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Summary  

Wide availability of genomic data has had a considerable impact on plant and animal breeding 

programs which enables the study of genotypes and their relationships with phenotypes. Improving 

genomic prediction accuracy is of great interest in plant and animal breeding for selection 

purposes. In quantitative genetics, the standard models account for additive genetic effects while 

epistasis effects have been widely ignored due to their computational load. In this thesis, the 

significance of incorporating epistasis interactions in the genomic prediction of phenotypes are 

investigated.  

Chapter 1 presents a general introduction to the significant effects of genomic data specifically in 

animal and plant studies in both breeding value prediction and genomic prediction of phenotypes. 

Then different additive and epistasis models are reviewed and the challenges they encounter when 

considering epistasis are detailed. Finally, the univariate and multivariate statistical settings for 

genomic prediction of phenotypes are compared in their predictive abilities. The main chapters of 

this thesis are the three corresponding articles presented in Chapters 2, 3, and 4. 

In Chapter 2, “Phenotype Prediction under Epistasis” is discussed through developed epistatic 

models defined as Epistatic Random Regression BLUP (ERRBLUP) and selective Epistatic 

Random Regression BLUP (sERRBLUP) implemented in the developed R-package named 

“EpiGP”, which is able to process large scale genomic data in a computationally efficient manner. 

ERRBLUP is considered as a full epistatic model which incorporates all pairwise SNP interactions, 

while sERRBLUP is a selective epistatic model which incorporates a subset of pairwise SNP 

interactions selected according to their absolute effect sizes or the effect variances. These models 

are compared to GBLUP as an additive model in univariate statistical framework with the 

genotypes from the publicly available wheat dataset and respective simulated phenotypes. The 

results indicate that sERRBLUP leads to a considerable increase in predictive ability compared to 

ERRBLUP and GBLUP when the optimum proportion of SNP interactions is maintained in the 

model.   

GBLUP, ERRBLUP and sERRBLUP are developed in bivariate statistical setting in Chapter 3 in 

the article “Accounting for epistasis improves genomic prediction of phenotypes with univariate 

and bivariate models across environments” where two environments are modeled as two separate 

traits in multi-trait model. In Chapter 3, GBLUP, ERRBLUP and sERRBLUP are compared in 

both univariate and bivariate statistical frameworks in maize dataset derived from 910 doubled 

haploid lines of two European landraces Kemater Landmais Gelb and Petkuser Ferdinand Rot grown 

in six locations in Germany and Spain in the year 2017 for eight phenotypic traits. In the maize 

dataset, pairwise SNP interaction selection based on effect variances is considered as the selection 

criteria due to its robustness compared to selection based on effects sizes in sERRBLUP model. 

Our results indicate the superiority of the sERRBLUP over GBLUP and ERRBLUP in both 

univariate and bivariate statistical settings when selecting the subset of interactions with the 
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highest effect variances. The comparison between univariate and bivariate models also reveals the 

superior predictive abilities of bivariate models over univariate models.  

In chapter 4, we analyze the utility of haplotype blocks in contrast to LD-pruning in the article 

"Bivariate genomic prediction of phenotypes by selecting epistatic interactions across years based 

on haplotype blocks and pruned sets of SNPs". For this, we consider a model in which observations 

of the same trait in different years (2017 & 2018) are considered as two separate traits in a 

multivariate model. This is done in the 873 doubled haploid lines in the respective maize dataset 

in four locations in Germany and Spain in both years 2017 and 2018. The results are in line with 

our finding from the bivariate model when considering two environments as the two separate traits 

indicating the superiority of bivariate sERRBLUP over GBLUP in most cases. Overall, the 

prediction accuracies obtained by LD-pruning and haplotype blocks are similar. However, the use 

of haplotype blocks can significantly reduce the computation time. Moreover, we explore genomic 

correlation, phenotypic correlation and trait’s heritability as three influential factors on bivariate 

model’s predication accuracy. The results illustrate the significance of genomic correlation 

between growing seasons in the bivariate model’s prediction accuracy. Phenotypic correlation and 

heritability of the traits also affect this increase in predictive ability to some extent.  

In this thesis, the main studied trait in the maize dataset is plant height at V4 growth stage (PH_V4) 

and the results for series of other phenotypic traits are presented in supplementary material in 

Chapter 3 and Chapter 4.  

Finally, the general discussion is presented in Chapter 5 in which our proposed selection method 

in sERRBLUP model is compared with other methods of variable selection indicating the 

superiority of our proposed selection method in sERRBLUP. Furthermore, the influential factors 

on the predictive ability of the genomic prediction models are investigated. In this regard, linkage 

disequilibrium based SNP pruning as a potential approach to reduce the number of SNPs in order 

to make the application of epistasis models feasible is shown to result in predictive abilities as 

good as or better than those obtained from utilizing full panel of SNPs. Moreover, the cross 

validation scenario in bivariate statistical settings is shown to be an important factor affecting the 

bivariate models’ predictive abilities. In addition, the level of genotype overlap is found to be 

significantly correlated with the increase in the bivariate model’s predictive ability under the cross 

validation scenario which leads to higher predictive ability. Under the assumption of high level of 

genotype overlap, the genomic correlation is significantly correlated to the bivariate models’ 

predictive abilities for highly heritable traits. Phenotypic correlation is also shown to be an 

influential factor in this context. Finally, incorporating transcriptomic data into epistasis genomic 

prediction models, incorporating weather data into epistasis multi-trait genomic prediction models 

and exploring single-trait and multi-trait epistasis GWAS are proposed as the potential field of 

research and further investigations for future studies in the context of epistasis models.  

 



11 
 

 

Zusammenfassung 

Titel der Arbeit: Berücksichtigung von Epistasie in der genomischen Phänotypvorhersage. 

Die breite Verfügbarkeit genomischer Daten hat einen erheblichen Einfluss auf Pflanzen- und 

Tierzuchtprogramme, da hierdurch Untersuchung von Genotypen und deren Beziehungen zu 

Phänotypen ermöglicht wurden. Die Verbesserung der Genauigkeit genomischer Zuchtwerte ist in 

der Pflanzen- und Tierzucht zu Selektionszwecken von großem Interesse. In der quantitativen 

Genetik berücksichtigen die Standardmodelle additive genetische Effekte, während epistatische 

Effekte aufgrund des damit verbundenen rechentechnischen Aufwands meist ignoriert werden. In 

dieser Arbeit wird die Bedeutung der Einbeziehung von Epistasie-Interaktionen in die genomische 

Vorhersage von Phänotypen untersucht. 

Kapitel 1 enthält eine allgemeine Einführung in die Nutzung genomischer Daten speziell in Tier- 

und Pflanzenstudien sowohl für die Zuchtwertschätzung als auch für die genomische Vorhersage 

von Phänotypen. Anschließend werden verschiedene rein additive und epistatische Modelle zur 

Zuchtwertschätzung dargestellt und die Herausforderungen bei der Berücksichtigung von 

epistatischen Effekten werden detailliert beschrieben. Schließlich werden univariate und 

multivariate Modelle für die genomische Vorhersage von Phänotypen aufgrund ihrer jeweiligen 

Genauigkeiten miteinander verglichen. Die Hauptkapitel dieser Arbeit sind die drei separaten 

wissenschaftlichen Artikel, die in den Kapiteln 2, 3 und 4 vorgestellt werden. 

In Kapitel 2 wird die Phänotypvorhersage unter Epistasie anhand neu entwickelter epistatischer 

Modelle diskutiert, die als "Epistatic Random Regression BLUP“ (ERRBLUP) und "selective 

Epistatic Random Regression BLUP“ (sERRBLUP) bezeichnet werden. Alle Methoden wurden 

im assoziierten R-Paket "EpiGP" implementiert, das in der Lage ist, große Mengen genomischer 

Daten auf rechnerisch effiziente Weise zu verarbeiten. ERRBLUP ist ein vollständig epistatisches 

Modell, das alle paarweisen SNP-Interaktionen enthält, während sERRBLUP ein selektives 

epistatisches Modell ist, das eine Untermenge von paarweisen SNP-Interaktionen enthält, die nach 

ihren absoluten Effektgrößen oder den Effektvarianzen ausgewählt werden. Diese Modelle werden 

mit dem additiven GBLUP-Modell in einem univariaten statistischen Rahmen miteinander 

verglichen. Hierfür wurde der öffentlich verfügbare Weizendatensatz aus dem R-Paket BGLR mit 

simulierten Phänotypen genutzt. Die Ergebnisse deuten darauf hin, dass sERRBLUP im Vergleich 

zu ERRBLUP und GBLUP zu einer erheblichen Steigerung der Vorhersagefähigkeit führt, wenn 

der optimale Anteil an SNP-Interaktionen im Modell berücksichtigt wird. 

Ähnlich wie GBLUP können auch ERRBLUP und sERRBLUP in einem multivariaten Setting 

genutzt werden. Hierzu werden die entsprechenden Modelle in einem bivariaten Setting in Kapitel 

3 in dem Artikel "Accounting for epistasis improves genomic prediction of phenotypes with 

univariate and bivariate models across environments" entwickelt, in dem zwei verschiedene 

Umwelten als zwei getrennte Merkmale im multivariaten Ansatz modelliert werden. In Kapitel 3 

werden GBLUP, ERRBLUP und sERRBLUP sowohl im univariaten als auch im bivariaten 
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statistischen Rahmen in Mais-Datensätzen verglichen, die von 910 doppelhaploiden Linien der 

beiden europäischen Landrassen Kemater Landmais Gelb und Petkuser Ferdinand Rot erzeugt 

wurden, welche im Jahr 2017 an sechs Standorten in Deutschland und Spanien angebaut wurden 

und an denen acht phänotypische Merkmale erfasst wurden. Bei der Anwendung des sERRBLUP-

Modells auf den Maisdatensatz erwies sich die Auswahl von SNP-Interaktionen auf Grundlage 

von Effektvarianzen aufgrund ihrer Robustheit gegenüber der Auswahl auf der Grundlage von 

Effektgrößen als überlegen. Unsere Ergebnisse zeigen die Überlegenheit von sERRBLUP 

gegenüber GBLUP und ERRBLUP sowohl in univariaten als auch in bivariaten statistischen 

Modellen. Der Vergleich zwischen univariaten und bivariaten Modellen zeigt auch die 

überlegenen prädiktiven Fähigkeiten bivariater Modelle gegenüber univariaten Modellen. 

In Kapitel 4 analysieren wir den Nutzen von Haplotypenblöcken anstellen von LD-pruning im 

Artikel “Bivariate genomic prediction of phenotypes by selecting epistatic interactions across 

years based on haplotype blocks and pruned sets of SNPs”. Hierzu betrachten wir ein Modell in 

dem Beobachtungen des gleichen Merkmals in unterschiedlichen Jahren (2017 & 2018) als zwei 

separate Merkmale in einem multivariaten Modell betrachtet werden. Dies geschieht auf 

Grundlage von 873 doppelhaploiden Linien des jeweiligen Maisdatensatzes an vier Standorten in 

Deutschland und Spanien in den Jahren 2017 und 2018. Die Ergebnisse stimmen mit unseren 

Erkenntnissen aus dem bivariaten Modell in der Anwendung auf zwei Umwelten im gleichen Jahr 

überein, die in den meisten Fällen eine Überlegenheit des bivariaten sERRBLUP gegenüber 

GBLUP ergaben. Insgesamt sind die Vorhersagegenauigkeiten, die durch LD-pruning und 

Haplotypenblöcke erzielt werden, ähnlich. Allerdings kann durch die Nutzung von 

Haplotypenblöcken die Rechenzeit deutlich stärker reduziert werden. Darüber hinaus untersuchen 

wir die genomische Korrelation, die phänotypische Korrelation und die Heritabilität des Merkmals 

als drei Einflussfaktoren auf die Genauigkeit der Vorhersage im bivariaten Modell. Die Ergebnisse 

betonen die Bedeutung der genomischen Korrelation zwischen den Jahren für die 

Vorhersagegenauigkeit des bivariaten Modells. Daneben beeinflussen auch die phänotypische 

Korrelation und die Heritabilität der Merkmale die Zunahme der Vorhersagegenauigkeit bis zu 

einem gewissen Grad. 

In dieser Arbeit ist das wichtigste untersuchte Merkmal im Maisdatensatz die Pflanzenhöhe im 

Wachstumsstadium V4 (PH_V4), die Ergebnisse für anderer phänotypischer Merkmale werden im 

Anhang von Kapitel 3 und Kapitel 4 vorgestellt. 

Abschließend wird in der allgemeine Diskussion (Kapitel 5) unsere vorgeschlagene 

Auswahlmethode im sERRBLUP-Modell mit anderen Methoden der Variablenauswahl 

verglichen, was die Überlegenheit unserer vorgeschlagenen Auswahlmethode in sERRBLUP 

nochmals verdeutlicht. Darüber hinaus werden die Einflussfaktoren auf die Vorhersagegenauigkeit 

der genomischen Vorhersagemodelle untersucht. In dieser Hinsicht hat sich gezeigt, dass eine auf 

Kopplungsungleichgewicht basierende SNP Auswahl (LD-pruning) zur Verringerung der Anzahl 

der SNPs eingesetzt werden kann, um die Anwendung von Epistasiemodellen rechentechnisch zu 

ermöglichen. Die damit erhaltenen Vorhersagegenauigkeiten sind vergleichbar oder sogar besser 

als die, die durch die Verwendung eines vollständigen Panels von SNPs erreicht werden. Darüber 
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hinaus wird gezeigt, dass das Kreuzvalidierungsszenario in bivariaten statistischen Ansätzen ein 

wichtiger Faktor für die Abschätzung der Vorhersagefähigkeiten in bivariaten Modellen ist.  

Weiterhin wird gezeigt, dass der Grad der Überlappungen der in den beiden Umwelten 

beobachteten Linien signifikant mit der Zunahme der Vorhersagefähigkeit des bivariaten Modells 

unter dem Kreuzvalidierungsszenario korreliert ist. Unter der Annahme eines hohen Grades an 

Überlappung ist die genomische Korrelation signifikant mit der Güte der Vorhersage des 

bivariaten Modells für Merkmale mit hoher Heritabilität korreliert. Auch die phänotypische 

Korrelation erweist sich in diesem Zusammenhang als relevanter Faktor. Schließlich hinaus 

werden die Einbeziehung von Transkriptomdaten und Wetterdaten in die Vorhersagemodelle 

diskutiert und die Erforschung von epistatischen Modellen für GWAS Analysen als potentielles 

Forschungsgebiet vorgeschlagen.  
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1 Introduction  
 

 

“All models are wrong, but some are useful” 

 George Edward Pelham Box 

 

Modern technologies pave the way for cheaper and easier methods of data collection. Now it is 

data scientists’ turn to extract the information out of the valuable data resources. In this regard, 

genomic data is drawing the attention of human biologists, animal and plant specialists and data 

scientists. Therefore, efficient statistical models are required to investigate and compile the 

information hidden in of these huge amounts of data. Fortunately, developments in computing 

powers and the continuing development of different statistical software packages make the 

application of statistical models feasible for such huge datasets.   

In the context of plant and animal breeding, generation of dense molecular markers has replaced 

the traditional methods based on the pedigree information. Several statistical models have been 

developed over the last decades based on the genomic data in order to increase the statistical 

model’s accuracy and reliability.  

In this chapter, the significance of wide availability of genomic data in human, animal and plant 

studies is reviewed with a focus on how utilization of these genomic data in plant breeding can 

potentially lead to an increase in the accuracy of breeding value prediction and phenotype 

prediction. In this context, additive and epistasis models are reviewed and univariate and 

multivariate statistical settings are compared in their prediction accuracy.     

1.1 Availability of single nucleotide polymorphism (SNP) data 

Genotyping technology took a huge step in its development at the beginning of this century which 

resulted in the wide availability of marker data. New technologies made it possible to obtain 

thousands of SNP as the most common type of genetic variation representing a difference in a 

single nucleotide in an individual’s genome at a reasonable cost by using SNP array with high 

throughput genotyping platform. SNPs are considered to play a major role in the induction of 

phenotypic variations in human, animals and plants (Huq et al., 2016). In the context of plant 

breeding, the discovery and application of SNPs helps to increase the knowledge about genetic 

diversity and gain a better understanding about crops developments (Morgil, 2020). In this regard, 

Illumina (https://www.illumina.com) and Affymetrix (http://www.affymetrix.com) are two world-

wide companies which provide SNP arrays. To illustrate this, Barley 9K illumine array (Comadran 

et al., 2012), Maize 50K illumine array (Ganal et al., 2011), 600K Affymetrix® Axiom® Maize 

https://www.illumina.com/
http://www.affymetrix.com/
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Genotyping Array (Unterseer et al., 2014), 600K Affymetrix® Axiom® SNP genotyping array for 

chicken (Kranis et al., 2013) are some of low and high density genotyping arrays. 

1.2 Genomic breeding value prediction 

Genomic breeding value prediction is an important tool in improving the livestock species genetics 

based on the relationship between the individuals. This enables estimating the proportion of 

phenotypic variance which is heritable (Calus, 2010). In fact, the animals’ and plants’ important 

economic quantitative traits have been selected traditionally from their phenotypic records and 

their relatives’ phenotypic records in order to be the parents of the next generation. These 

phenotypic data were used to estimate breeding values through best linear unbiased prediction 

(BLUP, Henderson, 1984) which was initially introduced by Henderson in 1975 (Henderson, 

1975) resulting in a milestone in breeding models’ development. In fact, the application of BLUP 

in the context of linear mixed model originated from Henderson’s work in 1950s (Henderson et 

al., 1959). In this framework, linear mixed model random terms are assumed to be multivariate 

normally distributed and the covariance structures are predetermined by measuring the relationship 

between individuals (Henderson et al., 1959). Therefore, the maximum achievable reliability of 

breeding value estimation through BLUP was obtained by using pedigree information across many 

generations and phenotypic data from individuals or their relatives (Henderson, 1975).  

Breeding value estimation is based on a covariance matrix describing the (additive) relationship 

between the individuals in the population (Henderson, 1984). This additive relationship matrix can 

be constructed from pedigree information which has been collected over multiple generations 

(Hayes and Goddard, 2008). However, the pedigree information might not be always available or 

complete in plants and livestock population. Therefore, a reliable alternative approach is required. 

In 2001, the dense marker set was proposed to predict breeding values which revolutionized animal 

breeding by replacing the pedigree based prediction of breeding values (Meuwissen et al., 2001). 

Marker information is used as an alternative to infer relationships instead of pedigree to construct 

the additive relationship matrix for breeding value prediction (Hayes and Goddard, 2008). A single 

step approach also has been proposed to construct the relationship matrix based on the combination 

of both available pedigree and genotypic information (Legarra et al., 2014). 

In fact, genomic selection which plays an important role in plant and animal breeding (Burgueño 

et al., 2012) requires breeding value estimation of selection candidates, and its potential benefits 

rely on the accuracy of breeding value estimation (Wolc et al., 2011) and reducing the generation 

interval (Schaeffer, 2006). In this regard, the accuracy of estimated breeding values when using 

pedigree and high density SNP genotypes was compared. The use of dense marker sets potentially 

results in more accurate breeding value estimation, since they can capture past relationships which 

are not in the pedigree (Hayes and Goddard, 2008). This fact led to a rapid development of genomic 

selection tools during the first decade of 21st century (Wolc et al., 2011). In this context, several 

BLUP models have been proposed utilizing inclusion of marker information (Meuwissen et al., 
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2001). Genomic best linear unbiased prediction (GBLUP) has been proposed in this regard by 

constructing an additive genomic relationship matrix (VanRaden, 2008). 

Overall, several studies indicate that the reliability of breeding value estimation is enhanced by the 

usage of marker based relationship matrices in breeding value prediction (Meuwissen et al., 2001; 

VanRaden, 2007; Hayes and Goddard, 2008). This is due to the fact that quantitative traits as the 

most prevalent form of traits in plant and animal breeding are usually affected by a high number 

of quantitative trait loci (QTL) (Meuwissen et al., 2001). Hundreds of QTLs as the gene loci which 

contribute to the specific trait’s variation are assumed to influence most of the quantitative traits 

in which their location and their contribution to the genetic variation are unknown. However, 

mapping the QTLs can be done by linkage to the polymorphic marker loci such as molecular 

polymorphisms (Mackay et al., 2009). Therefore, utilizing marker information from high density 

SNP genotyping was shown to increase the prediction accuracy of breeding values, which helps 

selecting the young animals with higher breeding values as the parents of the next generation in 

addition to shortening the generation intervals as an application of genomic selection (Meuwissen 

et al., 2001; Daetwyler et al., 2007; Wolc et al., 2011).  

1.3 Genomic prediction of phenotypes 

The World Summit on Food Security declared that by 2050 an increase of 70 to 100 percent in the 

level of food production is predicted to be essential for food security. However, increasing world 

food production is challenging especially due to the increasing population and climate change 

(Tester and Langridge, 2010; Hickey et al., 2017). The 20th century faced hunger as a poverty 

problem rather than absolute food scarcity (Koning et al., 2008). Therefore, using new 

technologies to increase food production to meet the food demand for the increasing population is 

of special importance (A. Montesinos-López et al., 2018). In this context, livestock and crop 

breeding is one of the efficient ways to increase food production. Plant breeding needs to utilize 

efficient selection strategies to increase yields in different environments (Tester and Langridge, 

2010).   

Enhancing genetic gain – defined as the amount of increase in performance which is achieved 

annually through artificial selection – as one of the important concepts in conventional quantitative 

genetics and breeding is essential to fill the gap between the growing population food demand and 

food production (Xu et al., 2017). In this regard, phenotype prediction is the core of genetic 

improvement in crop breeding. Utilizing genomic information in order to predict new potential 

genotypes which are superior in yield performance is of special interest for plant breeders. In fact, 

the phenotypic and genomic information can be used for predicting own phenotypic performance 

as well as breeding value prediction (Calus, 2010) which is significantly important in breeding 

programs. Plant breeders’ interest in genomic prediction of phenotypes is focused on predicting 

phenotypic trait performance for different genotypes for selection purposes rather than accurately 

predicting phenotypic trait for individual genotypes within environments. Therefore, genomic 
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prediction of phenotypes is required in breeding programs for genomic improvement of complex 

traits such as yield (Hammer et al., 2019).   

In fact, phenotype prediction plays an important role in wide variety of fields of life science from 

artificial selection programs (Meuwissen et al., 2001) to risk prediction in human medicine (Wray 

et al., 2007). In plant and animal breeding, phenotype prediction of lines and individuals has been 

widely developed (Crossa et al., 2010; Daetwyler et al., 2013; de los Campos, Hickey, et al., 2013) 

as well as human health related traits (Wray et al., 2007; de los Campos et al., 2010). In plant 

breeding, genotyping costs have decreased in the last 20 years, whereas phenotyping is still one of 

the bottlenecks in breeding programs which requires optimization or minimization of costs 

(Akdemir and Isidro-Sánchez, 2019). Therefore, maximization of genomic prediction accuracy not 

only will help genomic improvement in plant breeding but will also lead to reduction in 

phenotyping costs which gives the genomic prediction of phenotypes considerable importance in 

breeding programs. 

Understanding how genetic variation causes phenotypic variations of quantitative traits is a major 

challenge of contemporary biology. Therefore, the development of a genomic prediction model 

which can capture the genetic variation of phenotypes results in more accurate phenotype 

prediction. In this regard, the variation of observed phenotypes has shown to be caused by many 

loci and most single SNPs only have a small effect on phenotype. Consequently, phenotypic 

variation should be captured by combining the effects of multiple SNPs; and the proper models 

which help to find the set of SNPs best explaining and predicting the phenotypic variation have to 

be selected (Lee et al., 2008). In this context, wide availability of dense markers brings new 

opportunities and challenges on how to include this information in the statistical phenotype 

prediction models (de los Campos et al., 2009) to model the relationship between genome wide 

marker data and phenotypes (Lee et al., 2008).  

Several studies have been conducted based on whole genome prediction methods in which their 

performance has been positively evaluated (Wray et al., 2007; de los Campos et al., 2010; Ober et 

al., 2012; de los Campos, Hickey, et al., 2013; Liu et al., 2019). One of the first applications of 

genomic prediction of phenotypes by whole genome sequence data was for starvation stress 

resistance and startle response in Drosophila melanogaster using approximately 2.5 million SNPs 

(Ober et al., 2012). This was done by GBLUP using a genomic relationship matrix constructed 

from SNP data indicating a potential benefit of sequence based phenotype prediction (Ober et al., 

2012). Using all markers simultaneously rather than considering only significant marker-trait 

associations for genomic prediction of phenotypes (Windhausen et al., 2012) was successfully 

implemented in Holstein and Jersey dairy cattle (Goddard and Hayes, 2009; Hayes, Bowman, et 

al., 2009; Habier et al., 2010), plant breeding (Lorenzana and Bernardo, 2009; Windhausen et al., 

2012) and human diseases (Daetwyler et al., 2008) which indicates an improvement in prediction 

accuracy. Two examples of this approach are: Accurate prediction of maize grain yield based on 

whole genome regression models (Millet et al., 2019) and prediction of unobserved phenotypes 

based on all genomic information (SNP) across the whole genome simultaneously reported to be 

significantly better than prediction based on the close relatives’ phenotypes (Lee et al., 2008). 
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In plant and animal breeding, genomic selection utilizes phenotype prediction of quantitative traits 

based on all markers to enhance phenotypic traits in breeding populations which increase breeding 

efficiency (Liu et al., 2019). Accurately predicting complex phenotypic traits based on genotype 

data will revolutionize plant and animal breeding and will also result in personalized medicine 

(Ober et al., 2012). Therefore, the importance of genomic prediction of phenotypes as a tool in 

genomic selection in animal and plant breeding (Meuwissen et al., 2001), disease risk prediction 

(Vazquez et al., 2012; de los Campos, Hickey, et al., 2013; Wray et al., 2013) and personalized 

medicine (Burke and Psaty, 2007; Bielinski et al., 2014) is undeniable. 

The accuracy of genomic prediction of phenotypes can be affected by many factors. Heritability 

of the desired trait is one of the important factors which influences the accuracy of phenotype 

prediction. Traits with low heritabilities will never have accurate prediction of unobserved 

phenotypes from genetic data even if genetic effect is predicated with 100 percent accuracy (Lee 

et al., 2008). The genetic architecture of the complex trait defined as a genotype-phenotype 

relationships that includes the loci contributing to phenotypic variation is another factor which 

could be influential in the accuracy of genomic prediction of phenotypes (Lee et al., 2008; Momen 

et al., 2018). However, the traits which are relevant for breeding programs have different genetic 

architectures, most of which remain unknown. Therefore, it is important to search for a prediction 

model which is robust and stable (Momen et al., 2018). Studies indicate that under additive gene 

action, parametric prediction models such as GBLUP (VanRaden, 2008; Habier et al., 2013), ridge 

regression BLUP (rrBLUP) (Meuwissen et al., 2001; Endelman, 2011), Bayesian ridge regression 

(BRR) (Gianola et al., 2003; Zou and Hastie, 2005; de los Campos et al., 2009), BayesA 

(Meuwissen et al., 2001; Habier et al., 2011), BayesB (Meuwissen et al., 2001; Habier et al., 

2011), and BayesC (Meuwissen et al., 2001; Habier et al., 2011) outperformed non parametric 

ones and under epistasis gene action non parametric models such as reproducing kernel Hilbert 

space regression (RKHS) (Gianola et al., 2006; Gianola and van Kaam, 2008; de Los Campos et 

al., 2010) outperformed parametric models (Momen et al., 2018).  

1.4 Mixed models 

Mixed models are the models which consider both fixed and random effects. Fixed effects are 

unknown constants and random effects are the values which are drawn from an underlying 

distribution. This distribution is often considered as a normal distribution with mean zero and an 

unknown variance. From the statistical point of view, fixed effects will be estimated, while random 

effects will be predicted. Mixed models make it possible to predict random effects by using the 

genomic covariance between the observations (Walsh and Lynch, 2018). The standard mixed 

model is given by 

𝒚 = 𝑿𝜷 + 𝒁𝒂 + 𝝐    , 

where 𝒚 is a vector of observation of size 𝑛, 𝜷 is an unknown fixed effects vector of size 𝑞 for 𝑞 

fixed effects, 𝒂 is an unknown random effects vector of size 𝑝 for 𝑝 random effects and 𝝐 is a 
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residual vector of size 𝑛. 𝑿 is a known design matrix of dimension 𝑛 × 𝑞 which is associated with 

fixed effects and 𝒁 is an incidence matrix of dimension 𝑛 × 𝑝 which is associated with random 

effects. The two random vectors 𝒂 and 𝝐 are independent of each other with the mean equal to zero 

and the unknown variance of 𝑨𝜎𝑎
2 and 𝑰𝜎𝑒

2, respectively. 𝑨 is a known matrix of dimension 𝑛 × 𝑛 

giving the covariance between the individuals and 𝑰 is a diagonal matrix of dimension 𝑛 × 𝑛 with 

ones for the diagonal and zeros for off diagonal indicating that residuals are uncorrelated.  

Based on the mixed model, any number of fixed effects such as environmental factors can be 

accounted for, which leads to more accurate prediction of an individual’s breeding value and 

estimation of a population’s genetic response (Walsh and Lynch, 2018).  

Henderson (1975) suggests BLUP in which residuals are assumed to be identically and 

independently distributed, while the random effects vectors have a more complicated structure in 

which their covariance structure need to be specified. In animal and plant breeding, the random 

effects vector represents the breeding values and the covariance matrix 𝑨 is the relationship matrix 

whose elements are given by pedigree structure. Therefore, Henderson’s mixed model equation 

(Henderson, 1975) is given by 

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝝀𝑨−𝟏] [𝜷̂

𝒂̂
] = [

𝑿′𝒚

𝒁′𝑿
] 

where 𝜆 = 𝜎𝑒
2 𝜎𝑎

2⁄  and 𝐴  is the pedigree based relationship matrix of dimension 𝑛 × 𝑛 . 

Meuwissen, et al. (2001) proposed using a genome wide dense marker for prediction of genetic 

value, so that the relationship matrix could be estimated from dense marker information instead of 

pedigree information.  

The BLUP selection which is used in the mixed model aims to find the individuals who possess 

the highest estimated breeding values in order to use them as the parents of the next generation. 

This is the main way of selection used by animal breeders and also plant breeders who are working 

with outcrossing species (Walsh and Lynch, 2018). 

1.5 Additive genomic prediction models 

Breeding values are additive by definition (Falconer and Mackay, 1996), so that the early 

developments of prediction methods, which took place in dairy cattle breeding to select sires with 

high breeding values, exclusively accounted for the additive effects underlying relevant 

quantitative traits (Schaeffer, 2006; VanRaden, 2007; Filho et al., 2016). Additionally, phenotypic 

variation has been shown to be caused mostly by additive genetic variation (Hill et al., 2008; Mäki-

Tanila and Hill, 2014). In this context, GBLUP and Bayesian regressions have been the most 

commonly used models among additive genomic prediction models (de los Campos, Hickey, et 

al., 2013).  
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GBLUP (Meuwissen et al., 2001; VanRaden, 2007) is the widely used prediction method 

considered as a linear mixed model which assumes additive marker effects (Da et al., 2014; 

Rönnegård and Shen, 2016; Covarrubias-Pazaran et al., 2018). The GBLUP model is given by 

𝒚 = 𝟏𝜇 + 𝒁𝒈 + 𝝐   

where 𝒚 is a vector of phenotypes of size 𝑛, 𝟏 is a vector of ones of the same size as 𝒚, 𝜇 is an 

unknown population mean considered as a fixed effect, 𝒁 is a diagonal matrix of dimension 𝑛 ×

𝑛, 𝒈 is an unknown vector of breeding values of size 𝑛 considered as the random effect which is 

normally distributed with mean zero and variance 𝑮𝜎𝛽
2, and 𝝐 is a vector of errors of size 𝑛 which 

is derived from identically and independently normal distribution of mean zero and variance 𝑰𝜎𝑒
2. 

𝑮 is a genomic relationship matrix of dimension 𝑛 × 𝑛 and 𝑰 is an identity matrix of the same 

dimension as 𝑮. It is also assumed that 𝒈 and 𝝐 are independent. 

Therefore, GBLUP uses relationships between individuals in a genomic relationship matrix 𝑮 

which is calculated from SNPs to estimate breeding values. The VanRaden (2008) relationship 

matrix which is utilized in GBLUP model is given by 

𝐆 =
(𝑴 − 𝑷)(𝑴 − 𝑷)′

2 ∙ ∑ (𝑝𝑖(1 − 𝑝𝑖))𝑚
𝑖=1

, 

where 𝑴 is a marker matrix of dimension 𝑛 × 𝑝 which gives 𝑝 marker values for 𝑛 lines, 𝑷 is the 

matrix of the same dimension as 𝑴  with 2 ∙ 𝑝𝑖  in the 𝑖𝑡ℎ  column, and 𝑝𝑖  represents allele 

frequency of minor allele of SNP 𝑖.  

