κ(ϑ̂(X )) of the parameter value of interest3

.

κ(PX ) may have some slight,
however, still systematic error due to the misspecification. Assume that
ϕ : H→H denotes a slight correction4

.

that eliminates this error, meaning
on the one hand κ(PX )=ϕ(κ(ϑ)) for some ϑ ∈Θ and on the other hand we
have that, for example,

‖η−ϕ(η)‖�l for η ∈H

is small, say. It is then desirable that our construction principle for the
estimator κ̂ is not much affected by such slight, hypothetical parameter
correction. That means, our estimation method yields an estimator κ̂ϕ for
the corrected parameter function ϕ◦κ such that, for example,∫

‖κ̂− κ̂ϕ‖�l dPϑ for ϑ ∈Θ

is small, too. In this sense the construction principle is desired to exhibit
a stability. Since this notion of stability is crucial for the present thesis we
specify the concept in the following definition in a rather general context.

3We assume here that the parameter function κ : Θ→ H for some H ⊂�l has an
extension that is also denoted by κ such that κ(PX ) can be considered.

4In practice, this correction is typically unknown.
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2.8 Definition (Stability of Estimator Constructions) Let K be a set of
parameter functions κ : Θ→�l and let K be a topology on K. Further-
more, consider some topology Ton the space of estimators Lp(X,A,P).5

.

We call a construction principle of estimators as a map from (K,K) to
(Lp(X,A,P),T) (weakly) stable (w. r. t. K and T) iff it is (sequentially)
continuous. _

The invariance property of the maximum likelihood principle is (weak-
ly) stable for corresponding choices of (K,K).

2.9 Example (MLE, Stability) Consider the situation of Remark 2.7

.

and a set of parameter functions K⊂L1(Θ,B(Θ),Pϑ̂ML) such that ‖κ‖ ≤ m
for all κ ∈K and a Pϑ̂ML-integrable measurable function m. Consider the
topology of pointwise convergence6

.

KBTp(K) on K. According to Remark
2.7

.

the MLE construction principle is given by the map

(K,K) → (L1(X,A,P),TL1(P))
κ 7→ κ◦ ϑ̂ML.

(2.7)

One can easily see that due to Lebesgue’s dominated convergence theo-
rem (2.7

.

) is sequentially continuous and hence the maximum likelihood
principle is weakly stable.

Let (K,K)B (B(Θ,B(Θ)),‖ · ‖∞), where B(Θ,B(Θ)) denotes the set of
all measurable, bounded functions from Θ to H and ‖ ·‖∞ denotes the sup
norm. Then, (2.7

.

) is continuous, since∫
‖κ′(ϑ̂ML(x))−κ(ϑ̂ML(x))‖Pϑ(dx)≤ ‖κ′−κ‖∞

for all ϑ ∈Θ. _

In Part II

.

the set K will consist of unbiasedly estimable parameter
functions. Furthermore, we will see that the method of unbiased esti-
mation is in general not (weakly) stable, neither w. r. t. the topology of
pointwise convergence nor w. r. t. the norm topology τ(‖ ·‖∞).

If an MLE exists, it is in most cases not explicitly known. Beyond that,
the numerical computation of this estimator involves some intractabilities
and is therefore quite cumbersome.

This is often the case in the situation of a Gibbs point process model
which we discuss in Part III

.

. For this reason, alternatives like the max-

5As an example we may mention T=TLp(P). In the next part, we will also introduce
and consider norm topologies for T.

6Let F be a space of functions with values in a normed space (E,‖ · ‖E) and with
the domain X. We denote by Tp(F) = τ( f 7→ ‖ f (x)‖E : x ∈ X) the topology of pointwise
convergence.
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imum pseudo-likelihood, the logistic regression, and the variational es-
timator were introduced through an unbiased estimating function, see
Chapter 7

.

.

2.2 Evaluation of Estimation Procedures
By the nature of an estimation problem (P,κ) we are interested in a
procedure that yields an estimator κ̂ such that the distribution P κ̂

ϑ
is

concentrated around κ(ϑ) as well as possible, uniformly for every ϑ ∈
Θ. This is clearly a challenging task, not to mention that the notion
“concentration” has to be formalized in terms of a distributional property
of the estimator κ̂.

To this end, we consider the above-mentioned concentration aspect in
terms of the decision theoretic situation given on page 9

.

.

2.10 Definition Let κ̂, λ̂ ∈ L1(X,A,P;�k) be two estimators and let L
be a set of loss functions that are convex in the first argument. Then, κ̂ is
preferred to λ̂ w. r. t. L iff

Eϑ(L(κ̂(·),ϑ))≤Eϑ(L(λ̂(·),ϑ)) for all ϑ ∈Θ, L ∈L.

In this case we write κ̂≤L λ̂. _

In practice, there might be a “true” loss function which is, however,
often unknown. It is therefore reasonable to have an ordering w. r. t. a
class of loss function as it is introduced in the above definition. The
following example yields a popular measure of concentration.

2.11 Example (Weighted Mean Squared Error) Let κ̂, λ̂ ∈L2(X,A,P;�k)
be two estimators. We define for each u ∈�k the convex loss function

Lu(x,ϑ)B (uT(x−κ(ϑ))2 for x ∈�k, ϑ ∈Θ.

By Lu(x,ϑ) we measure the u-weighted mean squared error. Set LB
{
Lu :

u ∈�k}
, then κ̂≤L λ̂ if and only if

Eϑ(Lu(κ̂(·),ϑ)) = uT
(∫

(κ̂(x)−κ(ϑ))(κ̂(x)−κ(ϑ))T Pϑ(dx)
)

u

≤ uT
(∫

(λ̂(x)−κ(ϑ))(λ̂(x)−κ(ϑ))T Pϑ(dx)
)

u

= Eϑ(Lu(λ̂(·),ϑ))

holds for all u ∈�k and ϑ ∈Θ. Then, the k×k-matrix

MSE(κ̂,ϑ)B
∫

(κ̂(x)−κ(ϑ))(κ̂(x)−κ(ϑ))T Pϑ(dx) (2.8)
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is called (multivariate) mean squared error (MSE) of κ̂ under ϑ ∈ Θ.
Furthermore, κ̂ ≤L λ̂ holds if and only if MSE(κ̂,ϑ) ≤L MSE(λ̂,ϑ) for all
ϑ ∈Θ, where ≤L denotes the Löwner order7

.

. _

The MSE makes use of the estimator in an explicit from. This is
somewhat unfortunate, since estimators are often defined implicitly (see
also previous section). For that reason a generalized concept of the MSE
for estimating functions are needed. Instead of using the second moment
of the estimating function (x,ϑ) 7→ (κ̂(x)−κ(ϑ)), we henceforth generally
consider

Eϑh(·,ϑ)h(·,ϑ)T =
∫

h(x,ϑ)h(x,ϑ)T Pϑ(dx), (2.9)

where h is the estimating function which determines the estimator κ̂. A
comparison of estimating procedures according to (2.9

.

) is reasonable as
long as we take the sensitivity of the estimating function in ϑ into account.
We assume that ϑ 7→ h(x,ϑ) is differentiable for all x ∈X and we require
that (2.9

.

) is normalized by

EϑDh(·,ϑ)B
(
Eϑ

∂

∂ϑi
h j(·,ϑ)

)
1≤i, j≤k

, (2.10)

where we also assume that (2.10

.

) exists. For a further discussion of an
evaluation concept for estimating function, we consider the following class
of regular ones. To this end, we especially consider a parametrized statis-
tical model P= {

Pϑ : ϑ ∈Θ}
which is dominated by µ. The corresponding

densities of Pϑ w. r. t. µ are denoted by fϑ for ϑ ∈Θ.

2.12 Definition (Regular Estimating Functions) An unbiased estimating
function h is called regular iff
(a) ϑ 7→ h(x,ϑ) is differentiable for all x ∈X;

(b) the order of integration and differentiation can be interchanged, that
is,

∂

∂ϑ j

∫
ϕ(x)h(x,ϑ) fϑ(x)µ(dx)=

∫
ϕ(x)

∂

∂ϑ j

(
h(x,ϑ) fϑ(x)

)
µ(dx)

for j = 1, ...,k;

(c) the matrices EϑDh(·,ϑ) and Eϑh(·,ϑ)h(·,ϑ)T exist and are non-singular
for all ϑ ∈Θ.

The set of all regular estimating functions is denoted by H=H(P). _

7For a definition see Footnote 4

.

of Chapter 1

.

on page 11

.

.
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2.13 Example (Score Function, Exponential Family) Let P= {
Pϑ : ϑ ∈

Θ
}

be an exponential family of full rank, with sufficient statistic S ∈
L2(X,A,P), and open parameter set Θ⊂�k. Then, the score function

s(x,ϑ)= ∂

∂ϑ
`(x,ϑ)= S(x)−EϑS for x ∈X, ϑ ∈Θ

is a regular unbiased estimating function, since: according to Proposition
2.5

.

we have that Eϑs(·,ϑ)= 0 for all ϑ ∈Θ and that s(x, ·) is differentiable
for P-almost all x ∈X. Furthermore, we have

Eϑs(·,ϑ)s(·,ϑ)T = Eϑ(S−EϑS)(S−EϑS)T

= VarϑS

and Proposition 2.5

.

(c) directly yields EϑDh(·,ϑ)=VarϑS. Note that VarϑS
is positive definite for all ϑ ∈Θ since the exponential family is of full rank.
Finally, we note that (see also Lemma 1.38

.

)

∂

∂ϑ j

∫
ϕ(x)

(〈ϑ,S〉− log c(ϑ)
)
fϑ(x)µ(dx)

=
∫
ϕ(x)

∂

∂ϑ j

((〈ϑ,S〉− log c(ϑ)
)
fϑ(x)

)
µ(dx)

for j = 1, ...,k, that is, the order of integration and differentiation can be
interchanged. _

For a regular estimating function h ∈H, we define

h(s) B− (EϑDh(·,ϑ))T
(
Eϑh(·,ϑ)h(·,ϑ)T

)−1
h

which is called standardization of h.
The following traces back to Godambe

.

(1960

.

).

2.14 Definition For h ∈H we set for ϑ ∈Θ

Gϑ(h)B (EϑDh(·,ϑ))T
(
Eϑh(·,ϑ)h(·,ϑ)T

)−1
(EϑDh(·,ϑ)) (2.11)

which is called the (generalized) Godambe information of h. _

2.15 Example (Godambe’s Efficiency Criterium) Let h, g ∈ H be two
regular estimating functions. Similar to Example 2.11

.

we consider for
each u ∈�k the loss of h given by Lu

(
h(x,ϑ)

)
B (uTh(x,ϑ))2 for x ∈�k and

ϑ ∈Θ. Set LB {Lu : u ∈�k}, we then write h ≤L g iff

Eϑ

(
Lu

(
h(s)(·,ϑ)

))≥Eϑ

(
Lu

(
g(s)(·,ϑ)

))
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for the standardized estimating functions h(s) and g(s). That also means

uTGϑ(h)u = uTEϑ

(
h(s)(·,ϑ)h(s)(·,ϑ)T

)
u

= Eϑ

(
Lu

(
h(s)(·,ϑ)

))
≥ Eϑ

(
Lu

(
g(s)(·,ϑ)

))
= uTEϑ

(
g(s)(·,ϑ)g(s)(·,ϑ)T

)
u

= uTGϑ(g)u

for all u ∈�k and hence we have Gϑ(g)≤L Gϑ(h) for all ϑ ∈Θ. _

We look for an estimating function h with large Godambe information
Gϑ(h) for ϑ ∈Θ. Therefore, we arrive at the following optimality criterion.

2.16 Definition Let G ⊂ H be some subset of regular estimating func-
tions. We call h ∈G optimal in G iff Gϑ(g)≤L Gϑ(h) holds for all ϑ ∈Θ and
all g ∈G. _

2.3 Optimal Estimation Procedures
In the previous section we have introduced evaluation concepts of esti-
mation procedures. This section is concerned with the optimality with
respect to the introduced partial orders.

To this end, we first state a popular result concerning the improvement
of estimators that is due to Rao

.

(1945

.

) and Blackwell

.

(1947

.

). The result
was extended to the multivariate case and arbitrary convex loss functions
by Hodges & Lehmann

.

(1950

.

).

2.17 Theorem (Rao–Blackwell) Let κ̂ ∈ L1(X,A,P;�k) be an estimator
for (P,κ) and let C⊂Abe sufficient for P. Furthermore, let L be the set
of all convex loss functions. Then,

E(κ̂|C)≤L κ̂,

that is, the Rao–Blackwellization8

.

of κ̂ yields an improvement with respect
to ≤L. _

Proof: Since C is sufficient we may consider the Rao–Blackwellization of
κ̂, that is,

E(κ̂|C)= ⋂
ϑ∈Θ

Eϑ(κ̂|C)

8See Proposition 1.26

.

on page 17

.

f. for the Rao–Blackwell projection E(·|C), in
particular for the notion Rao-Blackwellization of an estimator.
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which is an element in L1(X, C,P), see Proposition 1.26

.

on page 17

.

. By
Jensen’s inequality we obtain

Eϑ

(
L(E(κ̂|C),ϑ)

)≤ ∫
E(L(κ̂,ϑ)|C)dPϑ =EϑL(κ̂,ϑ)

for every ϑ ∈Θ and every L ∈L. ■

By the Rao–Blackwell Theorem, we obtain in particular for an arbi-
trary estimator κ̂

MSE
(
E(κ̂|C),ϑ

)≤L MSE
(
κ̂,ϑ

)
for all ϑ ∈Θ (see also Example 2.11

.

).

Optimal Unbiased Estimators
A restriction to the class of unbiased estimators yields an optimality result
that is due to Lehmann & Scheffé

.

(1950

.

).

2.18 Theorem (Lehmann–Scheffé) Let κ̂ ∈ L1(X,A,P;�k) be an unbi-
ased estimator for (P,κ) and let C⊂ A be complete and sufficient for
P. Furthermore, let L be the set of all convex loss functions. Then, the
Rao–Blackwellization E(κ̂|C) is the optimal unbiased estimator w. r. t. ≤L,
that is,

E(κ̂|C)≤L λ̂

for any estimator λ̂ which is unbiased for (P,κ). _

Proof: Since C is sufficient, we have E(λ̂|C)≤L λ̂ for every estimator, in
particular for every unbiased estimator (see Theorem 2.17

.

). Furthermore,
there is at most one C-measurable unbiased estimator, since C is complete.
Hence, E(κ̂|C) = E(λ̂|C) for every choice of (P,κ)-unbiased estimators κ̂
and λ̂. ■

Let C⊂Abe complete and sufficient, then the theorem of Lehmann–
Scheffé states that L1(X, C,P;�k) contains the optimal unbiased estima-
tor of any unbiasedly estimable parameter. The converse does also hold
which we want to show in the following. To this end, we consider the
expectation operator

E L1(X,A,P) → (�k)Θ

κ̂ → (Eϑκ̂)ϑ∈Θ = (∫
κ̂dPϑ

)
ϑ∈Θ

(2.12)

and state the following proposition that is due to Schmetterer & Strasser

.

(1974

.

).

2.19 Proposition For an estimator κ̂ ∈ L1(X,A,P) the following two
statements are equivalent:
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(a) κ̂ ∈L1(X, V(P),P),

(b) κ̂ is an optimal unbiased estimator for (P,Eκ̂). _

Proof: The implication that (b) follows from (a) is shown in Schmetterer &
Strasser

.

(1974

.

, Satz 1, page 3). Furthermore, by Schmetterer & Strasser

.

(1974

.

, Satz 2, page 3 f.) we have that (b) implies (a). ■

The following theorem is due to Bahadur

.

(1957

.

) and concerns, im-
plicitly, the inversion of the expectation operator (2.12

.

). We also refer to
Schmetterer & Strasser

.

(1974

.

, Satz 5, page 7).

2.20 Theorem (Bahadur) Assume that any parameter κ ∈ ran(E) has
an optimal unbiased estimator κ̂. Then, there is a complete sufficient
σ-algebra C⊂ A and the restricted expectation operator E|L1(X,C,P) is
invertible. _

Proof: According to the prerequisite, there is an operator

T : ran(E)→L1(X,A,P)

that maps every parameter κ ∈ ran(E) to the existing optimal unbiased
estimator κ̂B Tκ. We show that T is the inverse operator to a restriction
of the expectation operator E.

First we show that T is linear. To this end, we note that ETκ= κ by
the required unbiasedness of Tκ. Consider κ, κ′ ∈ ran(E) then Tκ+Tκ′ is
the optimal unbiased estimator for κ+κ′, since

E(Tκ+Tκ′)=ETκ+ETκ′ = κ+κ′

and Tκ+Tκ′ is measurable w. r. t. the complete σ-algebra V(P) (see Propo-
sition 2.19

.

). In the same way we obtain T(aκ) = aTκ for a scalar a and
κ ∈ ran(E). Hence, T is linear.

Proposition 2.19

.

and the prerequisite yield ran(T) = L1(X, V(P),P).
By Schmetterer & Strasser

.

(1974

.

, Satz 1, page 3) we also have that V(P)
is sufficient.

Finally, we have TEκ̂= κ̂, since each κ̂ ∈L1(X, V(P),P) is an optimal
unbiased estimator for (P,Eκ̂), see again Proposition 2.19

.

. That means,
T = (

E|L1(X,V(P),P)
)−1. ■

For a complete and sufficient sub-σ-algebra C⊂A, we may consider
the construction principle of unbiased estimators through the inverse
expectation operator E−1

C
BE|−1

L1(X,C,P). That is, each unbiased estimable
parameter is mapped to an optimal unbiased estimator. In Part II

.

we
show that this construction principle is in general not stable. In other
words, we will see that for κ ∈ ran(E)

ECκ̂= κ (2.13)
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is usually an ill-posed problem. A slight change of the parameter function
κ ∈ ran(E) may have a large impact on the optimal unbiased estimator
for the modified estimation problem. To the author’s best knowledge, this
was only noticed by Schmetterer

.

(1977

.

, page 313) and Schmetterer

.

(1978

.

,
Section 3, page 493 f.) specifically for the case (K,K)B (ran(E),Tp).

In the present situation, the construction principle of optimal unbiased
estimators is obviously an inverse problem, which we may call inverse
problem of the unbiased estimation theory. Note that Proposition 1.34

.

(page 25

.

) yields E(·|C)=E−1
C

E, that is, composing the right-hand side of
(2.13

.

) leads to the Rao–Blackwell inverse problem which will be consid-
ered systematically in the next part. Figure 2.1

.

summarizes these results
concerning the theory of optimal unbiased estimation theory and also
the relation to the Rao–Blackwell projection through a commutative dia-
gram. The present thesis discusses the ill-posedness of the Rao–Blackwell
inverse problem by studying the ill-posedness of the inverse problem of
unbiased estimation. Regularizations of E(·|C) will hence lead to a new
concept of Rao–Blackwellization.

ran(E)

L1(X,A,P) L1(X, C,P)

E

E(·|C)

E|C−1�

Figure 2.1: The theory of optimal unbiased estimation can be illustrated by this diagram.
The arrow� indicates the commutativity of the diagram which follows by Proposition
1.34

.

, page 25

.

. Theorem 1.27

.

on page 18

.

concerns the Rao–Blackwellization E(·|C) w. r. t.
the complete and sufficient σ-algebra C. Bahadur’s converse theorem (Theorem 2.20

.

)
concerns the construction principle of unbiased estimators through the inversion of the
restricted expectation operator ECBE|L1(X,C,P).

Optimal Unbiased Estimating Functions
The optimality considered so far was achieved just within the set of all
unbiased estimators for a certain parameter κ. We now turn to an opti-
mality result for unbiased estimating functions (see Godambe

.

(1960

.

) and
Bhapkar

.

(1972

.

)). It gives a non-asymptotic, fixed sample size justification
of the MLE for the canonical parameter idΘ.

2.21 Theorem Let P= {
Pϑ : ϑ ∈Θ}

be an exponential family of full rank
and with sufficient statistic S ∈ L2(X,A,P). The score s is the optimal
estimating function within H(P), that is, s ∈H(P) and

Gϑ(h)≤L Gϑ(s) for all ϑ ∈Θ
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holds for all h ∈H(P). _

Proof: See Song

.

(2007

.

, Theorem 3.12). ■

Theorem 2.21

.

states that the MLE ϑ̂ML for the canonical parameter
is optimal with respect to the Godmabe information of its estimating
function. Furthermore, if C is complete and sufficient for P the present
chapter yields also that E(λ̂|C) is the optimal unbiased estimator for
(P,Eϑ̂ML), where λ̂ is any unbiased estimator for (P,Eϑ̂ML). In general,
we have ϑ̂ML ,E(λ̂|C) and, in fact, ϑ̂ML and E(λ̂|C) can be quite different,
although ϑ̂ML is often at least approximately unbiased (see also Remark
2.3

.

). In this sense both optimality concepts are only loosely related. This
is due to the ill-posedness of the Rao–Blackwell inverse problem which we
examine in the next part.



PART II
Regularized Rao–Blackwellization

Parametric specifications of statistical models usually result from sim-
plified assumptions about the underlying stochastic mechanism. That
means, we often deal with misspecified models and statistical inference
cannot go beyond the inaccuracy that comes from statistical modeling.
We therefore want to make sure that the problem of constructing “good”
estimators for a given parameter is stable. That means small errors in the
parametric specification can be captured by at most small changes of the
estimator (see also Definition 2.8

.

). We may put it differently, by saying
that our ambition is the well-posedness of the inverse problem inherently
considered in unbiased estimation theory (see Section 2.3

.

). However, this
well-posedness does usually not hold.

Analyzing and tackling this problem constitutes the main contribution
of the present thesis and is the subject of this part. First, we introduce
a framework for demonstrating and analyzing the ill-posedness of the
inverse problem that is given by (unbiased) estimation problems. Second,
we present two regularizations through a Tikhonov and an Ivanov ap-
proach. In both cases, estimators are constructed by accounting for prior
knowledge. This new regularization view point does not just concern the
issues of model misspecification and computational accessibility of the
estimators, but also supplements the discussion of optimal estimation
procedures (see last paragraph of Section 2.3

.

).
To clarify the intention and the role of this part, a more detailed

outline of the general problem, the state of the art, and the contribution is
given at this point. For details, references to the relevant passages in the
subsequent chapters are provided.

Problem and State of the Art
Let P = {

Pϑ : ϑ ∈ Θ}
be a parametrized statistical model on a sample

space (X,A) and let C⊂Abe a sufficient and complete σ-algebra for P.
Given an observation x ∈X, we want to estimate an �k-valued parameter
κ : Θ→�k, for example, the canonical parameter idΘ of the underlying
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distribution Pϑ. In fact, there are typically several estimators for κ, but
“good” ones with “small” mean squared errors are wanted.

To this end, we first look at unbiased estimators. The theory of unbi-
ased estimation concerns the inverse problem

Eϑλ̂= κ(ϑ) for all ϑ ∈Θ (2.14)

that is usually ill-posed according to Hadamard’s well-known criteria
of existence, uniqueness, and continuous dependence on the parameter
function κ (see Hadamard

.

(1923

.

) and also *Hadamard

.

(1902

.

) according to
e. g. Baumeister

.

(1987

.

, page 14)).
Existence of λ̂ in (2.14

.

), that is, existence of an unbiased estimator
for κ, is usually not guaranteed (see e. g. Kolmogorov

.

(1950

.

) for a simple
example regarding the Binomial model). Hence, we restrict ourself to
κ ∈ ran(E), that is, to unbiasedly estimable parameters. Then, however,
(2.14

.

) still has usually no unique solution, so we may take additional
requirements into account. Since our interest concerns “good” estima-
tors, for example, in terms of the mean squared error, the theorem of
Rao–Blackwell and that of Lehmann–Scheffé tell us to look for a C-
measurable solution E(λ̂|C) (see Rao

.

(1945

.

), Halmos

.

(1946

.

), Blackwell

.

(1947

.

), Lehmann & Scheffé

.

(1950

.

), Rao

.

(1952

.

), Bahadur

.

(1957

.

) for pioneer-
ing concepts and results, see also for example Barankin

.

(1950

.

), Hodges &
Lehmann

.

(1950

.

) and Schmetterer & Strasser

.

(1974

.

) for extensions).
While these two problems, existence and uniqueness, were extensively

discussed and studied by several authors long time ago, the problem of
continuous dependence on the parameter κ was, to the best of the author’s
knowledge, just mentioned in two conference contributions of Leopold
Schmetterer (see Schmetterer

.

(1977

.

, 1978

.

)). Probably, due to a lack of
notions, concepts and, finally, interpretable results, regularizing (2.14

.

)
was not further examined as it appears. This is even more surprising in
the light of the following problem we are concerned with in practice.

Question How to compute the Rao–Blackwellization E(λ̂|C)? _

In most cases an exact computation is not just analytically, but also numer-
ically intractable, which is due to the instability of (2.14

.

).1

.

More precisely,
E(λ̂|C) does not depend continuously on the parameter (Eϑλ̂)ϑ∈Θ, which

1See also Fu & Li

.

(1992

.

, 1998

.

) for an iterative Monte Carlo approach to compute
the Rao–Blackwellization of an initial estimator w. r. t. a complete sufficient statistic
numerically. The number of required samples depend implicitly on the parameter of
interest. Due to the described instability, that means that arbitrarily many samples
may be required to achieve a certain predetermined accuracy. However, sampling from
distributions which model complex dependences, for example, certain Gibbs point process
distributions (see Chapter 6

.

), is computationally expensive. In addition, there is a need
for discretization if the distribution of the complete sufficient statistic is continuous.
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is quite unfortunate in view of the misspecification of the statistical model
that we usually have to deal with. We therefore look for a substitute, that
is, a regularized Rao–Blackwellization.

Main Contributions
In Chapter 3

.

, we first of all introduce an appropriate topological and
analytical structure for discussing the inverse problem we are concerned
with, which we call Rao–Blackwell inverse problem. Since the required
structure is closely related to the notion of a complete σ-algebra intro-
duced by Lehmann & Scheffé

.

(1950

.

), we will speak of Lehmann–Scheffé
topologies and spaces. We show that the Lehmann–Scheffé topologies are
related to the well-known weak topologies, especially to these on Lebesgue
spaces (see for example Theorem 3.9

.

and 3.10

.

). Furthermore, we show
that the canonical topology TLp(P) rather relates to norm topologies (see
Theorem 3.11

.

). The corresponding ill-posedness of the inverse problem is
demonstrated by examples.

These considerations then provide the basis for the regularization ap-
proaches used in Chapter 4

.

, that lead to regularized Rao–Blackwellizations.
Here, the crucial starting point is given by Theorem 4.1

.

on page 70

.

, which
essentially states for p ∈ [1,∞] and some sufficiently integrable λ̂

E(λ̂|C)=E−1
C Eλ̂= argmin

{‖E(λ̂− g)‖π,p : g ∈Lp(X, C,P)
}
, (2.15)

where π is some (probability) measure on (Θ,B(Θ)) and C⊂A fulfills a
technical condition which goes slightly beyond complete sufficiency. We
may then include prior information about the estimator we have in mind
by adapting the variational problem in (2.15

.

) as described in the two
following approaches.

Tikhonov’s regularization approach accounts for regularity conditions
through semi-norms, in addition to the minimization problem (2.15

.

). More
precisely, we take the oscillation or variability of a solution into account
through a variation operator V. By Theorem 4.3

.

on page 71

.

a Tikhonov
regularized Rao–Blackwellization is provided, given by

E(α)(λ̂|C) = (αV'V+E'E)−1E'Eλ̂
= argmin

{‖E(λ̂− g)‖2
π,2 +α‖Vg‖2

π⊗idP,2 : g ∈L2(X, C,P)
}
,

where α> 0 is some regularization parameter that accounts for the model
misspecification.

This is examined for the i. i. d. Gaussian modelP= {
N(a,σ2)⊗n : a ∈�}

where σ2 > 0 is fixed and the canonical parameter id� is of interest.
Considering a Gaussian prior π = N(b,τ2) and the complete sufficient
statistic S(x)B

∑n
i=1 xi for x ∈�n, the regularized Rao–Blackwellization



46 REGULARIZED RAO–BLACKWELLIZATION II

of the median Med(X ) can be computed (see Example 4.5

.

and 4.6

.

, page 74

.

ff.) as

E(α)(Med(X )|S)= τ2

ασ2

n +τ2

( 1
n S

)+ ασ2

n

ασ2

n +τ2
b.

Hence, as the model misspecification increases, the prior gets more in-
volved in the regularized Rao–Blackwell projection process. Specifically,
setting α = 0 we obtain the maximum likelihood estimator, while α = 1
leads to the Bayes estimator (w. r. t. squared error loss) for id�.

Generally, the Tikhonov regularized Rao–Blackwellization for α= 1
has a close relation to the Bayes estimator ϑ̂Bayes (w. r. t. squared error
loss) for the canonical parameter. It is shown that (see Theorem 4.7

.

on
page 80

.

for technical details)

E(1)(λ̂|S)=
∫

Eϑλ̂Ππ(S,dP) for λ̂ ∈L2(X,A,Q),

where S is a sufficient statistic that fulfills a completeness condition,
Π(S, ·) is the posterior distribution and Q B

∫
Pϑ(·)π(dϑ). Furthermore,

we have (see Theorem 4.10

.

on page 84

.

)

‖E(1)(λ̂|S)− ϑ̂Bayes‖Q,2 ≤
√∫

Bias(λ̂,ϑ)2π(dϑ).

More generally, the Bayes risk of the Tikhonov regularized Rao–
Blackwellization E(α)(λ̂|S) is shown to be continuous in the bias of the
estimator λ̂ and, furthermore,

r
(
E(α)(λ̂|S),π

)≤ r
(
E(λ̂|S),π

)≤ r(λ̂,π),

if λ̂ is unbiased for the canonical parameter. This result is a Tikhonov
regularized version of the Rao–Blackwell and Lehmann–Scheffé theorem
(see Theorem 4.12

.

, page 86

.

).
Ivanov’s regularization approach establishes the regularity of a pseudo-

solution of (2.15

.

) by prespecifying a set of admissible solutions. Let C⊂A

be sufficient for P with a certain completeness condition. We especially
study the case of a finite-dimensional space H ⊂Lp(X, C,P) and introduce
an Ivanov regularized Rao–Blackwellization, that is,

E(H)(λ̂|C)= argmin
{‖E(λ̂− g)‖π,2 : g ∈ H

}
(see Theorem 4.14

.

on page 88

.

). Concerning the parameter (Eϑλ̂)ϑ∈Θ,
we are looking for a C-measurable estimator that is assumed to have a
“reasonable” discrete description in terms of basis elements of H.

With regard to the computation of such regularized Rao–Blackwelliza-
tions, we aim at finite-dimensional linear subspaces H that are spanned
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by “regular” eigenfunctions to eigenvalues close to 1 of a tractable Markov
operator R.2

.

For QB
∫

Pϑ(·)π(dϑ), p ∈ ]1,∞[ and ‖(I−R)|H‖ ≤ ε, Theorem
4.16

.

yields for all f ∈Lp(X,A,Q) that

‖E(H)( f |C) −∫
f (y)R(·,dy)‖Q,p

≤ |||R||| inf
{‖E( f − g)‖π,p : g ∈ H

}+ε · ‖E(H)( f |C)‖Q,p,

where |||R||| B sup{‖R f ‖Q,p : ‖E f ‖π,p ≤ 1}. As an example for such a
Markov operator R, we consider, for example,

R : λ̂ 7→
∫
λ̂(x)Pϑ̂ML(·)(dx), (2.16)

where ϑ̂ML is the maximum likelihood estimator for the canonical param-
eter idΘ, see Example 4.17

.

and 4.18

.

.
Furthermore, we can use (2.16

.

) to compute approximates of the max-
imum likelihood estimator. To this end, let P= {

Pϑ : ϑ ∈Θ}
be an expo-

nential model of full rank and with sufficient statistic S. We may then
consider the factorization of the MLE ϑ̂ML given by

ϑ̂ML C θ̂ML ◦S.

In Theorem 4.20

.

we show that

θ̂ML(s)= Eϑ̂ML(x)(λ̂)+Var−1
ϑ̂ML(x)

(S)Covϑ̂ML(x)(S, λ̂)(s−S(x))

+ Bias(λ̂, θ̂ML(s))+o(‖s−S(x)‖)

for values s in a neighborhood of the observed sufficient statistic value
S(x). Hence, an approximation of the maximum likelihood estimator in a
neighborhood of S(x) can essentially be computed by a linear regression
of λ̂ estimates at sufficient statistic values of realizations simulated from
ϑ̂ML(x). The computation of an approximate MLE distribution can be
realized as follows (see also Algorithm 4.21

.

):

Computing an Approximate Distribution of the MLE. Let (Pϑ)ϑ∈Θ
be an exponential model with sufficient statistic S. By ϑ̂ML we denote the
maximum likelihood estimator for the canonical parameter idΘ and by λ̂
we denote a simple alternative estimator. For our observed data x ∈X, we
proceed as follows:

(1) Compute ϑ̂ML(x);
(2) Simulate Y1, ...,YN ∼ Pϑ̂ML(x) for a large number N;
(3) Compute λ̂(Y1), ..., λ̂(YN ) and sufficient statistic values S(Y1), ...,S(YN );
(4) Perform a linear regression of

(
λ̂(Yi) : i = 1, ..., N

)
on the sufficient

statistic values
(
S(Yi) : i = 1, ..., N

)
.

2Here, R substitutes the conditional distribution P(·|C). Recall, that P(·|C) is a
projection and, hence, the corresponding spectrum consists of 1 and 0 only.
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Then, the fitted values constitute an approximation to the distribution
of ϑ̂ML with underlying true distribution Pϑ for some ϑ ∈Θ (see Theorem
4.20

.

). _

In Part III

.

we demonstrate the benefits of the above results and the
performance of the algorithm through a simulation study for the situation
of Gibbs point process statistics (see Chapter 7

.

, page 157

.

).



CHAPTER 3
The Rao–Blackwell Inverse Problem

Let (X,A) be a measurable space with Borel-σ-algebra Aaccording to an
underlying Hausdorff-topology T. Furthermore, let P⊂ Prob(X,A) be a
statistical model. The problem is to estimate an �k-valued parameter
κ : P→�k.

To begin with, we briefly recall some notations from Chapter 1

.

(see
also page 8

.

f.). For some p ∈ [1,∞] we consider estimators κ̂ : X→�k that
are pth power integrable w. r. t. every P ∈P, that is,

Lp(X,A,P;�k)B
⋂

P∈P
Lp(X,A,P;�k).

We identify estimators according to theP-almost sure equivalence relation.
That means, let [P] be the set of all functions in Lp(X,A,P;�k) that equal
the null function P-almost surely, we then consider

Lp(X,A,P;�k)BLp(X,A,P;�k)
/

[P],

containing all equivalence classes (w. r. t. [P]) of functions with values in
�k. We will just write Lp(X,A,P) to emphasize the considered σ-algebra
and use Lp(P) for short if no clarification is needed.

Assume that P admits a complete and sufficient σ-algebra C⊂ A.
A crucial item for the Rao–Blackwell inverse problem is the expectation
operator

E : L1(X,A,P) → (
�k)P

f 7→ (∫
f dP

)
P∈P

which determines C-measurable and P-integrable functions uniquely due
to the completeness of C for P. Denoting by ran(E) the range of E and
noting that

ran(E)=E(L1(X, C,P))⊂ (
�

k)P,

we finally get the commutative diagram (see also Figure 2.1

.

, page 41

.

, and
recall that ECBE|L1(X,C,P))
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ran(E)

L1(X,A,P) L1(X, C,P).

E

E(·|C)

E|C−1�

The classical Rao–Blackwellization corresponds, therefore, to the following
what we call Rao–Blackwell inverse problem.1

.

For any f ∈L1(P) we are
looking for g ∈L1(X, C,P) such that

EP f =EP g for all P ∈P, (3.1)

which has in L1(X, C,P) the unique solution E( f |C)=⋂
P∈PEP ( f |C), since

C is sufficient and complete.2

.

We call (3.1

.

) Radon–Nikodým equations in
accordance with the following example.

3.1 Remark (Conditional Expectation) Let P be an arbitrary probability
measure on (X,A) and let C⊂Abe a sub-σ-algebra. Define

PB
{
P(·|C) : C ∈ C, P(C)> 0

}
,

then C is complete and sufficient for P. A more general statement and a
proof is given in Kagan et al.

.

(2014

.

, Lemma 4.1, see also Example 4.5).
The conditional expectation of X ∈L1(P) is any C-measurable random

variable E(X |C) which fulfills∫
C

X dP =
∫

C
E(X |C)dP ∀C ∈ C. (3.2)

Condition (3.2

.

) corresponds to (3.1

.

) with P considered in this example.
Furthermore, a standard lifting argument obviously yields that (3.2

.

) is
equivalent to ∫

XϕdP =
∫

E(X |C)ϕdP (3.3)

for all C-measurable, non-negative functions ϕ. Here, (3.3

.

) corresponds
to (3.1

.

) with the statistical model P′B {Q : Q ¿ P|C}. Note also that P′

can be reduced to a class of distributions that separates C-measurable
functions. _

In most cases, it is hard or even impossible to solve the Radon–Niko-
dým equations exactly, that is, to compute E( f |C) for given (EP f )P∈P. In
fact, there is usually no need to solve these equations exacty due to model

1The closely related observation that the unbiased estimation theory belongs to the
theory of (ill-posed) integral equations of the first kind is, to the best knowledge of the
author, only given in Schmetterer

.

(1977

.

, page 313) and Schmetterer

.

(1978

.

, Section 3,
page 493 f.).

2See Proposition 1.26

.

.
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misspecifications that often occur in practice. The parameter function
(EP f )P∈P can then only be interpreted up to slight (unknown) corrections.

The best we can do is to compute a E(∗)( f |C) which fulfills (3.1

.

) in some
sense approximately. Our concern is therefore to analyze the stability
of the Rao–Blackwell inverse problem, that is, if and in what sense the
solution E(∗)( f |C) depends continuously on the information (EP f )P∈P.

This question of continuity of operators from ran(E) to Lp(P) depends
evidently on the principal questions of how to compare the mean function-
als in ran(E) and how to compare the Rao–Blackwellizations in Lp(P).
However, since we are interested in the Rao–Blackwell operator E(·|C),
the choice of the topological structure on ran(E) should also account for
the continuity of the expectation operator E from Lp(P) to ran(E) (see
also diagram on page 50

.

).
In the next section, we introduce what we call Lehmann–Scheffé topolo-

gies on Lp(P) by borrowing canonical topological structures from ran(E)
via the expectation operator E. Subsequently, we introduce associated
normed spaces which we call Lehmann–Scheffé spaces. Based on these
topological structures, we give various results and examples regarding
the described continuity problem.

3.1 Lehmann–Scheffé Topologies
Let p ∈ [1,∞]. A statistical model P induces a topological structure on
Lp(X,A,P) based on the pointwise behavior of the expectation operator E
by way of the semi-norms

f 7→ qP ( f )B
∥∥∥∥∫

f dP
∥∥∥∥ for P ∈P. (3.4)

Consequently, we consider the locally convex topology3

.

TLS BTLS(P)BTLS(Lp(X,A,P),P)B τ(qP : P ∈P) (3.5)

on Lp(X,A,P), that is, the smallest topology such that all semi-norms qP
for P ∈P are continuous. We call (3.5

.

) the Lehmann–Scheffé (LS) topology,
referring to Lehmann & Scheffé

.

(1947

.

, 1950

.

, 1955

.

, 1956

.

) who introduced
the notion of completeness4

.

of a σ-algebra for a statistical model and
demonstrated the utility of this general concept for statistical theory.

In fact, if C⊂A is a complete σ-algebra for P the Lehmann–Scheffé
topology TLS(Lp(X, C,P),P) on Lp(X, C,P) is a Hausdorff topology which
follows easily from e. g. Werner

.

(2018

.

, Lemma VIII.1.4, page 429). In the
3Let ( fα)α∈I be a family of functions from X to a topological space (Y, C). We denote

by τ( fα : α ∈ I) the coarsest topology on X such that all fα are continuous.
4See Definition 1.23

.

on page 16

.

.
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notation of the LS topology we will often suppress the space Lp(X, C,P)
and just write TLS(P), since one can easily show that

TLS(Lp(X, C,P),P)=TLS(Lp(X,A,P),P)∩Lp(X, C,P). (3.6)

So far we noted that a statistical model P induces a topological struc-
ture on Lp(X, C,P;�k). Conversely, Lp(P) also generates “canonical” topo-
logical structure on P given by

T∗
LS(Lp(P))BT∗

LS(P,Lp(P))B τ(P 7→ ∫
f dP : f ∈Lp(P))

which we call Lehmann–Scheffé-∗-topology. We discuss this notion and
the relation to the weak topologies in the following remark.

3.2 Remark (Lp(X, C,P;�k)-P-Duality) (a) Bilinear Map. The statis-
tical model P technically in terms of the generated linear space5

.

MB spanP⊂S(X,A)

is linked to the estimator space Lp(X, C,P;�k) by the bilinear map

[·, ·] : Lp(X, C,P;�k)×M → �k

( f ,µ) 7→ ∫
f dµ.

(3.7)

Note that [ f ,µ] = 0 for all f ∈ Lp(P) implies µ = 0. Conversely, the com-
pleteness of C for P yields that [ f ,µ]= 0 for all µ ∈ M implies f = 0.
(b) Linear Functionals and Dual Subspaces. For α ∈�k we define
the bilinear form

[·, ·]α : Lp(P)×M → �

( f ,µ) 7→ ∫ 〈α, f 〉dµ.

Furthermore, f 7→ [ f ,µ]α is a linear functional on Lp(P) for every µ ∈ M
and every α ∈�k. The vector space M ×�k can therefore be considered
as a subspace of 6

.

Lp(P)∗. Analogously, we may conclude that Lp(P)×�k

represents a subspace of M∗.
(c) Linear Functionals, LS- and Weak Topologies. For the Lehmann–
Scheffé topology we have

TLS(Lp(P),P)= τ([·,µ]α : µ ∈ M, α ∈�k).

To show this, we first note that for µ ∈ M the function [·,µ] is continuous
w. r. t. TLS(P). Hence, [·,µ]α is continuous w. r. t. TLS(P) for all α ∈�k. That

5We denote by S(X,A) the set of finite signed measures on (X,A).
6Let E be a vector space. The linear space consisting of all linear functionals on E is

called algebraic dual space of E and denoted by E∗.
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means, the right-hand side is coarser than the left-hand side. To see the
converse inclusion, we note that [·,P] is continuous if and only if [·,P]α is
continuous for all α ∈�k and that P⊂ M.

For the Lehmann–Scheffé-∗-topology it can be shown that

T∗
LS(P,Lp(P))= τ([ f , ·]α : f ∈Lp(P), α ∈�k)∩P.

Hence, the LS- and the LS-∗-topology are the coarsest topologies such that
the linear functionals essentially determined byP and Lp(P), respectively,
are continuous.

In fact, for the case k = 1 the Lehmann–Scheffé topology coincides
with the usual weak topology according to the dual pair (Lp(P), M, [·, ·])
(see Schaefer

.

(1971

.

, page 123)), that is, the coarsest topology on Lp(P),
such that all linear functionals f 7→ [ f ,µ] for µ ∈ M are continuous, which
is formally given by

σw(Lp(P), M, [·, ·])B τ([·,µ] : µ ∈ M).

Conversely, the weak-∗-topology w. r. t. the dual pair (Lp(P), M, [·, ·]) is
defined by

σw(M,Lp(P), [·, ·])B τ([ f , ·] : f ∈Lp(P)).

This is the weakest topology on M such that all linear functionals µ 7→
[ f ,µ] for f ∈Lp(P) are continuous. Hence, we have a topological structure
on M and consequently on P. _

Rao–Blackwellizations that we (approximately) compute with regard
to the Radon-Nikodým equations (3.1

.

) should be compared, for example,
w. r. t. the canonical topology TLp(P) for p ∈ [1,∞[. This topological struc-
ture is stronger than that of the Lehmann–Scheffé topology TLS(P). We
recall from Chapter 1

.

that the topology TLp(P) on Lp(P) is generated by
the P-indexed family of semi-norms

f 7→ ‖ f ‖P,p B
p

√∫
‖ f (x)‖p P(dx) for P ∈P.

With this structure we simultaneously compare estimators in Lp(P) for
every P ∈ P. Furthermore, for p = ∞ we note that the vector space
L∞(X,A,P) contains the P-equivalence classes that are essentially bound-
ed. That is, a measurable f is an element of L∞(P) iff there is a number
a ∈� such that {

x ∈X : ‖ f (x)‖�k > a
}

is a P-null set. By setting

‖ f ‖L∞(P),∞B inf
{

sup
{‖ f (x)‖�k : x ∈ Nc} : N ∈A, P(N)= 0 ∀P ∈P

}
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for f ∈L∞(P), we obtain a norm on L∞(X,A,P). With regard to the Radon-
Nikodým equations, we are concerned with

‖ f ‖LS,∞B sup
{‖∫ f dP‖�k : P ∈P}

for f ∈L∞(P)

on the one hand. Note that ‖ · ‖LS,∞ ≤ ‖ · ‖L∞(P),∞ and ‖ · ‖LS,∞ is a semi-
norm on L∞(X,A,P) and even a norm on L∞(X, C,P). On the other hand,
however, the comparison of Rao–Blackwellizations should at least be
considered w. r. t.

‖ f ‖|LS|,∞B sup
{∫ ‖ f (x)‖�k P(dx) : P ∈P}≤ ‖ f ‖L∞(P),∞.

In general we have ‖ · ‖|LS|,∞ , ‖ · ‖L∞(P),∞. Note, however, that ‖ · ‖|LS|,∞
constitutes also a norm on L∞(X,A,P).

Concerning misspecified statistical models and with regard to the
(approximate) computation of Rao–Blackwellizations, our intention is to
analyze the well- or ill-posedness of the Rao–Blackwell inverse problem.
According to the above preparations this corresponds to analyzing the
continuity of the Rao–Blackwell projection considered as7

.

E(·|C) : (Lp(X,A,P),TLS(P)) → (Lp(X, C,P),TLp(P))
f 7→ E( f |C),

(3.8)

if 1≤ p <∞, and as

E(·|C) : (L∞(X,A,P),‖ ·‖LS,∞) → (L∞(X, C,P),‖ ·‖|LS|,∞)
f 7→ E( f |C),

if p = ∞. In the remaining of this thesis we will often skip the latter
case. A characterization of the continuity of (3.8

.

) is given in the following
lemma.

3.3 Lemma The Rao–Blackwell projection in (3.8

.

) is continuous if and
only if TLS(P)=TLp(P) holds on Lp(X, C,P). _

Proof: We decompose E(·|C) in (3.8

.

) in a projection and a topological part,
that is, in

prLp(X,C,P) : (Lp(X,A,P),TLS(P)) → (Lp(X, C,P),TLS(P))
f 7→ E( f |C)

and the identity

idLp(X,C,P) : (Lp(X, C,P),TLS(P))→ (Lp(X, C,P),TLp(P)). (3.9)
7See also Proposition 1.26

.

on page 17

.

where we have shown that the Rao–Blackwell
projection is continuous w. r. t. the canonical topology.
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Note that E(·|C)= idLp(X,C,P) ◦prLp(X,C,P), where prLp(X,C,P) is continuous,
since: for all f ∈Lp(X,A,P)

‖∫
E( f |C)dP‖�k = ‖∫

f dP‖�k

for all P ∈P. Hence, if E is a generator of TLS(P) on Lp(X, C,P) we have
that pr−1

Lp(X,C,P)(E) is the generator of TLS(P) on Lp(X,A,P). Note also
that TLS(P)⊂TLp(P), since for a constant C > 0, all f ∈Lp(X,A,P) and all
P ∈P

‖∫
f dP‖�k ≤ ∫ ‖ f ‖�k dP ≤ C‖ f ‖P,p.

Therefore, E(·|C) is continuous if idLp(X,C,P) in (3.9

.

) is continuous, that is,
TLS(P)=TLp(P) on Lp(X, C,P).

Conversely, the continuity of E(·|C) yields the continuity of

E(·|C)|Lp(X,C,P) = idLp(X,C,P),

since E(·|C)−1(TLp(P))⊂TLS(P) yields

E(·|C)|−1
Lp(X,C,P)(TLp(P))⊂TLS(P)∩Lp(X, C,P)

and the right-hand side corresponds to TLS(P) on Lp(X, C,P) (see also
(3.6

.

)). Hence, TLS(P)=TLp(P) on Lp(X, C,P). ■

The following examples show that in some cases TLS(P) and TLp(P)
are already well known to us if (X,A) and P are suitable chosen. They
allow us to obtain an impression of the nature of the topologies we are
concerned with, depending on the statistical model P and the underlying
sample space (X,A).

3.4 Example (Topology of Pointwise Convergence) Let (X,A) be an ar-
bitrary measurable space and consider the family of Dirac measures
P= (δx : x ∈ X). Obviously, P is complete. Furthermore, we note for the
spaces of estimators

L1(X,A,P;�k)=L(X,A,P;�k),

where the latter denotes the vector space of [P]-equivalence classes of A-
measurable �k-valued functions. The corresponding LS topology TLS(P)
as well as TL1(P) are generated by the same family of semi-norms f 7→
‖ f (x)‖ for x ∈ X. That is, TLS and TL1(P) coincide with the topology of
pointwise convergence and we have

(L(X,A,P;�k),TLS(P))= (L(X,A,P;�k),TL1(P)).

Furthermore, TLS cannot be generated by a metric, if X is uncountable
(see e. g. Werner

.

(2018

.

)). _
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3.5 Example (Binomial Model) For n ∈� consider the statistical model
P = (B(n,π) : π ∈ ]0,1[), where XB {0,1, ...,n} is our sample space. The
statistic id{0,...,n} is complete and sufficient for P. Note that Lp(X,A,P)=
�{0,...,n} holds for any p ∈ [1,∞]. Both, TLS(P) and TL1(P) make �{0,...,n} a
finite-dimensional Hausdorff topological vector space, whose topology is
uniquely determined. Hence, TLS(P) = TL1(P) and furthermore TLS(P),
TL1(P) coincide with the Euclidean topology, that is, they are in particular
generated by a norm on �n. _

In general, however, TLS is usually strictly weaker than TL1(P) as we
will see in the following example. According to Lemma 3.3

.

this means
that in general the Rao–Blackwell projection E(·|C) given in (3.8

.

) is not
continuous and hence the Rao–Blackwell inverse problem is usually ill-
posed.

3.6 Example (Weak vs Norm Topology, k = 1) Let Q be a probability
measure on (X,A). For some conjugate exponents 1 ≤ p ≤ q ≤∞, that is,
1
p + 1

q = 1, we consider the Q-dominated, non-parametric statistical model

PB
{
P : P ∈Prob(X,A), P ¿Q, dP

dQ ∈Lq(Q)
}

. (3.10)

Then, by definition of P we have Lp(Q) ⊂ L1(P), since [P] = [Q] and for
every f ∈Lp(Q) ∫

| f |dP =
∫

| f |dP
dQ

dQ <∞,

hence, f ∈L1(P). Furthermore, the LS topology TLS(P) on Lp(Q) equals
the weak topology of Lp(Q)

σw(Lp(Q),Lq(Q))= τ( f 7→ |∫ f gdQ| : g ∈Lq(Q)
)
,

see for example Werner

.

(2018

.

).
Obviously, we have TLS(P) ⊂ σw(Lp(Q),Lq(Q)) by the definition of P

and TLS(P). To show the converse let g ∈Lq(Q) with8

.

g+, g− , 0, then∣∣∣∣∫ f gdQ
∣∣∣∣≤ ‖g+‖Q,1

∣∣∣∣∫ f dPg+

∣∣∣∣+‖g−‖Q,1

∣∣∣∣∫ f dPg−

∣∣∣∣ ,

where Pg+ ,Pg− ∈P are distributions with densities proportional to g+ and
g− (w. r. t. Q), respectively. Hence, f 7→ ∣∣∫ f gdQ

∣∣ is TLS(P)-continuous.
If p = 1 the absolute LS topology TL1(P) is exactly the ‖ · ‖Q-norm

topology on Lp(Q), which is seen as follows: First, we have Q ∈P, thus
τ(‖ · ‖Q) ⊂ TL1(P). Second, any P ∈P has a density w. r. t. Q which is an
element in L∞(Q), hence ‖ f ‖P ≤ CP · ‖ f ‖Q for some CP > 0. Thus, ‖ ·‖P is
continuous for every P ∈P, that is, we have TL1(P) ⊂ τ(‖ ·‖Q). _

8For a function f : X→ � the positive and negative part are defined by f +(x) B
max{ f (x), x} and f −(x)Bmax{− f (x), x} for x ∈X, respectively.
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As the example above indicates, TLS(P) is in general strictly weaker
than TLp(P). The following well known example illustrates what can go
wrong, that is, that TLS(P) may fail to detect “high frequency components”
of a function.

3.7 Example (Rademacher Sequence) Consider the situation of Exam-
ple 3.6

.

for p = 1 and q = ∞ with (X,A,Q) B ([0,1],B([0,1]),λ), where
λ denotes the Lebesgue measure. According to Example 3.6

.

we have
TLS(P) = σw(L1(Q),L∞(Q)) and TL1(P) = τ(‖ · ‖Q). Furthermore, it it well
known that σw(Lp(Q),Lq(Q)) is strictly weaker than τ(‖ ·‖Q). This can be
illustrated by the Rademacher sequence

fn(x)B sign
(
sin(2nπx)

)
for x ∈ [0,1], n ∈�,

which is well known to converge weakly to the zero function, that is, we
have convergence w. r. t. TLS(P). However, it obviously does not converge
w. r. t. TL1(P) = τ(‖ ·‖Q), since ‖ fn‖P = 1 for every n ∈� and all P ∈P. _

From the above example, we can easily deduce consequences for sta-
tistical more relevant situations.

3.8 Example Consider the situation of Example 3.6

.

for p = 1 and q =∞.
For any countable complete submodel Q of P, e. g., Q= (N(µ,σ2) : µ ∈�),
we have

TLS(Q)(σw(L1(λ),L∞(λ)).

Note that the generator of TLS(Q) is contained in the weak topology on
the right-hand side. Furthermore, since TLS(Q) is metrizable, it has to
be different and hence strictly weaker than the non-metrizable weak
topology σw(L1(λ),L∞(λ)). Furthermore, we also have

TL1(Q) ( τ(‖ ·‖λ)

since: ‖·‖P ≤ C‖·‖λ for some C > 0 and for all P ∈Q, that is, TL1(Q) ⊂ τ(‖·‖λ).
Note also that ‖ · ‖λ cannot be dominated by finitely many semi-norms
‖ ·‖Q for Q ∈Q. That means ‖ ·‖λ is not TL1(Q)-continuous and thus TL1(Q)
is strictly weaker than τ(‖ ·‖λ).

Extend the Rademacher sequence ( fn)n∈� of Example 3.7

.

periodically
on �. With the same arguments as in Example 3.7

.

one can show that this
sequence is TLS(Q)-convergent, but does not converge w. r. t. TL1(Q). _

More generally, let P be a statistical model that is dominated by a
σ-finite measure µ. Then, the relationship between (L1(P),TLS(P)) and
(Lp(µ),σw(Lp(µ),Lq(µ))) is as follows (we consider the case k = 1).

3.9 Theorem Let p, q ∈ [1,∞] be conjugate exponents and let P be
dominated by a σ-finite measure µ.
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Then Lp(µ)⊂L1(P) and TLS(P)⊂σw(Lp(µ),Lq(µ)) on Lp(µ) if and only if
P has a µ-density choice9

.

in Lq(µ). _

Proof: The case p = ∞, q = 1 is trivial by Riesz’s theorem. For p <
∞ and q > 1 we first show the necessity. Since P has by assumption
a µ-density choice (ϕP)P∈P ∈ Lq(µ)P we have

∫ | f |dP = ∫ | f |ϕP dµ < ∞
for all f ∈ Lp(µ). Hence, f ∈ L1(P). Furthermore, σw(Lp(µ),Lq(µ)) is by
definition the weakest topology on Lp(µ) such that all linear functionals
are continuous, that is,

f 7→
∫

f gdµ

is continuous for every g ∈ Lq(µ). By assumption P ∈P has a µ-density
ϕP in Lq(µ) and thus

f 7→
∫

fϕP dµ

is continuous w. r. t. σw(Lp(µ),Lq(µ)). Hence, TLS(P)⊂σw(Lp(µ),Lq(µ)).
Conversely, let Lp(µ) ⊂ L1(P) and TLS(P) ⊂ σw(Lp(µ),Lq(µ)), then for

every P ∈P the map f 7→ ∫
f dP on Lp(µ) is σw(Lp(µ),Lq(µ))-continuous,

that is, a continuous linear functional on Lp(µ). By Riesz’s theorem there
is a g ∈Lq(µ) such that∫

f dP =
∫

f gdµ for all f ∈Lp(µ).

Thus, P has a µ-density in Lq(µ). ■

Depending on the “quality” of a dominated statistical model P, The-
orem 3.9

.

explains when the weak topology constitutes an upper bound
for the Lehmann–Scheffé topology TLS(P). In fact, the latter is usually
strictly weaker than the weak topology (see also Example 3.8

.

).
To conclude from the Lehmann–Scheffé topology to its upper bound,

we can use statements about the relative weak compactness in Lp(µ). The
following statement is given for the dimension k = 1. A similar result was
noted before in Schmetterer

.

(1978

.

, Satz 3.2, page 496 f.).

3.10 Theorem Let p, q ∈ ]1,∞[, p ≤ q be conjugate exponents and let P
be dominated and complete. We denote by Q aP-equivalent distribution.10

.

Assume furthermore that P has a Q-density choice in Lq(Q).
(a) The LS topology TLS(P) and the weak topology σw(Lp(Q),Lq(Q)) coin-
cide on any bounded subset M of Lq(Q).

9Let P be a statistical model that is dominated by a σ-finite measure µ. A family
(ϕP )P∈P is called µ-density choice of P w. r. t. µ iff for every P ∈P the function ϕP is a
density of P w. r. t. µ.

10If P is a dominated statistical model, then there is a dominating distribution Q
such that Q is equivalent to P, that is, any N ∈A is a P-null set if and only if N is a
Q-null set (see also Witting

.

, 1985

.

, Satz 1.136, page 133).
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(b) Let M ⊂ L1(Q) be bounded and uniformly integrable w. r. t. Q. Then
(M,TLS(P)∩M)= (M,σw(L1(Q),L∞(Q))∩M). _

Proof: (a) Since p ≤ q, we note that M ⊂Lq(Q)⊂Lp(Q). According to The-
orem 3.9

.

we have TLS(P) ⊂ σw(Lp(Q),Lq(Q)), so this holds in particular
on any bounded set.

For the converse direction, let M ⊂Lq(Q) be a bounded set, that is,

sup{‖ f ‖Q,q : f ∈ M}<∞. (3.11)

Then, according to the theorem of Banach–Alaoglu M is relatively weakly-
∗-compact in (Lq(Q))' =Lp(Q), that is, relatively weakly compact in Lp(Q).
Since TLS(P) ⊂ σw(Lp(Q),Lq(Q)), we have that M is relatively compact
w. r. t. the Hausdorff topology TLS(P), too. Hence

(M,TLS(P)∩M)= (M,σw(Lp(Q),Lq(Q))∩M),

since within any chain of topologies there is at most one compact Hausdorff-
topology.11

.

Part (b) follows similarly by Werner

.

(2018

.

, Satz VIII.6.9, page 473). ■

Consider a statistical model P that is dominated by a P-equivalent
distribution Q. Assume that P has a Q-density choice in Lq(Q), then we
denote by P∞BP

Q,q
∞ the extended statistical model of P, that is,

P∞ = {
P : P has a density w. r. t. Q in Lq(Q)

}
.

In the following theorem we are concerned with Lehmann–Scheffé topolo-
gies w. r. t. such extended models. To this end, we also recall that a
dominated statistical model P contains a countable submodel P0 ⊂ P
and a distribution Q B

∑
P∈P0ωP P that dominates P, where (ωP)P∈P0 is

strictly positive with
∑

P∈P0ωP = 1, see also Proposition 1.2

.

on page 4

.

.

3.11 Theorem Let P be a dominated and complete statistical model. Let
Q be a P-equivalent distribution as given above and assume that P has a
density choice w. r. t. Q in Lq(Q).

Then, TL1(P∞), TL1(P), TL1(P0), and the norm topology τ(‖ ·‖Q) coincide
on any order bounded12

.

subset of Lp(Q). _

Proof: Since P0 ⊂P ⊂P∞ we have that TL1(P0) ⊂ TL1(P) ⊂ TL1(P∞). Fur-
thermore, we have obviously

(Lp(Q),TL1(P0))= (Lp(Q),τ(‖ ·‖Q)).
11A topology T on X is called compact Hausdorff iff (X,T) is a compact Hausdorff

space. For the statement see also Kelley et al.

.

(1976

.

, Exercise A (a), page 32).
12Let (E,‖ ·‖E) be a normed space and let H ⊂ EX be a function space. A subset M of

H is called order bounded (in H) iff there is an h ∈ H such that ‖ f (x)‖E ≤ ‖h(x)‖E for all
x ∈X and all f ∈ M.
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It remains to show that TL1(P∞) ⊂ τ(‖·‖Q) on order bounded subsets. To
this end, let M be an order bounded subset of Lp(Q) and let ( fα)α∈D ∈ MD

be a net13

.

that converges to f ∈Lp(Q) w. r. t. the ‖ ·‖Q-norm, that is,

lim
α∈D

∫
| fα− f |dQ = 0.

We then also have that

lim
α∈D

∫
| fα− f |gdQ = 0 for all g ∈L∞(Q).

Furthermore, let ϕ ∈Lq(Q) be a probability density w. r. t. Q we then have

lim
α∈D

∫
| fα− f |ϕdQ = 0 (3.12)

as well, since L∞(Q) is ‖ ·‖Q,q-dense in Lq(Q). Hence, we have

lim
α∈D

∫
| fα− f |dP = 0 for all P ∈P∞.

That means, the arbitrarily chosen τ(‖ · ‖Q)-convergent net ( fα)α∈D con-
verges also w. r. t. TL1(P∞) and hence the identity idM from (M,τ(‖·‖Q)∩M)
to (M,TL1(P∞) ∩M) is continuous (see e. g. Kelley

.

, 1975

.

, page 86), that is,

TL1(P∞) ∩M ⊂ τ(‖ ·‖Q)∩M,

which yields the claim. ■

Another important question is that of metrizability.

3.12 Remark (Metrizability) Let P be any statistical model on (X,A).
(a) The LS topology is metrizable if and only if there is a countableP0 ⊂P

such that TLS(P0) = TLS(P), see also Werner

.

(2018

.

, page 486). The
same holds for the canonical topology TLp(P).

(b) If TLS(P) is metrizable, then A is complete for the submodel P0 (see
part (a)) and also for P.

(c) If TLS(P) is metrizable and consider M from Theorem 3.10

.

, then

(M,TLS(P0)∩M)= (M,σw(Lp(Q),Lq(Q))∩M)

is metrizable, too. Note that σw(Lp(Q),Lq(Q)) itself is in general not
metrizable. _

13Let D be a set directed by a partial order ¹, that is, for every α,β ∈ D there is a
γ ∈ D such that α ¹ γ and β ¹ γ. Then, a map from D to a topological space (X,T) is
called a net. A net (xα)α∈D is said to converge to a point x0 ∈X iff for all U ∈Twith x0 ∈U
there is a αU ∈ D such that xα ∈U for all αºαU . For these notions and concepts see e. g.
Kelley

.

(1975

.

, page 65 ff.).
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So far we have not assumed any structure of the model. However,
P often exhibits a (canonical) measure theoretic structure, especially in
the case where P is a parametrized model with parameter space Θ⊂�k.
The conception of continuity w. r. t. the Lehmann–Scheffé topology, as it
was intended above (see also Lemma 3.3

.

), may then lead to sequential
continuity in terms of almost sure pointwise convergence. In fact, this
kind of convergence cannot be represented by a topology. A more general
concept is needed, the so-called limit spaces, which we, however, do not
want to consider here. For the corresponding concepts the interested
reader is referred to, for example, Kowalsky

.

(1954

.

) and Fischer

.

(1959

.

).
Let (P,F,π) denote the measure theoretic structure of the model P.

Then the implicitly given Lebesgue space of functions on P consequently
leads to reasonable semi-norms and norms on estimator spaces. In the
following section we therefore introduce corresponding spaces which we
call Lehmann–Scheffé spaces.

3.2 Lehmann–Scheffé Spaces
The goal of this section is to introduce appropriate normed spaces, by
which we can describe the continuity issues of the Rao–Blackwell inverse
problem w. r. t. ancillarity of first order. Henceforth, we assume that a
statistical model P ⊂ Prob(X,A) is given in terms of a σ-finite measure
space (P,F,π).14

.

Our intention is then to mimic the Lehmann–Scheffé
topologies.

Let p ∈ [1,∞]. Then, by LSπ,p(P)=LSπ,p(X,A,P) we denote the set of
all [P]-equivalence classes of measurable functions f such that P 7→ ∫

f dP
is F-measurable and15

.

‖ f ‖LS,p B ‖E f ‖π,p = p

√∫
qP ( f )pπ(dP) <∞, (3.13)

if p <∞, and16

.

‖ f ‖LS,∞B ‖E f ‖π,∞ = inf
{

sup
{‖∫

f dP‖ : P ∈ Nc} : N ∈F, π(N)= 0
}
<∞,

if p =∞, respectively. We call (LSπ,p(P),‖ ·‖LS,p) Lehmann–Scheffé (LS)
space, which is a semi-normed vector space.

3.13 Proposition The set LSπ,p(P) with the map ‖ · ‖LS,p in (3.13

.

) is a
semi-normed vector space. _

14If π is a probability measure, it can be interpreted as prior distribution.
15Recall, qP ( f )B ‖∫

f dP‖, see (3.4

.

) on page 51

.

.
16By ‖ f ‖µ,∞ we denote the essential supremum of f w. r. t. the µ-null sets.
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Proof: Note that E is obviously a well-defined linear operator from
LSπ,p(P) to Lp(P,F,π) and ‖ · ‖LS,p = ‖E(·)‖π,p. Since ‖ · ‖π,p is a norm,
the claim follows easily by the linearity of E. ■

Even if we assume that A is complete for P, the Lehmann–Scheffé
space (LSπ,p(P),‖·‖LS,p) is in general not a normed space as the following
example shows.

3.14 Example (Lebesgue Space) Let P = (δx : x ∈ X), then P can be
identified with (X,A). Furthermore, let π be a measure on (X,A). In this
case, LSπ,p(X,A,P) turns out to be the usual semi-normed Lebesgue–
Bochner space Lp(X,A,π). In fact, if X is uncountable

‖ f ‖LS,p B
p

√∫
‖ f ‖pπ(dx) for f ∈Lp(X,A,π)

is merely a semi-norm, although A is complete for P. This is due to the
fact that [P]= {0}, [π], in particular the P-null sets are not equivalent to
the π-null sets. _

Semi-normed spaces fail to identify their elements by the semi-norm.
To get a normed vector space LSπ,p(P), Example 3.14

.

explains that f (x)=
0 for π-almost all x ∈ X should be sufficient to identify f with 0. We
therefore introduce the following notion of completeness.

3.15 Definition Let π be a measure on a statistical modelP. A σ-algebra
C⊂A is called π-complete for P iff

∫
f dP = 0 for π-almost all P ∈P is

within L1(X, C,P) only fulfilled by f = 0. Furthermore, P is called π-
complete iff A is π-complete. _

The notion of π-completeness of the underlying model P is the correct
ingredient to conclude that ‖ ·‖LS,p is a norm.

3.16 Proposition The vector space LSπ,p(X,A,P) with ‖ · ‖LS,p is a
normed space if and only if P is π-complete. _

Proof: Let P be π-complete and consider f ∈LSπ,p with ‖ f ‖LS,p = 0. This
implies ‖∫

f dP‖ = 0 for π-almost every P ∈P. By the π-completeness we
may conclude that f = 0 almost surely w. r. t. P and hence definiteness of
‖ ·‖LS,p holds.

Let ‖ ·‖LS,p be a norm. Then,
∫

f dP = 0 for π-almost all P ∈P implies
‖ f ‖LS,p = 0. By the definiteness of a norm we have f = 0 almost surely
w. r. t. P. This implies π-completeness of P. ■

In Example 3.14

.

we have that P is complete, however, if X is uncount-
able, there is no σ-finite measure π such that P is π-complete. Clearly,
π-completeness implies completeness and, hence, is a stronger notion. For
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the converse direction, π has to be consistent with a topological structure.
That is, we need that π has full support w. r. t. the Lehmann-Scheffé-∗-
topology

T∗
LS(P,Lp(P))= τ(P 7→ ∫

f dP : f ∈Lp(P)
)
,

which we introduced in Section 3.1

.

, page 51

.

. We henceforth consider the
statistical model (P,B,π) with the Borel-σ-algebra

B=B
(
P,T∗

LS(P,Lp(P))
)
.

For a statement concerning the above-mentioned converse direction, we
need the following lemma.

3.17 Lemma Let (X,T) be a topological space and let µ be a measure
on X with full support w. r. t. T, that is, suppµ = X. If f : (X,T) →�k is
continuous, then µ({ f , 0})= 0 implies f = 0. _

Proof: Consider the open set V B�k \{0}. Since f is continuous, f −1(V )
is open. Furthermore, f −1(V )⊂ { f , 0}, which yields

µ( f −1(V ))≤µ({ f , 0})= 0.

Finally, µ( f −1(V )) = 0 and suppµ = X imply f −1(V ) =;, that is, f (x) = 0
for all x ∈X. ■

3.18 Lemma Let P be complete and assume π has full support w. r. t. the
Lehmann–Scheffé-∗-topology T∗

LS(P,L1(P)), then P is π-complete. _

Proof: For any f ∈L1(P) with∫
f dP = 0 for π-almost all P ∈P,

we have by the T∗
LS-continuity and by Lemma 3.17

.

that
∫

f dP = 0 holds
for all P ∈P. Since P is complete, f = 0 almost surely w. r. t. P. ■

3.19 Example (Lebesgue Space, Ctd.) In Example 3.14

.

the topology
T∗

LS(P,Lp(P)) equals the power set 2X. To show this, we recall from the
very beginning of this chapter that (X,T) is assumed to be a Hausdorff
space and, hence, all singletons are A-measurable. Furthermore, for
any A ∈ A the function x 7→ ∫

1A(y)δx(dy) is T∗
LS(P,Lp(P))-continuous

by definition. Hence, every A ∈ A and in particular every singleton is
T∗

LS(P,Lp(P))-open, thus 2X =T∗
LS(P,Lp(P)).

Hence, if X is uncountable no σ-finite measure π on X has full support
w. r. t. the weak-∗-topology 2X.17

.

_

17Let (X,A,µ) be a σ-finite measure space. Then, any set system D⊂A consisting of
disjoint sets D ∈ Dwith positive µ-measure is countable.
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3.20 Example (Continuous Uniform Model) Let n ∈�, let ΘB [0, t] for
some t > 0 and consider18

.

PB
{
U⊗n

[0,ϑ] : ϑ ∈Θ}
. Let π be a distribution on

Θ such that the support of π w. r. t. the Euclidean topology on Θ satisfies

suppτ(|·|)(π)=Θ.

Note that S(x)Bmax(x) for x ∈�n+ is complete and sufficient for P, see
for example Lehmann & Casella

.

(1998

.

, Example 6.23, page 42).
Since ϑ 7→ U⊗n

[0,ϑ]h is continuous for every h ∈ L1(X,σ(S),Q) we have
that T∗

LS(P,L1(P))⊂ τ(| · |), hence,

suppT∗
LS(P,L1(P)) (π)⊃ suppτ(|·|) (π)=Θ,

that is, π has also full support w. r. t. the Lehmann–Scheffé-∗-topology.
Consequently, by Lemma 3.18

.

it follows that σ(S) is π-complete for P. _

Furthermore, π-completeness can be generally shown for an important
class of parametrized statistical models, the exponential families. This is
formulated in the following proposition.

3.21 Proposition (Exponential Family and π-Completeness) For some
non-empty, open parameter space Θ ⊂ �k let P = {

Pϑ : ϑ ∈ Θ}
be an

exponential family with sufficient statistic S and reference measure ν.
That means, for every ϑ ∈Θ, the distribution Pϑ has a ν-density of the
form19

.

fϑB
dPϑ

dν
∝ x 7→ g(x)exp(〈ϑ,S(x)〉),

for some non-negative, measurable g. Then, for every measure π on Θ

with full support w. r. t. τ(‖ ·‖2) the σ-algebra σ(S) is π-complete for P. _

Proof: We have T∗
LS(P,L1(X,σ(S),P))⊂ τ(‖·‖2), since for h ∈L1(X,σ(S),P)

the function ϑ 7→ ∫
h(x) fϑ(x)ν(dx) is continuous (see Pfanzagl

.

, 1994

.

, Lem-
ma 1.6.6, page 24). Consequently, any measure π on Θ with suppπ=Θ
w. r. t. the Euclidean topology τ(‖ · ‖2) has also a full support w. r. t. the
LS-∗-topology. Finally, by the well-known fact that σ(S) is complete for
P (see for example Pfanzagl

.

, 1994

.

, Theorem 1.6.10, page 26) the claim
follows by Lemma 3.18

.

. ■

If P is π-complete then (LSπ,p(P),‖ · ‖LS,p) is a normed space. In
addition, we check for norm completeness. In general (LSπ,p(P),‖ ·‖LS,p)
is not complete as the following simple example shows.

3.22 Example Consider PB (N(µ,σ2) : µ ∈ [0,1]∩�) on (�,B(�)) and
let ν be a distribution on [0,1]∩� with supp ν= [0,1]∩�. By Q we denote

18 Let H ∈H(�k) with positive but finite Lebesgue measure λ(H), then the uniform
distribution on H is denote UH B 1

λ(H)λ|H .
19See also Definition 1.36

.

on page 27

.

.
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the ν-mixture of P, that is, Q(B)B
∫

N(µ,σ2)(B)ν(dµ) for B ∈B(�). Then,
for any f ∈L1(Q)=L1(P) we have

‖ f ‖LS,1 =
∫

[0,1]

∣∣∣∣∫ f dN(µ,σ2)
∣∣∣∣ ν(dµ)

≤
∫

| f |dQ = ‖ f ‖Q .

Hence, the ‖ · ‖LS,1-norm is weaker than the ‖ · ‖Q-norm, in particular
L1(Q) ⊂ LS1(P). Since LS1(P) ⊂ L1(P) = L1(Q), we have LS1(P) = L1(Q).
Note that (L1(Q),‖ ·‖Q) is complete. If (L1(Q),‖ ·‖LS,1) would be a Banach
space, the two norms are equivalent.20

.

However, this does not hold as can
be shown again by the Rademacher sequence.

For the Rademacher sequence ( fn)n∈� ∈ L1(Q)� we have for every
µ ∈� (see Example 3.7

.

and 3.8

.

)∣∣∣∣∫ fn dN(µ,σ2)
∣∣∣∣≤ 1 and

∫
fn dN(µ,σ2)→ 0 for n →∞.

Hence, by Lebesgue’s theorem, we have

lim
n→∞‖ fn‖LS,1 =

∫
[0,1]

lim
n→∞

∣∣∣∣∫ fn dN(µ,σ2)
∣∣∣∣ ν(dµ)= 0.

However, ‖ fn‖Q = Q([0,1]) > 0 for all n ∈�, that is, fn 6→ 0 for n →∞ in
L1(Q). Hence, (LSπ,1(P),‖ ·‖LS,1) cannot be a Banach space. _

3.23 Remark (Norm Completion) Let P be π-complete. To give at least
an completion of LSπ,p, we consider any f ∈LSπ,p(P) under the extended
expectation operator (coordinate transformation)

E : LSπ,p(P) → Lp(P,B,π)
f 7→ (EP f )P∈P,

where EP f = ∫
f dP exists for π-almost all P. By the π-completeness of

P, we can directly conclude that E is injective. Furthermore, E respects
the norm, since we have by definition

‖E( f )‖p
Lp(π) =

∫ ∥∥∥∥∫
f dP

∥∥∥∥p
π(dP)= ‖ f ‖p

LSπ,p

for every f ∈LSπ,p. Hence, the closure of the range E(LSπ,p) in Lp(π) can
be identified with a completion of LSπ,p(P). _

20Let X be a linear space such that ‖·‖1 and ‖·‖2 make X a Banach space and assume
that ‖ ·‖1 ≤ K · ‖ · ‖2 for some K > 0. Then, ‖ ·‖1 and ‖ ·‖2 are equivalent due to the open
mapping theorem (see e. g. Werner

.

, 2018

.

, Theorem IV.3.3, page 168).
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Finally, we want to point out that (LSπ,p(P),‖ · ‖LS,p) for p = 2 turns
out to be an inner product space.

3.24 Remark (Inner Product Space) Note that (LSπ,p(P),‖ · ‖LS,p) for
p = 2 is a inner product space with inner product

( f , g) 7→ 〈 f , g〉LS B

∫ 〈∫
f dP,

∫
gdP

〉
π(dP).

A corresponding completion can be achieved as shown in Remark 3.23

.

. _

In the above example we have already compared the ‖·‖LS,1 with ‖·‖Q ,
where Q is a mixture of P. In what follows, we relate this to the canonical
topology TL1(P).

3.25 Remark Let Abe π-complete for P. We define21

.

Q(A)Bπ · idP =
∫
P

P(A)π(dP) for A ∈A

and consider the canonical topology TLp(P) on Lp(P), which is generated
by the semi-norms ‖ ·‖P for P ∈P (see also Chapter 1

.

on page 8

.

).
Analogously to the Lehmann–Scheffé space, we then consider all func-

tions f ∈Lp(P) such that P 7→ ‖ f ‖P,p is B-measurable and

‖ f ‖Q,p = p

√∫
‖ f ‖p dQ = p

√∫ ∫
‖ f ‖p dPπ(dP)= p

√∫
‖ f ‖p

P,pπ(dP).

is finite. Hence, introducing a normed space with regard to the canonical
topology leads to the usual Lebesgue space Lp(Q). Furthermore, for f ∈
Lp(Q) we have with Jensen’s inequality22

.

‖ f ‖p
LS,p =

∫
‖EP f ‖pπ(dP)≤

∫
EP‖ f ‖pπ(dP)= ‖ f ‖p

Q,p,

that is, Lp(Q)⊂LSπ,p(P) and ‖ ·‖LS,p is generally weaker than ‖ ·‖Q,p. _

In terms of these normed spaces, the well- or ill-posedness of the
Rao–Blackwell inverse problem corresponds to the question under what
conditions

E(·|C) : (Lp(X,A,Q),‖ ·‖LS,p)→ (Lp(X, C,Q),‖ ·‖Q,p)

is continuous (see also Lemma 3.3

.

). As we have seen, ‖ ·‖LS,p is generally
weaker than ‖ ·‖Q,p, since it basically measures the location of a function.

21Note that idP is a Markov kernel from (P,B) to (X,A), since idP(P) = P(·) is a
distribution for any P ∈ P. Furthermore, P 7→ P(A) = idP(P)(A) is B-measurable for
every A ∈A (see also page 63

.

regarding the considered σ-algebra B).
22Note that P ∈P are probability measures.
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This drawback can be compensated by measuring the oscillation as well.
To this end, we consider the linear operator

V : Lp(X,A,Q) → Lp(X×P,A⊗B,π⊗ idP)
f 7→ ( f (x)−EP f )(x,P)∈X×P

which we call oscillation operator. It is clear that

‖ f ‖OS,p B ‖V f ‖π⊗idP,p = p

√∫
EP‖ f −EP f ‖pπ(dP) for f ∈Lp(X,A,Q)

is a semi-norm. To get a norm, we first of all consider the null space of
that semi-norm

N(‖ ·‖OS,p)B
{
f : ‖ f ‖OS,p = 0

}
.

Then, ‖ ·‖OS,p is a norm on the quotient space

Lp(Q)
/

N(‖ ·‖OS,p)= {
f +N(‖ ·‖OS,p) : f ∈Lp(Q)

}
.

We therefore take a closer look at the null space N.

3.26 Example ConsiderP= (δx : x ∈X). Then ‖·‖OS,p = 0, that is, ‖·‖OS,p
is the null semi-norm and thus N(‖ · ‖OS,p)=Lp(Q). Hence, the quotient
space Lp(Q) /N(‖ ·‖OS,p) is a singleton which is a normed space with the
null norm. _

3.27 Example Let P= (N(µ,σ2) : µ ∈�). Then

N(‖ ·‖OS,p)= {
f : f is constant λ-almost surely

}
,

since ‖ f ‖OS,p = 0 implies EP‖ f −EP f ‖p = 0 for π-almost all P ∈P. Hence,
we have

f =EP f almost surely w. r. t. P and for π-almost all P ∈P

which holds if and only if f is λ-almost surely constant. _

The oscillation semi-norm measures the oscillation, however, it fails to
measure the location. Hence, it seems to be the right counterpart to the
Lehmann–Scheffé norm. By introducing the norm

‖ ·‖∗B ‖ ·‖LS,p +‖·‖OS,p,

we now measure both and can show in the case p = 1 that, in fact, ‖ ·‖∗ is
equivalent to ‖ ·‖Q .

3.28 Remark Obviously, we have for every P that ‖EP f ‖ ≤EP‖ f ‖ and

EP‖ f −EP f ‖ ≤EP‖ f ‖+‖EP f ‖ ≤ 2EP‖ f ‖,
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that is, ‖EP f ‖+EP‖ f −EP f ‖ ≤ 3EP‖ f ‖. Hence, by the monotonicity of
the integral we have ‖ ·‖∗ ≤ 3‖ ·‖Q,1. Conversely, we can conclude that

EP‖ f ‖ ≤EP‖ f −EP f ‖+‖EP f ‖

and hence again by the monotonicity of the integral ‖ ·‖Q,1 ≤ ‖·‖∗. _

Often, the Rao–Blackwell projection

E(·|C) : (Lp(X,A,Q),‖ ·‖LS,p)→ (Lp(X, C,Q),‖ ·‖Q,p) (3.14)

is not continuous or, correspondingly, the Rao–Blackwell inverse problem,
that is, to look for a g ∈L1(X, C,P) such that

EP f =EP g for all P ∈P, (3.15)

for any f ∈ L1(P) is ill-posed. In the next section, we are interested in
approximating (3.15

.

) through a family of well-posed problems and, conse-
quently, in approximating the Rao–Blackwell projection (3.14

.

) through a
family of continuous operators.

To this end, we will define E(∗)( f |C) not just through (3.15

.

), but also
by taking the oscillation into account. One strategy will be to include the
oscillation norm ‖ · ‖OS,p in (3.15

.

) as a penalty term. Another strategy
may be to restrict the image space of E(·|C), for example, to a finite-
dimensional space by using a pseudo-solution approach.



CHAPTER 4
Regularized Rao–Blackwellization

In the previous chapter, we came across the Rao–Blackwell inverse prob-
lem. We have seen that the Rao–Blackwell projection may be discontin-
uous (see e. g. Example 3.6

.

and 3.8

.

) and hence the RB inverse problem
may be ill-posed. That means, a slight change of the parameter function
can have a large impact on the corresponding Rao-Blackwellization. Since
statistical models usually result from simplifications and, therefore, are
inherently misspecified, the ill-posedness of the Rao–Blackwell inverse
problem is quite unfortunate.

This chapter is devoted to regularization schemes1

.

for such ill-posed
Rao–Blackwell inverse problems. This leads directly to the notion of
“regularized Rao–Blackwellization”, which we are now going to explain.
To this end, suppose that a statistical model is given in terms of a finite
Borel measure space (

P,B
(
P,T∗

LS
)
,π

)
,

where we recall that T∗
LS(Lp(P)) is the Lehmann–Scheffé-∗-topology (see

also Section 3.1

.

on page 52

.

).
Let C be complete and sufficient for P and let ECBE|L1(X,C,P). Then,

we recall that E( f |C) for some f ∈ Lp(X,A,P) is the unique solution
g ∈Lp(X, C,P) of the following operator equation

ECg =E f . (4.1)

1Let (E,‖ · ‖E) and (F,‖ · ‖F ) be normed vector spaces, let A : E → F be an injective
bounded linear operator, and consider some set M ⊂ E. Then, a family (Bα)α>0 of bounded
(linear) operators from F to E with

lim
α→0

‖BαAe− e‖E = 0 for all e ∈ M

is called regularization scheme for the operator A on M. The parameter α is called
regularization parameter (see also Kress

.

, 1999

.

; Ivanov et al.

.

, 2002

.

).
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If, in addition, C is π-complete for P, then E( f |C) is given by a solution
of (4.1

.

) w. r. t. ‖ ·‖π,p by which we mean a solution g such that

‖ECg−E f ‖π,p = ‖ f − g‖LS,p = 0. (4.2)

In fact, for any g ∈Lp(X, C,P) that fulfills (4.2

.

) we have∫
gdP =

∫
f dP =

∫
E( f |C)dP for π-almost all P ∈P,

which is only true for g = E( f |C) due to the π-completeness of C. This
proves the following theorem2

.

that constitutes the starting point for
regularizations.

In the present Chapter we use as before

Q(A)Bπ · idP(A)=
∫

P(A)π(dP) for A ∈A,

see also Footnote 21

.

on page 66

.

.

4.1 Theorem (Best Approximation w. r. t. Ancillarity of First Order, II)
Let C⊂ A be π-complete and sufficient for P, let Q B π · idP, and let
f ∈Lp(X,A,Q). Then, we have

E( f |C)=E−1
C E f = argmin

{‖ f − g‖LS,p : g ∈Lp(X, C,Q)
}
. (4.3)

_

Proof: Follows directly by the previous paragraph. ■

By the nature of the Rao–Blackwellization, we are dealing with a
projection and, hence, with a non-injective operator. To be precise, the
notion of a regularized Rao–Blackwellization has to be clarified.

4.2 Definition (Regularized Rao–Blackwellization) Let p ∈ [1,∞] and
let C be sufficient and π-complete for P. Let3

.

QBπ · idP and let (Bα)α>0
be a regularization scheme of

EC : (Lp(X, C,Q),‖ ·‖Q,p)→ (Lp(P,B,π),‖ ·‖π,p). (4.4)

We then call E(α)(·|C)B Bα ◦E the α-regularized Rao–Blackwellization
given by (Bα)α>0 (see Figure 4.1

.

). _

The discontinuity of E(·|C) w. r. t. the Lehmann–Scheffé norm ‖ · ‖LS,p
or the ill-posedness of the Rao–Blackwellization can be understood as
an overfitting problem w. r. t. the ‖ ·‖LS,p-norm. To avoid this overfitting,
quantitative and qualitative prior knowledge about the (pseudo-)solution
has to be included in (4.3

.

). On the one hand, this leads to the regulariza-
tion approach due to Tikhonov, which we present in the following section.
On the other hand, we arrive at regularizations by what we call Ivanov’s
approach presented in the subsequent section.

2See also Proposition 1.34

.

on page 25

.

.
3We write π · idP for the mixture distribution A 7→ ∫

P(A)π(dP) on (X,A).
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(ran(E),‖ ·‖π,p)

(Lp(X,A,Q),‖ ·‖LS,p) (Lp(X, C,Q),‖ ·‖Q,p)

E

E(·|C)

E(α)(·|C)

E−1
C

Bα
EC

�

Figure 4.1: Illustration of the definition of the α-regularized Rao–Blackwellization. The
arrow� indicates that the corresponding inner part of the diagram is commutative, that
is, E(·|C) = E−1

C
◦E. The α-regularized Rao–Blackwellization is defined by E(α)(·|C) =

Bα ◦E, that is, the outer part of the diagram is by definition commutative as well.

4.1 Tikhonov’s Regularization Approach
Basically, classical Rao–Blackwellization aims at smoothing an estimator
by data reduction. Now, by the Tikhonov’s regularization approach, we
also account for another smoothing, that is, for a regularity condition
through the oscillation semi-norm ‖·‖OS,2, in addition to the minimization
problem (4.3

.

). For f ∈Lp(X,A,Q) and p = n = 2 the minimization problem
in terms of a Tikhonov regularization then reads

arg inf
{‖g− f ‖2

LS,2 +α‖g‖2
OS,2 : g ∈L2(X, C,Q)

}
, (4.5)

where α> 0. As seen in Example 3.22

.

(L2(X, C,Q),‖·‖LS,2) is generally not
a Hilbert space. However, the minimization problem (4.5

.

) can be traced
back to Hilbert spaces which we can use to show the following.

4.3 Theorem (Tikhonov Regularized Rao–Blackwellization) For every
α > 0 and every f ∈ L2(X,A,Q) the minimization problem (4.5

.

) has a
unique solution given by4

.

E(α)( f |C)B (α ·V'V+E'E)−1E'E f , (4.6)

which is a α-regularized Rao–Blackwellization of f . _

Proof:5

.

By definition we have first of all ‖g− f ‖2
LS,2 = ‖E(g− f )‖2

π,2 and
‖g‖OS,2 = ‖Vg‖π⊗idP,2. Therefore, the minimization problem (4.5

.

) corre-
sponds to looking for a minimizer of the functional

φm(g)B ‖Eg−m‖2
π,2 +α‖Vg‖2

π⊗idP,2 for g ∈L2(X, C,Q) (4.7)
4Let (E,‖ · ‖E) and (F,‖ · ‖F ) be two normed spaces and let T : E → F be a linear

operator. Then T' : F ' → E' defined by T' ( f ' ) B f ' (T(·)) for f ' ∈ F ' is called adjoint
operator of T.

5The proof of Theorem 4.3

.

is given in detail for the stochastics community. The main
arguments can be found in the literature on regularization theory (see e. g. Engl et al.

.

,
1996

.

). Essentially, we only have to show that E'E+αV'V is strictly coercive.
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where m =E f ∈L2(π). We show that φm(·) has a unique minimum which
is continuous in m ∈L2(π). Since

φm(g+h)−φm(g)= 2〈E' (Eg−m)+αV'Vg,h〉L2(Q)+‖Eh‖2
π,2+α‖Vh‖2

π⊗idP,2

for all g,h ∈ L2(Q), we first of all get the Fréchet differentiability of φm
with

Dφm(g)(h)= 2〈E' (Eg−m)+αV'Vg,h〉L2(Q) for h ∈L2(Q)

and furthermore

D2φm(g)(h,k)= 2〈(E'E+αV'V)h,k〉L2(Q) for h,k ∈L2(Q).

For α ∈ ]0,1] we note that E'E+αV'V is strictly coercive6

.

, because we
have for all f ∈L2(Q)

α‖ f ‖2
Q,2 = α

∫ ∫
f 2 dPπ(dP)

= α

∫ ∫
( f −EP f +EP f )2 dPπ(dP)

= α

∫ ∫
( f −EP f )2 dPπ(dP)+α

∫
(EP f )2π(dP)

≤ ‖E f ‖2
π,2 +α‖V f ‖2

π⊗idP,2

= 〈(E'E+αV'V) f , f 〉.
Hence, there is a unique minimizer e of φm, which is implicitly given by

Dφm(e)(h)= 2〈E' (Ee−m)+αV'Ve,h〉 = 0 for all h ∈L2(Q)

or equivalently
(E'E+αV'V)e =E'm.

The theorem of Lax–Milgram7

.

yields that (E'E+αV'V)−1 exists and is
bounded. Note that (Bα)α>0 given by BαB (E'E+αV'V)−1E' is a regular-
ization scheme for EC, because for f ∈L2(X, C,Q) we have by Engl et al.

.

(1996

.

, Theorem 5.2, page 118)

lim
α→0

‖ f −BαE f ‖2
Q,2 = 0.

In summary, we have that

E(α)( f |C)B (α ·V'V+E'E)−1E'E f (4.8)
6Let E be a Hilbert space. An operator T : E → E is called strictly coercive iff

〈Tx, x〉 ≥ c · ‖x‖2 for all x ∈ E and some c > 0.
7Lax–Milgram Theorem: Let E be a Hilbert space. Then, a bounded and strictly

coercive operator T : E → E has a bounded inverse operator T−1 : E → E (see for example
Werner

.

, 2018

.