Therefore, the population mean and breeding values are estimated by 

[
𝝁̂
𝒈̂

] = [
𝟏′𝟏
𝒁′𝟏

   
𝟏′𝒁

𝒁′𝒁 + 𝜆𝐺𝐵𝐿𝑈𝑃𝑮−𝟏 ]
−𝟏

[
𝟏′𝒚

𝒁′𝒚
] 

where 𝜆𝐺𝐵𝐿𝑈𝑃 = 𝜎𝑒
2/𝜎𝑔

2 . Based on this equation, the breeding values are estimated for all 

phenotyped lines and predicted for unphenotyped lines based on their genotypes used to construct 

the 𝐆 matrix.  

rrBLUP (Meuwissen et al., 2001; Endelman, 2011) is another additive genomic prediction model 

given by 

𝒚 = 𝟏𝜇 + 𝑾𝒔 + 𝝐 

where 𝒚, 𝟏, 𝜇 and 𝝐 are as defined in GBLUP, 𝑾 = 𝑴 − 𝑷 and 𝒔 is an unknown vector of marker 

effects of size 𝑛 considered as a random effect which is identically and independently normally 

distributed with mean zero and variance 𝑰𝜎𝑠
2. With this, the equation is solved by 

[
𝝁̂
𝒔̂

] = [
𝟏′𝟏
𝑾′𝟏

   
𝟏′𝑾

𝑾′𝑾 + 𝜆𝑅𝑅𝐵𝐿𝑈𝑃𝑰
 ]

−𝟏

[
𝟏′𝒚

𝑾′𝒚
] 
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Where 𝜆𝑅𝑅𝐵𝐿𝑈𝑃 = 𝜎𝑒
2/𝜎𝑠

2. By solving this equation 𝒔̂ is given by 

𝒔̂ =
𝜎̂𝑔

2

2. ∑ (𝑝𝑖
∗(1 − 𝑝𝑖

∗))𝑚∗ 
𝑖=1

𝑾′(𝜎̂𝑔
2𝑮 + 𝜎̂𝜖

2𝑰)
−1

(𝒚 − 𝟏𝜇 ̂) 

And the variance of 𝒔̂ is given by 

𝜎̂𝑠
2 = (𝒔̂ ∘ 𝒔̂)2𝑷(1 − 𝑷) 

with ∘ denoting the Hadamard product. Therefore, SNP effects can be estimated based on rrBLUP 

model.  

GBLUP which computes additive genetic merit based on the genomic relationship matrix was 

shown to be equivalent to rrBLUP (Habier et al., 2007; Goddard et al., 2009; Tan et al., 2017). 

Therefore, the breeding values can also be estimated based on SNP effects using 𝒈̂ = 𝑾𝒔̂ and the 

variance component 𝜎𝑔
2 can also be estimated by  

𝜎̂𝑔
2 = 2 × ∑ 𝑝𝑖(1 − 𝑝𝑖).

𝑝

𝑖=1

𝜎̂𝑠
2 

Moreover, Bayesian methods (Meuwissen et al., 2001; Habier et al., 2011; Wang et al., 2018) such 

as “Bayesian Alphabet” (Gianola et al., 2009; Gianola, 2013) and Bayesian Lasso (Park and 

Casella, 2008) are also utilized as additive genomic prediction models which consider markers as 

random effects and offer the flexibility of using different priors. Tsai et al. (2020) showed that 

Bayesian Lasso provides higher accuracy than rrBLUP for powdery mildew and yield traits in 

spring barley, while they had similar prediction accuracies for yield traits in winter wheat. 

Daetwyler et al. (2010) have compared GBLUP and Bayes B in three different effective population 

sizes including a wide range of numbers of additive quantitative trait loci (QTLs). Their study 

indicated that GBLUP has s stable accuracy regardless of the number of QTLs, while Bayes B 

outperformed GBLUP only when the number of QTLs was small. Karaman et al. (2016) also 

compared GBLUP with Bayes B and Bayes C in human height prediction indicating that in the 

small reference population size (< 6,000 individuals) Bayes B and Bayes C show no advantage 

over GBLUP, while including more individuals in the reference population results in the 

superiority of Bayes B and Bayes C over GBLUP. Overall, GBLUP is superior in computing speed 

to Bayesian method and hard to beat in prediction accuracy for complex traits (Wang et al., 2018) 

and it is found perform well for the traits with mostly additive genetic background (Ober et al., 

2012; Momen et al., 2018). 

In this thesis, GBLUP as an additive genomic prediction model with its predictive ability is 

considered as a reference compared to which the proposed models try to increase the predictive 

ability (chapter 2, chapter 3 and chapter 4).  
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1.6 Epistasis genomic prediction models 

Based on the theory and data, additive genetic variance has shown to be the main source of genetic 

variation (Hill et al., 2008; Bloom et al., 2013, 2015). However, most of the biological traits have 

been shown to be influenced by a complex interplay between multiple genes (Forsberg et al., 

2017). This contradiction between the biological complexity of the quantitative traits and 

observation of additive genetic variance capturing most of genetic variation led to a lot of debates 

in genetics. In fact, many traits of different species show heritable variation in which most of them 

have complex inheritance patterns with multiple underlying genetic factors (Mackay et al., 2009; 

Hill, 2010). Therefore, discovering these factors in humans, in model organisms and in 

agriculturally important species is receiving special attention in genetic research (Buckler et al., 

2009; Atwell et al., 2010; Aylor et al., 2011; Mackay et al., 2012). Many loci which have been 

discovered for a wide range of traits typically explain a minority of each trait’s heritability and 

indicate the existence of other undiscovered genetic factors considered to be the sources of missing 

heritability (Manolio et al., 2009). 

Epistasis as a non-additive interaction between loci can be a potential reason for the gap between 

the complex trait’s heritability and the identified genetic loci’s variation (Zuk et al., 2012; Hemani 

et al., 2013; Brown et al., 2014). “Epistasis” was first coined by Bateson in the studies of 

multilocus genotype-phenotype maps by which he figured out that the effects of one locus’ alleles 

could be masked by the other loci’s alleles (Bateson, 1909). Epistasis is defined as the gene-gene 

interactions by which the additive effect of a single locus is changed by the additive effect of the 

interacting locus such that the estimated effects of a single interacting locus will be different 

between populations with different allele frequencies (Mackay, 2014). Several studies were 

conducted to shed light on the role of epistasis in genetic variation of complex traits (Cheverud 

and Routman, 1995; Carlborg and Haley, 2004; Nelson et al., 2013; Mackay, 2014; Forsberg et 

al., 2017).   

The identifiable fractions of human gene expression were demonstrated to be explained by 

epistasis, while this has proven to be more difficult in human complex traits compared to model 

organisms. This can result from larger number of possible interactions which have to be tested in 

the human genome and also from the different genetic architecture in a homogeneous outbred 

population compared to crossbreeding between inbred lines (Brown et al., 2014). In model 

organisms epistasis has been detected (Mackay, 2014) and experiments have reported a large 

number of genetic interactions underlying important biological traits (Forsberg et al., 2017). Many 

studies have highlighted the importance of epistasis in the genetic architecture of traits in model 

organisms (Fisher, 1930; Wright, 1931; Carlborg and Haley, 2004; Hill et al., 2008; Huang et al., 

2012; Mackay, 2014). Rice yields have also seen to be affected by significant interactions between 

variants (Huang et al., 2014) as well as metabolic traits in Yeast (Wentzell et al., 2007). It has been 

found that accounting for epistasis improves phenotype prediction of quantitative traits in Yeast 

(Forsberg et al., 2017). In fact, epistasis seems to be the most prevalent form of genetic architecture 

of quantitative traits (Flint and Mackay, 2009; Huang et al., 2012). 
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The significance of epistasis is undeniable but its use faces some challenges. Mapping epistasis is 

experimentally, statistically and computationally challenging due to high number of interactions 

which have to be evaluated. Experimental challenges are caused by requiring large sample sizes 

for detecting significant interactions and sampling the landscape of possible genetic interactions. 

Statistical challenges are due to testing multiple hypothesis and computational challenges are 

caused by a high number of tests having to be evaluated (Mackay, 2014). In fact, epistasis can be 

represented as any statistical interaction between genotypes at two or more loci (Cheverud and 

Routman, 1995; Falconer and Mackay, 1996; Lynch and Walsh, 1998) influencing the additive 

and/or dominance effects of the interacting loci. In quantitative traits, epistasis interaction can 

influence the effects’ magnitude by which a single locus phenotype can be enhanced or suppressed 

by the other locus genotype, or it can influence the effects’ direction. Without considering 

epistasis, the additive and dominance effects’ estimates at each locus remain the same regardless 

of the genotype of the other locus, whereas the effects of one locus rely on the genotype of its 

interacting locus when considering epistasis (Mackay, 2014).  

Among the genomic prediction models for modeling epistasis, RKHS as non-parametric models 

(Gianola et al., 2006; Gianola and van Kaam, 2008; de Los Campos et al., 2010) and extended 

genomic best linear unbiased prediction (EG-BLUP) reduces the required computational load 

(Jiang and Reif, 2015; Martini et al., 2016). RKHS model based on Gaussian kernel were shown 

capable of capturing the epistasis effects (de Los Campos et al., 2010). Some studies which were 

conducted in wheat and maize datasets indicated that RKHS and EG-BLUP have similar predictive 

abilities (Crossa et al., 2010; Jiang and Reif, 2015; Martini et al., 2016).  

EG-BLUP is based on the epistasis relationship matrix given by 

𝒚 = 𝟏𝜇 + 𝒈𝟏 + 𝒈𝟐 + 𝝐   

where 𝒚 is a vector of phenotypes of size 𝑛, 𝟏 is a vector of ones of the same size as 𝒚, 𝜇 is the 

unknown population mean considered as the fixed effect, 𝒈𝟏 is the random effect vector of additive 

genotypic values of size 𝑛 which has a normal distribution with mean zero and variance 𝑮𝜎1
2, 𝒈𝟐 

is the random effect vector of additive-by-additive epistasis genotypic values of size 𝑛 which has 

a normal distribution with mean zero and variance 𝑯𝜎2
2, and 𝝐 is an errors vector of size 𝑛 which 

driven from identically and independently normal distribution of mean zero and variance 𝑰𝜎𝑒
2. It 

is assumed that 𝒈𝟏, 𝒈𝟐 and 𝝐 are independent. 𝑮 is an additive relationship matrix is calculated by 

VanRaden (2008) which was fully described in GBLUP model (section 1.5). Henderson, (1985) 

proposed the Hadamard product of the additive relationship matrix by itself as the epistasis 

relationship matrix 𝑯. Based on the additive genomic relationship matrix 𝑮 this is given by 𝑯 =

𝑮 ∘ 𝑮. 

EG-BLUP can also be given by 

𝒚𝒊 = 𝜇 + ∑ 𝑀𝑖,𝑗𝛽𝑗
𝑝
𝑗=1 + ∑ ∑ 𝑀𝑖,𝑗

𝑝
𝑗=𝑘 𝑀𝑖,𝑘ℎ𝑗,𝑘

𝑝
𝑘=1 + 𝝐𝒊   
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where incorporates the product of marker values with itself as a predictor variable in which 𝑀𝑖,𝑗 is 

the 𝑗𝑡ℎ marker value of the 𝑖𝑡ℎ line, 𝛽𝑗 is an unknown vector of additive marker effects of size 𝑛 

which are identically and independently normally distributed with mean zero and variance 𝜎𝛽
2 and 

ℎ𝑗,𝑘  is an unknown vector of epistasis marker effects of size n which are also identically and 

independently normally distributed with mean zero and variance 𝜎ℎ
2.  

With this, EG-BLUP was shown to exhibit coding-dependent performance indicating that different 

marker coding lead to different prediction accuracies (He et al., 2015; He and Parida, 2016), since 

the choice of marker coding specifies how the effects of specific allele combinations at different 

locus are to be captured for phenotype prediction. Martini et al. (2017) discussed this undesirable 

feature of EG-BLUP and compared different marker coding prediction accuracies indicating that 

the symmetric coding {−1, 1}  or {−1, 0, 1}  lead to the highest accuracy in EG-BLUP and 

standardization by allele frequencies should be avoided (Martini et al., 2017).   

The Categorical Epistasis model (CE) was then proposed by Martini et al. (2017) which eliminates 

the undesirable features of EG-BLUP. The CE model treats marker data as a categorical variable, 

not as a numerical value with modeling allele combination effects as independently normally 

distributed variable with mean zero. The CE model introduces a dummy variable {0, 1} by which 

the presence of each combination of alleles of two loci is indicated. This results in an increase in 

the number of variables in the model. Martini et al. (2017) showed that CE can be a valuable 

alternative for EG-BLUP, since it does not possess the undesired properties of EG-BLUP and also 

its predictive ability is comparable to EG-BLUP with symmetric coding indicating very high 

closeness. 

Overall, a full epistasis model with all pairwise SNP interactions faces high computational load 

due to high number of interactions (Rönnegård and Shen, 2016) in addition to the difficult 

inference of biological interpretations due to over-parametrization. This can introduce a large 

number of unimportant variables into the model (Martini et al., 2016) which might prevent a 

considerable gain in prediction accuracy. However, Martini et al. (2016) showed that a subset of 

epistasis interactions with the largest absolute interaction effects sizes has the potential to increase 

the prediction accuracy. 

In this thesis two epistasis models were developed: Epistatic Random Regression BLUP 

(ERRBLUP) as a full epistasis model which incorporates all pairwise SNP interactions (chapter 2, 

chapter 3 and chapter 4); and selective Epistatic Random Regression BLUP (sERRBLUP) as a 

selective epistasis model which incorporates a subset of pairwise SNP interactions selected based 

on their absolute effects sizes (chapter 2) or effect variances (chapter 3 and 4). ERRBLUP and 

sERRBLUP are considered as CE models and their predictive abilities are compared to GBLUP. 
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1.7 Univariate and multivariate genomic prediction models  

In animal and plant breeding programs, multi-trait and multi-environment data are quite common. 

Therefore, powerful statistical models are required to use these data and exploit the correlation 

between the traits to improve the prediction accuracy for genomic selection purposes (Montesinos-

López et al., 2018).  

Genomic prediction models can be classified into two main categories of univariate models and 

multivariate models based on the number of desired traits to be analyzed. The univariate models 

are designed to predict a single phenotypic trait, while the multivariate models as multi-trait and 

multi-environment models are designed to predict multiple phenotypic traits simultaneously. 

Utilizing multi-trait models helps to capture the complex relationships between the traits more 

efficiently than univariate models and mostly results in more accurate prediction. Multi-trait 

models have been recently more popular in genomic selection due to their capacity of predicting 

multiple traits concurrently and the ability to increase the prediction accuracy compared to 

univariate models when the genetic correlation between the traits is high (Jia and Jannink, 2012; 

Jiang et al., 2015; Montesinos-López et al., 2018). Multi-trait models mostly provide higher 

prediction accuracy for correlated traits compared to univariate models (He et al., 2016; Schulthess 

et al., 2018), although some studies reported just a modest increase in their prediction accuracy 

(Calus and Veerkamp, 2011; Montesinos-López et al., 2016).  

Henderson and Quaas (1976) proposed the first application of mixed models for multi-trait 

evaluation. Multi-trait models were initially proposed in animal breeding to model genetic 

correlation among traits and to model genotype by environment interactions across multiple years 

or environments (Mrode, 2014; Lee and van der Werf, 2016). The initial multivariate models 

which were applied to plant and animal species were based on available pedigree information to 

infer relationships among individuals and traits in mixed model framework (Mrode, 2014). 

However, the wide availability of dense molecular markers led to a replacement of the limited 

pedigree information to construct genomic relationship matrices resulting in new options for 

analyzing crops with restricted pedigree information (Endelman and Jannink, 2012). Velazco et 

al. (2019) reported an improvement in predictive ability of multi-trait GBLUP compared to single-

trait GBLUP in sorghum. Their study illustrated that multi-trait GBLUP increases the predictive 

ability of grain yield up to 16 percent by including plant height information into a multi-trait 

GBLUP model. This might be due to the strong genetic correlation between grain yield and plant 

height in sorghum hybrids (Velazco et al., 2019). Covarrubias-Pazaran et al. (2018) also showed 

that under medium or high genetic correlation, multivariate GBLUP exhibited higher accuracy 

than univariate GBLUP. 

In plant breeding, one of the breeders’ major challenges is the difference in genotype performance 

from one environment to the other environments which is known as 𝑮 × 𝑬 interaction (Kang and 

Gorman, 1989). Multi-environment models are usually employed to assess 𝑮 × 𝑬 interaction for 

a single trait when the information on multiple genotype is recorded in multiple environments 

(Montesinos-López et al., 2016; Hassen et al., 2018). Inclusion of 𝑮 × 𝑬 interaction in genomic 
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prediction models help selection of lines with optimal overall performance across target 

environments in genomic selection context (Roorkiwal et al., 2018).  

Several statistical models have been used to estimate 𝑮 × 𝑬 interaction in plant breeding such as 

linear regression, Analysis of Variance (ANOVA) models and linear mixed models (Elias et al., 

2016). Incorporating genotype × environment (𝑮 × 𝑬)  interaction into additive genomic 

prediction models in multi environment analysis has been reported to be potentially successful in 

increasing predictive ability (Hallauer et al., 2010). Burgueño et al. (2012) proposed the first 

statistical framework to model 𝑮 × 𝑬 using a linear mixed model for genomic prediction so that 

the single-trait, single-environment GBLUP model was extended to the multi-environment 

context. This approach was based on borrowing information across environments which resulted 

in higher prediction accuracy (Burgueño et al., 2012). Days to heading, and days to maturity in 

Iranian and Mexican wheat landraces in drought and heat environments has been evaluated by 

Crossa et al. (2016) which indicated that inclusion of 𝑮 × 𝑬 interaction in genomic prediction 

model lead to substantial and consistent increase in prediction accuracy compared to models 

without the 𝑮 × 𝑬  term. Inclusion of 𝑮 × 𝑬  interaction in a whole regression approach also 

leading to accurate prediction of maize yield (Millet et al., 2019), and the highly significant effect 

of 𝑮 × 𝑬 interaction on grain yield for single cross maize hybrids across environments with low 

and optimum availability of nitrogen in the soil (Mafouasson et al., 2018) are some examples of 

multi environment models. Moreover, multi-environment analysis can also be utilized for multi-

year analysis in the scenario of changing environmental conditions (Elias et al., 2016). In fact, 

gathering phenotypic data over the years to predict the lines in the upcoming years is a potential 

approach to increase the prediction accuracy, such as including historical phenotypic data in 

genomic prediction of hybrids in grain maize which has shown to increase its prediction accuracy 

(Schrag et al., 2019a).  

Additionally, Martini et al. (2016) showed the feasibility of borrowing information across 

environments in EG-BLUP without incorporating additional terms such as 𝑮 × 𝑬 interaction into 

the epistasis genomic prediction model. This method resulted in an increase in predictive ability 

in one environment by variable selection in the other environment under the assumption of positive 

correlation of phenotypes in different environments which was demonstrated with the publicly 

available wheat data set (Pérez and de los Campos, 2014). 

Overall, in the context of crop and livestock breeding, developing efficient selection strategies and 

powerful statistical models with higher prediction accuracy for which the costly and time 

consuming phenotyping of numerous selection candidates in multiple environment could be 

mitigated deserves special attention. 

In this thesis, GBLUP, ERRBLUP and sERRBLUP models have been compared in their predictive 

abilities in the univariate statistical framework for the simulated phenotypes from genotypes of the 

publicly available wheat dataset (Pérez and de los Campos, 2014) (chapter 2). We further 

compared GBLUP, ERRBLUP and sERRBLUP models in both univariate and bivariate statistical 

frameworks for prediction across environments in 910 doubled haploid lines from European maize 
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landraces Kemater Landmais Gelb and Petkuser Ferdinand Rot in six locations in Germany and 

Spain for series of eight phenotypic traits gathered in the year 2017 (Chapter 3). Bivariate GBLUP, 

ERRBLUP and sERRBLUP models have been finally compared for prediction across years in the 

maize dataset in four locations in Germany and Spain by modeling the years 2017 and 2018 as two 

separate traits in in multi-trait model (chapter 4).   
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2 Phenotype prediction under epistasis 

 

 

This chapter contains the manuscript “Phenotype prediction under epistasis” which has been 

published as a chapter of the book “Epistasis: Methods and Protocols” (Vojgani et al., 2021). In 

order to have uniform style in the thesis, the journal style is not used in this chapter. 

This manuscript is the joint work of Elaheh Vojgani1*, Torsten Pook2 and Henner Simianer 1 which 

is focused on developing epistasis models in univariate statistical framework and implementing in 

the associated R-Package “EpiGP” (Vojgani et al., 2019) which is available at: 

https://github.com/evojgani/EpiGP. 

  

1,2: University of Goettingen, Center for Integrated Breeding Research, Animal Breeding and 

Genetics Group, Goettingen, Germany 

 

Author contributions by EV 

EV developed and wrote the associated R-package “EpiGP”, analyzed the data, derived the results, 

wrote the initial manuscript and led the revision of the manuscript.  

https://github.com/evojgani/EpiGP
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2.1 Abstract 

Reliable methods of phenotype prediction from genomic data play an increasingly important role 

in many areas of plant and animal breeding. Thus, developing methods which enhance prediction 

accuracy is of major interest. Here, we provide three methods for this purpose: (i) Genomic Best 

Linear Unbiased Prediction (GBLUP) as a model just accounting for additive SNP effects; (ii) 

Epistatic Random Regression BLUP (ERRBLUP) as a full epistatic model which incorporates all 

pairwise SNP interactions, and (iii) selective Epistatic Random Regression BLUP (sERRBLUP) 

as an epistatic model which incorporates a subset of pairwise SNP interactions selected based on 

their absolute effect sizes or the effect variances which is computed based on solutions from the 

ERRBLUP model. We compared the predictive ability obtained from GBLUP, ERRBLUP and 

sERRBLUP with genotypes from a publicly available wheat dataset and respective simulated 

phenotypes. Results showed, that sERRBLUP provides a substantial increase in prediction 

accuracy compared to the other methods when the optimum proportion of SNP interactions are 

kept in the model, especially when an optimal proportion of SNP interactions is selected based on 

the SNP interaction effect sizes. All methods described here are implemented in the R-package 

EpiGP, which is able to process large scale genomic data in a computationally efficient way.  

Keywords: GBLUP, Epistasis model, Genomic prediction, Phenotype prediction, R-package, 

EpiGP 

2.2 Introduction 

Genomic prediction of phenotypes is of interest in all species and especially in breeding programs. 

In practice, there is an option to reduce breeding cycle time by genomic prediction since the 

individuals can be selected and crossed without being phenotyped (Edwards et al., 2019). 

Moreover, it can enhance selection accuracy since genomic data provide more powerful statistical 

models in comparison to experimental designs which use more observation than what can be 

phenotyped for a single trait. This is resulting from reducing the cost of evaluating individuals by 

reducing the number of phenotyped individuals and/or their replicates leading to an increase in 

selection intensity by genomic selection application (Edwards et al., 2019). Additionally, genomic 

prediction models could be updated by utilizing the trait’s data from previous years and become 

more accurate (Edwards et al., 2019). Accordingly, one of the major challenges of contemporary 

biology is understanding the effect of genetic variation on phenotypic variation in quantitative 

traits (Mackay, 2014). Therefore, genomic prediction of complex phenotypes has been developed 

by using all markers simultaneously instead of only considering significant marker-trait 

association (Windhausen et al., 2012) in plants (Crossa et al., 2010), animals (Daetwyler et al., 

2013) and humans (de los Campos, Vazquez, et al., 2013). In this context, several statistical models 

have been developed for genomic prediction of phenotypes which were compared in terms of 

predictive ability, defined as the correlation between predicted and observed phenotypes in a test 

set not used for the training of the model. Initially prediction models exclusively accounted for 
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additive effects on phenotypic traits, while non-additive effect were typically ignored (Filho et al., 

2016). In this regard, GBLUP (VanRaden, 2008) as a linear mixed model which assumes additive 

marker effects is one of the widely used genomic prediction models (Da et al., 2014; Rönnegård 

and Shen, 2016; Covarrubias-Pazaran et al., 2018). GBLUP has been superior in computing speed 

and prediction accuracy of complex traits compared to Bayesian methods which consider markers 

as random effects and offer the flexibility of using different priors (Wang et al., 2018). It has been 

shown that BayesB (Meuwissen et al., 2001) has higher accuracy than GBLUP for traits controlled 

by smaller numbers of quantitative trait nucleotides, otherwise GBLUP has the higher accuracy 

(Daetwyler et al., 2010). In this regard, BayesB and BayesC methods in human height prediction 

show no advantage over GBLUP in small reference population (<6,000 individuals), while these 

methods outperformed GBLUP when more individuals were included in the reference population 

(Karaman et al., 2016). Bayesian Monte Carlo approaches also have been considered for prediction 

of complex traits in humans, but they only produced a modest increase in predictive ability at the 

cost of large computation times (Lello et al., 2019).  

Moreover, it has been shown that developing models which incorporate epistatic interactions in 

addition to additive marker effects can enhance the prediction accuracy, since epistasis contributes 

substantially to the genetic variation of quantitative traits (Mackay, 2014). Many studies have 

highlighted the importance of epistasis in the genetic architecture of quantitative traits in model 

organisms(Fisher, 1930; Wright, 1931; Carlborg and Haley, 2004; Hill et al., 2008; Huang et al., 

2012; Mackay, 2014). Therefore, prediction accuracy of the genomic prediction models 

incorporating interactions compared to models with only main effects have been widely discussed 

over the last years, and evidence was provided that including epistasis for prediction of complex 

trait phenotypes has the potential to increases the predictive ability (Carlborg and Haley, 2004; Hu 

et al., 2011; Wang et al., 2012; Mackay, 2014; Jiang and Reif, 2015; Rönnegård and Shen, 2016). 

However, epistasis has often been ignored due to the high computational load, especially in the 

case of large sets of marker data. Additionally, since breeding values are additive by design, higher 

accuracy in phenotype prediction does not automatically lead to higher genomic gain in the 

breeding program. The extended GBLUP (EGBLUP) model reduces the computational load by 

using an equivalent marker-based epistatic relationship matrix (Jiang and Reif, 2015; Martini et 

al., 2016) rather than all pairwise marker interaction effects. But still, full epistatic models have 

been largely ignored in practical applications due to the computational load through the high 

number of interactions to be included (Rönnegård and Shen, 2016). Subsequently it was found 

with a small example data set that reducing full epistatic models by incorporating certain 

subnetworks of pairwise SNP interactions with highest pairwise interaction effects increases the 

predictive ability (Martini et al., 2016).  

Here, we provide full epistatic models by utilizing marker based epistatic relationship matrices 

which are applicable to large dataset and large scale genotype data. We further developed a reduced 

epistatic model which is based on the selection of different subset of the pairwise SNP interactions 

based on their estimated effect sizes or estimated effect variances, to assess the optimum 

proportion of SNP interactions to be kept in the model resulting in maximum predictive ability. 
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Additionally, we explain step by step our R-package EpiGP for epistatic genomic prediction of 

phenotypes based on our developed methods. 

2.3 Methods 

Genetic analyses are generally based on mixed models which consider both fixed and random 

effects (Henderson, 1975). Fixed effects are unknown constants, while random effects are random 

variables which are sampled from a certain distribution. In fact, the variance components in the 

mixed model indicate how much of the observed variance can be attributed to the random effects 

and how much remains in the residual variance, where It is often assumed that the residual variance 

is independent of genetic variance. The standard assumption in the covariance matrix of residuals 

is that all the residuals are uncorrelated with common variance. If existing random effects are not 

specified in the model, the corresponding covariance structure not covered by the model is 

inadvertently captured by the residuals parts. Therefore, an inadequate specification of random 

effects in the model may lead to a violation of the assumption that residuals are independently 

distributed. The covariance structure of random effects in genomic models is given by genetic 

variance multiplied by the genomic relationship matrix constructed from SNP information, which 

is reflecting the relatedness between the individuals (Walsh and Lynch, 2018).  

Here, a linear mixed model with the assumption of 𝑛 genotyped lines in which a subset of 𝑛1 lines 

are phenotyped can be represented as follows. These 𝑛1 lines are used to train the model which 

then is used to predict phenotypes for the remaining 𝑛2 = 𝑛 − 𝑛1 lines. The basic model is 

𝒚 = 𝟏𝜇 + (𝑰 𝑶)𝒈 + 𝝐,         (eq. 1)   

where 𝒚 is an 𝑛1 × 1 vector of phenotypes (any outcome variable), 𝟏 is an 𝑛1 × 1 vector with all 

entries equal to 1 , 𝜇 is a scalar population mean which is modelled as a fixed effect, 𝑰 is an identity 

matrix of dimension 𝑛1 × 𝑛1 and 𝟎 is a matrix of dimension 𝑛1 × 𝑛2 of zeros. 𝒈~𝑁(0, 𝚪𝜎𝑔
2) is an 

𝑛 × 1 vector of genetic effects which are modelled as random effect, and 𝝐~𝑁(0, 𝑰𝜎𝜖
2) is a random 

error vector, where 𝚪  and 𝑰  are the respective dispersion matrices and 𝜎𝑔
2  and 𝜎𝜀

2  are the 

corresponding variance components.  

The population mean and the genetic effects for all phenotyped and non phenotyped lines are 

estimated using 

[

𝜇̂
𝒈̂𝟏

𝒈̂𝟐

] = [
𝑛1 𝟏′ 𝟎

𝟏 𝑰 + 𝛌𝚪𝟏𝟏 𝛌𝚪𝟏𝟐

𝟎 𝛌𝚪𝟐𝟏 𝛌𝚪𝟐𝟐

 ]

−1

[
𝟏′𝒚

𝒚
𝟎

],       (eq. 2) 

where 𝜆 = 𝜎𝜀
2 𝜎𝑔

2⁄ , 𝚪−𝟏 = [𝚪𝟏𝟏 𝚪𝟏𝟐

𝚪𝟐𝟏 𝚪𝟐𝟐] , 𝒈 = [
𝒈𝟏

𝒈𝟐
]  and the indices pertain to the subset of 

individuals with (1) or without (2) phenotypes, respectively.  
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Then, the phenotype prediction for the set of unphenotyped individuals can be achieved by 

  𝒚̂𝟐 = 𝟏𝟐𝜇̂ + 𝒈̂𝟐,       (eq. 3) 

where 𝒚̂𝟐 is the 𝑛2 × 1 vector of predicted phenotypes and 𝟏𝟐 is an 𝑛2 × 1 vector of ones.  

If all 𝑛  lines are phenotyped and genotyped which means 𝑛 = 𝑛1  and 𝑛2 = 0, eq. 1 provides 

estimates of genetic effects. 

GBLUP, ERRBLUP and sERRBLUP as three different phenotype prediction models can be 

represented by eq. 1 by differing only in the specification of the dispersion matrix 𝚪 reflecting the 

covariance structure of the genetic effects.  

2.3.1 Genomic Best Linear Unbiased Prediction (GBLUP) 

GBLUP as linear mixed model which assumes additive marker effects uses the genomic 

relationship matrix 𝑮 suggested by VanRaden (VanRaden, 2008) as 𝚪: 

𝚪𝑽𝑹 =
(𝑴 − 𝑷)(𝑴 − 𝑷)′

2 ∙ ∑ (𝑝𝑖(1 − 𝑝𝑖))𝑚
𝑖=1

, 

where 𝑴 is an 𝑛 × 𝑚 marker matrix which gives 𝑚 marker values for 𝑛 lines. 𝑷 is a matrix of 

equal size as 𝑴 with 2 ∙ 𝑝𝑖 in the 𝑖𝑡ℎcolumn, and 𝑝𝑖 is allele frequency of the minor allele of SNP 𝑖.  

2.3.2 Epistatic Random Regression BLUP (ERRBLUP) 

ERRBLUP model is a full epistatic model which incorporates all pairwise SNP interactions in the 

prediction model. First, a marker combination matrix 𝑴∗ of dimension 𝑛 × 𝑚∗ is generated whose 

element 𝑖, 𝑗 is 1 if genotype combination 𝑗 is present in individual 𝑖 and is 0 otherwise. If the m 

markers have 2 possible genotypes at a single locus, i.e. 0 or 2 when coded as the counts of the 

minor allele, then for each pair of loci, there will be 4 different genotype combinations: {00, 02, 

20, 22}. The total number of pairs of loci is 
𝑚×(𝑚+1)

2
 if interaction of a locus with itself is also 

considered. Since for each of these pairs there are four possible genotype combinations, the total 

number of combinations to be considered as dummy variables is   

𝑚∗ = 4 ×
𝑚×(𝑚+1)

2
= 2𝑚 × (𝑚 + 1). 