, page 266).
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is the unique solution of (4.5

.

). Furthermore, since

E : (L2(X,A,Q),‖ ·‖LS,2)→ (L2(P,F,π),‖ ·‖L2(π),2)

is continuous by definition of ‖ ·‖LS,2, we have that

E(α)(·|C) : (L2(X,A,Q),‖ ·‖LS,2)→ (L2(X, C,Q),‖ ·‖Q,2)

given by (4.8

.

) is continuous. ■

4.4 Remark (Singular Value Decomposition) (a) Assume that E(α)(·|C) is
a compact linear operator from L2(X,A,Q) to L2(X, C,Q). To compute the
α-regularized Rao–Blackwellization, we note that there is a singular value
decomposition (λn,un,vn)n∈� of E(α)(·|C), that is, (un)n∈� and (vn)n∈� are
orthonormal bases of (L2(X,A,Q),‖ · ‖Q,2) and (L2(X, C,Q),‖ · ‖Q,2), respec-
tively, and λ2

n, n ∈� are eigenvalues of E(α)(·|C)'E(α)(·|C) such that

E(α)(·|C)un =λnvn, E(α)(·|C)'vn =λnun

for all n ∈� (see for example Kress

.

, 1999

.

, page 277). Then, a simple
computation yields

E(α)( f |C)= ∑
n∈�

λn〈 f ,un〉L2(Q)vn for f ∈L2(X,A,Q).

(b) Assume that u1, ...,un are orthonormal eigenfunctions to correspond-
ing eigenvalues λ1, ...,λn of E(α)(·|C), that is,

E(α)(ui|C)=λiui for i = 1, ...,n.

We then have that

HB span {u1, ...,un}⊂L2(X, C,Q)

has an orthogonal complement in L2(X, C,Q) and, furthermore, that H is
invariant w. r. t. E(α)(·|C), since

〈E(α)(ui|C), f 〉L2(Q) =λi〈ui, f 〉L2(Q) = 0 for all f ∈ H⊥, i = 1, ...,n.

Hence, E(α)(·|C)|H is a compact operator form H to H. Furthermore, we
have the representation

E(α)(h|C)|H =
n∑

i=1
λi〈h,ui〉L2(Q)ui for h ∈ H (4.9)

due to the orthonormality of u1, ...,un. Since A0
2(X,A,P) ⊂ ker(E) and

according to Theorem 4.3

.

, we have that

A0
2(X,A,P)⊂ ker(E(α)(·|C)),

and hence we have that the representation (4.9

.

) holds also for the exten-
sion of E(α)(·|C)|H on H ‘ A0

2(X,A,P). _
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We follow Remark 4.4

.

(b) to compute the regularized Rao–Blackwell-
ization operator of Theorem 4.3

.

for the Gaussian model at least on a
corresponding subspace.

4.5 Example (Gaussian Model, Tikhonov Regularized RB, Act I) For
Θ=� and some known σ2 > 0 consider the Gaussian location model

PB
{
N(a,σ2) : a ∈�}

.

For some b ∈� and τ2 > 0, we consider the weighting measure πBN(b,τ2)
and set Q B π · idP = N(b,σ2 +τ2). Recall that S = id� is sufficient and
π-complete for P, see also Proposition 3.21

.

on 64

.

.
We compute E(α)(·|S) on H B span {1�,id�} in terms of the represen-

tation (4.9

.

) given in Remark 4.4

.

(b). To this end, we first show that

u1 B1� and u2 B
1p

σ2 +τ2

(
id�−b

)
are orthonormal in L2(X,σ(S),Q). Furthermore, we show that

λ1 = 1 and λ2 = τ2

ασ2 +τ2

are corresponding eigenvalues, that is, we have

E(α)(ui|S)=λiui for i = 1, 2.

To show orthonormality of u1 and u2 in L2(Q), we note first that we
obviously have ‖u1‖Q,2 = ‖u2‖Q,2 = 1 and compute

〈u1,u2〉L2(Q) =
1p

σ2 +τ2
·
∫

(id�−b)dN(b,σ2 +τ2)= 0,

that is, u1 ⊥ u2.
To show that λ1, λ2 are eigenvalues of E(α)(ui|S) to eigenfunctions

u1, u2, we show that (λ1,u1) and (λ2,u2) constitute eigenpairs of E'E and
V'V. We compute for the constant function u1

〈E'Eu1, f 〉L2(Q) = 〈Eu1,E f 〉L2(π)

=
∫ ∫

u1 f dN(a,σ2)N(b,τ2)(da)

= 〈u1, f 〉L2(Q),

for all f ∈L2(Q), that is, E'Eu1 = u1. Hence, (1,u1) is an eigenpair of E'E.
In the following computation we consider f ∈ L∞(Q) and denote by Ea f
the expectation of f w. r. t. N(a,σ2). For gB (

p
σ2 +τ2)u2 we compute

〈E'Eg, f 〉L2(Q) = 〈Eg,E f 〉L2(π)

=
∫

Ea gEa f N(b,τ2)(da)

=
∫

g(a)Ea f N(b,τ2)(da),
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where the latter equation follows by the definition of g and the fact that
Ea g = a−b = g(a) for all a ∈�. Denoting by ϕa,σ2 the Lebesgue density of
N(a,σ2), then

∂

∂a
ϕb,τ2(a)=− (a−b)

τ2 ϕb,τ2(a)=− 1
τ2 g(a)ϕb,τ2(a) for a ∈�

and
∂

∂a
Ea f =

∫
(x−a)
σ2 f (x)ϕa,σ2(x)λ(dx) for a ∈�.

Using this and integration by parts, we obtain (recall that g = id�−b and
that f ∈L∞(Q))∫

g(a) ϕb,τ2(a)Ea f λ(da)

= lim
c→∞

[−τ2ϕb,τ2(a)Ea f
]c
−c

+
∫ ∫

τ2ϕb,τ2(a)
(x−a)
σ2 f (x)ϕa,σ2(x)λ(dx)λ(da)

= τ2

σ2

∫ ∫
ϕb,τ2(a)((x−b)+ (b−a)) f (x)ϕa,σ2(x)λ(dx)λ(da)

= τ2

σ2

∫ ∫
ϕb,τ2(a)(g(x)− g(a)) f (x)ϕa,σ2(x)λ(dx)λ(da)

= τ2

σ2

∫
g(x) f (x)Q(dx)− τ2

σ2

∫
g(a)ϕb,τ2(a)Ea f λ(da),

which is equivalent to(
1+ τ2

σ2

)∫
g(a)ϕb,τ2Ea f λ(da)= τ2

σ2 〈g, f 〉L2(Q).

Recall from above that 〈E'Eg, f 〉L2(Q) =
∫

g(a)ϕb,τ2Ea f λ(da), we then fi-
nally have

〈E'Eg, f 〉L2(Q) =
τ2

τ2 +σ2 〈g, f 〉L2(Q), (4.10)

hence ( τ2

τ2+σ2 , g) is an eigenpair of E'E, since (4.10

.

) holds for all f ∈L∞(Q).
By using (4.10

.

) we compute for the variance operator

〈V'Vg, f 〉L2(Q) = 〈Vg,V f 〉L2(π⊗idP)

= 〈g, f 〉L2(Q) −〈E'Eg, f 〉L2(Q)

= 〈g, f 〉L2(Q) −
τ2

τ2 +σ2 〈g, f 〉L2(Q)

=
(
1− τ2

τ2 +σ2

)
〈g, f 〉L2(Q)
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for all f ∈ L∞(Q) and hence ( σ2

τ2+σ2 , g) is a eigenpair of V'V. Note that
〈V'Vu1, f 〉L2(Q) = 〈Vu1,V f 〉L2(π⊗idP) = 0 for all f ∈ L∞(Q), since Vu1 = 0.
Hence, (0,u1) is also an eigenpair of V'V.

For the α-regularized Rao–Blackwellization of Theorem 4.3

.

, we conse-
quently get

E(α)(u1|S) = (αV'V+E'E)−1E'Eu1

= u1

and

E(α)(u2|S) = (αV'V+E'E)−1E'Eu2

= τ2

ασ2 +τ2 u2.

Hence, with (λi,ui) for i = 1, 2 we have a representation of E(α)(·|S) on H
as

E(α)(·|S)|H =λ1〈·,u1〉L2(Q)u1 +λ2〈·,u2〉L2(Q)u2. (4.11)

Now we can use (4.11

.

) to compute the α-regularized Rao–Blackwell-
ization of the MLE id� ∈ H, which is

E(α)(id�|S) = E(α)(id�−b|S)+E(α)(b|S)

= τ2

ασ2 +τ2 (id�−b)+b

= τ2

ασ2 +τ2 id�+ ασ2

ασ2 +τ2 b.

For α= 1, this corresponds to the Bayes estimator with prior π=N(b,τ2)
and squared error loss (see e. g. Lehmann & Casella

.

, 1998

.

, Example
2.2, page 233). Setting α= 0 we obtain the MLE. On the one hand, the
regularization parameter α can be interpreted as a “degree of belief” in
the prior distribution π and, therefore, connects the Bayesian and the
frequentist approach continuously (see also Figure 4.2

.

). On the other
hand, with regard to a misspecification of P, the parameter α can also
be interpreted as a “degree of belief” in P. As the model misspecification
increases, the prior gets more important. _

In the above example we just considered a one-dimensional sample.
For the extension of the general n-dimensional i. i. d. case, we note the
following.

4.6 Example (Gaussian Model, Tikhonov Regularized RB, Act II) For
Θ=� and some known σ2 > 0 consider the n-dimensional i. i. d. Gaussian
location model

PB
{
N⊗n(a,σ2) : a ∈�}

.

For some b ∈ � and τ2 > 0, we consider the weighting measure π B
N(b,τ2). Recall that S(x)=∑n

i=1 xi for x ∈�n is sufficient and π-complete
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Θ

Sb

b

E(0)(id�|S)= id�

E(1)(id�|S)= τ2

σ2+τ2 id�+ σ2

σ2+τ2 b

Figure 4.2: Graphs of the Tikhonov regularized Rao–Blackwellizations of the MLE
id� for the Gaussian model (N(µ,σ2) : µ ∈�) with prior distribution πBN(b,τ2) and
regularization parameter α ∈ { k

10 : k = 0, ...,1000
}

(see also Example 4.5

.

). The family
includes the MLE (α= 0) and the Bayes estimator w. r. t. the squared error loss (α= 1).

for P, see also Proposition 3.21

.

on 64

.

. To compute the regularized Rao–
Blackwell projection on a subspace, we will also consider the transformed
model on (�,B(�)) given by

P
S B

{
N⊗n(a,σ2)S : a ∈�}= {

N(na,n ·σ2) : a ∈�}
.

to make use of the results of Example 4.5

.

. Furthermore, we set RBπ·idP
for the mixture distribution on (�n,B(�n)) and also

QBπ · idPS =
∫

N(na,nσ2)(·)N(b,τ2)(da)

=
∫

N(z,nσ2)(·)N(b,τ2)a 7→n·a(dz)

=
∫

N(z,nσ2)(·)N(nb,n2τ2)(dz)

= N(nb,nσ2 +n2τ2)(·),

which is a distribution on (�,B(�)). We write ES for the expectation
operator on L2(Q) w. r. t. PS, that is,

ES : L2(�,B(�),Q) → L2(�,B(�),π)
f 7→ (∫

f dN⊗n(a,σ2)S)
a∈� .

Within this setting we compute E(α)(·|S) on

HB span {1�n ,S}⊂L2(�n,σ(S),R)
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in terms of a SVD of E(α)(·|S)|H , that is, we show

u1 B1�n and u2 B
1p

nσ2 +n2τ2
(S−nb1�n) (4.12)

are orthonormal eigenfunctions of E(α)(·|S) in L2(X,σ(S),R) to the eigen-
values

λ1 = 1 and λ2 = n2τ2

αnσ2 +n2τ2 , (4.13)

that is, we have

E(α)(ui|S)=λiui for i = 1, 2. (4.14)

Orthonormality of u1 and u2 in L2(�n,σ(S),R) and furthermore that
E(α)(u1|S) = λ1u1 is easy to show. Therefore, we just show (4.14

.

). We
compute for gB (

p
nσ2 +n2τ2)(id�−nb) and f ∈L∞(�,B(�),Q)

〈E'Eg ◦S, f ◦S〉L2(R)

= 〈Eg ◦S,E f ◦S〉L2(π)

= 〈ES g,ES f 〉L2(π)

=
∫ (∫

gdN(na,nσ2)
)(∫

f dN(na,nσ2)
)

N(b,τ2)(da)

=
∫ (∫

gdN(a,nσ2)
)(∫

f dN(a,nσ2)
)

N(b,n2τ2)(da)

= n2τ2

nσ2 +n2τ2 〈g, f 〉L2(Q),

where the latter equation is according to Example 4.5

.

with nσ2 instead of
σ2 and n2τ2 instead of τ2. Furthermore, we have

〈g, f 〉L2(Q) =
∫ ∫

g(z) f (z)N(na,nσ2)(dz)N(b,τ2)(da)

=
∫ ∫

g(S(x)) f (S(x))N⊗n(a,σ2)(dx)N(b,τ2)(da)

= 〈g ◦S, f ◦S〉L2(R)

and consequently

〈E'Eg ◦S, f ◦S〉L2(R) =
n2τ2

nσ2 +n2τ2 〈g ◦S, f ◦S〉L2(R).

With g and f as above and with the same arguments, we compute for the
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variance operator

〈V'Vg ◦S, f ◦S〉L2(R)

= 〈Vg ◦S,V f ◦S〉L2(π⊗idP)

=
∫ ∫ (

g(S(x))−Ea g(S(·)))(g(S(x))−Ea g(S(·)))
N⊗n(a,σ2)(dx)N(b,τ2)(da)

=
∫ ∫ (

g(z)−ES
a g

)(
g(z)−ES

a g
)
N(na,nσ2)(dz)N(b,τ2)(da)

=
(
1− n2τ2

nσ2 +n2τ2

)
〈g, f 〉L2(Q),

where the latter equation follows according to Example 4.5

.

with nσ2

instead of σ2, with n2τ2 instead of τ2, and due to the fact that

ES
a g =

∫
g(y)N(na,nσ2)(dy) for a ∈�.

Since 〈g, f 〉L2(Q) = 〈g ◦S, f ◦S〉L2(R), we consequently have

〈V'Vg ◦S, f ◦S〉L2(R) =
(
1− n2τ2

nσ2 +n2τ2

)
〈g ◦S, f ◦S〉L2(R).

With these computations and with (λ1,u1) and (λ2,u2) given in (4.12

.

)
and (4.13

.

) one can easily show that

E(α)(·|S)|H =λ1〈·,u1〉L2(R)u1 +λ2〈·,u2〉L2(R)u2. (4.15)

Furthermore, since E(α)(h|S)= 0 for all h ∈A0
2(�n,B(�n),P) we may

consider (4.15

.

) on GBH ‘ A0
2(�n,B(�n),P), that is,

E(α)(·|S)|G =λ1〈·,u1〉L2(R)u1 +λ2〈·,u2〉L2(R)u2.

Indeed, A0
2 , {0} if n ≥ 2. Consider for example 1

n S−pr1 ∈A0
2(�n,B(�n),P),

where obviously 1
n S−pr1 , 0.

Now we can use (4.15

.

) to compute the α-regularized Rao–Blackwell-
ization of estimators in G. Consider, for instance, the sample median
Med(X ) ∈G, where X B id�n and denote by X B 1

n S(X ) the MLE for idΘ.
Then, using Med(X )− X ∈ A0

1 which yields that E(α)(Med(X )− X |S) = 0,
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we obtain

E(α)(Med(X )|S) = E(α)(X |S)+E(α)(Med(X )− X |S)
= E(α)(b1�n |S)+E(α)(X −b1�n |S)

= E(α)(b1�n |S)+ 1
n

E(α)(S(X )−nb1�n |S)

= λ1〈b1�n ,u1〉L2(R)u1 + 1
n
λ2〈S(X )−nb1�n ,u2〉L2(R)u2

= 1
n
λ1〈b1�n ,u1〉L2(R)u1 + 1

n
λ2

(√
nσ2 +n2τ2

)
u2

= b+ 1
n
λ2(S(X )−nb1�n)

= n2τ2

αnσ2 +n2τ2 X + αnσ2

αnσ2 +n2τ2 b1�n .

Of course, we also have that E(α)(X |S)=E(α)(prk(X )|S)=E(α)(Med(X )|S),
where k ∈ {1, ...,n}. _

Compared to the classical Rao–Blackwellization, the concept of the
regularized Rao–Blackwellization presented in this thesis is, generally, a
concept that goes beyond mere data reduction. That is, in addition to a
reduction to the complete sufficient information, prior information (π and
α) is used to account for model misspecification. The latter is quantified
through the regularization parameter α > 0. In the Gaussian case (see
Examples 4.5

.

and 4.6

.

) one can see, for example, that in estimating the
canonical parameter idΘ the prior distribution π gets more involved as
the misspecification increases. In particular, α= 0 (no misspecification)
and α= 1 yield to the maximum likelihood and the Bayes estimate (w. r. t.
the squared error loss), respectively.

The computation of the Tikhonov regularized Rao–Blackwellization
for an arbitrary regularization parameter α can be quite laborious, see for
instance the previous Examples 4.5

.

and 4.6

.

. For α= 1 the computation
of E(1)(·|S) is directly accessible in a broad range of situations, in a way
closely related to Bayesian statistics.

4.7 Theorem Let (P,B,π) be a statistical model, let S be a sufficient and
π-complete statistic for P and define Ππ(S, ·)B (π⊗ idP)(·|σ(S)⊗ {;,P}).
Then, the Tikhonov regularized Rao–Blackwellization E(1)(·|S) is given by

E(1)( f |S)=
∫

EP f Ππ(S,dP) for f ∈L2(Q). (4.16)

In particular, E(1)( f |S) equals the Bayes estimator (w. r. t. the squared
error loss) if f is unbiased. _
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Proof: For f ∈L2(Q) we have that the map (x,P) 7→ (EP f )1X(x) on X×P
is in L2(X×P,A⊗B,π⊗ idP). Furthermore, a simple calculation yields

‖g− f ‖2
LS,2 +‖g‖2

OS,2 =
∫ ∫

(g(x)−EP ( f ))2 P(dx)π(dP). (4.17)

Note that E(1)( f |S) is defined to be the minimizer of (4.17

.

) among all
σ(S)-measurable g ∈ L2(Q). Since L2(X,σ(S),Q) can be identified with
L2(X×P,σ(S)⊗ {;,P},π⊗ idP), the regularization E(1)( f |S) corresponds
to a solution of

argmin
{‖h−E·( f )1X‖2

π⊗idP,2 : h ∈L2(X×P,σ(S)⊗{;,P},π⊗idP)
}
, (4.18)

which is given by the conditional expectation of (x,P) 7→EP f1X(x) given
σ(S)⊗ {;,P}, that is,

E(1)( f |S)=E
(
E· f1X

∣∣σ(S)⊗ {;,X}
)= ∫ ∫

f (x)P(dx)Ππ(S,dP),

which yields the claim. ■

In many cases the kernel Ππ(S, ·) in Theorem (4.7

.

) can be computed
explicitly, especially if π is chosen as a so-called conjugate prior.

4.8 Example (Exponential Distribution Model) For some n ∈� consider
the exponential model P= {

Exp(ϑ)⊗n : ϑ ∈ ]0,∞[
}
, that is, Exp(ϑ) has the

λ⊗n-density

ϑn exp

(
−ϑ

n∑
i=1

xi

)
1[0,∞[(x) for x ∈�n.

Let πBG(a,b) be the Gamma distribution with λ-density

fa,b(x)B
1

Γ(a)
baxa−1 exp(−bx)1[0,∞[(x) for x ∈�n.

Recall that S(x)B
∑n

i=1 xi for x ∈�n is sufficient and π-complete for P,
see also Proposition 3.21

.

on 64

.

. Furthermore, the posterior distribution is
given by

Ππ(S, ·)=G(a+n,b+S).

By Theorem 4.7

.

we have that the 1-Tikhonov regularized Rao–Blackwell-
ization of f given S is

E(1)( f |S)=
∫

Eϑ f G(a+n,b+S)(dϑ).

Canonical Parameter. For n ≥ 2 consider the MLE for the canonical
parameter id]0,∞[, that is, n

S . Since Exp(ϑ)⊗n◦S−1 =G(n, 1
ϑ

), we obtain for



82 REGULARIZED RAO–BLACKWELLIZATION II

the corresponding expectation functional

Eϑ

( n
S

)
= n

∫ ∞

0

1
y

yn−1 1
Γ(n)

ϑn exp(−ϑy)λ(dy)

= n
∫ ∞

0
yn−2 1

(n−1)Γ(n−1)
ϑn exp(−ϑy)λ(dy)

= n
n−1

ϑ.

Hence, we have that n−1
S is unbiased8

.

for the canonical parameter, which
yields

E(1)
(

n−1
S

∣∣∣S)
=

∫
ϑG(a+n,b+S)(dϑ)= a+n

b+S
.

Furthermore,
E(1)

( n
S

∣∣∣S)
= n

n−1
a+n
b+S

is the 1-Tikhonov regularized Rao–Blackwellization of the MLE n
S .

Inverse Canonical Parameter. The MLE and the UMVUE for the
parameter ϑ 7→ 1

ϑ
for ϑ ∈ ]0,∞[ coincide and is 1

n S. This is due to the
invariance property of the MLE (see also Remark 2.7

.

), the unbiasedness
can be shown easily. The 1-Tikhonov regularized Rao–Blackwellization of
1
n S is due to the unbiasedness just the Bayes estimator

E(1)
(

1
n

S
∣∣∣S)

= 1
n+a−1

·S+ b
a+n−1

.

Square Root of the Canonical Parameter. The MLE for ϑ 7→ p
ϑ for

ϑ ∈ ]0,∞[ is
√

n
S while the UMVUE is

√
n
πS . Hence, we have

E(1)
(√

n
πS

∣∣∣S)
=

∫
Eϑ

(√
n
πS

)
G(a+n,b+S)(dϑ)

=
∫ p

ϑG(a+n,b+S)(dϑ)

=
(
1
2

)2(a+n)+1 2 · (a+n)!
Γ(a+n)

√
π

b+S

for the UMVUE. Correspondingly, we obtain

E(1)
(√

n
S

∣∣∣S)
= p

π ·E(1)
(√

n
πS

∣∣∣S)
=

(
1
2

)2(a+n)+1 (2 · (a+n)!
Γ(a+n)

π ·
√

1
b+S

for the MLE. _

8Note that n−1
S is even the uniformly minimum variance unbiased estimator

(UMVUE) estimator.
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4.9 Example (Continuous Uniform Model) For some n ∈ � consider
the continuous uniform model P = {

U⊗n
[0,ϑ] : ϑ ∈ [0,1]

}
and let πBU[0,1].

Note that S(x)Bmax(x) for x ∈ [0,1]n is sufficient and π-complete for P,
see Example 3.20

.

on page 64

.

. The posterior distribution Ππ(S, ·) can be
computed and has the λ-density

Sn−1(n−1)
1−Sn−1

1
ϑn1]S,1](ϑ) for ϑ ∈�

and, hence, the 1-Tikhonov regularized Rao–Blackwellization of f given
S is

E(1)( f |S)=
∫

Eϑ fΠπ(S,dϑ).

Due to the biasedness of the MLE S, the 1-Tikhonov regularized Rao–
Blackwellization of S is

E(1)(S|S) =
∫

EϑSΠπ(S,dϑ)

= n
n+1

∫
Eϑ

n+1
n

SΠπ(S,dϑ)

= n
n+1

∫
ϑΠπ(S,dϑ)

= n
n+1

∫
Sn−1(n−1)

1−Sn−1
1

ϑn−11]S,1](ϑ)λ(dϑ)

= n
n+1

(n−1)
(n−2)

S ·
(
1−Sn−2

1−Sn−1

)
,

which is not the Bayes estimator. However, we obtain

E(1)
(

n+1
n

S
∣∣∣S)

= (n−1)
(n−2)

S ·
(
1−Sn−2

1−Sn−1

)

for the regularized RB of the UMVUE n+1
n S and any other unbiased

estimator, such as x 7→ 2
n

∑n
i=1 xi (see also Figure 4.4

.

)
Note that the 1-Tikhonov reguarlized Rao–Blackwellizations are not

affine functions of the complete sufficient statistic S and, hence, S is
not an eigenfunction of E(1)(·|S)'E(1)(·|S). An illustration of the graphs of
the MLE, the UMVUE, and their regularized Rao–Blackwellizations are
given in Figure 4.3

.

. _

Due to the continuity of the regularized Rao–Blackwellization, we
may expect that E(1)(λ̂|S) for an “approximately” unbiased estimator λ̂ is
“close” to the Bayes estimator ϑ̂Bayes w. r. t. the squared error loss. That is
made precise in the following theorem.
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n+1
n

1

0
10

Figure 4.3: Graphs of the MLE (gray,
dashed), the UMVUE (gray, solid),
and the corresponding 1-Tikhonov reg-
ularized Rao–Blackwellizations (black,
dashed) and (black, solid), respectively.

n+1
n

1

0
10

Figure 4.4: Graphs of the 1-Tikhonov
regularized Rao–Blackwellizations
(black, solid) of any unbiased esti-
mator for idΘ. The behavior of 2X is
demonstrated by the gray point cloud
that represents 5000 realizations of
π ⊗ idP(S,2X )−1. The graph of the
UMVUE is shown by the solid gray line.

4.10 Theorem For a statistical model PB
{
Pϑ : ϑ ∈Θ}

let S be a suf-
ficient and π-complete statistic. Furthermore, let ϑ̂Bayes be the Bayes
estimator w. r. t. the squared error loss and let λ̂ ∈ L2(X,A,P;�k). Then,
we have

‖E(1)(λ̂|S)− ϑ̂Bayes‖Q,2 ≤
√∫

Bias(λ̂,ϑ)2π(dϑ). (4.19)

_

Proof: Let φ be the map from (4.7

.

) (see also page 71

.

), then

R1 : (L2(Θ,B,π),‖ ·‖π,2) → (L2(X,σ(S),Q),‖ ·‖Q,2)
m 7→ arg inf

{
φm(g) : g ∈L2(X,σ(S),Q)

}
is well-defined, continuous, and has an explicit form given by (see also
proof of Theorem 4.3

.

)

R1m = (E'E+V'V)−1E'm for m ∈L2(π).

For R1 we show ‖R1‖ ≤ 1. To this end, we use Jensen’s inequality to obtain

‖Eg‖2
π,2 =

∫
‖Eϑg‖2π(dϑ)≤

∫ ∫
‖g(x)‖2 Pϑ(dx)π(dϑ)= ‖g‖2

Q,2

and thus we may follow that

‖E‖ = sup
{‖Eg‖π,2 : g ∈L2(Q), ‖g‖Q,2 ≤ 1

}≤ 1
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and consequently we have ‖E'‖ = ‖E‖ ≤ 1 as well (see e. g. Werner

.

, 2018

.

,
Satz III.4.2 (a), page 123). We also recall from the proof of Theorem 4.3

.

on
page 72

.

that

α‖ f ‖2
Q,2 ≤ 〈(E'E+αV'V) f , f 〉 for all f ∈L2(Q).

Hence, the theorem of Lax–Milgram (see e. g. Werner

.

, 2018

.

, page 266 f.)
yields that

‖(E'E+αV'V)−1‖ ≤ 1
α

.

Consequently, with α= 1 we obtain

‖R1‖ ≤ ‖(E'E+αV'V)−1‖‖E'‖ ≤ 1.

Finally, to show the stated inequality, we note for idΘ ∈ L2(Θ,B,π)
that R1(idΘ)= ϑ̂Bayes. Hence, we have

‖E(1)(λ̂|S)− ϑ̂Bayes‖Q,2 = ‖R1(Eλ̂− idΘ)‖Q,2

≤ ‖R1‖‖(Eλ̂− idΘ)‖Q,2

≤
√∫

Bias(λ̂,ϑ)2π(dϑ),

where we use ‖R1‖ ≤ 1 in the latter step. ■

4.11 Example (Continuous Uniform Model) In continuation of Example
4.9

.

on page 83

.

we recall that E(1)( n+1
n S|S)= ϑ̂Bayes which holds due to the

unbiasedness of n+1
n S. For the biased MLE ϑ̂ML(x) = S(x) for x ∈�n+, we

first note that
Bias(ϑ̂ML,ϑ)=− ϑ

n+1
and, hence, by Theorem 4.19

.

‖E(1)(ϑ̂ML|S)− ϑ̂Bayes‖Q,2 ≤
1

n+1

√∫ 1

0
ϑ2λ(dϑ)= 1p

3 · (n+1)
.

Furthermore, using E(1)(ϑ̂ML|S)= n
n+1 ϑ̂Bayes from Example 4.9

.

, an exact
computation of the left-hand side yields

‖E(1)(ϑ̂ML|S)− ϑ̂Bayes‖Q,2 =
1p

3 · (n+1)
·
√

2n(n−1)
(n+1)(2n−1)

.

_

Finally, we propose a Tikhonov regularized version of the Rao–Black-
well–Lehmann–Scheffé (RBLS) theorem (see also Theorem 2.17

.

, page 38

.

,
and Theorem 2.18

.

, page 39

.

).
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Recall that the classical Rao–Blackwellization aims at reducing the
ancillary information and therefore is a concept for improving estimation
procedures. In addition, the presented regularization approach looks for
approximate regular substitutes of the Rao–Blackwell projection. Con-
sequently, we may expect a regularized version of the Rao–Blackwell–
Lehmann–Scheffé Theorem as follows.

4.12 Theorem (Tikhonov Regularized RBLS) For a statistical model
P B

{
Pϑ : ϑ ∈ Θ}

let S be a sufficient and π-complete statistic for P.
Furthermore, let λ̂ ∈L2(X,A,P;�k). Then, for every α ∈ ]0,1] and κ= idΘ
we have

r
(
E(α)(λ̂|S),π

)−2 · ‖E(α)(λ̂|S)− λ̂‖LS,2

√∫
Bias(λ̂,ϑ)2π(dϑ)

≤ r
(
E(λ̂|S),π

)≤ r(λ̂,π).

and in particular

r
(
E(α)(λ̂|S),π

)≤ r
(
E(λ̂|S),π

)≤ r(λ̂,π),

if λ̂ is unbiased. _

Proof: The part r
(
E(λ̂|S),π

)≤ r(λ̂,π) follows by the classical theorem of
Rao and Blackwell (see Theorem 2.17

.

). To show the remaining inequality
for the Bayes risk, we first note that for α ∈ ]0,1] by definition of λ̂∗ B
E(α)(λ̂|S) and since E

(
E(λ̂|S)

)=Eλ̂

‖λ̂∗‖2
OS,2 +‖λ̂∗− λ̂‖2

LS,2 ≤ ‖λ̂∗‖2
OS,2 +

1
α
‖λ̂∗− λ̂‖2

LS,2 ≤ ‖E(λ̂|S)‖2
OS,2.

Hence, we may compute for the corresponding Bayes risk of λ̂∗

r(λ̂∗,π) =
∫

Varϑ(λ̂∗)π(dϑ)+
∫

Bias(λ̂∗,ϑ)2π(dϑ)

≤ ‖λ̂∗‖2
OS,2 +‖λ̂∗− λ̂‖2

LS,2 +2‖λ̂∗− λ̂‖LS,2 ·
√∫

Bias(λ̂,ϑ)2π(dϑ)

≤ r(E(λ̂|S),π)+2‖λ̂∗− λ̂‖LS,2 ·
√∫

Bias(λ̂,ϑ)2π(dϑ),

which is equivalent to the stated inequality. ■

4.13 Example (Continuous Uniform Model) To measure the performance
of the estimators given in Example 4.9

.

on page 83

.

f., we consider realiza-
tions (X1,θ1), ..., (XN ,θN) simulated from

π⊗ idP =U[0,1] ⊗Un
[0,·],

where n = 10 and N = 106. The empirical distributions of(
κ̂(X i)−κ(θi) : i = 1, ..., N

)
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for estimators

κ̂ ∈
{
S, E(1)(S|S), 2X , n+1

n S, E(1) (n+1
n S|S)}

are shown in Figure 4.5

.

. In accordance with Theorem 4.12

.

, one can see
that the 1-Tikhonov regularized Rao–Blackwellization E(1)(·|S) improves
the unbiased estimators 2X and n+1

n S w. r. t. the Bayes risk

r
(
λ̂,U[0,1]

)= ∫
‖λ̂(x)−ϑ‖2 U[0,ϑ](dx)U[0,1](dϑ).

Furthermore, note that E(1)(S|S) is worse than S, which is due to the bias
of S. However, due to the continuity of E(1)(·|S), improvements can be
expected at least in an ‖ ·‖LS,2-neighborhood of unbiased estimators. _

−0,1 0 0,1

κ̂ Simulation of (π⊗ idP)(κ̂−κ)−1

S

E(1)(S|S)

2 · X

n+1
n S

E(1)( n+1
n S|S)

Figure 4.5: Boxplots of 106 realiza-
tions of π⊗ idP under κ̂− κ̂(·). While
gray colored boxplots correspond to con-
ventional estimators (MLE, 2 · X , and
UMVUE) for κ= idΘ, the black colored
boxplots correspond to their 1-Tikhonov
regularized Rao–Blackwellizations. The
boxplots illustrate that E(1)(·|S) im-
proves the unbiased estimators 2·X and
n+1

n S, however, E(1)(S|S) is worse than
the MLE S.

ϑ 7→MSE
(
κ̂,κ(ϑ)

)
×10−3

10

0
10 Θ

S

E(1)(S|S)

2 · X
n+1

n S

E(1)( n+1
n S|S)

Figure 4.6: Graphs of ϑ 7→
MSE

(
κ̂,κ(ϑ)

)
. While the gray colored

graphs correspond to the conventional
estimators (MLE, 2 · X , and UMVUE)
for κ = idΘ, the black colored graphs
correspond to the 1-Tikonov reguarlized
Rao–Blackwellizations.

4.2 Ivanov’s Regularization Approach
To avoid an overfitting in (see also (4.3

.

))

E( f |C)=E−1
C E f = argmin

{‖ f − g‖LS,p : g ∈Lp(X, C,Q)
}
.

for some f ∈ Lp(X,A,Q) and hence to regularize EC, we may also take
qualitative prior knowledge of the solutions into account. We do this by
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narrowing the class of possible solutions to a subset G ⊂Lp(X, C,Q) such
that for every f ∈Lp(X,A,Q)

argmin
{‖ f − g‖LS,p : g ∈G

}
(4.20)

is well-posed, that is, (4.20

.

) has a unique solution that depends contin-
uously on f and which is then also called quasi solution. Consequently,
we write E(G)( f |C) for the solution of (4.20

.

), which we call G-quasi Rao–
Blackwellization of f given C.

Furthermore, E(G)(·|C) is by definition also a regularized Rao–Black-
wellization. To see this, we define the map

BG : Lp(P,B,π) → G
m 7→ argmin

{‖m−Eg‖π,p : g ∈G
}
.

Then BG constitutes, as a constant family, a regularization scheme for
EC on G and satisfies E(G)(·|C) = BG ◦E. According to Kress

.

(1999

.

) this
regularization approach of ill-posed problems traces back to *Ivanov

.

(1962

.

).

Concerning the existence of subsets G such that (4.20

.

) yields a well-
defined regularized Rao–Blackwellization E(G)(·|C) in the sense of Ivanov,
we note the following.

4.14 Theorem (Ivanov Regularized Rao–Blackwellization) Let p ∈ ]1,∞[
and let G be an absolutely convex, closed, and boundedly compact9

.

subset
of (Lp(X, C,Q),‖ ·‖Q,p). Then, for each f ∈Lp(X,A,Q)

argmin
{‖ f − g‖LS,p : g ∈G

}
(4.21)

is well-posed. Thus, the G-quasi Rao–Blackwellization E(G)( f |C) is well-
defined. _

Proof: Instead of (4.21

.

), we consider first of all

argmin
{‖EC( f − g)‖π,p : g ∈G

}
with the linear continuous invertible expectation operator EC acting
between the two Banach spaces Lp(X, C,Q) and Lp(P,B,π), where we
recall that, in fact,∫

‖EP f ‖p
�k π(dP)≤

∫ ∫
‖ f (x)‖p

�k Q(dx)<∞ (4.22)

for all f ∈ Lp(X, C,Q). Furthermore, ‖ · ‖π,p is strictly convex for all p ∈
]1,∞[. Then, Vasin

.

(2008

.

, Theorem 2.2 and Corollary 2.7) yields that
9A subset M of a metric space (X,d) is called boundedly compact iff every closed

(d-)metrically bounded subset of M is compact.
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(4.22

.

) has a unique solution E(G)( f |C) ∈ G ⊂ Lp(X, C,Q) which depends
continuously on (EP f )P∈P ∈Lp(P,B,π).

Note that E
(
E( f |C)

)= E f for all f ∈ Lp(X,A,Q). Hence, we may con-
tinuously extend E(G)(·|C) on Lp(X,A,Q), that is,

E(G)(·|C) : (Lp(X,A,Q),‖ ·‖LS,p)→ (Lp(X, C,Q),‖ ·‖Q,p)

and E(G)( f |C) is the unique solution of (4.21

.

) for f ∈Lp(X,A,Q). Note also
that E(G)(·|C)|G = id|G . Hence, E(G)(·|C) is a regularized Rao–Blackwell-
ization. ■

The idea of a quasi-solution naturally raises the question of construct-
ing a regularization scheme for EC on the whole space Lp by considering
a suitable family (G)G∈G of absolutely convex, closed, and boundedly com-
pact sets. A classical choice might be a family of finite-dimensional spaces,
which we briefly consider in the following remark.

4.15 Remark (Ritz–Galerkin Solutions) Let p = 2 and let (Gn)n∈� be
an increasing sequence of finite-dimensional subspaces of L2(X, C,Q).
Theorem 4.14

.

yields then that E(Gn)(·|C) is well-defined through

argmin
{‖ f − g‖2

LS,2 : g ∈Gn
}
.

Note that

‖ f − g‖2
LS,2 = 〈 f − g, f − g〉LS

= 〈E( f − g),E( f − g)〉L2(π)

= 〈E'E( f − g), ( f − g)〉L2(Q).

Consequently, ‖ ·‖LS,2 is the so-called energy norm that corresponds to the
operator equation E'Eg = f and E(Gn)(·|C) is the (Ritz–)Galerkin solution
of E'Eg = f in Gn, see also Kress

.

(1999

.

, Section 13.5, page 240 ff.).
Even if

⋃
n∈�Gn is dense in (L2(X, C,Q),‖ · ‖Q,2), Galerkin solutions

generally do not converge to the solution in L2(X, C,Q). However, if we
consider

(E'E+αV'V)g = f

for some α > 0 instead of E'Eg = f and if we denote the corresponding
Galerkin solution by E(Gn,α)( f |C), we have by Cea’s Lemma (see e. g.
Braess

.

, 2003

.

, Lemma 4.2, page 53)

‖E(Gn,α)( f |C))−E( f |C)‖Q,2 ≤
1
α

inf
{‖ f − g‖LS,2 +α‖ f − g‖OS,2 : g ∈Gn

}
,

since E'E+αV'V is strictly coercive for every positive α (see proof of
Theorem 4.3

.

, page 72

.

). Consequently,

lim
n→∞‖E(Gn,α)( f |C))−E( f |C)‖Q,2 = 0,
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see also Kress

.

(1999

.

, Theorem 13.27, page 242 f.). Note that E(Gn,α)( f |C)
is still different from the Rao–Blackwellization E(α)( f |C) obtained by
Tikhonov’s regularization. Note that for α= 1 we have that E(Gn,1)( f |C)
is given by

argmin
{‖ f − g‖2

Q,2 : g ∈Gn
}
,

since the energy norm of E'E+V'V is equivalent to ‖ · ‖Q,2 and both are
strictly convex. By this we have shown how regularized Rao–Blackwell-
izations can be computed (approximately). _

Theorem 4.14

.

yields a sufficient condition for a set G of prescribed so-
lution characteristics that leads to a regularized Rao–Blackwellization. In
Remark 4.15

.

we have specifically considered finite-dimensional subspaces
G, that might be spanned by simple basis functions. For computational
reasons, however, G might be chosen implicitly according to “representa-
tion properties” of the corresponding regularized Rao–Blackwellizations.

To this end, let Cbe a complete sufficient σ-algebra for P and consider
the Rao–Blackwell operator as the integral operator

E(·|C) : (Lp(X,A,Q),‖ ·‖LS,p) → (Lp(X, C,Q),‖ ·‖Q,p)
f 7→ ∫

f (x)P(dx|C) (4.23)

for some P ∈P and some power p ∈ [1,∞]. Substituting P(·|C) by another
a Markov kernel R from (X, C) to (X,A) such that

R : (Lp(X,A,Q),‖ ·‖LS,p) → (Lp(X, C,Q),‖ ·‖Q,p)
f 7→ ∫

f (y)R(·,dy) (4.24)

is a well-defined continuous operator leads then to an Ivanov regular-
ized Rao–Blackwellization. This regularization is interesting because
for an appropriately chosen subspace GR ⊂Lp(X, C,Q) the regularization
E(GR )(·|C) can be approximately computed by R.

4.16 Theorem Let p ∈ ]1,∞[ and let R be a Markov kernel from (X, C)
to (X,A) such that (4.24

.

) is well-defined and continuous. Furthermore,
assume [P] ⊂ ker(R) and let GR ⊂ Lp(X, C,Q) be a finite-dimensional
subspace such that ‖(I−R)|GR‖ ≤ ε. Define

|||R|||B sup
{‖Ru‖Q,p : u ∈Lp(X,A,Q), ‖u‖LS,p ≤ 1

}
,

that is, the operator norm w. r. t. ‖ ·‖LS,p, then∥∥E(GR )( f |C)−∫
f (y)R(·,dy)

∥∥
Q,p

≤ |||R||| inf
{‖ f − g‖LS,p : g ∈GR

}+ε ·∥∥E(GR )( f |C)
∥∥

Q,p

(4.25)

for all f ∈Lp(X,A,Q). _
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Proof: Let f ∈ Lp(X,A,Q) be arbitrary. According to Theorem 4.14

.

, we
first have that

argmin
{‖ f − g‖LS,p : g ∈GR

}
yields the well-defined Ivanov regularized Rao–Blackwellization of f given
C, which is denoted by E(GR )( f |C). Furthermore, R is a linear operator
that is continuous w. r. t. ‖ ·‖LS,p, that is, for all f , g ∈L2(X,A,Q) we have

‖R f −R g‖Q,p ≤ |||R|||‖ f − g‖LS,p.

Then, we obtain∥∥E(GR )( f |C)−∫
f (y)R(·,dy)

∥∥
Q,p

≤ ∥∥∫
E(GR )( f |C)(y)− f (y)R(·,dy)

∥∥
Q,p

+∥∥E(GR )( f |C)−∫
E(GR )( f |C)(y)R(·,dy)

∥∥
Q,p

= ∥∥R
(
E(GR )( f |C)− f

)∥∥
Q,p +

∥∥(I−R)|GR

(
E(GR )( f |C)

)∥∥
Q,p

≤ |||R|||∥∥E(GR )( f |C)− f
∥∥

LS,p +
∥∥(I−R)|GR

∥∥∥∥E(GR )( f |C)
∥∥

Q,p.

Finally, we have by definition of E(GR )( f |C) that∥∥ f −E(GR )( f |C)
∥∥

LS,p = inf
{‖ f − g‖LS,p : g ∈GR

}
,

which yields the claim. ■

Roughly speaking, computing E(GR )( f |C) can be replaced by computing∫
f (y)R(·,dy), if f is “close” to GR w. r. t. ‖ · ‖LS,p and if R is “almost”

idempotent, that is, ‖(I−R)|GR‖ is “small”.

4.17 Example (Gaussian Model, Ivanov Regularized RB of the MLE) As
in Example 4.5

.

, page 74

.

, let PB
{
N(a,σ2) : a ∈�}

, let πBN(b,τ2), and
define QBπ · idP =N(b,σ2 +τ2). Then, we first note that

R : (Lp(�,B(�),Q),‖ ·‖LS,p) → (Lp(�,B(�),Q),‖ ·‖Q,p)

f 7→ ∫
f (x)N(·,σ2)(dx)

is well-defined and continuous. This is due to N(b,σ2 +τ2)=N(b,τ2)T for
some affine function T. By substitution, one can consequently see that
there is an M > 0 such that

‖R f −R g‖p
Q,p ≤

∫ ∥∥∥∥∫
( f − g)(y)N(x,σ2)(dy)

∥∥∥∥p
N(b,σ2 +τ2)(dx)

≤ M
∫ ∥∥∥∥∫

( f − g)(y)N(x,σ2)(dy)
∥∥∥∥p

N(b,τ2)(dx)

= M · ‖ f − g‖p
LS,p.
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Second, we obviously have that f ∈ [P] implies f ∈ ker(R). Third, note that
GR B span

{
1�,id�

}
is a (finite-dimensional) subspace of the eigenspace

ker(I−R)10

.

and, hence, ‖(I−R)|GR‖ = 0. In total, Theorem 4.16

.

yields for
the GR-quasi Rao–Blackwellization that

‖E(GR )( f |C)−∫
f (y)R(·,dy)‖Q,p ≤ M inf

{‖ f − g‖LS,p : g ∈GR
}

holds for general f ∈Lp(�,B(�),Q) and in particular for the MLE

E(GR )(id�|C)= id�,

which is different from the Tikhonov regularized Rao–Blackwellization
(see Example 4.5

.

, page 74

.

). _

4.18 Example (Continuous Uniform Model) Let p ∈ ]1,∞[, n ∈�, con-
sider the statistical model PB

{
U⊗n

[0,ϑ] : ϑ ∈ [0,1]
}

on ([0,1]n,B([0,1]n)),
and set πBU[0,1]. Then, a complete sufficient statistic for P is given by

S : [0,1]n → [0,1]
x 7→ max(x),

which is also the MLE for the canonical parameter id[0,1]. By defining the
map R : (x, A) 7→ U[0,S(x)](A), we have a Markov kernel from (X,σ(S)) to
(X,A). Note that the corresponding Markov operator

R : (Lp(X,A,Q),‖ ·‖LS,p) → (Lp(X,σ(S),Q),‖ ·‖Q,p)
f 7→ ∫

f (y)R(·,dy)

is continuous, since: QBπ ·P has a density w. r. t. U[0,1]n which is

x 7→ 1
n−1

(
1

Sn−1(x)
−1

)
.

Furthermore, QS has the density ϕ : s 7→ n
n−1

(
sn−1 −1

)
w. r. t. π, which is

in particular bounded on [0,1], more precisely, supϕ= n
n−1 . Consequently,

‖R f ‖p
Q,p =

∫ ∥∥∥∥∫
f (y)U[0,S(x)](dy)

∥∥∥∥p
Q(dx)

=
∫ ∥∥∥∥∫

f (y)U[0,ϑ](dy)
∥∥∥∥p

QS(dϑ)

≤ n
n−1

∫ ∥∥∥∥∫
f (y)U[0,ϑ](dy)

∥∥∥∥p
π(dϑ)

≤ n
n−1

‖ f ‖p
LS,p

10If R is restricted to tempered distributions, that is, to continuous linear functionals
on the Schwartz space on�, one can in fact show that GR = ker(I−R), see also Kwaśnicki

.

(2020

.

) and Vladimirov

.

(2002

.

).
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for all f ∈Lp(X,A,Q) and, hence, R is continuous. Furthermore, due to

n
n+1

S =
∫

S(y)R(·,dy)

the Markov operator R has eigenfunctions 1� and S with corresponding
eigenvalues 1 and n

n+1 . For GR B span {1�,S} we may compute ‖(I−R)|GR‖
through the maximal eigenvalue of (I−R)|GR , that is, 1− n

n+1 and, hence,

‖(I−R)|GR‖ ≤ Mp ·
(
1− n

n+1

)
= Mp

n+1

for some constant Mp that depends on the chosen norm11

.

‖ ·‖p. By Theo-
rem 4.16

.

we then have∥∥E(GR )( f |S)−∫
f (y)R(·,dy)

∥∥
Q,p

≤ p
√

n
n−1 inf

{‖ f − g‖LS,p : g ∈GR
}+ Mp

n+1

∥∥E(GR )( f |S)
∥∥

Q,p.

By defining R̃ : (x, A) 7→U[0, n+1
n S(x)](A), we have another Markov ker-

nel from (X,σ(S)) to (X,A). The continuity of the corresponding Markov
operator w. r. t. ‖ · ‖LS,p can be shown analogously with some constant
C > 0 and we have

S =
∫

S(y) R̃(·,dy),

that is, we have eigenfunctions 1� and S to the same eigenvalue 1. Hence,
‖(I− R̃)|GR‖ = 0 and, for the computation of the Ivanov regularized Rao–
Blackwellization, we may note that∥∥E(GR )( f |S)−∫

f (y) R̃(·,dy)
∥∥p

Q,p ≤ C inf
{‖ f − g‖LS,p : g ∈GR

}
. (4.26)

Note that (4.26

.

) in particular says that the Ivanov regularized Rao–
Blackwellization E(GR )(κ̂|C) of approximately unbiased estimators κ̂ are
close to the UMVUE n+1

n S. _

The arguments of the above example can also be used for a general
exponential family.

4.19 Example (Exponential Family) Consider p ∈ ]0,1[ and let P B{
Pϑ : ϑ ∈Θ}

be a k-parametric exponential model on (X,A) with complete
sufficient statistic S. Furthermore, for κ̂ : (X,σ(S)) → (Θ,B(Θ)), we set
πB P κ̂

ϑ0
and assume that (1) suppπ=Θ and, hence, S is π-complete; (2)

Qκ̂ has a bounded density w. r. t. π, which we denote by ϕ. Then,

R : (Lp(X,A,Q),‖ ·‖LS,p) → (Lp(X,σ(S),Q),‖ ·‖Q,p)
f 7→ ∫

f (x)Pκ̂(·)(dx), (4.27)

11In the Euclidean case p = 2 we may choose M2 = 1.
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is continuous. This is because, for f ∈Lp(X,A,Q), we have with MB supϕ

‖R f ‖p
Q,p =

∫ ∥∥∥∥∫
f (y)Pκ̂(x)(dy)

∥∥∥∥p
Q(dx)

=
∫ ∥∥∥∥∫

f (y)Pϑ(dy)
∥∥∥∥p

Qκ̂(dϑ)

≤ M
∫ ∥∥∥∥∫

f (y)Pϑ(dy)
∥∥∥∥p
π(dϑ)

= M‖ f ‖p
LS,p.

Assume that κ̂ is an approximately unbiased estimator and that this can
be quantified via ∥∥∥∥κ̂−∫

κ̂(y)Pκ̂(·)(dy)
∥∥∥∥

Q,p
< ε

‖κ̂‖Q,p

for some ε > 0. Let GR B span {1�, κ̂}, then for every h ∈ GR there are
a, b ∈� such that h = a1�+bκ̂. Furthermore,

‖(I−R)|GR h‖Q,p ≤ |a| · ‖(I−R)|GR1�‖Q,p +|b| · ‖(I−R)|GR κ̂‖Q,p ≤ |b| ·ε.

Hence, ‖(I−R)|GR‖ ≤ ε and the statement of Theorem 4.16

.

is in these
terms

‖E(GR )( f |S)−∫
f (y)R(·,dy)‖Q,p

≤ pp
M inf

{‖ f − g‖LS,p : g ∈GR
}+ε‖E(GR )( f |S)‖Q,p

for all f ∈Lp(X,A,Q). _

The regularized Rao–Blackwellization E(GR )(·|S) due to Ivanov’s ap-
proach reduces the ancillary material of estimators w. r. t. the prior knowl-
edge that is determined by GR . Favorable or possibly ideal estimators in
GR remain unchanged if E(GR )(·|S) is applied to these estimators. Theorem
4.16

.

shows that the Markov operator R : f 7→ ∫
f (y)R(·,dy) reduces the

“almost” ancillary material of GR-close estimators similarly as E(GR )(·|S).
Regarding the above Example 4.19

.

, the choice κ̂ = ϑ̂ML will be of
special interest in the remainder of this section. By this we are interested
in approximating the MLE for the canonical parameter idΘ through the
corresponding Markov operator (4.27

.

) considered in the above example. To
this end, note that in this case ϑ̂ML ∈GR and, hence, E(GR )(ϑ̂ML|S)= ϑ̂ML.
Furthermore, we point out that

‖E(GR )(ϑ̂ML|S)−∫
λ̂(y)R(·,dy)‖Q,p

= ‖ϑ̂ML −∫
λ̂(y)Pϑ̂ML(·)(dy)‖Q,p = ‖Bias(λ̂, ϑ̂ML(·))‖Q,p
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for every λ̂ ∈Lp(X,A,Q). That means, the more unbiased λ̂ is the better we
approximate ϑ̂ML through Rλ̂. We are therefore interested in computing
the latter which is the concern of the following theorem.

4.20 Theorem Let P= {
Pϑ : ϑ ∈Θ}

be a k-parameter exponential family
(full rank) with sufficient statistic S ∈L2(X,A,P). Then, for an observation
x ∈ X with S(x) ∈ {

EϑS : ϑ ∈ int(Θ)
}
, the maximum likelihood estimator

for the canonical parameter idΘ has the factorization ϑ̂ML = θ̂ML ◦S on a
neighborhood of S(x) and we obtain the following approximation of θ̂ML

θ̂ML(s)= Eϑ̂ML(x)(λ̂)+Var−1
ϑ̂ML(x)

(S)Covϑ̂ML(x)(S, λ̂)(s−S(x))

+ Bias(λ̂, θ̂ML(s))+o(‖s−S(x)‖)
(4.28)

where λ̂ ∈L2(X,A,P) and s lies in a neighborhood of S(x). _

Proof: First, we note that the MLE ϑ̂ML is measurable w. r. t. the sufficient
statistic S on a neighborhood of S(x) (see also Proposition 2.5

.

(a), page
32

.

). Hence, we may consider the factorization ϑ̂ML = θ̂ML ◦S.
Second, we note that

θ̂ML =Bias(λ̂, θ̂ML(·))+
∫
λ̂(y)Pθ̂ML(·)(dy).

Third, we compute the linear Taylor approximation of the second term,
that is, Eθ̂ML(·)λ̂ : s 7→ ∫

λ̂(y)Pθ̂ML(s)(dy). To this end, we note that

∂

∂s
Eθ̂ML(s)λ̂= ∂

∂θ̂ML(s)
Eθ̂ML(s)λ̂ ·

∂

∂s
θ̂ML(s) (4.29)

can be computed by using the prerequisite that P is an exponential
family, see also Lemma 1.38

.

, page 27

.

for the exchange of integration
and differentiation. On the one hand, we may compute the Jacobian
∂
∂ϑ

Eϑλ̂ ∈�k×k as

∂

∂ϑ
Eϑλ̂ =

∫
λ̂(y)

(
∂

∂ϑ
c(ϑ)

)
exp(〈ϑ,S(y)〉)µ(dy)

+
∫
λ̂(y)c(ϑ)

(
∂

∂ϑ
exp(〈ϑ,S(y)〉)

)
µ(dy),

where c(ϑ)−1 = ∫
exp(〈ϑ,S(y)〉)µ(dy) is the normalizing constant. Since

∂

∂ϑ
c(ϑ)=−c(ϑ)2 ·

∫
ST(y) exp(〈ϑ,S(y)〉)µ(dy)=−c(ϑ) ·EϑST,

we have in total

∂

∂ϑ
Eϑλ̂=−Eϑλ̂ ·EϑST+Eϑλ̂ST =Covϑ(S, λ̂) ∈�k×k. (4.30)
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On the other hand, to compute ∂
∂s θ̂ML(s) ∈�k×k, we first recall that θ̂ML is

implicitly defined by ϕ(θ(s), s)= 0, where

ϕ : (ϑ, s) 7→EϑS− s,

see Proposition 2.5

.

(a). By the theorem on implicit functions, we have that

∂

∂s
θ̂ML(s)=−

[
∂

∂ϑ
ϕ(ϑ, s)

]−1

ϑ=θ̂ML(s)

[
∂

∂s
ϕ(ϑ, s)

]
, (4.31)

where we note that ∂
∂sϕ(ϑ, s)=−Ik and[
∂

∂ϑ
ϕ(ϑ, s)

]−1

ϑ=θ̂ML(s)
= (

Varθ̂ML(s)S
)−1, (4.32)

which is due to (4.30

.

). Finally, using (4.30

.

), (4.31

.

), and (4.32

.

) the Jacobian
in (4.29

.

) turns out to be

∂

∂s
Eθ̂ML(s)λ̂=Varθ̂ML(s)S

−1Covθ̂ML(s)(S, λ̂)

and, hence, yields the linear Taylor approximation of Eθ̂ML(·)λ̂ with the
remaining term o(‖s−S(x)‖). The statement follows then together with
the second part. ■

The formula (4.28

.

) paves a way toward obtaining an empirical distribu-
tion of the MLE by performing a linear regression based on simulated data
from some (approximately) unbiased estimator (dependent variable) and
the sufficient statistic S (covariate). This leads to the following practical
procedure.

4.21 Algorithm (Empirical Distribution of the MLE) Let P = {
Pϑ :

ϑ ∈ Θ}
be a k-parametric exponential family with sufficient statistic

S ∈L2(X,A,P) and reference measure µ. Assume that θ̂ML = ϑ̂ML ◦S is a
P-integrable maximum likelihood estimator for the canonical parameter
idΘ. Let λ̂ denote an alternative estimator which is approximately unbi-
ased for idΘ and easier to compute than the MLE. Given the observation
x ∈X, proceed as follows:
(1) Compute ϑ̂ML(x);

(2) Simulate X1, ..., XN ∼ Pϑ̂ML(x);

(3) Compute (λ̂(X i))1≤i≤N and the sufficient statistic values (S(X i))1≤i≤N ;

(4) Perform a linear regression of (λ̂(X i))1≤i≤N on (S(X i))1≤i≤N .
According to Theorem 4.20

.

the fitted regression line approximates the
MLE θ̂ML locally, that is, in a neighborhood of S(x), assuming also that
N is large.12

.

In this context, the fitted values can be seen as realizations
12Note that this rough conclusion makes use of the relation Eϑ̂ML(x)S = S(x), that is,

we may also assume that S(X1), ...,S(XN )∼ Pϑ̂ML(x) are “expected” to be in neighborhood
of S(x).
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of ϑ̂ML under the empirical prior Pϑ0 , where ϑ0 is the unknown “true”
parameter from Θ. Therefore, by the fitted values we have an approximate
empirical distribution of P ϑ̂ML

ϑ0
. _

We consider as a first simple example the MLE of the canonical pa-
rameter in the exponential model. For a more interesting model, the
Lennard-Jones point process model, we refer to the simulation study in
Chapter 7

.

(see Section 7.4

.

on page 167

.

f.). In the following we will write
E(LR)(λ̂|S) for the (empirical) linear regression line as a first-order Tay-
lor approximation of Eθ̂ML(·)λ̂ and simply speak of a (Ivaonv) regularized
Rao–Blackwellization of λ̂ given S. This is due to Theorem 4.16

.

and the
intuitive role that Eθ̂ML(·)λ̂ is a (regularized) Rao–Blackwellization of λ̂
given S.

4.22 Example (Exponential Distribution Model) For some n ∈� and
ΘB ]0,∞[ we consider the statistical modelPB (Exp(ϑ)⊗n : ϑ ∈Θ). Recall
that S(x)=∑n

i=1 xi for x ∈�n is complete and sufficient for P. The MLE is
known to be ϑ̂ML(x)= n

S(x) for x ∈�n.
For an illustration of Theorem 4.20

.

, we consider for some m ≤ n the
estimator

κ̂
′
m(x)B

(
1
m

m∑
i=1

xi

)−1

for x ∈ ]0,∞[n.

Figure 4.7

.

shows the result of a simulation study. We simulate N = 10000
times from Exp(2)⊗50 and compute (S, κ̂

′
25). The linear regression of κ̂

′
25 on

Θ

2

1

0 1
S θ̂MLE(LR)(κ̂′25|S)κ̂′25

Figure 4.7: Joint empirical distribution of the sufficient statistic S together with the
estimator κ̂

′
25 (gray point cloud), the MLE κ̂ML (gray line; formed by points) and the

fitted values of the linear regression of κ̂
′
on S (black line; formed by points) under P2.

Corresponding boxplots are shown on the right.
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S yields only a rough approximation of the MLE. However, distributions
of E(LR)(κ̂′25|S) and the MLE seems to be fairly similar. _

In Chapter 7

.

we discuss Gibbs point process models that constitute
more interesting situations, where the MLE is hard to compute. Therefore,
Theorem 4.20

.

provides an access to compute even an empirical distribution
of the MLE.



PART III
Statistics for Gibbs Point Processes

The overall aim of this part is an application of the regularized Rao–
Blackwellization in the context of statistical inference for Gibbs point
processes. To this end, we consider three chapters.

In Chapter 5

.

we first give an introduction to the theory of random
measures, putting strong emphasis on point processes. We provide a
motivation by a counterexample for the required technical assumptions
which are often used in the literature (see Remark 5.1

.

). For a better
understanding of the object of interest, that is point processes, we also
take a look at similar random elements that are known from the theory
of stochastic processes (see e. g. Example 5.33

.

). To show the existence
of random measures, we provide a Kolmogorov version (see Proposition
5.25

.

) which we then use to introduce the class of Poisson point process
distributions. This preliminary chapter will be closed by a brief survey of
basic notions and definitions regarding the so-called interior and exterior
conditioning of point processes.

In Chapter 6

.

we are concerned with introducing distributions of Gibbs
point processes, which is a class of point processes that account for interac-
tions. This will be done through certain consistent families of conditional
distributions, the so-called specifications. By this approach we are able to
introduce the so-called Gibbs distributions even on non-compact spaces
such as (�d,B(�d)), which we need, for example, to consider stationary1

.

distributions. However, in contrast to the Kolmogorov approach, questions
concerning the existence and uniqueness are much more challenging. We
provide an example of a specification that has no Gibbs point process dis-
tribution (see Example 6.6

.

, see also Georgii

.

(2011

.

, page 66) for a version
in the lattice case).

1The concept of stationarity will be required for introducing the variational estimator
in Chapter 7

.

, for example.
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A systematic treatment regarding the question of existence in general
was given by Preston

.

(1976

.

) which later on was revised and modified in
Preston

.

(2005

.

). Although Preston himself regarded the first presentation
as “fairly abstract” (see Preston

.

, 1976

.

, preface) and the second as “not [...]
suitable for learning about Gibbs [point processes]” (see Preston

.

, 2005

.

,
preface), Chapter 6

.

also aims at a comprehensive survey of some key
issues, mainly guided by a merge of the two mentioned monographs of
Preston. To this end, we also embed some known results from the theory
of Markov chains in this context of specifications and Gibbs measures.
We also provide examples. The chapter on Gibbs point processes will be
closed with a variational equation for stationary Gibbs point processes.2

.

The present part culminates in Chapter 7

.

on statistical inference for
parametric Gibbs point process models. We provide a brief survey of
estimation methods in a Gibbs point process setting which contains the
maximum likelihood estimator (MLE), the so-called maximum pseudo-
likelihood estimator (MPLE), and the variational estimator (VARE). In line
with the overall topic of this thesis, some emphasis is put on measurability
aspects of these estimators. It is shown that the measurability of the
MLE is less dependent on the boundary condition (see Proposition 7.1

.

).
Furthermore, we demonstrate that the MPLE is in general not measurable
w. r. t. the complete sufficient statistic (see Remark 7.6

.

). This chapter
is closed with a simulation study for the (cut-off) Lennard-Jones point
process model. Here, we illustrate aspects of the (Ivanov) regularized
Rao–Blackwellization for different parameters and different boundary
conditions. Furthermore, we propose constructions of confidence sets for
the canonical parameter (see Methods 7.9

.

, 7.10

.

, and 7.11

.

), which make
use of the regularization idea. Then, these methods are also compared
w. r. t. different boundary conditions.

2This variational equation motivates an unbiased estimating equation that leads to
the variational estimator in Chapter 7

.

.



CHAPTER 5
Basics on Random Measures

Random measures and specifically point processes appear frequently in
probability theory and mathematical statistics. The theory of random
measures can be used to present a general account of a sampling theory
(see H. 2015

.

). Random measures themselves serve as a probabilistic
model for (spatial) point patterns arising in, for example, astronomy,
biology, forestry, geology, and notably statistical physics. The latter has
a high interest in studying models for interacting particles and has had
a fundamental impact in developing the theory of so-called Gibbs point
processes in the last century.

This chapter gives an introduction to the theory of random measures.
Strong emphasis is put on point processes to prepare the reader for the
subsequent chapters on Gibbs point processes and their statistical theory.
Random measure theory shares some fundamental analogies with the
theory of stochastic processes and their analysis. The present introduction
also aims at this issue and, hence, will not just be guided by corresponding
textbooks, such as Schneider & Weil

.

(2000

.

), Daley & Vere-Jones

.

(2008

.

),
and Kallenberg

.

(2017

.

). Basic knowledge on probability theory is a prereq-
uisite. We frequently make use of elementary results which can be found
in standard textbooks, for example, Bauer

.

(1991

.

, 2001

.

) and Kallenberg

.

(2002

.

). As usual, we refer to the literature where possible. However,
proofs are presented if there is no suitable reference, or no reference at
all. This is especially the case for auxiliary results which explain and
motivate commonly used technical assumptions.

We start with elementary notions and definitions and investigate some
peculiarities of the state spaces used for random measures and point
processes. The presentation comes with elementary examples. We also
provide crucial statements for easy reference.
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5.1 The State Spaces
We will introduce the random objects in question, random measures and
point processes, as a random element in appropriate measurable state
spaces. This section is devoted to provide some preliminaries.

Let (X,A) be a measurable space and denote byM∗BM∗(X,A) the set
of all measures on (X,A). To deal withM∗(X,A)-valued random elements,
a measurable structure is required. That is, we have to equip M∗(X,A)
with a σ-algebra. We may consider the canonical σ-algebra

M∗BM∗(X,A)Bσ(µ 7→µ(A) : A ∈A).

A kernel K from a probability space (Ω,F,P) to (X,A) can then be consid-
ered as an (M∗,M∗)-valued random element on (Ω,F,P) and vice versa.

Note, however, that M∗(X,A) is the product σ-algebra on the function
spaceM∗ of σ-additive set functions µ : A→�+∪ {∞} and, hence, events
are countably determined. That is, for every F ∈M∗ there is a countable
E⊂A such that F = pr−1

E

(
prE(F)

)
, where prE : M∗ → [0,∞]E is the projec-

tion on set functions restricted to E. Consequently, we encounter improper
situations if we just consider (M∗(X),M∗(X)) for a general measurable
space (X,A). By improper we mean the defect that the set of all Dirac
measures is in general not measurable and hence does in general not
constitute an event.1

.

5.1 Remark (Improper Point Measures) Consider XB [0,1] and let Abe
the σ-algebra generated by all singletons, that is, ABσ(

{
{x} : x ∈X}), the

so-called countable-cocountable σ-algebra. Then, the set D consisting of
all Dirac measures on X is not M∗(X)-measurable.

We show that D is not countably determined. To this end, we define

µ(A)B
{

1 if Ac is countable,
0 else

which is a measure on (X,A), that is, µ ∈M∗(X,A). Then, for all countable
E⊂A, we have

µ ∈ pr−1
E

(
prE(D)

)
,

for the following reason: Let AB
⋂{

E ∈ E : Ec countable
}

and BB
⋃{

E ∈
E : E countable

}
, then A \ B is not empty and for every x ∈ A \ B we

have µ|E= δx|E. However, there is no x ∈X such that µ= δx on A, that is,
D , pr−1

E

(
prE(D)

)
. That means, D is not countably determined and, hence,

cannot be M∗-measurable.

1Remark 5.1

.

arose from a discussion on MathOverflow of Newman

.

(2020

.

) with the
author, see H. (2020a

.

).
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We conclude this remark by some notes on the underlying topological
structure of (X,A). In fact, Ais the Borel-σ-algebra of the so-called cocount-
able topology TB

{
U ⊂X, : U =; or Uc countable

}
, that is, A=B(X,T).2

.

Limits of convergent sequences in (X,T) are unique and compact sets in
(X,T) are measurable, although the intersection of any two non-empty
T-open sets is non-empty again, that is, (X,T) is not a Hausdorff space.
We, furthermore, emphasize the crucial point that the topology does not
have a countable base (see also Definition 5.3

.

below). _

The message of Remark 5.1

.

is twofold. From a probabilistic point of
view, it says first of all that the set of all Dirac measure does in general
not constitute an event in a probability space of the form (M∗,M∗,P) for
some distribution P. In fact, the same holds true for{∑

x∈M δx : M countable subset of X
}
.

These events are quite important and natural since their elements relate
to point patterns through their support. With regard to point processes,
a theory of random measures on mere abstract measure spaces appears
therefore to be deficient.

Second, in order to avoid non-measurable sets that are desired to be
events, Remark 5.1

.

also indicates to look for situations where measures
on (X,A) are countably determined.3

.

The theory of random locally finite measures on locally compact second
countable Hausdorff spaces provides a sufficient and commonly used
framework to cover point processes. We recall some basic definitions.

5.2 Definition Let (X,T) be a topological space. A measure µ on (X,B(X))
is called locally finite if and only if for every x ∈ X there is a U ∈T such
that x ∈U and µ(U)<∞. The set of all locally finite measures on (X,B(X))
is denoted byMBM(X,B(X)). _

5.3 Definition A topological space (X,T) is called locally compact iff
every x ∈ X has a compact neighborhood, that is, there is a compact set
K ⊂X and a open set U ∈Tsuch that x ∈U ⊂ K .

A topological space (X,T) is called second countable if and only if there
is a countable base U⊂Tof T, that is, for every V ∈T there is a V⊂ U

such that V =⋃
V. _

2Recall that B(X)BB(X,T)Bσ(T) denotes the Borel-σ-algebra that corresponds to
the topological space (X,T).

3In the theory of stochastic processes similar problems occur. A stochastic process
X = (X t)t∈T is an (�T ,B(�)T )-random element. Naturally, one is interested in “events”
like {X has continuous paths}. However, the set of continuous paths C(T) is in general
not B(�)T -measurable. To evade these problems, one considers so-called separable
stochastic processes, that is, processes X = (X t)t∈T , where paths are countably deter-
mined. Here, one usually needs a separable metric space (T,d) which corresponds to our
countably generated Borel-σ-algebra.
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Events consisting of locally finite measures on locally compact second
countable Hausdorff spaces are countably determined. This is the message
of the following lemma.

5.4 Lemma Let (X,T) be a locally compact second countable Hausdorff
space. Then, there is a countable E⊂B(T) that determines locally finite
measures uniquely. _

Proof: By definition there is a countable basis U of T. Furthermore,
there is a sequence G = (Gk)k∈� ∈ T� of open, relatively compact sets
such that Gk ↑X for k →∞ (see e. g. Schneider & Weil

.

, 2000

.

). Then

EB
{⋂

O : O⊂ U∪G(�), |O| <∞
}

is countable and generates B(X,T). Let µ be a locally finite measure on
(X,B(X,T)). Then µ(Gk) < ∞ for all k since Gk are relatively compact.
Furthermore, by the measure uniqueness theorem we have that µ is
uniquely determined by µ|E. ■

For the remaining chapter, we assume that (X,T) is a locally compact
second countable Hausdorff space. We denote by H= H(X) the system
of relatively compact Borel measurable subsets of X. Note that compact
subsets of X are closed and, hence, Borel measurable. Therefore, such sets
are elements in H(X). We may call sets in Hbounded due to the fact that
there is a T-compatible metric d such that (X,d) is boundedly compact
(see Vaughan

.

, 1937

.

).4

.

One can easily show that a measure µ on (X,B(X)) is locally finite if
and only if µ(B)<∞ for all B ∈H(X). We correspondingly define:

5.5 Definition A locally finite measure ξ ∈M(X) is called point measure
if and only if and ξ(B) ∈�0 for all B ∈H. The set of all locally finite point
measures is denoted by N∗(X)BN∗(X,B(X)).

Furthermore, a locally finite point measure ξ ∈N∗(X) is called simple
if and only if ξ({x})≤ 1 for all x ∈X. The set of all simple locally finite point
measures is denote by N(X)BN(X,B(X)). _

We are now going to equipM(X,B(X)) with the σ-algebra

MBM(X)BM(X,B(X))Bσ(µ 7→µ(B) : B ∈H)

and note the following.

5.6 Lemma In the above situation we have N(X), N∗(X) ∈M(X). _

4In an arbitrary metrizable topological space (X,T) relatively compact sets have
a bounded diameter w. r. t. any T-compatible metric d, that is, they are (d)-metrically
bounded. However, metrically bounded sets do not need to be relatively compact. If
every d-metrically bounded subset is relatively compact, we call the metric space (X,d)
boundedly compact.
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Proof: See for example Kallenberg

.

(1983

.

). ■

On N(X) and N∗(X) we consider the trace-σ-algebras

N∗BN∗(X)BN∗(X,B(X))BM(X)∩N∗(X)

and
NBN(X)BN(X,B(X))BM(X)∩N(X).

According to Lemma 5.6

.

, we immediately have that (N,N) and (N∗,N∗)
are measurable subspaces of (M,M). Hence, the state spaces for random
measures and point processes will be (M,M) and (N,N), respectively

A simple point measure serves as a formalization of a point pattern.
Another and possibly more appealing formal description of a point pattern
might be given by a locally finite subset of X. In fact, these two formalisms
coincide.

5.7 Remark and Definition (Locally Finite Sets vs Simple Point Mea-
sures) A set F ⊂ X is called locally finite iff |F ∩B| < ∞ holds for all
B ∈ H(X). The set of all locally finite subsets of X is denoted by Alf B
Alf(X)BAlf(X,T). On Alf we may consider the σ-algebra

Elf B Elf(X,T)Bσ
(
{F ∈Alf : F ∩G ,;} : G ∈T

)
,

where we additionally note that there are several generators of Elf, see
for example H. (2015

.

, Section A.2) for a brief overview.
In fact, (Alf,Elf) is measurably equivalent to (N(X),N(X)), that is, there

is a bijective map ϕ : (N(X),N(X)) → (Alf,Elf) such that ϕ and ϕ−1 are
measurable (see Schneider & Weil

.

, 2000

.

, Satz 3.1.2, page 63 f.). _

The following convention concerning the use of set theoretical opera-
tions and relations for simple point measures will be quite useful.

5.8 Remark (Set Theoretical Operations on N) According to Remark
and Definition 5.7

.

, we do not have to distinguish between (Alf(X),Elf(X))
and (N(X),N(X)). Binary relations and operations in one space are well-
defined in the other and vice versa. By the isomorphism ϕ from Remark
and Definition 5.7

.

, we may define counterparts of the set theoretical
operations on (N(X),N(X)), for example, for the union ∪ we set

∪ : (N×N,N⊗N) → (N,N)
(ξ,η) 7→ ϕ−1(ϕ(ξ)∪ϕ(η)

)
and write as usual ξ∪η instead of ∪(ξ,η). Analogously, we define the
intersection (ξ,η) 7→ ξ∩η and the set theoretical difference (ξ,η) 7→ ξ\η.

Two simple point measures are said to be disjoint, denoted by ξ∩η=;,
iff ϕ(ξ) and ϕ(η) are disjoint. The binary statement x ∈ ξ is considered to be
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true or false iff x ∈ϕ(ξ) is true or false, respectively. For the measurability
of these binary relations we refer to Schneider & Weil

.

(2000

.

).
Note that the mentioned maps and relations extend the already exist-

ing maps and relations on N. For example, ∪ and + coincide as long as the
arguments are disjoint. _

The state spaces (M(X),M(X)) and (N(X),N(X)) can be identified with
subspaces of the product space(∏

B∈H(X)�+,
⊗

B∈H(X)B(�+)
)
.

This is due to the fact that M(X)|H(X) and N(X)|H(X) are a subspaces of∏
B∈H�+, due to the definition of M(X) and N(X),5

.

and due to the measure
uniqueness theorem as well.

We are now going to show that (M(X),M(X)) and (N(X),N(X)) exhibit
another product space representation. For that reason, we introduce the
following notions.

5.9 Remark and Definition Let B ∈BX and define

MB BMB(X)B
{
ξ ∈M(X) : ξ(·∩Bc)= 0

}
,

which is a subspace ofM(X). Analogously, we define NB BNB(X) which is
then a subspace of N(X). Furthermore, consider onMB the σ-algebra

MB BMB(X)Bσ
(
ξ 7→ ξ(F) : F ∈H(B)

)
,

and correspondingly NB BNB(X) on NB. Let B, C ∈BX be such that C ⊂ B,
then

prB
C :

(
MB,MB

) → (
MC,MC

)
ξ 7→ ξ(·∩C)

is a projection which is measurable, because we have

ξ(F)= ξ(F ∩C)= prB
C(ξ)(F) for every F ∈BX∩C.

Hence, according to the definition of MB, we have for every bounded
F ∈ BX ∩C that ξ 7→ prB

C(ξ)(F) is measurable w. r. t. NB, which implies
(prB

C)−1(NC)⊂NB. We just write prB for prXB. Furthermore, we write ξB for
prB(ξ) if we consider a specific point pattern ξ. _

With the projection on sub-point patterns, we gain a different point of
view on locally finite measures. We are now going to show the following
product space representation of the space of locally finite point measures
which will be frequently used in what follows. The same arguments yields
the product space representation of (M,M).

5Let Y be an arbitrary set. Then, for some Y0 ⊂Y and some set system E⊂ 2Y it
holds that σY0 (E∩Y0) = σY(E)∩Y0, where σY(E) denotes the σ-algebra on Y that is
generated by E.
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5.10 Proposition Let D be a countable partition of X. Then, we have(
N,N

)
�

(∏
D∈DND ,

⊗
D∈DND

)
,

that is, these measure spaces are measurably isomorphic. _

Proof: The map
ϕ : N → ∏

D∈DND
ξ 7→ (

prD(ξ)
)
D∈D

is obviously well-defined and bijective. Furthermore, if pr{D} denotes the
projection of (ξD)D∈D on the D-th coordinate, we see that the measurability
of ϕ follows simply from the fact that for any D ∈ D the projection prD =
pr{D} ◦ϕ is measurable. We obtain the measurability of ϕ−1, that is, the
measurability of the function (ξD)D∈D 7→∑

D∈DξD , from the fact that, for
every F ∈H, the function

(ξD)D∈D 7→ ∑
D∈D

ξD(F)

is measurable as a pointwise limit of measurable functions. ■

5.11 Remark (Compatibility of Projections) In Remark 5.9

.

we have in-
troduced the projection prB : N→NB defined by ξ 7→ ξ(·∩B) for some mea-
surable set B ∈B(X). In the situation of Proposition 5.10

.

and especially
regarding the product space representation in the previous proposition,
we note that for some E⊂ D the projection

prE : ∏
D∈DND → ∏

E∈ENE
(ξD)D∈D 7→ (ξE)E∈E

on a sub-product space is compatible with the corresponding projection
pr⋃

E on the subset
⋃
E. This situation is presented by the following

commutative diagram, where ϕ is the corresponding bijective map from
the proof of Proposition 5.10

.

:(
N,N

)
�ϕ

(∏
D∈DND ,

⊗
D∈DND

)
(
N⋃

E,N⋃
E

)
�ϕ

(∏
E∈ENE,

⊗
E∈ENE

)pr⋃
E prE

That means, it does not matter which path we follow. Hence, we have, for
example, that pr⋃

E=ϕ−1 ◦prE◦ϕ. _

Doing probability theory on the space (M,M) presupposes the existence
of distributions that are worth studying. Clearly, trivial distributions
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like Dirac measures always exist on any measurable space. Non-trivial
distributions such as non-atomic ones, however, do not always exist (see
e. g. Billingsley

.

, 1995

.

, page 46). In addition, the support of certain point
process distributions will be of special interests, in particular for aspects of
statistical modeling in point process statistics. With regard to such issues,
we therefore close this section with some notes about the underlying
topological structure of (M,M).

We define onM(X,B(X)) the so-called vague topology6

.

Tv B τ
(
µ 7→ ∫

f dµ : f ∈C(X,T), supp f compact
)
,

that is, the coarsest topology such that µ 7→ ∫
f dµ is continuous for all

real-valued continuous functions f on (X,T) with compact support.
The next proposition 5.12

.

states that M is a Borel-σ-algebra to the
Polish space (M,Tv).

5.12 Proposition The topological space (M,Tv) is a Polish space and M

is generated by Tv, that is, M=B(M,Tv). _

Proof: See Kallenberg

.

(2017

.

, Theorem 4.2). ■

Proposition 5.12

.

yields also that N∗(X) and N(X) are Borel-σ-algebras
on the set of locally finite and the set of simple locally finite point mea-
sures on X, since N∗(X) =B(M,Tv)∩N∗(X) and N(X) =B(M,Tv)∩N(X).
Furthermore, we note the following well-known result.

5.13 Proposition The set N∗ is closed in (M,Tv) and (N∗,Tv ∩N∗) is a
Polish space. _

Proof: See for example Matthes et al.

.

(1978

.

, page 162) for the statement
that N∗ is closed in (M,Tv). The Polishness of (N∗,Tv ∩N∗) follows from
Proposition 5.12

.

and the closeness of N∗ w. r. t. Tv (see also Bauer

.

, 1992

.

,
page 179). ■

Another topological structure that fits to the measurable space (N,N)
is given by the following hit- and miss topology.

5.14 Proposition The σ-algebra N(X) on N(X) is also generated by

TF = τ({ξ : ξ(G)> 0}, {ξ : ξ(C)= 0} : G ∈H open, C ∈H compact
)
,

which is called Fell topology. _

Proof: Follows by H. (2015

.

, Satz A.21), a corresponding restriction to
locally finite sets, and finally by Remark and Definition 5.7

.

. ■

6We denote by C(X,T) the set of real-valued continuous functions on a topological
space (X,T).
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5.2 Random Measures
Let (Ω,F,P) be a probability space and recall that in the remaining chap-
ter (X,T) is assumed to be a locally compact second countable Hausdorff
space. We start with the principal definition of this section.

5.15 Definition A random element Ξ : (Ω,F,P)→ (M(X),M(X)) is called
random measure on (X,B(X)). A random measure Ξ on X such that Ξ ∈N
holds P-almost surely is called point process. _

Note that the term “random measure” is not always used in the same
way in the literature. Here, a random measure M is required to be a
measure for every realization ω ∈Ω. In Applebaum

.

(2009

.

, page 89) the
definition of a random measure already deviates by the requirement that
the σ-additivity only has to hold P-almost surely.

The measurability w. r. t. M can be characterized as follows.

5.16 Lemma A map Ξ : (Ω,F,P)→ (M(X),M(X)) is measurable iff

Ξ(B) : (Ω,F,P)→ (�+,B(�+))

is measurable for all B from a semi-ring E of bounded sets such that E

generates B(X). _

Proof: See Daley & Vere-Jones

.

(2008

.

, Proposition 9.1.VIII, page 8). ■

The random object we are studying has several useful interpretations.
By definition and Lemma 5.16

.

, a random measure is a kernel from a
probability space (Ω,F,P) to (X,B(X)). Hence, for some X-valued random
element X , an immediate example is given by (ω,B) 7→ δX (ω)(B) which we
may call Bernoulli point process. Correspondingly, we obtain the so-called
binomial point process.

5.17 Example (Binomial Point Process) For n ∈� let X1, ..., Xn be X-
valued i. i. d. random elements, then

ΞB
n∑

k=1
δXk

is a point process, which is called binomial point process. _

5.18 Example (Bayesian Statistical Model) Let (Pϑ)ϑ∈Θ be a dominated
parametrized statistical model on (X,B(X)) with parameter space Θ⊂�k.
For ϑ ∈Θ we denote by fϑ the density of Pϑ w. r. t. the dominating measure.
Assume that (ϑ, x) 7→ fϑ(x) is B(Θ)⊗B(X)-measurable.

Furthermore, assume that information or “some belief” is a priori
given in terms of a prior distribution of a (Θ,B(Θ))-valued random ele-
ment θ. Then, Pθ is a random measure on (X,B(X)), since ω 7→ Pθ(ω)(B) is
measurable for all B ∈B(�). _
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A random measure may be interpreted as a B(X)-indexed stochastic
process such that the paths are required to be locally finite measures.

5.19 Remark (Set-Indexed Stochastic Processes) Every random measure
Ξ on (X,B(X)) is obviously a B(X)-indexed stochastic process, that is, a
B(X)-indexed family of random variables. Conversely, let (XB)B∈B(X) be
an �+-valued stochastic process such that for P-almost all ω ∈Ω

B 7→ XB(ω)

is a locally finite measure. Then, there is a random measure Ξ on X with
Ξ= X almost surely w. r. t. P. To see this, define

Ξ(ω,B)B XB(ω)1{ω′ ∈Ω : X (ω′, ·) is a measure}

for all B ∈B(X). Then, Ξ(·,B) is measurable for all B ∈B(X). Hence, Ξ is
anM-valued random element. _

Random measures on some T ⊂�+ correspond to stochastic processes
with increasing7

.

paths that are continuous from the right and, therefore,
provide a generalization of these processes.

5.20 Proposition Let T ⊂�+ and let X = (X t)t∈T be an�-valued stochas-
tic process such that P-almost all paths are increasing and continuous
from the right. Then, there is a unique random measure Ξ on T such that
Ξ(]s, t])= X t − Xs for all s, t ∈ T, s ≤ t almost surely w. r. t. P. _

Proof: We define

Ω′B
{
ω ∈Ω : X (ω, ·) increasing, continuous from the right

}
.

Then, it is well-known (see e. g. Bauer

.

, 1992

.

, Satz 6.5, page 36) that for
every ω ∈Ω′ there exists exactly one measure Ξ(ω, ·) on T such that

Ξ(ω, ]s, t])B X t(ω)− Xs(ω)

for all s, t ∈ T with s ≤ t. Hence, we have that Ξ(·, J) is measurable for all
semi-open intervals J and finally Ξ is a random measure (see Lemma
5.16

.

). ■

According to this proposition, a well-known and popular stochastic
process yields the following example.

5.21 Example (Poisson Process on �+) For some α > 0 let (Zk)k∈� be
an i. i. d. sequence of exponentially distributed random variables with
parameter α, that is, Zk ∼Exp(α) for k ∈�. Defining N = (Nt)t≥�+ as

Nt =
∞∑

k=1
1[0,t](

∑k
j=1 Z j) for t ∈�+

7We call a function increasing iff it is non-decreasing.
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we get an �0-valued stochastic process N. Then, N has stationary incre-
ments, that is, for s, t ∈�+ with s ≤ t we have that Nt−Ns ∼Poi(α(t− s)).
Furthermore, N has independent increments, i. e., for n ∈� and 0≤ t1 <
t2 < ...< tn we have that Nt1 , Nt2 −Nt1 , ..., Ntn −Ntn−1 is independent. This
process is called homogeneous Poisson process with intensity α> 0.

Note that the paths of N are increasing and continuous from the right.
Hence, by Proposition 5.20

.

there is a random measure Ξ on �+ with
Ξ(]s, t])= Nt −Ns for s, t ∈�+ with s ≤ t.

Since (Zk)k∈� are P-almost surely pairwise different, N has P-almost
surely jumps of size 1 and, hence, Ξ ∈N(X) almost surely w. r. t. P, that is,
Ξ is a simple point process on �+. _

To introduce more general point processes, we need some results on the
existence and uniqueness of point process distributions.8

.

Concerning the
uniqueness and considering a random measure as a set-indexed stochastic
process, we show the following.

5.22 Theorem (Uniqueness of Random Measure Distributions I) Let M
and N be two random measures on (X,B(X)), then the following state-
ments are equivalent:
(a) M d=N;

(b) all finite-dimensional distributions of M and N agree, that is,

(M(B1), ...,M(Bn)) d= (N(B1), ...,N(Bn)) (5.1)

for all n ∈� and B1, ...,Bn ∈H(X);

(c) all disjoint finite-dimensional distributions of M and N agree, i. e.,

(M(B1), ...,M(Bn)) d= (N(B1), ...,N(Bn)) (5.2)

for all n ∈� and pairwise disjoint B1, ...,Bn ∈H(X). _

Proof: From (a) we can directly follow (c). From (c) follows (b), since for
any n ∈� and any choice B1, ...,Bn ∈H(X) there is a finite partition D of⋃n

i=1 Bi such that Bi = ⋃
D∈D, D⊂Bi D for all i = 1, ...,n. Furthermore, the

paths of M and N are additive, thus,(∑
D∈D, D⊂B1 M(D), ...,

∑
D∈D, D⊂Bn M(D)

)= (M(B1), ...,M(Bn))

and the corresponding equality holds for N. That means, (M(B1), ...,M(Bn))
is a measurable function of (M(D) : D ∈ D). Since n ∈� and B1, ...,Bn ∈H

are arbitrarily chosen, and since (c) implies

(M(D) : D ∈ D) d= (N(D) : D ∈ D),

8We write X d=Y for two equally distributed random elements X and Y .
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we have
(M(B1), ...,M(Bn)) d= (N(B1), ...,N(Bn)),

that is, (b). Clearly, (a) follows from (b) since (5.1

.

) says that M and N
agree on an ∩-stable generator of M. ■

Note that in the above proposition, we crucially use the additivity
of the paths, which then yields the stronger equivalence of (a) and (c).
Furthermore, considering the product space representation of (M,M) (see
Remark 5.10

.

, page 107

.

), we can state a different uniqueness result. To
this end, we may call prF ◦M for some F ∈B(X) the F-component of the
random measure µ, while the corresponding distribution may be called
marginal distribution on F.

Note that prF ◦M is an MF-valued random measure, while M(F) is
a random variable, that is, an �+-valued random element. With these
preparations we can state the following uniqueness result.

5.23 Theorem (Uniqueness of Random Measure Distributions II) Let
M and N be two random measures on (X,B(X)), then the following state-
ments are equivalent:
(a) M d=N;

(b) M and N have the same marginal distributions on sets of an increas-
ing sequence of bounded sets, that is, for a sequence (Gn)n∈� ∈ H�

with Gn ↑X for n →∞ we have prGn(M) d=prGn(N) for all n ∈�;

(c) M and N have the same marginal distributions on any bounded set,
that is, for all F ∈Hwe have prF (M) d=prF (N). _

Proof: First, (b) follows immediately from (a). Second, (c) follows from (b),
since for any F ∈Hwe have F ⊂Gk for some k large enough. Furthermore,
we have prF = prGk

F ◦prGk
and thus prF(M) d=prF(N). Finally, (a) follows

from (c), since
⋃

F∈Hpr−1
F (NF ) is an ∩-stable generator of N(X). ■

In addition to the uniqueness, we are also interested in an existence
result. To this end, we recall that according to Theorem 5.23

.

a point
process distribution is uniquely determined by the family of all marginal
distributions on bounded subsets of X. Now we are looking for a point
process distribution with prescribed marginal distributions. Obviously,
such a family of distributions has to be consistent as follows.

5.24 Definition A family (PH)H∈H of point process distributions is called

projective iff for every G, H ∈Hwith G ⊂ H we have P
prH

G
H = PG . _

Introducing distributions by preassigned marginal distributions is due
to Kolmogorov

.

(1933

.

). The following propositions concerns the case of
random measure distributions.
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5.25 Proposition (Kolmogorov Construction) For any projective family
(PH)H∈H of random measure distributions there is a unique distribution
PX on (M(X),M(X)) such that

PprH
X

= PH (5.3)

holds for every H ∈H. _

Proof: Let D⊂Hbe a countable partition of X and let ϕ be the measur-
able isomorphism corresponding to

(M(X),M(X))�ϕ
(∏

D∈DMD(X),
⊗

D∈DMD(X)
)
,

see Remark 5.10

.

. Then, a projective family of random measure distribu-
tions is given by (

Pϕ⋃
E

)
E⊂D,|E|<∞

on the corresponding product spaces(∏
E∈EME(X),

⊗
E∈EME(X)

)
for finite E⊂ D. Hence, by the Kolmogorov existence theorem (see for
example Bauer

.

(1991

.