If the heterozygous are also possible at a single locus, then there will be 9 different genotype 

combinations instead of 4: {00, 01, 02, 10, 20, 11, 12, 21, 22}. Therefore, the total number of 

combinations is  

𝑚∗ = 9 ×
𝑚×(𝑚+1)

2
. 
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Then, VanRaden (VanRaden, 2008) relationship matrix based on the marker combination matrix 

𝑴∗ which includes all pairwise SNP interactions is calculated as  

𝚪𝑬𝑹𝑹 =
(𝑴∗ − 𝑷∗)(𝑴∗ − 𝑷∗)′

∑ (𝑝𝑖
∗(1 − 𝑝𝑖

∗))𝑚∗ 
𝑖=1

, 

where 𝑝𝑖
∗ is the average value giving the frequency of respective genotype combination in the 

population for column 𝑖 of matrix 𝑴∗. 𝑷∗ is a matrix of equal size as 𝑴∗ with 𝑝𝑖
∗ in the 𝑖𝑡ℎcolumn. 

As 𝑚∗  can be extremely large, we highly recommend the use of the R-package “miraculix” 

(Schlather, 2020) as it is about 15 times as fast as the regular matrix multiplications on genotype 

data in R. 

This matrix is used in the ERRBLUP model as the dispersion matrix for the genetic effects, which 

now are based on epistatic interaction effects. It should be noted that including the interaction of 

each locus with itself replaces the additive effect, so that it is not necessary to use a model that 

separately accounts for both additive and epistatic effects. 

ERRBLUP genomic prediction of phenotypes can be done by the package EpiGP (Vojgani et al., 

2019) in R. The EpiGP R-package depends on the R-packages MASS, EMMREML and stats. First 

of all, the package should be installed in R 

1. devtools::install_github("evojgani/EpiGP", subdir="pkg") 

The package expects SNP markers to be coded {0, 1, 2} or {0, 2} in fully inbred lines. If coded 

differently, the following function of EpiGP provides the desired marker matrix from {-1, 0, 1} or 

{0, 1} or character coded marker matrix 

2.  Recodemarkers (M) 

# M is the original marker matrix which could be {-1, 0, 1} or {0, 1} or character coded marker 

matrix.  

# The output of the “Recodemarkers” function is a {0, 1, 2} or {0, 2} coded marker matrix. 

The function also report how the original markers have been recoded.  

Afterwards , 𝚪𝑬𝑹𝑹 can be calculated using  

3.  Gall(m, cores=1)  

# m is a {0,1,2} or {0,2} coded marker matrix with individuals in rows and the markers in 

columns. 

# cores is the number of cores and the default value is 1. 

# The outputs of the “Gall” function are two components, G as the ERRBLUP relationship 

matrix, and P as a vector of all genotype combinations frequencies in the population. 

Finally, ERRBLUP genomic prediction of phenotypes can be done by  

4. ERRBLUP_Stepwise(Pheno, G_ERRBLUP)  

# Pheno is a numeric vector of phenotypes. 
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# G_ERRBLUP is the ERRBLUP relationship matrix which is one of the outputs of “Gall” 

function. 

# The output of the “ERRBLUP” function is a vector of both phenotype estimations for 

training set and phenotype predictions for test sets based on ERRBLUP method. 

2.3.3 selective Epistatic Random Regression BLUP (sERRBLUP) 

The sERRBLUP model is based on the same approach as ERRBLUP, but here the 𝚪-matrix is 

constructed from a selected subset of genotype interactions. Selection of genotype interactions can 

be either based on the effects estimates or their variances estimates. In this regard, interaction 

effects 𝒕̂ and their variances 𝝈̂𝑖
2 from the ERRBLUP model (Fragomeni et al., 2014; Mrode, 2014) 

are calculated as  

𝒕̂ =
𝜎𝑔

∗̂2

∑ (𝑝𝑖
∗(1 − 𝑝𝑖

∗))𝑚∗ 
𝑖=1

(𝑴∗ − 𝑷∗)′ (𝜎𝑔
∗̂2

𝚪𝑬𝑹𝑹 + 𝜎𝜖
∗̂2

𝑰)
−1

(𝒚 − 𝟏𝜇 ̂), 

𝝈̂𝑖
2 = 𝒕̂𝑖

22𝑝𝑖
∗(1 − 𝑝𝑖

∗), 

Then, those interactions whose absolute effect estimates or their respective variance estimates are 

in the top desired proportion 𝜋 of all interaction effects are selected. We suggest to use a range of 

𝜋 =  {0.1, 0.05, 0.01 𝑜𝑟 0.001} since it was observed in preliminary analyses that they cover the 

most relevant range, but any value 0 < 𝜋 < 1 is possible. For a desired subset, specified by the 

chosen criterion and 𝜋, a reduced matrices 𝑴𝝅
∗  of dimension 𝑛 × 𝜋𝑚∗ is generated, containing 

only those columns of 𝑴∗ and pertaining to the selected subset of genotype interactions, and then 

a VanRaden (VanRaden, 2008) type relationship matrix based on a reduced set of epistatic 

interactions 

𝚪𝒔𝑬𝑹𝑹 =
(𝑴𝝅

∗ − 𝑷𝝅
∗  )(𝑴𝝅

∗ − 𝑷𝝅
∗  )′

∑ (𝑝𝜋𝑖
∗ (1 − 𝑝𝜋𝑖

∗ ))𝜋𝑚∗ 
𝑖=1

, 

is calculated, where pπi
∗  is the average frequency of the selected genotype combination in the 

population for column 𝑖  of matrix 𝑴𝝅
∗ . 𝑷𝝅

∗  is a matrix of equal size as 𝑴𝝅
∗  with pπi

∗  in the 

𝑖𝑡ℎcolumn. 

sERRBLUP genomic prediction of phenotypes can also be done by R-package EpiGP (Vojgani et 

al., 2019). First of all, SNP interaction effects and their variances can be estimated by the following 

functions 

5. SNP_Effect_Var (m, Pheno, G_ERRBLUP, P, cores=1) 

# m is a {0,1,2} or {0,2} coded marker matrix with individuals in the rows and the markers 

in the columns. 

# Pheno is a numeric vector of phenotypes. 
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# G_ERRBLUP is the ERRBLUP relationship matrix which is one of the outputs of “Gall” 

function.  

# P is a vector of all genotype combinations frequencies in the population which is one of 

the outputs of “Gall” function.  

# cores is the number of cores and the default value is 1. 

# The outputs of the “SNP_Effect_Var” function are two components, Effect as a vector 

of all estimated pairwise SNP interaction effects and Effect.Var as a vector of all estimated 

pairwise SNP interaction effects variances. 

 

Then 𝚪𝐬𝐄𝐑𝐑 is calculated for the top desired SNP interactions selected either based on the absolute 

effect estimates or their respective variance estimates  

6. Gtop (m, Estimations, k, cores=1) 

# m is a {0,1,2} or {0,2} coded marker matrix with individuals in the rows and the markers 

in the columns. 

# Estimations could be either a vector of all estimated pairwise SNP interaction effects 

(Effect) or a vector of all estimated pairwise SNP interaction effects variances (Effect.Var) 

which are the outputs of the “SNP_Effect_Var” function. 

# k is the desired proportion of all SNP interactions to be selected. 

# cores is the number of cores and the default value is 1. 

# The output of the “Gtop” function is the sERRBLUP Relationship matrix for the “k” 

proportion of pairwise SNP interactions. 

 

Finally, sERRBLUP genomic prediction of phenotypes can be done by  

7. sERRBLUP_Stepwise(Pheno, G_sERRBLUP) 

# Pheno is a numeric vector of phenotypes. 

# G_sERRBLUP is the sERRBLUP relationship matrix (calculated either from SNP 

pairs selected based on the interaction effects estimates or their variances) for the “k” 

proportion of pairwise SNP interactions which is the output of “Gtop” function. 

# The output of the “sERRBLUP” function is a vector of both phenotype estimations for 

the training set and phenotype predictions for the test set based on the sERRBLUP 

method. 

In addition to the provided functions by which ERRBLUP and sERRBLUP phenotype prediction 

can be done step by step, there are two functions in the EpiGP package which provide ERRBLUP 

and sERRBLUP phenotype prediction in one step. The functions are as follows: 

ERRBLUP(M, Pheno, cores = 1) 

# M is the original marker matrix which could be {-1, 0, 1} or {0, 1} or character coded marker 

matrix. 

# Pheno is a numeric vector of phenotypes. 
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# cores is the number of cores and the default value is 1. 

The output of the function is a list of three components:  

1- Recodedmarkers which is a {0, 1, 2} or {0, 2} coded marker matrix. 

2- Relationshipmatrix which is a list of two components: ERRBLUP relationship matrix 

(G) and a vector of all genotype combinations frequencies in the population (P). 

3- Predictions which is a numeric vector of both phenotype estimations of training set 

and phenotype predictions of test set based on ERRBLUP method. 

 

sERRBLUP(M, Pheno, k, cores = 1) 

# M is the original marker matrix which could be {-1, 0, 1} or {0, 1} or character coded marker 

matrix. 

# Pheno is a numeric vector of phenotypes. 

# K is the desired proportion of all SNP interactions to be selected. 

# cores is the number of cores and the default value is 1. 

The output of the function is a list of three components:  

1- Recodedmarkers which is a {0, 1, 2} or {0, 2} coded marker matrix. 

2- Relationshipmatrix which is a list of two components: ERRBLUP relationship matrix (G) 

and a vector of all genotype combinations frequencies in the population (P). 

3- Effect.Relationshipmatrix which is the sERRBLUP Relationship matrix for the k percent 

of pairwise SNP interactions based on effect size estimations. 

4- Var.Relationshipmatrix which is the sERRBLUP Relationship matrix for the k percent 

of pairwise SNP interactions based on effect size variance estimations. 

5- Effect which is a numeric vector of all estimated pairwise SNP interaction effects. 

6- Effect.Variance which is a numeric vector of all estimated pairwise SNP interaction 

effects variances. 

7- Effect.Predictions a numeric vector of both phenotype estimations of training set and 

phenotype predictions of test set based on effect sizes. 

8- Var.Prediction which is a numeric vector of both phenotype estimations of training set 

and phenotype predictions of test set based on effect sizes variances. 

 

Based on 5-fold cross validation with 5 replicates we validated our method with the wheat data set 

genotype of CIMMYT inbred lines (Crossa et al., 2010) which is included in the R-package BGLR 

(Pérez and de los Campos, 2014). The wheat lines were genotyped by 1279 Diversity Array 

Technology (DArT) markers, which are coded in binary form as being present (1) or absent (0). 

We simulated phenotypes for this dataset by randomly selection of 80 SNPs from marker matrix 

and generation of the phenotypic trait based on all 4 possible genotype combinations resulting in 

purely epistatic trait with the heritability of 1.  

The following code is used for ERRBLUP and sERRBLUP in the wheat dataset markers and 

respective simulated phenotypes: 

 



38 
 

 

library(EpiGP) 

library(BGLR) 

data(wheat) 

# First we recode the markers and named the lines in the marker matrix 

m <- Recodemarkers(wheat.X) 

# Then we calculated the ERRBLUP relationship matrix  

G_all <- Gall (m, cores=1) 

G_ERRBLUP <- G_all$G 

P <- G_all$P 

# Afterwards, we consider a subset of phenotypic values as a training set and 

do the phenotype prediction based on ERRBLUP, we have done this by 5-fold cross 

validation with 5 replicates. As an example here we randomly select 60 lines as 

the test set and the remaining lines are considered as the training set as 

follows 

N <- length(Phenotype) 

n <- 60 

Testset <- sample(1:N,n) 

Pheno <- Phenotype 

 pheno[test] <- NA 

ERRBLUP_pred <- ERRBLUP_Stepwise(pheno, G_ERRBLUP) 

# Then interaction effects and interaction effect variances are calculated as 

follows 

Estimations <- SNP_Effect_Var(m, pheno, G_ERRBLUP, P, cores=15) 

t_hat <- Estimations$ Effect 

sigma_hat <- Estimations$ Effect.Var 

# Based on the desired proportion of interactions, the sERRBLUP relationship 

matrix is calculated for both selections based on estimated effects and 

estimated effect variances 

k <- 10 

Gtop_effect <- Gtop(m, t_hat, k, cores=1) 

Gtop_var <- Gtop(m, sigma_hat, k, cores=1) 

# Finally, sERRBLUP is performed based in both approaches as follows 

sERRBLUP_effect <- sERRBLUP_Stepwise(pheno, Gtop_effect) 

sERRBLUP_var <- sERRBLUP_Stepwise(pheno, Gtop_var) 
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Fig. 2.1 provides the comparison in predictive ability of GBLUP, ERRBLUP and sERRBLUP 

when up to 99.9% of SNP interactions are removed in the wheat dataset. Red dots demonstrate the 

sERRBLUP predicative ability when the SNP interaction selections are based on the estimated 

effects while green dots demonstrate the sERRBLUP predicative ability when the SNP interaction 

selections are based on the estimated effect variances. It is demonstrated that GBLUP has the 

minimum predictive ability (0.821), while the predictive ability obtained from ERRBLUP as a full 

epistatic model which incorporates all pairwise SNP interactions is 0.836. The maximum 

predictive ability (0.889) was observed for sERRBLUP when the top 1 percent of interactions are 

selected based on their absolute effect sizes. The sERRBLUP model selecting interactions based 

on their effect variances provides the best predictive ability (0.883) when 0.1 percent of the 

interaction effects are maintained in the model. In both sERRBLUP models there is a massive 

decrease in predictive ability if too many (more than 99.9 percent) SNP interactions are 

disregarded in the construction of the relationship matrix. In this simulated data, predictive ability 

of sERRBLUP decreases to 0.028 and 0.126 for the top 0.01 percent of interactions for selection 

based on effect sizes and their variances, respectively. This is a general pattern we observed in 

several data sets, however, the exact proportion of SNP interactions to account for in the model is 

data dependent and needs to be determined in all applications separately. EpiGP provides a 

function by which one can determine sERRBLUP predictive ability for different selected 

proportions of interactions and be able to compare their predictive abilities to choose the best 

proportion of interactions which provide the highest accuracy.   

sERRBLUP_Proportions_Test (M, Pheno, k, cores = 1) 

# M is the original marker matrix which could be {-1, 0, 1} or {0, 1} or character coded marker 

matrix. 

# Pheno is a numeric vector of phenotypes. 

# K is the desired proportion of all SNP interactions to be selected. 

# cores is the number of cores and the default value is 1. 

The output of the function is the data frame of three components: Desired.Proportion as 

the proportion of SNP interactions which is maintained in sERRBLUP model, PA.Effcet 

as the sERRBLUP predictive ability based on effect sizes selection and PA.Var as the 

sERRBLUP predictive ability based on effect variances selection. 
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Fig. 2.1: Comparison of predictive ability of GBLUP (open circle), ERRBLUP (black filled circle) and 

sERRBLUP for 50 to 0.1% of SNP interactions maintained in the model. Red and green dots represent the 

sERRBLUP predictive ability (with standard errors) when the SNP interaction selections are based on the 

estimated effects and estimated effects variances, respectively. The vertical arrows represent the predictions 

± their standard deviations. 

Fig. 2.2 demonstrates predictive ability with sERRBLUP model when interactions are selected 

based on their absolute effect sizes for prediction within and across environment 3 of the wheat 

dataset. The green dots represent sERRBLUP predictive ability for prediction within environment 

3 which shows no increase in predictive ability, while the black, blue and red dots represent the 

predictive ability by variable selection in environment 1, 2 and 4 and prediction of the phenotypes 

in environment 3 (Martini et al., 2016). ERRBLUP and sERRBLUP which capture all possible 

genotype combinations, have higher predictive abilities for prediction across environment 3 

compare to EGBLUP model (0.390) which just captures {22} genotype combination and is 

affected by translation of the coding in marker matrix (Martini et al., 2016, 2017). It is also 

demonstrated that GBLUP has the minimum predictive (0.380), while the predictive ability 

obtained from ERRBLUP is 0.402. The maximum predictive ability (0.565) was observed for 

sERRBLUP when the top 1 percent of interactions were selected based on their absolute effect 

sizes in relationship matrix determined from variable selection in environment 2. 
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Fig. 2.2: Comparison of predictive ability of GBLUP (open circle), ERRBLUP (black filled circle) and 

sERRBLUP for 95 to 0.1% of SNP interactions maintained in the model. Green dots represent the 

sERRBLUP predictive ability for prediction within environment 3, while black, blue and red dots represent 

the predictive ability with relationship matrices determined by variable selection in environments 1, 2 and 

4. 

It should also be noted that for purely additive markers the sERRBLUP model does not provide 

an increase in predictive ability. 

2.4 Notes 

1. Predictive ability obtained from sERRBLUP is higher than obtained from ERRBLUP and 

GBLUP  

As in Martini et al. (2016) we found that prediction with ERRBLUP is higher than GBLUP, 

and that prediction with sERRBLUP systematically outperforms ERRBLUP. ERRBLUP can 

be seen as a special case of sERRBLUP (with 𝜋 = 1) and thus searching the parameter space 

of 𝜋 for the optimum value will in most cases lead to an improved, but never to a reduced 

predictive ability of sERRBLUP compared to ERRBLUP.   

 

2. Maximum predictive ability is obtained by selecting the optimum proportion of SNP 

interactions in sERRBLUP 
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The predictive ability of the sERRBLUP model is influenced by the selected subset of SNP 

interactions. As the full model is reduced by considering the top SNP interactions based on 

their estimated effects or estimated effect variances in the model, the predictive ability 

increases in sERRBLUP, while this can change to a decrease in predictive ability by a too 

strict selection of SNP interactions. The optimum proportion of interactions resulting in the 

maximum predictive ability in the considered simulated dataset was 𝜋 = 0.01 when selection 

was based on absolute effect sizes and 𝜋 = 0.001 when selection was based on effect 

variances. These proportions can be different in other data sets and need to be determined 

with an appropriate strategy based on cross validation. 

 

3. sERRBLUP predictive ability is higher when SNP interactions are selected based on the 

absolute effect size rather than based on the estimated variance. 

The predictive ability obtained from sERRBLUP model was found to be systematically higher 

when the same proportion of interactions were selected based on the absolute effect sizes 

compared to when interactions are selected based on estimated variances in wheat dataset. It 

should be noted that in the other datasets selecting the interactions based on estimated 

variances in sERRBLUP model can provide higher accuracy. 

 

4. sERRBLUP computational load is less than in the model proposed by Martini (Martini et al., 

2016) 

The computational time required for sERRBLUP model is independent of which proportion 

of interactions are included in the model. However, the computational time for the reduced 

epistasis model in Martini et al. (2016) model is dependent on the selected proportion of 

interactions, since in their method the full epistatic model is reduced in 5% steps, by which 

SNP interaction effects and corresponding relationship matrices are recalculated at each step 

in the remaining network. As it is demonstrated in Fig. 2.3 for different numbers of SNPs, 

computational time for sERRBLUP (red bars) is on average 10 percent less than Martini 

(Martini et al., 2016) proposed method (blue bars) for the top 95 percent of interactions by 

using 15 cores. However, this difference in computational time get much higher by 

maintaining smaller proportions of interactions in the model. To illustrate this, the required 

computational time with the approach of Martini (Martini et al., 2016) for maintaining the top 

10 percent of interactions in the model is around 18 times more than what has been shown in 

Fig. 2.3 Computational time for sERRBLUP is on average around 3 times larger than the one 

for ERRBLUP. By increasing the number of SNPs sERRBLUP also requires a higher 

computational load, but still is feasible while the approach of Martini (Martini et al., 2016) 

might not be feasible in a proper amount of time.  

 

5. GBLUP, ERRBLUP or sERRBLUP 

Among the three proposed genomic prediction models, sERRBLUP has the highest predictive 

ability. Although the sERRBLUP model provides the highest accuracy, its feasibility depends 

on the available the number of SNPs. In other words, if the number of SNPs grows to millions, 

this method also poses a considerable, eventually prohibitive computational load. Potential 
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strategies to overcome these limitations are to achieve a feature reduction by SNP pruning 

(Purcell et al., 2007; Chang et al., 2015) or the use of haplotype blocks (Pook et al., 2019).  

 

Fig. 2.3: Comparison of computational time for sERRBLUP by utilizing 15 cores (red bars) and the method 

of Martini (Martini et al., 2016) with a reduced epistatic model (blue bars) for the top 95% of interactions 

maintenance in the model in different numbers of SNPs. 
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3 Accounting for epistasis improves genomic prediction of 

phenotypes with univariate and bivariate models across 

environments 

 

 

This chapter contains the manuscript “Accounting for epistasis improves genomic prediction of 

phenotypes with univariate and bivariate models across environments” which has been accepted 

in the journal TAG (Theoretical and Applied Genetics). In order to have uniform style in the thesis, 

the journal style is not used in this chapter. 

This manuscript is the joint work of Elaheh Vojgani1*, Torsten Pook1, Johannes W.R. Martini2, 

Armin C. Hölker3, Manfred Mayer3, Chris-Carolin Schön3, Henner Simianer1 which is focused on 

developing epistasis models in the bivariate statistical framework and comparing the epistasis 

models in univariate and bivariate statistical settings for prediction across environments.  

 

1: University of Goettingen, Center for Integrated Breeding Research, Animal Breeding and 

Genetics Group, Goettingen, Germany 

2: International Maize and Wheat Improvement Center (CIMMYT), Texcoco, State of Mexico, 

Mexico 

3: Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 

Freising, Germany 

 

Author contributions by EV 

EV analyzed the data, generated the pruned set of data, derived the results, wrote the initial 

manuscript and led the revision of the manuscript. 
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3.1 Key Message 

The accuracy of genomic prediction of phenotypes can be increased by including the top ranked 

pairwise SNP interactions into the prediction model. 

3.2 Abstract 

We compared the predictive ability of various prediction models for a maize dataset derived from 

910 doubled haploid lines from two European landraces (Kemater Landmais Gelb and Petkuser 

Ferdinand Rot), which were tested at six locations in Germany and Spain. The compared models 

were Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random 

Regression BLUP (ERRBLUP) accounting for all pairwise SNP interactions, and selective 

Epistatic Random Regression BLUP (sERRBLUP) accounting for a selected subset of pairwise 

SNP interactions. These models have been compared in both univariate and bivariate statistical 

settings for predictions within and across environments. Our results indicate that modeling all 

pairwise SNP interactions into the univariate/bivariate model (ERRBLUP) is not superior in 

predictive ability to the respective additive model (GBLUP). However, incorporating only a 

selected subset of interactions with the highest effect variances in univariate/bivariate sERRBLUP 

can increase predictive ability significantly compared to the univariate/bivariate GBLUP. Overall, 

bivariate models consistently outperform univariate models in predictive ability. Across all studied 

traits, locations, and landraces, the increase in prediction accuracy from univariate GBLUP to 

univariate sERRBLUP ranged from 5.9 to 112.4 percent, with an average increase of 47 percent. 

For bivariate models, the change ranged from -0.3 to +27.9 percent comparing the bivariate 

sERRBLUP to the bivariate GBLUP, with an average increase of 11 percent. This considerable 

increase in predictive ability achieved by sERRBLUP may be of interest for “sparse testing” 

approaches in which only a subset of the lines/hybrids of interest is observed at each location.  

Keywords: Genomic prediction, GBLUP, Multi-trait models, Epistasis, Interaction  

3.3 Introduction 

Genomic prediction of phenotypes has been widely explored for crops (Crossa et al., 2010), 

livestock (Daetwyler et al., 2013) and clinical research (de los Campos, Vazquez, et al., 2013). 

Broad availability and cost effective generation of genomic data had a considerable impact on 

plant (Bernardo and Yu, 2007; de los Campos et al., 2009; Crossa et al., 2010, 2011; de Los 

Campos et al., 2010; Pérez et al., 2010) and animal breeding programs (de los Campos et al., 2009; 

Hayes and Goddard, 2010; Daetwyler et al., 2013). Genomic prediction relates a set of genome 

wide markers to the variability in the observed phenotypes and enables the prediction of 

phenotypes or genetic values of genotyped but unobserved material (Meuwissen et al., 2001; 

Jones, 2012; Windhausen et al., 2012). This approach has been positively evaluated in most major 
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crop and livestock species (Albrecht et al., 2011; Daetwyler et al., 2013; Desta and Ortiz, 2014) 

and is becoming a routine tool in commercial and public breeding programs (Stich and Ingheland, 

2018). In plant breeding, phenotyping is one of the major current bottlenecks and the optimization 

or minimization of phenotyping costs within breeding programs is needed (Akdemir and Isidro-

Sánchez, 2019). Therefore, the maximization of genomic prediction accuracy can be directly 

translated into reduced phenotyping costs (Akdemir and Isidro-Sánchez, 2019; Jarquin et al., 

2020).  

Genomic selection and the corresponding prediction of breeding values is based on a covariance 

matrix describing the (additive) relationship between the considered individuals (Wolc et al., 2011; 

Burgueño et al., 2012). This matrix can be constructed from pedigree information, from marker 

information (VanRaden, 2007) or from a combination of pedigree and available genotypic 

information in a single step approach (Aguilar et al., 2010; Legarra et al., 2014). It has been 

broadly demonstrated that marker based relationship matrices enhance the reliability of breeding 

value estimation on average across traits and compared to pedigree based approaches (Meuwissen 

et al., 2001; VanRaden, 2007; Hayes and Goddard, 2008; Crossa et al., 2010). Since breeding 

values are additive by definition (Falconer and Mackay, 1996), the early development of prediction 

models exclusively accounted for the additive effects (Filho et al., 2016).  

Concerning additive models, genomic best linear unbiased prediction (GBLUP, Meuwissen et al., 

2001; VanRaden, 2007) is a widely-used linear mixed model (Da et al., 2014; Rönnegård and 

Shen, 2016; Covarrubias-Pazaran et al., 2018). Although various new approaches such as methods 

from the Bayesian alphabet (Gianola et al., 2009) have been proposed, GBLUP remains the gold 

standard as new methods typically only perform marginally better, are less robust, require 

substantially more computing time and are more difficult to implement (Wang et al., 2018). 

Daetwyler et al. (2010) showed that BayesB can yield higher accuracy than GBLUP for traits 

controlled by a small number of quantitative trait nucleotides, emphasizing that the genetic 

architecture of the trait has an important impact on which method may predict better (Wimmer et 

al., 2013; Momen et al., 2018). Moreover, the training set size was shown to play a role. For 

instance, human height prediction using BayesB and BayesC methods in a small reference 

population (<6,000 individuals) had no advantage over GBLUP. Only when increasing the size of 

the reference population (>6,000 individuals), these methods outperformed GBLUP (Karaman et 

al., 2016).  

Understanding how genetic variation causes phenotypic variation in quantitative traits is still a 

major challenge of contemporary biology. It has been proven that epistasis as a statistical 

interaction between two or more loci (Falconer and Mackay, 1996) contributes substantially to the 

genetic variation of quantitative traits (Wright, 1931; Carlborg and Haley, 2004; Hill et al., 2008; 

Huang et al., 2012; Mackay, 2014). On the one hand, models which incorporate epistasis have the 

potential to increase predictive ability (de Los Campos et al., 2010; Hu et al., 2011; Wang et al., 

2012; Mackay, 2014). On the other hand, accounting for epistasis by modeling interactions 

explicitly was considered to be computationally challenging (Mackay, 2014). In this context, the 

extended genomic best linear unbiased prediction (EG-BLUP), as an epistasis marker effect model 
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(Jiang and Reif, 2015; Martini et al., 2016) and reproducing kernel Hilbert space regression 

(RKHS), as a semi-parametric model (Gianola et al., 2006; Gianola and van Kaam, 2008; de Los 

Campos et al., 2010) based on Gaussian kernel (Jiang and Reif, 2015) were proposed to reduce 

the computational load by constructing marker-based epistatic relationship matrices (Jiang and 

Reif, 2015; Martini et al., 2016). RKHS has shown to be as good as (Jiang and Reif, 2015) or 

better than EG-BLUP (Martini et al., 2017). While EG-BLUP is potentially beneficial for genomic 

prediction, its performance depends on the marker coding (Martini et al., 2017, 2019). Moreover, 

it has been shown that the superiority of epistasis models over the additive GBLUP in terms of 

predictive ability may vanish when the number of markers increases (Schrauf et al., 2020). Also, 

the Hadamard products of the additive genomic relationship matrices provide only an 

approximation for the interaction effect model based on interactions between different loci 

(Martini et al., 2020), and more correcting factors are required for interactions of higher degree 

(Jiang and Reif, 2020).   

Another downside of epistasis models is that, due to the high number of interactions, a large 

number of unimportant variables can be introduced into the model (Rönnegård and Shen, 2016). 

This ‘noise’ might prevent a gain in predictive ability. In this regard, Martini et al. (2016) showed 

that selecting just a subset of the largest epistatic interaction effects has the potential to improve 

predictive ability. Therefore, reducing the full epistasis model to a model based on a subnetwork 

of ‘most relevant’ pairwise SNP interactions may be beneficial for prediction performance 

(Martini et al., 2016). 

In addition to the extension from additive effect models to models including epistatic interactions, 

genomic prediction models can be extended from univariate models to multivariate models. 

Univariate models consider each trait separately, while multivariate models treat several traits 

simultaneously with the objective to exploit the genetic correlation between them to increase 

predictive ability. Multivariate models which have been first proposed for the prediction of genetic 

values by Henderson and Quaas (1976) were shown to be potentially beneficial for prediction 

accuracy when the correlation between traits is strong (He et al., 2016; Covarrubias-Pazaran et al., 

2018; Schulthess et al., 2018; Velazco et al., 2019). A situation of dealing with multiple 

environments can also be considered in the framework of a multivariate model by simply 

considering a trait-in-environment combination as another correlated trait. This is considered as 

the multi-environment model which is usually employed to assess 𝑮 × 𝑬 interaction (Montesinos-

López et al., 2016; Hassen et al., 2018) and captures the differences in genotypes’ performances 

from one environment to the other as one of the breeders’ major challenges in plant breeding (Kang 

and Gorman, 1989). Prediction accuracy could be potentially enhanced through borrowing 

information across environments by utilizing multi-environment models (Burgueño et al., 2012). 

In addition to multi-environment models, Martini et al. (2016) showed that the predictive ability 

of EG-BLUP as a univariate model can be increased in one environment by variable selection in 

the other environment under the assumption of a relevant correlation of phenotypes in different 

environments. This, however, was only demonstrated with a data set of limited size and especially 

a limited set of markers and, thus, marker interactions.  
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In the present study, we use a data set of doubled haploid lines derived from two European 

landraces, to investigate how beneficial the use of subnetworks of interactions in the proposed 

sERRBLUP framework can be. This was compared in the context of univariate and bivariate 

models. We assess the optimum proportion of SNP interactions to be kept in the model in the 

variable selection step. The development of efficient selection strategies which could mitigate 

costly and time consuming phenotyping of a large number of selection candidates in multiple 

environments has been a particular focus of research in plant breeding (Jarquin et al., 2020). A 

successful application of our models may reduce the cost of phenotyping by reducing the number 

of test locations per line. 

3.4 Materials and Methods 

3.4.1 Data used for analysis 

We used a set of 501 / 409 doubled haploid lines of the European maize landraces Kemater 

Landmais Gelb / Petkuser Ferdinand Rot genotyped with 501,124 markers using the Affymetrix 

® Axiom Maize Genotyping Array (Unterseer et al., 2014), out of which 471 and 402 lines were 

phenotyped for Kemater (KE) and Petkuser (PE), respectively. The performance of the lines has 

been evaluated by ten separate 10 × 10 lattice designs in four German locations and five separate 

10 × 10 lattice designs in two Spanish locations with two replicates. For more details see Hölker 

et al. (2019).  

The lines were phenotyped in 2017 for a series of traits in six different environments which were 

Bernburg (BBG, Germany), Einbeck (EIN, Germany), Oberer Lindenhof (OLI, Germany), 

Roggenstein (ROG, Germany), Golada (GOL, Spain) and Tomeza (TOM, Spain).  

The descriptions of the phenotypic traits, comprising early vigour and mean plant height of three 

plants of the plot at three growth stages (EV_V3, EV_V4, EV_V6, PH_V4, PH_V6, PH_final), 

days from sowing until female flowering (FF) and root lodging (RL) are given in the 

supplementary (Table S. 3.1), together with the number of phenotyped lines per location, 

phenotypic means, standard deviations, and maximum and minimum values. To correct for spatial 

structure and population effects, Best Linear Unbiased Estimations (BLUEs) were used as input 

for all considered prediction models. The interested reader is referred to Hölker et al. (2019) for 

details on the correction procedure and the detailed description of the considered traits. E.g., the 

trait “growth stage V4” indicates the growth stage at which four leaf collars are fully developed 

(Abendroth et al., 2011). In our study, we chose PH_V4 as the main trait for evaluating and 

illustrating our methods, since it is a relevant metric quantitative trait for early plant development 

which is suitable for testing our methods. The phenotypic correlations of PH_V4 across all 

environments are provided in Table 3.1.  
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Among the phenotypic traits, root lodging (RL) and female flowering (FF) were not phenotyped 

in all the environments: RL was only scored in BBG, ROG, OLI and EIN, and FF was phenotyped 

in all environments except GOL. 