, Satz 35.3, page 307), see also Proposition 5.12

.

for
the Polishness of the component spaces (ME(X),ME(X)) for E ∈ E), we ob-
tain that there is a unique distribution P̃D on (

∏
D∈DMD(X),

⊗
D∈DMD(X))

and, consequently, a unique distribution on (M(X),M(X)) via PDB P̃ϕ−1

D
.

Furthermore, PD is independent of the initially chosen partition D by
the following argument: Let D1, D2 ⊂Hbe two countable partitions of X
with corresponding distributions P1 and P2. By defining

DB
{
D1 ∩D2 : D i ∈ Di for i = 1,2

}
,

we get a countable partition of X that is nested in D1 and D2. Since
(PB)B∈H is projective and according to the compatibility of the projections
(see Remark 5.11

.

, page 107

.

), we have(
PprD

1
)
D∈D= (

PD
)
D∈D= (

PprD
2

)
D∈D

and thus P1 = P2. Finally, P B PD as defined above also fulfills (5.3

.

). ■

Proposition 5.25

.

allows us to define point process distributions on an
unbounded state space X via a projective family of marginal distributions
on bounded subsets of X. This will be very helpful to show the existence
of Poisson point process distributions generally even on unbounded state
spaces.

We get another formulation of Proposition 5.25

.

when a distribution
PH on (NH ,NH) is interpreted as a distribution QH on (N,FH), where
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FH B pr−1
H (NH). Then, if (PH)H∈H is a projectiv family, the corresponding

family (QH)H∈H is consistent in the sense, that for every choice G, H ∈H

with G ⊂ H we have QH |FG =QG . In this framework Proposition 5.25

.

says:

5.26 Corollary For any consistent family (QH)H∈H, there is a unique
distribution Q on N such that Q|FH =QH for all H ∈H. _

Poisson Point Processes
Motivated by Example 5.21

.

we may define a general Poisson point process
as follows.

5.27 Definition Let λ ∈M(X,B(X)). A point process Ξ on X is called a
Poisson point process with parameter measure λ iff
(a) Ξ has Poisson marginal distributions, that is, Ξ(B)∼Poi(λ(B)) for all

B ∈H(X);

(b) Ξ has independent increments, that is, for n ∈� and for pairwise
disjoint B1, ...,Bn ∈ H(X) the random variables Ξ(B1), ...,Ξ(Bn) are
independent. _

If X⊂�k and λ= a ·λk, then Ξ is called homogeneous.

A Poisson point process is a well-defined object according to the follow-
ing theorem.

5.28 Theorem For every λ ∈M(X) there is a Poisson point process with
unique distribution, which we denote by Pop=Pop(X,B(X),λ).9

.

_

Proof: If λ = 0, then Ξ ≡ 0 trivially fulfills (a) and (b) of the definition
above. Thus, we assume λ, 0. Following Proposition 5.25

.

we construct
a Poisson point process PB on a bounded set B ∈ H(X) and show that
(PB)B∈H is a projective family.

Construction on X with λ(X)<∞: Let N, X1, X2, ... be indepen-
dent random variables such that N ∼Poi(λ(X)) and

Xk ∼
1

λ(X)
λ(·) for k ∈�.

We set

ΞB
N∑

i=1
δX i (5.4)

and show that Ξ has (a) Poisson marginals and (b) independent incre-
ments by the following computation. Let B ∈Hand let k, l ∈�+. Then we

9We will just write Pop if no clarification concerning the underlying measure state
space is needed. Furthermore, we also write PopX and Popλ to emphasize only a certain
aspect of the measure space if it does not cause confusion.
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have10

.

P
(
Ξ(B)= k,Ξ(Bc)= l

) = Poi(λ(X))({k+ l})︸                  ︷︷                  ︸
=exp(−λ(X))λ(X)k+l

(k+l)!

(
k+ l

k

)
︸      ︷︷      ︸
= (k+l)!

k!·l!

(
λ(B)
λ(X)

)k (
λ(Bc)
λ(X)

)l

= exp(−λ(B))
λ(B)k

k!
·exp(−λ(Bc))

λ(Bc)l

l!
.

Hence, Ξ(B) ∼ Poi(λ(B)) and Ξ(B) is independent of Ξ(Bc). Note that
B ∈Hwas arbitrary. Proposition 5.10

.

and induction yields that for every
n ∈� and pairwise disjoint B1, ...,Bn ∈ H we have that Ξ(B1), ...,Ξ(Bn)
are independent. Thus, Ξ is a Poisson process with parameter measure λ.

Extension to the case λ(X)=∞ and uniqueness: For every boun-
ded set B ∈ H, we have λ(B) <∞, since λ ∈M(X). We denote the corre-
sponding construction (5.4

.

) with parameter measure λ|B by ΞB. Defining
PB BP(ΞB ∈ ·) for every B ∈Hyields a projective family (PB)B∈H by the
following argument: Let B, C ∈H such that C ⊂ B. Then:11

.

P
prB

C
B =

(
(PC ⊗PB\C)ϕ

−1
)prB

C = (PC ⊗PB\C)pr1 = PC,

where we use the independence of ΞB(C) and ΞB(B\C) in the first equality.
Finally, the claim follows by Proposition 5.25

.

. ■

5.29 Proposition (Simple Poisson Point Processes) A Poisson point
process Ξ with parameter measure λ ∈M(X) is simple if and only if λ is
diffuse, that is, λ({x})= 0 for all x ∈X. _

Proof: See Schneider & Weil

.

(2000

.

, Lemma 3.2.1, page 72) ■

To model dependences, we consider densities w. r. t. the distribution of
a (homogeneous) Poisson point process. This seems reasonable due to two
properties of that distribution, one practical and one technical. That is,
(1) the homogeneous Poisson point process serves as a model for complete
spatial randomness. Hence, densities and the corresponding distributions
are interpretable. (2) The Poisson point process distribution has mass all
over the space N(X).

While the first is clear due to the definition, we show the latter in
Proposition 5.31

.

(see below) with the help of the following property.

10Given the event “observing k + l points in X”, which occurs with probability
Poi(λ(X))({k+ l}), we note that Ξ(B) is binomially distributed with probability of success
p =λ(B)/λ(X) and length k+ l.

11Here we use the isomorphism ϕ between (N,N) and the corresponding product
space given in the proof of Proposition 5.10

.

.
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5.30 Proposition (Void Sets of Poisson Point Processes) Let λ ∈M(X)
and let Ξ∼Pop(λ), then

P(Ξ(B)= 0)= exp(−λ(B))

for all B ∈H(X). _

Proof: The statement is obvious due to Ξ(B) ∼ Poi(λ(B)) for B ∈H, see
Definition 5.27

.

. ■

5.31 Proposition (Full Support) Let λ ∈M(X) be diffuse and such that
suppTλ=X. Then we have suppTFPop(λ)=N(X). _

Proof: To show the claim, we first recall from Proposition 5.14

.

that N(X)
is generated by the Fell topology on N(X), that is, by

TF = τ({ξ : ξ(G)> 0}, {ξ : ξ(C)= 0} : G ∈H open, C ∈H compact
)
.

Then, the claim follows by Popλ(U)> 0 for all U ∈TF which we are going
to show now.

According to Proposition 5.30

.

, we have for every compact set C ∈H(X)

Popλ

(
{ξ : ξ(C)= 0}

)= exp(−λ(C))> 0.

Furthermore, we have for all open G ∈H(X)

Popλ

(
{ξ : ξ(G)> 0}

)= 1−exp(−λ(G))> 0,

since suppλ= X. Hence, any element of the subbasis has positive mass
w. r. t. Popλ. Let UC B {ξ : ξ(C) = 0} and UG B {ξ : ξ(G) > 0} denote the
corresponding sets of the subbasis. Then we have for compact subsets C
and D of X that

Popλ

(
UC ∩UD)=Popλ

(
UC∪D)= exp(−λ(C∪D))> 0

and, for two open G, F ∈H(X) with G∩F ,;, we have that

Popλ

(
UG ∩UF

)≥Popλ

(
UG∩F

)= 1−exp(−λ(G∩F))> 0

as well. Finally, for open G ∈Hand compact C ∈Hwith G 1C, we have
that G∩Cc ,; is open and

Popλ

(
UG∩UC)=Popλ

(
UG\C∩UC)= (1−exp(−λ(G\C)))·exp(−λ(C))> 0.

Hence, any non-empty finite intersection of sets of the subbasis has pos-
itive mass w. r. t. Pop. Thus, Pop(λ) assigns positive mass to any non-
empty TF-open subset of N. That means, suppTFPopλ =N(X). ■
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The full support property of the Poisson point process distribution
Popλ is at least one aspect that may used to justify the introduction of
Gibbs point process distributions in Chapter 6

.

through densities w. r. t.
Popλ. Here, we at least point out that our topological considerations
seems to be closely related to the so-called Σ-condition of a distribution
P ∈Prob(N,N), which means that each F ∈Nwith P(F)> 0 implies that
P({ξ : ξ(G) = 0}∩F) > 0 for all G ∈ H. This condition was studied in the
literature in particular for the converse of the above-mentioned question,
that is, which point process distribution has a density w. r. t. Popλ (see e. g.
Rauchenschwandtner

.

(1978

.

); Matthes et al.

.

(1979

.

); Glötzl

.

(1980

.

)). The
present thesis does not discuss these relations and questions.

Random Signed Measures and Brownian Motion

So far, the classical Poisson process on �+ was shown to be a point process
and, consequently, was extended to the notion of a Poisson point process
on general state spaces. Considering another important stochastic process,
Brownian motion, immediately leads to the subsequent question: In what
sense is Brownian motion a random signed measure? In fact, considering
the obvious extension of the random measure concept to a random signed
measure is not sufficient. We therefore close this section with a brief
discussion of this issue. This also points out another peculiarity of random
measure theory.

Denote by S(X) =S(X,B(X)) the set of all finite signed measures on
(X,B(X)), that is, the set of all set-functions µ : A→� that are the dif-
ference of two finite measures on (X,B(X)). Then, with respect to the
definition of random measures (see Definition 5.15

.

), we may define:

5.32 Definition A S(X)-random element Λ on (Ω,F,P) is called random
signed measure on X iff Λ(B) is a random variable for all B ∈B(X). _

Let T B [0,L] for some L > 0. We recall from the literature that a
Brownian motion (with finite time horizon) is a stochastic process W =
(Wt)t∈T with P-almost surely continuous paths which has independent and
stationary increments such that Wt−Ws ∼N(0, t−s) for all s, t ∈ T, s ≤ t.12

.

5.33 Example (Discretely Sampled Brownian Motion) Let W = (Wt)t∈T
be a Brownian motion with T as above. Let n ∈� and let t ∈ Tn be an
increasing vector of n indices. Define

Xs(ω)B
n−1∑
j=1

Wt j (ω)1[t j ,t j+1[(s) for s ∈ T, ω ∈Ω,

12We set N(0,0)B δ0.
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then s 7→ Xs(ω) is continuous from the right and, furthermore, of bounded
variation. Therefore, s 7→ Xs(ω) is the difference of two increasing func-
tions and by Proposition 5.20

.

there are random measures Ξ+
t and Ξ−

t such
that

Ξ+
t ([0, s])−Ξ−

t ([0, s])= Xs for s ∈ T.

By Λt B Ξ+
t −Ξ−

t we have a random signed measure and, furthermore,
Λt(·, [0, t j])=Wt j for j = 1, ...,n. _

The discretization in Example 5.33

.

is necessary, since P-almost all
paths of a Brownian motion W = (Wt)t∈T are of unbounded variation (see
e. g. Kallenberg

.

, 2002

.

, Corollary 13.10). Hence, W does not determine a
random signed measure in the sense of Definition 5.32

.

, because we do not
have σ-additivity ω-wise. However, we have a σ-additivity in L2.

5.34 Remark Consider a Brownian motion W = (Wt)t∈T as a random
element with values in the Hilbert space L2(T,B(T),λ). Then, for all
ϕ ∈ L2(T,B(T),λ) the random variable 〈W ,ϕ〉L2 on (Ω,F,P) is a one-
dimensional Gaussian random variable with

〈W ,ϕ〉L2 ∼N
(
0,

∫
ϕ2(s)λ(ds)

)
and for ϕ,ψ ∈L2(T,B(T),λ) we have

Cov(〈W ,ϕ〉L2 ,〈W ,ψ〉L2)=
∫
ϕ(s)ψ(s)λ(ds)

(see e. g. Bogachev

.

, 1998

.

). Defining XA B 〈W ,1A〉L2 for A ∈ B(T), we
have first of all that X; = 0. Second, according to the above, we also have
XA ∼N(0,λ(A)) and Cov(XA, XB)=λ(A∩B) for A, B ∈B(T). With these
properties one can simply compute for A, B ∈B(T) with A∩B =; that

EP
(
XA∪B − (XA + XB)

)2 = 0,

that is, XA∪B = XA + XB in L2(Ω,F,P). Similarly, one obtains for An, A ∈
B(T) for n ∈� with An ↑ A for n →∞ that XAn → XA in L2(Ω,F,P) for
n →∞. Hence, for a pairwise disjoint sequence (An)n∈� ∈B(T)� we have

X⋃
n∈� An =

∑
n∈�

XAn in L2(Ω,F,P).

Consequently, the map A 7→ XA behaves σ-additively in L2(Ω,F,P). _

5.3 Intensity of Random Measures
Important characteristics of random measures are given by their moment
measures. Of special concern will be the intensity measure.
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5.35 Definition For a random measure M on a measure space (X,B(X),µ)
we define

MM(A)BEM(A)B
∫

M(A)dP for A ∈B(X)

and call MM intensity measure of M, which is a measure on (X,B(X)). A
density ρ of MM w. r. t. µ is called intensity function of MM w. r. t. µ. _

5.36 Example (Intensity Measure of Poisson point processes) Let Ξ be
a Poisson point process on (X,B(X)) with parameter measure λ ∈M(X).
Then, MΞ =λ. _

From the definition of the intensity measure we directly get the follow-
ing important relation.

5.37 Theorem (Campbell) Let M be a random measure on (X,A) and let
f : (X,B(X))→ (�+,B(�+)) be measurable, then∫ ∫

f (x)M(ω,dx)P(dω)=
∫

f (x)MM(dx).

_

Proof: By a standard lifting argument, that is, deducing the statement
from indicators to simple and, finally, to non-negative functions, yields
the statement. ■

Campbell’s Theorem has a common concern with Fubini’s Theorem,
which is to exchange integrals. However, from a technical point of view,
they are able to consider different situations.

5.4 Conditional Point Processes
In view of our probabilistic and statistical concerns about point processes,
we would like to describe and estimate their distributions. This naturally
involves the dependence of points or, more generally speaking, of marginal
point patterns on bounded sets H ∈H.

To this end, a promising approach is to consider conditional distri-
butions. That means, we are interested in the local behavior of a point
process Ξ given a neighborhood. Mathematically speaking, we are inter-
ested in the distribution of Ξ on an arbitrary set H ∈H, given a realization
of Ξ on the outside Hc. This so-called exterior conditioning is in contrast
to the interior conditioning, where we consider the distribution of Ξ on
the outside Hc given the corresponding local behavior of Ξ, that is, a
realization of ΞH .

Generally speaking, we are therefore interested in the behavior of
the pair (ΞH ,ΞHc) and, in particular, in disintegrations of this joint dis-
tribution. For this we consider conditional distributions given interior
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conditioning of the form P(ΞHc ∈ · |ΞH) and exterior conditioning of the
form P(ΞH ∈ · |ΞHc).

Campbell Measure
We start by a degenerate case, that is, by considering interior and exterior
conditioning of a point process w. r. t. singletons H = {x} for some x ∈X. To
this end, we define the following measure.

5.38 Definition (Campbell Measure) LetΞ be a point process on (X,B(X)).
The Campbell measure of Ξ is the measure on X×N(X) defined through

CΞ(A×B)B
∫ ∫

1A×B(x,ξ)ξ(dx)PΞ(dξ)

for A ∈B(X) and B ∈N. _

For fixed A ∈B(X) and B ∈N, those pairs (x,ξ) contribute “mass” to
CΞ(A×B) which satisfy x ∈ ξ, x ∈ A, ξ ∈ B. Hence, by CΞ we measure the
joint occurrence of a point x and a point pattern ξ.

Furthermore, we note that CΞ( · ×N(X))=MΞ and CΞ(X× · )=PΞ, that
is, the first and the second marginal distribution of CΞ is the intensity
measure of Ξ and the point process distribution, respectively. In what
follows, we assume that MΞ is σ-finite.

We are now going to disintegrate CΞ with respect to either of its
marginal measures. This corresponds to the earlier mentioned interior
and exterior conditioning regarding singletons H = {x} for x ∈X and leads
to the so-called Palm and Papangelou kernels, respectively.

5.39 Remark and Definition (Palm Kernel) Let Ξ be a point process
on X with σ-finite intensity measure MΞ. Then, there is a Markov kernel
Pa from (X,B(X)) to (N(X),N(X)) such that

CΞ(A×B)=MΞ⊗Pa(A×B)=
∫

A
Pa(x,B)MΞ(dx)

for A ∈B(X) and B ∈N (see e. g. Kallenberg

.

, 2017

.

, Theorem 1.23, page
37). The Kernel Pa is called Palm kernel, the distribution Pax BPa(x, ·)
for x ∈X is called Palm distribution of Ξ. _

According to the definition of the Palm kernel Pa through disintegra-
tion CΞ w. r. t. the intensity measure MΞ, the distribution Pax for some
x ∈ X can heuristically be interpreted as the distribution of Ξ given the
event {x ∈Ξ}. This is consistent with the following observation.

5.40 Proposition Let PaΞ be a Palm kernel to a point process Ξ on X.
Then

PaΞx
(
{ξ : ξ({x})> 1}

)= 1

for MΞ-almost all x ∈X. _
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Proof: See Kallenberg

.

(2017

.

, Lemma 6.2, page 216). ■

According to this proposition, Pax has a deterministic unit mass at x.
We would like to omit this mass and focus on the more interesting random
part. This leads to the reduced Campbell Measure.

5.41 Definition (Reduced Campbell Measure) Let Ξ be a point process
on (X,B(X)). The reduced Campbell measure of Ξ is the measure on
X×N(X) defined through

C!
Ξ(A×B)B

∫ ∫
1A×B(x,ξ−δx)ξ(dx)PΞ(dξ)

for A ∈B(X) and B ∈N. _

By that, we can now introduce the so-called reduced Palm kernel
by disintegration of the reduced Campbell measure w. r. t. the intensity
measure in the same way as in Remark 5.39

.

.

5.42 Remark and Definition (Reduced Palm Distribution) Let Ξ be a
point process on X with σ-finite intensity measure MΞ. Then, there is a
Markov kernel Pa! from (X,B(X)) to (N(X),N(X)) such that

C!
Ξ(A×B)=MΞ⊗Pa!(A×B)=

∫
A

Pa!(x,B)MΞ(dx)

for A ∈B(X) and B ∈N. The Kernel Pa! is called reduced Palm kernel, the
distribution Pa!

x BPa!(x, ·) for x ∈X is called reduced Palm distribution of
the point process Ξ. _

We add a remark on reduced Campbell measures and Palm distribu-
tions for stationary point processes.

5.43 Remark and Definition (Palm Distribution and Stationarity) Con-
sider the case X=�d and introduce the translation tu : �d →�d, x 7→ x+u
for u ∈�d. A point processΞ is called stationary iffΞ◦t−1

u
d=Ξ for all u ∈�d.

Let Ξ be a stationary point process. Then, one can show (see for example
Kallenberg

.

(2017

.

))
(a) for the intensity measure that MΞ(B)= c(PΞ) ·λd(B) for B ∈B(�d);

(b) there is a distribution Pa!0 on (N(�d),N(�d)) such that reduced Camp-
bell measure satisfies

C!(A×B)= c(PΞ) ·
∫ ∫

1A(x)1B(ξ◦ tx)Pa!0(dξ)λd(dx).

These facts will be used in Chapter 6

.

and 7

.

to formulate an identity and
an unbiased estimating equation, respectively. _

We now come to the exterior conditioning. To this end, we consider
disintegration of the reduced Campbell measure w. r. t. PΞ.
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5.44 Remark and Definition (Papangelou Kernel) Let Ξ be a point
process on X and let C!

Ξ(A×·)¿PΞ for all relatively compact Borel sets
A ∈B(X). Then, there is a Markov kernel Λ from (N(X),N(X)) to (X,B(X))
such that

C!
Ξ(A×B)=PΞ⊗Λ(A×B)=

∫
B
Λ(ξ, A)PΞ(dξ)

for A ∈B(X) and B ∈N. The kernel Λ is called Papangelou kernel of Ξ. _

Consider a reference measure µ on (X,B(X)) and, furthermore, a point
process Ξ with a Papangelou kernel Λ(ξ, ·) which is absolutely contin-
uous w. r. t. µ. Then, Λ(ξ, ·) has a density λ(·|ξ) w. r. t. µ which is called
Papangelou conditional intensity of Ξ.

5.45 Example (Poisson Point Process) Consider a Poisson point process
Ξ∼Pop(ν) with parameter measure ν ∈M(X) that has a density ϕ w. r. t.
a reference measure µ on (X,B(X)). Then, the Papangelou conditional
intensity of Ξ given ξ ∈N(X) (w. r. t. µ) is λ( · |ξ)=ϕ. _

Similarly to Campbell’s Theorem we get by the definition of the reduced
Campbell measure and the disintegration w. r. t. PΞ the so-called Georgii–
Nguyen–Zessin (GNZ) equation.

5.46 Theorem (GNZ Equation) Let Ξ be a point process on (X,B(X))
with Papangelou conditional intensity λ and let h be a measurable map
from (X×N(X),B(X)⊗N(X)) to (�+,B(�+)). Then we have∫

N

∫
X

h(x,ξ−δx)ξ(dx)PΞ(dξ)=
∫
X

∫
N

h(x,ξ)λ(x|ξ)PΞ(dξ)µ(dx).

_

Proof: The statement follows by the definition of the reduced Campbell
measure, standard lifting arguments (from indicators to simple func-
tions and then to non-negative measurable functions) and Remark and
Definition 5.44

.

. ■

The GNZ equation will be useful to show the unbiasedness of certain
estimating functions, see Remark 7.8

.

. For the Gibbs point processes (see
next Chapter), we will present another interesting equation which is
also linked to the reduced Campbell measure. This equation is called
variational equation given by Baddeley & Dereudre

.

(2013

.

, Proposition 1)
and will be used in Chapter 7

.

to define an unbiased estimating function.

Compound Campbell Measure
So far, the conditional distribution P(ΞH ∈ · |ΞHc) was considered for
the degenerate case H = {x} for some x ∈ X in terms of the Papangelou
kernel. In fact, one can prove (see Kallenberg

.

, 2017

.

, Chapter 8) that all
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conditional distributions of the form P(ΞH ∈ · |ΞHc) can be constructed by
a single Markov kernel G from13

.

(N(X),N(X)) to (Nf (X),Nf (X)), which is
called Gibbs kernel. This kernel can again be obtained via disintegration,
now from the so-called compound Campbell measure. We close this section
with some notes on this generalization.

5.47 Definition Let Ξ be a point process on (X,A). The compound
Campbell measure of Ξ is the measure on Nf (X)×N(X) defined through

Co(A×B) :=CoΞ(A×B) :=
∫ ∑

η≤ξ
1A×B(η,ξ−η)PΞ(dξ)

for A ∈Nf and B ∈N. _

Let A ∈Nf and B ∈N. Then Co(A×B) represents the total mass of the
partition pairs (η,ζ) of ξ, which means η+ζ= ξ, such that (η,ζ) ∈ A×B.

The joint distribution of (ΞH ,ΞHc) for any H ∈H can be represented
through the compound Campbell measure. This is the statement of the
following theorem.

5.48 Theorem Let Ξ be a point process and let H ∈H. Then for A ∈Nf
and B ∈Nwe have

P(ΞH ,ΞHc )(A×B)=
∫
1Nf,H (ξ)1NHc (η)1A×B(ξ,η)CoΞ

(
d(ξ,η)

)
.

_

Proof: See Last

.

(1990

.

, page 130). ■

5.49 Remark and Definition (Gibbs Kernel) We assume Co(N×·) ¿
PΞ. Then there is a kernel G from (N(X),N(X)) to (Nf (X),Nf (X)) such that

Co(A×B)=
∫

B
G(ξ, A)PΞ(dξ)

for A ∈Nf and B ∈N. The kernel G is called Gibbs kernel. _

Finally, we have the following formula.

5.50 Theorem Let G be the Gibbs kernel of a point process Ξ. Then, we
obtain for any H ∈H

P(ΞH ∈ B|ΞHc)= G(Ξ,B∩NH)
G(Ξ,NH)

for all B ∈Nf

which holds almost surely on {Ξ(H)= 0}. _

13We denote by Nf (X) the set of all finite point patterns ξ ∈N(X), that is, ξ(X) <∞.
Furthermore, we will write Nf,B =Nf,B (X) for the set of all ξ ∈Nf (X) such that ξ(Bc)= 0,
where B ∈B(X).
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Proof: See Kallenberg

.

(2017

.

, page 314). ■

In the next chapter, we are interested in introducing point processes
that exhibit dependences. To this end, we do not model point processes
through a family of joint distributions (ΞH ,ΞHc) or the compound Camp-
bell measure. Instead and in accordance with the latter result, we will
define a point process distribution PΞ through a prespecified consistent
family of conditional distributions that corresponds to the single Gibbs
kernel G.



CHAPTER 6
Gibbs Point Processes

In practice, we often encounter point processes that exhibit some form of
dependence. The observation of a point at a certain position is usually
not independent of points that occur in a neighborhood. Arrangements of
interacting atoms or molecules or the location of trees in a forest may be
mentioned as an example of such point process outcomes.

The purpose of this chapter is to introduce Gibbs point processes1

.

,
a class of point processes that account for interactions. Here, the joint
distribution of such a process (macroscopic state) is motivated and derived
from its local behavior, that is, microscopic states. More precisely, the joint
distribution is implicitly defined through a consistent family of conditional
distributions given an observation in the complement of bounded regions.
Such a family is called (local) specification. In contrast to Kolmogorov’s ap-
proach which uses projective families (see Proposition 5.25

.

, page 113

.

), the
Gibbsian way has fundamentally different consequences. In general, local
specifications do not determine distributions uniquely, such a distribution
might not even exist at all.

Specifying the dependence structure of a random field by a suit-
able family of conditional distributions is an approach due to Dobrushin

.

(1968a

.

,b

.

) and Lanford III & Ruelle

.

(1969

.

). A systematic treatment was
then given by Preston

.

(1976

.

), which was later on revised and expanded
(see Preston

.

, 2005

.

). Although Preston himself regarded the first presenta-
tion as “fairly abstract” (see Preston

.

, 1976

.

, preface) and the second as “not
[...] suitable for learning about Gibbs [point processes]” (see Preston

.

, 2005

.

,
preface), the present chapter aims at a comprehensive survey of some
key issues that are mainly guided by the two mentioned monographs of
Preston.2

.

1The name is due to Gibbs

.

(1902

.

) who introduced such processes and corresponding
distribution, so-called equilibrium states, through a maximum entropy principle (see
also Nguyen & Zessin

.

(1976

.

)).
2Occasionally, we will also refer to Georgii

.

(2011

.

) who, however, does not consider
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The formal definition of a Gibbs measure, that is, the distribution of
a Gibbs point process, as well as of related objects are given in the first
section. There we also highlight some relations to the theory of stochastic
processes. In preparation of the discussion regarding existence (Section
6.4

.

) and uniqueness, we take a closer look at some first simple examples
and situations in advance (Section 6.2

.

). Two concrete and non-trivial
examples of Gibbs point process models are then given through certain
specifications in Section 6.3

.

.

Throughout this chapter we consider a locally compact second count-
able Hausdorff space (X,T) and a metric d that induces Tand such that
(X,d) is boundedly compact.3

.

We recall from Chapter 5

.

that H= H(X)
denotes the system of bounded Borel measurable subsets of X.

6.1 Toward a Definition
We are going to introduce point process distributions on (X,B(X,T)) by
prescribing conditional distributions. To this end, we define for any H ∈H

the σ-algebras FH B pr−1
H (NH) and FH B pr−1

Hc(NHc), that is, the σ-algebra
of events observable from the inside and the σ-algebra of events observable
from the outside of H. Corresponding names are used for the filtrations
(FH)H∈H and (FH)H∈H.

Given a family of Markov kernels Γ= (ΓH)H∈H such that ΓH is a kernel
from (N,FH) to (N,N) for every H ∈H, we are looking for a point process
Ξ on X, which satisfies for all A ∈N(X) and H ∈H(X)

PΞ
(
A|FH)=ΓH(·, A) almost surely w. r. t. PΞ. (6.1)

By doing this, we simultaneously require Γ to be consistent in a way that
is shown in the upcoming remark.

6.1 Remark Let Γ be a family of Markov kernels that fulfill (6.1

.

) and let
G, H ∈H, with G ⊂ H. Then, for A ∈Nwe have the so-called Chapman–
Kolmogorov equation

ΓHΓG(·, A) =
∫
N(X)

ΓG(η, A)ΓH(·,dη)

= ΓH(·, A) almost surely w. r. t. PΞ.

Furthermore, ΓH is proper for any H ∈ H, that is, for every B ∈ FH we
have

ΓH(·, A∩B)=ΓH(·, A)1B almost surely w. r. t. PΞ.

point processes, but the lattice case.
3Note that any locally compact second countable Hausdorff space (X,T) has a com-

patible metric d such that (X,d) is boundedly compact, see Vaughan

.

(1937

.

).
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In particular, we then have normality, that is,

ΓH(ξ, ·)|FH = δξ(·)|FH

for PΞ-almost all ξ ∈N. _

Suitable prescriptions are obviously those which fulfill the necessities
mentioned in the remark above. Additionally, we point out that these
requirements are stated in an almost sure sense w. r. t. the distribution
PΞ we are looking for. Such a dependence on PΞ is undesirable, which
leads to the following definition.

6.2 Definitions A kernel K : N(X)×N(X)→ [0,1] is called quasi-Markov
kernel or quasi-probability kernel iff K(x, ·) for x ∈X is a probability mea-
sure or the null measure 0.

Consider H ∈ H(X). A quasi-Markov kernel K from (N(X),FH) to
(N(X),N(X)) is called strict iff for every A ∈ FH and every B ∈ FH we
have K(·, A∩B)=K(·, A)1B on N(X).

Consider J⊂H. A family of kernels Γ= (ΓH)H∈J is called specification
w. r. t. (FH)H∈J iff (1) J contains a sequence (Hn)n∈� such that Hn ↑X for
n →∞, (2) for each H ∈Jwe have that ΓH is a strict quasi-Markov kernel
from (N(X),FH) to (N(X),N(X)), and (3) for all G, H ∈J with G ⊂ H we
have ΓHΓG =ΓH . _

Note that the equations above do not only hold almost surely but on
the whole space N(X). Unless otherwise stated we consider J=H. We are
now prepared to give the fundamental definition of this chapter.

6.3 Definition (Gibbs Distribution and Point Process) Let Γ= (ΓH)H∈H
be a specification. A distribution P ∈Prob(N) is called Gibbs distribution
w. r. t. Γ iff for all H ∈H, A ∈N

P(A|FH)=ΓH(·, A) almost surely w. r. t. PΞ. (6.2)

A point process Ξ∼ P is called Gibbs point process w. r. t. Γ. The set of all
Gibbs distributions w. r. t. Γ is denoted by Gibbs(Γ). _

Often, Gibbs distributions are also called Gibbs measures, Gibbs states,
or Gibbs ensembles. In addition, we use the phrase finite or infinite volume
Gibbs distribution to emphasize the boundedness or unboundedness of
the underlying space (X,T), respectively.

In fact, the strict properness of a specification Γ leads to a simplified
sufficient and necessary condition for P being a Gibbs measure for Γ. This
is given in the following remark.

6.4 Remark (Dobrushin–Lanford–Ruelle Equations) Let Γ = (ΓH)H∈H
be a specification. Then P ∈Gibbs(Γ) if and only if

P =
∫
ΓH(ξ, ·)P(dξ) (6.3)
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holds for all H ∈H. Since (6.3

.

) is an obvious consequence of P ∈Gibbs(Γ),
we just have to show the converse. To this end, consider a P that fulfills
(6.3

.

) and let H ∈H. Then, by the prerequisite we have for all A ∈Nand
B ∈FH

P(A∩B) =
∫
ΓH(η, A∩B)P(dη)

=
∫
ΓH(η, A)1B(η)P(dη),

where the second equality is due to the strictness of ΓH which in particular
yields that {ΓH(·, A)1B(·), ΓH(·, A∩B)}=; is a P-null set. We therefore
obtain P(A|FH)=ΓH(·, A) almost surely w. r. t. P.

Introducing distributions via (6.3

.

) for a given specification was first
considered by Dobrushin

.

(1968a

.

,b

.

) and Lanford III & Ruelle

.

(1969

.

). These
equations are therefore called Dobrushin–Lanford–Ruelle (DLR) equations
and Gibbs distributions are also called DLR states. _

Along these first steps, the reader might have noticed a certain relation
to the theory of Markov processes (indexed by time) or Markov random
fields (indexed by a countable set). In fact, so-called finite interaction
Gibbs point processes (see below, Example 6.14

.

, page 142

.

ff.) exhibit a
canonical form of Markovianity if a corresponding equivalence relation
is used that defines neighboring areas.4

.

Therefore, these Gibbs point
processes are also commonly called Markov point processes (see Ripley &
Kelly

.

(1977

.

) who introduced this notion; see also van Lieshout

.

(2000

.

) and
Møller & Waagepetersen

.

(2004

.

)).
To outline another analogy, we take a closer look at the nature of a

given specification Γ. For any chain5

.

C⊂ H(X) w. r. t. the partial order
⊂ it then turns out that the restriction Γ|C = (ΓC)C∈C is a semigroup
of quasi-Markov kernels, since ΓDΓC = ΓC∪D holds for all C, D ∈ C.6

.

If in addition ; ∈ C, we have that the semigroup Γ|C is normal due to
Γ;(ξ, ·) = δξ for all ξ ∈ N. This is the counterpart to the (time indexed)
Markov semigroup. However, while the latter leads canonically to a
projective family of marginal distributions and, consequently, to a unique
distribution of a Markov process if an initial distribution is given and if

4The lattice process interpretation of Gibbs point processes is often used to study
their “infinite volume” properties such as existence and uniqueness of Gibbs measures,
see Section 6.4

.

, and also asymptotic properties of estimators for Gibbs point process
parameters, see for example Baddeley et al.

.

(2014

.

) or Dereudre & Lavancier

.

(2017

.

) and
the references therein.

5Let (X,¹) be a partially ordered set. A subset M ⊂ X is called chain (w. r. t. ¹) iff
(M,¹) is totally ordered, that is, for all x, y ∈ M we have either x ¹ y or y¹ x.

6Consider C ⊂ D, then ΓDΓC = ΓD = ΓC∪D holds by the Chapmann–Kolmogorov
equations. For the converse case C ⊃ D, we note that (FC)C∈C is a decreasing filtration,
hence, FC ⊂FD and, consequently, by the strictness of ΓD we have ΓDΓC =ΓC =ΓC∪D .
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the state space is Polish (Bauer

.

, 1991

.

, Satz 36.4, page 320), the situation
is different when constructing Gibbs point processes w. r. t. Γ|C.

The subsequent sections are concerned with the question of the exis-
tence of Gibbs measures for a given specification Γ. To some extent, we
also consider uniqueness aspects. In fact, specifications Γ in general do not
define Gibbs measures uniquely if there is a corresponding distribution at
all. The theory of Gibbs measures is, therefore, mainly devoted to the in-
vestigation of the set Gibbs(Γ) with respect to its size and shape, instead
of looking at specific Gibbs distributions. To get familiar with some of the
peculiarities, we present a few examples and results in the next section.
These pave the way to some of the challenging issues mentioned above.

6.2 First Simple Examples and Results
Poisson point processes provide a first simple example of Gibbs point
processes. This is shown in the following proposition, by which we also
get an impression of how the Poisson case fits to the Gibbs framework.7

.

6.5 Proposition (Poisson Specification) Let α ∈M(X). Then, for every
H ∈B(X) let PH BPop(H,B(H),α|H) be the Poisson point process distri-
bution on (NH ,NH). We set

ΓH(·, A∩B)B1B(·)PH(prH(A)) for A ∈FH , B ∈FH (6.4)

and obtain the following two statements:
(a) The family Γ = (ΓH)H∈H has a unique extension to a specification

which we call Poisson specification.

(b) We have Gibbs(Γ)= {
Pop(X,B(X),α)

}
, that is, there exists a unique

distribution w. r. t. Γ, which is the Poisson point process distribution
on (X,B(X)) with parameter measure α. _

Proof: (a) Let H ∈H. Due to the product space representation

(N,N)� (NH ×NHc ,NH ⊗NHc)

(see Proposition 5.10

.

, page 107

.

), we may interpret ΓH as the product
kernel from (N,FH) to (NH ×NHc ,NH ⊗NHc), given by

ΓH(ξ, A×B)= δprHc (ξ)(B) ·PH(A)

for ξ ∈N, A ∈NH and B ∈NHc . Furthermore, this Markov kernel is strict
by construction. To show the consistency condition, we use again a corre-
sponding product representation of (N,N). Let G, H ∈H such that G ⊂ H

7In the theory of (time-indexed) stochastic processes it is known that a Lévy process
X = (X t)t≥0 is a Markov process with transition kernels Rt(x, ·)= P X t ∗δx(·) for t ≥ 0 and
x ∈X. In this spirit, the statement of Proposition 6.5

.

is an analog result.
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and let A ∈NG , B ∈NH\G as well as C ∈NHc . Then, we have

ΓHΓG (ξ, A×B×C)

=
∫
ΓG(η, A×B×C)ΓH(ξ,dη)

=
∫

PG(A)δprGc (η)(B×C)ΓH(ξ,dη)

=
∫

PH
(
(prH

G )−1(A)
)
δη

(
(prH

H\G)−1(B)×C
)
ΓH(ξ,dη)

= PH
(
(prH

G )−1(A)
)
ΓH

(
ξ, (prH

H\G)−1(B)×C
)

= PH
(
(prH

G )−1(A)
)
PH

(
(prH

H\G)−1(B)
)
δprHc (ξ)(C),

where we used the projectivity of (PH)H∈H and the definition of the ΓH .
Furthermore, by the fact that (prH

G )−1(A) is independent of (prH
H\G)−1(B)

with respect to PH , that is,

PH
(
(prH

G )−1(A)
)
PH

(
(prH

H\G)−1(B)
)= PH

(
(prH

G )−1(A)∩ (prH
H\G)−1(B)

)
,

we finally get

ΓHΓG(ξ, A×B×C) = PH
(
(prH

G )−1(A)∩ (prH
H\G)−1(B)

)
δprHc (ξ)(C)

= PH(A×B)δprHc (ξ)(C)
= ΓH(ξ, A×B×C).

In total we obtain that (6.4

.

) defines a specification.
(b) To show that Popα = Pop(X,B(X),α) is the unique Gibbs distri-

bution fitting to the specification Γ, that is, Gibbs(Γ)= {
Popα

}
, we show

that Popα satisfies the DLR equations (6.3

.

). To this end, consider A ∈FH
and B ∈ FH and let FA ∈NH and FB ∈NHc such that A = prH(FA) and
B = prHc(FB). Then, due to the definition of ΓH (see (6.4

.

)), we have

Popα(A∩B)= PH(FA)PHc(FB) =
∫

PH(FA)1B(ξ)Popα(dξ)

=
∫
ΓH(ξ, A∩B)Popα(dξ),

which means Pop(α) ∈Gibbs(Γ), see Remark 6.4

.

. Furthermore, for any
Q ∈Gibbs(Γ), H ∈H, and A ∈NH , we have

QprH (A)=
∫
1pr−1

H (A) dQ =
∫
ΓH

(·,pr−1
H (A)

)
dQ

=
∫
δξ(pr−1

Hc(NHc)) ·PH(A)Q(dξ)

= PH(A).
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Thus, by the uniqueness theorem (see Theorem 5.23

.

, page 112

.

) we get
Q =Popα. ■

The proposition as well as the corresponding proof reveal some in-
teresting facts. First, a Poisson specification admits a Gibbs measure
and this is unique. Second, the projectivity of

(
Poi(H,B(H),α|H)

)
H∈H

yields the Chapman–Kolmogorov equation. The latter can therefore be
seen as a generalization of the projectivity and, eventually, as the correct
“consistency” condition.

The second example concerns a simple specification that does not lead
to a Gibbs measure. A corresponding lattice gas8

.

version was already
analyzed in Georgii

.

(2011

.

, page 66) serving as a model for a single particle
that is placed completely at random in space.

6.6 Proposition (Bernoulli Specification) Let (X,B(X))B (�k,B(�k)).
We set JB

{
H ∈H(�k) : λk(H)> 0

}
and for each H ∈J, ξ ∈N, and A ∈N,

we define9

.

ΓH(ξ, A)B
{ ∫

H1A(δx)UH(dx) if ξHc = 0,
1A(ξHc) otherwise (6.5)

and furthermore Γ;(ξ, ·)B δξ(·) for all ξ ∈N. Then:
(a) The family Γ = (ΓH)H∈J has a unique extension to a specification

which we call Bernoulli specification.

(b) We have Gibbs(Γ)=;, that is, there is no Gibbs measure w. r. t. the
specification Γ. _

Proof: (a) Obviously, J contains an increasing set sequence (Hn)n∈�
such that Hn ↑ �k for n → ∞. To show that Γ defines a specification,
we therefore begin with the Chapman–Kolmogorov equation. Consider
G, H ∈J such that G ⊂ H and let A ∈Nand ξ ∈N. For the case ξHc = 0,
we compute

ΓHΓG(ξ, A) =
∫
N

ΓG(η, A)ΓH(ξ,dη)

=
∫

H
ΓG(δx, A)UH(dx)

=
∫

G

∫
G
1A(δy)UG(dy)UH(dx)+

∫
H\G

1A(δx)UH(dx)

=
∫

G
1A(δy)UH(dy)+

∫
H\G

1A(δx)UH(dx)

= ΓH(ξ, A).

8A family of random elements that is indexed by a countably (infinite) set is called
lattice gas, which might represent a simplified picture of a gas (Georgii

.

, 2011

.

, page 2).
9Recall that UH denotes the uniform distribution on a set H ∈H(�k) with positive

but finite Lebesgue measure λk(H).
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If ξHc , 0, then we have in particular ξGc , 0 and consequently

ΓHΓG(ξ, A) =
∫
ΓG(η, A)δξHc (dη)

= ΓG(ξHc , A)
= 1A(ξHc)
= ΓH(ξ, A).

Furthermore, ΓH(·, A) is obviously FH-measurable. To show the strictness,
we consider A ∈FH , B ∈FH and obtain indeed ΓG(·, A∩B) = ΓG(·, A)1B.
Hence, Γ= (ΓH)H∈J is a specification.

(b) We show that PΓH = P for any H ∈ J has the unique solution
P = 0, that is, P is the zero measure and, consequently, Gibbs(Γ)=;.

To this end, let
{
Dn : n ∈�}

be a partition of X consisting of bounded
sets. Assume that P fulfills PΓH = P for every H ∈J and let ΞB idN.
Then, we have

P(Ξ(X)> 1)≤ ∑
n∈�

P(Ξ(Dn)> 1)= ∑
n∈�

∫
ΓDn(ξ,Ξ(Dn)> 1)P(dξ)= 0,

since ΓDn(ξ,Ξ(Dn)> 1)= 0 for all n ∈�. Furthermore, for every H ∈Jwe
have ΓH(ξ,Ξ(X)= 0)= 0 for all ξ ∈N(X) by definition of ΓH and, hence,

P(Ξ(X)= 0)=
∫
ΓH(ξ,Ξ(X)= 0)P(dξ)= 0.

Finally, we note

P(Ξ(X)= 1)= P
( ⋃

n∈�

{
Ξ(Dn)= 1

}∩{
Ξ(X)= 1

}︸                            ︷︷                            ︸
CAn

)
= ∑

n∈�
P(An). (6.6)

In fact, P(An)= 0 for all n ∈�, since for every H ∈Jwith Dn ⊂ H we have

P(An)=
∫
ΓH(ξ, An)︸        ︷︷        ︸
=UH (Dn)

P(dξ)=UH(Dn).

By choosing a sufficiently large H ∈H, the right-hand side gets arbitrarily
small. From (6.6

.

) we thus obtain P(Ξ(X)= 1)= 0.
In total, P = 0 ∉Gibbs(Γ) and therefore Gibbs(Γ)=;. ■

By these two examples, we have in particular shown that specifications
exist. However, while the Poisson specification admits a unique Gibbs
measure on the whole space, the Bernoulli specification does not.

We now take a closer look at the situation when the state space (X,T)
is compact. Regarding the question of existence and uniqueness, things
are much simpler as the following proposition shows.



6.2 FIRST SIMPLE EXAMPLES AND RESULTS 133

6.7 Proposition (Finite Volume Gibbs Measures) Let (X,T) be a compact
space and let Γ = (ΓH)H∈H(X) be a specification. Then, there exists a
unique Gibbs distribution, that is, Gibbs(Γ) = {P} and P = ΓX(ξ, ·) for
every ξ ∈N(X). _

Proof: Note that for any A ∈N(X) =FX the map ξ 7→ ΓX(ξ, A) is measur-
able w. r. t. FX = {;,N}. Hence, ΓX(·, A) is constant for every A and we set
P BΓX(ξ, ·) for some ξ. Furthermore, for any H ∈Hwe have PΓH = P and
hence P(·|FH)=ΓH , since Γ is a specification. This implies P ∈Gibbs(Γ).
For any Q ∈Gibbs(Γ) we have for all H and A ∈B(X)

Q(A)=
∫
ΓH(ξ, A)Q(dξ),

in particular Q(A) = ΓX(·, A) for all A, since ξ 7→ ΓX(ξ, A) is measurable
w. r. t. FX = {;,N}. This yields Q = P and hence Gibbs(Γ)= {P}. ■

Proposition 6.7

.

addresses the question of existence and uniqueness
of finite Gibbs measures to a given specification. Now we turn to the
converse questions that also arises quite naturally and is non-trivial as
well. Recall that a specification is more than just a family of conditional
distributions. We therefore ask: Which distributions P on N(X) can be
seen as a (finite) Gibbs measure? In other words, for which distributions
does a specification exist?

Indeed, we can specify a large class of finite Gibbs measures P on
N(X) by requiring that P has a so-called hereditary density f w. r. t. the
Poisson point process distribution Pop(X,B(X),λ) for some λ ∈M(X) (see
also Proposition 5.31

.

on page 116

.

, where we studied the support of the
Poisson point process distribution).

6.8 Definition A function h : N→ �+ is called hereditary iff h(ξ) > 0
implies h(η)> 0 for all sub patterns η≤ ξ. _

6.9 Proposition (Finite Volume Gibbs Measures) Let (X,T) be a compact
space and let P be any point process distribution with a hereditary density
f w. r. t. PopX. Define for any G ∈H

fG(ξ)B
f (ξ)∫

f (η+ξGc)PopG(dη)
for ξ ∈N(X)

and

ΓG(ξ, A)B
∫
1A(η+ξGc) fG(η+ξGc)PopG(dη) for ξ ∈N(X), A ∈N(X).

Then, Γ= (ΓG)G∈H is a specification and Gibbs(Γ)= {P}. _

Proof: First, we show that ΓG is a strict FG-Markov kernel. By definition
we obviously have for any ξ ∈ N(X) that ΓG(ξ, ·) is a distribution. The
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FG-mesurability of ΓG(·, A) follows from Tonelli’s theorem. Furthermore,
it is easy to see from the definition that for any A ∈ FG and B ∈ FG we
have ΓG(·, A∩B)=ΓG(·, A)1B(·).

Second, we show the Chapman–Kolmogorov equations. To this end,
consider F, G ∈Hwith F ⊂G, A ∈Nand ξ ∈N, then

(ΓGΓF )(ξ, A) =
∫
ΓF (η, A)ΓG(ξ,dη)

=
∫ [∫

1A(ζ+ηG\F +ξGc) fF (ζ+ηG\F +ξGc)PopF (dζ)
]

fG(η+ξGc)PopG(dη).

Recall that

PopG =PopF ∗PopG\F B
(
PopF ⊗PopG\F

)◦ (
(ξ,η) 7→ ξ+η)−1,

which leads to

(ΓGΓF )(ξ, A)

=
∫ ∫ ∫

1A(ζ+η2 +ξGc) fF (ζ+η2 +ξGc) fG(η1 +η2 +ξGc)

PopF (dη1)PopG\F (dη2)PopF (dζ)

=
∫
1A(ζ+η2 +ξGc) fF (ζ+η2 +ξGc)∫

fG(η1 +η2 +ξGc)PopF (dη1)
(
PopF ⊗PopG\F

)(
d(ζ,η2)

)
.

By using the definitions of fG and fF , we obtain the relation

fF (ζ+η2 +ξGc) ·
∫

fG(η1 +η2 +ξGc)PopF (dη1)

= fF (ζ+η2 +ξGc) ·
∫

f (η1 +η2 +ξGc)∫
f (η′+ξGc)PopG(dη′)

PopF (dη1)

= f (ζ+η2 +ξGc)
1∫

f (η′+ξGc)PopG(dη′)
= fG(ζ+η2 +ξGc).

In total we have

(ΓGΓF )(ξ, A)=
∫
1A(η+ξGc) fG(η+ξGc)PopG(dη).

Third, according to Proposition 6.7

.

, we have that P =ΓX(ξ, ·) holds for
every ξ ∈N(X), which is the unique Gibbs distribution to Γ. ■

The previous proposition states that any point process distribution
with hereditary density w. r. t. Pop is a (finite volume) Gibbs measure.
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Authors commonly define Gibbs point processes on compact spaces exactly
in this way, since it provides a comfortable and intuitive approach for
introducing point process models exhibiting dependences (see for example
Møller & Waagepetersen

.

(2004

.

), Baddeley et al.

.

(2013

.

)). To this end,
certain point patterns are either weighted down or up in a density w. r. t.
Pop. Concrete examples are given by the Strauss and the Lennard-Jones
point process model, which will be introduced and discussed in a broader
setting in Section 6.3

.

.
Note that the Poisson point process distribution as a reference measure

is a key factor in this modeling approach. First, PopX =Pop(X,B(X),α)
with suppα=X has probability mass all over the space N(X), see Proposi-
tion 5.31

.

, page 116

.

. Hence, we do not exclude any kind of point pattern
by choosing PopX as the reference measure. Second, PopX can be easily
decomposed for each G ∈ H as PopX = PopG ∗PopGc , which is used to
compute the conditional densities.

Roughly speaking, Propositions 6.7

.

and 6.9

.

above show that a large
class of point process distributions on compact spaces possess a Gibbsian
description, that is, a description via a specification. And, conversely, the
corresponding class of specifications determines a point process distribu-
tion, which consequently means that there is a one-to-one correspondence
within this class.

For unbounded spaces (X,T) with α(X)=∞ for some α ∈M(X), there
is no such one-to-one correspondence. However, we are still interested in
the question if specifications that are given in the spirit of Proposition 6.9

.

define a Gibbs point process distribution on (N(X),N(X)). These so-called
Gibbs specification are considered in Section 6.3

.

.

In the remainder of this section, we consider the comparatively sim-
ple non-compact case (X,T) B (�,2�). In fact, questions regarding the
existence and uniqueness of Gibbs measures on (N(�),N(�)) might be
already known to the reader. This refers to a certain part of the theory
of (stationary, homogeneous) Markov chains. In what follows, our goal
is to use this extensively studied case as an example, which might then
be helpful as a guide for proofs in the general context. To this end, we
start with a certain specification on �, modeling the nearest-neighbor
dependency, and discuss the existence and uniqueness of a corresponding
Gibbs measure. This turns out to be the distribution of a Markov chain.

By considering Markov chains from the Gibbs point process perspec-
tive, we are dealing with �-indexed stochastic processes with binary
states, say 0 and 1. A path of such a Markov chain is an element in N(�),
that is, a simple point measure on �. The states 1 and 0 indicate the
presence and non-presence of mass of that point measure, respectively.
Furthermore, our observation of this random element on a bounded and
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hence finite set G ⊂� depend on the nearest-neighbor periphery of G, that
is,

∆GB
{
k ∈Gc : |k− l| = 1 for some l ∈G

}
.

A natural way to define a specification concerning the nearest-neighbor
relationship is essentially given by the product of transition probabilities.
That means, considering a transition matrix R = (

R(x, y)
)
x,y∈{0,1}, an in-

terval I B {k, ..., l} ⊂� and ξ ∈N(�), we define ΓI(ξ, ·) by the probability
density f I,ξ w. r. t. the counting measure10

.

ζI on {0,1}I =N(I) given by

f I,ξ :∝ η 7→ R(ξk−1,ηk) · ... ·R(ηl ,ξl+1).

Furthermore, in the case of two disconnected sets G, H ∈H(�), that is,
G∩H =; as well as ∆H∩G = H∩∆G =;, we consider

fG∪H,ξ := fG,ξ · fH,ξ.

Note that every finite H ⊂� has a finite decomposition in disconnected
intervals. For H ∈H, ξ ∈N(�), and A ∈N(�), we set

ΓH(ξ, A)B
∫
1A(η+ξ|Hc) fH,ξ(η)ζH(dη). (6.7)

In fact, Γ= (ΓH)H∈H is a specification, which is shown by the upcoming
proposition.

6.10 Proposition (Markov Specification) Let (X,T) = (�,2�) and con-
sider the transition matrix

RB

(
p 1− p

1− q q

)
with p, q ∈ ]0,1[, that is, non-zero entries. We define for an intervals
I B {k,k+1, ..., l}⊂�

f I,ξ(η)B
R(ξk−1,ηk) ·R(ηk,ηk+1) · . . . ·R(ηl ,ξl+1)

R l−k+2(ξk−1,ξl+1)
for ξ, η ∈N(�) (6.8)

and, furthermore, for G, H ∈Hwith G∩H =; and ∆G∩H =G∩∆H =;
we set

fG∪H,ξB fG,ξ · fH,ξ. (6.9)

Then, (6.8

.

) and (6.9

.

) are probability densities w. r. t. ζI and ζG∪H , respec-
tively. Furthermore, ΓB (ΓH)H∈H given through (6.7

.

) is a specification,
the so-called Markov specification with transition matrix R. _

10Let X be an arbitrary set. The set function ζ that maps subsets M of X to their
cardinality |M|, if M is finite and ∞ else, is a measure, the so-called counting measure
on X.
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Proof: First, we show that ΓH for each H ∈H is a Markov kernel from
(N,FH) to (N,N). To this end, consider any ξ ∈N(�) and let I ⊂� be an
interval. Then, note that for x, y ∈ EB {0,1} and n ∈� we have

Rn(x, y)=
n−1∑
i=1

∑
zi∈E

R(x, z1) · . . . ·R(zn−1, y),

which yields that (6.8

.

) and (6.9

.

) are probability densities. Hence, ΓH
defined by (6.7

.

) is a Markov kernel. Furthermore, we note that for every
η ∈ N the map ξ 7→ fH,ξ(η) is F∆H-measurable. Consequently, for every
A ∈N the map ξ 7→ ΓH(ξ, A) is F∆H-measurable and, thus, in particular
FHc

-measurable.
Second, to show the strictness of ΓH for any H ∈H, we consider A ∈N

and B ∈FH and compute

ΓH(ξ, A∩B) = ∑
η∈N

1A(η)1B(η)ΓH(ξ, {η})

=
{
ΓH(ξ, A) if ξ ∈ B,
0 otherwise

= ΓH(ξ, A)1B(ξ).

Third, we show the Chapman–Kolmogorov equations. We define for
any η ∈N and any H ∈ H the set {η}H B pr−1

H
(
prH(η)

)
, that is, the set of

all simple point measures on �, which equals η on H. Then, we have
{η}H = {η}F ∩ {η}H\F . For the sake of simplicity, we show the statement for
two intervals

I B {k, ..., l}⊂ { j, ...,m}C J.

We then compute that

ΓJΓI(ξ, {η}J)

=
∫
ΓI(ζ, {η}I ∩ {η}J\I)ΓJ(ξ,dζ)

=
∫
ΓI(ζ, {η}I)1{η}J\I (ζ)ΓJ(ξ,dζ)

= R(ηk−1,ηk) · ... ·R(ηl ,ηl+1)
R l−k+2(ηk−1,ηl+1)

·∑
ζ

R(ξ j−1,ζ j) · ... ·R(ζm,ξm+1)
Rm− j+2(ξ j−1,ξm+1)

1{η}J\I (ζ)

= R(ξ j−1,η j) · ... ·R(ηm,ξm+1)
Rm− j+2(ξ j−1,ξm+1)

·∑
ζ

R(ηk−1,ζk) · ... ·R(ζl ,ηl+1)
R l−k+2(ηk−1,ηl+1)︸                                  ︷︷                                  ︸

=1
= ΓJ(ξ, {η}J).
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Hence, for all A ∈FJ we have ΓJΓI (ξ, A)=ΓJ(ξ, A). Furthermore, consider
any B ∈FJ in addition, we then have that

ΓJΓI(ξ, A∩B) =
∫
ΓI(ζ, A)1B(ζ)ΓJ(ξ,dζ)

= ΓJΓI(ξ, A) ·1B(ξ)
= ΓJ(ξ, A) ·1B(ξ).

Finally, ΓJΓI(ξ, A)=ΓJ(ξ, A) holds for all A ∈N. ■

By the next proposition, we show that each Markov specification with
transition matrix R specifies uniquely a Gibbs distribution, which is the
distribution of a stationary (binary) Markov chain.11

.

Beyond that, the
crucial message lies in the organization of the corresponding proof, which
is designed to prepare existence proofs for general Gibbs point processes
in the next section.

6.11 Proposition (Binary Markov Chain on �) To each Markov speci-
fication Γ with transition matrix R as in Proposition 6.10

.

there exists a
unique Gibbs measure P, that is, Gibbs(Γ)= {P}. _

Proof: Essentially, we will show for an increasing sequence (Hn)n∈� ∈
H� and any boundary condition ξ as well, that ΓHn(ξ, ·) converges to
a distribution P, independent of ξ. Furthermore, this measure is the
“correct” one, since for n →∞ we have

P ←ΓHn(ξ, ·)=ΓHnΓG(ξ, ·)→
∫
ΓG(η, ·)P(dη),

which implies that P has the “correct” conditional distributions, that is,
those given by Γ= (ΓH)H∈H.

To show the statement, we first note that for a transition matrix

R =
(

p 1− p
1− q q

)
with p, q ∈ ]0,1[ we have that

Rn →
( q

p+q
p

p+q
q

p+q
p

p+q

)
as n →∞. (6.10)

Let ξ ∈N(�) and consider a sequence (Hn)n∈� ∈H� of intervals with
Hn ↑ � for n →∞. By l(n)BminHn and u(n)BmaxHn we denote the
lower and upper bounds of Hn, respectively. That is, we have in particular

11See Georgii

.

(2011

.

, Chapter 3) for the more general case of Markov chains with finite
states.
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∆Hn = {l(n)−1,u(n)+1} for all n ∈�. Additionally, consider some η ∈N(�)
and GB {k, ..., l} ∈H. Recall that {η}G B pr−1

G

(
prG(η)

)
, we then compute

ΓHn(ξ, {η}G)

= ∑
ζ

R(ξl(n)−1,ζl(n)) · ... ·R(ζk−1,ηk) · ... ·R(ηl ,ζl+1) · ... ·R(ζu(n),ξu(n)+1)
Ru(n)−l(n)+2(ξl(n)−1,ξu(n)−1)

= R(ηk,ηk+1) · ... ·R(ηl−1,ηl) ·
Rk−l(n)(ξl(n)−1,ηk)Ru(n)−l(ηl ,ξu(n)+1)

Ru(n)−l(n)+2(ξl(n)−1,ξu(n)+1)
.

Due to 6.10

.

we have limn→∞ Rk−l(n)(ξl(n)−1,ηk)Cµ(ηk) and since

lim
n→∞

Ru(n)−l(ηl ,ξu(n)+1)
Ru(n)−l(n)+2(ξl(n)−1,ξu(n)+1)

= 1,

we have in total and independent of ξ ∈N(�) that

lim
n→∞ΓHn(ξ, {η}G)=µ(ηk)R(ηk,ηk+1) · ... ·R(ηl−1,ηl) for η ∈N(�). (6.11)

Consequently,

ΓHn(ξ, ·)|FG → PG |FG as n →∞,

where PG is defined through the right-hand side of (6.11

.

). Furthermore,
let Gbe the set of all intervals of �. Then (PG)G∈G is consistent and by
Corollary 5.26

.

on page 114

.

there is a distribution P on N(�) such that
P|FG = PG .

Since ΓHn(ξ, ·) converges weakly to P as n →∞ and since η 7→ΓG(η, A)
is trivially continuous for any G ∈H, we have for every A ∈N

P(A)←ΓHn(ξ, A)=ΓHnΓG(ξ, A)→
∫
ΓG(η, A)P(dη) as n →∞.

In addition, for any B ∈FG we have

P(A∩B)=
∫
ΓG(η, A)1B(η)P(dη),

and therefore P(·|FG)=ΓG and consequently P ∈Gibbs(Γ).
To show the uniqueness of a Gibbs measure specified through Γ, we

consider Q ∈Gibbs(Γ) and note for every ξ ∈N(�) and G, H ∈H that

Q({ξ}G)=
∫
ΓH(η, {ξ}G)Q(dη).
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Considering especially GB {k, ..., l}, we have for an increasing sequence of
intervals (Hn)n∈� ∈H� and for all ξ ∈N(�)

Q({ξ}G) =
∫
ΓHn(η, {ξ}G)Q(dη)

= lim
n→∞

∫
ΓHn(η, {ξ}G)Q(dη)

=
∫

lim
n→∞ΓHn(η, {ξ}G)Q(dη)

= µ(ξk) ·R(ξk,ξk+1) · ... ·R(ξl−1,ξl)
= P({ξ}G).

Hence, Q equals P and consequently Gibbs(Γ)= {
P

}
. ■

Binary Markov chains on � as considered above emerge, for instance,
in statistical physics by the so-called Ising model to study ferromagnetic
or antiferromagnetic substances (see e. g. Georgii

.

(2011

.

, page 49) for a
mathematical analysis, some explanation and references on the Ising
model). The following example also provides an impression of introducing
the so-called Gibbs specification for continuous models in Section 6.3

.

.

6.12 Example (Ising Model in One Dimension) We set up the one-
dimensional Ising model as follows: consider two states, for simplicitiy say
−1 and 1, representing the orientations of so-called spins. The positions of
these spins are given by �. The likelihood of an outcome ξ ∈N(�) is then
modeled in terms of the Ising potential, that is, for x, y ∈�

φ{x,y}(ξ)B


−J

(
1ξ×ξ(x, y)−1ξ×ξc(x, y)+1ξc×ξc(x, y)

)
if |x− y| = 1,

−h(1ξ(x)−1ξc(x)) if x = y,
0 else.

Here, J ∈� is a coupling constant and h ∈� describes the action of an
external field. For H ∈H(�) let

UH(ξ)B
∑

x,y∈�
{x,y}∩H,;

φ{x,y}(ξ)

be the so-called Ising potential energy of ξ in H. Then, for H ∈H, ξ ∈N(�),
and A ∈N(�), we set

Γt
H(ξ, A)B

∫
1A(η+ξHc)ct(H,ξ)exp

(− t ·UH(η+ξHc)
)
ζ(dη),

where t > 0 is the inverse (absolute) temperature and ct(H,ξ) is the nor-
malizing constant

ct(H,ξ)B
(∫

exp
(− t ·UH(η+ξHc)

)
ζ(dη)

)−1
.
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To see that Γt = (Γt
H)H∈H constitutes a Markov specification, in particular

for the computation of the corresponding transition matrix R, we refer to
Georgii

.

(2011

.

, Chapter 3). According to Proposition 6.11

.

, we have that Γt

determines a unique Gibbs distribution Pt for each t > 0.
In the context of this example, a classical question of statistical physics

concerns the behavior of Gibbs(Γt)= {Pt} at low temperature, that is, as t
goes to infinity. Assuming J = 1, for example, one can show that limt→∞ Pt
is the Dirac distribution δζ, where ζ is the counting measure on � (see for
example Georgii

.

, 2011

.

, Chapter 3). _

We conclude this section by a brief remark on the (non-)uniqueness
of Gibbs distributions. The Ising model presented in Example 6.12

.

has
an obvious extension to the two dimensional space X = �2. There the
behavior at low temperature is different. One can show that, for t large
enough, Gibbs(Γt) is no longer a singleton (see Georgii

.

, 2011

.

, Chapter 6).
To put it differently, the macroscopic behavior described by Gibbs(Γt) may
change “non-smoothly”, if t is changed “smoothly”. Such a phenomenon is
called phase transition.

For most specifications Γt = (Γt
H)H∈H controlled by some activity pa-

rameter t > 0 (still called inverse temperature), proving that phase transi-
tion occurs and determining the critical inverse temperature tc at which it
occurs are topics of ongoing research. According to Dereudre

.

(2019

.

, page
27) the “common belief claims that the Gibbs measures are unique when
[...] the inverse temperature [t is] small enough”. Intuitively, this is due
to the belief that (Γt)t>0 converges to the Poisson specification for t →∞.
Further results, notes, and references are given in Dereudre

.

(2019

.

). In
the present thesis, the uniqueness problem is not discussed any further.12

.

6.3 Gibbs Specifications
Roughly speaking, Gibbs specifications are specifications Γ = (ΓH)H∈H
such that for each H ∈ H(X) and each ξ ∈ N the measure ΓH(ξ, ·) has a
descriptive construction by a density w. r. t. Pop(H,B(H),α|H) in terms
of so-called energy functions and potentials. This terminology is due to
the extensive use of Gibbs specifications in statistical physics for studying
(large) particle systems. In addition, these physical notions also provide
an illustrative account to describe the underlying processes involved.
Therefore, our use of this terminology comes with references to physics,
however, from a simplified point of view.

12In the simulation study of the present thesis (see Section 7.4

.

, page 167

.

ff.) we
examine statistical procedures, in particular the proposed concept of regularized Rao–
Blackwellization, for the so-called Lennard-Jones model (see next section) for parameters
describing a low, a medium, and a high temperature regime.
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In order to construct densities w. r. t. PopH , we assign to each pattern
ξ ∈N a cost relative to a reference state ξ0. This is what physicists denote
as the potential energy of ξ (with respect to ξ0). In our situation the
reference state ξ0 will be ξHc , that is, the configuration outside of H. By
doing so we arrive at the following definition.

6.13 Definition (Potential Energy) A family U = (UH)H∈H of measur-
able functions UH : Nf → ]−∞,∞] is called energy, potential energy, or
Hamiltonian13

.

iff for all G, H ∈Hwith G ⊂ H there is an FG-measurable
function ϕG,H : N f → ]−∞,∞] such that UH(ξ)=UG(ξ)+ϕG,H(ξ). _

For a potential energy (UH)H∈H and a point pattern ξ ∈Nf , the value
UH(ξ) can be interpreted as the energy held by the particle system ξ in
H given the reference state ξHc . Loosely speaking, the value UH(ξ) may
be interpreted as the total work necessary to change from the reference
configuration ξHc to the configuration ξ. The positive or negative sign of
UH(ξ) tells us if work has to be put into or can be gained by the system ξ.

Note also that the potential energy does not depend on the actual
trajectory of the work done, but just depends on the resulting state ξ

and the reference state ξHc . Nevertheless, for illustrative and modeling
purposes, the potential energy UH(ξ) may be described by interacting
forces of all or certain leading sub-configurations. Hence, we define the
following terminology.

6.14 Example (Energy and Interaction Potential) Consider a non-empty
I ⊂�∪ {∞} and an I-indexed family of measurable functions φk : Nk →
]−∞,∞] with φk , 0 for k ∈ I, where Nk = Nk(X) denotes the set of all
simple point measures ξ such that ξ(X)= k. Then (UH)H∈H defined by

UH(ξ)B
∑
k∈I

∑
η∈Nk

η≤ξ, η(H)>0

φk(η) for ξ ∈Nf (6.12)

is a Hamiltonian. To show this, let G, H ∈Hwith G ⊂ H and note that

UH(ξ) = ∑
k∈I

∑
η∈Nk

η≤ξ, η(H)>0

φk(η)

= ∑
k∈I

∑
η∈Nk

η≤ξ, η(G)>0

φk(η)+ϕG,H(ξ),

where
ϕG,H(ξ)B

∑
k∈I

∑
η∈Nk, η≤ξ

η(G)=0 η(H)>0

φk(η) for ξ ∈Nf

13This name comes from the Irish mathematician, physicist, and astronomer William
Rowan Hamilton (1805 – 1865).
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is obviously FG-measurable.
For k ∈ I we call φk (interaction) potential of order k or k-body (interac-

tion) potential. In particular, φ2 is often called pair (interaction) potential.
Furthermore, sup I is called the interaction order and14

.

sup
{
diam(η) : φk(η), 0,η ∈Nk(X), k ∈ I

}
is called the interaction range of the potential energy U . _

We provide two well-known examples of pair interaction models. In
fact, physical models of simple particle systems often assume that the
potential energy is described by two-body forces, while three- and higher-
body forces contribute just smaller, even negligible corrections.

6.15 Example (Strauss Interaction Potential) To model repulsion of
particles, a simple approach is to count point pairs that occur at a distance
less or equal to a certain radius R > 0, which we call R-close. The Strauss
interaction potential15

.

is the two parameter pair potential

φR
2 (δx +δy)B− log(γ) ·1[0,R]

(
d(x, y)

)
for x, y ∈X, x, y,

with (regular) interaction parameter γ ∈ [0,1] (see Figure 6.1

.

). For this
parametrization we note that γ= 0 leads to a model with so-called hard
spheres, that is, two points cannot be R-close to each other. If γ= 1 point
pairs do not interact. Furthermore,

sup
{
diam(η) : φR

2 (η), 0,η ∈N2
}= R,

i. e., the Strauss interaction potential has the finite interaction range R.
Considering the 1-body potential φ1 = log(β) ·1N1 for some intensity

parameter β> 0, we define the Strauss potential energy for ξ ∈Nf (X) and
H ∈Has

UStrauss
H (ξ) B

∑
x∈ξH

φ1(δx)+ ∑
{x,y}⊂ξ

{x,y}∩H,;
y,x

φR
2 (δx +δy)

= log(β) ·ξH(X)+ log(γ)
(
sR

(H)(ξ)− sR
(H)(ξHc)

)
,

where ξH(X) is the number particles in H and

sR
(H)(ζ)B

∑
{x,y}⊂ζ

{x,y}∩H,;
y,x

φ2(δx +δy)

14Recall that diam(M)B sup{d(x, y) : x, y ∈ M} denotes the diameter of subset M of a
metric space (X,d).

15This potential is due to Strauss

.

(1975

.

) who aimed at a model for clustering by
choosing γ > 1. However, this parameter choice cannot be used to introduce a point
process distribution (see Kelly & Ripley

.

(1976

.

) and below).
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is the number of R-close point pairs of ζ ∈Nf (X) in H and at the boundary
of H. _

6.16 Example (Lennard-Jones Interaction Potential) The (12,6)-Lennard-
Jones (L J ) interaction potential16

.

is the two parameter pair potential

φL J
2 (δx +δy)B 4ε

[(
σ

d(x, y)

)12
−

(
σ

d(x, y)

)6]
for x, y ∈X, x, y,

where ε is the well depth and σ is the Lennard-Jones atomic diameter
(see also Figure 6.2

.

). Strong repulsion occurs at short distances, weak
attraction is attained at large distances.

Furthermore, considering the 1-body potential φ1 = log(β)·1N1 for some
intensity parameter β> 0, we define the L J potential energy for ξ ∈N f (X)
and H ∈Has

UL J
H (ξ)B

∑
x∈ξH

φ1(δx)+ ∑
η∈N2 η≤ξ
η(H)>0

φL J
2 (η).

Note that
sup

{
diam(η) : φL J

2 (η), 0,η ∈N2
}=∞,

that is, the L J interaction potential has an infinite interaction range.
For the statistical purposes that we are concerned with later, we

rewrite the L J potential energy in a way that separates the repulsive and
attractive forces and arrive at the following parametric form

UL J
H (ξ) = log(β) ·ξH(X)

+ 4εσ12 · (V (ξ)−V (ξHc)
)+ (−4εσ6) · (W(ξ)−W(ξHc)

)
,

(6.13)

where ξ ∈Nf (X) and

V (ξ)B
1
2

∑
x∈ξ

∑
y∈ξ
y,x

1
d(x, y)12 and W(ξ)B

1
2

∑
x∈ξ

∑
y∈ξ
y,x

1
d(x, y)6

is used to denote the essential component of the forces that describes the
repulsion and attraction of ξ ∈Nf , respectively. In this context, β, ε, and
σ are called model parameters. According to the representation (6.13

.

) of
UL J

H , we consider later (Section 7.4

.

) the so-called canonical parameters

ϑ1 B log(β), ϑ2 B 4εσ12, and ϑ3 B−4εσ6

and the canonical parameter space ΘB�× ]0,∞[× ]−∞,0[. _
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�+R0

0

− log(γ)

�

Figure 6.1: Graph of the Strauss pair
potential as a function of the particle
distance for the interaction range R > 0
and (regular) interaction parameter γ ∈
[0,1]. In the case of R-closeness, repul-
sion is modeled constantly at the level
log(γ). There is no attraction of parti-
cles.

�+σ0

ε

0

�

Figure 6.2: Graph of the (12,6)-
Lennard-Jones pair potential as a func-
tion of the particle distance for the well
depth parameter ε > 0 and the atomic
diameter σ > 0. By ε we model attrac-
tion, while σ determines the repulsion
of the particles. The interaction range
is infinite.

We finally aim at constructing specifications Γ = (ΓH)H∈H based on
the potential energy (UH)H∈H. To begin with, we take a look at the finite
volume case, before we consider the general case.

6.17 Example (Finite Volume Gibbs Measures) Assume that (X,T) is
bounded and consider some diffuse α ∈M(X) and let (UH)H∈H be a poten-
tial energy that is given through a family of interaction potentials (φk)k∈I
(see Example 6.14

.

). We consider PopX =Pop(X,B(X),α) and assume that

cB
(∫

exp
(−UX(ξ)

)
PopX(dξ)

)−1

is finite, we may then define a distribution P on (N(X),N(X)) through

P(E)B
∫

E
c ·exp

(−UX(ξ)
)
PopX(dξ) for E ∈N.

In words, configurations with low energies w. r. t. UX are more likely to be
observed under P than those with high energies.

Note that f B c ·exp
(−UX(·)

)
is a hereditary probability density. Then,

according to Proposition 6.9

.

and since (UH)H∈H is a potential energy, we
16This potential is due to Lennard-Jones

.

(1924

.

), studying the interaction of molecules.
It was used to explore the behavior of noble gases (argon, neon etc.), because it captures
much of their essential physics according to empirical results. Misspecifications may
still emerge, however, in general particle systems, which is due to neglecting three- and
higher-body forces (see for example Hammer et al.

.

(2013

.

) and the references therein)
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have that ΓB (ΓH)H∈H defined by17

.

ΓH(ξ,E)B
∫
N

1E(η+ξHc)c(H,ξ) exp
(−UH(η+ξHc)

)
PopH(dη),

where

c(H,ξ)B
(∫

exp
(−UH(η+ξHc)

)
PopH(dη)

)−1

is a specification, the so-called Gibbs specification (on a bounded state
space). Note that Gibbs(Γ)= {P}, see Proposition 6.7

.

on page 133

.

. _

Using Example 6.17

.

as a reference, we are now going to impose ad-
ditional conditions on potential energies to be able to construct corre-
sponding Gibbs specifications for unbounded state spaces (X,A). First, we
have to get rid of the finiteness of the reference states ξHc in (6.17

.

). This
can be accomplished for so-called tempered configurations. These contain
sub-configurations whose influence on each other w. r. t. U decreases suf-
ficiently fast in their distance. Second, the existence of the normalizing
constants c(H,ξ) for H ∈ H can be ensured by requiring (UH)H∈H to be
stable. This condition prevents a collapse of infinitely many particles
within any bounded region H ∈H.

6.18 Definition (Temperedness) Let U = (UH)H∈H be a potential energy.
For each H ∈Hwe call UH tempered at ξ ∈N and ξ tempered w. r. t. UH iff

lim
G↑X

UH(ξG) exists in � or UH(ξG)=∞ for some G ∈H.

We set
D(t)

H (U)B
{
ξ ∈N : UH tempered at ξ

}
,

where t stands for tempered. _

6.19 Definition (Stability) Let U = (UH)H∈H be a potential energy. For
each H ∈Hwe call UH (Ruelle) stable18

.

at ξ ∈N(X) iff first η+ξHc ∈ D(t)
H

holds for all η ∈N(H) and second there is a constant L > 0 such that

UH(η+ξHc)≥−Lη(H) for all η ∈N(H).

We define D(s)
H (U)B

{
ξ ∈N : UH is Ruelle stable at ξ

}
. _

6.20 Lemma Consider a potential energy U = (UH)H∈H given via (6.12

.

).
Then, for ξ ∈ D(s)

H (U) we have

exp
(−α(H)

)≤ ∫
N(X)

exp
(−UH(η+ξHc)

)
Pop(H,B(H),α)(dη)<∞.

_

17Here, we additionally use that (UH)H∈H is a potential energy, that is, we have
UX =UH +ϕH,X. Since ϕH,X is measurable w. r. t. FH the factor exp(−ϕH,X) cancels out.

18This notion is due to Ruelle

.

(1969

.

).
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Proof: The first inequality is due to UH(0+ ξHc) = 0, see (6.12

.

). The
second inequality is due to the stability of U at ξ (see also Preston

.

, 1976

.

,
Lemma 6.3, page 98). ■

6.21 Example (Strauss Potential Energy) Consider the Strauss potential
energy (UStrauss

H )H∈H from Example 6.15

.

for γ ∈ [0,1], β> 0 and recall that
the interaction range is R and hence finite. Therefore, we have for each
ξ ∈N(X) that UStrauss

H (ξG)=UStrauss
H (ξHR ) for all G ⊃ HR , where

HR B
{
x ∈X : dist(x,H)≤ R}

and dist(x,H)B inf
{
d(x, y) : y ∈ H

}
. Consequently, UStrauss

H is tempered
at every configuration, that is,

D(t)
H (UStrauss)=N(X).

Furthermore, (UStrauss
H )H∈H is stable, because

UStrauss
H (η)≥ log(β)η(H) for all η ∈N(H),

see also Example 6.15

.

. This implies that the normalizing constants exist.
If (X,T) is compact, Γ= (ΓH)H∈H given in Example 6.17

.

is a specification
that determines a unique Gibbs distribution P on (N(X),N(X)). Any ran-
dom element Ξ∼ P is then called Strauss point process and specifically
hard-core Strauss point process if γ= 0 (see also Example 6.15

.

). Figure
6.3

.

and 6.5

.

show realizations of a Strauss point process on the unit square
and the unit 2-sphere, respectively. _

6.22 Example (Lennard-Jones Potential Energy) Consider the Lennard-
Jones potential energy (UL J

H )H∈H from Example 6.16

.

and recall that the
interaction range is infinite.

We consider (X,d)B (�k,‖·‖2). Let (an)n∈� be a non-negative sequence
with an ↑∞ for n →∞. Furthermore, let (bn)n∈� be another non-negative
sequence which satisfies a summability condition in accordance with the
L J pair potential (see Preston

.

, 1976

.

, Lemma 6.5, page 104).19

.

Define
G0 B; and Gn B [−an,an]k for n ∈�,

Bn B
{
ξ ∈N : ξ(Gn \Gn−1)≤ bn

}
and, finally, B B

⋂
n∈�Bn. Preston

.

(1976

.

, Lemma 6.6, page 105) yields
that UL J

H is tempered and stable on B for every H, that is, B ⊂ D(s)
H for all

H ∈H.
If (X,T) is compact, Γ= (ΓH)H∈H given in Example 6.17

.

is a specifica-
tion that determines a unique Gibbs distribution P on (N(X),N(X)). Any
random element Ξ∼ P is then called Lennard-Jones point process. Figure
6.4

.

and 6.6

.

show corresponding realizations on the unit square and the
unit 2-sphere, respectively. _
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Figure 6.3: Strauss point process real-
ization in the unit square ([0,1]2,‖ · ‖2)
w. r. t. parameters β= 500, R = 0.05, and
γ = 0.1. The present point pattern has
14 pairs of R-close points (blue) and 149
points in total (black and blue).20

.

Figure 6.4: Lennard-Jones point pro-
cess realization observed in the unit
square ([0,1]2,‖ · ‖2) w. r. t. parameters
β = 100, ε = 0.1, and σ = 0.05. The
present point pattern consists of 150
points.20

.

Top Half Bottom Half

Figure 6.5: Strauss point process realization on the unit sphere �2 B
{
x ∈�3 : ‖x‖2 = 1

}
equipped with the great-circle distance. Parameters are chosen to be R = 0.25, β= 500,
and γ= 0.1. The top half of the realization is shown on the left-hand side, the bottom
half is shown on the right-hand side. The present realization has 10 pairs of R-close
points (blue colored) and 82 points in total (black and blue colored).21

.

19For a specific choice of the sequences (a)n∈� and (bn)n∈�, we refer to (Preston

.

, 1976

.

,
page 107).

20This realization was generated by the Metropolis–Hastings algorithm implemented
in the R-package spatstat (Baddeley & Turner

.

, 2005

.

).
21This realization was generated by the Metropolis–Hastings algorithm with uniform

proposal on the sphere which was written by the author.
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Top Half Bottom Half

Figure 6.6: Lennard-Jones point process realization on the unit sphere �2 B
{
x ∈�3 :

‖x‖2 = 1
}

equipped with the great-circle distance. Parameters are chosen to be β= 100,
ε = 5, and σ = 0.3. The top half of the realization is shown on the left-hand side, the
bottom half is shown on the right-hand side. The present realization has 78 points.21

.

We furthermore define

DH(U)BD(s)
H (U)∩{

ξ ∈N : φk(η)<∞ for all η ∈Nk, η≤ ξHc , k ∈ I
}
.

6.23 Proposition (Gibbs Specification w. r. t. Potential Energy) Let U
be a potential energy with tempered and stable configurations, that is,
assume DH(U),; for every H ∈H. With PopH =Pop(H,B(H),α|H) we
define

c(H,ξ)B
{ [∫

exp
(−UH(η+ξHc)

)
PopH(dη)

]−1 for ξ ∈ DH(U),
0 otherwise

for ξ ∈N and H ∈H. Then, Γ= (ΓH)H∈H defined through

ΓH(ξ, A)B
∫
N

1A(η+ξHc)c(H,ξ)exp
(−UH(η+ξHc)

)
PopH(dη)

for ξ ∈N and A ∈N is a specification, called Gibbs specification w. r. t. the
potential energy U . _

Proof: First, by definition of Γ we have for all ξ ∈ DH(U) that ΓH(ξ, ·) is a
probability distribution on (N,N). For ξ ∉ DH(U) we have ΓH(ξ, ·)= 0. In
addition, it is obvious from the definition that ΓH(·, A) is FH-measurable
and that

ΓH(·, A∩B)=ΓH(·, A)1B

holds for all A ∈FH and B ∈FH . Hence, we have that ΓH is a strict quasi
Markov kernel from (N,FH) to (N,N).
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Second, to show the Chapman–Kolmogorov equation, we consider
G, H ∈ H with G ⊂ H. Since U is a potential energy, there is an FG-
measurable function ϕG,H such that

UH =UG +ϕG,H .

Writing for ξ ∈ DH(U) and A ∈N
A(H,ξ)B

{
η+ξHc : η ∈N(H)

}
,

we may compute

ΓHΓG(ξ, A)

=
∫
N(X)

ΓG(η, A)ΓH(ξ,dη)

=
∫
ΓG(η, A)c(H,ξ)exp(−UG(η+ξHc)−ϕG,H(η+ξHc))PopH(dη)

=
∫ [∫

A(G,η+ξHc )
c(G,η+ξHc)exp(−UG(ζ+ηH\G +ξHc))PopG(dζ)

]
·c(H,ξ)exp(−UG(ηG +ηH\G +ξHc)−ϕG,H(η+ξHc))PopH(dη).

Using the fact
PopH =PopG ∗PopH\G ,

we may rewrite the above to

ΓHΓG(ξ, A)

=
∫ ∫ [∫

A(G,η2+ξHc )

c(G,η2 +ξHc)
exp(UG(ζ+η2 +ξHc))

PopG(dζ)
]

·c(H,ξ)exp
(−UG(η1 +η2 +ξHc)

)
exp

(−ϕG,H(η2 +ξHc)
)

PopG(dη1)PopH\G(dη2).

Due to the FG-measurability of ϕG,H , we have with η2 ∈N(H \G)∫
c(H,ξ)exp

(−UG(η1 +η2 +ξHc)
)
exp

(−ϕG,H(η2 +ξHc)
)
PopG(dη1)

= c(H,ξ)exp
(−ϕG,H(η2 +ξHc)

)
c(G,η2 +ξHc)

.

and, consequently, in total

ΓHΓG(ξ, A)

=
∫ ∫

A(G,η2+ξHc )
c(H,ξ)exp

(−ϕG,H(η2 +ξHc)
)
exp(−UG(ζ+η2 +ξHc))

PopG(dζ)PopH\G(dη2)

=
∫

A(H,ξ)
c(H,ξ)exp(−UH(η+ξHc))PopH(dη)

= ΓH(ξ, A).

Hence, (ΓH)H∈H is a specification. ■
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6.4 Existence of Gibbs Point Processes
In the previous section, we have introduced the important class of Gibbs
specifications. For those specifications, we know so far that correspond-
ing Gibbs point processes exist and are even unique if the state space is
bounded. The purpose of this section is to study the existence of Gibbs
point process distributions for a given specification Γ= (ΓH)H∈H on un-
bounded spaces.

Basically, the idea for proving existence is as simple as that of Proposi-
tion 6.11

.

, that is: In the restricted Chapman–Kolmogorov equation

(ΓHΓG)(ξ, ·)|FF =ΓH(ξ, ·)|FF

with F, G, H ∈Hand G ⊂ H, we let H increase to the whole space X and
hope for convergence. The intuition behind this hope is that we expect that
ξHc has diminishing influence on ΓH(ξ, ·)FF as H goes to X. We, therefore,
would expect that ΓH(ξ, ·)|FF “stabilizes” for some ξ, that is, there is a
sequence

(
ΓHn(ξ, ·)FF

)
n∈� which “converges” to some PF . In doing so, we

expect a consistent family (PF)F∈H such that we may apply Corollary
5.26

.

to obtain finally a distribution P on N(X). In order to conclude that
P has the correct conditional distributions, we again want to use the
Chapman–Kolmogorov equation in combination with taking a suitable
(unique) “limit” on both sides.

In this way, however, we encounter some technical difficulties if we
consider the case of a general specification rather than just a Markov
one and, even more so, in the case of a general state space X rather than
just the lattice �d. We have to make precise in what sense the concept of
“stabilization” and “convergence” may be obtained. To this end, we have
to define an appropriate topology on Prob(N,N).

We denote by B=B(N,N) the set of bounded N-measurable functions
f : N(X)→� and equip it with the supremum norm ‖ ·‖∞. The intuition
that a specification is pointwise stable on FH for some H ∈H is originated
in the local nature of the events contained in FH .22

.

This notion will be
used in a more general sense.

22A physical motivation and interpretation of these concepts are given in Georgii

.

(2011

.

, page 31): “The motivation for introducing quasilocal specifications arises from
the physical idea of a strict separation of microscopic and macroscopic quantities: A
microscopic part of a system does not posses any information about the macroscopic state
of the system.” Furthermore: “Next we ask for a precise meaning of the term ‘microscopic
quantity’. It is natural to say that a function f on N is a microscopic quantity if f is
arbitrarily close to functions which only depend on finitely many coordinates. There is,
however, no canonical interpretation of the word ‘close’. The simplest meaning is ‘close
in the uniform norm’.”
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6.24 Definition A function f ∈B is called local if and only if it is FH-
measurable for some H ∈H. The set of all local functions is denoted by
Bloc =Bloc(F). _

In fact, locality is too strong for our purposes. We therefore consider
test functions which are arbitrarily close to local functions w. r. t. ‖ · ‖∞,
that is, functions in the closure of Bloc in (B,‖ ·‖∞).

6.25 Definition A function f : N→� is called quasilocal iff for every
ε> 0 there is a g ∈Bloc such that ‖ f − g‖∞ < ε. The set of all quasilocal
functions is denoted by Bqloc =Bqloc(F). _

6.26 Definition The topology on Prob(N,N) generated by the mappings
P 7→ ∫

f dP for all f ∈Bqloc is called topology of local convergence and is
denoted by Tloc. _

Now we are going to transfer these notions to kernels. To this end,
consider a bounded kernel K from (N,N) to (N,N) as an operator applied
to bounded measurable functions

K : B(N,N) → B(N,N)
f 7→ ∫

f (η)K(·,dη).

The notions local and quasilocal are then used for kernels if they preserve
the corresponding property. That means:

6.27 Definition A kernel K from (N,N) to (N,N) is called local iff we have∫
f (η)K(·,dη) ∈Bloc for all f ∈Bloc. We call K quasilocal iff

∫
f (η)K(·,dη) ∈

Bqloc for all f ∈Bqloc. _

According to these measure theoretic and topological preparations, we
are now able to formulate a general existence result.

6.28 Theorem Let Γ = (ΓH)H∈H be a quasilocal specification, that is,
ΓH is quasilocal for every H ∈H. Furthermore, let (ξH)H∈H be a family
of point patterns such that

{
ΓH(ξH , ·) : H ∈H

}
is relatively sequentially

compact w. r. t. the topology Tloc.
Then, Gibbs(Γ),;, i. e., there is a Gibbs measure with specification Γ. _

Proof: Consider an increasing sequence of sets (Hn)n∈� ∈H� such that
Hn ↑X for n →∞. By the relative sequential compactness w. r. t. Tloc of{

ΓH(ξH , ·) : H ∈H
}

there is a subsequence (Hnk )k∈� and a distribution P on (N,N) such that

P =Tloc − lim
k→∞

ΓHnk
(ξHnk , ·).
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Furthermore, for F, H ∈ H we have by the quasilocalness of Γ that in
particular ΓH(·, A) ∈Bqloc holds for all A ∈FF and therefore∫

ΓH(η, A)ΓHnk
(ξHnk ,dη)→

∫
ΓH(η, A)P(dη) for n →∞

and for all A ∈FF . Hence, we have

PΓH(A) = Tloc − lim
k→∞

ΓHnk
ΓH(ξHnk , A)

= Tloc − lim
k→∞

ΓHnk
(ξHnk , A)

= P(A)

for all A ∈FF . Since F is arbitrary and
⋃

F∈HFF is an ∩-stable generator
of N, we have PΓH = P. Furthermore, H was arbitrarily chosen which
yields P ∈Gibbs(Γ) due to Remark 6.4

.

on page 127

.

. ■

According to this result, we immediately look for a sufficient condition
that a set M ⊂Prob(N,N) is relatively sequentially compact w. r. t. Tloc.

6.29 Proposition Consider a set M ⊂Prob(N,N) and for every H ∈Hwe
define M|FH B

{
µ|FH : µ ∈ M

}
. Assume, furthermore, that for every H ∈H

there is a finite measure µH ∈ Prob(N,FH) such that M|FH is uniformly
absolutely continuous w. r. t. to µH , that is, for every ε> 0 there is a δ> 0
such that for each F ∈FH with µH(F)< δ we have ν(F)< ε for all ν ∈ M|FH .
Then, M is relatively sequentially compact w. r. t. Tloc. _

Proof: Consider (νn)n∈� ∈ M� and let (Hn)n∈� ∈ H� be a sequence of
bounded sets such that Hn ↑X for n →∞.

Since M|FH is uniformly absolutely continuous, we have that (νn)n∈�|FH

has a weak convergent subsequence (see e. g. Bogachev

.

, 2007

.