Table 3.1: Phenotypic correlation across all environments for the trait PH_V4 in KE (blue numbers above 

diagonal) and PE (red numbers below diagonal) which are highly significant (p_values < 0.001). 

Location BBG EIN OLI  ROG GOL TOM  

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

- 

0.78 

0.60 

0.62 

0.55 

0.57 

0.82 

- 

0.66 

0.69 

0.59 

0.68  

0.66 

0.71 

- 

0.65 

0.46 

0.57 

0.67 

0.77 

0.71 

- 

0.51 

0.58 

0.69 

0.75 

0.65 

0.70 

- 

0.54 

0.58 

0.66  

0.50  

0.58 

0.69 

- 

3.4.2 Quality control, coding and imputing  

As we would not expect any heterozygous calls in DH material, all heterozygous calls were set to 

missing. Genotype calls were coded according to the allele counts of the B73 AGPv4 reference 

sequence (Jiao et al., 2017) (0 = homozygous for the reference allele, 2 = homozygous for the 

alternative allele). Imputation of missing values was performed separately for each landrace, using 

BEAGLE version 4.0 with parameters buildwindow=50, nsamples=50 (Browning and Browning, 

2007; Pook et al., 2020). For the remaining heterozygous calls, the DS (dosage) information of the 

BEAGLE output was used and genotyped with DS <1 were set to 0 and DS >= 1 to 2. 

3.4.3 Linkage disequilibrium pruning 

Linkage disequilibrium based SNP pruning with PLINK v1.07 was used to generate a subset of 

SNPs which are in approximate linkage equilibrium with each other. The parameters: indep 50 5 

2 were used, in which 50 is the window size in SNPs, 5 is the number of SNPs to shift the window 

at each step and 2 is the variance inflation factor 𝑉𝐼𝐹 =  1/(1 − 𝑟2), where 𝑟2 is the squared 

correlation between single SNPs and linear combinations of all SNPs in the window. All variants 

in the 50 SNP window which had a VIF > 2 were removed. Then, the window was shifted 5 SNPs 

forward and the procedure was repeated (Purcell et al. 2007; Chang et al. 2015). 
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In our study, LD pruning was done separately for each landrace, resulting in data panels containing 

25’437 SNPs for KE and 30’212 SNPs for PE.   

3.4.4 Univariate statistical models for phenotype prediction 

We used three different statistical models to predict phenotypes, which are all based on a linear 

mixed model (Henderson 1975). We assume that we have in total 𝑛 lines which are genotyped, 

and phenotypes are available for a subset of 𝑛1 lines. These 𝑛1 lines are used to train the model 

and missing phenotypes for the remaining 𝑛2 = 𝑛 − 𝑛1 lines are predicted by using the genotypes 

of these lines. The basic univariate model is 

𝒚 = 𝟏𝜇 + (𝑰 𝑶)𝒈 + 𝝐, 

where 𝒚 is an 𝑛1 × 1 vector of phenotypes, 𝟏 is an 𝑛1 × 1 vector with all entries equal to 1 , 𝜇 is a 

scalar fixed effect, 𝑰 is an identity matrix of dimension 𝑛1 × 𝑛1 and 𝑶 is a matrix of dimension 

𝑛1 × 𝑛2  of zeros. The design matrix (𝑰 𝑶)  is the 𝑛1 × (𝑛1 + 𝑛2)  matrix resulting from the 

concatenation of 𝑰 and 𝑶. Moreover, 𝒈~𝑁(0, 𝚪𝜎𝑔
2) is an 𝑛 × 1 vector of random genetic effects, 

and 𝝐~𝑁(0, 𝑰𝜎𝜖
2) is a random error vector, where 𝚪 and 𝑰 are the respective dispersion matrices 

and 𝜎𝑔
2 and 𝜎𝜀

2 are the corresponding variance components. 

With this model, the population mean and the genetic effects 𝒈 for all lines, including those 

without phenotypes, are estimated using 

[

𝜇̂
𝒈̂𝟏

𝒈̂𝟐

] = [
𝑛1 𝟏′ 𝟎

𝟏 𝑰 + 𝛌𝚪𝟏𝟏 𝛌𝚪𝟏𝟐

𝟎 𝛌𝚪𝟐𝟏 𝛌𝚪𝟐𝟐

 ]

−1

[
𝟏′𝒚

𝒚
𝟎

],       (eq. 1) 

where 𝜆 = 𝜎𝜀
2 𝜎𝑔

2⁄ , 𝚪−𝟏 = [𝚪𝟏𝟏 𝚪𝟏𝟐

𝚪𝟐𝟏 𝚪𝟐𝟐] and 𝒈 = [
𝒈𝟏

𝒈𝟐
]  and the indices pertain to the subset of 

individuals with (index 1) or without (index 2) phenotypes, respectively.  

With these estimates, the phenotypes for the set of unphenotyped individuals can be predicted as 

𝒚̂𝟐 = 𝟏𝟐𝜇̂ + 𝒈̂𝟐, where 𝒚̂𝟐 is the 𝑛2 × 1 vector of predicted phenotypes and 𝟏𝟐 is an 𝑛2 × 1 vector 

of ones. 

For 𝑛 = 𝑛1 and 𝑛2 = 0 the solution of eq. 1 provides estimates of genetic effects when all lines 

are phenotyped and genotyped. 

3.4.5 Bivariate statistical models for phenotype prediction 

Besides univariate models, we also used bivariate models, where the two variables represent the 

same trait measured in two different environments. 
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The basic bivariate model is 

𝒚 = 𝑿𝝁 + 𝒁𝒈 + 𝒆 

or, in more detail, 

[
𝒚1

𝒚2
] = [

𝟏1 𝟎
𝟎 𝟏𝟐

] [
𝜇1

𝜇2
] + [

𝑰1 𝟎
𝟎 𝑰2

] [
𝒈𝟏

𝒈𝟐
] + [

𝒆𝟏

𝒆𝟐
],       (eq. 2) 

where, [
𝒚1

𝒚2
] is the phenotype vector of length 𝑚 = 𝑚1 + 𝑚2 for environment 1 (𝑚1) and 2 (𝑚2), 

𝟏𝟏  and 𝟏𝟐  are respectively 𝑚1 × 1 and 𝑚2 × 1  vectors with all entries equal to 1, [
𝜇1

𝜇2
] is the 

vector of population means for environment 1 and 2, 𝑰1 and 𝑰2 are identity matrices of dimension  

𝑚1 × 𝑚1 and 𝑚2 × 𝑚2, respectively assigning genomic values to phenotypes. Moreover, [
𝒈𝟏

𝒈𝟐
] is 

the vector of random genomic values which is assumed to have a multivariate normal distribution 

with mean zero and variance 𝑮 = 𝑯 ⊗ 𝚪, where 𝑯 = [
𝜎𝑔1

2 𝜎𝑔12

𝜎𝑔12
𝜎𝑔2

2 ], 𝚪 is the dispersion matrix of 

genetic effects and ⊗ is the Kronecker product. [
𝒆𝟏

𝒆𝟐
] is the vector of random errors which is 

assumed to have a multivariate normal distribution with mean zero and variance 𝑹 = 𝑹𝟎 ⊗ 𝑰, 

where 𝑹𝟎 = [
𝜎𝑒1

2 𝜎𝑒12

𝜎𝑒12
𝜎𝑒2

2 ]. 𝜎𝑔𝑖

2  and 𝜎𝑒𝑖

2  represent the genetic and residual variance of environment 

𝑖 =  1,2 , and 𝜎𝑔12
 and 𝜎𝑒12

are the genetic and residual covariance between the environment 1 and 

2 (Guo et al., 2014). In this model, the phenotypes have to be ordered in the same way in both 

environments. In case the number of observations in environment 1 and environment 2 is not 

identical (i.e. in general terms 𝑚1 ≠ 𝑚2 ) or different lines are considered in the model, the 

incidence matrices have to be adapted accordingly.  

With this model, the vector of environment specific population means and the vector of genetic 

effects for all lines are estimated using the standard mixed model equations 

[
𝝁̂
𝒈̂

] = [𝑿′𝑹−𝟏𝑿 𝑿′𝑹−𝟏𝒁
𝒁′𝑹−𝟏𝑿 𝒁′𝑹−𝟏𝒁 + 𝑮−𝟏]

−1

[
𝑿′𝑹−𝟏𝒚

𝒁′𝑹−𝟏𝒚
], 

In analogy to the procedure described in the univariate setting, we consider a setting in which the 

last 𝑙 phenotypes for environment 2 are masked and predicted from all observations in 

environment 1 and the first 𝑘 = 𝑚2 − 𝑙 non-masked observations in environment 2.  

[
𝒚1
𝒚𝑘

0
] = [

𝟏1 𝟎
𝟎
𝟎

𝟏𝒌

𝟎
] [

𝜇1

𝜇2
] + [

𝑰1 0 0
0 𝑰𝑘 0
0 0 𝑰𝑙

] [
𝒈𝟏
𝒈𝟐𝒌

𝒈𝟐𝒍

] + [
𝒆𝟏
𝒆𝒌

𝟎
] 
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From the solutions obtained with this model, the phenotypes for the set of unphenotyped 

individuals in environment 2 can be predicted as 𝒚̂𝒍 = 𝟏𝒍𝜇̂2 + 𝒈̂𝟐𝒍, where 𝒚̂𝒍 is the 𝑙 × 1 vector of 

predicted phenotypes and 𝟏𝒍 is an 𝑙 × 1 vector of ones. 

The three models compared in this study only differ in the choice of the dispersion matrix 𝚪 of the 

genetic effects. 

3.4.6 Model 1: Genomic Best Linear Unbiased Prediction (GBLUP)  

In this additive model, we use as 𝚪 the genomic relationship matrix which is calculated according 

to VanRaden (2008) as 

𝚪𝑽𝑹 =
(𝑴 − 𝑷)(𝑴 − 𝑷)′

2 ∙ ∑ (𝑝𝑖(1 − 𝑝𝑖))𝑚
𝑖=1

, 

where 𝑴  is the 𝑛 × 𝑚  marker matrix which gives 𝑚  marker values for 𝑛  lines under the 

assumption of having 𝑛 genotyped lines in total. 𝑷 is a matrix of equal dimension as 𝑴 with 2 ∙ 𝑝𝑖 

in the 𝑖𝑡ℎcolumn, and 𝑝𝑖 is the allele frequency of the minor allele of SNP 𝑖.  

3.4.7 Model 2: Epistatic Random Regression BLUP (ERRBLUP) 

This model accounts for all possible SNP interactions in the prediction model. With m markers 

and fully inbred lines, we have two possible genotypes at a single locus, i.e. 0 or 2 when coded as 

the counts of the minor allele. For each pair of loci, we have four different possible genotype 

combinations: {00, 02, 20, 22}. The total number of pairs of loci is 
𝑚×(𝑚+1)

2
 if we allow for 

interaction of a locus with itself. Since for each of these pairs we have four possible genotype 

combinations, the total number of combinations to be considered as dummy variables is 

 𝑚∗ = 4 ×
𝑚×(𝑚+1)

2
= 2𝑚 × (𝑚 + 1). 

We define a marker combination matrix 𝑴∗  of dimension 𝑛 × 𝑚∗  whose element 𝑖, 𝑗  is 1 if 

genotype combination 𝑗 is present in individual 𝑖 and is 0 otherwise. We further define for column 

𝑖 of this matrix the average value 𝑝𝑖
∗, giving the frequency of the respective genotype combination 

in the population, and a matrix 𝑷∗ being of equal dimension as 𝑴∗ with 𝑝𝑖
∗ in the 𝑖𝑡ℎcolumn. 

Then, the relationship matrix based on all SNP interactions was calculated according to VanRaden 

(2008) as 

𝚪𝑬𝑹𝑹 =
(𝑴∗ − 𝑷∗)(𝑴∗ − 𝑷∗)′

∑ (𝑝𝑖
∗(1 − 𝑝𝑖

∗))𝑚∗ 
𝑖=1
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and this matrix was used in ERRBLUP as dispersion matrix for the genetic effects, which now are 

based on epistatic interaction effects. It should be noted that including the interaction of each locus 

with itself replaces the additive effect, so that it is not necessary to use a model that separately 

accounts for additive and epistatic effects. This model had been introduced earlier as “categorical 

epistasis model” (Martini et al., 2017). 

3.4.8 Model 3: selective Epistatic Random Regression BLUP (sERRBLUP) 

sERRBLUP is based on the same approach as ERRBLUP, but here the 𝚪 -matrix is constructed 

from a selected subset of genotype interactions. We decided to use those interactions with the 

highest estimated marker effects variances. Selection based on highest absolute effects (as used by 

Martini et al. (2016) in the framework of the EGBLUP epistasis model) was also considered, but 

lead to similar to slightly worse results. For this, it was necessary to backsolve interaction effects 

𝒕̂ and effects variances 𝝈̂2 from the ERRBLUP model using (Mrode, 2014) 

𝒕̂ =
𝜎𝑔

∗̂ 2

∑ (𝑝𝑖
∗(1−𝑝𝑖

∗))𝑚∗ 
𝑖=1

(𝑴∗ − 𝑷∗)′ (𝜎𝑔
∗̂2

𝚪𝑬𝑹𝑹 + 𝜎𝜖
∗̂2

𝑰)
−1

(𝒚 − 𝟏𝜇 ̂), 

𝝈̂2 = (𝒕̂ ∘ 𝒕̂)2𝑷∗(1 − 𝑷∗), 

with ∘ denoting the Hadamard product.  

After estimating SNP interaction effects in 𝒕̂  and effects variances in 𝝈̂2 , we selected those 

interactions whose absolute estimated effects or effect variances were in the top 𝜋 =

0.05, 0.01, 0.001, 0.0001, 0.00001 or 0.000001proportion of all interactions, respectively. These 

proportions were chosen since it was observed in preliminary analyses that they cover the most 

relevant range. For each of these subsets, we generated reduced matrices 𝑴𝝅
∗  and 𝑷𝝅

∗  of dimension 

𝑛 × 𝜋𝑚∗ , containing only those columns of 𝑴∗  and 𝑷∗  pertaining to the selected subset of 

genotype interactions, and then set up the dispersion matrix in analogy to VanRaden (2008) as 

𝚪𝒔𝑬𝑹𝑹 =
(𝑴𝝅

∗ − 𝑷𝝅
∗  )(𝑴𝝅

∗ − 𝑷𝝅
∗  )′

∑ (𝑝𝜋𝑖
∗ (1 − 𝑝𝜋𝑖

∗ ))𝜋𝑚∗ 
𝑖=1

, 

where 𝑝𝜋𝑖
∗  are the mean frequencies of the selected genotype combinations. 

Note here that even for the univariate model, information from another environment is used for 

the prediction, namely for variable selection and the definition of 𝚪𝒔𝑬𝑹𝑹. However, having used 

the information from another environment to define the subset of interactions and to derive the 

relationship matrix 𝚪𝒔𝑬𝑹𝑹, the actual prediction is within the considered environment from the 

training to the test set. 

We used the miraculix package (Schlather, 2020) to efficiently calculate 𝚪𝑬𝑹𝑹, 𝒕̂ and 𝚪𝒔𝑬𝑹𝑹. 
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3.4.9 Assessment of predictive ability via 5-fold random cross validation with 

5 replicates   

In a 5-fold cross validation, the original sample is randomly partitioned into five subsamples of 

equal size. Out of the five subsamples, each subsample is subsequently considered as the test set 

for validating the model, and the remaining four subsamples are considered as training data. The 

training set is used to predict the test set. By this, all observations are used for both training and 

testing and each observation is only used once for testing (Utz et al., 2000). We repeated the cross-

validation procedure 5 times, using random partitions of the original sample. The results of the 25 

repetitions were then averaged (Erbe et al., 2010). We used the Pearson correlation between the 

predicted genetic value and the observed phenotype in the test set as the measure for predictive 

ability. In our study, predictive ability was assessed for PE and KE for all phenotypic traits 

separately. In addition, the trait’s prediction accuracy was calculated by dividing the obtained 

predictive ability by the square-root of the respective trait’s heritability (Dekkers, 2007). The 

numbers of KE and PE lines which are available for all combinations of environments are 

summarized in Table 3.2. For some traits these numbers can be smaller or even zero for some 

environment combinations.   

Table 3.2: Number of KE (blue numbers above diagonal) and PE (red numbers below diagonal) phenotyped 

lines in each pair of environments for trait PH_V4. 

Location BBG EIN OLI  ROG GOL TOM  

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

393/461 

393 

390 

390 

195 

195 

461 

393/462 

390 

390 

195 

195 

441 

441 

390/441 

389 

195 

195 

461 

461 

441 

390/461 

195 

195 

200 

201 

182 

200 

204/211 

204 

200 

201 

181 

200 

209 

204/210 

 

We evaluated our univariate and bivariate models as follows: 

3.4.10 Assessment of GBLUP, ERRBLUP and sERRBLUP predictive abilities 

The univariate GBLUP and ERRBLUP within environments were evaluated by training the model 

in the same environment as the test set was sampled from.  
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The basic strategy for univariate and bivariate sERRBLUP across environments is illustrated in 

Fig. 3.1: first, all pairwise SNP interaction effects and their variances are estimated from all data 

in environment 1 and effects are ordered either by absolute effect size or effect variance (A). Next, 

an epistatic relationship matrix for all lines is constructed from the top ranked subset of interaction 

effects (B). Then, this matrix is used in environment 2 (C) to predict phenotypes of the test set 

(green) from the respective training set (red) (D). This approach henceforth is termed ‘sERRBLUP 

across environments’. In the case of bivariate sERRBLUP both the full data panel from 

environment 1 and the training set from environment 2 are used in a bivariate prediction model. 

The basic strategy for bivariate GBLUP and ERRBLUP can also be illustrated in Fig. 3.1 when 

the model is trained jointly on the complete dataset of environment 1 (E) and the training set of 

environment 2 (D). The test set of environment 2 is then predicted, using as dispersion matrix for 

the genetic effects either 𝚪𝑽𝑹 or 𝚪𝑬𝑹𝑹.  

Fig. 3.1: Basic scheme of uni- and bivariate sERRBLUP across environments. All pairwise SNP interaction 

effects and their variances are estimated from all data in environment 1, and effects are ordered either by 

absolute effect size or effect variance (A). Then, an epistatic relationship matrix for all lines is constructed 

from the top ranked subset of interaction effects (B) which in the univariate model is used in environment 

2 (C) to predict phenotypes of the test set (green) from the respective training set (red, D). In the bivariate 

model, this information is combined with the complete data from environment 1 (blue, E) to predict the test 

set.  

3.4.11 Use of multiple environments jointly 

In addition to considering each environment separately, we used the average of all environments, 

except the current target environment, as an additional environment. This was considered for 

univariate sEERBLUP and all bivariate models. 
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3.4.12 Estimation of variance and covariance components 

Since we aimed at estimating variance components in each replicate of the cross-validation from 

the training data, but variance component estimation with ASREML has a certain risk of non-

convergence in particular in models with a high number of parameters such as the models proposed 

here Therefore, we needed to specify a strategy to deal with such cases in an automated manner. 

In univariate analyses, variance components were estimated using EMMREML (Akdemir and 

Godfrey, 2015) in each run of a 5-fold cross validation based on the training set. In bivariate 

analyses, the variance components were estimated using ASReml-R (Butler et al., 2018). In the 

bivariate ERRBLUP and sERRBLUP models, the genetic and residual variance and covariance 

were estimated first from the full data set in a bivariate ASReml-R model for each combination of 

environments in each trait. If the estimation of variance components didn’t converge after 100 

iterations, then the computation was stopped and the genetic and residual variance and covariance 

estimates at the last iteration (100) were extracted. These estimates were defined as the initial 

starting values of the bivariate ASReml-R model in each run of a 5-fold cross validation, followed 

by a re-estimation of the variance and covariance components based on the training set in the cross 

validation. If the estimation of variance components did not converge at 50 iterations in each fold, 

the pre-estimated variance and covariance components based on the full dataset, which was 

defined as the initial start values of the model, were used as fixed values, so that the breeding 

values were estimated based on these pre-estimated parameters. It was verified from converged 

estimates that variance and covariance components estimated from the training set deviated only 

little from the variances and covariances from the full set (see Fig. S. 3.1). Also, the mean result 

obtained from just the converged replicates and the mean results of all replicates including the 

ones where variance and covariance components were fixed were rather similar (Fig. S. 3.2), only 

when the majority (>20) of replicates failed to converge, substantial random fluctuation was 

observed. Thus, we argue that this strategy appears justifiable, but still the number of cases where 

estimates did not converge in 5-fold cross validation with 5 replicates and the combinations whose 

pre estimation of variance components also did not converge in 100 iterations are detailed in the 

supplementary (Table S. 3.2 - Table S. 3.9).  

3.5 Results 

Predictive abilities of univariate sERRBLUP across environments compared to univariate 

ERRBLUP and univariate GBLUP within environments for the trait PH_V4 are shown in Fig. 3.2 

for KE and PE. Univariate GBLUP within the environment is used as a reference and is compared 

to results obtained with univariate ERRBLUP within environments and univariate sERRBLUP 

when the top 5, 1, 0.1, 0.01, 0.001 and 0.0001 percent of pairwise SNP interactions are maintained 

in the model. Fig. 3.2 shows that the predictive abilities of univariate GBLUP and univariate 

ERRBLUP within the environment are almost identical (the highest deviation observed was 

0.004). A considerable increase in predictive ability was observed when the top 1 or 0.1 percent 

of SNP interactions, selected based on their effect variances, were kept in the univariate 
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sERRBLUP model. A more stringent selection, i.e. by considering only the top 0.01, 0.001 and 

0.0001 percent of SNP interactions in the model, often led to a reduction in predictive ability, such 

that for the most stringent selection of 0.001 and 0.0001 percent, the predictive ability was 

sometimes even below the univariate GBLUP reference. This pattern is observed across all 

environments and is more pronounced in KE than PE. Results for the other traits are given in the 

Supplementary (Fig. S. 3.3 - Fig. S. 3.9). In this study, estimated effect variances were identified 

as the best selection criteria in sERRBLUP, since sERRBLUP predictive abilities were observed 

to be more robust when the selection of pairwise SNP interaction was based on the effect variances 

compared to absolute effect sizes, especially when the top 0.001 and 0.0001 percent of interactions 

are maintained in the model (Fig. S. 3.10 - Fig. S. 3.11). In addition, the maximum predictive 

ability obtained from univariate sERRBLUP are almost identical when selecting SNP interactions 

based on absolute effect sizes or effect variances for both KE and PE (Fig. S. 3.12).  

In the context of univariate models, we also investigated the predictive ability of univariate 

sERRBLUP when the variable selection was based on the training set from the same environment 

as the test set. This was exemplarily done within Bernburg for the trait PH_V4 (Fig. S. 3.13), 

illustrating that the predictive ability obtained from univariate sERRBLUP is marginally higher 

than univariate GBLUP only when the top 0.01 percent of interactions are kept in the model. When 

the selection of effects is too strict, with only 0.001 percent of interactions used, the predictive 

ability of univariate sERRBLUP within Bernburg is smaller than the one obtained with GBLUP, 

especially if the selection is based on effect sizes.  

The predictive abilities of bivariate GBLUP, ERRBLUP and sERRBLUP when SNP interactions 

were selected based on estimated effect variances are compared for trait PH_V4 in KE and PE in 

Fig. 3.3. Fig. 3.3 shows that the bivariate ERRBLUP increases the predictive ability slightly 

compared to bivariate GBLUP with the maximum absolute increase of 0.03 in KE and 0.02 in PE 

across all environments’ combinations. A considerable increase in predictive ability is obtained in 

bivariate sERRBLUP mostly when the top 5 or 1 percent of interactions are maintained in the 

model. However, the bivariate sERRBLUP predictive abilities decrease dramatically for too 

stringent selection of pairwise SNP interactions such as 0.01, 0.001 or 0.0001 percent. Moreover, 

the reduction in predictive ability with too stringent factor selection is more severe for KE than for 

PE. This pattern is observed for the majority of environments for both landraces and the results for 

other traits are shown in the supplementary (Fig. S. 3.14 - Fig. S. 3.20). 
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Fig. 3.2: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments (solid 

colored lines) when SNP interaction selections are based on estimated effects variances in KE (left side) 

and PE (right side) for trait PH_V4. In each panel, the solid lines’ color indicates the environment in which 

the relationship matrices were determined by variable selection. 
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Fig. 3.3: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait PH_V4. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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 The relative increase in prediction accuracy of the best univariate sERRBLUP across 

environments compared to univariate GBLUP within environments for all traits and all locations 

is shown in form of a heat map in Fig. 3.4 for both landraces. The maximum relative increase in 

prediction accuracy among all traits and all environments in KE is 85.6 percent (PH_V6 in OLI) 

and in PE it is 112.4 percent (EV_V3 in EIN). Those highest increases in accuracy were found in 

traits and environment combinations where the univariate GBLUP prediction accuracy was 

particularly low. An increase is observed in each studied trait by location combination, with the 

smallest increase in both landraces for PH_final in BBG (20.1 percent in KE) or in GOL (5.9 

percent in PE). In general, both plots in Fig. 3.4 demonstrate that for the majority of traits and 

environments, there is more than a 30 percent increase in prediction accuracy from univariate 

GBLUP within environments to the best univariate sERRBLUP across environments. The average 

increase across all combinations in KE is 47.1 percent and in PE is 46.7 percent. Note that this 

increase is somewhat inflated as a single GBLUP accuracy is compared against the best prediction 

from a set of various models (environment / selection proportions). However, even when using a 

set environment and a fixed proportion of interactions, there are still substantial gain. Exemplary, 

EIN with a proportion of 0.1 still lead to an increase of 43.1 percent in KE and 36.9 percent in PE 

(Fig. S. 3.21). The choice of EIN was made as it had the highest number of phenotyped lines (Table 

S. 3.1), while 0.1 in general led to stable models. Results using any other location or reasonable 

choice of the share of included interactions were very similar. The absolute increase in prediction 

accuracy is also shown as a heat map in Supplementary Fig. S. 3.22, which indicates the average 

absolute increase of 0.204 in KE and 0.181 in PE. 

Fig. 3.5 also shows the relative increase in prediction accuracy from the best bivariate GBLUP to 

the best bivariate sERRBLUP for all traits and all locations. The maximum increase in prediction 

accuracy among all traits and all environments is 21.1 percent (EV_V6 in ROG) in KE and 27.9 

percent (EV_V3 in BBG) in PE. There is an increase across all studied traits in all environments 

except for the trait PH_final in PE which shows a relative decrease of 0.3 percent. The minimum 

increase in prediction accuracy in KE was also observed for PH_final (1.7 percent). In general, 

Fig. 3.5 shows that the relative increase in prediction accuracy from the best bivariate GBLUP to 

the best bivariate sERRBLUP is more than 7 percent for the majority of trait by location 

combinations in both landraces with an average increase of 10.9 percent in KE and 10.5 in PE 

across all combinations. The absolute increase in prediction accuracy of bivariate models is also 

shown as a heat map in supplementary (Fig. S. 3.23) indicating an average absolute increase of 0.1 

across all traits, environment combinations, and landraces. 
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Fig. 3.4: Percentage of increase in prediction accuracy from univariate GBLUP within environments to the 

maximum prediction accuracy of univariate sERRBLUP across environments when the SNP interaction 

selections are based on estimated effects variances in KE (left side) and in PE (right side). The average 

percentage of increase in prediction accuracy for each trait and environments are displayed in rows and 

columns, respectively. 
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Fig. 3.5: Percentage of increase in prediction accuracy from the maximum bivariate GBLUP to the 

maximum prediction accuracy of bivariate sERRBLUP when the SNP interaction selections are based on 

estimated effects variances in KE (left side) and in PE (right side). The average percentage of increase in 

prediction accuracy for each trait and environments are displayed in rows and columns, respectively. 

 

In addition to assessing the predictive ability of univariate sERRBLUP based on a single 

environment, Fig. 3.6 displays the comparison between the predictive ability obtained from 

univariate GBLUP and univariate ERRBLUP within environments, and univariate sERRBLUP 

across multiple environments jointly for trait PH_V4 in KE and PE. It is demonstrated that 

univariate sERRBLUP has a higher predictive ability than univariate GBLUP when interactions 

are selected based on all the other five environments jointly. The preliminary analysis also reveals 

the robustness of the selection strategy based on the effects variance compared to selection strategy 

based on the absolute effects sizes in univariate sERRBLUP across multiple environments jointly 

for KE (Fig. S. 3.24), while for PE it does not show a significant difference for the interaction 

selection strategy (Fig. S. 3.25). Fig. 3.6 demonstrates that the predictive ability of univariate 

sERRBLUP across multiple environments jointly is as good as or better than using a single 

environment with few exceptions when the selection of effects is not too strict. With less than 0.1 
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percent of interactions used, predictive abilities deteriorate (especially so in KE) and selection 

from combined environments turns out to be worse than selection from single environments.  

Fig. 3.7 illustrates the comparison between the predictive ability of bivariate GBLUP, ERRBLUP 

and sERRBLUP across multiple environments jointly and the maximum predictive ability of 

bivariate GBLUP and ERRBLUP and all the predictive abilities of sERRBLUP when a single 

environment is considered as an additional environment for the trait PH_V4 in both KE and PE. 

The results indicate that bivariate sERRBLUP across multiple environments jointly increases the 

predictive ability compared to bivariate GBLUP and ERRBLUP across multiple environments 

jointly. In most cases, bivariate GBLUP, ERRBLUP and sERRBLUP across multiple 

environments jointly performs as good as or better than when using a single environment. 
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Fig. 3.6: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (gray open circle), univariate sERRBLUP using a single environment for 

selecting the SNP interactions (gray open circles) and univariate sERRBLUP using all 5 environments 

jointly (filled black circles and solid line) for the SNP interaction selection based on estimated effects 

variances for trait PH_V4 in KE (left side) and PE (right side). 
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Fig. 3.7: Predictive ability for bivariate GBLUP (black dashed horizontal line), bivariate ERRBLUP and 

bivariate sERRBLUP (filled black circles) for the SNP interaction selection based on estimated effects 

variances using all 5 environments jointly for trait PH-V4 in KE (left side) and PE (right side). In each 

panel, gray horizontal line and first gray open circles refer to maximum bivariate GBLUP and maximum 

bivariate ERRBLUP, and the gray open circles at the top 5, 1, 0.1, 0.01, 0.001, 0.0001 quantiles refer to 

bivariate sERRBLUP using a single environment as an additional environment. 
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3.6 Discussion 

The accuracy of genomic prediction when incorporating epistasis interactions in the model 

compared to prediction models with only main effects has been widely discussed over the last 

years. In particular, it was found that accounting for epistasis can increase predictive ability 

(Carlborg and Haley, 2004; Hu et al., 2011; Huang et al., 2012; Wang et al., 2012; Mackay, 2014; 

Jiang and Reif, 2015; Ober et al., 2015; Rönnegård and Shen, 2016).  

A major concern in utilizing epistasis models has been the high computational load (Mackay, 

2014) which has been reduced for the full model including all interactions by utilizing marker 

based epistasis relationship matrices derived from Hadamard products of additive genomic 

relationship matrices (Jiang and Reif, 2015; Ober et al., 2015; Martini et al., 2016). The key 

advantage of this approach is that the number of random effects in the model is reduced from the 

number of SNP interactions to the number of genotypes. While the approaches of Jiang and Reif 

(2015) and Martini et al. (2016), only capture the interactions whose products differ from zero (i.e. 

{22} genotype combinations for 0, 2 coded markers), our approach captures all possible genotype 

combinations ({00}, {02}, {20}, and {22}). Further, these epistasis relationship matrices and 

interaction effects were computed by bit-wise computations via the R-package miraculix 

(Schlather, 2020), which carries out matrix multiplications about 15 times faster than regular 

matrix multiplications on genotype data in EpiGP R-package (Vojgani et al., 2021). In the 

analyzed datasets containing up to 30’212 SNPs (and thus 456’397’578 interactions), the 

computing time required to set up the sERRBLUP relationship matrix was about 810 minutes out 

of which around 330 minutes were required to estimate all pairwise SNP interaction effects and 

480 minutes were required to set up the sERRBLUP relationship matrix for selected proportion of 

interactions by utilizing the R-package miraculix with 15 cores on a server cluster with Intel E5-

2650 (2X12 core 2.2GHz) processors. Computing times for sERRBLUP scale approximately 

quadratic in the number of markers considered. The released EpiGP R-package (Vojgani et al., 

2021), which is available at https://github.com/evojgani/EpiGP, has been utilized for ERRBLUP 

and sERRBLUP genomic prediction of phenotypes.  

Our proposed epistasis model eventually can generate a considerable prohibitive computational 

load if the number of SNPs grows to hundreds of thousands (Vojgani, et al., 2019). The computing 

time for sERRBLUP exhibits quadratic growth with increasing number of SNPs. A potential 

strategy to overcome these limitations is to achieve a feature reduction by SNP pruning, as was 

implemented in our maize dataset (Purcell et al., 2007; Chang et al., 2015). Another option to 

obtain an even stronger variable reduction than pruning might be the use of haplotype blocks (Pook 

et al., 2019). Although sERRBLUP model can be computationally challenging by increasing the 

number of SNPs, its predictive ability is constantly higher than the models such as RKHS, which 

reduces the computational time considerably (Table S. 3.10).   

In this study, we showed that the predictive ability obtained by use of GBLUP and a full epistasis 

model with all pairwise SNP interactions included (ERRBLUP) was almost identical. In contrast, 

it was shown that the use of sERRBLUP increases predictive ability when only the most relevant 

https://github.com/evojgani/EpiGP
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SNP interactions are taken into account, regardless of the choice of the training environment, 

which is likely a result of enriching for true causal variant combinations among the list of all 

variant combinations used to construct the genetic covariance matrix. In our study, the maximum 

predictive ability with sERRBLUP was obtained by incorporating the top 5, 1 or 0.1 percent of 

pairwise SNP interactions, while a too strict selection of SNP interactions such as the top 0.01, 

0.001 and 0.0001 percent often reduced the predictive ability. A similar loss in predictive ability 

with a too strict selection of interactions to be included in the model was also observed by Ober et 

al. (2015). The difference in interaction selection can be explained by the fact that the absolute 

number of interaction effects in the model is more important than the percentage of interaction 

effects. To illustrate this, the absolute numbers of interactions maintained in the model for the top 

0.001 and 0.0001 percent of interactions in KE are respectively 3’235 and 323, which is less than 

the number of additive effects in KE (25’437) where the obtained sERRBLUP predictive ability 

is lower than GBLUP predictive ability. In addition, the possible differences in linkage can also 

lead to different redundancy patterns of interactions. Here we also saw the only major systematic 

difference between the two selection criteria: when SNP interactions were selected based on the 

magnitude of their estimated (absolute) effects, the loss in predictive ability when selecting too 

few interactions was much more severe than when SNP interactions were selected based on the 

variance associated with them. This phenomenon has been more prevalent in KE than in PE (Fig. 

S. 3.10 - Fig. S. 3.11), and is valid in both scenarios, using information either from a single 

environment or from the average of all other environments (Fig. S. 3.24 - Fig. S. 3.25). A potential 

reason for this is that the few interactions that remain in the model are highly linked and thus no 

proper representation of the overall population structure is possible anymore. This effect was even 

more pronounced when selecting based on effect sizes. Thus, we recommend the use of effect 

variances as a selection criterion in sERRBLUP applications since this should be conceptually 

more robust. 

The bivariate models exhibited a considerably higher predictive ability than univariate models. In 

consequence, the bivariate GBLUP performed slightly better than the best univariate sERRBLUP 

in most cases (Fig. S. 3.26). Across all studied traits, the increase in prediction accuracy from 

GBLUP to sERRBLUP displays a similar pattern in both univariate and bivariate models. It has to 

be noted that this increase in predictive ability is exclusively caused by the modelling of epistasis 

in a bivariate statistical setting, while it is caused by both modelling of epistasis and borrowing 

information across environments through variable selection in the univariate statistical setting. 

In general, it is expected that the predictive ability for phenotypes should be higher with higher 

heritability. In this study, the correlation between the heritability of all traits, which have been 

calculated on an entry-mean basis within each landraces (Hallauer et al., 2010) over all 

environments, was 0.296 with univariate GBLUP within environments and 0.543 with maximum 

univariate sERRBLUP across environments (Fig. S. 3.27). Corresponding correlations were higher 

in the bivariate statistical setting of the respective models, with an increase in the respective 

correlation from maximum bivariate GBLUP (0.537) to maximum bivariate sERRBLUP (0.647) 

(Fig. S. 3.28). 



69 
 

 

When comparing sERRBLUP to a traditional GxE model (Kang and Gorman, 1989), the modelling 

approach is quite different. In sERRBLUP, the selection of marker-by-marker interactions is done 

based on a second environment. However, for the final estimation of the actual effect size, the data 

from the same environment is used. Thus, effect sizes can substantially differ between 

environments. In contrast to this, traditional GxE model will assign effects to specific marker-by-

environment combinations. As included interactions between different environments in 

sERRBLUP are different, it is not possible to put concrete GxE effects on specific markers or 

marker-by-environment interactions, which would be the essence of traditional GxE models. As 

prediction performances are increasing quite substantially by the use of sERRBLUP, this still can 

be seen as an indication that effect regions are similar between environment (although effect sizes 

might differ). 

Our results indicate that a higher number of phenotyped lines (in particular overlapping between 

environments) and including information from a more similar second environments were 

beneficial for prediction. E.g., when the two Spanish locations GOL or TOM were used as the 

second environment to predict a German environment, prediction accuracies were lower as these 

environments have substantially different climate and for some traits lower overlap between 

phenotyped lines. On the other hand, the best prediction results for GOL were obtained when using 

TOM as second environment and vice versa. 

In both univariate and bivariate models, it was shown that the obtained predictive ability across 

multiple environments jointly was mostly equivalent or higher than the maximum predictive 

ability obtained based on a single environment. Thus, using an average across all other 

environments should be a robust alternative which in most cases will yield a result that is as good 

as or even better than the best single environment. 

Overall, our results demonstrate that bivariate models can outperform univariate models and 

epistatic interactions can substantially increase the predictive ability. In the context of univariate 

models, it was shown that selecting a suitable subset of interactions based on other environments 

where phenotypic data of the full set of lines are available can substantially increase the predictive 

ability. As the ideal share 𝜋 of interactions to be included in sERRBLUP is not known in practice, 

one could consider to run a testing scheme with an additional validation set for the identification 

of a suitable 𝜋. As results were quite robust as long as a reasonable fraction (between 5 and 0.1 

percent) of interactions were included in the model and this introduces further computational load, 

this should however usually not be required.  

The presented approach can substantially improve the phenotype prediction accuracy in another 

environment by ‘borrowing’ information on effect regions from another variable. In our case, this 

other variable were phenotypes of the same trait grown in different environments. However, one 

could also imagine using data from another growing season or even from a highly correlated 

second trait. This can be useful in sparse testing designs, e.g. where not all lines are grown in all 

environments. The suggested approach can be used to ‘impute’ missing phenotypes with a much 

increased accuracy compared to conventional approaches. 
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3.7 Supplementary material  

3.7.1 Supplementary Tables 

Table S. 3.1: Phenotypic traits descriptions, locations, number of lines, mean, minimum, maximum and standard deviation of phenotypic traits in 

each location for KE (blue numbers) and PE (red numbers). 

Trait Definition Location Number of 

Phenotyped lines 

Mean Minimum Maximum Standard 

deviation 

 

EV_V3 

 

Early vigour at V3 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

 

459\393 

462\393 

440\389 

460\390 

210\204 

210\204 

 

4.10\4.68 

4.11\4.70 

5.31\6.17 

5.35\5.84 

6.31\6.67 

5.51\6.15 

 

 

0.78\1.00 

0.86\1.03 

1.22\3.30 

1.71\2.90 

4.07\5.49 

1.93\3.84 

 

7.28\7.55 

9.00\9.03 

8.05\8.74 

7.90\7.92 

8.49\7.98 

7.34\8.45 

 

1.28\1.18 

1.31\1.18 

1.15\0.86 

0.95\0.75 

0.69\0.51 

0.99\0.67 

EV _V4 Early vigour at V4 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

459\393 

462\393 

439\389 

459\390 

210\204 

210\204 

3.85\4.65 

4.24\4.82 

5.27\6.07 

5.44\5.85 

5.71\5.98 

5.26\5.75 

0.67\0.93 

0.94\1.52 

0.80\2.99 

2.65\2.88 

3.37\3.91 

2.59\3.92 

8.29\8.49 

7.07\7.46 

7.52\8.36 

7.86\7.94 

7.89\7.89 

6.89\7.35 

1.48\1.48 

1.11\0.98 

1.08\0.75 

0.92\0.78 

0.81\0.83 

0.83\0.61 

EV _V6 Early vigour at V6 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

459\393 

462\393 

437\388 

461\390 

210\204 

210\204 

3.92\4.64 

5.03\5.54 

5.30\6.07 

5.55\5.91 

6.24\6.24 

5.58\5.86 

0.74\0.84 

0.97\1.51 

0.54\3.56 

1.02\2.52 

3.90\3.81 

2.96\3.90 

8.75\8.22 

8.05\8.39 

7.17\8.09 

8.07\7.76 

8.45\7.94 

7.66\7.91 

1.39\1.41 

1.24\1.06 

0.96\0.74 

0.95\0.77 

0.85\0.85 

0.92\0.68 
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Trait Definition Location Number of 

Phenotyped lines 

Mean Minimum Maximum Standard 

deviation 

 

PH_V4 

 

Mean plant height of three 

plants of the plot at V4 

stage in cm 

 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

 

461\393 

462\393 

440\388 

460\390 

210\204 

210\204 

 

35.86\41.48 

34.49\38.73 

18.43\22.55 

25.50\28.10 

62.88\68.98 

41.60\47.45 

 

9.27\16.38 

6.90\20.43 

7.35\11.89 

9.23\13.63 

34.30\38.39 

11.98\25.37 

 

60.40\62.85 

53.14\57.94 

31.11\35.75 

42.29\41.54 

88.24\95.30 

63.89\72.12 

 

8.43\7.93 

7.24\6.17 

3.93\3.87 

4.60\4.53 

 9.79\10.96 

8.71\8.27 

 

PH_V6 

 

Mean plant height of three 

plants of the plot at V6 

stage in cm 

 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

 

461\393 

462\393 

440\390 

459\390 

210\204 

210\204 

 

61.75\69.08 

62.40\69.36 

36.74\45.35 

61.46\68.91 

94.21\98.30 

83.86\92.35 

 

19.41\30.36    

21.41\36.53 

8.34\14.78 

32.17\30.35 

37.28\54.75 

48.46\57.81 

 

93.84\100.39   

95.54\98.80   

58.40\72.48   

89.74\94.77 

127.54\130.51 

119.07\124.98 

 

11.80\11.12   

11.89\9.62   

8.69\8.53   

9.34\9.52 

15.05\15.29 

14.41\12.79 

PH_final Final plant height after 

flowering in cm 

BBG 

EIN 

OLI 

ROG 

GOL 

TOM 

 

461\393 

462\393 

432\387 

461\390 

209\204 

210\204 

142.65\120.60 

159.18\141.35 

118.17\112.46 

137.04\122.25 

115.68\102.69 

157.99\144.61 

95.85\59.78  

100.84\69.01 

58.74\58.55 

74.25\63.56 

49.27\30.21 

81.92\79.28 

210.08\179.03  

228.96\211.14 

175.81\173.15 

211.14\201.92 

167.58\149.14 

245.00\195.36 

20.53\19.11  

21.57\21.10 

21.95\20.48 

22.32\20.56 

21.73\23.59 

24.82\18.95 

FF Days after sowing until 

female flowering (days 

until 50% of the plot 

showed silks) 

BBG 

EIN 

OLI 

ROG 

TOM 

 

461\393 

462\393 

346\347 

458\389 

209\203 

 

82.10\82.08 

82.55\81.78 

83.32\82.41 

73.06\71.91 

76.88\74.16 

69.45\69.78  

70.36\68.86 

72.60\69.46 

62.45\59.10    

63.93\62.13 

95.74\92.04   

102.02\101.50    

92.13\91.54   

91.22\88.03    

93.28\92.17 

4.31\4.18  

5.23\5.17 

3.76\3.68 

4.82\4.47    

5.58\4.64 

RL Root lodging score from 1 

to 9 (1 belonged to no 

lodging and 9 belonged to 

severe lodging) 

BBG 

EIN 

OLI 

ROG 

461\392 

462\393 

439\388 

460\390 

5.02\3.03 

3.48\2.23 

2.59\1.80 

2.39\1.50 

0.59\0.03  

0.63\0.76 

0.59\0.52 

0.96\0.95 

9.58\9.22  

9.21\8.08 

9.15\7.65 

9.01\8.50 

2.78\2.39  

2.29\1.54 

1.64\1.19 

2.21\1.13 
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Table S. 3.2: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait PH-V4 for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set.    

 Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG EIN 100% 100% 100% 100% 100%* 

BBG GOL 0%* 8%* 12% 100% 100% 

EIN BBG 100% 100% 100% 100% 100%* 

EIN GOL 100%* 100%* 28%* 100% 100% 

OLI GOL 16%* 16%* 100%* 100% 100% 

ROG BBG 100% 100% 100% 100% 100%* 

ROG GOL 100%* 100%* 100%* 100% 100% 

TOM BBG 100%* 100%* 100%* 0%* 100%* 

TOM EIN 100% 100%* 100%* 96% 100%* 

TOM GOL 100%* 100%* 100%* 64% 100%* 
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Table S. 3.3: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait EV_V3 for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set. 

Predicted 

Environment 

Additional 

Environment 

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG EIN 100% 100% 100% 100% 96%* 

BBG GOL 96% 100% 100% 100% 100% 

BBG TOM 100% 100% 100% 100% 88% 

EIN ROG 100% 100% 92% 96% 92% 

EIN BBG 100% 100% 100% 100% 88%* 

EIN TOM 100% 100% 96% 96% 96% 

OLI ROG 100% 100% 100% 92% 96% 

OLI EIN 100% 100% 100% 92% 0%* / 96% 

OLI BBG 100% 100% 96% 96% / 88% 100%* / 76% 

OLI GOL 96% 96% 88% 96% 92% 

OLI TOM 92% 96% 72% 72%* 60%* 

ROG EIN 100% 100% 96% 52%* 0%* / 76% 

ROG BBG 100% 100% 100% 96% / 92% 0%* 

ROG GOL 100% 100% 96% 92% 96% 

ROG TOM 100% 100% 100% 84% 100% 

GOL ROG 100% 100% 100% 92% 100% 

GOL EIN 100% 100% 100% 100% 0%* 

GOL BBG 100% 100% 96% 96% 80%* / 96% 

GOL OLI 96% 92% 96% 92% 88% 

GOL TOM 100% 100% 100% 88% / 80% 80% / 96% 

TOM EIN 96% 92% 64% 44%* 0%* 

TOM BBG 100% 100% 100% 96% 80%* 

TOM OLI 96% 100% 100% 100% 92% 

TOM GOL 0%* 96% 100% 80% 96% / 96% 
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Table S. 3.4: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait EV_V4 for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set. 

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG EIN 100% 100% 100% 100% 12%* 

BBG GOL 100% 100% 96% 68% 56% 

EIN OLI 100% 96% 100% 100% 100% 

OLI EIN 88% 88% 96% / 16%* 96% / 4%* 8%* / 8%* 

OLI BBG 100% 100% 96% 100% 100% 

OLI GOL 100% 100% 100% 96% 100% 

OLI TOM 100% 100% 100% 96% 96% 

ROG EIN 100% 100% 100% 100% 0%* 

GOL EIN 100% 100% 100% 100% 0%* 

GOL TOM 100% 96% 100% 100% 100% 

TOM ROG 100% 96% 100% 92% 100% 

TOM EIN 100% 96% 88% 100% 100% 

TOM BBG 100% 96% 25%* 40%* 80% 

TOM GOL 80% 80% 96% / 48%* 96% 80% 
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Table S. 3.5: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait EV_V6 for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set. 

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG ROG 100% 100% 100% 100% 80%* 

BBG EIN 100% 100% 96% 92% 0%* 

BBG GOL 0%* / 25%* 0%* / 48%* 24%* / 24%* 0%* 100% 

EIN ROG 100% 100% 96% 80%* / 96% 52%* / 96% 

EIN GOL 4%* / 0%* 4%* / 88%* 48%* / 0%* 32% 100% 

OLI EIN 100% 100% 88% 88% 4%* / 84% 

OLI ROG 100% 100% 100% 100% 0%* 

OLI GOL 25%* / 0%* 72% / 96% 24%* / 4%* 12%* 100% 

ROG EIN 100% 100% 92% 80% 40%* / 88% 

ROG BBG 96% 96% 100% 96% / 84%* 96% / 52%* 

ROG OLI 100% 100% 96% 100% 96% 

ROG GOL 25% / 0%* 0%* / 96%  0%* / 36% 0% 100% 

GOL ROG 100% 100% 100% 100% 96%* 

GOL EIN 100% 100% 100% 100% 80%* 

TOM ROG 100% 96% 24%* 60%* / 96% 0%* /72% 

TOM EIN 100% 100% 72% 72% 0%* 

TOM BBG 100% 76% 76% / 96% 84% 84% 

TOM OLI 100% 100% 100% 100% 96% 

TOM GOL 0%* / 0% 0%* / 84% 0%* / 0% 16%* / 0%* 25%* / 60%* 
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Table S. 3.6: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait PH_V6 for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set. 

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG ROG 100% 100% 100% 96% 80%* 

BBG EIN 92% 100% 100% 100% 100% 

BBG OLI 100% 100% 100% 100% 36% 

BBG GOL 100% 100% 96% 96% 92%* 

EIN ROG 100% 100% 100% 100% 0%* 

EIN BBG 100% 100% 80% 100% 32%* 

EIN OLI 100% 100% 100% 100% 96% 

EIN GOL 100% 100% 100% 100% 100%* 

OLI ROG 100% 100% 96% 68% 16%* 

OLI EIN 100% 100% 100% 100% 92% 

OLI BBG 100% 100% 100% 100% 56%* 

OLI GOL 100% 100% 100% 96% 0%* 

ROG EIN 100% 100% 100% 100% 92% 

ROG BBG 100% 100% 100% 96% 84%* 

ROG OLI 100% 100% 100% 100% 0%* 

ROG GOL 100% 100% 100% 100% 8%* 

GOL ROG 100% 100% 100% 100% 96%* 

GOL BBG 100% 100% 100% 100% 0%* / 96% 

GOL OLI 100% 100% 100% 100% 0%* 

TOM ROG 100% 100% 92% 88% 40%* 

TOM EIN 100% 100% 100% 100% 100% 

TOM BBG 100% 100% 32% 92% 0%* 

TOM OLI 100% 100% 100% 96% 4%* 

TOM GOL 52%* 68%* / 88% 72%* / 92% 92% 16%* / 96% 
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Table S. 3.7: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait PH_final for both KE and PE (black percentages), only KE (blue percentages) and only 

PE (red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set. 

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG ROG 52%* / 0%* 0%*/ 0%* 0%*/ 0%* 0%* 100% 

BBG EIN 100% 100% 100% 100% 96% 

BBG TOM 36%* 4%* 0%* 92% 100% 

EIN ROG 0%*/ 25% 0%*/ 0%* 0%*/ 0%* 96% / 0%* 92% 

EIN BBG 8%* 4%* 0%* 96% 96% 

EIN OLI 100% 100% 100% 100% 92% 

EIN TOM 64% 4%* 0%* 100% 100% 

OLI ROG 0%*/ 4%* 0%*/ 0%* 0%*/ 0%* 0%* 96% 

OLI EIN 100% 96% 100% 100% 100% 

OLI BBG 4%* 0%* 0%* 100% 96% 

OLI GOL 100% 100% 100% 100% 100% 

OLI TOM 28%* 12%* 0%* 96% / 84%* 92% 

ROG EIN 100% 100% 100% 100% 96% 

ROG BBG 40%* 0%* 0%* 100% 100% 

ROG TOM 24%* 8%* 4%* 88% 100% 

GOL ROG 8%* / 0%* 4%* / 4%* 8%* / 4%* 0%* 100% 

GOL BBG 8%* 4%* 4%* 100% 100% 

GOL TOM 0%* 0%* 4%* 88% 100% 

TOM ROG 0%*/ 0%* 0%*/ 0%* 0%*/ 0%* 36%* / 0%* 48%* / 96% 

TOM EIN 100% 100% 84% 76% 40%* / 96% 

TOM BBG 8%* 0%* 0%* 88% 52%* 

TOM OLI 100% 100% 92% 92% 96% 

TOM GOL 100% 100% 96% 100% 96% 
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Table S. 3.8: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait FF for both KE and PE (black percentages), only KE (blue percentages) and only PE 

(red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set.  

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG EIN 4%* 4%* 0%* 92% / 32%* 80% 

BBG ROG 0%* 0%* 0%* / 0%* 80% / 0%* 68% 

EIN BBG 96% / 36%* 92% / 96% 92% / 0%* 88%* / 0%* 88% / 96% 

EIN ROG 0%* 0%* 0%* / 0%* 96% / 0%* 96% / 84% 

OLI ROG 0%* 92% / 0%* 16%* / 0%* 10 / 0%* 92% / 76% 

OLI BBG 100% 84% 0%* 4%* 96% / 32%* 

OLI EIN 64%* 20% 0%* 52%* 44%* 

ROG EIN 0%* 0%* 0%* 80% 52%* 

ROG BBG 40% 100% 0%* 0%* 96% 

TOM EIN 28%* 20%* 24%* 40%* 72% / 12%* 

TOM BBG 72% 100% 4%* 8%* 96% 

TOM OLI 100% 100% 96% 96% 96% 

TOM ROG 12%* 96% / 0% 0%* / 4%* 20%* / 4%* 4%*/ 40%* 
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Table S. 3.9: The percentage of bivariate sERRBLUP model convergence in 5-fold cross validation with 

5 replicates for trait RL for both KE and PE (black percentages), only KE (blue percentages) and only PE 

(red percentages). The starts represent the non-convergence of pre estimated variance components based 

on the full set.  

Predicted 

Environment  

Additional 

Environment  

Top 5 Top 1 Top 0.1 Top 0.01 Top 0.001 

BBG EIN 100% 100% 100% 100% 96% 

EIN ROG 100% 100% 96% 96% 96% 

EIN BBG 100% 72% 60%* 20%*   96% / 16%* 

EIN OLI 92% 92% 92% 96% 68% 

ROG EIN 100% 100% 96% 88% 68% 

ROG BBG 100% 100% 100% 96% 96% 

ROG OLI 100% 100% 96% 100% 100% 

  

 

Table S. 3.10: The predictive ability of RKHS, univariate GBLUP within environments, univariate 

ERRBLUP within environments and maximum univariate sERRBLUP across environments (blue numbers) 

and the maximum predictive ability of bivariate GBLUP, bivariate ERRBLUP and bivariate sERRBLUP 

(red numbers) in KE and PE for the trait PH_V4. 

Landrace Locations RKHS GBLUP ERRBLUP sERRBLUP 

 

 

KE 

 

BBG  

EIN 

OLI 

ROG 

GOL 

TOM 

0.479 

0.479 

0.435 

0.460 

0.543 

0.353 

 

0.470/0.721 

0.455/0.713 

0.439/0.627 

0.469/0.674 

0.519/0.730 

0.346/0.660 

0.468/0.754 

0.458/0.748 

0.438/0.655 

0.467/0.707 

0.521/0.742 

0.350/0.681 

0.707/0.822 

0.679/0.812 

0.623/0.717 

0.665/0.784 

0.694/0.759 

0.617/0.691 

 

 

PE 

BBG  

EIN 

OLI 

ROG 

GOL 

TOM 

0.423 

0.420 

0.334 

0.422 

0.590 

0.342 

0.424/0.692 

0.412/0.680 

0.324/0.582 

0.449/0.638 

0.604/0.697 

0.370/0.614 

0.426/0.715 

0.413/0.704 

0.326/0.602 

0.447/0.654 

0.606/0.706 

0.370/0.630 

0.648/0.784 

0.652/0.775 

0.558/0.665 

0.584/0.688 

0.664/0.731 

0.528/0.662 
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3.7.2 Supplementary Figures 

 

 

 

Fig. S. 3.1: Comparison of pre estimated genetic and residual variances and covariances of converged 

bivariate sERRBLUP model (top 5%) based on the full dataset (dashed horizontal lines) and estimated 

genetic and residual variances and covariances of converged bivariate sERRBLUP (top 5%) based on 

training set in each run of 5-fold cross validation with 5 replicates (colored bars) for predicting BBG when 

the additional environment is OLI in KE for trait PH_V4. 
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Fig. S. 3.2: The difference between the mean predictive ability of only the converged folds and the mean 

predictive ability of all folds in 5-fold cross validation with 5 replicates vs. the number of the folds (1 to 

24) which did not converge across all traits in all combinations for both KE and PE. 
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Fig. S. 3.3: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V3 

in KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the 

environment in which the relationship matrices determined by variable selection. 



84 
 

 

Fig. S. 3.4: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V4 

in KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the 

environment in which the relationship matrices determined by variable selection. 
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Fig. S. 3.5: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait EV_V6 

in KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the 

environment in which the relationship matrices determined by variable selection. 
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Fig. S. 3.6: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait PH-V6 

in KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the 

environment in which the relationship matrices determined by variable selection. 
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Fig. S. 3.7: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait PH-

final in KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the 

environment in which the relationship matrices determined by variable selection. 
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Fig. S. 3.8: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait FF in 

KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the environment 

in which the relationship matrices determined by variable selection. 
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Fig. S. 3.9: Predictive ability for univariate GBLUP within environment (dashed horizontal line), univariate 

ERRBLUP within environment (black filled circle) and univariate sERRBLUP across environments when 

the SNP interaction selections are based on estimated effects variances (solid colored lines) for trait RL in 

KE (left side plots) and PE (right side plots). In each panel, the solid lines’ color indicates the environment 

in which the relationship matrices determined by variable selection. 
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Fig. S. 3.10: Predictive ability for univariate GBLUP within environment (dashed horizontal line), 

univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across 

environments (solid colored lines) when SNP interaction selections are based on estimated effects sizes 

(left side) and estimated effects variances (right side) for trait PH-V4 in KE. In each panel, the solid lines’ 

color indicates the environment in which the relationship matrices were determined by variable selection. 
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Fig. S. 3.11: Predictive ability for univariate GBLUP within environment (dashed horizontal line), 

univariate ERRBLUP within environment (black filled circle) and univariate sERRBLUP across 

environments (solid colored lines) when SNP interaction selections are based on estimated effects sizes 

(left side) and estimated effects variances (right side) for trait PH-V4 in PE. In each panel, the solid lines’ 

color indicates the environment in which the relationship matrices were determined by variable selection. 
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Fig. S. 3.12: Comparison of predictive ability of univariate GBLUP within environments (filled squares) 

and the maximum predictive ability of univariate sERRBLUP across environments when the SNP 

interaction selections are based on estimated effects sizes (circles) and estimated effects variances 

(triangles) for trait PH-V4 in KE (left side plot) and in PE (right side plot). The colors dark blue, orange, 

purple, red, light blue and green represent the environments BBG, EIN, OLI, ROG, GOL and TOM, 

respectively. The circles’ and triangles’ colors indicate the environment which had the maximum predictive 

ability for this respective target environment.  

Fig. S. 3.13: Predictive ability for univariate GBLUP within Bernburg (dashed horizontal line), univariate 

ERRBLUP within Bernburg (black filled circle) and univariate sERRBLUP when the SNP interaction 

selections are based on estimated effects variances (blue solid line) and estimated effect sizes (red solid 

line) within Bernburg for trait PH-V4 in KE. 
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Fig. S. 3.14: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait EV-V3. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.15: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait EV-V4. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.16: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait EV-V6. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.17: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait PH-V6. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.18: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait PH-final. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.19: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait FF. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 

. 
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Fig. S. 3.20: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait RL. In each panel, the solid lines’ color 

indicates the additional environment used to predict the target environment. 
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Fig. S. 3.21: Comparison of predictive ability of univariate GBLUP within environments (filled squares) 

and the maximum predictive ability of univariate sERRBLUP across EIN when the SNP interaction 

selections are based on estimated effects variances (orange circles) for trait PH-V4 in KE (left side plot) 

and in PE (right side plot). The colors dark blue, purple, red, light blue and green represent the environments 

BBG, OLI, ROG, GOL and TOM, respectively.  
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Fig. S. 3.22: Absolute increase in prediction accuracy from univariate GBLUP within environments to the 

maximum prediction accuracy of univariate sERRBLUP across environments when the SNP interaction 

selections are based on estimated effects variances in KE (left side plot) and in PE (right side plot). The 

average of absolute increase in prediction accuracy for each trait and environments are display in rows and 

columns, respectively. 
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Fig. S. 3.23: Absolute increase in prediction accuracy from maximum bivariate GBLUP the maximum 

prediction accuracy of bivariate sERRBLUP when the SNP interaction selections are based on estimated 

effects variances in KE (left side plot) and in PE (right side plot). The average of absolute increase in 

prediction accuracy for each trait and environments are display in rows and columns, respectively. 
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Fig. S. 3.24: Predictive ability for univariate GBLUP within environment (dashed horizontal line), 

univariate ERRBLUP within environment (gray open circle), univariate sERRBLUP using a single 

environment for selecting the SNP interactions (gray open circles) and univariate sERRBLUP using all 5 

environments jointly (filled black circles and solid line) for the SNP interaction selection based on estimated 

effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in KE. 
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Fig. S. 3.25: Predictive ability for univariate GBLUP within environment (dashed horizontal line), 

univariate ERRBLUP within environment (gray open circle), univariate sERRBLUP using a single 

environment for selecting the SNP interactions (gray open circles) and univariate sERRBLUP using all 5 

environments jointly (filled black circles and solid line) for the SNP interaction selection based on estimated 

effects sizes (left side) and estimated effects variances (right side) for trait PH-V4 in PE. 
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Fig. S. 3.26: The comparison between the maximum predictive abilities of bivariate GBLUP within all six 

environments and the maximum predictive abilities of univariate sERRBLUP across environments for all 

traits in KE (left side plot) and PE (right side plot). In each plot, the diagonal line (red line) and the overall 

linear regression line (black line) with the regression formula are shown.  

 

 

 

 



106 
 

 

Fig. S. 3.27: The correlation between all eight traits’ heritabilities and predictive abilities of univariate 

GBLUP within environments (left side) and maximum predictive abilities of univariate sERRBLUP across 

environments (right side) in both landraces. The black lines indicate the overall linear regression lines. 

 

 

Fig. S. 3.28: The correlation between all eight traits’ heritabilities and the maximum predictive abilities of 

bivariate GBLUP (left side) and maximum predictive abilities of bivariate sERRBLUP (right side) for all 

environments in both landraces. The black lines indicate the overall linear regression lines. 
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4 Bivariate genomic prediction of phenotypes by selecting 

epistatic interactions across years based on haplotype 

blocks and pruned sets of SNPs 
 

 

This chapter contains the manuscript “Bivariate genomic prediction of phenotypes by selecting 

epistatic interactions across years” has been submitted to the journal TAG (Theoretical and 

Applied Genetics). In order to have uniform style in the thesis, the journal style is not used in this 

chapter. 

This manuscript is the joint work of Elaheh Vojgani1*, Torsten Pook1, Armin C. Hölker2, Manfred 

Mayer2, Chris-Carolin Schön2, Henner Simianer1 which is focused on prediction across years 

through epistasis models in bivariate statistical framework and investigation on the influential 

factors on bivariate model’s predictive ability. 

 

1: University of Goettingen, Center for Integrated Breeding Research, Animal Breeding and 

Genetics Group, Goettingen, Germany 

2: Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 

Freising, Germany 

 

Author contributions by EV 

EV analyzed the data, generated the pruned set of data, proposed epistasis models based on 

haplotype blocks, derived the results, wrote the initial manuscript and led the revision of the 

manuscript. 
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4.1 Key Massage 

A bivariate epistasis model increases the prediction accuracy similarly for selected subsets of 

epistatic interactions when utilizing haplotype blocks and pruned sets of SNPs by incorporating 

phenotypic data across years.  

4.2 Abstract 

The importance of accurate genomic prediction of phenotypes in plant breeding is undeniable, as 

higher prediction accuracy can increase selection responses. In this study, we investigated the 

ability of three models to improve prediction accuracy by including phenotypic information from 

the last growing season. This was done by considering a single biological trait in two growing 

seasons (2017 and 2018) as separate traits in a multi-trait model. Thus, bivariate variants of the 

Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random 

Regression BLUP (ERRBLUP) and selective Epistatic Random Regression BLUP (sERRBLUP) 

as epistasis models were compared with respect to their prediction accuracies for the second year. 

The results indicate that bivariate ERRBLUP is almost identical to bivariate GBLUP in prediction 

accuracy, while bivariate sERRBLUP has the highest prediction accuracy in most cases. The 

obtained prediction accuracies were similar when utilizing pruned sets of SNPs and haplotype 

blocks, while utilizing haplotype blocks reduces the computational load significantly compared to 

utilizing pruned sets of SNPs. The prediction accuracies of bivariate GBLUP, ERRBLUP and 

sERRBLUP have been assessed across eight phenotypic traits and studied datasets from 471/402 

doubled haploid lines in the European maize landrace Kemater Landmais Gelb/Petkuser Ferdinand 

Rot. We further investigated the genomic correlation, phenotypic correlation and trait heritability 

as factors affecting the bivariate models’ prediction accuracy, with genetic correlation between 

growing seasons being the most important one. For all three considered model architectures results 

were far worse when using a univariate version of the model.  