, Theorem
4.7.18, page 285). A diagonal argument leads to a subsequence (νn j ) j∈�
such that for each k ∈� there is a measure λk ∈ Prob(N,FHk ) such that
λk(A)= lim j→∞νn j (A) for all A ∈FHk .

Obviously, (λk)k∈� is consistent, that is, λk+1|FHk
=λk for all k. Accord-

ing to Corollary 5.26

.

on page 114

.

, there is a measure λ ∈Prob(N,N) such
that λ|FHk

= λk for all k ∈�. Hence, λ(A) = lim j→∞νn j (A) for all A ∈FH
and all H. ■

By Theorem 6.28

.

and Proposition 6.29

.

, we have already the existence
of Gibbs distribution for specifications with a hard-core. As a first non-
trivial, inhibitory Gibbs point process, we obtain the hard-core Strauss
point process.

6.30 Example (Hard-Core Strauss Point Process) Consider the hard-core
Strauss potential energy (UStrauss

H )H∈H from Example 6.21

.

and note that
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DH(UStrauss) , ;. Hence, the Gibbs specification Γ = (ΓH)H∈H w. r. t. the
Strauss potential energy exists (see Proposition 6.23

.

). Furthermore, one
can show that (ΓH)H∈H is even a quasilocal specification (see Nguyen &
Zessin

.

, 1976

.

, Lemma 3) and that
{
ΓH(0, ·) : H ∈H, H ⊃G

}|FG is uniformly
absolutely continuous for all G ∈ H. Hence, Gibbs(Γ) , ; follows from
Theorem 6.28

.

and Proposition 6.29

.

. _

The Gibbs specification that corresponds to the Lennard-Jones poten-
tial energy is less well-behaved. Hence, the notion of quasilocal specifica-
tions and the requirement for relative sequential compactness w. r. t. Tloc
are inappropriate for introducing the Lennard-Jones point process on the
plane. More general concepts are therefore needed.

Let Eδ be the system of countable intersections of sets in EB
⋃

H∈HFH .
In what follows we consider by C⊂ Eδ a countable set-system that is di-
rected upwards w. r. t. ⊂ such that

⋃
C=N. Furthermore, we consider on

B the C-indexed family of semi-norms given by

‖ f ‖C,∞B ‖ f1C‖∞ for f ∈B

and for C ∈ C. By that we can define the so-called C-local functions.

6.31 Definition A function f ∈B is called C-quasilocal iff f is in the
closure of Bloc w. r. t. τ(‖ · ‖C,∞ : C ∈ C), that is: for all ε > 0 and C ∈ C

there is a g ∈Bloc such that ‖ f − g‖C,∞ < ε. The set of all C-quasilocal
functions is denoted by BC

qloc. _

Obviously, we may choose CB {N(X)}, which yields TC
loc = Tloc and

BC
qloc =Bqloc. The topology of C-local convergence is then given by

TC
loc B τ

(
P 7→ ∫

f dP : f ∈BC
qloc

)
.

In an analogous way to the above existence result, one can now state.

6.32 Theorem Let Γ = (ΓH)H∈H be a C-quasilocal specification, that
is, ΓH maps C-quasilocal functions to C-quasilocal functions. Assume,
furthermore, that there is a family (ξH)H∈H such that

{
ΓH(ξH , ·) : H ∈H

}
is relatively sequentially compact w. r. t. the topology TC

loc.
Then, Gibbs(Γ),;. _

Proof: The proof works in a similar way as for Theorem 6.28

.

. ■

We finally note the following for the existence of the Lennard-Jones
point process in the unbounded case.

6.33 Example (Lennard-Jones Point Process) Consider the Lennard-
Jones potential energy (UL J

H )H∈H from Example 6.21

.

and note that we
have DH(UL J ),;. Hence, the corresponding Gibbs specification (ΓH)H∈H
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w. r. t. the Lennard-Jones potential energy exists (see Proposition 6.23

.

).
Furthermore, one can show that there is a C⊂ Eδ such that (ΓH)H∈H
is a C-quasilocal specification and that

{
ΓH(0, ·) : H ∈ H

}
is relatively

sequentially compact w. r. t. TC
loc (see Preston

.

, 1976

.

, Chapter 6). Hence,
Gibbs(Γ),; by Theorem 6.32

.

. _

Variational Equation for Gibbs Point Processes
We close this section on (infinite volume) Gibbs point processes with the
variational equation given by Baddeley & Dereudre

.

(2013

.

). This equation
concerns the behavior of functionals of point patterns, when the latter are
subjected to an infinitesimally perturbation.

To this end, we consider the case (X,B(X),α) = (�d,B(�d),λd) and
define the following notion of differentiability.

6.34 Definition (Differentiability at Point Patterns) Let h : N(X) →�
and let ξ0 ∈N(X). We call h differentiable at (x,ξ0) ∈X×N(X) iff there is an
open neighborhood Vx ⊂X of x such that

h(u,ξ0)B h
(
(ξ0 \{x})∪ {u}

)
for u ∈Vx

is differentiable at x. In this case we write ∇h(x,ξ0) for the gradient of h
at (x,ξ0). _

6.35 Remark (Differentiability of Potential Energies) Consider a po-
tential energy U = (UH)H∈H. For some open G ∈ H, assume that UG is
differentiable at (x,ξ0) ∈ G ×N(X). Then for any H ∈ H with G ⊂ H, we
have that UH = UG +ϕG,H for some FG-measurable function ϕG,H , see
Definition 6.13

.

on page 142

.

. Hence, UH is also differentiable at (x,ξ0) and
furthermore ∇UG(x,ξ0) does not depend on H ⊃G. We will therefore write
∇U(x,ξ0). _

The following notation will be used for convenience. For u ∈� and a
vector x ∈�d, we write

(u, x[i])B
(
u1{i}( j)+ x j1{i}c( j)

)
j∈{1,...,d},∈�d

where i ∈ {1, ...,d}.

6.36 Definition A measurable function g from (X×N(X),B(X)⊗N(X)) to
(�,B(�)) is called regularizing w. r. t. a potential energy U = (UH)H∈H iff
for every ξ ∈N(X)
(a) the map g(·,ξ) is λd-almost everywhere differentiable;

(b) for every compact rectangle H ∈H(X) and for λd-almost all x ∈ H, the
map

u 7→ g
(
(u, x[i]),ξ

)
exp

(−UH(ξ∪ {(u, x[i])})
)
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is absolutely continuous23

.

as a map from pri(H) to �∪ {∞} for every
i = 1, ...,d.

We denote the class of all functions that are regularizing w. r. t. (UH)H∈H
by R(U). Furthermore, we write RC(U) for the class of all g ∈R(U) such
that g(·,ξ) have a compact support for all ξ. _

The variational equation given in Baddeley & Dereudre

.

(2013

.

, Propo-
sition 1) is an identity for Gibbs point processes, which is a reminiscent of
Stein’s identity for exponential families on (�d,B(�d)), see also Lehmann
& Casella

.

(1998

.

, Lemma 5.15 in Section 1.5, page 31).

6.37 Proposition (Variational Equation) Let P be a Gibbs point process
distribution on X w. r. t. the potential energy U = (UH)H∈H. Then, for every
g ∈RC(U) such that∫

|∇g(x,ξ)|+ |g(x,ξ)∇U(x,ξ)|C!(d(x,ξ)
)<∞

we have the identity∫
∇g(x,ξ)C!(d(x,ξ)

)= ∫
g(x,ξ)∇U(x,ξ)C!(d(x,ξ)

)
.

_

Proof: With integration by parts, see Baddeley & Dereudre

.

(2013

.

, Propo-
sition 1). ■

In the stationary case, one obtains the following variational equation.

6.38 Proposition Let P be a stationary Gibbs point process distribution
on �d for an energy function U = (UH)H∈H that is shift invariant, that is,
UH(ξ)=Utv(H)(ξ◦ t−1

v ) for ξ ∈N(�d) and all v ∈�d and all H ∈H.
Then, for g ∈R(U) such that g(x,ξ)= g(tv(x),ξ◦ t−1

v ) for all v ∈�d and
all ξ and satisfying∫

|∇g(0,ξ)|+ |g(0,ξ)|+ |g(0,ξ)∇U(0,ξ)|Pa!0(dξ)<∞

we have ∫
∇g(0,ξ)Pa!0(dξ)=

∫
g(0,ξ)∇U(0,ξ)Pa!0(dξ).

_

Proof: See Baddeley & Dereudre

.

(2013

.

, Proposition 2) ■

23Recall that a function ϕ : �→� is absolutely continuous on [a,b] iff it is differ-
entiable λd-almost everywhere on [a,b] and for any z ∈ [a,b] we have ϕ(z)−ϕ(a) =∫
ϕ′(t)λd(dt), see for example Dudley

.

(2002

.

).



CHAPTER 7
Statistics for Parametric Gibbs Point
Process Models

In this chapter we are concerned with statistical inference for Gibbs point
process models. To this end, we consider a compact observation window
W ⊂ X, where (X,d) is a metric space which is assumed to be locally
compact and second countable. Furthermore, let µ be a σ-finite reference
measure on (X,B(X,d)), where B(X,d) denotes the Borel-σ-algebra w. r. t.
the topology generated by the metric d.

For some ξ ∈N(X), let PW ,ξ =
{
Pϑ,W ,ξ : ϑ ∈Θ}

be a family of Gibbs dis-
tributions on (N(W),N(W)) with a corresponding parametrized potential
energy UW (·+ξWc)B−〈ϑ,SW ,ξ(·)〉, where SW ,ξ is �k-valued and each com-
ponent is given through an�⊃ I j-indexed family of interaction potentials
(φ( j)

k )k∈I j as

SW ,ξ
j (η)= ∑

k∈I j

∑
ζ∈Nk

ζ≤η+ξWc
ζ(W)>0

φ
( j)
k (ζ) for η ∈N(W),

for j = 1, ...,k. Hence, SW ,ξ depends on ξ through ξWc which is a (known)
boundary point pattern on Wc. In what follows, we assume that the
interaction range is finite, that is, in the present situation we assume

RB sup
{
diam(η) : φ( j)

k (η), 0, η ∈Nk(X), k ∈ I j, 1≤ j ≤ k
}<∞.

In accordance with the previous chapter, we furthermore consider the
case where each ϑ ∈Θ determines a distribution Pϑ,W ,ξ in PW ,ξ that has a
density w. r. t. the Poisson point process distribution of the form

fϑ(η)B c(ϑ,W)gW ,ξ(η)exp
(
〈ϑ,SW ,ξ(η)〉

)
for η ∈N(W). (7.1)

The observation window W may relate to the state space X in two different
ways and, hence, causes a different character of the statistical model. On
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the one hand, we consider the case W =X the so-called empty boundary
condition, and on the other hand, we may have W (X, that is, the so-called
non-empty boundary condition.

In total we have an exponential family PW ,ξ with complete suffi-
cient statistic SW ,ξ. In what follows, we furthermore assume that P is
k-parametric (of full rank, for a definition see page 27

.

) and that SW ,ξ ∈L2.
Hence, we can make use of the results1

.

of Part II

.

. We first give a sketch of
some estimation methods, namely, the maximum likelihood, the maximum
pseudo-likelihood, and the variational estimation procedures.

7.1 Maximum Likelihood Estimation
According to (7.1

.

) the log-likelihood ϑ 7→ log fϑ takes the form

`(ϑ)B `W ,ξ(η,ϑ)B 〈ϑ,SW ,ξ(η)〉+ log c(ϑ,W) for ϑ ∈Θ. (7.2)

The goal is to find maximizers of that log-likelihood which are called
maximum likelihood estimators (MLE) for the parameter idΘ. For the
existence and uniqueness of an MLE, see for example Barndorff-Nielsen

.

(1978

.

).
We recall from Section 2.1

.

that the MLE of the observation η ∈N(W)
and w. r. t. the boundary point pattern ξWc ∈N(Wc) is implicitly given as
the ϑ̂ML(η,ξWc) ∈Θ such that (see also Proposition 2.5

.

, page 32

.

)

Eϑ̂ML(η,ξWc )S
W ,ξ = SW ,ξ(η). (7.3)

Hence, ϑ̂ML(·,ξWc) is measurable w. r. t. the complete sufficient statistic
SW ,ξ. By the next proposition below, we furthermore note the following
interesting fact about the measurability of the MLE. Let

WR B {x ∈X : dist(x,W)≤ R},

then for all A ∈H(X) with W ⊂ A ⊂WR the above MLE is also measurable
w. r. t. SA,ξ( · +ξA∩Wc) and, hence, measurable w. r. t.⋂

A∈H(X)
W⊂A⊂WR

σ
(
SA,ξ( · +ξA∩Wc)

)
.

By a simulation study in Section 7.4

.

, we will see that this is usually
not the case for the regularized Rao–Blackwellization of an alternative
estimation procedure.

1Here, “results” generally refers to the introduced concepts such as π-completeness,
which holds in the present situation for suitable πs (see Proposition 3.21

.

, page 64

.

), and
considerations about the LS-norms which we introduced in Section 3.2

.

. The goal is to
look for regularized Rao–Blackwellizations in terms of Theorems 4.16

.

and 4.20

.

, see also
Example 4.19

.

.
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7.1 Proposition Let ξ ∈N(X) and let PW ,ξ =
{
Pϑ,W ,ξ : ϑ ∈Θ}

be a Gibbs
point process model with finite interaction range R as considered at the
beginning of this chapter. Furthermore, we assume that X=WR . Then,
we have that ϑ̂ML( · ,ξWc) is measurable w. r. t. σ(SA,ξ( · +ξA∩Wc)) for each
A ∈H(X) with W ⊂ A ⊂X. _

Proof: For j = 1, ...,k let us define

V ( j)(η)= ∑
k∈I

∑
ζ∈Nk
ζ≤η

φ
( j)
k (ζ) for η ∈N(X).

Then, we have for each A ∈H(X) with W ⊂ A ⊂X
SA,ξ

j (ζ)=V ( j)(ζ+ξAc)−V ( j)(ξAc) for ζ ∈N(A) (7.4)

and j = 1, ...,k. We recall that for η ∈N(W) and the boundary point pattern
ξWc ∈ N(Wc) the maximum likelihood estimate ϑ̂ML(η,ξWc) is given by
solving

EϑSW ,ξ = SW ,ξ(η) (7.5)

in ϑ ∈Θ. Equivalently, we get by using (7.4

.

)

EϑV ( j)(·+ξWc)=V ( j)(η+ξWc) for j = 1, ...,k,

that is,

EϑV ( j)(·+ξA∩Wc +ξAc)=V ( j)(η+ξA∩Wc +ξAc) for j = 1, ...,k,

and, finally, using (7.4

.

) again

EϑSA,ξ(·+ξA∩Wc)= SA,ξ(η+ξA∩Wc) for j = 1, ...,k. (7.6)

Hence, ϑ̂ML(η,ξWc) is determined by the right-hand side of (7.6

.

) for each
A with W ⊂ A ⊂X and, thus, the claim is shown. ■

In what follows we assume that the complete sufficient statistic satis-
fies SW ,ξ ∈L2(N(W),N(W),P). Then, the root of the score can be computed
by a combination of Monte Carlo methods and the Newton–Raphson al-
gorithm. More precisely, the corresponding gradient and Hessian of the
log-likelihood at a certain ϑ ∈Θ (see Proposition 2.5

.

), that is,

∂

∂ϑ
`W ,ξ(η,ϑ) = SW ,ξ(η)−EϑSW ,ξ,

∂2

∂ϑ∂ϑT`W ,ξ(η,ϑ) = −VarϑSW ,ξ,

are approximated by estimators of the corresponding expectation and vari-
ance of the sufficient statistic. To this end, Monte Carlo (MC) samples of
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ϑ are generated and, consequently, one may use the empirical expectation
and variance of the corresponding sufficient statistic values. Note that
because of the Netwon–Raphson algorithm, this MC sample generation
process has to be performed in each iteration which is computationally
quite demanding (see for example Møller & Waagepetersen

.

, 2004

.

).
To reduce the simulation effort, the so-called importance sampling tech-

nique can be used as long as the parameter iteration remains within a cer-
tain neighborhood. For details, we refer again to Møller & Waagepetersen

.

(2004

.

) and references therein. Further improvements that concern more
complex sampling strategies which also recycle MC samples from previous
iterations are examined in Habeck et al.

.

(2020

.

).

7.2 Maximum Pseudo-Likelihood
Estimation

In a fundamental paper Besag

.

(1975

.

) propose to analyze the interaction
of spatial lattice processes statistically by only accounting for local de-
pendence structure instead of examining the overall joint distribution.
According to Møller & Waagepetersen

.

(2004

.

, page 171), this idea was first
applied by Besag

.

(1977

.

); Besag et al.

.

(1982

.

) to the situation of a Strauss
point process and leads to a general pseudo-likelihood for point processes
introduced by Ripley

.

(1988

.

, page 52 ff.). For notational convenience, we
consider the special case of the empty boundary condition, the non-empty
boundary condition can be considered analogously.

The Pseudo-Likelihood

To motivate the pseudo-likelihood, we follow Jensen & Møller

.

(1991

.

, page
446 f.), see also Møller & Waagepetersen

.

(2004

.

, page 171 f.). To this end,
let W ⊂�k be the sampling window and consider a dissecting system2

.

(Dk)k∈� of W . For some D ⊂W we denote by fϑ,W (ξD |ξDc) the conditional
density of Pϑ,W given FDc evaluated at ξD and ξDc , respectively. We then
define

PLW (ξ,ϑ)B exp(−λ(W)) · lim
k→∞

∏
D∈Dk

fϑ,W (ξD |ξDc) for ξ ∈N(W), ϑ ∈Θ

which is called pseudo-likelihood w. r. t. PW .

2A dissecting system of W ⊂�k is a sequence of finite partitions of W , denoted by
(Dk)k∈�, such that: (1) If k ≤ l and D ∈ Dl there is an E ∈ Dk with D ⊂ E and (2)
|Dk|→∞ for k →∞ and |Dk| ·max{λ(D) : D ∈ Dk}→ 0 for k →∞.
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7.2 Theorem (Jensen & Møller

.

(1991

.

)) For almost all ξ ∈ N(W) the
pseudo-likelihood w. r. t. PW is well-defined and given by

PLW (ξ,ϑ)= exp
(
−

∫
W
λϑ(u|ξ)λ(du)

)
· ∏

u∈ξW

λϑ(u|ξ\{u}) for ϑ ∈Θ, (7.7)

where λϑ denotes the Papangelou conditional intensity3

.

. _

Proof: See Jensen & Møller

.

(1991

.

, Theorem 2.2, page 447 f.) ■

7.3 Example (Poisson Point Process Model) Consider the homogeneous
Poisson point process model P = {

Pop(ϑ ·λ) : ϑ ∈�+
}

on (N(W),N(W)).
According to Example 5.45

.

, we have that λϑ(u|ξ) = ϑ for every ξ ∈N(W)
and u ∈W . Hence, we get for logPLW (·,ξ), see also (7.7

.

),

logPLW (ξ,ϑ)=ϑ ·ξW (X)−ϑ ·λ(W) for ξ ∈N(W), ϑ ∈Θ,

which corresponds to the likelihood (7.2

.

). _

Roughly speaking, the pseudo-likelihood just accounts for dependences
only locally and coincides with the likelihood for a Poisson point process
(see Example 7.3

.

). If the dependence structure is weak, the pseudo-
likelihood is expected to be close to the “real” likelihood (7.2

.

). Furthermore,
PLW deserves the name pseudo-likelihood, since it shares some (regular)
properties of a real likelihood, see for example the next proposition.

7.4 Proposition (Jensen & Møller

.

(1991

.

)) For ξ ∈N(W) we have for the
log-pseudo-likelihood plW B logPLW the following statements:
(a) The log-pseudo-likelihood function ϑ 7→ plW (ϑ,ξ) is concave for all ξ.

(b) We have that ϑ 7→ Eϑ0

(
plW (ΞW ∪ΞWc)|ΞWc = ξWc

)
is strictly concave

and attains its maximum in ϑ0 if and only if for all ϑ ∈Θ\{ϑ0}

PopW

(
ξ ∈N(W) :

∫
1
{
λϑ(u|ξ∪η), λϑ0(u|ξ∪η)

}
λ(du)> 0

)
> 0.

_

Proof: See Jensen & Møller

.

(1991

.

, Proposition 2.3, page 449) ■

Given a data point pattern ξ ∈N(W), we call a maximizer of PLW (ξ, ·)
the maximum pseudo-likelihood (MPL) estimate of ξ w. r. t. the model PW
which we denote by ϑ̂MPL(ξ). For the Poisson point process model, we note
the following.

7.5 Example (Poisson Point Process Model) Consider the situation of
Example 7.3

.

where we have seen that the likelihood and pseudo-likelihood
3See Remark and Definition 5.44

.

on page 122

.

.
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function and, consequently, the MLE and MPLE coincide. Furthermore,
we have that

ϑ̂ML(ξ)= ϑ̂MPL(ξ)= ξ(W)
λ(W)

for ξ ∈N(W),

that is, the MLE and MPLE are explicitly known. _

To find an MPLE w. r. t. an observation ξ ∈ N(W), we consider the
pseudo-likelihood estimating equation

∂

∂ϑ
plW (ϑ,ξ)= 0

which corresponds to

∂

∂ϑ

∫
W
λϑ(u|ξ)λ(du)= ∑

x∈ξ

∂

∂ϑ
logλϑ(x|ξ\{x}). (7.8)

Since we are dealing with an exponential family on a compact window W ,
one can show that (see e. g. van Lieshout

.

, 2000

.

, page 41)

λϑ(u|ξ)= gW (u,ξ)exp(〈ϑ,SW (u,ξ)〉),

where

gW (u,ξ) B gW (u∪ξ)/gW (ξ)
SW (u,ξ) B SW (u∪ξ)−SW (ξ)

for u ∈X and ξ ∈N(W). That is, (7.8

.

) reads4

.

∫
W

SW (u,ξ)exp(〈ϑ,SW (u,ξ)〉)λ(du)= ∑
x∈ξ

SW (x,ξ\{x}). (7.9)

Regarding the measurability of the pseudo-likelihood estimating equa-
tion (7.9

.

), we note the following.

7.6 Remark In the above situation, consider the case k = 1 and specifi-
cally a homogeneous Gibbs point process model with a known intensity
and a (parametrized) potential energy that is only based on a pair interac-
tion potential ψ.5

.

Then the sufficient statistic reads

SW (ξ)= ∑
{x,y}⊂ξ

x,y

ψ({x, y}) for ξ ∈N(W)

4We refer to Lemma 1.38

.

for the exchange of integration and differentiation.
5We meet this situation, for example, by considering a homogeneous Strauss or a

homogeneous Lennard-Jones point process with known intensity parameter β.
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and the right-hand side of the pseudo-likelihood estimating equation (7.9

.

)∑
x∈ξ

SW (x,ξ\{x})

is σ(S)-measurable. To show this, we first note for ξ ∈N(W) and each x ∈ ξ

SW (x,ξ\{x}) = SW (ξ)−SW (ξ\{x})
= ∑

{u,v}⊂ξ
u,v

ψ({u,v})− ∑
{u,v}⊂ξ\{x}

u,v

ψ({u,v})

= ∑
u∈ξ\{x}

ψ({x,u}).

Hence, ∑
x∈ξ

SW (x,ξ\{x})= ∑
x∈ξ

∑
u∈ξ\{x}

ψ({x,u})= 2 ·SW (ξ).

However, we may just remark that the left-hand side in the estimating
equation (7.9

.

)

ξ 7→
∫

W
SW (u,ξ)exp(〈ϑ,SW (u,ξ)〉)λ(du)

is measurable with respect to6

.

DB com
(
σ(SW (u, ·) : u ∈W)

)
, see Mattner

.

(1999

.

, Theorem 3.1, page 274 ff.). Note that D is, in general, finer than
σ(SW ). In the case of a homogeneous Strauss point process model with
known intensity, for example, SW (u,ξ) yields the number of points of ξ
that are R-close to u ∈W . Let W0 ⊂W be a countable dense subset. Then,⋂

u∈W0

{
ξ : SW (u,ξ)= 0

}= {0}

is a set in D. However, in general {0} ( {ξ : SW (ξ) = 0} because for a
sufficiently large window W , there exists a point pattern ξ, 0 that have no
R-close pairs, which means SW (ξ)= 0. Consequently, we have {0} ∉σ(SW )
and thus σ(SW )( D. _

Since the MPLE is determined by the estimating equation (7.9

.

) the
remark above also demonstrates that the MPLE is in general not mea-
surable w. r. t. the complete sufficient statistic SW . An improvement with
respect to convex loss functions is then, for example, given by the Rao–
Blackwellization E(ϑ̂MPL|SW ), ϑ̂MPL.

6Let (X,A,µ) be a general measure space and let C⊂ A be a sub-σ-algebra. We
then define com(C)B com(C)A,µ B

{
A ∈ A : ∃C ∈ Cwith µ(A∆C) = 0

}
which is called

the completion of Cw. r. t. Aand µ.
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Computation of the MPLE
Baddeley & Turner

.

(2000

.

) provide a device to compute at least an ap-
proximate MPLE. The essential advantage is that we can use standard
software which fits generalized linear models.

7.7 Remark (MPLE Computation Device, Poisson Regression) To ap-
proximate the integral in the pseudo-likelihood estimating equation (7.8

.

),
Baddeley & Turner

.

(2000

.

, Section 4) consider a quadrature rule. Let
ξ ∈ N(W) be our observed data point pattern. Independently of ξ, we
choose a dummy point pattern in W which we denote by η. Furthermore,
we consider weights wz > 0, z ∈ ξ∪ η such that

∑
z∈ξ∪ηwz = λ(W) and,

finally, approximate the integral in (7.8

.

) by∫
W
λϑ(u|ξ)λ(du)≈ ∑

z∈ξ∪η
λϑ(z|ξ\{z})wz.

This yields an approximate log-pseudo-likelihood that reads

plW (ϑ,ξ)≈ ∑
x∈ξ

logλϑ(x|ξ\{x})− ∑
z∈ξ∪η

λϑ(z|ξ\{z})wz,

which can be rearranged as

plW (ϑ,ξ)≈ ∑
z∈ξ∪η

(
1ξ(z) logλϑ(z|ξ\{z})

wz
−λϑ(z|ξ\{z})

)
wz. (7.10)

Note that the right-hand side corresponds to the log-likelihood of a Pois-
son regression model with independent observations (1ξ(z))z∈ξ∪η, which
depends on the auxiliary information (ξ\ {z})z∈ξ∪η. The vector (wz)z∈ξ∪η
determines the weights for the iteratively reweighted least squares algo-
rithm.

If Ξ is a non-Poisson point process, the conditional intensity

u 7→ λϑ(u|ξ\{u})

is typically discontinuous at the data points x ∈ ξ. _

To interpret the log-pseudo-likelihood as a log-likelihood of a Poisson
regression seems to be inappropriate, since the observation is just binary.
Using a finer grid of dummy points, this model mismatch can be reduced.

Another approach is given by a logistic regression model, which was
proposed and examined by Baddeley et al.

.

(2014

.

) for the situation of Gibbs
point process models. We follow Baddeley et al.

.

(2014

.

, Section 3, page 5 f.)
to formulate the next remark.

7.8 Remark (MPLE Computation Device, Logistic Regression) Let H be
a dummy point process with intensity function ρ, that is, ρ is a density of
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MH w. r. t. µ. Due to the Georgii–Nguyen–Zessin equation (see Theorem
5.46

.

, page 122

.

), we have the identity

E
(∫

W
SW (u,Ξ)λϑ(u|Ξ)λ(du)

)
=E

( ∑
u∈Ξ∪H

SW (u,Ξ\{u})
λϑ(u|Ξ\{u})

λϑ(u|Ξ\{u})+ρ(u)

)
,

which provides an unbiased estimator of the integral in the pseudo-
likelihood estimating equation (7.9

.

). According to this, we may consider

sLR,W (ϑ,ξ,η)B
∑
x∈ξ

SW (x,ξ\{x})− ∑
u∈ξ∪η

SW (u,ξ\{u})
λϑ(u|ξ\{u})

λϑ(u|ξ\{u})+ρ(u)
(7.11)

for ξ, η ∈N(W) and ϑ ∈Θ, which is still an unbiased estimating equation.
In fact, rearranging (7.11

.

) yields

sLR,W (ϑ,ξ,η)= ∑
x∈ξ

ρ(x)SW (x,ξ\{x})
λϑ(x|ξ\{x})+ρ(x)

− ∑
y∈η

SW (y,ξ\{y})λϑ(y|ξ\{y})
λϑ(y|ξ\{y})+ρ(y)

,

(7.12)
that is, the score of the logistic log-likelihood

LLR,W (ϑ,ξ,η)

= ∑
x∈ξ

log
(

λϑ(x|ξ\{x})
λϑ(x|ξ\{x})+ρ(x)

)
− ∑

y∈η
log

(
ρ(y)

λϑ(y|ξ\{y})+ρ(y)

)
. (7.13)

Note that given the joint point pattern ξ∪η, the expression (7.13

.

) is the
log-likelihood of independent Bernoulli random variables (Yu)u∈ξ∪η, where
successes are observed at x ∈ ξ. The success probability at u ∈ ξ∪η is

P(Yu = 1)= λϑ(u|ξ\{u})
λϑ(u|ξ\{u})+ρ(u)

= exp(〈ϑ,SW (u,ξ)〉+ logH(u,ξ))
1+exp(〈ϑ,SW (u,ξ)〉+ logH(u,ξ))

,

where H(u,ξ)B gW (u,ξ)/ρ(u) for u ∈ W and ξ ∈N(W). Hence, (7.13

.

) is a
logistic regression log-likelihood with offset term H(u,ξ). _

Finally, to realize an MPL estimate for a given data point pattern,
we have to choose a dummy point process and, in addition, we have to
specify the corresponding intensity function ρ. In Section 7.4

.

we will
compute MPL estimates using the R package spatstat. To this end, a
partition of the window W is considered which consists of nd

2 squares.
The dummy point process is then given by a stratified point process which
independently places exactly one dummy point uniformly in each square.

7.3 Variational Estimation
Statistical analysis of point pattern data exhibiting strong dependences is
still quite challenging by the methods presented so far. Likelihood-based
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methods using Markov Chain Monte Carlo techniques (see for example
Geyer & Thompson

.

(1992

.

)) are computationally intensive due to the
required simulations from the corresponding distributions. Maximum
pseudo-likelihood estimation (see previous section) still requires some
kind of numerical integration.

Baddeley & Dereudre

.

(2013

.

) propose an estimation method motivated
by variational estimators of Almeida & Gidas

.

(1993

.

). This estimation
method is based on a variational equation, which keeps track of infinites-
imal perturbations of the so-called local energy using test functionals.
This approach seems to be promising, because it does neither require
simulation nor numerical integration.

Variational Estimator for Stationary Gibbs Point
Processes
Consider the case (X,B(X),λd)= (�d,B(�d),λd) and, furthermore, letP={
Pϑ : ϑ ∈Θ}

be a model of stationary Gibbs point process distributions on
(�d,B(�d),λd). Consider7

.

g ∈⋂k
j=1R(SW

j ) such that g is shift invariant,
that is, g(x,ξ)= g(tv(x),ξ) for all x, v ∈�d and ξ ∈N(�d). We assume that∫

|∇g(0,ξ)|+ |g(0,ξ)∇SW
j (0,ξ)|Pa!0(dξ)<∞ (7.14)

for j = 1, ...,k. Writing E!0 for the expectation w. r. t. Pa!0, we have by
Proposition 6.38

.

k∑
j=1

ϑ jE!0(g(0,ξ)∇SW
j (0,ξ))=E!0(∇g(0,ξ)). (7.15)

This equation yields a linear system of k equations which, however, are
commonly identical. Therefore, we summarize them by the divergence
operator

div =
d∑

i=1

∂

∂xi
.

The idea is then to consider (7.15

.

) for a choice of k shift invariant functions
g1, ..., gk ∈⋂k

j=1R(SW
j ) that fulfill the above integrability condition (7.14

.

).
We then get the following linear system of equations

Aϑ= b

where A = (
A i, j : i, j ∈ {1, ...,k}

)
with

A i, j B

∫
g i(0,ξ)divSW

j (0,ξ)Pa!0(dξ) for i, j ∈ {1, ...,k}
7Recall that R(U) denotes the set of all regularizing functions w. r. t. the potential

energy U , see Definition 6.36

.

on page 155

.

.
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and b = (b1, ...,bk) with

bi B

∫
div g i(0,ξ)Pa!0(dξ) for i ∈ {1, ...,k}.

Let ξ ∈N(�d). We then observe ξW and estimate A and b by the empirical
averages, that is,

Â i, j(ξW )B
1

ξW (X)

∑
x∈ξW

g i(x,ξ)divSW
j (x,ξ)

and
b̂i(ξW )B

1
ξW (X)

∑
x∈ξW

div g i(x,ξ),

respectively. Assuming that Â is invertible, we may then define the
variational estimator

ϑ̂VAR(ξW )B
(
Â i, j(ξW )

)−1b̂i(ξW ) for ξ ∈N(�d).

For a stationary pair interaction Gibbs point process model, Baddeley &
Dereudre

.

(2013

.

, Section 5 and Section 6.1) propose to choose

g i B divSW
i for i = 1, ...,k. (7.16)

At this point, we mention that Baddeley & Dereudre

.

(2013

.

) also examine
a similar estimator the so-called grid variational estimator, which uses
Proposition 6.37

.

. The stationarity assumption of the underlying Gibbs
point process distribution can then be omitted. However, we have to
require compactly supported functions g1, ..., gk, that is, we need to adapt
(7.16

.

).
The behavior of the estimation methods presented in this section will

be illustrated in the next section. To this end, we perform a simulation
study for the Lennard-Jones point process model.

7.4 Simulation Study
In this section we illustrate aspects of the Ivanov regularized Rao–Black-
wellization from Section 4.2

.

applied to the presented estimation methods
for Gibbs point process models. To this end, we consider three parameter
choices for the Lennard-Jones model, which is described at first. In a
second step, we take a look at Ivanov regularized Rao–Blackwellizations
of the variational and the maximum pseudo-likelihood estimator as an
illustration of Theorem 4.20

.

on page 95

.

. Third, we make use of this
result by proposing and checking approaches for constructing parametric
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bootstrap confidence regions for the canonical interaction parameters of
the Lennard-Jones model.

All point process related simulations in this section are performed
with the statistical software R using the package spatstat by Baddeley
& Turner

.

(2005

.

). For the variational estimator we use an unpublished
implementation by Adrian Baddeley. The implementation for the maxi-
mum likelihood estimator was provided by Philipp Möller and Dominic
Schuhmacher.

The Model
We consider a homogeneous (12,6)-Lennard-Jones model in the plane
(�2,‖ · ‖2). That is, let Γ(ϑ) be a Gibbs specification with Lennard-Jones
pair potential and canonical parameter ϑ ∈Θ, where

ΘB ]0,∞[2 × ]−∞,0[

is the canonical parameter space (see also Example 6.16

.

on page 144

.

),
then we denote by8

.

(Pϑ)ϑ∈Θ ∈ ∏
ϑ∈Θ

Gibbs(Γ(ϑ))

the considered point process distribution model on N(�2). The quantity
of interest Ξ∼ Pϑ for some ϑ ∈Θ is, however, just observed in a bounded
observation window W B [a,b]× [c,d] ∈ H(�2). Additionally, boundary
knowledge is incorporated as a point pattern ξ ∈N(Wc). Hence, we are
faced with the conditional model

Γ(ϑ)
W (ξ, A)B

∫
A

c(W ,ϑ,ξ)exp
(−〈ϑ,SW ,ξ(η)〉)PopW (dη) for A ∈N(W)

and ϑ ∈Θ, where c(W ,ϑ, t) is the normalizing constant and where we have
set SW ,ξ

1 (ξ)B η(W) and

SW ,ξ
2 (η)B

∑
{x,y}⊂η+ξWc
{x,y}∩W,;

x,y

1
‖x− y‖12 , SW ,ξ

3 (η)B
∑

{x,y}⊂η+ξWc
{x,y}∩W,;

x,y

1
‖x− y‖6

for each ξ ∈N(�2) and η ∈N(W). Note that due to computational reasons,
we have to approximate SW ,ξ

2 and SW ,ξ
3 by cutting off the infinite interac-

tion range. Here, we use the common9

.

cut-off range given by RB 2.5 ·σ,
that is, we consider for η ∈N(W)

S̃W ,ξ
2 (η)B

∑
{x,y}⊂η+ξWc
{x,y}∩W,;

x,y

1
‖x− y‖121]0,R]

(‖x− y‖),
8We note that Gibbs(Γ(ϑ)),; referring to Preston

.

(1976

.

). For a sketch of the main
arguments therein, which are given in the context of some concepts worked out in
Preston

.

(2005

.

), see Section 6.4

.

in this thesis.
9For conventions regarding the cut-off range of the Lennard-Jones pair potential we

refer to the literature on simulations of liquids, see for example Allen & Tildesley

.

(2017

.

).
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and

S̃W ,ξ
3 (η)B

∑
{x,y}⊂η+ξWc
{x,y}∩W,;

x,y

1
‖x− y‖61]0,R]

(‖x− y‖).

In terms of S̃W ,ξ
2 and S̃W ,ξ

3 , the corresponding pair potential

φ2({x, y})= 4ε
[(

σ

‖x− y‖
)12

−
(

σ

‖x− y‖
)6]

1]0,2.5σ](‖x− y‖) for x, y ∈X

is called cut-off Lennard-Jones pair potential, see also Figure 7.1

.

.

Parameter Choice

We consider three different parameters that follow a path in Θ from weak
to strong interaction. For simplicity this path is described by what is
called the inverse temperature t > 0. That is, we consider the fixed model
parameters βB 100 (intensity), εB 1 (well depth), and σ = 0.1 (atomic
diameter), leading to the fixed canonical parameter ϑ0 B (log(100),4 ·
(0.1)12,−4 · (0.1)6). Then, we define at inverse temperature t > 0,

Γ
(ϑ0,t)
Wt

(ξ, A)B
∫

A
c(Wt,ϑ0,ξ)exp

(− t〈ϑ0,Sξ,Wt(η)〉)PopWt(dη)

for A ∈N(Wt), where Wt is a scaled observation window to account for
the different intensities βt (see below). In the present simulation study,
we examine the cases t = 0.5, t = 0.75, and t = 1, that is, we look at the
behavior of a particle system going toward the low temperature regime.

Figure 7.2

.

shows corresponding re-

�+σ 2.5σ0

ε

0

�

Figure 7.1: Graph of the cut-off
(12,6)-Lennard-Jones pair potential
as a function of the particle distance
for ε, σ> 0 (see also Figure 6.2

.

). The
interaction range cuts off at 2.5 ·σ.

alizations in the fixed observation win-
dow W1 B [0,2]2, when condition on non-
empty boundary point patterns in B1 B
[−0.25,2.25]2 \W1. In Figure 7.3

.

we con-
sider the situation with scaled observa-
tion windows Wt B γt ·W1 for t ∈ {1

2 , 3
4 ,1

}
to ensure that the expected number of
points is equal in each case.10

.

In the
following, we denote by Bt the corre-
sponding boundary. Visual inspection
of Figure 7.3

.

(a) suggests only weak in-
teraction, which however is still differ-
ent from a typical Poisson point process
realization according to the repulsion

10We empirically determined γ0.5 = 2.557894 and γ0.75 = 1.420784, in order to obtain
EtΞWt ≈ 240 for t = 0.5, t = 0.75, and t = 1, respectively (see also Figure 7.4

.

).
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that is obviously inherent (see also Figure 7.2

.

(a) for a magnification of
the point pattern on a subdomain of W0.5, which makes the interaction
more apparent). In contrast, the point pattern in Figure 7.3

.

(c) indicates
strong interaction in accordance with the choice t = 1, that is, the lowest
temperature regime that we consider.

(a) (b) (c)

Figure 7.2: Lennard-Jones realizations (parameters: β = 100, σ = 0.1, ε = 1) in the
window [0,2]2 at inverse temperatures t = 0.5, t = 0.75, and t = 1 in (a), (b), and (c),
respectively. The gray point pattern in the gray area represents the boundary condition
within the finite interaction range of the cut-off Lennard-Jones potential (see also Figure
7.1

.

).

(a) (b) (c)

Figure 7.3: Lennard-Jones realizations (parameters: β= 100, σ= 0.1, ε= 1) at inverse
temperatures t = 0.5, t = 0.75, and t = 1 in (a), (b), and (c), respectively. In contrast to
Figure 7.2

.

, the observation windows in (a) and (b) are increased such that the expected
number of points are equal in each case (see also Figure 7.4

.

). The gray point pattern in
the gray area represents the boundary condition within the finite interaction range of
the cut-off Lennard-Jones potential (see also Figure 7.1

.

), which decreases in (a) and (b)
in relation to the (increased) observation window (see also Figure 7.2

.

(a) and (b)).
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ξ 7→ ξ(X)

1
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4 1

t 0

0.5

1
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4 1

t 0

1
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3
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Figure 7.4: Boxplots of the sufficient statistics of 1000 realizations of the (cut-off)
Lennard-Jones point process (parameters: β = 100, σ = 0.1, ε = 1) at inverse temper-
atures t = 0.5, 0.75, and 1. The observation windows are adjusted such that we may
expect the same number of points. For S̃Wt,ξ

2 and S̃Wt,ξ
3 we empirically observe that an

increase of the inverse temperature from t = 0.5 to t = 1 leads to a higher level of S̃Wt,ξ
2

(repulsion force) and a higher level of S̃Wt,ξ
3 (attraction force).

(Ivanov) Regularized Rao–Blackwellization
To demonstrate the effect of the regularized Rao–Blackwellization (RRB),
we keep on considering the canonical parameter choice

ϑ0 B (log(100),4 · (0.1)12,−4 · (0.1)6)

at inverse temperatures t = 0.5, t = 0.75, and t = 1. In addition, we also
examine the following two boundary conditions.
(1) Non-Empty Boundary Condition. We consider the conditional

distributions Γ(ϑ0,t)
Wt

(ξWc
t
, ·) for t ∈ {1

2 , 3
4 ,1

}
with ξWc

t
shown in Figure 7.3

.

by the corresponding gray point pattern.

(2) Empty Boundary Condition. We consider the conditional distribu-
tions Γ(ϑ0,t)

Wt
(0, ·) for t ∈ {1

2 , 3
4 ,1

}
.

In each case we are concerned with distributions that are part of an
exponential family with the complete sufficient statistic S̃W ,ξ under the
non-empty boundary condition, and S̃W ,0 under the empty boundary
condition. Hence, we may apply Theorem 4.20

.

. In what follows, our focus
lies on estimating the canonical interaction parameters ϑ2 and ϑ3. To
this end, we consider the MLE, the MPLE (with nd

2 = 162 and nd
2 = 322

dummy points on Wt, enlarging the grid parameter to nd
2 = 202 and

nd
2 = 402, respectively when computing the MPLE of point patterns on

Wt ‘ Bt)11

.

, and the VARE (see Section 7.1

.

to 7.3

.

).

11The grid parameter nd concerns the dummy point process of the logistic regression
MPLE computation device, see Remark 7.8

.

and the subsequent hint on page 164

.

. Here,
the grid parameter nd = 16 was specifically chosen for W1 and the expected number
of points (EtΞWt ≈ 240) in accordance with a rule of thumb suggested by Baddeley
et al.

.

(2014

.

), which was found to lead just to a moderate additional variance due to
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Based on one thousand realizations (conditioned on ξWc
t

and 0 for each
inverse temperature case), Figure 7.7

.

shows the corresponding empirical
marginal and joint distributions of the MLE, the VARE, and the RRB
of the VARE. The latter is computed through a linear regression of the
VAR estimates on the sufficient statistic values which are computed
from the same one thousand realizations (see also Theorem 4.20

.

). In
the low inverse temperature case t = 0.5, the distributions of the MLE,
the MPLE, and the VARE are skewed due to the restricted support on
pr{2,3}(Θ)= ]0,∞[× ]−∞,0[. Note, however, that implementations used for
these estimation methods still yield inadmissible estimates in a few cases.

Numerically the RRB projection improves the VARE in terms of the
MSE in each inverse temperature case for either boundary condition
(see Table 7.6

.

). Furthermore, the regularized Rao–Blackwellization also
reflects characteristics that are close to those of the MLE. Especially,
we can recognize that the regularized Rao–Blackwellization change the
correlation of the VARE components toward the correlation of the MLE
components. Nevertheless, distributional differences of the MLE and the
RRB of the VARE are apparent, which are due to the bias and the bound-
ary condition. First, a (substantial) part of the distributional differences
of the MLE and the RRB of the VARE (in the empty boundary condition)
can be reduced by shifting the estimators according to their bias. This
is in accordance with Theorem 4.20

.

. Second, in the non-empty boundary
condition the MLE seems to spread less than the RRB of the VARE due to
ξWc

t
at the boundary,12

.

where as in the empty boundary condition, we do
not recognize such an effect.

To explain this boundary effect, we recall that Wt and Bt denote the
observation window and the boundary zone, respectively. Considering
the MLE ϑ̂ML as a map on (N(Wt ∪Bt),N(Wt ∪Bt)), we note that ϑ̂ML is
also measurable w. r. t. σ(S̃(Wt∪Bt),0), see Proposition 7.1

.

. Roughly speak-
ing, ϑ̂ML makes use of the boundary point pattern through the complete
sufficient statistic of a corresponding enlarged model on N(Wt ∪Bt) with
empty boundary condition. In contrast, considering the VARE as a map
on (

N(Wt ∪Bt),N(Wt ∪Bt)
)
�

(
N(Wt)×N(Bt),N(Wt)⊗N(Bt)

)
(see Proposition 5.10

.

on page 107

.

for this identification), we note that the
corresponding RRB just performs a data reduction to σ(S̃Wt,ξ) in the first
component space N(Wt). In fact, within the mentioned enlarged model on
N(Wt ∪Bt) with non-empty boundary condition the RRB still depends on

the randomness that comes from the dummy point process. To study this inherent
randomness of the dummy point pattern, we additionally chose nd = 32.

12Recall from the above description of the non-empty boundary condition that the
condition ξWc

t
remains unchanged for all realizations. We also point out that ξWc

t
can be

regarded as a model parameter, see also the introduction to this chapter.
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reducible data located at the boundary Bt through the mixed pairs of one
η-point in Wt and one ξWc

t
-point in Bt, which visually corresponds to the

pairs of one black and one gray point in Figure 7.3

.