Keywords:  

Epistasis, Bivariate GBLUP, Prediction across years, Genomic correlation, Haplotype blocks 

4.3 Introduction 

In plant breeding, genomic prediction has become a regular tool (Bernal-Vasquez et al., 2014; 

Stich and Ingheland, 2018) which enables the optimization of phenotyping costs of breeding 

programs (Akdemir and Isidro-Sánchez, 2019). The importance of genomic prediction of 

phenotypes is not restricted to plants. Livestock (Daetwyler et al., 2013) and human research (de 

los Campos, Vazquez, et al., 2013) also have been widely developed in this regard. In the context 

of plant and animal breeding, accurately predicting phenotypic traits is of special importance, since 
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raising all animals and growing all crops to measure their performances requires a considerable 

amount of money under limited resources (Martini et al., 2016).  

Several statistical models have been compared over the last decades in the term of prediction 

accuracy. In this context, genomic best linear unbiased prediction (GBLUP) (Meuwissen et al., 

2001; VanRaden, 2007) as an additive linear mixed model has been widely used due to its high 

robustness, computing speed and superiority in predictive ability to alternative prediction models 

like Bayesian methods, especially in small reference populations (Da et al., 2014; Rönnegård and 

Shen, 2016; Covarrubias-Pazaran et al., 2018; Wang et al., 2018). Furthermore, the inclusion of 

genotype × environment interaction into additive genomic prediction models can result in an 

increase in prediction accuracy (Hallauer et al., 2010; Bajgain et al., 2020). Such approaches allow 

borrowing information across environments which potentially leads to higher accuracy in 

phenotype prediction in multi environment models (Burgueño et al., 2012). In fact, multivariate 

mixed models have been originally proposed in the context of animal breeding (Henderson and 

Quaas, 1976) with the purpose of modeling the genomic correlation among traits, longitudinal 

data, and modeling genotype by environment interactions across multiple years or environments 

(Mrode, 2014; Lee and van der Werf, 2016; Covarrubias-Pazaran et al., 2018). A multivariate 

GBLUP model was reported to have higher prediction accuracy than univariate GBLUP (Jia and 

Jannink, 2012) when the genetic correlations were medium (0.6) or high (0.9) (Covarrubias-

Pazaran et al., 2018). It was also shown that aggregating the phenotypic data over years to train 

the model and predict the performance of lines in the following years is a possible approach which 

can improve prediction accuracy (Auinger et al., 2016; Schrag et al., 2019b).  

In addition, the inclusion of epistasis, defined as the interaction between loci (Falconer and 

Mackay, 1996; Lynch and Walsh, 1998), into the genomic prediction model results in more 

accurate phenotype prediction (Hu et al., 2011; Wang et al., 2012; Mackay, 2014; Martini et al., 

2016; Vojgani et al., 2021) due to the considerable contribution of epistasis in genetic variation of 

quantitative traits (Mackay, 2014). In this context, several statistical models have been proposed. 

Extended genomic best linear unbiased prediction (EG-BLUP, Jiang and Reif 2015) and 

categorical epistasis (CE, Martini et al. 2017) models are using a marker-based epistatic 

relationship matrix that is constructed in a highly efficient manner. It has been shown that the CE 

model is as good as or better than EG-BLUP and does not possess undesirable features of EG-

BLUP such as coding-dependency (Martini et al., 2017).  

Moreover, it was shown that the accuracy of the epistasis genomic prediction model can be 

increased in one environment by variable selection in another environment (Martini et al., 2016). 

In this approach, the full epistasis model was reduced to a model with a subset of the largest 

epistatic interaction effects, resulting in an increase in predictive ability (Martini et al., 2016), 

through borrowing information across environments. Vojgani et al. (2021) showed that the 

prediction accuracy can be increased even further by selecting the interactions with the highest 

absolute effect sizes / variances in the epistasis model. The resulting higher computational needs 

were offset by the development of a highly efficient software package “EpiGP” (Vojgani et al., 

2019) to perform computations in a bit-wise manner (Schlather, 2020). Thus, enabling to conduct 
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such predictions with data sets of practically relevant size across environments in the same year, 

both with respect to sample size and number of markers (Vojgani et al., 2021). As the number of 

interactions to account for increases quadratically with the number of included variables, the 

computational load of methods like EpiGP can quickly go out of control as a model with 600.000 

SNPs, as present in high density arrays (Kranis et al., 2013; Unterseer et al., 2014), would result 

in more than a hundred billion interactions to account for. The most common methods for variable 

reduction applied here is LD pruning (Purcell et at. 2007), but new linkage-based haplotyping 

methods (Pook et al. 2019) have recently been proposed to even further reduce the dimensionality 

of genomic data without much information loss.  

The aim of this study is to assess the bivariate genomic prediction models which incorporate 

epistatic interactions with the target of borrowing information across years to maximize the 

predictive ability based on both, a pruned set of SNPs and haplotype blocks. Since the accuracy of 

genomic prediction of phenotypes was shown to be increased by both borrowing information 

across environments and years (Covarrubias-Pazaran et al., 2018; Schrag et al., 2019a) and 

inclusion of epistasis into the prediction model (Martini et al., 2016; Vojgani et al., 2020), we 

combine these two approaches to make the best use of the available information. We further aim 

to assess the optimum proportion of epistatic interactions to be kept in the model in the variable 

selection step across years and compare the obtained predictive ability when utilizing pruned sets 

of SNPs and haplotype blocks. The data used for this purpose were generated in multi-location 

trials of doubled haploid (DH) lines generated from two European maize landraces in 2017 and 

2018.  

4.4 Materials and Methods 

4.4.1 Data used for analysis 

A set of 948 doubled haploid lines of the European maize landraces Kemater Landmais Gelb (KE, 

Austria, 516 lines) and Petkuser Ferdinand Rot (PE, Germany, 432 lines) were genotyped with the 

600 k Affymetrix® Axiom® Maize Array (Unterseer et al., 2014).  

After quality filtering and imputation, 910 DH lines remained (501 lines in KE and 409 lines in 

PE) and the panel of markers reduced to 501,124 markers (Hölker et al., 2019). Additionally, loci 

that were in high level of pairwise linkage disequilibrium (LD) were removed (Calus and 

Vandenplas, 2018) through linkage disequilibrium based SNP pruning with PLINK v1.07 (Purcell 

et al., 2007; Chang et al., 2015). LD pruning was done by the parameters of 50, 5 and 2 which 

considered as the SNPs window size, the number of SNPs at which the SNP window shifts and the 

variance inflation factor, respectively. This resulted in a data panel containing 25'437 SNPs for 

KE and 30'212 SNPs for PE (Vojgani et al., 2020). Note that even a panel of 25'000 SNPs results 

in more than 1 billion SNP interactions to account for. Therefore, in order to have further variable 
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reduction, haplotype blocks as a combination of closely linked markers, which has shown to be an 

alternative approach for genomic prediction improving the prediction accuracy (Meuwissen et al., 

2014; Jiang et al., 2018), have been generated from the full panel of markers with the software 

HaploBlocker (Pook et al 2019) using default settings. This resulted in a data panel containing 

2'972 haplotype blocks in KE and 3'330 haplotype blocks in PE. 

Out of 910 genotyped lines only 873 DH lines were phenotyped (471 lines in KE and 402 lines in 

PE). Einbeck (EIN, Germany), Roggenstein (ROG, Germany), Golada (GOL, Spain) and Tomeza 

(TOM, Spain) were the four locations that these lines were phenotyped for a series of traits in both 

2017 and 2018.  

The means, standard deviations, maximum and minimum values of studied phenotypic traits in 

2017 and 2018 in each landrace are compared in Table 4.1 which were derived from the Best 

Linear Unbiased Estimations (BLUEs) of the genotype mean for each phenotypic trait by Hölker 

et al. (2019). The comparison of the respective detailed values for each trait in each environment 

and landrace in 2017 and 2018 are illustrated in the supplementary (Table S. 4.1). Vi in phenotypic 

traits represents the vegetative growth stage when 𝑖 leaf collars are visible based on the leaf collar 

method of the corn growth (Abendroth et al., 2011). Early vigour at V3 stage (EV_V3), female 

flowering (FF) and root lodging (RL) were not phenotyped in all four environments for both years. 

EV_V3 was not phenotyped in EIN in 2018, FF was not phenotyped in GOL in 2017 and RL was 

not phenotyped in TOM and GOL in both 2017 and 2018.  

The number of phenotyped lines per year and environment for trait PH_V4, as the main trait in 

this study, are summarized in Table 4.2. For EIN and ROG a higher number of phenotyped lines 

were generated in 2017. On the contrary, more lines were phenotypes in GOL and TOM in 2018.  
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Table 4.1: Phenotypic trait description and the mean, minimum, maximum and standard deviation of the 

BLUEs for each phenotypic trait in KE and PE landraces in the years 2017 and 2018. 

 

 

Trait Definition Landrace Year Mean Minimum Maximum Standard 

deviation 

 

EV_V3 

 

Early vigour at V3 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

KE 2017 

2018 

4.94 

5.06 

0.78  

0.32 

9.00  

8.67  

1.35  

1.33 

PE 2017 

2018 

5.57 

5.47 

1.00 

1.38 

9.03 

8.93 

1.20 

1.13 

 

EV _V4 

Early vigour at V4 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

KE 

 

2017 

2018 

4.84  

5.08  

0.67  

0.96  

8.29  

8.65  

1.30  

1.30  

PE 2017 

2018 

5.45 

5.25 

0.93 

1.63 

8.49 

9.07 

1.15 

1.19 

 

EV _V6 

Early vigour at V6 stage 

scored on scale from 1 

(very poor early vigour) to 

9 (very high early vigour) 

KE 2017 

2018 

5.13  

5.54  

0.54  

1.07 

8.75  

9.60  

1.31  

1.35 

PE 2017 

2018 

5.64 

5.38 

0.84 

1.07 

8.39 

9.68 

1.12 

1.29 

 

PH_V4 

Mean plant height of three 

plants of the plot at V4 

stage in cm 

 

KE 2017 

2018 

33.10  

42.01  

6.90  

8.48  

88.24  

89.24  

13.95  

16.47  

PE 2017 

2018 

38.01 

46.19 

11.89 

16.14 

95.30 

93.20 

14.96 

17.78 

 

PH_V6 

Mean plant height of three 

plants of the plot at V6 

stage in cm 

 

KE 2017 

2018 

62.03  

92.27  

8.34  

21.90  

127.54  

173.66  

19.95  

21.04  

PE 2017 

2018 

69.84 

97.80 

14.78 

50.37 

130.51 

169.71 

19.26 

19.44 

 

PH_final 

Final plant height after 

flowering in cm 

KE 2017 

2018 

139.10  

146.04  

49.27  

35.41  

245.00  

 265.02 

27.14  

35.74  

PE 2017 

2018 

124.09 

128.08 

30.21 

35.76 

211.14 

248.43 

24.54 

35.99 

 

FF 

Days after sowing until 

female flowering (days 

until 50% of the plot 

showed silks) 

KE 2017 

2018 

79.72  

76.99 

62.45  

62.22  

102.02  

100.14  

6.27  

6.09  

PE 2017 

2018 

78.85 

76.70 

59.10 

60.14 

101.50 

93.96 

6.33 

6.52 

 

RL 

Root lodging score from 1 

to 9 (1 = no lodging and 9= 

severe lodging) 

KE 2017 

2018 

3.38  

1.42  

0.59  

0.73  

9.58  

8.52  

2.50  

0.90  

PE 2017 

2018 

2.14 

1.21 

0.03 

0.32 

9.22 

4.69 

1.74 

0.51 
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Table 4.2: Number of KE and PE lines phenotyped in each location for the years 2017 (blue numbers) and 

2018 (red numbers) for trait PH_V4. 

 EIN 

(2017\2018) 

ROG 

(2017\2018) 

GOL 

(2017\2018) 

TOM 

(2017\2018) 

Phenotyped lines in KE 462\365 461\365 211\222 211\222 

Phenotyped lines in PE 393\365 390\365 204\240 204\240 

4.4.2 Statistical models for phenotype prediction 

We used the bivariate statistical framework as the basis of the genomic prediction models which 

has been proposed in the recent work by Vojgani et al. (2020). In this regard, GBLUP, ERRBLUP 

and sERRBLUP as three different methods described in Vojgani et al. (2021) were used for 

genomic prediction of phenotypes which differ in dispersion matrices representing their covariance 

structure of the genetic effects. GBLUP as an additive model is based on a genomic relationship 

matrix calculated according to VanRaden (2008). ERRBLUP (Epistatic Random Regression 

BLUP) as a full epistasis model is based on all pairwise SNP interactions which generates a new 

marker matrix considered as a marker combination matrix. The marker combination matrix is a 0, 

1 matrix indicating the absence (0) or presence (1) of each marker combination for each individual. 

sERRBLUP (selective Epistatic Random Regression BLUP) as a selective epistasis model is based 

on a selected subset of SNP interactions (Vojgani et al., 2021). Vojgani et al. (2020) proposed 

estimated effect variances in the training set as the selection criterion of pairwise SNP interactions 

due to its robustness in predictive ability specifically when only a small proportion of interactions 

are maintained in the model. 

4.4.3 Assessment of genomic prediction models  

GBLUP, ERRBLUP and sERRBLUP models have been assessed via 5-fold cross validation by 

randomly partitioning the original sample into 5 equal size subsamples in which one subsample 

was considered as the test set to validate the model, and the remaining 4 subsamples were 

considered as a joint training set (Erbe et al., 2010). The 5-fold cross validation technique was 

utilized with 5 replicates through which the Pearson correlation between the predicted genetic 

values and the observed phenotypes in the test set was considered as the predictive ability in each 

fold of each replicate, which then was averaged across 25 replicates. In this study, predictive ability 

was separately assessed for KE and PE for a series of phenotypic traits in four different 

environments. Besides, we calculated the traits’ prediction accuracies by dividing their predictive 

abilities by the square-root of the respective traits’ heritabilities (Dekkers, 2007) derived from all 

environments in both 2017 and 2018 jointly (Table S. 4.2).  

Univariate GBLUP within 2018 was assessed by training the model in the same year (2018) as the 

test set was sampled from. However, bivariate GBLUP, ERRBLUP and sERRBLUP were assessed 

by training the model with both the training set of the target environment in 2018 and the full 
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dataset of the respective environment in 2017. The interaction selection step in bivariate 

sERRBLUP is done by first using the complete dataset of target environment in 2017 to estimate 

all pairwise SNP interaction effect variances. Then, an epistatic relationship matrix for all lines is 

constructed based on the subset of top ranked interaction effect variances, which is finally used to 

predict phenotypes of the target environment test set in 2018 (Vojgani et al., 2020).  

4.4.4 Variance component estimation 

Variance component estimation in univariate GBLUP was done by EMMREML (Akdemir and 

Godfrey, 2015) based on the training set in each run of 5-fold cross validation with 5 replicates. In 

bivariate models this was done by ASReml-R (Butler et al., 2018) with the approach specified by 

Vojgani et al. (2020) for pre estimating the variance components from the full dataset to derive 

the initial values for the variance components in ASReml models in 100 iterations for each 

combination. If the variance estimation based on the full set did not converge after 100 iterations, 

then the estimated variance components at the 100th iteration were extracted as initial values of the 

bivariate model in the cross validation step. Afterwards, the model used these values to re-estimate 

the variance components based on the training set in each run of 5-fold cross validation in 50 

iterations. The estimated variance components in the converged models based on the full set 

deviated only slightly from the estimated variance components based on the training set (Fig. 

S. 4.1). However, the variance component estimations did not converge in all folds of 5-fold cross 

validation with 5 replicates. In such cases, the initial values were set as the fixed values for the 

model to predict the breeding values. This approach appears justifiable in the case of non-

convergence of the bivariate model, since we have shown in Fig. S. 4.2 that the difference in mean 

predictive ability of all folds and only the converged folds is not critical. This difference can get 

higher as the number of non-converged folds increases. The percentage of converged folds in all 

studied material is shown in the supplementary (Table S. 4.3).  

4.4.5 Genomic correlation estimation 

Genomic correlations were estimated from the genetic variances and covariance derived from the 

ASReml bivariate model based on the full dataset of each location in both 2017 and 2018. 

4.5 Results 

Comparison of univariate GBLUP, bivariate GBLUP, bivariate ERRBLUP and bivariate 

sERRBLUP based on pruned set of SNPs and haplotype blocks in PH_V4  

Our results confirm that bivariate models outperform the univariate models (Vojgani et al., 2020) 

as illustrated by the comparison in predictive ability of bivariate GBLUP and univariate GBLUP 

for the trait PH-V4 in both landraces indicating the superiority of bivariate GBLUP to univariate 

GBLUP in most cases (see Fig. 4.1 and Fig. 4.2). Among the bivariate genomic prediction models, 
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the predictive ability obtained from bivariate ERRBLUP is almost identical to bivariate GBLUP. 

This predictive ability increases in bivariate sERRBLUP and the highest gain in accuracy is 

generally obtained when the top 10 or 5 percent of pairwise SNP interactions are kept in the model. 

A too strict selection like using only the top 0.001 percent interactions, results in a decrease in 

predictive ability (see Fig. 4.1 and Fig. 4.2). The number of interactions maintained in the model 

for each proportion of interactions are tabulated in the supplementary (Table S. 4.4). Robustness 

of the predictive ability depending on the share of selected markers was higher in PE than KE. 

Moreover, Fig. 4.1 and Fig. 4.2 illustrate the comparison between the predictive abilities obtained 

from the respective genomic prediction models in KE and PE when utilizing pruned set of SNPs 

and haplotype blocks. It is shown that the GBLUP, ERRBLUP and sERRBLUP (for the optimum 

proportions of interactions) predictive abilities are almost identical in both pruned set of SNPs and 

haplotype blocks. It should be noted that the robustness of sERRBLUP when a very small 

proportions of interactions maintained in the model is higher when utilizing the pruned set of SNPs 

compared to haplotype blocks. This should not be surprising as the total number of interactions in 

the HaploBlocker panel is much smaller, thus, leading to a dataset with an extremely low number 

of explanatory variables (Table S. 4.4). Similar patterns are observed across a series of other traits 

for bivariate models which are shown in the supplementary (Fig. S. 4.3 - Fig. S. 4.16). 

Additionally, the predictive ability of univariate GBLUP by training the model on the average 

phenotypic values of both 2017 and 2018, when utilizing pruned set of SNPs, was evaluated for a 

series of phenotypic traits, which yielded quite similar predictive ability as obtained with 

univariate GBLUP within year 2018 or worse in some cases (Table S. 4.5 (KE) and Table S. 4.6 

(PE)).  

Correlation between prediction accuracy and the genomic correlation in bivariate models 

The absolute gain in predictive ability from univariate GBLUP to maximum bivariate sERRBLUP, 

when utilizing pruned set of SNPs, was regressed on the respective sERRBLUP genomic 

correlation between the two respective environments and across the series of studied traits 

(Fig. 4.3). Regression coefficients range between0.14 and 0.48 and thus show a clear association 

between the absolute gain in prediction accuracy and the genomic correlation between 

environments. When combining all traits and environments, this correlation is 0.65 (p-value = 

0.00018) in KE and 0.69 (p-value = 4.393e-05) in PE. This correlation is also significant for most 

of the environments when utilizing haplotype blocks (Fig. S. 4.17).     
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Fig. 4.1: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH-V4 in KE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP.  
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Fig. 4.2: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH-V4 in PE based on pruned sets of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. 4.3: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP on the respective sERRBLUP genomic correlation between 2017 and 2018 in KE 

(left) and in PE (right) for all studied traits. In each panel, the overall linear regression line (gray solid line) 

with the regression coefficient (𝒃) and R-squared (𝑹𝟐) are shown. 

 

Interplay of GBLUP and sERRBLUP prediction accuracy and genomic correlations 

The genomic correlations across years estimated with GBLUP and sERRBLUP based on pruned 

set of SNPs for the trait PH_V4 are illustrated in Table 4.3, indicating that the proportion of 

interactions in bivariate sERRBLUP which maximized the predictive ability are not necessarily 

linked to the highest genomic correlation. In contrast, the best sERRBLUP for trait PH_V4 is 
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linked to the lowest genomic correlation in most cases. However, this is not the general pattern 

observed for a series of other traits and the best sERRBLUP for some traits and environments 

combinations are linked to the highest genomic correlation (Table S. 4.7 - Table S. 4.13). In fact, 

there is a significant correlation between the absolute increase in predictive ability from bivariate 

GBLUP to maximum bivariate sERRBLUP and the difference between genetic correlations 

estimated with GBLUP and maximum sERRBLUP in both KE and PE when utilizing pruned set 

of SNPs (Fig. S. 4.18).  

Table 4.3: Genomic correlation between 2017 and 2018 in each environment for trait PH_V4 for KE (blue 

numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion of 

interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in each 

environment for KE and PE, respectively. 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.945 / 0.898 0.940 / 0.658 0.942 / 0.969 0.954 / 0.923 

sERRBLUP top 10% 0.955 / 0.859* 0.869* / 0.615* 0.835 / 0.895 0.929 / 0.816* 

sERRBLUP top 5% 0.958 / 0.868 0.850 / 0.631 0.797 / 0.888 0.912 / 0.826 

sERRBLUP top 1% 0.949* / 0.895 0.848 / 0.820 0.796* / 0.905* 0.918 / 0.863 

sERRBLUP top 0.1% 0.962 / 0.966 0.917 / 0.922 0.884 / 0.948 0.929 / 0.959 

sERRBLUP top 0.01% 0.963 / 0.980 0.951 / 0.985 0.911 / 0.983 0.919* / 0.987 

sERRBLUP top 0.001% 0.997 / 0.976 0.963 / 0.970 0.908 / 0.973 0.933 / 0.968 

 

Correlation between prediction accuracy and the phenotypic correlation in bivariate models 

There might be some tendency that including phenotypes of the previous year into prediction 

becomes more efficient when the phenotypic correlation between years is high. In this context, the 

correlation between the absolute gain in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP and the phenotypic correlation among the years (see Table S. 4.14) over all 

studied traits in all four environments and in both landraces was studied. Fig. 4.4 demonstrates 

that the maximum correlation between the absolute gain in the respective predictive ability based 

on the pruned set of SNPs and the phenotypic correlation is obtained in EIN for KE (0.42) and in 

ROG for PE (0.62). Across all studied traits and environments, there is a significant correlation of 

0.55 in KE (p-value= 0.003) and 0.50 in PE (p-value= 0.007). This correlation is also significant 

in most of the environments when utilizing haplotype blocks (Fig. S. 4.19). 
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Fig. 4.4: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP on the phenotypic correlation between 2017 and 2018 in KE (left) and in PE (right) 

for all studied traits. In each panel, the overall linear regression line (gray solid line) with the regression 

coefficient (𝒃) and R-squared (𝑹𝟐) are shown. 

 

Relative increase in prediction accuracy across all traits in all environments and landraces 

with bivariate models 

Overall, the percentage of relative increase in prediction accuracy from the bivariate GBLUP to 

the maximum bivariate sERRBLUP based on pruned set of SNPs in both landraces are illustrated 

in Fig. 4.5 with the average increase of 7.61 percent in KE and 3.47 percent in PE over all studied 
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traits. Among all traits, the maximum relative increase in prediction accuracy for KE is 22.63 

percent which was obtained in EV_V6 in EIN, and for PE is 34.59 percent which was obtained in 

EV_V4 in EIN. However, Fig. 4.5 shows some slight decreases in prediction accuracy from 

bivariate GBLUP to maximum bivariate sERRBLUP for some combinations of traits and 

environment in both landraces. This is more often observed in PE than KE, where the maximum 

decrease was found in EV_V6 in TOM for both PE (-3.198 percent) and KE (-2.795 percent). 

Overall, the average relative increase from bivariate GBLUP to maximum bivariate sERRBLUP 

was over 3 percent in most cases. The absolute increase in prediction accuracy is also illustrated 

in the supplementary (Fig. S. 4.20) indicating the average increase of 0.046 in KE and 0.015 in PE 

over all combinations of traits and environments. In addition, the absolute increase in prediction 

accuracy from the bivariate GBLUP to the maximum bivariate sERRBLUP based on haplotype 

blocks is shown in the supplementary indicating the average absolute increase of 0.034 in KE and 

0.013 in PE (Fig. S. 4.21). Overall, the increase in prediction accuracy from bivariate GBLUP to 

maximum bivariate sERRBLUP is significantly higher in KE than PE in both cases of utilizing 

pruned set of SNPs and haplotype blocks (Fig. S. 4.22). 

 

Fig. 4.5: Percentage of change in prediction accuracy from bivariate GBLUP to the maximum prediction 

accuracy of bivariate sERRBLUP based on pruned set of SNPs in KE (left side plot) and in PE (right side 

plot). The average percentage of change in prediction accuracy for each trait and environment is displayed 

in all rows and columns, respectively. 
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4.6 Discussion 

In this study, bivariate ERRBLUP as a full epistasis model incorporating all pairwise SNP 

interactions is almost identical to bivariate GBLUP. This was expected, since ERRBLUP 

incorporates a high number of interactions by which a large number of unimportant variables are 

introduced into the model (Martini et al., 2016), thus introducing potential ‘noise’ which can 

prevent gains in predictive ability. In contrast, bivariate sERRBLUP substantially increases the 

predictive ability compared to bivariate GBLUP which is only caused by inclusion of relevant 

pairwise SNP interactions. Note that all bivariate models substantially outperformed univariate 

GBLUP, as phenotypic data of the respective environment in the previous year was used. 

ERRBLUP and sERRBLUP models have shown to display similar behaviors in the context of 

univariate statistical setting in the maize dataset for prediction across environments (Vojgani et 

al., 2020). ERRBLUP, which had been introduced as categorical epistasis (CE) model by Martini 

et al. (2017), performs as good as the best EG-BLUP which is EG-BLUP with symmetric marker 

coding. Similarly, selection of optimum proportions of interactions in EG-BLUP has shown to 

increase the predictive ability compared to the EG-BLUP which includes all pairwise SNP 

interactions (Martini et al., 2016) for a wheat dataset (Pérez and de los Campos, 2014). 

Consequently, ERRBLUP and sERRBLUP leads to higher predictive ability than EG-BLUP and 

reduced EG-BLUP with non-symmetric coded markers, respectively. This was shown by Vojgani 

et al. (2021) in the wheat dataset (Pérez and de los Campos, 2014). 

Furthermore, in this study we have found that GBLUP, ERRBLUP and maximum sERRBLUP 

predictive abilities when utilizing haplotype blocks are very similar to the respective models’ 

predictive abilities when utilizing pruned sets of SNPs. This finding is of high relevance in 

practice, since it helps to overcome the high computational load of epististatic models. The 

required computational time for sERRBLUP based on 3'330 haplotype blocks indicating 5'546'115 

interactions was 9 minutes out of which 4 minutes were needed to estimate the pairwise SNP 

interaction effect variances and 5 minutes were needed to generate the sERRBLUP relationship 

matrix for a selected proportion of interactions by utilizing the R-package miraculix with 15 cores 

on a server cluster with Intel E5-2650 (2X12 core 2.2GHz) processors in the released EpiGP R-

package (Vojgani et al., 2019). As the computing time is increasing approximately quadratically 

in the number of included markers, the computing time for the respective SNP-based model with 

30’212 SNPs took 90 times as long (Vojgani et al., 2020), while it resulted in similar predictive 

abilities with the absolute difference being less than 0.01 in most cases across all traits in all 

environments and both landraces (Fig. S. 4.23). Although this difference in predictive abilities is 

statistically significant based on paired t-test, it is not of practical relevance.       

Although, sEERBLUP is a method that is using multiple environments, it is not a GxE model (de 

Leon et al., 2016) in the traditional sense. While GxE models typically assign effect to combination 

of specific genotypes depending on the environment, the second environment in sEERBLUP is 

“only” used to detect which markers affect a given trait and use the information to put more focus 

on these marker in the actual prediction step. The estimation of marker effects itself is then 

executed only based on the environment itself (or in the case of the bivariate model with some 

contributions from the second environment but still not in the sense of a traditional GxE model). 
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As a different model is used for each environment, sEERBLUP will of course still assign different 

marker effects in different environments. As the set of selected marker interactions will however 

be different between different models, a direct comparison of the effects assigned to specific 

marker interactions is not statistically sound. Similar to most GxE models (Shin and Lee, 2020), 

the computational load of sEERBLUP using markers is extremely high. However, our suggested 

use of haplotype blocks massively reduced this problem, while the predictive ability is almost as 

good as sERRBLUP based on pruned set of SNPs. 

 It was shown that multivariate GBLUP is superior in predictive ability compared to univariate 

GBLUP with of medium (~0.6) to high (~0.9) genomic correlations, and that low genomic 

correlations results in no increase in multivariate GBLUP compared to univariate GBLUP 

(Covarrubias-Pazaran et al., 2018). Calus et al. (2011) also found an increase of 3 to 14 percent in 

predictive ability of multi-trait SNP-based models in a simulation study when genetic correlations 

ranged from 0.25 to 0.75. In our study, we also found a significant correlation between the absolute 

gain in prediction accuracy from univariate GBLUP to maximum bivariate sERRBLUP and the 

respective genomic correlation based on both pruned sets of SNPs (𝑟𝐾𝐸 = 0.65, 𝑟𝑃𝐸 = 0.69) and 

haplotype blocks (𝑟𝐾𝐸 = 0.47, 𝑟𝑃𝐸 = 0.49) across all traits and environments combinations. 

Moreover, Martini et al. (2016) showed that the predictive ability in one environment can be 

increased by variable selection in the other environment under the assumption of positive 

phenotypic correlation between environments. It was shown in a wheat dataset (Pérez and de los 

Campos, 2014), where environments 2 and 3 had the highest phenotypic correlation (0.661), that 

the predictive ability for phenotype prediction in environment 2 was maximized by variable 

selection in environment 3 and vice versa (Martini et al., 2016). Therefore, the increase in 

prediction accuracy is expected to be influenced by the phenotypic correlations between the 

environments or between the years in the same environment in bivariate models. In our study, 

although 2017 and 2018 were climatically quite different, since 2018 suffered from a major heat 

stress compared to 2017 (Table 4.1), we see a significant correlation between the absolute gain in 

predictive ability from univariate GBLUP to maximum predictive ability of bivariate sERRBLUP 

and the phenotypic correlation between years in each environment based on both pruned sets of 

SNPs (𝑟𝐾𝐸 = 0.55, 𝑟𝑃𝐸 = 0.50) and haplotype blocks (𝑟𝐾𝐸 = 0.55, 𝑟𝑃𝐸 = 0.56).  

In addition to the genomic and phenotypic correlations between the years, the trait heritability is 

another factor which is expected to be influential for such an increase in bivariate sERRBLUP 

predictive ability as well. Therefore, the traits with lower heritability are expected to obtain less 

gain in sERRBLUP predictive ability than the traits with higher heritability. This was confirmed 

in our study, as traits with low heritability (e.g. 0.59 for RL in PE) showed only a small increase 

in prediction accuracy from univariate GBLUP to maximum bivariate sERRBLUP. However, not 

all traits with higher heritabilities did necessarily show a higher gain in predictive ability for all 

traits. It should be noted that the trait heritabilities were calculated on an entry-mean basis 

(Hallauer et al., 2010) within each KE and PE landraces by Hölker et al. (2019) over all four 

environments in both years 2017 and 2018 jointly. The trait heritabilities obtained only from 2017 

are significantly higher than the trait heritabilities obtained only from 2018 in both KE and PE 

based on a paired t-test (Table S. 4.2). This also results in an increase in predictive ability from 
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univariate GBLUP to maximum bivariate sERRBLUP in KE and PE, since multi-trait models have 

the potential of increasing the predictive ability when traits with low heritability are joined with 

traits with higher heritability, given they are genomically correlated (Thompson and Meyer, 1986).  

It should be noted that the increase in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP is caused by both borrowing information across years and capitalizing on 

epistasis, while the increase in predictive ability from bivariate GBLUP to maximum bivariate 

sERRBLUP is caused by accounting for epistasis alone. Overall, the traits behave differently 

among different environments and landraces due to their genomic correlations, phenotypic 

correlations and heritabilities. To shed light on this, the maximum increase in prediction accuracy 

from bivariate GBLUP to bivariate sERRBLUP based on pruned set of SNPs in KE was observed 

for the trait EV_V6 (0.112) in EIN where the corresponding sERRBLUP genomic correlation 

(0.809) is higher than the GBLUP genomic correlation (0.768). This trait has a high heritability 

(0.90) and high phenotypic correlation (0.551) as well. In contrast, the respective prediction 

accuracy decreases (-0.018) for EV_V6 in TOM for KE indicating the lower sERRBLUP genomic 

correlation (0.458) than GBLUP genomic correlation (0.703) and the particularly low phenotypic 

correlation (0.383). It should be noted that the phenotypic correlation does not play a major role 

for the increase in prediction accuracy from bivariate GBLUP to bivariate sERRBLUP, since both 

models are bivariate and benefit from the same phenotypic correlations. Therefore, EV_V6 

obtaining the maximum and minimum increase in the respective prediction accuracy for KE 

indicates the significant role of genomic correlation among the possible causes. In general, 

bivariate sERRBLUP improves the prediction accuracy compared to bivariate GBLUP more in 

KE than PE which is potentially due to significantly higher sERRBLUP genomic correlation and 

heritability in KE compared to PE, based on paired t-test. 