.
The regularized Rao–Blackwellization of the MPLE with nd

2 = 1024
dummy points seems to improve the MPLE w. r. t. the MSE significantly in
the low inverse temperature regime (t = 1), see Figure 7.8

.

. Improvements
for the high and middle activity cases t = 0.5 and t = 0.75 can at least be
seen from the Table 7.6

.

. Furthermore, we see a similar boundary effect
as for the RRB of the VARE. That is, by comparing the non-empty with
the empty boundary condition we conclude that the MLE can use the
information from the boundary more efficiently than the MPLE. This
boundary effect is more apparent if we consider only nd

2 = 256 dummy
points (see Figure 7.9

.

).
Figure 7.5

.

shows the computation time13

.

of the MLE, the MPLE, and
VARE for the non-empty boundary condition. According to these results,
the MLE is the most computationally expensive method. In addition, its
computation time increases significantly with the inverse temperature. In
contrast, the VARE is the least computationally expensive method. The
computation time is just slightly affected by an increase in the inverse
temperature. The computation time of the MPLE depends on the number
of dummy points that is controlled by the grid parameter nd.

0

500

100

sec
MLE

1
2

3
4 1

t
0

1

sec
MPLE (nd = 32)

1
2

3
4 1

t
0

0,2
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MPLE (nd = 16)

1
2

3
4 1

t
0

0,2

0,1

sec
VARE

1
2

3
4 1

t

Figure 7.5: Boxplots of the empirical computation time of the MLE, the MPLE, and
the VARE for realizations at inverse temperatures t = 0.5, t = 0.75, and t = 1 and the
non-empty boundary condition. These computations were performed using a single core
on a Linux server (AMD Opteron Processor 6140 from 2011 with 2.6 GHz).

13The computation times refer to the performance using a single core on a Linux
server (AMD Opteron Processor 6140 from 2011 with 2.6 GHz).
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Inverse Temperature t= 0.5 t= 0.75 t= 1

Boundary Condition Non-Empty Empty Non-Empty Empty Non-Empty Empty

Parameter ϑ2 ϑ3 ϑ2 ϑ3 ϑ2 ϑ3 ϑ2 ϑ3 ϑ2 ϑ3 ϑ2 ϑ3

ϑ̂ML 0.707 0.431 0.586 0.421 0.163 0.163 0.267 0.216 0.071 0.063 0.175 0.170

ϑ̂VAR 7.516 12.050 7.812 12.867 2.226 4.191 2.842 5.023 1.851 4.565 1.801 4.056

ϑ̂MPL(32) 0.780 0.535 0.706 0.520 0.333 0.312 0.384 0.318 0.678 1.010 0.559 0.652

ϑ̂MPL(16) 0.992 0.699 0.985 0.782 0.481 0.474 0.555 0.495 4.561 5.248 1.289 1.487

E(LR)(ϑ̂VAR|S) 3.739 5.059 3.550 5.103 0.635 0.925 1.001 1.429 0.352 0.645 0.363 0.720

E(LR)(ϑ̂MPL(32)|S) 0.574 0.428 0.532 0.410 0.209 0.160 0.274 0.216 0.179 0.257 0.184 0.190

E(LR)(ϑ̂MPL(16)|S) 0.635 0.435 0.577 0.428 0.200 0.155 0.288 0.221 0.429 0.477 0.204 0.156

Table 7.6: Empirical mean squared errors of the estimators for the Lennard-Jones interaction parameters with empty and non-empty boundary
condition based on one thousand realizations (for inverse temperatures t = 0.5, t = 0.75, and t = 1). Mean squared error values for ϑ2 and ϑ3 are
multiplied by 1024 and 1012, respectively.
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Bootstrap Confidence Regions
To demonstrate the possible benefits of the results above, we propose
ad hoc constructions of parametric bootstrap confidence regions14

.

for
the special case of the canonical parameter idΘ. Basically, the idea is to
apply computationally efficient estimators, for example, the VARE or the
MPLE (see also Figure 7.5

.

) to data simulated from a maximum likelihood
estimate of our observation. RRBs of these estimates will then be used
to construct parametric bootstrap confidence regions. The validity of this
approach depends on the following two qualitative assumptions.
(a) The corresponding RRB of an alternative estimator ϑ̂ approximates

the MLE θ̂
ξWc

t
ML ◦SWt,ξB ϑ̂ML(·,ξWc

t
) sufficiently well. To be more precise,

that means (see also Theorem 4.20

.

), the error of the first order Taylor

approximation of the MLE θ̂
ξWc

t
ML is small w. r. t. the norm

f 7→
∫

‖ f (s)‖pµ(ds),

where
µ(B)BΓ(ϑ)

Wt

(
ξ,SWt,ξ−1

(B)
)

for B ∈B(�k)

is the distribution of the complete sufficient statistic under ϑ. In
addition, we assume that ∂

∂ϑ
(Eϑ(ϑ̂− ϑ̂ML) is small.

(b) V (ΞWt ,ϑ)B ϑ̂ML(ΞWt ,ξWc
t
)−ϑ is an approximate pivot element, that

is,
ϑ 7→Γ(ϑ)

Wt
(Ξ, ·)V (·,ϑ)

is approximately constant.
Studying the validity of this approach is also part of the present simulation
study. Justifications of quantified versions of assumptions (a) and (b) are
difficult and require further research.

In what follows we consider three methods of constructing parametric
bootstrap confidence regions. In every case we make extensive use of the
stated qualitative assumptions. We give a common formulation it in terms
of Gibbs point processes, especially with regard to the present chapter.
The treatment for general parametric models with a complete sufficient
statistic is obvious.

The first approach is a natural one that is based on the empirical
distribution of an estimator.

7.9 Method (Parametric Bootstrap CR, I) Let (Qϑ)ϑ∈Θ be a Gibbs point
process model and let κ̂ be an arbitrary estimator (for idΘ).

14See also Example 1.9

.

on page 7

.

for the notion of a confidence region.
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RRB of Variational Estimates
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Figure 7.7: Empirical marginal and joint distributions of the estimators for the Lennard-
Jones interaction parameters with (non-)empty boundary condition of inverse temper-
atures t = 0.5, t = 0.75, and t = 1. The gray, dark blue, and light blue point clouds
and boxplots correspond to the VARE, the Ivanov regularized Rao–Blackwellization of
the VARE, and the MLE, respectively. The intersection point of the two orange lines
represents the true parameter.



7.4 SIMULATION STUDY 177

RRB of Maximum Pseudo-Likelihood Estimates (nd = 32)
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Figure 7.8: Empirical marginal and joint distributions of the estimators for the Lennard-
Jones interaction parameters with (non-)empty boundary condition based on one thou-
sand realizations (for inverse temperatures t = 0.5, t = 0.75, and t = 1). The gray, dark
blue, and light blue point clouds and boxplots correspond to the MPLE (nd = 32), the
Ivanov regularized Rao–Blackwellization of the MPLE, and the MLE, respectively. The
intersection point of the two orange lines represents the true parameter.
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RRB of Maximum Pseudo-Likelihood Estimates (nd = 16)
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Figure 7.9: Empirical marginal and joint distributions of the estimators for the Lennard-
Jones interaction parameters with (non-)empty boundary condition based on one thou-
sand realizations (for inverse temperatures t = 0.5, t = 0.75, and t = 1). The gray, dark
blue, and light blue point clouds and boxplots correspond to the MPLE (nd = 16), the
Ivanov regularized Rao–Blackwellization of the MPLE, and the MLE, respectively. The
intersection point of the two orange lines represents the true parameter.
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For our observed point pattern data ξ, we aim at a (1−α)-confidence
region for the canonical parameter idΘ by proceeding as follows:

(1) Compute κ̂(ξ);
(2) Simulate H1, ...,HN ∼Qκ̂(ξ) for large N;
(3) Compute κ̂(H1), ..., κ̂(HN);
(4) Construct a convex set C(H), for example according to Hu & Yang

.

(2013

.

)15

.

, such that C(H) contains at least 1−γ of the mass of the empirical
distribution given by (κ̂(Hi))N

i=1;
(5) Set K̂1−γ(H,ξ)BC(H)+ κ̂(ξ). _

In the above method, we may canonically choose γBα if the assump-
tion (b) is fulfilled. The level 1− γ is called nominal level of the CR
contrasting the (real) level 1−α that is required.

Let K̂ and Λ̂ be two (1−α)-confidence regions for a parameter κ, that
is, Pϑ

(
κ(ϑ) ∈ K̂

)
, Pϑ

(
κ(ϑ) ∈ Λ̂)≥ 1−α holds for all ϑ ∈Θ. We then prefer K̂

against Λ̂, if Eϑ(λk(K̂))≤Eϑ(λk(Λ̂)) for all ϑ ∈Θ (see Example 1.11

.

).
The estimator κ̂ in the method above may be the MLE or the MPLE.

If κ̂ is the MLE, however, the method becomes in most situations prac-
tically unfeasible, since the computation of N additional MLEs in step
(4) is very time consuming.16

.

We therefore propose to use the RRB of a
computationally efficient estimator to construct the pivot set C(H).

7.10 Method (Parametric Bootstrap CR, II) Let (Qϑ)ϑ∈Θ be a Gibbs point
process model with sufficient statistic S. Let ϑ̂ML be the MLE for idΘ and
let λ̂ be an alternative estimator that is computationally more efficient.

For our observed point pattern data ξ we aim at a (1−α)-confidence
region for the canonical parameter idΘ by proceeding as follows:

(1) Compute ϑ̂ML(ξ);
(2) Simulate H1, ...,HN ∼Qϑ̂ML(ξ) for large N;

(3) Compute estimates
(
λ̂(Hi)

)N
i=1 and sufficient statistic values

(
S(Hi)

)N
i=1;

(4) Perform a linear regression of
(
λ̂(Hi)

)N
i=1 on

(
S(Hi)

)N
i=1. The fitted val-

ues are denoted by E(LR)(λ̂|S = S(Hi)) for i = 1, ..., N;
(5) Construct a convex set C(H) according to Hu & Yang

.

(2013

.

)

.

15

..

such
that C(H) contains at least 1−γ of the mass of the empirical distribution

15Hu & Yang

.

(2013

.

) propose a simple distribution-free procedure to construct joint
confidence regions for two or more parameters, which is implemented in the R package
distfree.cr. This method base on reducing the multivariate situation to the one-
dimensional case by projecting the data on a family of one-dimensional subspaces. This
leads to a corresponding family of cylinder sets. A joint confidence region is then obtained
by intersecting these cylinder sets.

16According to the computation times given in Figure 7.5

.

, computing N = 5000 MLEs
takes more than six days, see also Figure 7.10

.

(below, page 183

.

) for the computation
times of these parametric bootstrap methods in the present simulation study.
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that is given by the fitted values E(LR)(λ̂|S = S(Hi)) for i = 1, ..., N;
(6) Set K̂1−γ(H,ξ)BC(H)+ ϑ̂ML(ξ). _

The following combination of Method 7.9

.

and 7.10

.

leads to another
interesting procedure which considers the RRB of κ̂.

7.11 Method (Parametric Bootstrap CR, III) Let (Qϑ)ϑ∈Θ be a Gibbs
point process model with sufficient statistic S and let κ̂ be an arbitrary
estimator.

For our observed point pattern data ξ we aim at a (1−α)-confidence
region for the canonical parameter idΘ by proceeding as follows:

(1) Compute κ̂(ξ);
(2) Simulate H1, ...,HN ∼Qκ̂(ξ) for large N;
(3) Compute estimates

(
κ̂(Hi)

)N
i=1 and sufficient statistic values

(
S(Hi)

)N
i=1;

(4) Perform a linear regression of
(
κ̂(Hi)

)N
i=1 on

(
S(Hi)

)N
i=1. The fitted val-

ues are denoted by E(LR)(κ̂|S = S(Hi)) for i = 1, ..., N.
(5) Construct a convex set C(H) according to Hu & Yang

.

(2013

.

)17

.

such
that C(H) contains at least 1−γ of the mass of the empirical distribution
that is given by the fitted values E(LR)(κ̂|S = S(Hi)) for i = 1, ..., N;
(6) Set K̂1−γ(H,ξ)B C(H)+E(LR)(κ̂|S = S(ξ)

)
, where E(LR)(κ̂|S = S(ξ)

)
de-

notes the predicted value (under the linear model estimated in (4)) at
S(ξ). _

We test these methods considering again the Lennard-Jones model
from above. As inverse temperature we choose t = 1 and as canonical
parameter ϑ0 B (log(100),4 · 10−12,−4 · 10−6), a case where we already
recognized significant boundary effects. The phenomenon of interest
described by a point process Ξ∼ Pϑ0 on X is then observed on W BW1 =
[0,2]2 in combination with one of three different boundary conditions,
which lead to the following statistical models on (N(W),N(W)).
(1) Non-Empty Boundary Condition. We observe the boundary point

pattern ξWc ∈ N(Wc) which is considered as a fixed known model
parameter and therefore motivates the statistical model(

Γ(ϑ)
W (ξWc , ·) : ϑ ∈Θ)

consisting of the conditional distributions given ξWc .

(2) Empty Boundary Condition. There is no boundary point pattern
and, therefore, we consider the statistical model(

Γ(ϑ)
W (0, ·) : ϑ ∈Θ)

consisting of the conditional distributions with the empty boundary
point pattern 0.

17See also Footnote 15

.

.
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(3) Random Boundary Condition. We observe the boundary point
pattern, which is now considered as a random but known model
parameter. The observation is therefore assumed to come from

(
Γ(ϑ)

W (ΞWc , ·) : ϑ ∈Θ)
where ΞWc ∼ PprWc

ϑ
for corresponding ϑ ∈Θ.

In (1) and (3) we account for the first order boundary effects, that is, our
realizations are generated on [0,2]2 ‘[−0.25,0.25]2. We do not account
for the boundary effect of realizations in the boundary.

We consider M = 1000 realizations Ξ1, ...,ΞM of each model described
above, that is, the non-empty (using ξWc from Figure 7.3

.

), the empty
and the random boundary condition model. For each realization we
construct confidence regions according to Method 7.9

.

to 7.11

.

(in what
follows we just write Method I, II, and III, respectively) for the required
levels 1−αB 0.50, 0.90, and 0.95. To do so, we consider a broader range
of nominal levels 1−γ in order to compare the methods more fairly later
on. For each CR construction method we consider N = 5000 simulations.18

.

A construction of 0.50-confidence regions in �2, for example according to
Hu & Yang

.

(2013

.

), thus bases roughly on 502 inner and 502 outer points
on average (see also Footnote 15

.

on page 179

.

). Due to visual inspections
this was found to be appropriate.

The results of the simulation study are presented in terms of the
absolute coverage counts at the parameter of interest ϑ0 (see Table 7.13

.

).
We deem a construction method at nominal level 1−γ admissible for the
required level 1−α, if the coverage rate is not significantly lower than the
required level. To be on the safe side, we reject the coverage hypothesis
Pϑ0(K̂1−γ(H,Ξ) 3ϑ0)≥ 1−α already at a significance level of 0.1 and use a
corresponding higher nominal level 1−γ for the subsequent comparisons.

In fact, the different boundary conditions considered may lead to
either an over or an under estimate of the pivot set C(H) relative to
the variabilities of the centers ϑ̂MPL, ϑ̂ML, and E(ϑ̂MPL|S̃W ,ξ = S̃W ,ξ(·)).
Therefore, lower or higher coverage rates are observed. In addition, the
empirical coverage rate is crucially determined through the bias of the
underlying (centering) estimator. Hence, the required coverage may not
be observed at ϑ0 but at a perturbed parameter ϑ̃0 that is driven by the
corresponding bias. Here, we will not discuss this issue, although more
research has to be done at this point.

18These realizations were generated by the Metropolis–Hastings algorithm imple-
mented in spatstat, starting from a binomial point process realization with 100 points
and setting nburn = 106 and nsave = 2.5 ·104.



182 STATISTICS FOR GIBBS POINT PROCESSES III

Furthermore, we compare the confidence regions via their coverage
maps η 7→ Pϑ0(K̂1−γ 3 η) and the distribution of their area, that is, the
distribution of λ2(K̂1−γ(H,Ξ)) under ϑ0 (see Figure 7.11

.

and 7.12

.

).
In the case of a non-empty (fixed) boundary condition ξWc

t
, we observe

that the MPLE based confidence region (Method I) for the nominal levels
1−γ= 0.50, 0.90, and 0.95 seems to have a coverage rate that is too low.
However, a slight increase of the nominal level leads to an admissible
coverage. To understand the impact of the (fixed) boundary condition
ξWc

t
, we may compare these results with the empty and random bound-

ary condition. The empty boundary condition constitutes an extreme
case where the statistical model does not exhibit any artificial boundary
parameter. Except for the nominal level 1−γ= 0.95, all coverage rates
are admissible. The significantly higher coverages for 0.50 might be a
result of the correlation of the MPLE components that tend to be stronger
due to extreme MPL estimates in combination with the empty boundary
condition. In contrast, the random boundary condition shows results that
are slightly worse than those in the non-empty (fixed) boundary condition.

The parametric bootstrap confidence regions constructed from Method
II have a significantly higher coverage rate than required in each of the
cases 0.50, 0.90, 0.95 and for each alternative estimation method λ̂. This
is due to the fact that the construction of the pivot set is based on the
RRB, which just performs a complete sufficient data reduction according
to σ(S̃W ,ξ). Note that S̃W ,ξ still depends on reducible data at the boundary.
In contrast, the center of that CR is the MLE which is even measurable
w. r. t. σ(S̃W1 ‘ B1,0) and, therefore, varies less (see Proposition 7.1

.

). The
same can be observed in the random boundary condition, although the
coverage rates are somewhat lower. In the empty boundary condition
the additional variance of the RRB does not occur. The distribution of
the RRBs is much closer to that of the MLE. Hence, the coverage rates
are much more sensitive to bias effects which might explain the slight
coverage loss for the corresponding nominal levels.

Method III shows in the non-empty boundary condition admissible
coverage rates for the case 1−γ= 0.50. For the required rate 0.90, we need
to consider a nominal level of 1−γ= 0.96 to get an admissible coverage.
None of the considered nominal levels 1−γ yields an admissible result for a
0.95-confidence region. In the case of the random boundary condition, the
results are mostly worse again, although an admissible 0.95-confidence
region is obtained for a nominal level of 0.99. For the empty boundary
condition, we may observe a convincing agreement of the nominal and the
effective coverage level.

Figure 7.11

.

and 7.12

.

show the coverage maps of Method I, II, and
III for the required rates 0.50 and 0.90. To make them comparable, we
consider the lowest nominal level that yields an admissible coverage.
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According to these plots, we may conclude that in every considered case
Method II with λ̂= VARE yields a confidence region that is preferred to
the remaining two confidence procedures given by Method I and II. In
addition, Figure 7.10

.

shows that also from a computational point of view
Method II with λ̂= VARE is computationally faster than the remaining
procedures.

Non-Empty Boundary Condition

M κ̂ λ̂

I MPLE (32) /
II MLE VARE
II MLE MPLE (16)
II MLE MPLE (32)
III MPLE (32) /

20 30 40 50 60 70 80
min

Empty Boundary Condition

M κ̂ λ̂

I MPLE (32) /
II MLE VARE
II MLE MPLE (16)
II MLE MPLE (32)
III MPLE (32) /

20 30 40 50 60 70 80
min

Random Boundary Condition

M κ̂ λ̂

I MPLE (32) /
II MLE VARE
II MLE MPLE (16)
II MLE MPLE (32)
III MPLE (32) /

20 30 40 50 60 70 80
min

Figure 7.10: . Boxplots of the computation times of the parametric bootstrap confidence
regions for all nominal levels 1−γ (shown in Table 7.13

.

combined). Method I and III
differ from each other in the additional computation of the sufficient statistics and the
fitting of a linear model by the lm-function in R. This additional computational effort,
however, is in the range of seconds and therefore not reflected in this graphic. The
colorings have been chosen in accordance with Figures 7.11

.

and 7.12

.

that show the
corresponding coverage maps. The computations were performed using a single core on
a Linux server (Intel(R) Xeon(R) Silver 4114 with 2.8 GHz).
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Figure 7.11: Left and middle: Contours (at 0.1, 0.2, 0.4) of the coverage map η 7→
Pϑ0 (K̂0.5(H,Ξ) 3 η). Right: distributions of Lebesgue areas of 0.50 parametric bootstrap
confidence regions. All three methods (see Method I (gray), II (light blue), and III (dark
blue)) and all three boundary conditions (from top to bottom) are considered.
In addition to the contour levels 0.1, 0.2, 0.4, the light blue filled inner area represents
the region where 0.50 coverage of Method II holds (visible in the non-empty and random
boundary condition).
According to the simulation results (see Table 7.13

.

), the coverage map of Method I for
the non-empty and random boundary condition is shown for the nominal level of 0.51
and 0.53, respectively. The coverage map of Method II (case: empty boundary condition)
is shown for nominal level of 0.51. Furthermore, the coverage map of Method III (case:
random boundary condition) is shown for the nominal level of 0.58.
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Non-Empty Boundary Condition(a)
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Random Boundary Condition(c)
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Figure 7.12: Left and middle: Contours (at 0.3, 0.5, 0.7) of the coverage map η 7→
Pϑ0 (K̂0.9(H,Ξ) 3 η). Right: distributions of Lebesgue areas of 0.90 parametric bootstrap
confidence regions. All three methods (see Method I (gray), II (light blue), and III (dark
blue)) and all three boundary conditions (from top to bottom) are considered.
In addition to the contour levels 0.3, 0.5, 0.7, the light blue filled inner area represents
the region where 0.90 coverage of Method II holds (visible in the non-empty and random
boundary condition).
According to the simulation results (see Table 7.13

.

), the coverage map of Method I for
the non-empty and the random boundary condition is shown for the nominal level of 0.93
and 0.90, respectively. The coverage map of Method II (case: empty boundary condition)
is shown for 1−γ= 0.93. Furthermore, the coverage map of Method III for either the
non-empty and the random boundary condition is shown for the nominal level of 0.96.
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Non-Empty Boundary Condition
Required Rate 1−α 0.50 0.90 0.95

Nominal Level 1−γMethod κ̂ λ̂ 0.50 0.51 0.52 0.53 0.54 0.55 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
I MPLE (32) / 480 488 498 512 518 527 853 865 883 894 901 918 931 944 961 974

VARE 734 742 751 757 761 767 960 964 969 975 981 983 984 988 990 996
MPLE (16) 877 882 886 888 894 897 989 990 991 991 991 993 995 996 998 998II MLE
MPLE (32) 729 737 747 752 755 761 961 965 966 971 977 982 984 985 989 997

III MPLE (32) / 486 492 499 507 516 531 834 846 858 865 872 886 900 909 918 932

Empty Boundary Condition
Required Rate 1−α 0.50 0.90 0.95

Nominal Level 1−γMethod κ̂ λ̂ 0.50 0.51 0.52 0.53 0.54 0.55 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
I MPLE (32) / 602 609 617 626 631 639 908 912 919 927 934 940 951 966 971 991

VARE 476 487 494 499 504 515 867 878 885 897 905 921 934 943 958 973
MPLE (16) 572 586 596 603 617 623 922 930 936 946 954 956 964 969 976 983II MLE
MPLE (32) 490 498 509 521 528 534 873 884 893 901 907 917 935 947 960 974

III MPLE (32) / 505 511 515 526 535 545 906 916 920 932 944 949 960 967 976 982

Random Boundary Condition
Required Rate 1−α 0.50 0.90 0.95

Nominal Level 1−γMethod κ̂ λ̂ 0.50 0.51 0.52 0.53 0.54 0.55 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
I MPLE (32) / 453 462 471 484 493 508 848 854 865 882 899 905 919 937 958 975

VARE 665 673 684 694 704 713 955 960 963 968 973 978 982 987 991 998
MPLE (16) 850 854 861 863 869 872 975 980 981 981 984 986 989 992 995 997II MLE
MPLE (32) 664 675 682 692 703 711 954 958 963 964 973 976 981 984 989 995

III MPLE (32) / 412 425 429 437 448 454 807 822 837 851 862 876 894 907 922 942

Table 7.13: Absolute number of coverages of the canonical interaction parameters ϑ2 = 4·10−12, ϑ3 =−4·10−6 for 1000 bootstrap confidence regions generated
according to Method I to III. The inverse temperature is t = 1 and three boundary conditions are studied. Gray colored cells mark cases where the coverage
rates Pϑ(K̂1−α 3ϑ) are significantly (level 0.1) lower than 1−α for the required rates α= 0.50, 0.90, and 0.95. The corresponding critical values are 480, 888,
and 941, respectively.



Discussion and Outlook

How can the concept of Rao–Blackwellization deal with misspecification
issues in statistical models?

In fact, incorrectly specified statistical models require some form of
stability in Rao–Blackwellizations of estimators. That means, if we con-
sider a Rao–Blackwellization E(∗)(κ̂|S) of an estimator κ̂ to estimate a
parameter κ, we allow for at most small changes of E(∗)(κ̂|S) to account for
a small perturbation of the parameter κ that would lead to the “true”, even
if unknown parameter function κtrue (see also Definition 2.8

.

, page 34

.

).
The classical Rao–Blackwellization is not stable in general. Therefore, the
present thesis proposes the concept of regularized Rao–Blackwellization
(RRB) to deal with misspecified statistical models.

In the following we discuss aspects and consequences and, subse-
quently, obstacles and limits of the RRB concept. An outlook of the major
and minor related research questions and their applications concludes
this thesis.

Aspects and Consequences of the RRB Concept
Tackling Misspecifications We introduced a Lehmann–Scheffé (LS) norm
that measures the ancillarity of first-order and paves a way to an under-
standing of the classical Rao–Blackwellization as the best approximation
w. r. t. to that LS norm (see Theorem 4.1

.

). Using regularization techniques,
we are able to quantify and reduce “almost” ancillary information by
including prior information. In other words, through prior information
we consider a data reduction that goes beyond a reduction to the mini-
mal sufficient information. On the one hand, this can be done smoothly
through a regularization parameter using Tikhonov regularization, see
especially Example 4.5

.

and 4.6

.

for the Gaussian location model. The
Ivanov approach, on the other hand, includes the prior information by
restricting the class of solutions of the Rao–Blackwell inverse problem to a
prespecified finite-dimensional subspace. As an example one can consider
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the linear space that is spanned by the maximum likelihood estimator
(and a constant function). This can be justified by the fact that the MLE
is optimal in a certain sense (see Theorem 2.21

.

). Furthermore, the MLE
is known to be stable against misspecified statistical models (see Example
2.9

.

).

Relations Between Optimality Concepts We may encounter situations
(see e. g. Example 4.8

.

and 4.9

.

) where for a parameter of interest the max-
imum likelihood, the optimal unbiased, and the Bayes estimator (w. r. t.
squared error loss) are all different, although each of these estimators is
optimal in a certain sense (see Definition 1.12

.

for the Bayes estimator
w. r. t. squared error loss; an optimal unbiased estimator is optimal w. r. t.
≤L, see Definition 2.10

.

; see e. g. Theorem 2.21

.

for an optimal fixed sample
size property of the MLE). Basically, these concepts are in fact only loosely
connected. For example, the construction principle of optimal unbiased
estimators yields estimators that can be arbitrarily different from corre-
sponding MLEs, due to the ill-posedness of the Rao–Blackwell inverse
problem.

The concept of RRB provides links between these optimality concepts,
concerning the canonical parameter. The Tikhonov regularized Rao–
Blackwellization reveals a relation to the Bayes estimator (w. r. t. squared
error loss) in terms of the bias of the initial estimator, see Theorem
4.10

.

. More generally, the improvement of the Tikhonov regularized Rao–
Blackwellization compared to the classical Rao–Blackwellization depends
continuously on the bias of the initial estimator, see Theorem 4.12

.

. Note
also that under regularity assumptions the MLE is implicitly defined
through an unbiased estimating equation. With regard to Remark 2.3

.

, we
may therefore consider the MLE as approximately unbiased. Hence, the 1-
Tikhonov regularized Rao-Blackwellization of the MLE is correspondingly
close to the Bayes estimator (see also Example 4.8

.

and 4.9

.

).
The Ivanov regularized Rao-Blackwellization reveals a relation be-

tween the MLE and the concept of unbiased estimators via Theorem 4.16

.

and Theorem 4.20

.

.

Computational Feasibility (Ivanov’s Approach) We provided arguments
to understand the Ivanov regularized Rao–Blackwellization approximately
as a Markov operator (see Theorem 4.16

.

). Considering the finite-dimen-
sional space that is spanned by the MLE and constant functions, we also
computed a first-order Taylor approximation of the corresponding Markov
operator applied to an arbitrary estimator. Since this Taylor approxima-
tion turns out to be a linear regression formula, it is simple to implement
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(see Theorem 4.20

.

). In Section 7.4

.

we applied these considerations to
Gibbs point processes in a simulation study. According to these results
the RRB concept seems to provide a competitive approach to compute
functionals of the distribution of the MLE.

Obstacles and Limits of the RRB Concept
Computational Feasibility (Tikhonov’s Approach) Example 4.5

.

and 4.6

.

showed that the computation of the Tikhonov regularized Rao–Blackwell
projection even in a very well-behaved model, the Gaussian location model,
can be quite complicated. Theorem 4.7

.

yields the Tikhonov regularized
Rao–Blackwell projection for the regularization parameter α= 1 only. Due
to this analytical obstacle, the Tikhonov regularized Rao–Blackwellization
concept seems to be limited to tractable statistical models.

Need of Prior Knowledge Regularization requires prior knowledge or
at least a prior guess. This concerns the “amount of misspecification”1

.

and hence the choice of the regularization parameter in the Tikhonov
regularization approach. The presented Ivanov’s approach makes use of
prior information through the prespecified finite-dimensional space. With
regard to the proposed finite-dimensional space spanned by the MLE, this
requirement of prior information leads to the necessity of a single MLE
computation. In addition, both approaches use an a priori distribution
π on the statistical model. This may be given at least implicitly by
the distribution of the complete sufficient statistic under the assumed
underlying distribution Pϑ0 .

Focus on Fixed Sample Situations To develop the RRB concept, we
introduced an analytical framework which depends on the sample size.
Therefore, the present thesis focuses only on the situation of fixed sample
sizes, that is, the non-asymptotic situation.

Outlook and Related Questions
Tikhonov regularized Rao–Blackwellization (further Examples) In Exam-
ple 4.5

.

and 4.6

.

we computed the α-Tikhonov regularized Rao–Blackwell
projection explicitly, at least on a two-dimensional subspace. Further
examples would be of interest to understand how the regularization might
come in, for example, concerning the relation of the MLE and the Bayes
estimator.

1This corresponds to the so-called noise level in the theory of regularization.
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Optimality Results The well-known Rao–Blackwell–Lehmann–Scheffé
theorem (the combination of Theorems 2.17

.

and 2.18

.

) yields an optimality
result concerning unbiased estimators. Theorem 4.12

.

of the present thesis
already provides a corresponding version for the Tikhonov regularized
Rao–Blackwellization where we consider the canonical parameter.

It would be of interest to generalize Theorem 4.12

.

to a larger class of
parameter functions κ. Furthermore, it would also be of interest to estab-
lish such a result concerning the performance of the Ivanov regularized
Rao–Blackwellization, of course in relation to the optimality properties
that are fulfilled by the basis elements of the finite-dimensional subspace.

Computation of Ivanov regularization RB We have shown that the
Ivanov regularized Rao–Blackwellization is connected to a linear regres-
sion. Further investigations concerning the computation of the Ivanov
regularized RB, for example as Galerkin-Solution, would be interesting
(see also Remark 4.15

.

).

Asymptotic Properties In the present thesis, we are only concerned with
fixed sample size properties and thus with non-asymptotic statistics. For
example, the introduced Lehmann–Scheffé topologies and the Lehmann–
Scheffé spaces depend on the statistical model and therefore on the sample
size. To make use of the asymptotic properties of simple alternative
estimators (the strong consistency and the asymptotic normality of the
MPLE and the VARE in the point process statistic) for the RRB concept,
more general notions in a more general framework have to be developed.

Bounded Mean Oscillation Spaces Girardi

.

(1991

.

) and Balder et al.

.

(1994

.

)
discuss characterizations of the norm compactness in Lebesgue spaces
through weak compactness and, in addition, through a so-called Bocce
criterium. In Chapter 3

.

we have shown relations between the Lehmann–
Scheffé topologies and the weak topologies on the Lebesgue spaces, and
also between the canonical topology TLp(P) and the norm topology τ(‖·‖Q,p).
An interesting question may be how the characterization results of norm
compactness can be generalized to the relation between the Lehmann–
Scheffé topology and the canonical topology, especially with regard to
regularizations in the sense of Ivanov.

Gibbs Point Process Statistics (Methodology) In the simulation study
(see Section 7.4

.

), we considered the Lennard-Jones model in the plane
with different boundary conditions. Further investigations concerning
other (more) complex models would be of interest. This also includes a
study of such models on the sphere.
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In the present thesis, we make use of the RRB concept to construct
parametric confidence regions. We make use of two qualitative assump-
tions (see assumption (a) and (b) on page 175

.

) that should be studied
more closely with respect to quantitative concerns in concrete models.
Furthermore, it would be of interest how the RRB concept can be used to
construct (one-sided) statistical tests.

Gibbs Point Process Statistics (Data Examples) With regard to the pre-
vious paragraph on the statistical methodology of Gibbs point processes,
we also want to see these methods at work. In the introduction we al-
ready used research questions concerning the distribution of envelope
spike proteins of viruses as a motivation for the methods developed and
considered in this thesis. Applications, for examples, to real data of such
spike proteins may lead to a further development of more complex Gibbs
point process models and consequently to a further development of the
methodology considered here.

Applications to Other Areas of Statistics In Section 7.4

.

we have shown
that the concept of regularized Rao–Blackwellization may be interesting
and useful for Gibbs point processes. However, we presented the RRB
concept in a much more general framework. Since exponential families
provide a broad range of applications, it would be interesting to study
the advantages and limits of the RRB concept in other fields of statistics
where complex dependent data structures occur.





Abbreviations and Notations

The following lists review conventions and notations used throughout this thesis.
Some of them are very common. For notation that is less common or that we
have introduced, a page number is provided where more details can be found.

Abbreviations
CR confidence region
DLR Dobrushin–Lanford–Ruelle, 128
GNZ Georgii–Nguyen–Zessin, 122
i. i. d. identically independently distributed
iff if and only if
L J Lennard-Jones, 144
LS Lehmann–Scheffé, 51
MLE maximum likelihood estimator
MPLE maximum pseudo-likelihood estimator
MSE mean squared error
RRB regularized Rao–Blackwellization
SVD singular value decomposition
TVS topological vector space, 9
UMVUE uniformly minimum variance unbiased estimator

Analysis, Measure Theory, and Topology
�, �, �, � natural numbers, integers, rational numbers, real

numbers
�0 natural numbers including 0
�+ non-negative real numbers
� real numbers including +∞ and −∞
�+ non-negative real numbers including +∞
X, Y, Z general state spaces
⊂, ( subset and proper subset relation, x∏

x∈XYx Cartesian product of Yx for x ∈X
YX (X-)Cartesian power of Y, set of all functions from

X to Y
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Xn nth Cartesian power of X, for some n ∈�; identi-
fiable with e. g. X{1,...,n}

2X power set of X; identifiable with e. g. {0,1}X

idX identity map on X, i. e., x 7→ x
1M indicator function with indicator set M
prx projection on the xth component of elements of∏

x∈XYt

f +, f − positive, negative part of the function f
tu translation map x 7→ x+u, where u ∈�d, 121
diam(M) B sup{d(x, y) : x, y ∈ M} diameter of a set M of a

metric space (X,d), 143
dist(x, M) B inf

{
d(x, y) : y ∈ M

}
the distance of a point x to

a subset M of a metric space (X,d), 147
int(M) , cl (M) interior, closure of a set M, 32
‖ ·‖P,p Lebesgue space norm of Lp(X,A,P), 8
‖ ·‖P B ‖ ·‖P,1 Lebesgue space norm of L1(X,A,P), 8
‖ ·‖LS,p Lehmann–Scheffé norm, 61
‖ ·‖OS,p oscillation norm, 67
A, B, C σ-algebras
σ(E)=σX(E) smallest σ-algebra which contains a set-system

E⊂ 2X of a state space X
C∨D B σ(C∪D) maximum of the σ-algebras C and

D, 14
B(X)=B(X,T) Borel-σ-algebra w. r. t. the topological space (X,T)
T, S topologies, 51
τ( fα : α ∈ I) smallest topology such that fα : X→ (Y,S) for

α ∈ I are continuous , 51
TLp(P) B τ(‖ · ‖P,p : P ∈ P) canonical topology on the

space Lp(X,A,P), 9
TLS(P)BTLS(Lp(P),P) B τ( f 7→ ∫

f dP : P ∈ P) the Lehmann–Scheffé
topology w. r. t. P, 51

T∗
LS(Lp(P))BT∗

LS(P,Lp(P)) B τ(P 7→ ∫
f dP : f ∈Lp(P)) the Lehmann–Scheffé-

∗-topology w. r. t. P, 52
Tp BTp(F) topology of pointwise convergence on a function

space F, 34
σw(E,F) B τ( f : f ∈ F) weak topology of linear space E

w. r. t. the subspace F ⊂ E∗, 53
σw(F,E) B τ(e : e ∈ E) weak-∗-topology on the subspace

F ⊂ E∗, where E is a linear space, 53
H=H(X) system of relatively compact Borel measurable

subsets of X, 104
ζ counting measure, 136
λ Lebesgue measure
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µ⊥ ν measure µ is singular to measure ν, 13
µ f , µ f −1, µ◦ f −1 image measures of f under µ
KL, K ◦L B

∫
YL(y, ·)K(·,dy) for a (Markov-)kernel K from

(X,A) to (Y,B) and a (Markov-)kernel L from
(Y,B) to (Z, C), 5

µ⊗K product measure of measure µ with kernel K
µ ·K , µK second marginal measure of µ⊗K
E, F vector spaces
E

/
F quotient space of vector space E w. r. t. a linear

subspace F ⊂ E, 8
span(M) linear span of a set M of a vectors
conv(M) convex hull of a set M of vectors, 32
prF projection on a sub-space F of E
E∗, E' algebraic dual space of a vector space E, topologi-

cal dual space of a TVS (E,T), 52
F⊥ annihilator of the subspace F ⊂ E, where (E,T)

is a TVS, 22
ker(T) kernel (null space) of an operator T, 18
ran(T) range of an operator T, 19
T' adjoint operator of an operator T between two

topological spaces, 71
L(X,A) vector space of A-measurable functions, 55
L(P)BL(X,A,P) vector space of P-a. s. equivalence classes of A-

measurable functions, 55
Lp(P)BLp(X,A,P;�k) vector space consisting of pth power P-integrable

functions (�k-valued) in L(X,A), 8
Lp(P)BLp(X,A,P;�k) intersection of Lp(X,A,P;�k) over all P ∈P, 8
[µ], [µα : α ∈ I] set of all (measurable) functions that are almost

surely 0 w. r. t. the measure µ; w. r. t. the family of
measures (µα)α∈I , 49

Lp(P)BLp(X,A,P;�k) quotient space of Lp(X,A,P;�k) w. r. t. to the sub-
space [P], 8

LSπ,p(P)=LSπ,p(X,A,P) Lehmann–Scheffé space, 61
Ap(X,A,P) vector subspace of all first order ancillary func-

tions in Lp(X,A,P), 15
A0

p(X,A,P) elements g of Ap(X,A,P) with
∫

gdP = 0 for all
P ∈P, 18

B=B(X,A) set of all bounded, measurable functions f from
(X,A) to (�,B(�)), 25

C(X,T) set of �-valued continuous functions on (X,T),
108

S(X,A) set of all finite signed measures on (X,A), 52
M∗BM∗(X)BM∗(X,A) set of all measures on a measurable space (X,A),

102
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MBM(X)BM(X,B(X)) set of all locally finite measures on a topological
space (X,T), 103

MB =MB(X) set of locally finite measures on X with no mass
outside B, 106

N∗BN∗(X)BN∗(X,B(X)) set of all locally finite point measures on (X,T),
104

NBN(X)BN(X,B(X)) set of all simple locally finite point measures on
(X,B(X)), 104

Alf BAlf(X)BAlf(X,T) set of all locally finite subsets in a topological
space (X,T), 105

ξ, η, ζ point pattern, simple locally finite point mea-
sures, 104

NB =NB(X) set of locally finite point measures on X with no
mass outside B, 106

ξB = prB(ξ) = ξ(· ∩B), that is, the restriction of a
point pattern ξ ∈N(X) to B ∈B(X), 106

Nk =Nk(X) set of simple point patterns on X with ξ(X)= k for
some k ∈�, 142

Nf =Nf (X) set of simple finite point patterns on X, 123
D(t)

H (U) set of all point patterns where the potential en-
ergy U is tempered, 146

D(s)
H (U) set of all point patterns where the potential en-

ergy U is stable, 146
M∗BM∗(X,A) Bσ(µ 7→µ(A) : A ∈A), 102
MB =MB(X) σ-algebra of events observable inside B, 106
N=N(X) trace-σ-algebra M(X)∩N(X), 105
FH B pr−1

H (NH); σ-algebra of events observable from
the inside of H ∈H, 126

FH B pr−1
Hc (NHc ); σ-algebra of events observable from

the outside of H ∈H, 126
TF Fell topology, 108
Tloc topology of local convergence, 152
TC

loc topology of C-local convergence, 154
Bloc =Bloc(F) set of all local functions f : N→�w. r. t. filtration

F, 152
Bqloc =Bqloc(F) set of all quasilocal functions f : N → � w. r. t.

filtration F, 152
BC

qloc set of all C-quasilocal functions, 154

Probability Theory and Mathematical Statistics
(Ω,F,P) general underlying probability space
X , Y , Z random elements

X d=Y identically distributed random elements X , Y
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X yY independent random elements X and Y w. r. t. a
probability space (Ω,F,P)

Dy E independent set systems D and Ew. r. t. an un-
derlying probability space

PX , P X−1, P◦ X−1 distribution of X under P
Prob(X,A) set of all distributions on (X,A), 3
δx Dirac distribution in x ∈X, 55
B(n,π) Binomial distribution with parameter n ∈� and

π ∈ [0,1], 56
Poi(α) Poisson distribution with parameter α> 0, 114
UH uniform distribution on H ∈H(�k) such that 0<

λ(H)<∞, 64
N(µ,σ2) Gaussian distribution with mean µ and variance

σ2, 57
G(a,b) Gamma distribution with parameters a, b > 0,

81
C Campbell measure of a point process Ξ, 120
C! reduced Campbell measure of a point process Ξ,

121
Pa, Pax Palm kernel of a point process Ξ, Palm distribu-

tion of a point process Ξ at x, 120
Pa!, Pa!

x reduced Palm kernel of a point process Ξ, reduced
Palm distribution of a point process Ξ at x, 121

Pop(X,B(X),λ) Poisson point process distribution with parame-
ter measure λ ∈M(X,B(X)), 114

PopX, Popλ short notation for Pop(X,B(X),λ) emphasizing
the set X or the parameter measure λ, 114

PopG ∗PopH convolution of two Poisson point process distribu-
tions PopG , PopH where G, H ∈Hand G∩H =
;, 134

Γ= (ΓH)H∈H specification, that is, a family of quasi-Markov
kernels, 127

U = (UH)H∈H potential energy, Hamiltonian, 142
(UStrauss

H )H∈H Strauss potential energy, 143
(UL J

H )H∈H Lennard-Jones potential energy, 144
Gibbs(Γ) set of Gibbs distribution to the specification Γ,

127
P⊂Prob(X,A) (unparametrized) statistical model, 3
PT B

{
PT : P ∈P}

(X,A,P) statistical space, 3
P¿µ statistical model P is dominated by µ, 4
(Pϑ)ϑ∈Θ ∈Prob(X,A)Θ parametrized statistical model with parameter

space Θ, 4
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(P,F,π) statistical model with measure theoretical struc-
ture, 61

EP X B
∫

X dP expectation of X w. r. t. P
EϑX B

∫
X dPϑ expectation of X w. r. t. Pϑ

E expectation operator, f 7→ (∫
f dP

)
P∈P

EC BE |Lp(X,C,P) expectation operator restricted to
C-measurable functions, 69

V oscillation operator, 67
EP ( f | C) conditional expectation of f given Cw. r. t. P in

L1(X, C,P), 9
E( f | C) Rao–Blackwellization of f given C, 17
E(∗)( f | C) unspecified substitute for the Rao–Blackwelliza-

tion of f given C, 51
E(α)( f | C) Tikhonov regularized Rao–Blackwellization of f

given Cwith regularization parameter α> 0, 71
E(G)( f | C) quasi Rao–Blackwellization of f given C, 88
E(LR)(λ̂ | S) regularized Rao–Blackwellization of λ̂ given S;

first-order Taylor approx. of Eθ̂ML(·)λ̂, 97

κ̂, λ̂ estimators
K̂1−α, Λ̂1−α (1−α)-confidence regions
ϑ̂ML maximum likelihood estimator for the canonical

parameter idΘ, 31
ϑ̂ML(·,ξWc) maximum likelihood estimator w. r. t. the bound-

ary point pattern ξWc ∈N(Wc) (for the canonical
parameter idΘ), 158

ϑ̂MPL maximum pseudo-likelihood estimator for the
canonical parameter idΘ, 161

ϑ̂VAR variational estimator for the canonical parameter
idΘ, 167

H=H(P) set of all regular estimating functions, 36
Bias(κ̂,ϑ) BEϑκ̂−ϑ bias of an estimator κ̂ under Pϑ

MSE(κ̂,ϑ) (multivariate) mean squared error of an estima-
tor κ̂ under Pϑ

r(κ̂,π) Bayes risk of κ̂ w. r. t. the prior π (and squared
error loss), 10

r(κ̂,π;W) Bayes risk w. r. t. the ‖·‖W -weighted squared error
loss of an estimator κ̂, 10

≤L Löwner order, 11
≤L partial order for estimators w. r. t. a class of con-

vex loss functions L, 35
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