Overall, our results indicate that incorporating a suitable subset of epistatic interactions besides 

utilizing information across years can substantially increase the predictive ability. The amount of 

this increase is affected by the genomic and phenotypic correlations between the years and the 

heritability of the phenotypic trait. Moreover, utilizing haplotype blocks instead of pruned sets of 

SNPs in epistasis model is proposed, since the obtained predictive abilities of the best epistasis 

model are quite similar, while the required computational time when utilizing haplotype blocks is 

significantly lower than the required computational time when utilizing pruned set of SNPs. 

Therefore, this computationally efficient approach is potentially beneficial for genomic prediction 

of phenotypes under the assumption of sufficient genomic and phenotypic correlation between 

years for highly heritable traits. This may allow to reduce the number of lines which have to be 

phenotyped over several years and thus reduce phenotyping costs which and thus be of high 

interest in practical plant breeding. 
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4.7 Supplementary material  

4.7.1 Supplementary Tables  

Table S. 4.1: The mean, minimum, maximum and standard deviation of BLUEs of phenotypic traits in 

each location for KE (blue numbers) and PE (red numbers) in 2017 and 2018. 

Trait Location/Year Mean Minimum Maximum Standard 

deviation 

EV_V3 ROG/2017 

ROG/2018 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

5.35\5.84 

5.68\5.91 

 

6.31\6.67 

4.26\4.62 

 

5.51\6.15 

4.84\5.67 

1.71\2.90 

1.21\3.46 

 

4.07\5.49 

0.32\1.69 

 

1.93\3.84 

0.59\1.38 

7.90\7.92 

7.91\8.08 

 

8.49\7.98 

7.63\7.99 

 

7.34\8.45 

8.67\8.93 

0.95\0.75 

1.01\0.89 

 

0.69\0.51 

1.20\0.97 

 

0.99\0.67 

1.43\1.13 

 

 

 

 

EV_V4 

EIN/2017 

EIN/2018 

 

 

ROG/2017 

ROG/2018 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

4.24\4.82 

4.56\4.61 

 

 

5.44\5.85 

5.61\5.84 

 

5.71\5.98 

5.16\5.29 

 

5.26\5.75 

5.01\5.27 

0.94\1.52 

0.98\1.99 

 

 

2.65\2.88 

1.39\2.89 

 

3.37\3.91 

1.50\1.63 

 

2.59\3.92 

0.96\2.08 

7.07\7.46 

7.01\6.99 

 

 

7.86\7.94 

8.41\9.07 

 

7.89\7.89 

8.36\8.44 

 

6.89\7.35 

8.56\8.07 

1.11\0.98 

1.05\0.78 

 

 

0.92\0.78 

1.22\1.15 

 

0.81\0.83 

1.26\1.36 

 

0.83\0.61 

1.49\1.11 

 

 

 

 

EV_V6 

EIN/2017 

EIN/2018 

 

 

ROG/2017 

ROG/2018 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

5.03\5.54 

4.73\4.73 

 

 

5.55\5.91 

6.14\6.42 

 

6.24\6.24 

5.12\4.77 

 

5.58\5.86 

6.30\5.43 

0.97\1.51 

1.07\2.58 

 

 

1.02\2.52 

2.21\3.36 

 

3.90\3.81 

1.21\1.17 

 

2.96\3.90 

2.44\1.07 

8.05\8.39 

6.95\6.08 

 

 

8.07\7.76 

8.81\9.68 

 

8.45\7.94 

8.23\7.51 

 

7.66\7.91 

9.60\9.08 

1.24\1.06 

0.78\0.56 

 

 

0.95\0.77 

1.29\1.20 

 

0.85\0.85 

1.29\1.26 

 

0.92\0.68 

1.36\1.26 

 

 

 

 

PH_V4 

EIN/2017 

EIN/2018 

 

 

ROG/2017 

ROG/2018 

34.49\38.73 

32.54\35.23 

 

 

25.50\28.10 

29.08\31.75 

6.90\20.43 

8.48\19.60 

 

 

9.23\13.63 

11.11\17.45 

53.14\57.94 

49.63\50.29 

 

 

42.29\41.54 

43.70\45.04 

7.24\6.17 

5.65\5.24 

 

 

4.60\4.53 

 4.79\4.92 
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Trait Location/Year Mean Minimum Maximum Standard 

deviation 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

 

62.88\68.98 

60.37\64.49 

 

41.60\47.45 

60.32\66.49 

 

34.30\38.39 

23.27\16.14 

 

11.98\25.37 

28.43\47.45 

 

88.24\95.30 

89.24\93.20 

 

63.89\72.12 

84.24\88.27 

 

9.79\10.96 

12.54\14.32 

 

8.71\8.27 

9.59\8.03 

 

 

 

 

PH_V6 

EIN/2017 

EIN/2018 

 

 

ROG/2017 

ROG/2018 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

62.40\69.36 

78.81\85.14 

 

 

61.46\68.91 

82.64\90.89 

 

94.21\98.30 

101.90\104.82 

 

83.86\92.35 

120.46\120.57 

21.41\36.53 

21.90\52.02 

 

 

32.17\30.35 

41.48\57.90 

 

37.28\54.75 

 53.69\50.37 

 

48.46\57.81 

68.48\58.96 

95.54\98.80   

105.05\115.61 

 

 

89.74\94.77 

118.69\123.27  

 

127.54\130.51  

137.67\146.02 

 

119.07\124.98 

173.66\169.71 

11.89\9.62   

10.53\10.07 

 

 

9.34\9.52 

11.00\11.17 

 

15.05\15.29  

15.42\18.24 

 

14.41\12.79 

19.56\18.63 

 

 

 

 

PH_final 

EIN/2017 

EIN/2018 

 

 

ROG/2017 

ROG/2018 

 

GOL/2017 

GOL/2018 

 

TOM/2017 

TOM/2018 

 

 

159.18\141.35 

114.90\93.35 

 

 

137.04\122.25 

163.71\142.70 

 

115.68\102.69 

129.94\117.16 

 

157.99\144.61 

184.54\169.57 

100.84\69.01 

82.28\49.97 

 

 

74.25\63.56 

103.82\70.16 

 

49.27\30.21 

35.41\35.76 

 

81.92\79.28 

115.10\118.15 

228.96\211.14 

172.12\136.25 

 

 

211.14\201.92 

249.35\208.81 

 

167.58\149.14 

186.09\173.10 

 

245.00\195.36 

265.02\248.43 

21.57\21.10 

16.46\16.27 

 

 

22.32\20.56 

25.52\23.66 

 

21.73\23.59 

26.35\27.58 

 

24.82\18.95 

26.34\22.77 

FF EIN/2017 

EIN/2018 

 

ROG/2017 

ROG/2018 

 

TOM/2017 

TOM/2018 

 

82.55\81.78 

78.80\79.59 

 

73.06\71.91 

79.16\79.05 

 

76.88\74.16 

70.31\68.76 

70.36\68.86 

63.37\68.12 

 

62.45\59.10    

66.74\67.74 

 

63.93\62.13 

62.22\60.14 

102.02\101.50    

94.35\93.96 

 

91.22\88.03    

100.14\92.87 

 

93.28\92.17 

83.64\90.06 

5.23\5.17 

5.44\5.40 

 

4.82\4.47    

4.72\4.41 

 

5.58\4.64 

4.11\3.73 

 

RL 

 

EIN/2017 

EIN/2018 

 

ROG/2017 

ROG/2018 

 

 

3.48\2.23 

1.58\1.25 

 

2.39\1.50 

1.27\1.17 

 

0.63\0.76 

0.73\0.32 

 

0.96\0.95 

0.95\0.95 

 

9.21\8.08 

8.52\4.69 

 

9.01\8.50 

7.01\3.52 

 

2.29\1.54 

1.10\0.59 

 

2.21\1.13 

0.61\0.41 
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Table S. 4.2: The traits heritabilities in 2017, 2018 and both years jointly in KE (blue numbers) and PE (red numbers). 

Traits 2017 2018 Both 2017 and 2018 

EV_V3 0.91 / 0.85 0.79 / 0.67 0.92 / 0.86 

EV_V4 0.90 / 0.82 0.83 / 0.71 0.91 / 0.84  

EV_V6 0.88 / 0.84 0.75 / 0.68 0.90 / 0.85 

PH_V4 0.89 / 0.82 0.81 / 0.72 0.92 / 0.87 

PH_V6 0.90 / 0.88 0.85 / 0.81 0.93 / 0.91 

PH_final 0.91 / 0.93 0.83 / 0.85 0.94 / 0.94 

FF 0.90 / 0.92 0.86 / 0.83 0.94 / 0.93 

RL 0.78 / 0.55 0.49 / 0.29 0.80 / 0.59 

 

Table S. 4.3: The percentage of bivariate models convergence in 5-fold cross validation with 5 replicates based on pruned set of SNPs for both KE 

and PE (black percentages), only KE (blue percentages) and only PE (red percentages). The starts represent the non-convergence of pre estimated 

variance components based on the full set. 

Traits Predicted 

Environments 

GBLUP 

 

ERRBLUP 

 

sERRBLUP 

Top 10% 

sERRBLUP 

Top 5% 

sERRBLUP 

Top 1% 

sERRBLUP 

Top 0.1% 

sERRBLUP 

Top 0.01% 

sERRBLUP 

Top 0.001% 

          

 ROG 92% 88% 96% 88% 52%* 68%* 60%* 16%* 

EV_V3 GOL 100% 100% 0%* 0%* 100% 72% 84% / 44% 1 / 60% 

 TOM 100% 100% 92% 96% 100% 96% / 96% 92% / 64% 40%* / 28%* 

          

 EIN 100% 100% 100% 100% 100% 80% / 100%* 76% 100% 

EV_V4 ROG 96% 96% 100% 100% 96% 100% 96% / 96% 76% / 96% 

 GOL 100% 100% 100% 100% 100% 100%* 100% 68% 

 TOM 40%* / 96% 52% / 96% 88% 100% 96% 100%* 100% 96% 

          

 EIN 100% 100% 100% 100% 100% 96% 96% 100%*/ 96% 

EV_V6 ROG 100% 100% 100% 100% 100% 100% 56%* / 92% 0%* 

 GOL 100% 100% 0%* / 0%* 0% / 0%* 0%* 16%* / 0%* 0%* 100% 

 TOM 100% 100% 100% 100% 100% 100% 100% 100% 
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Traits Predicted 

Environments 

GBLUP 

 

ERRBLUP 

 

sERRBLUP 

Top 10% 

sERRBLUP 

Top 5% 

sERRBLUP 

Top 1% 

sERRBLUP 

Top 0.1% 

sERRBLUP 

Top 0.01% 

sERRBLUP 

Top 0.001% 

          

 EIN 100% 100% 100% 96% 100% 100% 96% 100% 

PH_V4 ROG 100% 100% 100% 100% 100% 84% 84% 92% 

 GOL 100% 100% 0%* 0%* 0%* 12%* 100% 100% 

 TOM 96% / 92% 96% / 96% 100% 100% 100% 92% 92% 96% 

          

 EIN 100% 100% 100% 100% 100% 100% 100% 100% 

PH_V6 ROG 100% 100% 100% 100% 100% 84% 92% 84%* 

 GOL 96% 96% 96% 96% 100% 100% 96% 84%* 

 TOM 100% 100% 100% 100% 100% 100% 96% 100% 

          

 EIN 100% 100% 100% 100% 96% 84% 76%* 72%* 

PH_final ROG 100% 100% 0%* / 88% 0%* / 0%* 0%* / 0%* 0% */ 0%* 92% / 0%* 48%* 

 GOL 100% 100% 100% 100% 96% 100% 100% 68% 

 TOM 100% 100% 4%* / 96% 92% 20% */ 96% 4%* / 68%*  96%* / 52%* 76% 

          

 EIN 100% 100% 96% 100% 64% 0%* 64% 92% 

FF ROG 100% 100% 96% / 0%* 0%* 96% / 0%* 4%* / 0%* 56%* / 0%* 24%* 

 TOM 88% / 80% 64%* / 84% 96% / 80% 96% / 80% 92% / 76% 60% / 52%* 36%* / 32%* 76% / 72% 

          

RL EIN 100% 100% 100% 100% 100% 100% 100% 100% 

 ROG 100% 100% 100% 100% 96% 92% 72% 84% 
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Table S. 4.4: The number of epistasis interactions maintained in the model based on haplotype blocks and 

pruned set of SNPs for the each proportions of interactions in KE and PE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S. 4.5: GBLUP predictive ability based on pruned set of SNPs for prediction in 2018 with training 

the model either on 2018 data or the average phenotypic values of 2017 and 2018 in each environment for 

series of phenotypic traits in KE. 

Proportions of 

interactions 

Landrace Pruned set of SNPs Haplotype Blocks 

100% KE 323'533'203 4'416'392 

PE 456'397'578 5'546'115 

Top 10% KE 32'353'320 441'639 

PE 45'639'758 554'612 

Top 5% KE 16'176'660 220'820 

PE 22'819'879 277'306 

Top 1% KE 3'235'332 44'164 

PE 4'563'976 55'461 

Top 0.1% KE 323'533 4'416 

PE 456'398 5'546 

Top 0.01% KE 32'353 443 

PE 45'640 555 

 Top 0.001% KE 3'235 44 

PE 4'564 55 

Trait Training set EIN ROG GOL TOM 

EV_V3 

 

2018 

2017 and 2018 average 

NA 

NA 

0.335 

0.338 

0.435 

0.425 

0.291 

0.311 

EV _V4 2018 

2017 and 2018 average 

0.448 

0.429 

0.385 

0.386 

0.410 

0.387 

0.299 

0.316 

EV _V6 2018 

2017 and 2018 average 

0.355 

0.314 

0.397 

0.406 

0.403 

0.410 

0.566 

0.532 

PH_V4 2018 

2017 and 2018 average 

0.470 

0.483 

0.495 

0.488 

0.506 

0.518 

0.299 

0.294 

PH_V6 2018 

2017 and 2018 average 

0.527 

0.523 

0.494 

0.458 

0.464 

0.470 

0.463 

0.471 

PH_final 2018 

2017 and 2018 average 

0.554 

0.542 

0.597 

0.631 

0.513 

0.526 

0.656 

0.635 

FF 2018 

2017 and 2018 average 

0.474 

0.458 

0.502 

0.551 

0.134 

- 

0.496 

0.506 

RL 2018 

2017 and 2018 average 

0.391 

0.358 

0.252 

0.212 

- 

- 

- 

- 
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Table S. 4.6: GBLUP predictive ability based on pruned set of SNPs for prediction in 2018 with training 

the model either on 2018 data or the average phenotypic values of 2017 and 2018 in each environment for 

series of phenotypic traits in PE. 

 

 

Table S. 4.7: Genomic correlation between 2017 and 2018 in each environment for trait EV_V3 for KE 

(blue numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 

of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in 

each environment for KE and PE, respectively. 

Bivariate Models ROG GOL  TOM 

GBLUP 0.864 / 0.442 0.984 / 0.768 0.913 / 0.642 

sERRBLUP top 10% 0.869 / 0.643 0.804 / 0.740* 0.892* / 0.704* 

sERRBLUP top 5% 0.872 / 0.976 0.759* / 0.725 0.877 / 0.686 

sERRBLUP top 1% 0.844 / 0.947 0.760 / 0.824 0.896 / 0.765 

sERRBLUP top 0.1% 0.884* / 0.953* 0.812 / 0.931 0.920 / 0.997 

sERRBLUP top 0.01% 0.829 / 0.968 0.781 / 0.973 0.993 / 0.938 

sERRBLUP top 0.001% 0.857 / 0.940 0.892 / 0.962 0.962 / 0.908 

 

 

 

 

Trait Training set EIN ROG GOL TOM 

EV_V3 

 

2018 

2017 and 2018 average 

NA 

NA 

0.209 

0.210 

0.337 

0.332 

0.326 

0.323 

EV _V4 2018 

2017 and 2018 average 

0.185 

0.205 

0.261 

0.269 

0.625 

0.646 

0.363 

0.371 

EV _V6 2018 

2017 and 2018 average 

0.323 

0.288 

0.362 

0.382 

0.627 

0.645 

0.583 

0.572 

PH_V4 2018 

2017 and 2018 average 

0.464 

0.480 

0.510 

0.396 

0.641 

0.661 

0.437 

0.439 

PH_V6 2018 

2017 and 2018 average 

0.547 

0.541 

0.529 

0.440 

0.690 

0.706 

0.515 

0.512 

PH_final 2018 

2017 and 2018 average 

0.620 

0.547 

0.537 

0.370 

0.682 

0.699 

0.580 

0.572 

FF 2018 

2017 and 2018 average 

0.466 

0.495 

0.456 

0.079 

0.306 

- 

0.401 

0.363 

RL 2018 

2017 and 2018 average 

0.268 

0.235 

0.419 

0.114 

- 

- 

- 

- 
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Table S. 4.8: Genomic correlation between 2017 and 2018 in each environment for trait EV_V4 for KE 

(blue numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 

of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in 

each environment for KE and PE, respectively. 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.843 / 0.525 0.897 / 0.592 0.940 / 0.998 0.960 / 0.835 

sERRBLUP top 10% 0.810* / 0.713 0.863* / 0.618 0.872 / 0.815 0.972 / 0.744* 

sERRBLUP top 5% 0.807 / 0.732 0.861 / 0.632 0.830 / 0.782* 0.997 / 0.751 

sERRBLUP top 1% 0.865 / 0.769 0.889 / 0.705* 0.791* / 0.824 0.941 / 0.733 

sERRBLUP top 0.1% 0.966 / 0.888 0.936 / 0.766 0.874 / 0.946 0.934 / 0.784 

sERRBLUP top 0.01% 0.979 / 0.908 0.947 / 0.780 0.883 / 0.999 0.979 / 0.806 

sERRBLUP top 0.001% 0.974 / 0.898* 0.966 / 0.758 0.861 / 0.932 0.999* / 0.834 

 

Table S. 4.9: Genomic correlation between 2017 and 2018 in each environment for trait EV_V6 for KE 

(blue numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 

of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in 

each environment for KE and PE, respectively. 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.768 / 0.712 0.989 / 0.965 0.900 / 0.940 0.703 / 0.764 

sERRBLUP top 10% 0.817 / 0.646* 0.922 / 0.715* 0.895 / 0.886* 0.458* / 0.594* 

sERRBLUP top 5% 0.809* / 0.635 0.900 / 0.736 0.861 / 0.883 0.412 / 0.566 

sERRBLUP top 1% 0.809 / 0.690 0.888 / 0.818 0.823 / 0.898 0.409 / 0.542 

sERRBLUP top 0.1% 0.890 / 0.842 0.936* / 0.882 0.892* / 0.942 0.489 / 0.544 

sERRBLUP top 0.01% 0.991 / 0.840 0.954 / 0.908 0.914 / 0.916 0.496 / 0.530 

sERRBLUP top 0.001% 0.909 / 0.899 0.969 / 0.968 0.856 / 0.932 0.567 / 0.573 

 

Table S. 4.10: Genomic correlation between 2017 and 2018 in each environment for trait PH_V6 for KE 

(blue numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 

of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in 

each environment for KE and PE, respectively. 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.942 / 0.880 0.952 / 1.000 0.937 / 0.952 0.994 / 0.758 

sERRBLUP top 10% 0.932* / 0.823* 0.909 / 0.727* 0.943 / 0.912* 0.949 / 0.608* 

sERRBLUP top 5% 0.928 / 0.801 0.909 / 0.749 0.935 / 0.908 0.938* / 0.568 

sERRBLUP top 1% 0.910 / 0.823 0.951 / 0.826 0.887 / 0.934 0.936 / 0.501 

sERRBLUP top 0.1% 0.934 / 0.915 0.991* / 0.934 0.924* / 0.957 0.955 / 0.964 

sERRBLUP top 0.01% 0.902 / 0.874 0.959 / 0.963 0.969 / 0.948 0.968 / 0.526 

sERRBLUP top 0.001% 0.918 / 0.848 0.984 / 0.955 0.919 / 0.941 0.993 / 0.713 
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Table S. 4.11: Genomic correlation between 2017 and 2018 in each environment for trait PH_final for KE 

(blue numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 

of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in 

each environment for KE and PE, respectively. 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.831 / 0.851 0.984 / 0.935 0.958 / 0.943 0.985 / 0.981 

sERRBLUP top 10% 0.822* / 0.799* 0.986*/ 0.910 0.894* / 0.871* 0.864* / 0.971* 

sERRBLUP top 5% 0.820 / 0.738 0.987 / 0.900 0.861 / 0.863 0.816 / 0.965 

sERRBLUP top 1% 0.881 / 0.835 0.994 / 0.924 0.822 / 0.867 0.808 / 0.981 

sERRBLUP top 0.1% 0.986 / 0.934 0.999 / 0.959 0.989 / 0.956 0.841 / 0.981 

sERRBLUP top 0.01% 0.962 / 0.922 0.999 / 0.967 0.982 / 0.994 0.873 / 0.984 

sERRBLUP top 0.001% 0.965 / 0.879 0.992 / 0.942* 0.988 / 0.998 0.935 / 0.987 

 

Table S. 4.12: Genomic correlation between 2017 and 2018 in each environment for trait FF for KE (blue 

numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion of 

interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in each 

environment for KE and PE, respectively. 

Bivariate Models EIN  ROG TOM 

GBLUP 0.888 / 0.951 1.000 / 0.979 0.995 / 0.970 

sERRBLUP top 10% 0.871* / 0.882 0.987 / 0.969 0.959* / 0.955* 

sERRBLUP top 5% 0.859 / 0.865* 0.984* / 0.955 0.955 / 0.944 

sERRBLUP top 1% 0.852 / 0.855 0.983 / 0.941* 0.995 / 0.993 

sERRBLUP top 0.1% 0.854 / 0.861 1.000 / 0.955 0.987 / 0.981 

sERRBLUP top 0.01% 0.847 / 0.909 0.997 / 0.970 0.957 / 0.977 

sERRBLUP top 0.001% 0.814 / 0.898 0.992 / 0.961 0.992 / 0.984 

 

Table S. 4.13: Genomic correlation between 2017 and 2018 in each environment for trait RL for KE (blue 

numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion of 

interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in each 

environment for KE and PE, respectively. 

Bivariate Models EIN  ROG 

GBLUP 0.662 / 0.818 0.751 / 0.404 

sERRBLUP top 10% 0.672 / 0.604 0.753* / 0.321* 

sERRBLUP top 5% 0.644 / 0.520* 0.741 / 0.325 

sERRBLUP top 1% 0.603 / 0.546 0.748 / 0.338 

sERRBLUP top 0.1% 0.676* / 0.719 0.887 / 0.412 

sERRBLUP top 0.01% 0.727 / 0.572 0.973 / 0.380 

sERRBLUP top 0.001% 0.712 / 0.531 0.983 / 0.352 
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Table S. 4.14: Phenotypic correlation between 2017 and 2018 in each environment for KE and PE. 

Trait Landrace EIN ROG GOL TOM 

EV_V3 KE 

PE 

- 

- 

0.481 

0.373 

0.679 

0.510 

0.623 

0.523 

EV_V4 KE 

PE  

0.553 

0.341 

0.587 

0.396 

0.709 

0.725 

0.570 

0.495 

EV_V6 KE 

PE  

0.551 

0.350 

0.583 

0.454 

0.729 

0.749 

0.383 

0.414 

PH_V4 KE 

PE 

0.736 

0.641 

0.646 

0.504 

0.779 

 0.793 

0.566 

 0.599 

PH_V6 KE 

PE  

0.746 

0.650 

0.681 

0.545 

0.781 

0.845 

0.662 

0.508 

PH_final KE 

PE  

0.688 

0.668 

0.768 

0.739 

0.721 

0.790 

0.778 

0.771 

FF KE 

PE  

0.656 

0.650 

0.780 

0.743 

- 

- 

0.745 

0.639 

RL KE 

PE 

- 

- 

0.436 

0.226 

- 

- 

0.377 

0.329 
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4.7.2 Supplementary Figures 

 

Fig. S. 4.1: Comparison of pre estimated genetic and residual variances and covariances of converged 

bivariate sERRBLUP (top 10%) based on the full dataset (dashed horizontal lines) and estimated genetic 

and residual variances and covariances of converged bivariate sERRBLUP (top 10%) based on training set 

in each run of 5-fold cross validation with 5 replicates (colored bars) for predicting EIN in 2018 when the 

additional environment is EIN in 2017 in KE for trait PH-V4. 
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Fig. S. 4.2: The difference between the mean predictive ability of only the converged folds and the mean 

predictive ability of all folds in 5-fold cross validation with 5 replicates virus the number of the folds which 

did not converged across all traits in all combinations for both KE and PE in bivariate GBLUP, ERRBLUP, 

sERRBLUP. 
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Fig. S. 4.3: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V3 in KE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.4: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V3 in PE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.5: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V4 in KE based on pPruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.6: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V4 in PE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.7: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V6 in KE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.8: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait EV_V6 in PE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.9: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH_V6 in KE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.10: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH_V6 in PE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.11: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH_final in KE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.12: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait PH_final in PE based on pruned set of SNPs (left) and 

haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability 

obtained from bivariate sERRBLUP. 
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Fig. S. 4.13: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait FF in KE based on pruned set of SNPs (left) and haplotype 

blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained 

from bivariate sERRBLUP. 
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Fig. S. 4.14: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait FF in PE based on pruned set of SNPs (left) and haplotype 

blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained 

from bivariate sERRBLUP. 
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Fig. S. 4.15: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait RL in KE based on pruned set of SNPs (left) and haplotype 

blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained 

from bivariate sERRBLUP. 

 

 

Fig. S. 4.16: Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), 

bivariate GBLUP (green and blue dashed horizontal line), bivariate ERRBLUP (open circle) and bivariate 

sERRBLUP (filled circles and solid line) for trait RL in PE based on pruned set of SNPs (left) and haplotype 

blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained 

from bivariate sERRBLUP. 
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Fig. S. 4.17: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP on the respective sERRBLUP genomic correlation between 2017 and 2018 in KE 

(left) and in PE (right) for all studied traits. In each panel, the overall linear regression line (gray solid line) 

with the regression coefficient (𝒃) and R-squared (𝑹𝟐) are shown. 
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Fig. S. 4.18: Regression of the absolute increase in predictive ability from bivariate GBLUP to maximum 

bivariate sERRBLUP on the difference between the GBLUP genomic correlation and maximum 

sERRBLUP genomic correlation between 2017 and 2018 in KE (left) and in PE (right) for all studied traits, 

when utilizing pruned set of SNPs. In each panel, the overall linear regression line with the regression 

coefficient (𝒃) and R-squared (𝑹𝟐) are shown. The colors green, light blue, pink, red, orange, purple, yellow 

and dark blue represent the phenotypic traits EV_V3, EV_V4, EV_V6, PH_V4, PH_V6, PH_final, FF and 

RL, respectively. 
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Fig. S. 4.19: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 

bivariate sERRBLUP on the phenotypic correlation between 2017 and 2018 in KE (left) and in PE (right) 

for all studied traits. In each panel, the overall linear regression line (gray solid line) with the regression 

coefficient (𝒃) and R-squared (𝑹𝟐) are shown. 
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Fig. S. 4.20: Absolute change in prediction accuracy from bivariate GBLUP to the maximum prediction 

accuracy of bivariate sERRBLUP based on pruned set of SNPs in KE (left side plot) and in PE (right side 

plot). The average absolute change in prediction accuracy for each trait and environment is displayed in all 

rows and columns, respectively. 
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Fig. S. 4.21: Absolute change in prediction accuracy from bivariate GBLUP to the maximum prediction 

accuracy of bivariate sERRBLUP based on haplotype blocks in KE (left side plot) and in PE (right side 

plot). The average absolute change in prediction accuracy for each trait and environment is displayed in all 

rows and columns, respectively. 
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Fig. S. 4.22: Absolute change in prediction accuracy from bivariate GBLUP to the maximum prediction 

accuracy of bivariate sERRBLUP in PE vs. KE. The black line represents the overall linear regression line. 
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Fig. S. 4.23: Maximum sERRBLUP predictive ability based on pruned set of SNPs versus Maximum 

sERRBLUP predictive ability based on haplotype blocks across all traits in all environments and both KE 

and PE. 𝒃 represents the regression coefficient.  
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5 Discussion  

 

 

“To raise new questions, new possibilities, to regard old problems from a new angle, requires 

creative imagination and marks real advance in science” 

Albert Einstein 

 

In this chapter, other methods of variable selection in epistasis model are investigated and 

compared to our proposed selection method in sERRBLUP model. This is followed by a review 

and elaboration of the underlying features affecting the predictive abilities of genomic prediction 

models, beside presentation of potential future research topics.  

5.1 Different methods for pairwise SNP interaction selection 

In this thesis, we have discussed that ERRBLUP is considered as the categorical epistasis (CE) 

model (Martini et al., 2017) which does not possess the undesirable coding dependent feature of 

EG-BLUP and performs as well as the best EG-BLUP obtained through symmetrically coded 

markers (Martini et al., 2017) (chapter 3). We then positively evaluated the sERRBLUP model as 

a selective CE model by variable selection across environments in maize dataset for both KE and 

PE. sERRBLUP was also positively evaluated for the prediction of simulated dataset in a single 

environment based on the wheat data set genotypes of CIMMYT inbred lines (Pérez and de los 

Campos, 2014) (chapter 2). 

In order to assess different options of variable selection methodologically, our proposed variable 

selection method in the sERRBLUP model is compared with the best of two variable selection 

method in reduced EG-BLUP (Martini et al., 2016). Therefore, the obtained predictive abilities in 

reduced EG-BLUP based on variable selection using the effect sizes obtained by ridge regression 

are first compared (Martini et al., 2016) with an approach based on an epistatic GWAS (eGWAS) 

test (Aulchenko et al., 2007) in the wheat dataset (Pérez and de los Campos, 2014). Genome-wide 

association studies (GWAS) enable comprehensive scanning of genetic components which control 

heritable traits (Nordborg and Weigel, 2008; Myles et al., 2009; Brachi et al., 2011). In GWAS 

analysis, statistical association between SNPs and complex traits is tested through individually 

testing each SNP for an association with the target trait (Yang et al., 2010). Then, the precise p-

values are used to account for the numerous significance tests. However, this may result in the 

occurrence of false positives, whereas many real associations will be missed especially for 

individual SNPs with small effects on a trait (Yang et al., 2010). However, fitting all SNPs 

simultaneously is an alternative approach to overcome this problem (Hayes, Visscher, et al., 2009).  
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Epistasis GWAS (eGWAS) was therefore developed for variable selection as a comparison for 

variable selection based on ridge regression in reduced EG-BLUP. In both approaches, 

subnetworks were inferred from one environment to structure the genomic relationship matrix 

which is then used for genomic prediction in another environment like sERRBLUP. In this context, 

the EG-BLUP model (Jiang and Reif, 2015) was first considered as a full epistasis model, then 

EG-BLUP was reduced to the subsets of pairwise SNP interactions with the highest absolute effect 

sizes at 5 percent steps until 10 percent of interactions with highest absolute effects sizes 

maintained in the model which is considered as rrBLUP-based selection of interactions (Martini 

et al., 2016). However, in eGWAS-based selection of interaction, subnetworks were determined 

in each environment by considering the most significant pairwise SNP interactions through 

scanning the data for pairwise SNP interaction by GenABEL R-package (Aulchenko et al., 2007). 

In this regard, the model with only additive effects was tested versus the model with both additive 

effects and epistasis effects. Afterwards, the relationship matrices were constructed for the desired 

proportions of interactions selected based on the obtained p-values as (Martini et al., 2016) 

𝐺 = ∑ (𝑀.,𝑘𝑀′
.,𝑘) ∘ (𝑀.,𝑗𝑀′

.,𝑗)

𝑘,𝑗 ∈ 𝐼

 

where 𝑀.,𝑗 and 𝑀.,𝑘 indicate the 𝑗𝑡ℎ and 𝑘𝑡ℎ marker codes of all individual in which marker 𝑘 and 

𝑗 are the two markers which have interaction and 𝐼 indicates the matrix representing the interacting 

markers for the desired proportion of interactions. This relationship matrix was then used for 

genomic prediction of phenotypes in the other environment. 

The results illustrate an improvement in predictive ability in one environment by variable selection 

in another environment under both methods of variable selection in the wheat dataset (Pérez and 

de los Campos, 2014) (Fig. 5.1). However, Fig. 5.1 demonstrates that while the increasing trend 

with eGWAS-based selection is the same as with rrBLUP-based selection of interactions, the 

overall predictive ability is lower using the eGWAS approach, especially if a high proportion of 

epistatic interactions is accounted for. Therefore, reduced EG-BLUP with interaction selection 

based on effects sizes obtained from rrBLUP was shown to be the preferable method for variable 

selection.  

In Chapter 2, we have shown that interaction selection based on absolute effects sizes in 

sERRBLUP leads to higher predictive ability compared to reduced EG-BLUP. Therefore, 

sERRBLUP outperforms reduced EG-BLUP based on both rrBLUP-based and eGWAS-based 

selection of interactions.  

Furthermore, eGWAS-based interaction selection by considering three environments jointly to 

predict the fourth environment was investigated (Fig. 5.2) by a different method than the one we 

have proposed in Chapter 3. Based on this approach, the corresponding relationship matrices for 

predicting the fourth environment were determined by averaging the relationship matrices of the 

other three environments instead of averaging the phenotypic values of three environments and 

constructing the new relationship matrix as it was done in Chapter 3. This approach in general 

proved to be robust in predictive abilities which were close to the best predictive abilities obtained 

by variable selection across a single environment. However, the proposed method for predicting 
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across multiple environments jointly in Chapter 3 performed as well as or better than prediction 

based on the single environment. Therefore, the proposed method for predicting across multiple 

environments jointly in Chapter 3 is a convenient method in this regard. 

   

 

Fig. 5.1: Predictive ability of EG-BLUP within environment (black circle) as a full epistasis model and 

reduced EG-BLUP across environments (colored circles and solid lines) when interaction selections are 

based on eGWAS (left) and rrGBLUP (right) for wheat grain yield. In each panel, the solid lines’ color 

indicates the environment in which the relationship matrices were determined by variable selection.  
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Fig. 5.2: Predictive ability of EG-BLUP within environment (black circle) as a full epistasis model and 

reduced EG-BLUP across all three environments jointly when interaction selections are based on eGWAS. 

Orange, red, green and blue lines colors indicate the predictive abilities in environment 1, 2, 3, and 4, when 

the other three environments are used jointly for variable selection. Vertical lines represent the range of 

accuracies obtained when selection of sub-networks was in a single environment rather than combining 

three environments and predict the fourth based on eGWAS. 

5.2 Linkage disequilibrium based SNP pruning and its influence on genomic 

prediction model’s performance 

Linkage disequilibrium (LD) as the nonrandom association of alleles at two or more loci – which 

is measured as the correlation coefficient (𝑟2 ) between phased alleles (Slatkin, 2008) – is a 

potential factor affecting the prediction model’s accuracy. High level of pairwise LD in SNP array 

or whole genome sequence data might influence the genomic prediction model’s performance and 

efficiency. Therefore, the loci which show a high level of pairwise LD are removed by LD pruning 

(Calus and Vandenplas, 2018). So far, several tools have been developed to compute pairwise LD 

between SNPs (Barrett et al., 2004; Purcell et al., 2007; Calus and Vandenplas, 2018). One of 

these tools is PLINK (Purcell et al., 2007) which is designed to handle large dataset including 

hundreds of thousands of genotyped markers for thousands of individuals and prune for LD. 

Linkage disequilibrium based SNP pruning generates a pruned subset of SNPs which are in 

approximate linkage equilibrium. This is done based on variance inflation factor (VIF) given by 

𝑉𝐼𝐹 =
1

(1−𝑟2)
 , 

where 𝑟2 is the squared correlation coefficient between SNPs and the linear combinations of SNPs.  
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In this thesis, the 𝑉𝐼𝐹 pruning routine was performed by giving three parameters of 50, 5 and 2 

explained in Chapter 3; 50 representing the window size in SNPs, 5 representing the number of 

SNPs to shift the window at each step and 2 representing VIF. With this, all variants in 50 SNP 

window with 𝑉𝐼𝐹 > 2 were removed. This indicates that all the variants with 𝑟2 > 0.5  were 

removed from the respective window. If 𝑉𝐼𝐹 = 1 was considered, then the SNP was completely 

independent of all other SNPs. Therefore, 𝑉𝐼𝐹 = 1.5  or 2  should be used practically, since 

defining a very low 𝑉𝐼𝐹 and/or too large a window size may result in removing too many SNPs 

(Purcell et al., 2007). In our study, the panel of 501’124 SNPs was pruned and generated a subset 

of 25’437 SNPs for KE and 30’212 SNPs for PE by PLINK (v1.07). 

The comparison in univariate GBLUP predictive ability obtained based on the 501’124 SNPs and 

the pruned set of SNPs across series of studied traits for KE and PE landraces are shown in Fig. 5.3 

and Fig. 5.4, respectively. The average of GBLUP predictive ability is shown to be higher for some 

of the traits in some environments when the pruned set of markers are utilized instead of the panel 

of 501’124 SNPs. This improvement in GBLUP predictive ability when utilizing pruned sets is 

higher in PE than KE. Therefore, considering pruned sets of markers can potentially help to 

increase the performance and efficiency of our genomic prediction models. Moreover, generation 

of smaller subset of SNPs based on LD pruning enable us to incorporate all pairwise SNP 

interactions in ERRBLUP or an optimal subset of pairwise SNP interactions in sERRBUP at a 

computationally feasible manner.  
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Fig. 5.3: Comparison of predictive abilities obtained from univariate GBLUP when the panel of 501’124 

SNPs is used (red) and when the pruned set of 25’437 SNPs is used (green) in KE for prediction within 

environments across series of all traits.  
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Fig. 5.4: Comparison of predictive abilities obtained from univariate GBLUP when the panel of 501’124 

SNPs is used (red) and when the pruned set of 30’212 SNPs is used (green) in PE for prediction within 

environments across series of all traits.  
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5.3 Comparison of cross validation scenarios in bivariate model framework 

In this thesis, the cross validation scenario for bivariate model framework was based on training 

the model using both training sets of the target environment and the full dataset of the additional 

environment to predict the test set of the target environment. In this scenario, the selection step of 

bivariate sERRBLUP was done based on the full dataset of the additional environment. In fact, the 

inclusion of full dataset of the additional environment in this scenario of cross validation has a 

considerable impact on the predictive ability of bivariate models, although no information from 

the target environment test set is utilized in the interaction selection step (bivariate sERRBLUP) 

nor in the prediction step (Bivariate GBLUP, ERRBLUP, sERRBLUP). To shed light on this, 

Fig. 5.5 illustrates the comparison in bivariate GBLUP predictive ability for the trait PH_V4 in the 

year 2017 in both KE and PE under two scenarios of cross validation. The first scenario is based 

on training the model using both training sets of the target environment and the full dataset of the 

additional environment which was our scenario in this thesis, whereas the second scenario is based 

on training the model only using the training set of both target and additional environments. This 

comparison explicitly demonstrates the superior predictive ability of the first scenario. Therefore, 

the inclusion of the full dataset of additional environment increases the predictive ability compared 

to the second scenario even if the additional environment includes half number of lines than the 

target environment (e.g. GOL and TOM) and it is also significantly higher than univariate GBLUP.  

Furthermore, the comparison between bivariate GBLUP, ERRBLUP and sERRBLUP predictive 

abilities obtained from the second scenario of cross validation by which the models were trained 

only using the training sets of both environments for the trait PH_V4 in the year 2017 in both KE 

and PE are shown in Fig. 5.6 It is shown that bivariate GBLUP and ERRBLUP are almost identical, 

while bivariate sERRBLUP increases the predictive ability considerably. It should be noted that 

considering only the training sets of both environments in this cross validation scenario was done 

at the prediction step, while the interaction selection step of bivariate sERRBLUP was based on 

the full dataset of the additional environment. Therefore, the observed increase in predictive ability 

of bivariate sERRBLUP compared to bivariate GBLUP in this scenario is due to both epistasis and 

borrowing information from the additional environment’s test set at the variable selection step. 

This cross validation scenario results in an average relative increase of 46.5 percent in KE and 

42.0 percent in PE from bivariate GBLUP predictive ability to maximum bivariate sERRBLUP 

predictive ability for the trait PH_V4. This average relative increase in predictive ability is close 

to the average relative increase obtained from univariate GBLUP to maximum univariate 

sERRBLUP (in KE is 49.2 percent and in PE is 44.3 percent) which was shown in Chapter 3. This 

indicates that the selection of pairwise SNP interactions based on the full dataset of the other 

environment results in the similar pattern of enhancement in sERRBLUP predictive ability 

compared to GBLUP predictive ability in both univariate and bivariate models. However, the first 

cross validation scenario which was utilized in this thesis for bivariate models indicates smaller 

increases in sERRBLUP predictive ability from GBLUP predictive ability reflecting epistasis only. 

In general, this scenario of cross validation leads to higher increase in the bivariate model’s 

predictive ability. Therefore, this scenario is recommended when the same lines are phenotyped in 

different environments or in different growing seasons like multiple years.  
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Fig. 5.5: Comparison of bivariate GBLUP predictive abilities obtained through masking test sets in both 

target and additional environment (blue bars) and masking only a test set of the target environment (red 

bars) in cross validation scenario for trait PH_V4 in 2017 in both KE (left) and PE (right). In each panel, 

the dashed horizontal line indicates the univariate GBLUP predictive ability for prediction within each 

environment. 
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Fig. 5.6: Predictive ability for bivariate GBLUP (open squares), bivariate ERRBLUP (open circles) and 

bivariate sERRBLUP (filled circles and solid lines) when SNP interaction selections are based on estimated 

effects variances in KE (left side) and PE (right side) for trait PH-V4 in 2017 when the test sets in both 

target and additional environments are masked in cross validation scenario. In each panel, the solid lines’ 

color indicates the additional environment used to predict the target environment. 



167 
 

5.3.1 Evaluating cross validation scenario in bivariate models  

Runcie and Cheng (2019) showed that the cross validation in multi-trait models can potentially 

bias the prediction accuracy. It was illustrated that the cross validation scenario under which the 

focal trait is predicted by the help of a secondary trait in multi-trait models can be biased when the 

secondary traits are measured on the individuals which are going to be tested for the focal trait. 

The arising question here is whether the predictive abilities obtained from our cross validation 

scenario are biased or not. Although our bivariate models are clustered as the multi-trait models, 

they have been evaluated for a single trait in two different environments (or years). In fact, the 

cross validation scenario utilized in this thesis for bivariate models predicted the test set of the 

focal environment from the training set of the focal environment and the full dataset of the 

secondary environment for a single phenotypic trait. Therefore, no phenotypic records of the focal 

environment’s test set were used in this scenario of cross validation at the prediction step nor at 

the interaction selection step. In fact, this scenario benefits from including the phenotypic records 

of the test set lines in another environment than the focal environment. Therefore, it was shown 

that considering the environments with fewer recorded lines than the focal environment, as the 

secondary environment leads to the minimum increase in predictive ability from univariate 

models’ predicative ability. This causes the consideration of all other environments jointly as the 

secondary environment to be a more convenient approach through which the deficiencies of a 

single environment are compensated when combined with other environments (Fig. 3.7). Thus, a 

bias of the bivariate models’ prediction accuracies through our cross validation scenario is not 

expected. 

5.4 The required genotype overlap in bivariate model framework  

Persa et al. (2020) showed that the multi-trait model increases the predictive ability compared to 

single-trait models in the associated traits for partially overlap of genotypes representing the 

observation of some traits for the same genotypes in soybeans. This increase was shown to be 6 

percent for grain yield and 2 to 9 percent for other traits such as protein content, oil content, plant 

height, lodging, seed size and fiber. In our study, the number of recorded lines varied between the 

environments. The exact number of recorded lines for trait PH_V4 was illustrated in Table 3.2 for 

the year 2017 and in Table 4.2 for the environments present in both 2017 and 2018. In our bivariate 

models, the overlap of genotype between the target environment and the additional environment 

is also an important factor which directly affects the bivariate model’s predictive ability. In this 

regard, the comparison between the overlap of the target environment’s and additional 

environment’s genotypes, and the absolute increase in predictive ability from univariate GBLUP 

to bivariate GBLUP and maximum bivariate sERRBLUP in 2017 for trait PH_V4 in both KE and 

PE are illustrated in Fig. 5.7. It is shown that there is a significant correlation between the absolute 

gain in bivariate GBLUP and maximum bivariate sERRBLUP predictive abilities and the genotype 

overlap for prediction in all environments of both landraces except for GOL in PE. When 

combining all environments, there is a significant correlation of 0.84 (p-value = 5.54e-09) in KE 

and 0.63 (p-value = 0.0001) in PE between the absolute gain in bivariate GBLUP predictive ability 
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and the percentage of genotype overlap between the target environment and the additional 

environment. This correlation increases to 0.89 (p-value = 5.96e-11) in KE and 0.66 (p-value = 

6.59e-05) in PE for maximum bivariate sERRBLUP. Therefore, under the assumption of partial 

genotype overlap such as 50 percent overlap or less, the absolute increase in the respective 

predictive abilities is less than 0.1 in bivariate GBLUP and less than 0.14 in bivariate sERRBLUP. 

However, this can increase up to 0.3 in bivariate GBLUP and 0.4 in bivariate sERRBLUP under 

the assumption of more than 85 percent genotype overlap.  

Therefore, the method proposed in Chapter 3 for considering all the other environments jointly as 

the additional environment in bivariate models leads to 100 percent overlap of genotypes with the 

target environment. Consequently, this approach leads to the maximum increase in the respective 

predictive ability which was shown to be as good as or better than the maximum bivariate model 

predictive ability when considering a single environment as an additional environment (Fig. 3.7).  

Moreover, in the context of univariate models, univariate sERRBLUP is also affected by the level 

of genotype overlap through the variable selection step. As it was illustrated in Chapter 3, the 

maximum increase in univariate sERRBLUP was obtained when the variable selection step was 

carried out in the environment with more genotype overlap with the target environment so that 

TOM and GOL, which provides less than 50 percent genotype overlap with the other four 

environments (BBG, EIN, OLI, ROG), resulted in the minimum increase for prediction within the 

four respective environments across all studied traits (Fig. S. 3.10 - Fig. S. 3.11 and Fig. S. 3.3 - 

Fig. S. 3.9). One may thus conclude that the higher gain in univariate sERRBLUP and bivariate 

models’ predictive abilities are to be expected compared to univariate GBLUP when there is higher 

level of genotype overlap across the environments. This is also expected for prediction across years 

in bivariate models for higher level of genotype overlap between the years in each environment. 
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Fig. 5.7: Absolute increase in predictive ability from univariate GBLUP to bivariate GBLUP (squares) and 

maximum bivariate sERRBLUP (circles) versus the percentage of genotypes overlap between the target 

environment and the additional environment in 2017 in KE (left) and in PE (right) for trait PH_V4. In each 

panel, colored circles and squares represent the additional environment used in bivariate model to predict 

the target environment with the R-squared representing the correlation coefficient between the respective 

increase in bivariate GBLUP (𝑹𝑮𝑩𝑳𝑼𝑷
𝟐 ) and bivariate sERRBLUP (𝑹𝒔𝑬𝑹𝑹𝑩𝑳𝑼𝑷

𝟐 ) predictive abilities and the 

percentage of genotype overlap. 
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5.4.1 Genomic and phenotypic correlation impacts on bivariate model’s 

predictive ability under the high level of genotype overlap 

The percentage of genotype overlap was shown to be significantly correlated to the absolute 

increase in predictive ability from univariate GBLUP to bivariate GBLUP and maximum bivariate 

sERRBLUP in trait PH_V4 in 2017 based on our cross validation scenario. Fig. 5.7 shows that 

under the assumption of high genotype overlap such as 100 percent overlap, higher gain in 

predictive ability is expected. However, one can observe that the respective absolute gain in 

predictive ability is not the same when the target environment is joined with different environments 

of the same level of genotype overlap. To shed light on this, the increase in bivariate GBLUP and 

maximum bivariate sERRBLUP predictive abilities for predicting ROG in KE when it is joined 

with BBG and EIN are different although both BBG and EIN have 100 percent genotype overlap 

with ROG. The increase in the respective bivariate GBLUP and maximum bivariate sERRBLUP 

predictive abilities when ROG is joined with BBG are respectively 0.16 and 0.24, while joining 

with EIN results in higher increase of 0.20 in bivariate GBLUP and 0.31 in maximum bivariate 

sERRBLUP predictive abilities. Therefore, an investigation of the underlying factors affecting the 

respective increase in predictive ability is required. 

Genomic correlation was shown to be the most influential factor significantly correlated with the 

absolute gain in maximum bivariate sERRBLUP predictive ability from univariate GBLUP for 

prediction across years where we had 100 percent genotype overlap between the years in each 

environment (Fig. 4.3). This correlation is also significant for prediction across environments for 

trait PH_V4 in 2017 in both KE (𝑟 = 0.93, p-value = 5.78e-14) and PE (𝑟 = 0.75, p-value = 1.95e-

06) in maximum bivariate sERRBLUP and in bivariate GBLUP as well (𝑟 = 0.72, p-value = 

8.22e-06 in KE and 𝑟 = 0.59, p-value = 0.0006 in PE). Additionally, phenotypic correlation is 

another influential factor in bivariate models predictive ability which was shown to be correlated 

to the increase in bivariate model’s predictive ability to some extent (Fig. 4.4). Therefore, the 

genomic and phenotypic correlation and the absolute increase in predictive ability from univariate 

GBLUP to bivariate GBLUP and maximum bivariate sERRBLUP for the environments’ 

combinations with more than 85 percent genotype overlap for trait PH_V4 in both KE and PE are 

shown in Table 5.1 and Table 5.2, respectively. 

Table 5.1 and Table 5.2 illustrate the significant role of genomic correlation in an increase in the 

respective bivariate models’ predictive abilities under the assumption of high level of genotype 

overlap. Both tables indicate a significant correlation of 0.71 (p-value = 0.0002) and 0.76 (p-value 

= 3.12e-05) between the absolute gain in bivariate GBLUP predictive ability and the genomic 

correlation when there is above 85 percent genotype overlap in KE and PE, respectively. This 

correlation for maximum bivariate sERRBLUP increases to 0.87 (p-value = 1.8e-07) in KE and 

0.82 (p-value = 3.75e-06) in PE.  

Moreover, it is shown that under the assumption of equal percentage of genotype overlap, the 

additional environment with higher genomic correlation to the target environment leads to the 

higher absolute increase in the respective predictive ability. To illustrate this, as it was discussed, 

predicting ROG in KE when joining with EIN leads to a higher gain in predictive ability (0.20/0.34 
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in bivariate GBLUP/sERRBLUP) than joining with BBG (0.16/0.20 in bivariate 

GBLUP/sERRBLUP), since ROG and EIN have higher genomic correlation (0.90/0.93 in bivariate 

GBLUP/sERRBLUP) than ROG and BBG (0.86/0.85 in bivariate GBLUP/sERRBLUP), although 

both EIN and BBG have 100 percent genotype overlap with ROG. Therefore, under the assumption 

of having high genotype overlap, genomic correlation can determine the amount of increase in 

bivariate model’s predictive ability.  

Furthermore, Table 5.1 and Table 5.2 illustrate that under the assumption of having equal levels 

of genotype overlap and equal genomic correlation, the environment with higher phenotypic 

correlation leads to the higher gain in bivariate model’s predictive ability. As an illustration, when 

predicting TOM in PE by joining with BBG and EIN, there is an equal genotype overlap of 95.6 

percent and equal GBLUP genomic correlation of 0.99 between TOM and both BBG and EIN. 

However, the phenotypic correlation between TOM and BBG is 0.57 where an increase of 0.16 in 

the bivariate GBLUP predictive ability is observed, whereas the phenotypic correlation between 

TOM and EIN is 0.68 which leads to the higher increase of 0.24 in bivariate GBLUP predictive 

ability. Consequently, Table 5.1 and Table 5.2 illustrate the significant correlation of 0.41 in KE 

(p-value = 0.058) and 0.82 in PE (p-value = 2.77e-06) between the absolute gain in bivariate 

GBLUP predictive ability and phenotypic correlation which increases to 0.62 in KE (p-value = 

0.002) and 0.87 in PE (p-value = 1.89e-07) for maximum bivariate sERRBLUP. 

Overall, genomic correlation and phenotypic correlation are shown to be the first and second 

factors affecting the absolute increase in bivariate model’s predictive ability, respectively. 
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Table 5.1: The phenotypic correlation, GBLUP and sERRBLUP genomic correlations of the environments combinations with genotype overlap 

above 85 percent and the respective absolute increase in predictive ability from univariate GBLUP to bivariate GBLUP and maximum bivariate 

sERRBLUP for the trait PH_V4 in KE. 

Target 

environment 

Secondary 

environment 

Phenotypic 

correlation 

Percentage 

of genotype 

overlap  

GBLUP 

Genomic 

Correlation 

Absolute increase 

in bivariate 

GBLUP 

Predictive ability 

sERRBLUP 

Genomic 

Correlation 

Absolute increase 

in maximum 

bivariate 

sERRBLUP 

Predictive ability 

 

BBG 

EIN 

ROG 

OLI 

 

0.82 

0.67 

0.66 

100 

99.8 

95.4 

0.99 

0.86 

0.82 

0.25 

0.16 

0.15 

0.99 

0.84 

0.74 

0.35 

0.24 

0.23 

 

EIN 

BBG 

ROG 

OLI 

 

0.82 

0.77 

0.71 

99.8 

99.6 

95.2 

0.99 

0.90 

0.90 

0.25 

0.16 

0.15 

1.00 

0.92 

0.90 

0.36 

0.32 

0.26 

 

OLI 

ROG 

EIN 

BBG 

 

0.71 

0.71 

0.66 

100 

100 

100 

0.91 

0.90 

0.82 

0.19 

0.19 

0.16 

0.91 

0.90 

0.81 

0.28 

0.28 

0.24 

 

ROG 

EIN 

BBG 

OLI 

 

0.77 

0.67 

0.71 

100 

100 

95.7 

0.90 

0.86 

0.91 

0.20 

0.16 

0.16 

0.93 

0.85 

0.92 

0.31 

0.24 

0.26 

 

 

GOL 

TOM 

EIN 

BBG 

ROG 

OLI 

 

0.69 

0.75 

0.69 

0.70 

0.65 

99.5 

95.7 

95.2 

95.2 

86.2 

0.99 

0.86 

0.82 

0.70 

0.76 

0.21 

0.17 

0.16 

0.14 

0.13 

0.87 

0.82 

0.75 

0.70 

0.66 

0.22 

0.24 

0.21 

0.21 

0.18 

 

 

TOM 

GOL 

EIN 

BBG 

ROG 

OLI 

0.69 

0.66 

0.58 

0.58 

0.50 

99.5 

95.7 

95.2 

94.8 

85.7 

0.99 

0.82 

0.81 

0.74 

0.78 

0.31 

0.21 

0.21 

0.15 

0.12 

0.96 

0.89 

0.80 

0.75 

0.79 

0.34 

0.32 

0.27 

0.24 

0.20 
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Table 5.2: The phenotypic correlation, GBLUP and sERRBLUP genomic correlations of the environments combinations with genotype overlap 

above 85 percent and the respective absolute increase in predictive ability from univariate GBLUP to bivariate GBLUP and maximum bivariate 

sERRBLUP for the trait PH_V4 in PE.  

Target 

environment 

Secondary 

environment 

Phenotypic 

correlation 

Percentage 

of genotype 

overlap 

GBLUP 

Genomic 

Correlation 

Absolute increase 

in bivariate 

GBUP Predictive 

ability 

sERRBLUP 

Genomic 

Correlation 

Absolute increase 

in maximum 

bivariate 

sERRBLUP 

Predictive ability 

 

BBG 

EIN 

ROG 

OLI 

 

0.78 

0.62 

0.60 

100 

99.2 

99.2 

0.95 

0.79 

0.60 

0.27 

0.16 

0.13 

0.94 

0.84 

0.70 

0.36 

0.23 

0.22 

 

EIN 

BBG 

ROG 

OLI 

 

0.78 

0.69 

0.66 

100 

99.2 

99.2 

0.95 

0.91 

0.83 

0.27 

0.16 

0.13 

0.97 

0.91 

0.83 

0.36 

0.28 

0.27 

 

OLI 

EIN 

BBG 

ROG 

 

0.66 

0.60 

0.65 

100 

100 

99.7 

0.83 

0.60 

0.97 

0.26 

0.19 

0.26 

0.86 

0.73 

0.99 

0.34 

0.27 

0.33 

 

ROG 

EIN 

BBG 

OLI 

 

0.69 

0.62 

0.65 

100 

100 

99.7 

0.91 

0.79 

0.97 

0.19 

0.15 

0.17 

0.90 

0.83 

0.92 

0.24 

0.22 

0.23 

 

 

GOL 

TOM 

EIN 

BBG 

ROG 

OLI 

 

0.54 

0.59 

0.55 

0.51 

0.46 

100 

95.6 

95.6 

95.6 

95.6 

0.65 

0.61 

0.52 

0.56 

0.52 

0.06 

0.09 

0.06 

0.07 

0.06 

0.53 

0.60 

0.52 

0.53 

0.43 

0.08 

0.13 

0.08 

0.09 

0.08 

 

 

TOM 

GOL 

BBG 

EIN 

ROG 

OLI 

0.54 

0.57 

0.68 

0.58 

0.57 

100 

95.6 

95.6 

95.6 

95.6 

0.65 

0.99 

0.99 

0.89 

0.86 

0.13 

0.16 

0.24 

0.17 

0.16 

0.95 

0.95 

0.96 

0.97 

0.88 

0.17 

0.24 

0.29 

0.22 

0.21 
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5.5 Potential future research topics  

In order to enhance the epistasis genomic prediction model’s performance further investigations 

are required in general. In this regard, incorporating transcriptomic data in to the epistasis genomic 

prediction model is a potential approach to be tested for evaluating the epistasis model’s prediction 

accuracy. It has been shown that a large scale incorporation of transcriptomic data into the genomic 

prediction model has the potential to enhance genomic prediction (Li et al., 2019).  

Moreover, in the context of a multi-trait model, incorporating weather data into epistasis genomic 

prediction models can be investigated in the context of the sERRBLUP model, since inclusion of 

weather data as 𝐺 × 𝐸  has been shown to increase the genomic prediction model’s accuracy 

(Hallauer et al., 2010; Burgueño et al., 2012; Crossa et al., 2016; Mafouasson et al., 2018; Gillberg 

et al., 2019; Millet et al., 2019).  

Furthermore, detecting epistatic interactions through single-trait and multi-trait GWAS analysis is 

also a potential subject for future investigations. In the context of plant breeding, GWAS has been 

positively evaluated for various plants such as maize, wheat, rice, barley (Huang et al., 2010; Weng 

et al., 2011; M. Wang et al., 2012; Van Inghelandt et al., 2012; Yang et al., 2014; Sukumaran et 

al., 2015; Alqudah et al., 2020). Epistatic analysis in GWAS studies can help detection of non-

significant SNPs which interact with each other and may have a large effect on the trait (Koo et 

al., 2015). Moreover, multi-trait analysis of GWAS has been shown to increase the number of 

detected associated loci compared to single-trait GWAS (Korte et al., 2012; Turley et al., 2018; 

Bonnemaijer et al., 2019; Rice et al., 2020). Therefore, investigating epistasis GWAS through 

single-trait and multi-trait statistical settings is a potential field for future investigation in the 

context of epistasis models. 

5.6 Outlooks and Conclusion 

5.6.1 Outlook for epistasis models 

In this work, we have developed and evaluated epistasis models in univariate and bivariate 

statistical settings for prediction across environments and across years in doubled haploid lines 

from European landraces Kemater and Petkuser in six locations in the year 2017 and in four 

locations in both years 2017 and 2018 in Germany and Spain for eight phenotypic traits.  

ERRBLUP as the full epistasis model incorporating all pairwise SNP interactions and sERRBLUP 

as the selective epistasis model incorporating a subset of pairwise SNP interactions have been 

developed in this thesis. ERRBLUP was shown to be almost identical to GBLUP, since 

incorporating all pairwise SNP interactions into the genomic prediction model introduced a large 

number of unimportant variables in to the model producing the ‘noise’ which prevents a gain in 

ERRBLUP predictive ability compared to GBLUP. In contrast, sERRBLUP outperforms GBLUP 
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when the top ranked pairwise SNP interactions maintained in the model in both univariate and 

bivariate statistical settings across series of phenotypic traits and landraces in maize dataset for the 

majority of cases. Interaction selection based on effect variances in sERRBLUP was shown to be 

the preferable selection criterion compared to interaction selection based on absolute effect sizes 

due its robustness. 

The increase in GBLUP predictive ability to maximum sERRBLUP predictive ability results from 

epistasis in bivariate statistical setting, while this increase is caused by both epistasis and 

borrowing information across environments in univariate statistical setting.  

5.6.2 Outlook for EpiGP R-package 

In this thesis, we have found that the proposed sERRBLUP model’s computing time display a 

quadratic growth by increasing the number of SNPs. Although our developed “EpiGP” R-package 

is able to process more than 30’000 SNPs and thus more than 450 Million SNP x SNP interactions 

in an efficient way, our proposed model can potentially lead to a considerable computational load 

by increasing the number of SNPs to hundreds of thousands. Therefore, reducing the number of 

SNPs by LD pruning is highly recommended which can potentially lead to higher predictive ability 

in addition to making the application of epistasis models feasible in an efficient computational 

time. Moreover, utilizing haplotype blocks in sERRBLUP model was shown to result in the very 

similar prediction accuracies as the ones obtained when utilizing pruned set of SNPs, while its 

computational load is significantly reduced compared to sERRBLUP model based on pruned set 

of SNPs. 

5.6.3 Outlook for influential factors on the model’s predictive ability 

Bivariate models were shown to be superior to univariate models under the cross validation 

scenario through which only the test set of the target environment (or year) is masked in each run 

of 5-fold cross validation with 5 replicates. With this, bivariate GBLUP was shown to be slightly 

better than maximum univariate sERRBLUP, and maximum bivariate sERRBLUP obtained the 

maximum predictive ability among all bivariate models in most cases.  

Furthermore, in the context of bivariate models and univariate sERRBLUP model, the genotype 

overlap between the target environment (or year) and the secondary environment (or year) 

illustrates significant correlation with the respective models’ predictive abilities. Under the 

assumption of a high level of genotype overlap, genomic correlation was shown to be the first and 

the most significant factor affecting the genomic prediction model’s predictive ability. Phenotypic 

correlation and the trait’s heritability were also the factors affecting the predictive ability of the 

respective models.  

In this thesis, we further proposed genomic prediction models across multiple environments jointly 

as a successful approach through which the obtained predictive ability is as good as or better than 

the maximum predictive ability obtained across a single environment. This was potentially caused 
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by providing 100 percent genotype overlap between the target environment and the secondary 

environment. Besides, utilizing the average phenotypic values across all environments adjusts the 

impact of a single environment which helps to prevent the choice of a ‘wrong’ environment for 

training the model.   

5.6.4 Concluding remarks 

Genomic prediction of phenotypes can be a giant step toward increasing the accuracy of genomic 

prediction models by utilizing the sERRBLUP model especially through a bivariate statistical 

framework which can potentially increase the predictive ability the most and its computational 

load can be reduced significantly by utilizing haplotype blocks instead of pruned set of SNPs. The 

potential gain in bivariate sERRBLUP predictive ability is determine by the level of genotype 

overlap, genomic and phenotypic correlation between the target environment (or year) and the 

secondary environment (or year) for a highly heritable trait, when utilizing the full dataset of the 

secondary environment (or year) and the training set of the target environment (or year) for 

predicting the target environment’s test set (or year).  

In fact, this scenario of genomic prediction of phenotypes in bivariate sERRBLUP model simulates 

the real scenarios in breeding programs in which the lines are recorded in multiple environments 

either during the same growing season or subsequent seasons. Moreover, the successful approach 

considered as prediction across multiple environments jointly is a potential approach in this context 

which can enhance the predictive ability through training the model on all available information 

across environments or across multiple growing seasons. 

Overall, accurate genomic prediction of phenotypes is of great importance in plant breeding since 

genomic prediction is becoming a daily tool for selection purposes by plant breeders. Therefore, 

our proposed sERRBLUP model as a selective epistasis model increasing the prediction accuracy 

can revolutionize the genomic prediction of phenotypes especially through utilizing all available 

information across multiple environments or multiple growing seasons jointly to train the model 

in an efficient computational manner by EpiGp R-package. Moreover, efficiently utilizing all 

phenotypic records which have been collected at high costs over different environments and/or 

years is an important capacity of sERRBLUP which substantially enhances the prediction accuracy 

while decreasing the further costs in plant breeding. In general, the sERRBLUP model can 

potentially be utilized for other species such as animal and human genomic predictions where 

epistasis is a relevant gene action.     
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